TPS59632QRHBTQ1 [TI]

2.5V 至 24V、三相/两相/单相降压无驱动器控制器

| RHB | 32 | -40 to 125;
TPS59632QRHBTQ1
型号: TPS59632QRHBTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.5V 至 24V、三相/两相/单相降压无驱动器控制器

| RHB | 32 | -40 to 125

驱动 控制器 开关 驱动器
文件: 总56页 (文件大小:2872K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
适用于汽车 ADAS 应用的 TPS59632-Q1 2.5V 24V、三相/两相/单相降  
压无驱动器控制器  
1 特性  
2 应用  
1
符合面向汽车 应用的 AEC-Q100 标准  
高级驾驶辅助系统 (ADAS)  
条件式自动驱动控制器  
温度等级 1–40°C 125°C  
人体放电模型 ESD 分类等级 H2  
带电器件模型 ESD 分类等级 C3B  
汽车信息娱乐系统和仪表组  
3 说明  
可选相位数:32 1  
TPS59632-Q1 器件是一款三相降压无驱动器控制器,  
具有许多高级 功能 ,例如具有输出电压过冲衰减  
(OSR) 和下冲衰减 (USR) 功能的 D-CAP+™控制架  
构,可实现极快的瞬态响应、超低的输出电容和高效  
率。该器件支持 I2C 接口,能够实现输出电压动态控  
制、可优化效率的相位管理以及电流监控器遥测。  
TPS59603-Q1 MOSFET 栅极驱动器专用于与此控制  
器配合工作,以驱动同步降压转换器功率级  
转换电压范围:2.5V 24V(相位数、开关频率和  
最大输出电压限制适用)  
7 DAC 电压范围:0.50V 1.52V  
支持预设引导,DAC 电压 0.800V  
精确、可调节的直流负载线(压降)或零斜率负载  
线
D-CAP+™控制,可实现快速瞬态响应  
已获专利的 AutoBalance™相位均衡技术  
8 种开关频率设置(300kHz 1MHz)  
MOSFETTPS59632-Q1 器件采用节省空间的 5mm  
× 5mm、热增强型 32 引脚 QFN 封装(间距为  
0.5mm),额定工作温度范围为 –40°C 125°C。  
8 级独立的输出电压过冲衰减 (OSR) 和下冲衰减  
(USR)  
可选 8 级电流限制  
器件信息(1)  
负载电流监视器(模拟和数字)  
可选 8 级电压压摆率  
器件型号  
封装  
封装尺寸(标称值)  
TPS59632-Q1  
VQFN (32)  
5mm × 5mm  
优化了轻负载和重负载条件下的效率  
I2C 接口适用于 VID 控制、相位管理和遥测(具有  
8 个器件地址)  
采用 5mm x 5mm32 引脚、间距为 0.5mm 的  
QFN 封装(具有电源板和可湿性侧面)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化应用  
High-Side  
+
Low-Side  
MOSFETs  
TPS59603-Q1 Gate Drive  
TPS59632-Q1  
PWM1  
I2C BUS  
High-Side  
+
Low-Side  
MOSFETs  
PWM2  
VOUT  
TPS59603-Q1 Gate Drive  
PWM3  
SKIP  
High-Side  
+
Low-Side  
MOSFETs  
TPS59603-Q1 Gate Drive  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDL4  
 
 
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
目录  
8.1 Application Information............................................ 29  
8.2 Typical Application .................................................. 29  
Power Supply Recommendations...................... 38  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 9  
6.7 Switching Characteristics.......................................... 9  
6.8 Typical Characteristics............................................ 11  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 14  
7.3 Feature Description................................................. 14  
7.4 User Selections....................................................... 25  
7.5 I2C Interface Operation ........................................... 25  
7.6 I2C Register Maps................................................... 27  
Applications and Implementation ...................... 29  
9
10 Layout................................................................... 39  
10.1 Layout Guidelines ................................................. 39  
10.2 Layout Example ................................................... 39  
10.3 Current Sensing Lines .......................................... 40  
10.4 Feedback Voltage Sensing Lines ......................... 40  
10.5 PWM And SKIP Lines........................................... 40  
10.6 Power Chain Symmetry ........................................ 40  
10.7 Component Location............................................. 40  
10.8 Grounding Recommendations .............................. 41  
10.9 Decoupling Recommendations ............................. 41  
10.10 Conductor Widths................................................ 41  
11 器件和文档支持 ..................................................... 42  
11.1 文档支持................................................................ 42  
11.2 ....................................................................... 42  
11.3 静电放电警告......................................................... 42  
11.4 Glossary................................................................ 42  
12 机械、封装和可订购信息....................................... 43  
13 Package Option Addendum ............................... 44  
13.1 Packaging Information .......................................... 44  
13.2 Tape And Reel Information................................... 45  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2020 2 月  
*
初始发行版  
2
Copyright © 2020, Texas Instruments Incorporated  
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
5 Pin Configuration and Functions  
RHB Package  
32-Pin QFN  
(Top View)  
SDA  
VDD  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VFB  
GFB  
PGOOD  
PWM3  
PWM2  
PWM1  
SKIP  
CSN3  
CSP3  
CSP2  
CSN2  
CSN1  
CSP1  
Thermal  
Pad  
EN  
(Not to scale)  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
COMP  
NO.  
Error amplifier summing node. Resistors from VREF to COMP (RCOMP) and COMP to DROOP (RDROOP) set  
the droop gain.  
26  
I
CSP1  
CSP2  
CSP3  
CSN1  
CSN2  
CSN3  
17  
20  
21  
18  
19  
22  
Positive current sense inputs. Connect to the most positive node of current sense resistor or inductor DCR  
sense network. Tie CSP3, CSP2, or CSP1 (in that order) to 3.3 V to disable the phase.  
I
I
Negative current sense inputs. Connect to the most negative node of current sense resistor or inductor DCR  
sense network. CSN1 has a secondary OVP comparator and includes the soft-stop pulldown transistor.  
Error amplifier output. A resistor pair from VREF to COMP to DROOP sets the droop gain. ADROOP = 1 +  
DROOP  
EN  
25  
8
O
I
RDROOP / RCOMP  
.
Enable; 100-ns de-bounce. Regulator enters low-power mode, but retains start-up settings when brought  
low.  
R to GND sets the per phase switching frequency. MUST connect a resistor to VREF to ensure this pin  
voltage is above 0.8 V for proper operation.  
FREQ-P  
GFB  
10  
23  
I
Voltage sense return. Tie to GND on PCB with a 10-Ω resistor to provide feedback when µP is not  
populated.  
I
GND  
29  
13  
Analog circuit reference; tie to a quiet point on the ground plane.  
IMON  
O
Analog current monitor output. VIMON = Σ VISENSE × (1 + RIMON / ROCP).  
Voltage divider to IMON. Resistor ratio sets the IMON gain (see IMON pin). R to GND (ROCP) selects 1 of 8  
OCP levels (per phase, latched at start-up).  
OCP-I  
12  
I/O  
Copyright © 2020, Texas Instruments Incorporated  
3
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Voltage divider to the VREG pin. Connect a resistor to GND to select the pulse-truncation level and OSR  
level. Voltage at O-USR selects the USR level.  
O-USR  
9
I
PU  
9
I
Provides pullup resistance to VREF through 10-kΩ resistor.  
PAD  
GND  
Thermal pad; tie to the ground plane with multiple vias.  
Power Good output; Open-drain. PGOOD can be configured to go low when the current reaches 70% of the  
OCP setting value.  
PGOOD  
3
O
O
I
PWM1  
PWM2  
PWM3  
6
5
4
PWM controls for the external driver; 5-V logic level. Controller forces signal to the 3-state level when  
needed.  
Voltage divider to VREF. Connect a resistor to GND to set the ramp setting voltage. The RAMP setting can  
override the factory ramp setting.  
RAMP  
NC  
11  
30  
32  
31  
1
NC No connect. Leave pins floating.  
l2C digital clock line.  
I/O I2C digital data line.  
SCL  
SDA  
I
This pin is active high to operate synchronous buck MOSFETs in Forced Continuous Conduction Mode  
SKIP  
7
O
I
(FCCM) active low for skip mode operation. This pin must be connected to the corresponding pin of the  
drivers for this function.  
The voltage sets the 3 LSBs of the I2C address. The resistance to GND selects 1 of 8 slew rates. The start-  
up slew rate (EN transitions high) is SLEWRATE / 2. The ADDRESS and SLEWRATE values are latched at  
start-up.  
SLEWA  
15  
VINTF  
V5A  
14  
28  
I
I
Input voltage to power I2C interface logic. Can be tied to VDD if 3.3-V logic signals are needed.  
5-V power input for analog circuits; connect through resistor to 5-V plane and bypass to GND with 1-µF  
ceramic capacitor  
VBAT  
VDD  
16  
2
I
I
10-kΩ resistor to VBAT provides VBAT information to the on-time circuits for both converters.  
3.3-V digital power input; bypass to GND with 1-µF capacitor.  
Voltage sense line. Tie directly to VOUT sense point of processor. Tie to VOUT on PCB with a 10-Ω resistor to  
VFB  
24  
27  
I
provide feedback when the microprocessor is not populated. The resistance between VFB and GFB is > 1  
MΩ.  
VREF  
O
1.7-V, 500-µA reference. Bypass to GND with a 0.22-µF ceramic capacitor.  
4
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V5A  
–0.3  
6.0  
VDD, O-USR, RAMP, OCP-I, VFB, CSP1, CSP2, CSP3, CSN1, CSN2, CSN3,  
VINTF, SDA, SCL, FREQ-P, SLEWA, EN, NC  
-0.3  
3.6  
Input voltage  
V
VBAT  
–0.3  
–0.3  
–0.2  
–0.3  
–0.3  
–40  
30  
3.6  
0.2  
3.6  
6.0  
150  
150  
COMP  
GFB  
PGOOD, IMON, VREF, DROOP  
PWM3, PWM2, PWM1, SKIP  
Output voltage  
V
Junction temperature range, TJ  
Storage Temperature Tstg  
°C  
°C  
–55  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC-Q100 Classification  
Level H2  
±2000  
V(ESD)  
Electrostatic Discharge  
V
Charged device model (CDM), per AEC-Q100 Classification  
Level C3B  
±750  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V5A  
–0.1  
5.5  
VDD, O-USR, RAMP, OCP-I, VFB, CSP1, CSP2, CSP3, CSN1, CSN2, CSN3,  
VINTF, SDA, SCL, FREQ-P, SLEWA, EN, NC  
-0.1  
3.5  
Input voltage  
V
VBAT  
–0.1  
–0.1  
–0.1  
–0.1  
–0.1  
–40  
28  
3.5  
0.1  
3.5  
5.5  
125  
COMP  
GFB  
PGOOD, IMON, VREF, DROOP  
PWM3, PWM2, PWM1, SKIP  
Output voltage  
V
Operating junction temperature, TJ  
°C  
6.4 Thermal Information  
TPS59632-Q1  
THERMAL METRIC(1)  
RSM (VQFN)  
32 PINS  
37.2  
UNITS  
RθJA  
Junction-to-ambient thermal resistance  
RθJCtop  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
31.9  
8.1  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
7.9  
RθJCbot  
2.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report  
Copyright © 2020, Texas Instruments Incorporated  
5
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over recommended temperature range, 4.5 V VV5A 5.5 V, 3.0 V VVDD 3.6 V, VGFB = GND, VVFB = VOUT, 0.7 < VFREQ-  
P VVREF (unless otherwise noted).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY: CURRENTS, UVLO AND POWER-ON-RESET  
IV5-3P  
V5A supply current, 3-phase  
VDD supply current, 3-phase  
V5A supply current, 1-phase  
VDD supply current, 1-phase  
VVDAC < VVFB < (VVDAC + 100 mV), EN = ‘HI’  
3.6  
0.2  
3.5  
0.2  
6.0  
0.8  
6.0  
0.8  
VVDAC < VVFB < (VVDAC + 100 mV) , EN = ‘HI’; digital  
buses idle  
IVDD-3P  
IV5-1P  
mA  
VDAC < VFB < (VVDAC + 100 mV) EN = ‘HI’  
VDAC < VFB < (VVDAC + 100 mV), EN = ‘HI’; digital  
buses idle  
IVDD-1P  
IV5STBY  
IVDDSTBY  
IVINTF  
V5A standby current  
VDD standby current  
VINTF supply current  
EN = ‘LO’  
125  
23  
200  
40  
EN = ‘LO’  
µA  
All conditions; digital buses idle  
1.7  
5.0  
VVFB < 200 mV. Ramp up; VVDD > 3 V; EN = ’HI’;  
Switching begins.  
VUVLOH  
VUVLOL  
V5POR  
V5A UVLO ‘OK’ threshold  
V5A UVLO fault threshold  
V5A fault latch reset threshold  
VDD UVLO ‘OK’ threshold  
Fault threshold  
4.2  
4.00  
1.2  
4.4  
4.2  
1.9  
2.8  
2.6  
4.52  
4.35  
2.5  
Ramp down; EN = ’HI’; VVDD > 3 V; VVFB = 100 mV.  
Switching stops  
Ramp down. EN = ‘HI’; VVDD > 3 V. Can restart if  
V5A rises to VUVLOH, and no other faults present.  
VVFB < 200 mV. Ramp up; VV5A > 4.5 V; EN = ’HI’;  
Switching begins.  
V3UVLOH  
V3UVLOL  
2.5  
3.0  
V
Ramp down; EN = ’HI’; V5A > 4.5 V; VFB = 100  
mV. Switching stops.  
2.4  
2.8  
Ramp down. EN = ‘HI’; V5A > 4.5 V. Can restart if  
VDD goes up to V3UVLOH, and no other faults  
present.  
V3POR  
VDD fault latch  
1.2  
1.9  
2.5  
VINTFUVLOH  
VINTFUVLOL  
VINTF UVLO OK  
Ramp up; EN = ’HI’; V5A > 4.5 V; VFB = 100 mV.  
1.4  
1.3  
1.5  
1.4  
1.6  
1.5  
Ramp down; EN = ’HI’; V5A > 4.5 V; VFB = 100  
mV.  
VINTF UVLO falling  
REFERENCES: VDAC, VREF, BOOT Voltage  
VVIDSTP  
VDAC1  
VID step size  
Change VID0 HI to LO to HI  
10  
1.36 V VVFB 1.52 V, IOUT = 0 A  
1.0 V VVFB 1.35 V; IOUT = 0 A  
0.5 V VVFB 0.99 V; IOUT = 0 A  
VREF output 4.5 V VV5A 5.5 V, IVREF = 0 A  
0 A IREF 500 µA, HP-2  
–9  
–8  
9
8
mV  
VDAC2  
VFB tolerance  
VDAC3  
–7  
7
VVREF  
VREF output  
1.66  
–4  
1.700  
–3  
1.74  
V
mV  
V
VVREFSRC  
VVREFSNK  
VVBOOT  
VREF output source  
VREF output sink  
–500 A IREF 0 A, HP-2  
3
4
Internal VFB initial boot voltage Initial DAC boot voltage  
0.8  
DIFFERENTIAL VOLTAGE SENSE: VFB AND GFB  
Not in fault, disable, or UVLO, VVFB = VDAC = 1.5 V  
VGFB = 0 V, measure from VFB to GFB  
RVFB  
VFB/GFB Input resistance  
50  
MΩ  
VDELGND  
GFB Differential  
GND to GFB  
±100  
mV  
ERROR AMPLIFIER, CURRENT AMPLIFIER, CURRENT SHARE  
Error amplifier total voltage  
AV-EA  
VFB to DROOP  
80  
dB  
gain(1)  
IEA_SR  
IEA_SK  
ICS  
Error amplifier source current  
Error amplifier sink current  
CS pin input bias current  
IDROOP, VVFB = VDAC + 50 mV, RCOMP = 1 kΩ  
IDROOP, VVFB = VDAC –50 mV, RCOMP = 1 kΩ  
CSPx and CSNx  
1
–1  
mA  
–500  
5.8  
0.2  
500  
6.2  
nA  
Gain from CSPx – CSNx to PWM comparator,  
RSKIP = Open  
ACSINT  
Internal current sense gain  
6.0  
V/V  
VDAC = 1.70 V, VCSP1 – VCSN1 = VCSP2 – VCSN2  
VCSP3 – VCSN3 = VOCPP_MIN  
=
IBAL_TOL  
Internal current share tolerance  
–3%  
+3%  
(1) Specified by design. Not production tested.  
6
Copyright © 2020, Texas Instruments Incorporated  
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Electrical Characteristics (continued)  
Over recommended temperature range, 4.5 V VV5A 5.5 V, 3.0 V VVDD 3.6 V, VGFB = GND, VVFB = VOUT, 0.7 < VFREQ-  
P VVREF (unless otherwise noted).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RAMP SETTINGS  
VRAMP  
RRAMP = 20 kΩ +/- 1%  
20  
60  
RRAMP = 30 kΩ +/- 1%  
RRAMP = 39 kΩ +/- 1%  
Compensation ramp amplitude  
mV  
100  
40  
RRAMP 150 kΩ +/- 1%  
SLEW SETTINGS  
SLSET  
RSLEW = 20 kΩ +/- 1%  
RSLEW = 24 kΩ +/- 1%  
RSLEW = 30 kΩ +/- 1%  
RSLEW = 39 kΩ +/- 1%  
EN goes high, RSLEW = 20 kΩ  
6
12  
18  
24  
3
10  
20  
30  
40  
5
Slew rate setting for VID  
change  
mV/µs  
mV/µs  
(2)  
SLSTART  
Slew rate setting for start-up  
ADDRESS SETTINGS  
VSLEWA 0.25 V  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
0.35 V VSLEWA 0.45 V  
0.55 V VSLEWA 0.65 V  
0.75 V VSLEWA 0.85 V  
0.95 V VSLEWA 1.05 V  
1.15 V VSLEWA 1.25 V  
1.35 V VSLEWA 1.45 V  
1.55 V VSLEWA VVREF  
Address setting 3 LSB of I2C  
Address (ADDR = 100 0xxx)  
ADDR  
OVERSHOOT REDUCTION (OSR) SETTINGS  
RO-USR = 20 kΩ +/- 1%  
RO-USR = 24 kΩ +/- 1%  
RO-USR = 30 kΩ +/- 1%  
RO-USR = 39 kΩ +/- 1%  
RO-USR = 56 kΩ +/- 1%  
RO-USR = 75 kΩ +/- 1%  
RO-USR = 100 kΩ +/- 1%  
RO-USR = 150 kΩ +/- 1%  
100  
150  
200  
250  
300  
400  
500  
OFF  
Overshoot Reduction (OSR)  
Voltage set  
VOSR  
mV  
(3)  
UNDERSHOOT REDUCTION (USR) SETTINGS  
VO-USR < 0.25 V  
40  
60  
0.35 < VO-USR < 0.45 V  
0.55 < VO-USR < 0.65 V  
0.75 < VO-USR < 0.85 V  
0.95 < VO-USR < 1.05 V  
1.15 < VO-USR < 1.25 V  
1.35 < VO-USR < 1.45 V  
1.55 < VO-USR < VVREF  
80  
120  
160  
200  
240  
OFF  
Undershoot Reduction (USR)  
Voltage set  
VUSR  
mV  
(4)  
OVER CURRENT PROTECTION (OCP) SETTINGS  
(2) Specified by design. Not production tested.  
(3) Specified by design. Not production tested.  
(4) Specified by design. Not production tested.  
Copyright © 2020, Texas Instruments Incorporated  
7
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over recommended temperature range, 4.5 V VV5A 5.5 V, 3.0 V VVDD 3.6 V, VGFB = GND, VVFB = VOUT, 0.7 < VFREQ-  
P VVREF (unless otherwise noted).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ROCP-I = 20 kΩ +/- 1%  
5.0  
7.0  
9.0  
ROCP-I = 24 kΩ +/- 1%  
ROCP-I = 30 kΩ +/- 1%  
ROCP-I = 39 kΩ +/- 1%  
ROCP-I = 56 kΩ +/- 1%  
ROCP-I = 75 kΩ +/- 1%  
ROCP-I = 100 kΩ +/- 1%  
ROCP-I = 150 kΩ +/- 1%  
7.0  
10.0  
14.0  
19.0  
25.0  
32.0  
40.0  
49.0  
13.0  
18.0  
23.0  
29.0  
36.0  
44.0  
53.0  
10.0  
15.0  
21.0  
28.0  
36.0  
45.0  
OCP voltage (valley current limit  
at CSPx – CSNx)  
VOCP  
mV  
8
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Electrical Characteristics (continued)  
Over recommended temperature range, 4.5 V VV5A 5.5 V, 3.0 V VVDD 3.6 V, VGFB = GND, VVFB = VOUT, 0.7 < VFREQ-  
P VVREF (unless otherwise noted).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT MONITOR (IMON)  
∑∆CS = 0 mV, AIMON = 3.867  
00h  
12h  
79h  
FAh  
50  
00h  
19h  
80h  
FFh  
03h  
20h  
87h  
FFh  
∑∆CS = 4.5 mV, AIMON = 3.867  
∑∆CS = 22 mV, AIMON = 3.867  
∑∆CS = 44 mV, AIMON = 3.867  
Each phase, CSPx – CSNx  
VALADC  
IMON ADC output  
IMON linear range  
LRIMON  
mV  
PROTECTION: OVP, UVP, PGOOD  
VOVPH  
Fixed OVP voltage  
VCSN1 > VOVPH for 1 µs  
Connected to CSN1  
1.60  
1.70  
100  
1.80  
200  
V
RSFTSTP  
Soft-stop transistor resistance  
Ω
Measured at the VFB pin with respect to VID code,  
device latches OFF  
VPGDH  
VPGDL  
PGOOD high threshold  
PGOOD low threshold  
185  
245  
mV  
Measured at the VFB pin with respect to VID code,  
device latches OFF  
–348  
–280  
PWM AND SKIP OUTPUTS: I/O VOLTAGE AND CURRENT  
VP-S_L  
PWMx / SKIP – Low  
PWMx / SKIP – High  
PWMx / SKIP 3-state  
ILOAD = ± 1 mA  
ILOAD = ± 1 mA  
ILOAD = ± 100 µA  
0.15  
1.7  
0.3  
1.8  
VP-S_H  
4.2  
1.6  
V
VPW-SKLK  
LOGIC INTERFACE: VOLTAGE AND CURRENT  
RVRTTL  
SDA, V = 0.31 V  
4
–2  
15  
50  
2
Pulldown resistance  
RVRPG  
Ω
µA  
V
PGOOD, V = 0.31 V  
36  
IVRTTLK  
VIL,I2C  
VIH,I2C  
VIL,EN  
VIH,EN  
IENH  
Logic leakage current  
Low-level input voltage  
High-level input voltage  
EN Low-level input voltage  
EN High-level input voltage  
I/O leakage, EN  
SDA, SCL = 1.8 V, PGOOD = 3.3 V  
0.2  
0.6  
SCL, SDA, VINTF = 1.8 V  
1.2  
1.3  
0.5  
40  
V
Leakage current , VEN = 1.8 V  
24  
µA  
VBAT INPUT RESISTANCE  
EN = HI  
550  
50  
kΩ  
RVBAT  
VBAT resistance  
EN = LOW  
MΩ  
6.6 Timing Requirements  
The device, TPS59632Q1, requires the ENABLE signal on Pin 8 to go from low to high only after the V5A (5-V  
supply), the VDD (3.3-V supply) and the VBAT rails have gone high.  
6.7 Switching Characteristics  
Over recommended temperature range, 4.5 V VV5A 5.5 V, 3.0 V VVDD 3.6 V, VGFB = GND, VVFB = VCORE (unless  
otherwise noted).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TIMERS: START-UP, PWM ON-TIME AND I/O TIMING  
VBOOT > 0V , EN = high, time from UVLO to  
VOUT ramp, CREF = 0.33 µF  
tSTART-CB  
tSTBY-E  
tPGDDGLTO  
tPGDDGLTU  
Cold boot time  
1.2  
ms  
µs  
Time from EN assertion until PGOOD goes  
high. VVID = 1.28 V, RSLEW = 39 kΩ  
STBY exit time  
250  
Time from VFB out of 250 mV VDAC  
boundary to PGOOD low.  
PGOOD deglitch time  
PGOOD deglitch time  
1
µs  
Time from VFB out of –300 mV VDAC  
boundary to PGOOD low.  
31  
Copyright © 2020, Texas Instruments Incorporated  
9
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Switching Characteristics (continued)  
Over recommended temperature range, 4.5 V VV5A 5.5 V, 3.0 V VVDD 3.6 V, VGFB = GND, VVFB = VCORE (unless  
otherwise noted).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RF = 24 kΩ, VBAT = 12 V, VVFB = 1 V (400  
kHz)  
230  
RF = 39 kΩ, VBAT = 12 V, VVFB = 1 V (600  
kHz)  
164  
140  
122  
tON  
PWM ON-time  
ns  
RF = 75 kΩ, VBAT = 12 V, VVFB = 1 V (800  
kHz)  
RF = 150 kΩ, VBAT = 12 V, VVFB = 1 V (1  
MHz)  
tOFF_MIN  
tON_MIN  
Controller minimum OFF time  
Controller minimum ON time  
Fixed value  
20  
20  
ns  
RCF = 150 kΩ, VBAT = 20 V, VVFB = 0 V  
ACK of VID change command to start of  
voltage ramp  
tVCCVID  
tPG2  
VID change to VFB change(1)  
1
µs  
µs  
PGOOD low after enable goes low  
Low-state time after EN goes low.  
225  
250  
275  
PWM OUTPUTS: I/O VOLTAGE AND CURRENT  
tP-S_H-L  
tP-S_TRI  
PWMx H-L transition time  
PWMx 3-state transition  
10 to 90%, both edges  
7
5
20  
20  
ns  
10 or 90% to 3-state level, both edges  
(1) Specified by design. Not production tested.  
10  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
6.8 Typical Characteristics  
Figure 1. 3-phase start up behavior showing EN input and  
PGOOD output. Input Voltage = 5V, Load current = 10A.  
Figure 2. 3-phase start up behavior showing switching at  
startup. Input Voltage = 5V, Load current = 10A.  
Figure 4. 3-phase switching ripple at Input Voltage = 5 V,  
Load current = 50A, Switching Frequency = 800kHz. Single  
mode.  
Figure 3. 3-phase switching ripple at Input Voltage = 5 V,  
Load current = 50A, Switching Frequency = 800kHz.  
Persistence mode.  
Copyright © 2020, Texas Instruments Incorporated  
11  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
Figure 6. Load transient with a droop of 0.6mΩ load-line  
Figure 5. Load transient with a droop of 0.6mΩ load-line  
slope. Load transient = 14A to 50A. Single mode.  
slope. Load transient = 36A to 0A. Single mode.  
Figure 7. Load transient with a droop of 0.6mΩ load-line  
Figure 8. Load transient with a droop of 0.6mΩ load-line  
slope. Load transient = 0A to 36A. Persistence mode  
slope. Load transient = 14A to 50A. Persistence mode  
12  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
7 Detailed Description  
7.1 Overview  
The TPS59632-Q1 device is a DCAP+ mode adaptive on-time controller. The DAC outputs a reference in  
accordance with the 8-bit VID code, as defined in Table 3. This DAC sets the output voltage.  
In adaptive on-time converters, the controller varies the on-time as a function of input and output voltage to  
maintain a nearly constant frequency during steady-state conditions. With conventional voltage-mode constant  
on-time converters, each cycle begins when the output voltage crosses to a fixed reference level. However, in  
the TPS59632-Q1 device, the cycle begins when the current feedback reaches an error voltage level, which  
corresponds to the amplified difference between the DAC voltage and the feedback output voltage. In the case of  
2-phase or 3-phase operation, the device sums the current feedback from all the phases at the output of the  
internal current-sense amplifiers.  
This approach has two advantages:  
The amplifier DC gain sets an accurate linear load-line slope, which is required for CPU core applications.  
The device filters the error voltage input to the PWM comparator to improve the noise performance.  
In addition, the difference between the DAC-to-output voltage and the current feedback goes through an  
integrator to give an approximately linear load-line slope even at light loads where the inductor current is in  
discontinuous conduction mode (DCM).  
During a steady-state condition, the phases of the TPS59632-Q1 device switch 180° phase-displacement for 2-  
phase mode and 120° phase-displacement for 3-phase mode. The phase displacement is maintained both by the  
architecture and current ripple. The architecture does not allow the high-side gate drive outputs of more than one  
phase to be ON in any condition except transients. The current ripple forces the pulses to be spaced equally.  
The controller forces current-sharing adjusting the ON time of each phase. Current balancing requires no user  
intervention, compensation, or extra components.  
Copyright © 2020, Texas Instruments Incorporated  
13  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
7.2 Functional Block Diagram  
GND  
COMP  
VREF  
VDD  
V5A  
EN  
VBAT  
DROOP  
Power supply UVLO  
and  
Enable Logic  
POWER ON  
FREQ  
Differential  
Amplifier  
ON Time  
GENERATOR  
Voltage  
Amplifier  
VFB  
GFB  
VOUT  
+
RAMP  
+
Ramp  
Generator  
+
PWM1  
PWM2  
PWM3  
VDAC  
Current Sense  
Amplifier  
Phase 1  
PWM  
PWM1  
PWM2  
PWM3  
SKIP  
CSP1  
PWM  
Comparator  
+
IS1  
IAMP  
+
+
CLK  
Phase  
Manager  
CSN1  
CSP2  
Phase 2  
PWM  
Error  
Amplifier  
Integrator  
BLANK  
+
IS2  
IS3  
Current  
Sharing  
Circuitry  
IAMP  
ISHARE  
+S  
Phase 3  
PWM  
CSN2  
CSP3  
+
Power  
State  
PS0, 1, 2  
+
ISUM  
+
IAMP  
CSN3  
DIGITAL SECTION  
DROOP  
USR  
OSR  
VOUT  
VDAC  
ISUM  
VREF  
OSR  
USR  
OCP  
Protection Block  
(OCP, OVP, etc.)  
VINTF  
SCL  
ISUM  
IS1  
IS2  
PGOOD  
Logic  
PS0, 1, 2  
PGOOD  
I2C  
Interface  
(write)  
USR  
IS3  
OSR  
SDA  
Digital  
Registers  
VDAC  
DAC  
ADC  
FREQ  
OCP  
SLEW  
ADDR  
I2C  
Pin-Strap Detection  
Interface  
(Telemetry  
read)  
RAMP  
Current  
Monitor  
TPS59632-Q1  
7.3 Feature Description  
7.3.1 PWM Operation  
The functional block diagram and Figure 9 shows how the converter operates in CCM.  
14  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Feature Description (continued)  
V
CORE  
I
SUM  
V
DROOP  
SW_CLK  
Phase 1  
Phase 2  
Phase 3  
UDG-12192  
Time  
Figure 9. D-Cap+ Mode Basic Waveforms  
Starting with the condition that the high-side FETs are off and the low-side FETs are on, the summed current  
feedback (ISUM) is higher than the error amplifier output (VDROOP). ISUM falls until it hits VDROOP, which contains a  
component of the output ripple voltage. The PWM comparator senses where the two waveforms cross and  
triggers the on-time generator, which generates the internal SW_CLK signal. Each SW_CLK signal corresponds  
to one switching ON pulse for one phase.  
During single-phase operation, every SW_CLK signal generates a switching pulse on the same phase. Also, ISUM  
voltage corresponds to a single-phase inductor current only.  
During multi-phase operation, the controller distributes the SW_CLK signal to each of the phases in a cycle.  
Using the summed inductor current and cyclically distributing the ON pulses to each phase automatically gives  
the required interleaving of 360 / n, where n is the number of phases.  
7.3.2 Current Sensing  
The TPS59632-Q1 provides independent channels of current feedback for every phase, to increase the system  
accuracy and reduce the dependence of circuit performance on layout compared to an externally summed  
architecture. The design can use inductor DCR sensing to yield the best efficiency or resistor current sensing to  
yield the most accuracy across wide temperature ranges. As inductor DCR sensing is not suitable for automotive  
applications due to wide variation in current sensing across temperature, resistor sensing is recommended. This  
sense resistor must be connected in series with the inductor and requires Kelvin sensing terminals for improved  
current sense accuracy.  
The pins CSP1, CSN1, CSP2, CSN2, CSP3, and CSN3 are the inductor current sensing pins for the each of the  
three phases of the converter.  
7.3.3 Load-line (Droop)  
The TPS59632-Q1 features programmable droop enabling significant reduction of output capacitors. Figure 10  
shows the output voltage droop with increasing load current.  
Copyright © 2020, Texas Instruments Incorporated  
15  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Feature Description (continued)  
V
VID  
Slope of Loadline R  
LL  
V
V
= R x I  
DROOP LL CC  
DROOP  
I
CC  
UDG-12193  
Figure 10. Load-Line Slope  
RCS eff ´ ACS ´ICC  
( )  
VDROOP = RLL ´ICC  
=
ADROOP  
where  
RCS(eff) is the effective current sense resistance, when using either a sense resistor or inductor DCR  
ACS is the gain of the current sense amplifier  
ICC is the load current  
ADROOP is the DROOP gain (see Equation 2)  
(1)  
(2)  
æ
ç
è
ö
÷
ø
R
DROOP  
A
= 1+  
DROOP  
R
COMP  
where  
resistor, RDROOP is connected between the DROOP pin and the COMP pin  
resistor RCOMP is connected between the COMP pin and the VREF pin  
This load-line aids in the transient performance as discussed in the following section.  
7.3.4 Load Transients  
When the load increases suddenly, the output voltage immediately drops. This voltage drop is reflected as a  
rising voltage on the DROOP pin. This rising voltage forces the PWM to pulse sooner and more frequently, which  
causes the inductor current to rapidly increase. As the inductor current reaches the new load current, a steady-  
state operating condition is reached and the PWM switching resumes the steady-state frequency. Similarly, when  
the load releases suddenly, the output voltage rises. This rise is reflected as a falling voltage on the DROOP pin.  
This rising voltage forces a delay in the PWM pulses until the inductor current reaches the new load current,  
when the switching resumes and steady-state switching continues.  
For simplicity, neither Figure 11 or Figure 12 show the ripple on the output VCORE nor the DROOP waveform.  
16  
Copyright © 2020, Texas Instruments Incorporated  
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Feature Description (continued)  
LOAD  
LOAD  
VCORE  
VCORE  
ISUM  
DROOP  
ISUM  
DROOP  
SW_CLK  
SW_CLK  
Phase  
Phase  
Phase  
1
2
3
Phase  
Phase  
Phase  
1
2
3
Time  
UDG-12194  
UDG-12195  
Figure 11. Operation During Load Transient  
(Insertion)  
Figure 12. Operation During Load Transient  
(Release)  
7.3.5 Overshoot Reduction (OSR)  
The problem of overshoot in synchronous buck converters results from the output inductor having a small voltage  
(VOUT) with which to respond to a transient load release.  
With overshoot reduction feature enabled, when the output voltage increases beyond a value that corresponds to  
a voltage difference between the ISUM voltage and the DROOP pin voltage exceeding the specified OSR  
voltage (as specified in the Electrical Characteristics table), at the instant that the low-side drivers are turned  
OFF. When the low-side driver is turned OFF, the energy in the inductor is partially dissipated by the body  
diodes. As the overshoot reduces, the low-side drivers are turned ON again. Figure 13 shows overshoot  
reduction by turning off the low-side MOSFET during load transient release.  
VDAC  
VOUT  
ISUM  
+
OSR  
DROOP  
VOSR  
+
ISUM  
OSR  
Comparator  
VDROOP  
External  
Setting  
OSR Threshold  
OSR  
OSR  
Phase 1  
Phase 2  
Phase 3  
UDG-12237  
Time  
Figure 13. Overshoot Reduction  
Copyright © 2020, Texas Instruments Incorporated  
17  
 
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Feature Description (continued)  
7.3.6 Undershoot Reduction (USR)  
When the transient load increase becomes quite large, it is difficult to meet the energy demanded by the load  
especially at lower input voltages. Then it is necessary to quickly increase the energy in the inductors during the  
transient load increase. This increase is achieved by enabling pulse overlapping. In order to maintain the  
interleaving of the multi-phase configuration while maintaining pulse-overlapping during load-insertion, the  
undershoot reduction (USR) mode is entered only when necessary. This device enters this mode is when the  
difference between DROOP voltage and ISUM voltage exceeds the USR voltage level specified in the Electrical  
Characteristics table.  
Figure 14 shows the undershoot reduction operation. This feature allows for the use of reduced output  
capacitance while continuing to meet the specification. The device achieves undershoot reduction by overlapping  
of pulses on all the phases.  
VDAC  
DROOP  
VOUT  
+
USR  
VUSR  
VDROOP  
+
ISUM  
USR  
Comparator  
External  
Setting  
ISUM  
USR threshold  
USR  
USR  
Phase 1  
Phase 2  
Phase 3  
UDG-12238  
Time  
Figure 14. Undershoot Reduction  
When the transient condition is completed, the interleaving of the phases is resumed.  
It should be noted that single-phase mode there is no USR mode of operation.  
7.3.7 Autobalance Current Sharing  
The basic mechanism for current sharing is to sense the average phase current, then adjust the pulse width of  
each phase to equalize the current in each phase.  
The PWM comparator (not shown) starts a pulse when the feedback voltage equals the reference voltage. The  
VBAT voltage charges Ct(on) through the resistor Rt(on). The pulse is terminated when the voltage at capacitor  
Ct(on) matches the on-time (tON) reference, usually the DAC voltage (VDAC).  
A current sharing circuit is shown in Figure 15. For example, assume that the 5-µs-averaged value of I1 = I2 = I3.  
In this case, the PWM modulator terminates at VDAC, and the typical pulse width is delivered to the system. If  
instead, I1 > IAVG, then an offset is subtracted from VDAC, and the pulse width for phase one is shortened,  
reducing the current in phase one to compensate. If I1 < IAVG, then a longer pulse is produced, again  
compensating on a pulse-by-pulse basis.  
18  
Copyright © 2020, Texas Instruments Incorporated  
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Feature Description (continued)  
VBAT  
Rt(on)  
VDAC  
CSP1  
K x (I1-IAVG  
)
)
)
+
PWM1  
+
5 ms  
Filter  
+
Current  
Amplifier  
CSN1  
Ct(on)  
IAVG  
Rt(on)  
VDAC  
CSP2  
K x (I2-IAVG  
+
PWM2  
+
5 ms  
Filter  
+
Current  
Amplifier  
CSN2  
Ct(on)  
IAVG  
Rt(on)  
Averaging  
Circuit  
IAVG  
VDAC  
CSP3  
K x (I3-IAVG  
+
PWM3  
+
5 ms  
Filter  
+
Current  
Amplifier  
CSN3  
Ct(on)  
IAVG  
UDG-12197  
Figure 15. Autobalance Current Sharing  
7.3.8 PWM And SKIP Signals  
The PWM and SKIP signals are outputs of the controller and serve as input to the MOSFET gate driver or  
DrMOS-type devices. Both signals are 5-V logic signals. The PWM signals are logic high to allow the high-side  
drive of the external gate driver to turn ON. The PWM signal must be low for the low-side drive of the external  
gate driver to turn ON. To drive both the signals are OFF, the PWM is set to tri-state. The SKIP signal is active  
low to set all the phases in Continuous Conduction Mode (CCM) of operation. If SKIP signal is high then the  
external gate driver turns OFF the Low-side drive to operate in the boundary of CCM and Discontinuous  
Conduction Mode (DCM).  
7.3.9 Bias Power (V5A, VDD, And VINTF) UVLO  
The TPS59632-Q1 device continuously monitors the voltage on the V5A, VDD, and VINTF pin to ensure a value  
high enough to bias the device properly and provide sufficient gate drive potential to maintain high efficiency. The  
converter starts with approximately 4.4 V and has a nominal 200 mV of hysteresis. Once the 5VA,VDD, or VINTF  
goes below the VUVLOL , the corresponding voltage must fall below VPOR (1.5 V) to reset the device.  
The input (VBAT) does not include a UVLO function, so the circuit runs with power inputs as low as approximately  
3 × VOUT  
.
7.3.10 Start-Up Sequence  
The TPS59632-Q1 device initializes when all of the supplies rise above the UVLO thresholds. This function is  
also know as a cold boot. The device then reads all of the various settings (such as frequency and overcurrent  
protection). This process takes less than 1.2 ms. During this time, the VSR initializes to the BOOT voltage. The  
output voltage rises to the VSR level when the EN pin (enable) goes high. Once the BOOT sequence completes,  
PGOOD is HIGH and the I2C interface can be used to change the voltage select register (VSR). The current VSR  
value is held when EN goes low and returns to a high state This function is also known as a warm boot.  
Copyright © 2020, Texas Instruments Incorporated  
19  
 
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Feature Description (continued)  
7.3.11 Power Good Operation  
PGOOD is an open-drain output pin that is designed to be pulled-up with an external resistor to a voltage 3.6 V  
or less. Normal PGOOD operation (exclusive of activation of any faults) is shown in Figure 16. On initial power-  
up PGOOD happens within 6 µs of the DAC reaching its target value. When EN is brought low, PGOOD is also  
brought low for 250 µs, then is allowed to float. The TPS59632-Q1 device pulls down the PGOOD signal when  
the EN signal subsequently goes high and returns high again within 6 µs of the end of the DAC ramp. The delay  
period between EN going high and PGOOD going low in this case is less than 1 µs. Figure 16 shows the power  
good operation at initial start-up and with falling and rising EN.  
For applications where it is undesirable to have PGOOD high when EN is low, an alternate method of pulling up  
the open-drain PGOOD signal is possible. In this method, the PGOOD is pulled up to EN logic signal. This  
ensures that the PGOOD is low when EN goes low.  
VBIAS  
VOUT  
EN  
1 ms  
PGOOD  
1.2 ms  
6 ms  
250 ms  
250 ms  
UDG-13096  
Figure 16. Power Good Operation  
7.3.12 Analog Current Monitor, IMON, And Corresponding Digital Output Current  
The TPS59632-Q1 device includes a current monitor function. The current monitor supplies an analog voltage,  
proportional to the load current, on the IMON pin.  
The current monitor function is related to the OCP selection resistors. The ROCP is the resistor between the OCP-  
I pin and GND and RCIMON is the resistor between the IMON pin to the OCP-I pin that sets the current monitor  
gain. Equation 3 shows the calculation for the current monitor gain.  
:
;
ìÜØß×æ  
H Í 8¼Ìá 1ÛÛÛ. 8  
4ÂÆÈÇ  
8
ÂÆÈÇ  
L sr H s E  
:
;
4È¼É  
where  
Σ VCS is the sum of the DC voltages at the inputs to the current sense amplifiers  
(3)  
To ensure stable current monitor operation, and at the same time, provide a fast dynamic response, connect a  
4.7-nF to 10-nF capacitor from the IMON pin to GND. Connecting higher capacitance will reduce the response  
time accordingly.  
The analog current monitor should be set so that at the maximum processor current (ICC(max)) the IMON voltage  
should be 1.7 V. This setting corresponds to a digital output current value of ‘FF’ in the telemetry register 03H  
through I2C. For any other IMON voltage output in the range of 0 to 1.7 V, the digital output varies linearly.  
7.3.13 Fault Behavior  
TPS59632-Q1 device has a complete suite of fault detection and protection functions, including input under-  
voltage lockout on all power inputs, over voltage and over current limiting, and output under voltage detection.  
The protection limits are given in the tables above. The converter suspends switching when the limits are  
exceeded and PGOOD goes low. In this state, the fault register 14h can be read. To exit fault protection mode,  
the bias power (V5A, VDD and VINTF) must be cycled as described in Bias Power (V5A, VDD, And VINTF)  
UVLO.  
20  
Copyright © 2020, Texas Instruments Incorporated  
 
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Feature Description (continued)  
7.3.14 Output Under Voltage Protection (UVP)  
Output undervoltage protection works in conjunction with the current protection described in the Over Current  
Protection (OCP) section. If VOUT drops below the low PGOOD voltage threshold, then the PWM is tri-stated. The  
device stays off until the V5A, VDD or VINTF power is cycled and EN goes high.  
7.3.15 Output Over Voltage Protection (OVP)  
An OVP condition is detected when the output voltage is greater than the PGDH voltage, and greater than  
VDAC. VOUT > + VPGDH greater than VDAC. In this case, the controller device sets PGOOD inactive, and keeps  
all the PWM signals low so as to keep the low-side driver ON at the converter. The converter remains in this  
state until the controller device is reset by cycling V5A, VDD or VINTF. This is the first level of OVP. This first  
level of OVP is inactive during VID transitions. There is a second OVP level fixed at VOVPH which is always  
active. If the fixed OVP condition is detected, the PGOOD is forced inactive and the PWM signals are kept low  
and the operation is similar to the first level of OVP detection  
7.3.16 Over Current Protection (OCP)  
The TPS59632-Q1 device uses a inductor valley current limiting scheme, so the ripple current must be  
considered. The DC current value at OCP is the OCP limit value plus half of the ripple current. Current limiting  
occurs on a phase-by-phase and pulse-by-pulse basis. Generally, the current is sensed using the sense resistor  
in series with the inductor for automotive applications giving a voltage between the CSPx and CSNx pins. If this  
sensed voltage is above the OCP limit, the converter delays the next ON pulse until that voltage difference drops  
below the OCP limit.  
In OCP mode, the voltage drops until the UVP limit is reached. When UVP limit is reached the operation follows  
as described in the Output Under Voltage Protection (UVP).  
7.3.17 Over Current Warning  
I2C programming enables this function. The TPS59632-Q1 device pulls down the voltage on the PGOOD pin  
whenever the valley current reaches 70% of the OCP value (or higher). PGOOD resumes normal function when  
the value falls below 65% of the OCP value.  
7.3.18 Input Voltage Limits  
The minimum input voltage is limited by the number of input phases, the switching frequency and the output  
voltage. The minimum input voltage increases with required maximum output voltage and switching frequency.  
See Table 1 for limits in 3-phase operating mode and Table 2 for limits in 2-phase operating mode . In 1-phase  
mode, the operation is limited by controller's capability to 2.5 V for all output voltages and switching frequency.  
Table 1. Minimum Input Voltage (VIN, MIN) Limits Versus Switching Frequency  
(FSW) and Maximum Output Voltage (VOUT, MAX) in 3-phase operation  
VOUT,MAX (V)  
FSW (kHz)  
800  
VIN, MIN (V)  
3.6  
4.0  
4.0  
4.5  
4.5  
5.0  
0.8  
1000  
800  
0.9  
1.0  
1000  
800  
1000  
Table 2. Minimum Input Voltage (VIN, MIN) Limits Versus Switching Frequency  
(FSW) and Maximum Output Voltage (VOUT, MAX) in 2-phase operation  
VOUT,MAX (V)  
FSW (kHz)  
1000  
VIN, MIN (V)  
0.8  
0.9  
1.0  
2.5  
2.5  
2.8  
1000  
1000  
Copyright © 2020, Texas Instruments Incorporated  
21  
 
 
 
 
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
7.3.19 VID Table  
The Table 3 shows the VID table for all the programmable DAC voltage levels.  
22  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Table 3. TPS59632-Q1 VID Table  
VID6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VID5  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
VID4  
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
VID3  
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
VID2  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
VID1  
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
VID0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HEX  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
VOLTAGE  
0.5000  
0.5100  
0.5200  
0.5300  
0.5400  
0.5500  
0.5600  
0.5700  
0.5800  
0.5900  
0.6000  
0.6100  
0.6200  
0.6300  
0.6400  
0.6500  
0.6600  
0.6700  
0.6800  
0.6900  
0.7000  
0.7100  
0.7200  
0.7300  
0.7400  
0.7500  
0.7600  
0.7700  
0.7800  
0.7900  
0.8000  
0.8100  
0.8200  
0.8300  
0.8400  
0.8500  
0.8600  
0.8700  
0.8800  
0.8900  
0.9000  
0.9100  
0.9200  
0.9300  
0.9400  
0.9500  
0.9600  
Copyright © 2020, Texas Instruments Incorporated  
23  
 
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Table 3. TPS59632-Q1 VID Table (continued)  
VID6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
VID3  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
VID2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
VID1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
HEX  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
VOLTAGE  
0.9700  
0.9800  
0.9900  
1.0000  
1.0100  
1.0200  
1.0300  
1.0400  
1.0500  
1.0600  
1.0700  
1.0800  
1.0900  
1.1000  
1.1100  
1.1200  
1.1300  
1.1400  
1.1500  
1.1600  
1.1700  
1.1800  
1.1900  
1.2000  
1.2100  
1.2200  
1.2300  
1.2400  
1.2500  
1.2600  
1.2700  
1.2800  
1.2900  
1.3000  
1.3100  
1.3200  
1.3300  
1.3400  
1.3500  
1.3600  
1.3700  
1.3800  
1.3900  
1.4000  
1.4100  
1.4200  
1.4300  
24  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Table 3. TPS59632-Q1 VID Table (continued)  
VID6  
VID5  
VID4  
VID3  
VID2  
VID1  
VID0  
HEX  
77  
VOLTAGE  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1.4400  
1.4500  
1.4600  
1.4700  
1.4800  
1.4900  
1.5000  
1.5100  
1.5200  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
7.4 User Selections  
After the V5A, VDD, and VINTF voltages are applied to the controller and all these voltage levels are above their  
respective UVLO levels, the following information is latched and cannot be changed during operation. The  
defines the values of the selections.  
Operating Frequency. The resistor from FREQ-P pin to GND sets the switching frequency. See the Detailed  
Design Procedure for the resistor settings corresponding to each frequency selection. Note that the operating  
frequency is a quasi-fixed frequency in the sense that the ON time is fixed based on the input voltage (at the  
VBAT pin) and output voltage (set by VID). The OFF time varies based on various factors such as load and  
power-stage components.  
Overcurrent Protection (OCP) Level. The resistor from OCP-I to GND sets the OCP level of the CPU  
channel. See the Detailed Design Procedure for the resistor settings corresponding to each OCP level.  
IMON Gain. The resistors from IMON to OCP-I and OCP-I to GND set the DC load current monitor (IMON)  
gain.  
Slew Rate. The SetVID fast slew rate is set by the resistor from SLEWA pin to GND. See the Detailed Design  
Procedure for the resistor settings corresponding to each slew rate setting.  
Base Address. The voltage on SLEWA pin sets the device base address.  
Ramp Selection. The resistor from RAMP to GND sets the ramp compensation level. See the Detailed  
Design Procedure for the resistor settings corresponding to each ramp level.  
Overshoot Reduction (OSR) Level. The resistor from O-USR to GND sets the OSR level. Detailed Design  
Procedure provides all the possible selections for OSR.  
Undershoot Reduction Level (USR) The voltage on O-USR pin sets the USR level. Detailed Design  
Procedure provides all the possible selections for USR.  
Active Phases. Normally, the controller is configured to operate in 3-phase mode. To enable 2-phase mode,  
tie the CSP3 pin to a 3.3-V supply and the CSN3 pin to GND. To enable 1-phase mode, tie the CSP2 and  
CSP3 pins to a 3.3-V supply and tie the CSN2 and CSN3 pins to GND.  
7.5 I2C Interface Operation  
The TPS59632-Q1 device includes a slave I2C interface accessed via the SCL (serial clock) and SDA (serial  
data) pins. The interface sets the base VID value, receives IMON telemetry, and controls functions described in  
this section. It operates with EN = low, with the bias supplies in regulation. It is compliant with I2C specification  
UM10204, Revision 3.0; characteristics are detailed as following:  
Addressing  
7-bit addressing; address range is 100 0xxx (binary)  
Last three bits are determined by the voltage on SLEWA pin at start-up  
Byte read and byte write protocols only (see the following figures)  
Frequency  
100 kHz  
400 kHz  
1 MHz  
3.4 MHz  
Copyright © 2020, Texas Instruments Incorporated  
25  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
I2C Interface Operation (continued)  
Logic inputs are 1.8-V logic levels (3.3-V tolerant)  
The TPS59632-Q1 device can be configured for eight different device addresses by setting a voltage on the  
SLEWA pin. Configure a resistor divider on SLEWA from VREF to GND. Once the slew rate resistor is selected,  
the resistor from the VREF pin to the SLEWA pin can be chosen based on the required device address. For a  
device address of 40h, the VREF to SLEWA resistor can be left open.  
7.5.1 Key For Protocol Examples  
Master Drives SDA  
ACK  
Slave Drives SDA  
NAK  
S
P
Start  
Stop  
W
R
Write  
A
A
Read  
UDG-13045  
7.5.2 Protocol Examples  
The good byte read transaction the controller ACKs and the master terminates with a NAK/stop  
S
Slave Address  
W
A
Reg Address  
A
S
Slave Address  
R
A
Reg data  
A
P
UDG-13046  
Figure 17. Good Byte Read Transaction  
The controller NAKs a read with an invalid register address.  
S
Slave Address  
W
A
Reg Address  
A
UDG-13047  
Figure 18. NAK Invalid Register Address  
A good byte write is illustrated in Figure 19.  
S
Slave Address  
W
A
Reg Address  
A
Reg Data  
A
P
UDG-13048  
Figure 19. Good Byte Write  
The controller NAKs a write with an invalid register address.  
S
Slave Address  
W
A
Reg Address  
A
UDG-13049  
Figure 20. Invalid NAK Register Address  
The controller will NAK a write for the condition of invalid data.  
S
Slave Address  
W
A
Reg Address  
A
Reg Data  
A
P
UDG-13050  
Figure 21. Invalid NAK Register Data  
26  
Copyright © 2020, Texas Instruments Incorporated  
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
7.6 I2C Register Maps  
The I2C interface shall support 400 kHz, 1 MHz, and 3.4-MHz clock frequencies. The I2C interface shall be  
accessible even when EN is low. The following registers are accessible via I2C.  
7.6.1 Voltage Select Register (VSR) (Address = 00h)  
Type: read and write  
Power-up value: BOOT[6:0]  
EN rising (after power-up): prior programmed value  
See Table 3 for exact values  
A command to set VSR < 19h (minimum VID) generates an NAK and the VBR remains at the prior value  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
VID6  
VID0  
7.6.2 IMON Register (Address = 03h)  
Type: read only  
Power-up value: 00h  
EN rising (after power-up):00h  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
MSB  
LSB  
7.6.3 VMAX Register (Address = 04h)  
Type: read or write (see the following bit definitions)  
Power-up value: 7Fh  
EN rising (after power-up): last written value  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Lock  
MSB  
LSB  
Bit definitions:  
Table 4.  
BIT  
NAME  
DEFINITION  
0 - 6  
VMAX  
Maximum VID setting  
Access protection of the VMAX register  
0: No protection, R/W access to bits 0-6  
7
Lock  
1: Access is read only; reset after UVLO event.  
7.6.4 Power State Register (Address = 06h)  
Type: read and write  
Power-up value: 00h  
EN rising (after power-up): 00h  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
MSB  
LSB  
Bit definitions:  
VALUE  
DEFINITION  
b1 = 0, b0 Multi-phase CCM  
= 0  
b1 = 0, b0 Single-phase CCM  
= 1  
Copyright © 2020, Texas Instruments Incorporated  
27  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
VALUE  
DEFINITION  
b1 = 1, b0 Single-phase DCM  
= 0  
7.6.5 Slew Register (Address = 07h)  
Type: read and write (see below)  
Power-up value: defined by SLEWA pin at power-up  
EN rising (after power-up): last written value  
Write only a single 1 for the minimum SLEW rate desired for voltage changes. The start-up slew rate is half of  
the normal voltage change slew rate.  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
48 mV/µs  
42 mV/µs  
36 mV/µs  
30 mV/µs  
24 mV/µs  
18 mV/µs  
12 mV/µs  
6 mV/µs  
7.6.6 Lot Code Registers (Address = 10-13h)  
Type: 8 bits, read only  
Power-up value: programmed at factory  
7.6.7 Fault Register (Address = 14h)  
Type: 8 bits; read only  
Power-up value: 00h  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Device thermal  
shutdown  
OVP  
UVP  
OCP  
28  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
8 Applications and Implementation  
8.1 Application Information  
The TPS59632Q1 device has a very simple design procedure. A Microsoft Excel®-based component value  
calculation tool is available. Please contact your local TI representative to get a copy of the spreadsheet.  
8.2 Typical Application  
8.2.1 3-Phase D-CAP+™, Step-Down Application  
VREF  
10 nF  
IMON  
C1  
DNP  
487 kΩ  
VIN  
75 kΩ  
CSP1  
CSN1  
3 x 22 µF  
0
133 kΩ  
1 mF  
DNP  
0.22 µF  
TPS59603-Q1  
R2  
1 Ω  
39 kΩ  
75 kΩ  
150 kΩ  
56 kΩ  
Q1  
Q2  
L1  
0.1 uH  
Rs1  
1 mW  
20 kΩ  
1
2
3
4
BST  
DRVH  
SW  
8
7
6
5
VINTF  
VOUT  
PWM1  
PWM  
SKIP  
VDD  
10 kΩ  
VIN  
GND  
DRVL  
SKIP  
COUT  
15 x 100 uF +  
24 x 22 uF  
16  
15  
14  
13  
12  
11  
10  
9
5V_DRV  
2.2 µF  
17 CSP1  
18 CSN1  
19 CSN2  
20 CSP2  
21 CSP3  
22 CSN3  
23 GFB  
CSP1  
EN  
8
7
6
5
ENABLE  
SKIP  
CSN1  
CSN2  
CSP2  
CSP3  
CSN3  
GFB  
SKIP  
PWM1  
PWM2  
PWM1  
PWM2  
TPS59632-Q1  
C2  
3 x 22 µF  
VIN  
CSP2  
CSN2  
0
PWM3  
4
PWM3  
10 kΩ  
ENABLE  
0.22 µF  
TPS59603-Q1  
PGOOD  
VDD  
3
2
1
PGOOD  
3.3 V  
Q3  
L2  
0.1uH  
1
BST  
DRVH  
SW  
8
Rs2  
1 mW  
Thermal Pad  
VOUT  
VFB  
24 VFB  
1 Ω  
PWM2  
2
3
4
PWM  
SKIP  
VDD  
7
6
5
SDA  
GND  
DRVL  
SKIP  
25  
26  
27  
28  
29  
30 31 32  
1 mF  
Q4  
5V_DRV  
2.2 µF  
4.7 p  
19.6 kΩ  
1.96 kΩ  
1 kΩ  
C3  
3 x 22 µF  
VIN  
CSP3  
CSN3  
VINTF  
0
1 kΩ  
560 p  
3 k  
0.1 mF  
0.22 µF  
TPS59603-Q1  
Q5  
L3  
0.1 uH  
0.33 mF  
1
BST  
DRVH  
SW  
8
Rs3  
1 mW  
VOUT  
PWM3  
2
3
4
PWM  
SKIP  
VDD  
7
6
5
10 Ω  
1 mF  
5 V  
GND  
DRVL  
SKIP  
0 Ω  
Q6  
5V_DRV  
562 Ω  
562 Ω  
2.2 µF  
VFB  
GFB  
VCPU_SENSE  
From processor  
GND_SENSE  
To controller  
10 kΩ  
NOTE: Current-sense and Voltage feedback sense may need additional filtering to reduce noise.  
Figure 22. 3-Phase D-CAP+™, Step-Down Application with Power Stages  
8.2.1.1 Design Requirements  
Design example specifications:  
Number of phases, Nph: 3  
Conversion Input voltage, VIN range: 5 V +/- 10%  
Converter Output Voltage VOUT = 0.875 +/- 3% V (including DC and AC)  
Load Current, ICC(max) = 50 A  
Voltage Rise time (at start-up) > 100µs  
Load Transient step = 36A  
Load Transient Slew rate = 36A/µs  
Copyright © 2020, Texas Instruments Incorporated  
29  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Typical Application (continued)  
Effective Switching Frequency > 2.0 MHz  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Step 1: Select Switching Frequency  
The switching frequency is selected by a resistor (RF) between the FREQ_P pin and GND. The frequency is  
approximate and expected to vary based on load and input voltage.  
Table 5. TPS59632-Q1 Device Frequency Selection  
Table  
SELECTION  
RESISTOR (RF) VALUE (kΩ)  
OPERATING FREQUENCY  
(fSW) (kHz)  
20  
24  
300  
400  
500  
600  
700  
800  
900  
1000  
30  
39  
56  
75  
100  
150  
For this design, choose a switching frequency of 800 kHz so that the effective switching frequency in 3-phase  
operation = 2.4 MHz. So, RF = 75 kΩ.  
NOTE  
The voltage on the FREQ-P pin MUST be set higher than 0.7V for proper operation of the  
device, TPS59632Q1. This can easily be achieved by connecting a resistor of the same  
value as RFfrom FREQ-P to VREF (1.7 V).  
As per the note above, in this design, a resistor of value 75 kΩ is connected from FREQ-P to VREF.  
8.2.1.2.2 Step 2: Set The Slew Rate  
A resistor to GND (RSLEWA) on SLEWA pin sets the slew rate. For a minimum start-up time of 100 µs, the  
maximum allowed slew rate would be VOUT/100 µs. This would mean a maximum start-up slew rate of 8.8  
mV/µs. Hence, from Table 6 the maximum start-up slew rate setting of 5mV/µs is chosen. It should be noted that  
the slew rate corresponding to start-up rate is half of the slew rate during voltage changes due to VID changes  
as specified in the EC table. The table below provides the minimum and maximum start-up slew rate for each  
resistor selection. The resistor selection chosen for this design is RSLEWA = 20 kΩ.  
Table 6. Slew Rate Versus Selection Resistor  
SELECTION RESISTOR  
MINIMUM START-UP SLEW  
MAXIMUM START-UP SLEW RATE  
(mV/µs)  
RSLEWA (kΩ)  
RATE  
(mV/µs)  
20  
24  
30  
39  
3
6
5
10  
15  
20  
9
12  
8.2.1.2.3 Step 3: Set The I2C Address  
The voltage on the SLEWA pin also sets the I2C address for the device. For an I2C address of 40, the SLEWA  
pin should only have a resistor, RSLEW to GND and the SLEW pin to VREF pin should be left open. For other  
I2C addresses, a resistor must be connected between the SLEWA pin and the VREF pin (1.7 V). This resistor  
can be calculated to set the corresponding voltage for the required address listed in Table 7.  
30  
Copyright © 2020, Texas Instruments Incorporated  
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
Table 7. I2C Address Selection  
SLEWA  
I2C  
VOLTAGE  
ADDRESS  
VSLEWA 0.30 V  
0
1
2
3
4
5
6
7
0.35 V VSLEWA 0.45 V  
0.55 V VSLEWA 0.65 V  
0.75 V VSLEWA 0.85 V  
0.95 V VSLEWA 1.05 V  
1.15 V VSLEWA 1.25 V  
1.35 V VSLEWA 1.45 V  
1.55 V VSLEWA 1.65 V  
8.2.1.2.4 Step 4: Determine Inductor Value And Choose Inductor  
Applications with smaller inductor values have better transient performance but also have higher voltage ripple  
and lower efficiency. Applications with higher inductor values have the opposite characteristics. Choice of  
inductance is a trade off between transient, ripple, size, efficiency, cost and availability.  
For this design, we chose an inductance value of 0.1 µH. The chosen inductor should have the following  
characteristics:  
As flat as an inductance versus current curve as possible.  
Either high saturation or soft saturation. A saturation current of at least the per phase maximum current of  
ICC(max) / Nph + Iripple/2  
Low DCR for high efficiency.  
8.2.1.2.5 Step 5: Current Sensing Resistance  
The TPS59632 device supports both resistor sensing and inductor DCR sensing. However, inductor DCR  
sensing is not suitable for automotive applications due to wide variation in current sensing across temperature.  
The sense resistance, RS must be chosen large enough to give sufficient current signal to the controller and  
small enough to keep the power dissipation low. Choosing max power dissipation to about 0.5W per phase, we  
get RS = 1 mΩ.  
Copyright © 2020, Texas Instruments Incorporated  
31  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
8.2.1.2.6 Step 6: Select Over Current Protection (OCP) Setting  
The OCP level is chosen such that it is 30% above the maximum load current, ICC(max). In the equation, here RCS  
is the current sense resistor.Equation 4. IVALLEY is the load current less half the ripple.  
I
VALLEY ´RCS eff = VCS ocp  
( )  
(
)
(4)  
Set the OCP threshold level just greater than the calculated IVALLEY for the required OCP level. Equation 4. In this  
design, the minimum required OCP is 65A. Therefore, an OCP selection resistor of 56k is chosen to meet the  
requirement.  
Table 8 shows the minimum OCP level for all the selection resistors.  
Table 8. OCP Selection(1)  
SELECTION RESISTOR  
Minimum VCS(OCP)  
(mV)  
ROCP (kΩ)  
20  
24  
3
7
30  
11  
15  
21  
28  
36  
45  
39  
56  
75  
100  
150  
(1) If a corresponding match is not found, then select the next higher  
setting.  
8.2.1.2.7 Step 7: Current Monitor (IMON) Setting  
Set the analog current monitor so that at ICC(max) the IMON pin voltage is 1.7 V. This corresponds to a digital IOUT  
value of ‘FF’ in I2C register 03H. The voltage on the IMON pin is shown in Equation 5.  
æ
ö
÷
ø
R
IMON  
1.7 = 10´ 1+  
´R  
´I  
CS eff CC max  
ç
( )  
(
)
R
OCP  
è
(5)  
where, ICC(max)is 50 A; RCS(eff) is 1.0 mΩ and ROCP is 56 kΩ  
Solving, RIMON = 133 kΩ. RIMON is connected from IMON pin to OCP-I pin.  
32  
Copyright © 2020, Texas Instruments Incorporated  
 
 
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
8.2.1.2.8 Step 8: Set the Load-Line Slope  
Setting a load line slope is effective in significantly reducing the output capacitors. Therefore, although the design  
requirement does not call for a load-line, we use the output voltage tolerance specification to determine an  
appropriate load-line. Figure 23 shows how we first determine the load-line window.  
Max limit  
Max limit - Controller TOL  
Min limit - Controller TOL - AC ripple  
Nominal DC Load-line Window  
Nominal  
Min limit + Controller TOL + AC ripple  
Min limit + Controller TOL  
Min limit  
Figure 23. Determination of Nominal DC Load-line window  
This nominal DC load-line window is now used to set the load-line slope across the range of load current from 0  
to Icc,max as shown in Figure 24.  
VOUT at  
zero load  
Va  
Slope of Loadline  
R LL  
Nominal  
DROOP  
Vb  
I
cc,max  
Figure 24. Determination of the Slope of the Load-line  
The load-line slope RLL is first determined as shown in Figure 24 using the equation in Equation 6. In the device,  
TPS59632-Q1, the load-line is determined by the current sense resistance, RCS, the current sense amplifier gain,  
ACS, and the gain of the droop amplifier (ADROOP) as shown in Equation 7.  
(6)  
(7)  
Copyright © 2020, Texas Instruments Incorporated  
33  
 
 
 
 
 
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
The gain of the droop amplifier, (ADROOP can therefore be determined by Equation 7. This gain is set by the  
external resistors RDROOP (between the DROOP pin and the COMP pin) and resistor RCOMP (between the COMP  
pin and the VREF pin) as shown in Equation 8. We fix the value of RDROOP to 19.6 kΩ, and thereby RCOMP is  
calculated to 1.87 kΩ.  
(8)  
8.2.1.2.9 Step 9: Voltage Feedback Resistor Calculation  
In the device TPS59632-Q1, the internal DAC voltage is set to 0.80 V. To adjust the output voltage above or  
below this voltage we need to use feedback resistor divider setting. Since we are sensing the voltage using  
differential remote sense we adopt the circuit shown in Figure 25 to increase the voltage above 0.80 V and the  
and circuit shown in Figure 26 to decrease the voltage below 0.80 V.  
R1  
VFB  
To Controller  
GFB  
Vout_Sense+  
R2  
From Output  
Vout_Sense-  
R1  
Figure 25. Feedback resistor divider circuit to increase the output voltage above internal DAC voltage  
In this design, we need to calculate the feedback resistor values, R1 and R2, to increase the voltage above the  
DAC, the equation shown in Equation 9 is used. Here, VDAC = 0.80 V, and Va from load-line setting is determined  
as 0.890 V. R2 is set to 10 kΩ and R1 is calculated to 562.  
(9)  
Vref  
R2  
R1  
Vout_Sense+  
VFB  
To Controller  
GFB  
From Output  
Vout_Sense-  
R1  
R2  
GND  
Figure 26. Feedback resistor divider circuit to decrease the output voltage above internal DAC voltage  
To calculate the feedback resistor values, R1 and R2, to decrease the voltage below the DAC, the equation  
shown in Equation 10 is used. Here, VDAC = 0.80 V, and Va from load-line setting for the specific application. Vref  
is the TPS59632-Q1 reference voltage at Pin 27 (VREF) which is nominally 1.7 V. Using this, and setting R2 to  
10 kΩ, R1 can be determined.  
34  
Copyright © 2020, Texas Instruments Incorporated  
 
 
 
 
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
(10)  
8.2.1.2.10 Step 10: Ramp Compensation Selection  
The Ramp compensation is selected to minimize the jitter. Higher ramp gives lower jitter but can worsen the  
transient response. The ramp compensation selection is a trade off between transient response and jitter.  
Table 9 shows the available ramp selections.  
Table 9. Ramp Compensation Selection  
SELECTION RESISTOR  
RAMP COMPENSATION  
VOLTAGE  
RRAMP (kΩ)  
(mV)  
20  
30  
20  
60  
39  
100  
40  
150  
8.2.1.2.11 Step 11 Overshoot Reduction (OSR) selection  
The OSR level selection is based on the load-transient performance and amount of actual output capacitance to  
get the best performance with least output capacitance. The suggested method is to begin with OSR OFF and  
perform the load transient test based on a calculated amount of output capacitance. If the overshoot is higher  
then specified voltage limits, the OSR can be enabled by lowering the OSR threshold level. If the overshoot is  
acceptable with OSR OFF, then e reduction in output capacitance can be made and then an appropriate OSR  
level can be selected to meet the load transient specification. While reducing the output capacitance, other  
considerations like output ripple, undershoot, stability, and so on needs to be considered simultaneously.  
Table 10 shows the available OSR selections.  
Table 10. OSR Selection  
SELECTION RESISTOR  
OSR THRESHOLD LEVEL  
(mV)  
ROSR (kΩ)  
20  
24  
100  
150  
200  
250  
300  
400  
500  
OFF  
30  
39  
56  
75  
100  
150  
8.2.1.2.12 Step 12: Undershoot Reduction (USR) selection  
Once the the ROSR value is fixed, then the USR level can be set by the voltage on the O-USR pin. The resistor  
RUSR (between the O-USR pin and the VREF pin) sets the voltage.  
Table 11. USR Selection  
VO-USR SELECTION  
VOLTAGE (V)  
VUSR  
UNDERSHOOT  
REDUCTION LEVEL  
(mV)  
LEVEL  
MIN  
MAX  
1
2
3
4
0.25  
0.45  
0.65  
0.85  
60  
90  
0.35  
0.55  
0.75  
120  
180  
Copyright © 2020, Texas Instruments Incorporated  
35  
 
 
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
Table 11. USR Selection (continued)  
VO-USR SELECTION  
VOLTAGE (V)  
VUSR  
UNDERSHOOT  
REDUCTION LEVEL  
(mV)  
LEVEL  
MIN  
MAX  
5
6
7
8
0.95  
1.15  
1.35  
1.55  
1.05  
1.25  
240  
420  
480  
540  
1.45  
VVREF  
The USR level is also selected similar to the OSR setting. First, begin with least undershoot reduction and lower  
the level until pulse-overlap between two phases happens sufficiently to meet the load insertion transient  
requirement. The USR level can be approximately estimated by multiplying one-third of the droop voltage for the  
specified load transient with the ADROOP determined in Step 8: Set the Load-Line Slope. The actual level needs to  
be tuned based on measurement. In this design, OSR is set to OFF and USR is set to 90-mV level. Therefore  
ROSR = 150k and RUSR = 487k.  
8.2.1.2.13 Step 13: Loop Compensation  
The controller device TPS59632-Q1 does not require any additional loop compensation for stability as the load-  
line setting droop amplifier gain automatically stabilizes the DCAP+ control loop. However, to further increase the  
response time to fast load transients, an additional resistor (3 kΩ) in series with a capacitor (560 pF) is placed  
from COMP to VREF. Frequency response is measured to ensure the stability while meeting the transient  
requirements. Some key results for this design are given in Application Performance Plots.  
36  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
8.2.1.3 Application Performance Plots  
0.92  
0.91  
0.9  
0.89  
0.88  
0.87  
0.86  
0.85  
0.84  
0
5
10  
15  
20  
25  
30  
Load Current (A)  
35  
40  
45  
50  
D001  
Figure 27. Output Voltage vs Output Current  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
16  
14  
12  
10  
8
6
4
2
0
0
10  
20  
30  
40  
50  
IOUT (A)  
D004  
Figure 28. Efficiency and Power Loss Vs. Load Current  
Copyright © 2020, Texas Instruments Incorporated  
37  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
50  
40  
150  
120  
90  
30  
20  
60  
10  
30  
0
0
-10  
-20  
-30  
-40  
-50  
-30  
-60  
-90  
-120  
-150  
500000 1000000  
10000 20000  
50000 100000 200000  
Frequency (Hz)  
D002  
Figure 29. Control-loop Gain-Phase measurement Vs. frequency  
9 Power Supply Recommendations  
This device is designed to operate from a supply voltage at the V5A pin (5-V power input for analog circuits) from  
4.5 V to 5.5 V and a supply voltage at the VDD pin (3.3-V digital power input) from 3.1 V to 3.5 V, and a supply  
voltage at VINTF from 1.7 V to 3.5 V. Use only a well-regulated supply. The VBAT input must be connected to  
the conversion input voltage and must not exceed 28 V. Proper bypassing of the V5A, VDD, and VINTF input  
supplies is critical for noise performance, as is PCB layout and grounding scheme. See the recommendations in  
the Layout section.  
38  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
10 Layout  
10.1 Layout Guidelines  
Confirm the pinout of the controller on schematic against the pinout of the data sheet.  
Have a component value calculator tool ready to check component values.  
Carefully check the choice of inductor and sense resistor.  
Carefully check the choice of output capacitors.  
Because the voltage and current feedback signals are fully differential, double check their polarity.  
CSP1 / CSN1  
CSP2 / CSN2  
CSP3 / CSN3  
VOUT_SENSE to VFB / GND_SENSE to GFB  
Make sure the pull up on the SDA, SCL lines are correct. Check if there is a bypass capacitor close to the  
device on the pull up VINTF rail to GND of the device.  
TI strongly recommends that the device GND be separate from the system and Power GND.  
NOTE  
Make sure to separate noisy driver interface lines. This is a critical layout rule.  
The driver (TPS59603-Q1) is outside of the device. All gate-drive and switch-node traces must be local to the  
inductor and MOSFETs.  
10.2 Layout Example  
1.8V and IMON to GND  
decoupling cap  
PWM  
signals  
Differential routing  
of CSP and CSN in  
quiet internal layers.  
V5A, VREF, VCCIO  
and VDD decoupling  
Caps to Analog GND.  
Differential routing  
of VFB and GFB  
I2C Interface  
signals  
Compensation  
Network  
Figure 30. Example Layout  
Copyright © 2020, Texas Instruments Incorporated  
39  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
10.3 Current Sensing Lines  
Given the physical layout of most systems, the current feedback (CSPx and CSNx) may have to pass near the  
power chain. Clean current feedback is required for good load-line, current sharing, and current limiting  
performance of the TPS59632-Q1 device, so take the following precautions:  
Ensure all vias in the CSPx and CSNx traces are isolated from all other signals.  
TI recommends dotted signal traces be run in internal planes.  
If possible, change the name of the CSNx trace if possible to prevent automatic ties to the VCORE plane.  
Run CSPx and CSNx as a differential pair in a quiet layer to the device.  
Isolate the lines from noisy signals by a voltage or ground plane.  
Make a Kelvin connection to the pads of the resistor used for current sensing.  
Place any noise filtering capacitors directly under or near the TPS59632-Q1 device and connect to the CS  
pins with the shortest trace length possible.  
10.4 Feedback Voltage Sensing Lines  
The voltage feedback coming from the CPU socket must be routed as a differential pair all the way to the VFB  
and GFB pins of the TPS59632-Q1 device. Care should be taken to avoid routing over switch-node and gate-  
drive traces.  
10.5 PWM And SKIP Lines  
The PWM and SKIP lines should be routed from the TPS59632-Q1 device to the MOSFET gate driver without  
crossing any switch-node or the gate drive signals.  
10.6 Power Chain Symmetry  
The TPS59632-Q1 device does not require special care in the layout of the power chain components because  
independent isolated current feedback is provided. Lay out the phases in a symmetrical manner, if possible. The  
rule is: the current feedback from each phase needs to be clean of noise and have the same effective current-  
sense resistance.  
10.7 Component Location  
Place components as close to the device in the following order:  
1. CS pin noise filtering components  
2. COMP pin and DROOP pin compensation components  
3. Decoupling capacitors for VREF, VDD, V5A  
4. Decoupling cap for VINTF rail, which is pullup voltage for the digital lines. This decoupling should be placed  
near the device to have good signal integrity.  
5. OCP-I resistors, FREQ-P resistors, SLEWA resistors, RAMP resistors, and O-USR resistors  
40  
Copyright © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
10.8 Grounding Recommendations  
The TPS59632-Q1 device has an analog ground and a thermal pad. The usual procedure for connecting these  
is:  
Keep the analog GND of the device and the power GND of the power circuit separate. The device analog  
GND and the power circuit power GND can be connected at one single quiet point in the layout.  
The thermal pad does not have an electrical connection to device. But, the thermal pad must be connected to  
pin 29 GND of the device to give good ground shielding. Do not connect this to system GND.  
Tie the thermal pad to a ground island with at least 4 vias. All the analog components can connect to this  
analog ground island.  
The analog ground can be connected to any quiet spot on the system ground. A quiet spot is defined as a  
spot where no power supply switching currents are likely to flow. Use a single point connection from analog  
ground to the system ground.  
Make sure the bottom FET source connection and the input decoupling capacitors have plenty of vias.  
10.9 Decoupling Recommendations  
Decouple V5A and VDD to GND with a ceramic capacitor (with a value of at least 1 µF).  
Decouple VINTF to GND with a capacitor (with a value of at least 0.1 µF) to GND.  
10.10 Conductor Widths  
Maximize the widths of power, ground, and drive signal connections.  
For conductors in the power path, be sure there is adequate trace width for the amount of current flowing  
through the traces.  
Make sure there are sufficient vias for connections between layers. Use 1 via minimum per ampere of current.  
版权 © 2020, Texas Instruments Incorporated  
41  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
11 器件和文档支持  
11.1 文档支持  
《适用于汽车 应用 高频 CPU 内核电源的 TPS59603-Q1 同步降压 FET 驱动器》数据表  
11.2 商标  
D-CAP+, AutoBalance, D-CAP+ are trademarks of Texas Instruments.  
Excel is a registered trademark of Microsoft Corporation.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
42  
版权 © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2020, Texas Instruments Incorporated  
43  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
13 Package Option Addendum  
13.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
(1)  
(2)  
(3)  
Orderable Device  
Status  
Pins  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking(4)(5)  
GREEN  
TPS59632QRHBRQ1  
PREVIEW  
QFN  
RHB  
RHB  
32  
3000  
250  
(RoHS and no  
Sb/Br)  
CU NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
–40 to 125  
TPS59632Q  
TPS59632Q  
GREEN  
(RoHS and no  
Sb/Br)  
TPS59632QRHBTQ1  
PREVIEW  
QFN  
32  
CU NIPDAU  
–40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(5) Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
44  
版权 © 2020, Texas Instruments Incorporated  
TPS59632-Q1  
www.ti.com.cn  
ZHCSKX0 FEBRUARY 2020  
13.2 Tape And Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPS59632QRHBRQ1  
TPS56632QRHBTQ1  
QFN  
QFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
版权 © 2020, Texas Instruments Incorporated  
45  
TPS59632-Q1  
ZHCSKX0 FEBRUARY 2020  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
3000  
250  
Length (mm) Width (mm)  
Height (mm)  
35.0  
TPS59632QRHBRQ1  
TPS59632QRHBTQ1  
QFN  
QFN  
RHB  
RHB  
32  
32  
367.0  
210.0  
367.0  
185.0  
35.0  
46  
版权 © 2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS59632QRHBRQ1  
TPS59632QRHBTQ1  
ACTIVE  
VQFN  
VQFN  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TPS  
59632  
Samples  
Samples  
ACTIVE  
RHB  
NIPDAU | SN  
TPS  
59632  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032P  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
0.5  
0.3  
0.3  
0.2  
PIN 1 INDEX AREA  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
5.1  
4.9  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 25.000  
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.7 0.1  
2X 3.5  
(0.2) TYP  
16  
9
EXPOSED  
THERMAL PAD  
8
17  
SEE TERMINAL  
DETAIL  
2X  
SYMM  
33  
A
A
3.5  
1
24  
0.3  
0.2  
32X  
28X 0.5  
25  
32  
0.1  
C A B  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.05  
0.5  
0.3  
32X  
4223198/A 08/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032P  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
4X  
(1.6)  
(R0.05)  
TYP  
SYMM  
33  
(1.26) TYP  
(4.8)  
28X (0.5)  
17  
8
(
0.2) TYP  
VIA  
9
16  
(1.26) TYP  
4X (1.6)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223198/A 08/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032P  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.26) TYP  
9X ( 1.06)  
32  
25  
32X (0.6)  
1
33  
24  
32X (0.25)  
(R0.05) TYP  
(1.26)  
TYP  
SYMM  
(4.8)  
28X (0.5)  
8
17  
METAL  
TYP  
9
16  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33  
74% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223198/A 08/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RHB0032U  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
0.1 MIN  
(0.13)  
SECTION A-A  
A
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
3.7 0.1  
2X 3.5  
(0.2) TYP  
9
16  
EXPOSED  
THERMAL PAD  
28X 0.5  
8
(0.16) TYP  
17  
2X  
A
A
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
PIN 1 ID  
(45 X 0.3)  
32  
25  
SYMM  
0.5  
0.3  
(0.25)  
TYP  
32X  
4225709/C 01/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032U  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.7)  
SYMM  
25  
32  
32X (0.6)  
1
24  
32X (0.25)  
(0.97)  
28X (0.5)  
(0.63)  
TYP  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(0.63) TYP  
(0.97)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL EDGE  
EXPOSED METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225709/C 01/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032U  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
9X ( 1.06)  
(1.26)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(1.26)  
SYMM  
33  
(4.8)  
METAL  
TYP  
17  
8
(R0.05) TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
74% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4225709/C 01/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS59640

Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+? Step-Down Controller for

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59640RSLR

Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+? Step-Down Controller for

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59640RSLT

Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+? Step-Down Controller for

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59641

Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+? Step-Down Controller for

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59641RSLR

Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+? Step-Down Controller for

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59641RSLT

Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+? Step-Down Controller for

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59641RSLTR

Dual-Channel (3-Phase CPU/1-Phase GPU) SVID, D-CAP+? Step-Down Controller for

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59650

Dual-Channel (3-Phase CPU/2-Phase GPU) SVID, D-CAP+? Step-Down Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59650RSLR

Dual-Channel (3-Phase CPU/2-Phase GPU) SVID, D-CAP+? Step-Down Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS59650RSLT

Dual-Channel (3-Phase CPU/2-Phase GPU) SVID, D-CAP+? Step-Down Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6.0MB

Ceramic BRF,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MURATA

TPS60100

REGULATED 3.3 V 200-mA LOW-NOISE CHARGE PUMP DC/DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI