TPS60400-Q1 [TI]

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER; 非稳压60毫安电荷泵电压逆变器
TPS60400-Q1
型号: TPS60400-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
非稳压60毫安电荷泵电压逆变器

文件: 总25页 (文件大小:577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
D
Small 5-Pin SOT23 Package  
features  
D
Evaluation Module Available  
TPS60400EVM−178  
D
Qualification in Accordance With  
AEC-Q100  
D
Qualified for Automotive Applications  
applications  
D
Customer-Specific Configuration Control  
Can Be Supported Along With  
Major-Change Approval  
D
LCD Bias  
GaAs Bias for RF Power Amps  
D
D
D
D
D
D
Inverts Input Supply Voltage  
Up to 60-mA Output Current  
Sensor Supply in Portable Instruments  
Bipolar Amplifier Supply  
Only Three Small 1-µF Ceramic Capacitors  
Needed  
DBV PACKAGE  
(TOP VIEW)  
D
Input Voltage Range From 1.6 V to 5.5 V  
D
PowerSave-Mode for Improved Efficiency  
at Low Output Currents (TPS60400)  
1
2
3
5
C
FLY+  
OUT  
IN  
D
D
Device Quiescent Current Typical 100 µA  
Integrated Active Schottky-Diode for  
Start-Up Into Load  
4
GND  
C
FLY−  
Contact Texas Instruments for details. Q100 qualification data  
available on request.  
description  
The TPS6040x is a family of devices that generate an unregulated negative output voltage from an input voltage  
ranging from 1.6 V to 5.5 V. The devices are typically supplied by a preregulated supply rail of 5 V or 3.3 V. Due  
to its wide input voltage range, two or three NiCd, NiMH, or alkaline battery cells, as well as one Li-Ion cell can  
also power them.  
Only three external 1-µF capacitors are required to build a complete dc/dc charge pump inverter. Assembled  
2
in a 5-pin SOT23 package, the complete converter can be built on a 50-mm board area. Additional board area  
and component count reduction is achieved by replacing the Schottky diode that is typically needed for start-up  
into load by integrated circuitry.  
The TPS6040x can deliver a maximum output current of 60 mA with a typical conversion efficiency of greater  
than 90% over a wide output current range. Three device options with 20-kHz, 50-kHz, and 250-kHz fixed  
frequency operation are available. One device comes with a variable switching frequency to reduce operating  
current in applications with a wide load range and enables the design with low-value capacitors.  
AVAILABLE OPTIONS  
MARKING DBV  
PACKAGE  
TYPICAL FLYING CAPACITOR  
PART NUMBER  
FEATURE  
[mF]  
Variable switching frequency  
50 kHz−250 kHz  
TPS60400QDBVRQ1  
AWP  
1
TPS60401QDBVRQ1  
TPS60402QDBVRQ1  
TPS60403QDBVRQ1  
AWQ  
AWR  
AWS  
10  
3.3  
1
Fixed frequency 20 kHz  
Fixed frequency 50 kHz  
Fixed frequency 250 kHz  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢀꢥ  
Copyright 2004, Texas Instruments Incorporated  
ꢡ ꢥ ꢢ ꢡꢛ ꢜꢯ ꢞꢝ ꢠ ꢨꢨ ꢦꢠ ꢟ ꢠ ꢔ ꢥ ꢡ ꢥ ꢟ ꢢ ꢪ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range  
from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage  
because very small parametric changes could cause the device not to meet its published specifications. These devices have limited  
built-in ESD protection.  
typical application circuit  
TPS60400  
OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE  
C
1 µF  
(fly)  
0
−1  
−2  
−3  
−4  
−5  
I
O
= 60 mA  
3
5
I
O
= 30 mA  
C
C
FLY+  
FLY−  
I
O
= 1 mA  
TPS60400  
Output  
−1.6 V to −5 V,  
Max 60 mA  
2
1
Input  
IN  
OUT  
1.6 V to 5.5 V  
C
1 µF  
C
O
1 µF  
I
GND  
4
T
A
= 25°C  
0
1
2
3
4
5
V − Input Voltage − V  
I
TPS60400 functional block diagram  
V
I
V − VCFLY+ < 0.5 V  
I
R
S
V
I
Q
Start  
FF  
MEAS  
DC_ Startup  
V < 1 V  
V
I
I
V
O
> V  
be  
V
O
Q1  
Q
Q
+
OSC  
CHG  
V
O
Q4  
V
Phase  
Generator  
O
C
(fly)  
OSC  
50 kHz  
MEAS  
B
Q2  
Q3  
Q5  
V
O
> −1 V  
GND  
V
I
V
O
DC_ Startup  
VCO_CONT  
V / V  
MEAS  
I
O
V
O
< −V − V  
be  
I
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
Terminal Functions  
TERMINAL  
NAME NO.  
I/O  
DESCRIPTION  
C
C
5
3
4
2
Positive terminal of the flying capacitor C  
(fly)  
FLY+  
FLY−  
Negative terminal of the flying capacitor C  
Ground  
(fly)  
GND  
IN  
I
Supply input. Connect to an input supply in the 1.6-V to 5.5-V range. Bypass IN to GND with a capacitor that has the  
same value as the flying capacitor.  
OUT  
1
O
Power output with V = −V  
O I  
Bypass OUT to GND with the output filter capacitor C .  
O
detailed description  
operating principle  
The TPS60400, TPS60401 charge pumps invert the voltage applied to their input. For the highest performance,  
use low equivalent series resistance (ESR) capacitors (e.g., ceramic). During the first half-cycle, switches S2  
and S4 open, switches S1 and S3 close, and capacitor (C ) charges to the voltage at V . During the second  
(fly)  
I
half-cycle, S1 and S3 open, S2 and S4 close. This connects the positive terminal of C  
to GND and the  
(fly)  
negative to V By connecting C  
in parallel, C is charged negative. The actual voltage at the output is more  
positive than −V , since switches S1–S4 have resistance and the load drains charge from C .  
O.  
(fly)  
O
I
O
V
I
S1  
S2  
C
(fly)  
S4  
V
O
(−V )  
I
1 µF  
C
1 µF  
O
S3  
GND  
GND  
Figure 1. Operating Principle  
charge-pump output resistance  
The TPS6040x devices are not voltage regulators. The charge pumps output source resistance is  
approximately 15 at room temperature (with V = 5 V), and V approaches –5 V when lightly loaded. V will  
I
O
O
droop toward GND as load current increases.  
V = −(V – R × I )  
O
I
O
O
(1)  
1
) 4ǒ2R  
CFLYǓ) ESR  
CO  
R
[
) ESR  
O
SWITCH  
ƒosc   C  
(fly)  
R
= output resistance of the converter  
O
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
detailed description (continued)  
efficiency considerations  
The power efficiency of a switched-capacitor voltage converter is affected by three factors: the internal losses  
in the converter IC, the resistive losses of the capacitors, and the conversion losses during charge transfer  
between the capacitors. The internal losses are associated with the IC’s internal functions, such as driving the  
switches, oscillator, etc. These losses are affected by operating conditions such as input voltage, temperature,  
and frequency. The next two losses are associated with the voltage converter circuit’s output resistance. Switch  
losses occur because of the on-resistance of the MOSFET switches in the IC. Charge-pump capacitor losses  
occur because of their ESR. The relationship between these losses and the output resistance is as follows:  
2
P
R
+ P  
= I × R  
CAPACITOR LOSSES  
CONVERSION LOSSES  
O
O
= resistance of a single MOSFET-switch inside the converter  
= oscillator frequency  
SWITCH  
f
OSC  
The first term is the effective resistance from an ideal switched-capacitor circuit. Conversion losses occur during  
the charge transfer between C  
and C when there is a voltage difference between them. The power loss is:  
(fly)  
O
(2)  
1
2
1
2
I
2
2
(fly)ǒV  
Ǔ) C ǒV  
RIPPLE  
Ǔ
ƫ
O RIPPLE  
+ ƪ  
P
  C  
* V  
* 2V V  
  ƒ  
osc  
CONV.LOSS  
O
2
O
The efficiency of the TPS6040x devices is dominated by their quiescent supply current at low output current and  
by their output impedance at higher current.  
I
I
  R  
O
O
O
h ^  
ǒ
1 *  
Ǔ
I
) I  
V
I
O
Q
Where, I = quiescent current.  
Q
capacitor selection  
To maintain the lowest output resistance, use capacitors with low ESR (see Table 1). The charge-pump output  
resistance is a function of C ’s and C ’s ESR. Therefore, minimizing the charge-pump capacitor’s ESR  
(fly)  
O
minimizes the total output resistance. The capacitor values are closely linked to the required output current and  
the output noise and ripple requirements. It is possible to only use 1-µF capacitors of the same type.  
input capacitor (C )  
I
Bypass the incoming supply to reduce its ac impedance and the impact of the TPS6040x switching noise. The  
recommended bypassing depends on the circuit configuration and where the load is connected. When the  
inverter is loaded from OUT to GND, current from the supply switches between 2 x I and zero. Therefore, use  
O
a large bypass capacitor (e.g., equal to the value of C ) if the supply has high ac impedance. When the inverter  
(fly)  
is loaded from IN to OUT, the circuit draws 2 × I constantly, except for short switching spikes. A 0.1-µF bypass  
O
capacitor is sufficient.  
flying capacitor (C  
)
(fly)  
Increasing the flying capacitor’s size reduces the output resistance. Small values increases the output  
resistance. Above a certain point, increasing C ’s capacitance has a negligible effect, because the output  
(fly)  
resistance becomes dominated by the internal switch resistance and capacitor ESR.  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
detailed description (continued)  
output capacitor (C )  
O
Increasing the output capacitor’s size reduces the output ripple voltage. Decreasing its ESR reduces both output  
resistance and ripple. Smaller capacitance values can be used with light loads if higher output ripple can be  
tolerated. Use the following equation to calculate the peak-to-peak ripple.  
I
O
  C  
V
+
) 2   I   ESR  
O(ripple)  
O
CO  
f
osc  
o
Table 1. Recommended Capacitor Values  
V
I
C
C
C
O
[µF]  
I
O
(fly)  
I
DEVICE  
[V]  
[mA]  
[µF]  
[µF]  
1
TPS60400  
TPS60401  
TPS60402  
TPS60403  
1.85.5  
1.85.5  
1.85.5  
1.85.5  
60  
1
1
60  
10  
3.3  
1
10  
3.3  
1
10  
3.3  
1
60  
60  
Table 2. Recommended Capacitors  
MANUFACTURER  
PART NUMBER  
SIZE  
CAPACITANCE  
TYPE  
Taiyo Yuden  
EMK212BJ474MG  
LMK212BJ105KG  
LMK212BJ225MG  
EMK316BJ225KL  
LMK316BJ475KL  
JMK316BJ106KL  
0805  
0805  
0805  
1206  
1206  
1206  
0.47 µF  
1 µF  
2.2 µF  
2.2 µF  
4.7 µF  
10 µF  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
TDK  
C2012X5R1C105M  
C2012X5R1A225M  
C2012X5R1A335M  
0805  
0805  
0805  
1 µF  
2.2 µF  
3.3 µF  
Ceramic  
Ceramic  
Ceramic  
Table 3 contains a list of manufacturers of the recommended capacitors. Ceramic capacitors will provide the  
lowest output voltage ripple because they typically have the lowest ESR-rating.  
Table 3. Recommended Capacitor Manufacturers  
MANUFACTURER  
Taiyo Yuden  
TDK  
CAPACITOR TYPE  
X7R/X5R ceramic  
X7R/X5R ceramic  
X7R/X5R ceramic  
X7R/X5R ceramic  
INTERNET  
www.t-yuden.com  
www.component.tdk.com  
www.vishay.com  
Vishay  
Kemet  
www.kemet.com  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Voltage range: IN to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 5.5 V  
OUT to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −5 V to 0.3 V  
C
C
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to (V − 0.3 V)  
FLY−  
FLY+  
O
to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to (V + 0.3 V)  
I
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Continuous output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 mA  
Electrostatic Discharge (Machine Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . passed 50 V  
(Human Body Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . passed 2 kV  
(Charged Device Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . passed 1 kV  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C  
stg  
Maximum junction temperature, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
J
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATING TABLE  
T
< 25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
POWER RATING  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
A
DBV  
437 mW  
3.5 mW/°C  
280 mW  
227 mW  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
Input voltage range, V  
1.8  
5.25  
60  
I
Output current range at OUT, I  
mA  
µF  
O
Input capacitor, C  
0
C
I
(fly)  
1
Flying capacitor, C  
(fly)  
µF  
Output capacitor, C  
1
100  
125  
µF  
O
Operating junction temperature, T  
−40  
°C  
J
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
electrical characteristics at C = C  
recommended operating free-air temperature range (unless otherwise noted)  
= C (according to Table 1), T = −40°C to 125°C, V = 5 V over  
I
(fly)  
O
J
I
PARAMETER  
TEST CONDITIONS  
MIN  
1.8  
1.6  
60  
TYP  
MAX  
UNIT  
At T = −40°C to 125°C,  
R
L
= 5 kΩ  
= 5 kΩ  
5.25  
J
V
I
Supply voltage range  
V
At T 0°C,  
R
L
C
I
O
Maximum output current at V  
Output voltage  
mA  
V
O
V
O
−V  
I
TPS60400  
TPS60401  
TPS60402  
TPS60403  
TPS60400  
TPS60401  
TPS60402  
TPS60403  
TPS60400  
TPS60401  
TPS60402  
TPS60403  
C
C
C
C
= 1 µF, C = 2.2 µF  
35  
20  
(fly)  
(fly)  
(fly)  
(fly)  
O
= C = 10 µF  
O
V
Output voltage ripple  
I
= 5 mA  
mV  
P−P  
P−P  
O
= C = 3.3 µF  
20  
O
= C = 1 µF  
15  
O
125  
65  
270  
190  
270  
700  
210  
135  
210  
640  
375  
30  
At V = 5 V  
µA  
µA  
kHz  
I
120  
425  
Quiescent current (no-load input  
current)  
I
Q
At T 60°C,  
V = 5 V  
I
J
TPS60400 VCO version  
TPS60401  
25 50−250  
10  
25  
20  
f
OSC  
Internal switching frequency  
TPS60402  
TPS60403  
50  
250  
12  
75  
325  
15  
115  
TPS60400 C = C  
= C = 1 µF  
O
I
(fly)  
(fly)  
(fly)  
(fly)  
TPS60401 C = C  
= C = 10 µF  
12  
15  
I
O
Impedance at 25°C, V = 5 V  
I
TPS60402 C = C  
= C = 3.3 µF  
12  
15  
I
O
TPS60403 C = C  
= C = 1 µF  
12  
15  
I
O
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
η
Efficiency  
vs Output current at 3.3 V, 5 V  
2, 3  
TPS60400, TPS60401, TPS60402, TPS60403  
I
Input current  
vs Output current  
4, 5  
6, 7  
I
TPS60400, TPS60401, TPS60402, TPS60403  
I
S
Supply current  
vs Input voltage  
TPS60400, TPS60401, TPS60402, TPS60403  
Output resistance  
Output voltage  
vs Input voltage at −40°C, 0°C, 25°C, 85°C  
8, 9, 10,  
11  
TPS60400, C = C  
= C = 1 µF  
I
(fly)  
(fly)  
O
TPS60401, C = C  
= C = 10 µF  
O
I
TPS60402 , C = C  
= C = 3.3 µF  
I
I
(fly)  
(fly)  
O
TPS60403, C = C  
= C = 1 µF  
O
V
O
vs Output current at 25°C, V = 1.8 V, 2.5 V, 3.3 V, 5 V  
IN  
12, 13,  
14, 15  
TPS60400, C = C  
= C = 1 µF  
I
(fly)  
(fly)  
O
TPS60401, C = C  
= C = 10 µF  
O
I
TPS60402 , C = C  
= C = 3.3 µF  
I
I
(fly)  
(fly)  
O
TPS60403, C = C  
= C = 1 µF  
O
f
f
Oscillator frequency  
Oscillator frequency  
vs Temperature at V = 1.8 V, 2.5 V, 3.3 V, 5 V  
I
16, 17,  
18, 19  
OSC  
TPS60400, TPS60401, TPS60402, TPS60403  
vs Output current TPS60400 at 2 V, 3.3 V, 5.0 V  
20  
OSC  
Output ripple and noise  
V = 5 V, I = 30 mA, C = C  
= C = 1 µF (TPS60400)  
21, 22  
I
O
I
(fly)  
(fly)  
(fly)  
(fly)  
O
V = 5 V, I = 30 mA, C = C  
= C = 10 µF (TPS60401)  
I
I
O
O
O
I
I
I
O
V = 5 V, I = 30 mA, C = C  
= C = 3.3 µF (TPS60402)  
O
V = 5 V, I = 30 mA, C = C  
= C = 1 µF (TPS60403)  
I
O
TPS60400, TPS60401  
EFFICIENCY  
vs  
TPS60402, TPS60403  
EFFICIENCY  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
TPS60403  
V = 5 V  
I
TPS60400  
V = 5 V  
I
TPS60401  
V = 5 V  
I
TPS60402  
V = 5 V  
I
TPS60401  
V = 3.3 V  
I
TPS60403  
V = 3.3 V  
I
TPS60400  
V = 3.3 V  
TPS60402  
V = 3.3 V  
I
I
T
A
= 25°C  
T = 25°C  
A
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
I
O
− Output Current − mA  
I
O
− Output Current − mA  
Figure 2  
Figure 3  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
TYPICAL CHARACTERISTICS  
TPS60400, TPS60401  
INPUT CURRENT  
vs  
TPS60402, TPS60403  
INPUT CURRENT  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
10  
1
100  
10  
1
T
A
= 25°C  
T
= 25°C  
A
TPS60400  
V = 5 V  
I
TPS60403  
V = 5 V  
I
TPS60401  
V = 5 V  
I
TPS60403  
V = 2 V  
I
TPS60401  
V = 2 V  
I
TPS60402  
V = 5 V  
I
TPS60400  
TPS60402  
V = 2 V  
I
V = 2 V  
I
0.1  
0.1  
0.1  
0.1  
1
10  
100  
1
10  
100  
I
O
− Output Current − mA  
I
O
− Output Current − mA  
Figure 4  
Figure 5  
TPS60400, TPS60401  
SUPPLY CURRENT  
vs  
TPS60402, TPS60403  
SUPPLY CURRENT  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
0.6  
0.4  
0.2  
0
0.6  
0.4  
I
T
= 0 mA  
= 25°C  
I
T
= 0 mA  
= 25°C  
O
A
O
A
TPS60403  
0.2  
TPS60400  
TPS60402  
4
TPS60401  
4
0
0
1
2
3
5
0
1
2
3
5
V − Input Voltage − V  
I
V − Input Voltage − V  
I
Figure 6  
Figure 7  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
TYPICAL CHARACTERISTICS  
TPS60401  
OUTPUT RESISTANCE  
vs  
TPS60400  
OUTPUT RESISTANCE  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
I
= 30 mA  
O
I
I
= 30 mA  
O
C = C  
(fly)  
= C = 10 µF  
O
C = C  
I
= C = 1 µF  
(fly)  
O
T
A
= 85°C  
T
A
= 25°C  
T
A
= 25°C  
T
A
= 85°C  
5
T
A
= −40°C  
T
A
= −40°C  
0
0
1
1
2
3
4
5
6
2
3
4
5
6
V − Input Voltage − V  
I
V − Input Voltage − V  
I
Figure 8  
Figure 9  
TPS60402  
OUTPUT RESISTANCE  
vs  
TPS60403  
OUTPUT RESISTANCE  
vs  
INPUT VOLTAGE  
INPUT VOLTAGE  
40  
35  
30  
25  
20  
15  
10  
40  
35  
30  
25  
20  
15  
10  
I
= 30 mA  
I
= 30 mA  
O
I
O
I
C = C  
(fly)  
= C = 3.3 µF  
C = C  
(fly)  
= C = 1 µF  
O
O
T
A
= 25°C  
T
A
= 25°C  
T
= 85°C  
A
T
= 85°C  
A
T
A
= −40°C  
5
0
5
0
T
A
= −40°C  
1
2
3
4
5
6
1
2
3
4
5
6
V − Input Voltage − V  
I
V − Input Voltage − V  
I
Figure 10  
Figure 11  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢒꢀ  
ꢘꢏ  
SGLS246 − JUNE 2004  
TYPICAL CHARACTERISTICS  
TPS60400  
TPS60401  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
0
0
T
A
= 25°C  
T
A
= 25°C  
−1  
−1  
V = 1.8 V  
I
V = 1.8 V  
I
V = 2.5 V  
V = 2.5 V  
I
I
−2  
−3  
−4  
−5  
−6  
−2  
−3  
−4  
−5  
−6  
V = 3.3 V  
I
V = 3.3 V  
I
V = 5 V  
I
V = 5 V  
I
0
10  
I
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
− Output Current − mA  
I
O
− Output Current − mA  
O
Figure 12  
Figure 13  
TPS60403  
TPS60402  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
0
0
T
A
= 25°C  
T
A
= 25°C  
−1  
−1  
V = 1.8 V  
I
V = 1.8 V  
I
V = 2.5 V  
V = 2.5 V  
I
I
−2  
−3  
−4  
−5  
−6  
−2  
−3  
−4  
−5  
−6  
V = 3.3 V  
V = 3.3 V  
I
I
V = 5 V  
I
V = 5 V  
I
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
I
O
− Output Current − mA  
I
O
− Output Current − mA  
Figure 14  
Figure 15  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
TYPICAL CHARACTERISTICS  
TPS60401  
OSCILLATOR FREQUENCY  
vs  
TPS60400  
OSCILLATOR FREQUENCY  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
24  
23.8  
23.6  
23.4  
23.2  
23  
250  
I
O
= 10 mA  
I
O
= 10 mA  
V = 1.8 V  
I
200  
150  
100  
V = 3.3 V  
I
V = 5 V  
I
V = 2.5 V  
I
V = 3.3 V  
I
V = 2.5 V  
I
22.8  
22.6  
22.4  
V = 5 V  
I
V = 1.8 V  
I
50  
0
22.2  
22  
−40302010 0 10 20 30 40 50 60 70 80 90  
−40302010 0 10 20 30 40 50 60 70 80 90  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 16  
Figure 17  
TPS60403  
TPS60402  
OSCILLATOR FREQUENCY  
vs  
OSCILLATOR FREQUENCY  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
250  
240  
230  
220  
210  
200  
190  
180  
170  
57  
56  
55  
54  
53  
52  
51  
V = 5 V  
I
I
O
= 10 mA  
V = 3.3 V  
I
V = 5 V  
I
V = 2.5 V  
I
V = 3.3 V  
I
V = 1.8 V  
I
V = 2.5 V  
I
V = 1.8 V  
I
50  
49  
I
= 10 mA  
160  
150  
O
−40302010 0 10 20 30 40 50 60 70 80 90  
−40302010 0 10 20 30 40 50 60 70 80 90  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 18  
Figure 19  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
TYPICAL CHARACTERISTICS  
TPS60400  
TPS60401, TPS60402  
OSCILLATOR FREQUENCY  
vs  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
TIME  
300  
250  
200  
150  
100  
V = 5 V  
I
T
= 25°C  
A
I
O
= 30 mA  
TPS60401  
V = 3.3 V  
I
V = 1.8 V  
I
V = 5 V  
I
50 mV/DIV  
TPS60402  
50  
0
50 mV/DIV  
0
10 20 30 40 50 60 70 80 90 100  
20 µs/DIV  
t − Time − µs  
Figure 21  
I
O
− Output Current − mA  
Figure 20  
TPS60400, TPS60403  
OUTPUT VOLTAGE  
vs  
TIME  
V = 5 V  
I
O
I
= 30 mA  
TPS60400  
100 mV/DIV  
TPS60403  
50 mV/DIV  
4 µs/DIV  
t − Time − µs  
Figure 22  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
voltage inverter  
The most common application for these devices is a charge-pump voltage inverter (see Figure 23). This  
application requires only two external components; capacitors C and C , plus a bypass capacitor, if  
(fly)  
O
necessary. See the capacitor selection section for suggested capacitor types.  
C
1 µF  
(fly)  
3
5
C1−  
C1+  
TPS60400  
2
1
−5 V,  
Max 60 mA  
Input 5 V  
IN  
OUT  
C
C
O
1 µF  
I
GND  
4
1 µF  
Figure 23. Typical Operating Circuit  
For the maximum output current and best performance, three ceramic capacitors of 1 µF (TPS60400,  
TPS60403) are recommended. For lower currents or higher allowed output voltage ripple, other capacitors can  
also be used. It is recommended that the output capacitors has a minimum value of 1 µF. With flying capacitors  
lower than 1 µF, the maximum output power will decrease.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢒꢀ  
ꢘꢏ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
RC-post filter  
V
I
C
1 µF  
(fly)  
1
2
5
4
OUT  
C1+  
TPS60400  
IN  
R
P
3
V
O
(−V )  
I
C1−  
GND  
C
1 µF  
C
1 µF  
C
P
I
O
GND  
GND  
Figure 24. TPS60400 and TPS60401 With RC-Post Filter  
An output filter can easily be formed with a resistor (R ) and a capacitor (C ). Cutoff frequency is given by:  
P
P
1
ƒ +  
(1)  
c
2pR C  
P P  
and ratio V /V  
is:  
O
OUT  
V
O
1
Ť Ť  
(2)  
+ Ǹ  
V
1 ) ǒ2pƒRPCPǓ2  
OUT  
V
O
with R = 50 , C = 0.1 µF and f = 250 kHz: Ť Ť+ 0.125  
P
P
V
OUT  
The formula refers only to the relation between output and input of the ac ripple voltages of the filter.  
LC-post filter  
V
I
C
1 µF  
(fly)  
1
2
5
4
OUT  
C1+  
V
OUT  
TPS60400  
IN  
L
P
3
V
O
(−V )  
I
C1−  
GND  
C
1 µF  
C
1 µF  
C
P
I
O
GND  
GND  
Figure 25. LC-Post Filter  
Figure 25 shows a configuration with a LC-post filter to further reduce output ripple and noise.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
Table 4. Measurement Results on the TPS60400 (Typical)  
C
[µF]  
C
C
[µF]  
C
P
I
(fly)  
[µF]  
O
BW = 500 MHz BW = 20 MHz  
V
[V]  
I
L
[µH]  
V
POUT  
I
O(2)  
P
[µF]  
V
V
POUT  
[mV]  
POUT  
[mV]  
[mA]  
VACeff [mV]  
V
V
P−P  
240  
CERAMIC CERAMIC CERAMIC  
CERAMIC  
P−P  
320  
5
5
5
5
5
5
60  
60  
60  
60  
60  
60  
1
1
1
1
1
1
1
1
1
1
1
1
1
2.2  
1
65  
32  
58  
60  
30  
8
120  
260  
220  
120  
50  
240  
200  
200  
100  
28  
0.1 (X7R)  
0.1 (X7R)  
0.1 (X7R)  
0.1 (X7R)  
1
0.1  
0.1  
0.1  
2.2  
10  
rail splitter  
V
I
C
1 µF  
(fly)  
C3  
1 µF  
1
2
5
4
OUT  
C1+  
TPS60400  
IN  
C1−  
V
O
(−V )  
I
3
GND  
C
1 µF  
I
C
1 µF  
O
GND  
GND  
Figure 26. TPS60400 as a High-Efficiency Rail Splitter  
A switched-capacitor voltage inverter can be configured as a high efficiency rail-splitter. This circuit provides a  
bipolar power supply that is useful in battery powered systems to supply dual-rail ICs, like operational amplifiers.  
Moreover, the SOT23-5 package and associated components require very little board space.  
After power is applied, the flying capacitor (C ) connects alternately across the output capacitors C and C .  
(fly)  
3
O
This equalizes the voltage on those capacitors and draws current from V to V as required to maintain the  
I
O
output at 1/2 V .  
I
The maximum input voltage between V and GND in the schematic (or between IN and OUT at the device itself)  
I
must not exceed 6.5 V.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
combined doubler/inverter  
In the circuit of Figure 27, capacitors C , C , and C form the inverter, while C1 and C2 form the doubler. C1  
I
(fly)  
O
and C  
are the flying capacitors; C and C2 are the output capacitors. Because both the inverter and doubler  
(fly)  
O
use part of the charge-pump circuit, loading either output causes both outputs to decline toward GND. Make  
sure the sum of the currents drawn from the two outputs does not exceed 60 mA. The maximum output current at  
V
must not exceed 30 mA. If the negative output is loaded, this current must be further reduced.  
(pos)  
I −I + 2 × I  
I
O
O(POS)  
V
I
C
1 µF  
+
(fly)  
C
D
2
1
1
2
5
4
OUT  
C1+  
V
(pos)  
+
TPS60400  
IN  
C1−  
−V  
I
3
GND  
+
+
C
1 µF  
C
1 µF  
I
O
C
2
+
GND  
GND  
Figure 27. TPS60400 as Doubler/Inverter  
cascading devices  
Two devices can be cascaded to produce an even larger negative voltage (see Figure 28). The unloaded output  
voltage is normally −2 × V , but this is reduced slightly by the output resistance of the first device multiplied by the  
I
quiescent current of the second. When cascading more than two devices, the output resistance rises  
dramatically.  
V
I
V
O
(−2 V )  
I
C
1 µF  
C
1 µF  
(fly)  
(fly)  
1
2
1
2
5
4
5
4
OUT  
C1+  
OUT  
C1+  
TPS60400  
TPS60400  
IN  
C1−  
IN  
C1−  
3
3
GND  
GND  
+
C
1 µF  
O
C
1 µF  
C
O
1 µF  
I
+
+
GND  
GND  
GND  
Figure 28. Doubling Inverter  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
paralleling devices  
Paralleling multiple TPS6040xs reduces the output resistance. Each device requires its own flying capacitor  
(C ), but the output capacitor (C ) serves all devices (see Figure 29). Increase C ’s value by a factor of n,  
(fly)  
O
O
where n is the number of parallel devices. Equation 1 shows the equation for calculating output resistance.  
V
I
C
1 µF  
C
1 µF  
(fly)  
(fly)  
1
2
1
2
5
4
5
4
OUT  
C1+  
OUT  
C1+  
TPS60400  
TPS60400  
V
O
(−V )  
I
IN  
IN  
3
3
C1−  
GND  
C1−  
GND  
C
2.2 µF  
O
C
1 µF  
I
+
GND  
GND  
Figure 29. Paralleling Devices  
active-Schottky diode  
For a short period of time, when the input voltage is applied, but the inverter is not yet working, the output  
capacitor is charged positive by the load. To prevent the output being pulled above GND, a Schottky diode must  
be added in parallel to the output. The function of this diode is integrated into the TPS6040x devices, which gives  
a defined startup performance and saves board space.  
A current sink and a diode in series can approximate the behavior of a typical, modern operational amplifier.  
Figure 30 shows the current into this typical load at a given voltage. The TPS6040x devices are optimized to  
start into these loads.  
V
I
C
1 µF  
(fly)  
+V  
−V  
Load Current  
Typical  
Load  
5
3
C1+  
C1−  
60 mA  
TPS60400  
V
O
(−V )  
I
2
OUT  
0.4 V  
IN  
1
25 mA  
I
O
C
1 µF  
I
C
O
1 µF  
GND  
4
Voltage at the Load  
0.4 V 1.25 V  
5 V  
GND  
Figure 30. Typical Load  
Figure 31. Maximum Start-Up Current  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢄ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈ ꢉ ꢀ ꢁꢂ ꢃꢄ ꢅꢄ ꢋꢆ ꢇ ꢈ  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
shutting down the TPS6040x  
If shutdown is necessary, use the circuit in Figure 32. The output resistance of the TPS6040x will typically be  
15 plus two times the output resistance of the buffer.  
Connecting multiple buffers in parallel can reduce the output resistance of the buffer driving the IN pin.  
V
I
V
O
(−V )  
I
C
1 µF  
(fly)  
1
2
5
4
OUT  
C1+  
TPS60400  
C
1 µF  
O
IN  
SDN  
GND  
3
C1−  
GND  
C
1 µF  
I
GND  
Figure 32. Shutdown Control  
GaAs supply  
A solution for a –2.7-V/3-mA GaAs bias supply is proposed in Figure 33. The input voltage of 3.3 V is first  
inverted with a TPS60403 and stabilized using a TLV431 low-voltage shunt regulator. Resistor R with capacitor  
P
C is used for filtering the output voltage.  
P
R
P
V (3.3 V)  
I
V
O
(−2.7 V/3 mA)  
C
0.1 µF  
(fly)  
R2  
R1  
1
2
5
4
OUT  
C1+  
C
1 µF  
C
P
O
TPS60400  
IN  
TLV431  
3
C1−  
GND  
C
I
0.1 µF  
GND  
GND  
Figure 33. GaAs Supply  
R1  
R2  
+ * ǒ1 )  
Ǔ
V
  V * R1   I  
ref  
O
I(ref)  
A 0.1-µF capacitor was selected for C  
. By this, the output resistance of the inverter is about 52 .  
(fly)  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
GaAs supply (continued)  
R
can be calculated using the following equation:  
PMAX  
V
* V  
CO  
O
R
+
ǒ
* R  
Ǔ
PMAX  
O
I
O
With: V  
= −3.3 V; V = −2.7 V; I = −3 mA  
O O  
CO  
R
= 200 − 52 = 148 Ω  
PMAX  
A 100-resistor was selected for R .  
P
The reference voltage across R2 is 1.24 V typical. With 5-µA current for the voltage divider, R2 gets:  
1.24 V  
5 mA  
R2 +  
R1 +  
[ 250 kW  
2.7 * 1.24 V  
5 mA  
[ 300 kW  
With C = 1 µF the ratio V /V of the RC post filter is:  
P
O
I
V
O
1
Ť Ť+  
[ 0.01  
V
2
I
Ǹ1 ) 2p125000Hz   100W   1 mF  
(
)
step-down charge pump  
By exchanging GND with OUT (connecting the GND pin with OUT and the OUT pin with GND), a step-down  
charge pump can easily be formed. In the first cycle S1 and S3 are closed, and C with C in series are  
(fly)  
O
charged. Assuming the same capacitance, the voltage across C  
and C is split equally between the  
(fly)  
O
capacitors. In the second cycle, S2 and S4 close and both capacitors with V /2 across are connected in parallel.  
I
C
1 µF  
(fly)  
V
I
V
I
S1  
1
2
5
4
C
+
OUT  
C1+  
(fly)  
S4  
TPS60400  
GND  
IN  
1 µF  
C
O
1 µF  
3
S2  
)
S3  
V
O
(V )  
I/2  
C1−  
GND  
C
1 µF  
I
C
O
1 µF  
GND  
V
O
(V )  
I/2  
V
O
(V  
I/2  
GND  
Figure 35. Step-Down Charge Pump Connection  
Figure 34. Step-Down Principle  
The maximum input voltage between V and GND in the schematic (or between IN and OUT at the device itself)  
I
must not exceed 6.5 V. For input voltages in the range of 6.5 V to 11 V, an additional Zener-diode is  
recommended (see Figure 36).  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢌꢍ ꢎ ꢏꢐ ꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖꢒ ꢎꢐ ꢏ ꢁꢌꢗ ꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏ ꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
5V6  
V
I
C
1 µF  
(fly)  
1
2
5
4
OUT  
C1+  
TPS60400  
IN  
3
C1−  
GND  
V
O
− V  
I
C
1 µF  
C
O
1 µF  
I
GND  
GND  
Figure 36. Step-Down Charge Pump Connection With Additional Zener Diode  
power dissipation  
As given in this data sheet, the thermal resistance of the unsoldered package is R  
= 347°C/W. Soldered on  
θJA  
the EVM, a typical thermal resistance of R  
= 180°C/W was measured.  
θJA(EVM)  
The terminal resistance can be calculated using the following equation:  
T * T  
J
A
R
+
qJA  
P
D
Where:  
T is the junction temperature.  
J
T is the ambient temperature.  
A
P is the power that needs to be dissipated by the device.  
D
T * T  
J
A
R
+
qJA  
P
D
The maximum power dissipation can be calculated using the following equation:  
P = V × I − V × I = V × (I + I ) − V × I  
D
I
I
O
O
I(max)  
O
(SUPPLY)  
O
O
The maximum power dissipation happens with maximum input voltage and maximum output current.  
At maximum load the supply current is 0.7 mA maximum.  
P = 5 V × (60 mA + 0.7 mA) − 4.4 V × 60 mA = 40 mW  
D
With this maximum rating and the thermal resistance of the device on the EVM, the maximum temperature rise  
above ambient temperature can be calculated using the following equation:  
T = R  
× P = 180°C/W × 40 mW = 7.2°C  
D
J
θJA  
This means that the internal dissipation increases T by <10°C.  
J
The junction temperature of the device shall not exceed 125°C.  
This means the IC can easily be used at ambient temperatures up to:  
T = T  
T = 125°C/W − 10°C = 115°C  
J
A
J(max)  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁ ꢂ ꢃ ꢄꢅ ꢄ ꢄ ꢆꢇꢈ ꢉ ꢀ ꢁ ꢂꢃ ꢄ ꢅ ꢄ ꢈ ꢆꢇ ꢈꢉ ꢀꢁ ꢂ ꢃ ꢄ ꢅ ꢄ ꢊ ꢆꢇ ꢈꢉ ꢀ ꢁꢂꢃ ꢄ ꢅ ꢄ ꢋ ꢆꢇ ꢈ  
ꢌ ꢍꢎꢏ ꢐꢌꢑ ꢒꢀ ꢏꢓ ꢃ ꢄ ꢆꢔꢒ ꢕꢖ ꢒꢎꢐ ꢏ ꢁ ꢌꢗꢁ ꢘꢙ ꢑꢀꢒꢐ ꢏ ꢚꢍ ꢘꢏꢎ ꢀꢏ ꢎ  
SGLS246 − JUNE 2004  
APPLICATION INFORMATION  
layout and board space  
All capacitors should be soldered as close as possible to the IC. A PCB layout proposal for a single-layer board  
is shown in Figure 37. Care has been taken to connect all capacitors as close as possible to the circuit to achieve  
optimized output voltage ripple performance.  
CFLY  
IN  
OUT  
GND  
U1  
TPS60400  
Figure 37. Recommended PCB Layout for TPS6040x (Top Layer)  
device family products  
Other inverting dc-dc converters from Texas Instruments are listed in Table 5.  
Table 5. Product Identification  
PART NUMBER  
TPS6735  
DESCRIPTION  
Fixed negative 5-V, 200-mA inverting dc-dc converter  
Adjustable 1-W inverting dc-dc converter  
TPS6755  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2007  
PACKAGING INFORMATION  
Orderable Device  
TPS60400QDBVRQ1  
TPS60401QDBVRQ1  
TPS60402QDBVRQ1  
TPS60403QDBVRQ1  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-23  
DBV  
5
5
5
5
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
3000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TPS60400DBV

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
TI

TPS60400DBVR

Analog IC
TI

TPS60400DBVRG4

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
TI

TPS60400DBVT

Analog IC
TI

TPS60400DBVTG4

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
TI

TPS60400QDBVRQ1

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
TI

TPS60400_12

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
TI

TPS60401

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
TI

TPS60401-Q1

具有 20kHz 固定频率的汽车类非稳压 60mA 电荷泵电压逆变器
TI

TPS60401DBV

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
TI

TPS60401DBVR

Analog IC
TI

TPS60401DBVRG4

UNREGULATED 60-mA CHARGE PUMP VOLTAGE INVERTER
TI