TPS61022RWUT [TI]

具有 0.5V 超低输入电压的 8A 升压转换器 | RWU | 7 | -40 to 125;
TPS61022RWUT
型号: TPS61022RWUT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 0.5V 超低输入电压的 8A 升压转换器 | RWU | 7 | -40 to 125

升压转换器
文件: 总33页 (文件大小:2156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61022  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
0.5V 超低输入电压TPS61022 8A 升压转换器  
1 特性  
3 说明  
• 输入电压范围0.5V 5.5V  
• 启动时的最小输入电压1.8V  
• 输出电压设置范围2.2V 5.5V  
• 两12mΩ(LS)/18mΩ(HS) MOSFET  
8A 谷值开关电流限制  
VIN = 3.6VVOUT = 5V IOUT = 3A 时效率为  
94.7%  
VIN > 1.5V 时开关频率1MHzVIN < 1V 时开关  
频率0.6MHz  
40°C +125°C 温度范围内基准电压精度  
±2.5%  
• 轻负载运行时引脚可选自PFM 工作模式或强制  
PWM 工作模式  
VIN > VOUT 时切换为直通模式  
• 在关断期间真正断开输入域输出之间的连接  
• 输出过压和热关断保护  
• 输出短路保护  
2mm × 2mm VQFN 7 引脚封装  
TPS61022 可以为由多种电池和超级电容器供电的便携  
式设备和物联网设备提供电源解决方案。在整个温度范  
围内TPS61022 谷值开关电流限制最小值为  
6.5A0.5V 5.5V 宽输入电压范围内,  
TPS61022 支持超级电容器备用电源应用这可能导致  
超级电容器深度放电。  
当输入电压高于 1.5V TPS61022 的工作频率为  
1MHz。当输入电压低1.5V 甚至降1V 开关频  
率逐渐降0.6MHz。在轻负载条件下MODE 引脚将  
TPS61022 工作模式设定为省电模式或强制 PWM 模  
式。在轻负载条件下TPS61022 仅消耗 VOUT 处的  
26µA 静态电流。关断期间负载与输入电源完全断  
开。TPS61022 还具有 5.7V 输出过压保护、输出短路  
保护和热关断保护。  
TPS61022 采用 2mm × 2mm VQFN 封装更大限度  
地减少了外部元件的数量因而拥有非常小巧的解决方  
案尺寸。  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
器件型号  
TPS61022  
USB 端口  
• 备用超级电容器  
GPRS 电源  
VQFN (7)  
2.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
L1  
VIN  
GND  
1 µH  
VOUT  
C1  
FB  
VOUT  
VIN  
SW  
EN  
SW  
GND  
VOUT  
MODE  
VOUT  
GND  
GND  
VIN  
C2  
VIN  
R1  
R2  
PWM  
ON  
TPS61022  
PFM  
OFF  
FB  
MODE  
EN  
GND  
典型应用电路  
需要一个陶瓷输出电容器并且它必须靠TPS61022 的  
VOUT 引脚GND 引脚  
布局示例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDX7  
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
Table of Contents  
8.1 Application Information............................................. 13  
8.2 Typical Application ................................................... 13  
8.3 System Examples..................................................... 18  
9 Power Supply Recommendations................................20  
10 Layout...........................................................................21  
10.1 Layout Guidelines................................................... 21  
10.2 Layout Example...................................................... 21  
10.3 Thermal Considerations..........................................21  
11 Device and Documentation Support..........................23  
11.1 Device Support .......................................................23  
11.2 接收文档更新通知................................................... 23  
11.3 支持资源..................................................................23  
11.4 Trademarks............................................................. 23  
11.5 Electrostatic Discharge Caution..............................23  
11.6 术语表..................................................................... 23  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Typical Characteristics................................................6  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
7.4 Device Functional Modes..........................................11  
8 Application and Implementation..................................13  
Information.................................................................... 24  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (June 2021) to Revision D (July 2021)  
Page  
Added IQ into VIN typical value...........................................................................................................................5  
Changed ISD test conditions from 5.5 V to 5.0 V................................................................................................ 5  
Changed ISD, TJ maximum value from 3.0 μA to 3.5 μA..................................................................................5  
Changes from Revision B (January 2020) to Revision C (June 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
5 Pin Configuration and Functions  
VIN  
MODE  
EN  
GND  
SW  
VOUT  
FB  
5-1. 7-Pin VQFN with Thermal Pad RWU Package (Top View)  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Ground pin of the IC. The GND pad of output capacitor must be close to the GND pin.  
Layout example is shown in Layout Example.  
1
GND  
PWR  
PWR  
The switch pin of the converter. It is connected to the drain of the internal low-side power  
MOSFET and the source of the internal high-side power MOSFET.  
2
SW  
Boost converter output. The VOUT pad of output capacitor must be close to the VOUT pin.  
Layout example is shown in Layout Example.  
3
4
5
VOUT  
FB  
PWR  
I
I
Voltage feedback of adjustable output voltage.  
Enable logic input. Logic high voltage enables the device. Logic low voltage disables the  
device and turns it into shutdown mode.  
EN  
Operation mode selection in the light load condition. When it is connected to logic high  
voltage, the device works in forced PWM mode. When it is connected to logic low voltage,  
the device works in auto PFM mode.  
6
7
MODE  
VIN  
I
I
IC power supply input.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
40  
65  
MAX  
7
UNIT  
V
Voltage range at terminals(2)  
Operating junction temperature, TJ  
Storage temperature, Tstg  
VIN, EN, FB, MODE, SW, VOUT  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±500 V may actually have higher performance.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.5  
0.5  
2.2  
0.33  
4.7  
30  
NOM  
MAX  
4.8  
UNIT  
V
Output voltage pre biased < 0.7V before start-up  
Output voltage pre biased > 0.7V before start-up  
VIN  
Input voltage range  
5.5  
V
VOUT  
L
Output voltage setting range  
Effective inductance range  
5.5  
V
1.0  
10  
30  
30  
30  
2.9  
µH  
µF  
µF  
µF  
µF  
°C  
CIN  
Effective input capacitance range  
IOUT >= 3A  
1000  
1000  
1000  
125  
COUT  
Effective output capacitance range  
Operating junction temperature  
1.5A < IOUT < 3A  
IOUT <= 1.5A  
20  
10  
TJ  
40  
6.4 Thermal Information  
TPS61022  
TPS61022  
THERMAL METRIC(1)  
RWU (VQFN) - 7 PINS  
RWU (VQFN) - 7 PINS  
UNIT  
Standard  
108.2  
70.2  
EVM(2)  
50.9  
N/A  
RθJA  
RθJC  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
37.1  
N/A  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
2.6  
1.6  
36.7  
20.0  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Measured on TPS61022EVM-034, 4-layer, 2oz copper 58mm×46mm PCB.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61022  
 
 
 
 
 
 
 
 
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
6.5 Electrical Characteristics  
TJ = 40°C to 125°C, VIN = 3.6 V and VOUT = 5.0 V. Typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
0.5  
5.5  
1.8  
1.6  
0.5  
V
V
V
V
VIN rising at VOUT = 0 V  
1.7  
1.3  
0.4  
VIN_UVLO  
Under-voltage lockout threshold  
VIN rising at VOUT > 2.2 V, TJ up to 85°C  
VIN falling  
IC enabled, No load, No switching VIN  
=
Quiescent current into VIN pin  
Quiescent current into VOUT pin  
1.8 V to 5.5 V, VFB = VREF + 0.1 V, TJ up  
to 85°C  
0.9  
27  
3.0  
32  
µA  
µA  
IQ  
IC enabled, No load, No switching VOUT  
2.2 V to 5.5 V, VFB = VREF + 0.1 V, TJ up  
to 85°C  
=
IC disabled, VIN = 1.8 V to 5.0 V, TJ =  
25°C  
0.25  
0.25  
0.6  
3.5  
µA  
µA  
ISD  
Shutdown current into VIN and SW pin  
IC disabled, VIN = 1.8 V to 5.0 V, TJ up to  
85°C  
OUTPUT  
VOUT  
Output voltage setting range  
2.2  
585  
590  
5.5  
5.5  
V
mV  
mV  
V
PWM mode  
PFM mode  
600  
606  
5.7  
0.1  
615  
VREF  
Reference voltage at the FB pin  
VOVP  
Output over-voltage protection threshold VOUT rising  
Over-voltage protection hysteresis  
6.0  
VOVP_HYS  
IFB_LKG  
V
Leakage current at FB pin  
20  
3
nA  
IC disabled, VIN = 0 V, VSW = 0 V, VOUT  
5.5 V,TJ up to 85°C  
=
IVOUT_LKG  
Leakage current into VOUT pin  
Soft startup time  
1
µA  
From active EN to VOUT regulation.  
VIN = 2.5 V, VOUT = 5.0 V, COUT_EFF  
=
tSS  
700  
μs  
30μF, IOUT = 0  
POWER SWITCH  
High-side MOSFET on resistance  
Low-side MOSFET on resistance  
VOUT = 5.0 V  
18  
12  
mΩ  
mΩ  
MHz  
MHz  
ns  
RDS(on)  
VOUT = 5.0 V  
VIN = 3.6 V, VOUT = 5.0 V, PWM mode  
VIN = 1.0 V, VOUT = 5.0 V, PWM mode  
1.0  
0.6  
80  
fSW  
Switching frequency  
tOFF_min  
Minimum off time  
150  
10  
ILIM_SW  
Valley current limit  
VIN = 3.6 V, VOUT = 5.0 V  
VIN = 1.8 - 4.8 V, VOUT < 0.4 V  
VIN = 2.4 V, VOUT > 0.4 V  
6.5  
400  
2
8
A
ILIM_CHG  
ILIM_CHG_max  
Pre-charge current  
700  
2.4  
mA  
A
Maximum pre-charge current  
LOGIC INTERFACE  
VEN_H  
EN logic high threshold  
VIN > 1.8 V or VOUT > 2.2 V  
VIN > 1.8 V or VOUT > 2.2 V  
VIN > 1.8 V or VOUT > 2.2 V  
VIN > 1.8 V or VOUT > 2.2 V  
1.2  
0.45  
1.2  
V
V
VEN_L  
EN logic low threshold  
0.35  
0.4  
0.42  
VMODE_H  
VMODE_L  
PROTECTION  
TSD  
MODE logic high threshold  
MODE logic low threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
6.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 5 V, TJ = 25°C, unless otherwise noted  
100  
95  
90  
85  
80  
100  
95  
90  
85  
80  
75  
70  
65  
75  
VIN=1.8V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VOUT=3.3V  
VOUT=3.8V  
VOUT=4.0V  
VOUT=5.0V  
70  
65  
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
5
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
5
effi  
effi  
VIN = 1.8 V, 3 V, 3.6 V, 4.2 V; VOUT = 5 V  
VIN = 1.8 V; VOUT = 3.3 V, 3.8 V, 4 V, 5 V  
6-1. Load Efficiency With Different Input in Auto  
6-2. Load Efficiency With Different Output in  
PFM  
Auto PFM  
100  
80  
100  
80  
60  
60  
40  
40  
VIN=1.8V  
VIN=3.0V  
VOUT=3.3V  
VOUT=3.8V  
20  
20  
VIN=3.6V  
VIN=4.2V  
VOUT=4.0V  
VOUT=5.0V  
0
0.0001  
0
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
5
0.001  
0.01  
Output Current (A)  
0.1  
1
5
effi  
effi  
VIN = 1.8 V, 3 V, 3.6 V, 4.2 V; VOUT = 5 V  
VIN = 1.8 V; VOUT = 3.3 V, 3.8 V, 4 V, 5 V  
6-3. Load Efficiency With Different Input in  
6-4. Load Efficiency With Different Output in  
Forced PWM  
Forced PWM  
5.1  
5.05  
5
5.04  
5.02  
5
4.98  
4.96  
4.95  
VIN=1.8V  
VIN=1.8V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
VIN=3.0V  
VIN=3.6V  
VIN=4.2V  
4.94  
4.9  
0.0001  
4.92  
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
5
0.001  
0.01  
Output Current (A)  
0.1  
1
5
regu  
regu  
VIN = 1.8 V, 3 V, 3.6 V, 4.2 V; VOUT = 5 V  
VIN = 1.8 V, 3 V, 3.6 V, 4.2 V; VOUT = 5 V  
6-5. Load Regulation in Auto PFM  
6-6. Load Regulation in Forced PWM  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
5
4.5  
4
600  
599  
598  
597  
596  
595  
3.5  
3
2.5  
2
1.5  
1
Tj=-40èC  
Tj=25èC  
Tj=125èC  
0.5  
0.5  
1
1.5  
2 2.5  
Output Voltage (V)  
3
3.5  
4
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
prec  
refe  
VIN = 5 V; VOUT = 0.5 V to 4 V  
VIN = 3.6 V; VOUT = 5 V, TJ = 40°C to +125°C  
6-7. Pre-charge Current vs Output Voltage  
6-8. Reference Voltage vs Temperature  
2
29  
28  
27  
26  
25  
24  
VIN=1.8V  
VIN=3.6V  
VIN=4.5V  
1.5  
1
0.5  
23  
VOUT=2.2V  
VOUT=3.6V  
VOUT=5V  
22  
21  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (èC)  
Temperature (èC)  
iqvi  
iqvo  
VIN = 1.8 V, 3.6 V 4.5 V; VOUT = 5 V, TJ = 40°C to +85°C, No  
VIN = 1.8 V; VOUT = 2.2 V, 3.6 V, 5 V, TJ = 40°C to +85°C,  
switching  
No switching  
6-9. Quiescent Current into VIN vs Temperature  
6-10. Quiescent Current into VOUT vs  
Temperature  
1.4  
1.14  
1.11  
1.08  
1.05  
1.02  
0.99  
0.96  
0.93  
0.9  
VIN=1.8V  
VIN=3.6V  
1.2  
VIN=4.5V  
VIN=5V  
1
0.8  
0.6  
0.4  
0.2  
0
0.87  
0.84  
-40  
-20  
0
20  
40  
60  
80  
100  
1.8  
2.1  
2.4  
2.7  
3 3.3  
Input Voltage (V)  
3.6  
3.9  
4.2  
4.5  
Temperature (èC)  
shut  
freq  
VIN = VSW = 1.8 V, 3.6 V, 4.5 V, 5 V; TJ = 40°C to +85°C  
VIN = 1.8 V to 4.5 V; VOUT = 5 V  
6-11. Shutdown Current vs Temperature  
6-12. Switching Frequency vs Input Voltage  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61022  
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
1.05  
1
0.48  
0.45  
0.42  
0.39  
0.36  
0.33  
VIN=1.8V  
VIN=2.4V  
VIN=3.6V  
VIN=4.5V  
0.95  
0.9  
0.85  
0.8  
0.75  
VIN=1.8V  
VIN=2.4V  
VIN=3.6V  
VIN=4.5V  
0.7  
0.65  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-60  
-30  
0
30  
60  
90  
120  
150  
Temperature (èC)  
Temperature (èC)  
enri  
enfa  
VIN = 1.8 V, 2.4 V, 3.6 V, 4.5 V; VOUT = 5 V; TJ = 40°C to  
VIN = 1.8 V, 2.4 V, 3.6 V, 4.5 V; VOUT = 5 V; TJ = 40°C to  
+125°C  
+125°C  
6-13. EN Rising Threshold vs Temperature  
6-14. EN Falling Threshold vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61022  
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
7 Detailed Description  
7.1 Overview  
The TPS61022 synchronous step-up converter is designed to operate from an input voltage supply range  
between 0.5 V and 5.5 V with 6.5-A (minimum) valley switch current limit. The TPS61022 typically operates at a  
quasi-constant frequency pulse width modulation (PWM) at moderate to heavy load currents. The switching  
frequency is 1 MHz when the input voltage is above 1.5 V. The switching frequency reduces down to 0.6 MHz  
gradually when the input voltage goes down from 1.5 V to 1 V and keeps at 0.6 MHz when the input voltage is  
below 1 V. The MODE pin sets the TPS61022 converter operating in power-save mode with pulse frequency  
modulation (PFM) or forced PWM mode in light load conditions. During PWM operation, the converter uses  
adaptive constant on-time valley current mode control scheme to achieve excellent line regulation and load  
regulation and allows the use of a small inductor and ceramic capacitors. Internal loop compensation simplifies  
the design process while minimizing the number of external components.  
7.2 Functional Block Diagram  
SW  
2
VIN  
VOUT  
Undervoltage  
Lockout  
VIN  
VOUT  
7
3
EN  
5
6
Valley Current  
Sense  
Gate Driver  
Logic  
MODE  
GND  
1
Thermal  
Shutdown  
PWM Control  
Overvoltage  
FB  
4
Soft Start-up  
Protection and  
Short-Circuit  
Protection  
VOUT  
EA  
VREF  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
The TPS61022 has a built-in undervoltage lockout (UVLO) circuit to ensure the device working properly. When  
the input voltage is above the UVLO rising threshold of 1.8 V, the TPS61022 can be enabled to boost the output  
voltage. After the TPS61022 starts up and the output voltage is above 2.2 V, the TPS61022 works with input  
voltage as low as 0.5 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61022  
 
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
7.3.2 Enable and Soft Start  
When the input voltage is above the UVLO rising threshold and the EN pin is pulled to a voltage above 1.2 V, the  
TPS61022 is enabled and starts up. At the beginning, the TPS61022 charges the output capacitors with a  
current of about 700 mA when the output voltage is below 0.4 V. When the output voltage is charged above 0.4  
V, the output current is changed to having output current capability to drive 1-Ω resistance load. After the output  
voltage reaches the input voltage, the TPS61022 starts switching, and the output voltage ramps up further. The  
typical start-up time is 700 µs accounting from EN high to output reaching target voltage for the application with  
input voltage is 2.5 V, output voltage is 5 V, output effective capacitance is 30 µF and no load. When the voltage  
at the EN pin is below 0.4 V, the internal enable comparator turns the device into shutdown mode. In the  
shutdown mode, the device is entirely turned off. The output is disconnected from input power supply.  
7.3.3 Switching Frequency  
The TPS61022 switches at a quasi-constant 1-MHz frequency when the input voltage is above 1.5 V. When the  
input voltage is lower than 1.5 V, the switching frequency is reduced gradually to 0.6 MHz to improve the  
efficiency and get higher boost ratio. When the input voltage is below 1 V, the switching frequency is fixed at a  
quasi-constant 0.6 MHz.  
7.3.4 Current Limit Operation  
The TPS61022 uses a valley current limit sensing scheme. Current limit detection occurs during the off-time by  
sensing of the voltage drop across the synchronous rectifier.  
When the load current is increased such that the inductor current is above the current limit within the whole  
switching cycle time, the off-time is increased to allow the inductor current to decrease to this threshold before  
the next on-time begins (so called frequency fold-back mechanism). When the current limit is reached, the output  
voltage decreases during further load increase.  
The maximum continuous output current (IOUT(LC)), before entering current limit (CL) operation, can be defined  
by 方程1.  
1
IOUT(CL) = 1-D ì I  
+
DIL P-P  
(
)
LIM  
÷
(
)
2
«
(1)  
where  
D is the duty cycle  
• ΔIL(P-P) is the inductor ripple current  
The duty cycle can be estimated by 方程2.  
V
IN ì h  
D = 1-  
VOUT  
(2)  
where  
VOUT is the output voltage of the boost converter  
VIN is the input voltage of the boost converter  
ηis the efficiency of the converter, use 90% for most applications  
The peak-to-peak inductor ripple current is calculated by 方程3.  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
(3)  
where  
L is the inductance value of the inductor  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61022  
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
fSW is the switching frequency  
D is the duty cycle  
VIN is the input voltage of the boost converter  
7.3.5 Pass-Through Operation  
When the input voltage is higher than the setting output voltage, the output voltage is higher than the target  
regulation voltage. When the output voltage is 101% of the setting target voltage, the TPS61022 stops switching  
and fully turns on the high-side PMOS FET. The device works in pass-through mode. The output voltage is the  
input voltage minus the voltage drop across the DCR of the inductor and the RDS(on) of the PMOS FET. When  
the output voltage drops below the 97% of the setting target voltage as the input voltage declines or the load  
current increases, the TPS61022 resumes switching again to regulate the output voltage.  
7.3.6 Overvoltage Protection  
The TPS61022 has an output overvoltage protection (OVP) to protect the device if the external feedback resistor  
divider is wrongly populated. When the output voltage is above 5.7 V typically, the device stops switching. Once  
the output voltage falls 0.1 V below the OVP threshold, the device resumes operating again.  
7.3.7 Output Short-to-Ground Protection  
The TPS61022 starts to limit the output current when the output voltage is below 1.8 V. The lower the output  
voltage reaches, the smaller the output current is. When the VOUT pin is short to ground, and the output voltage  
becomes less than 0.4 V, the output current is limited to approximate 700 mA. Once the short circuit is released,  
the TPS61022 goes through the soft start-up again to the regulated output voltage.  
7.3.8 Thermal Shutdown  
The TPS61022 goes into thermal shutdown once the junction temperature exceeds 150°C. When the junction  
temperature drops below the thermal shutdown recovery temperature, typically 130°C, the device starts  
operating again.  
7.4 Device Functional Modes  
The TPS61022 operates at a quasi-constant frequency pulse width modulation (PWM) in moderate-to heavy  
load condition. Based on the input voltage to output voltage ratio, a circuit predicts the required on-time of the  
switching cycle. At the beginning of each switching cycle, the low-side NMOS FET switch, shown in Functional  
Block Diagram, is turned on. The input voltage is applied across the inductor and the inductor current ramps up.  
In this phase, the output capacitor is discharged by the load current. When the on-time expires, the main switch  
NMOS FET is turned off, and the rectifier PMOS FET is turned on. The inductor transfers its stored energy to  
replenish the output capacitor and supply the load. The inductor current declines because the output voltage is  
higher than the input voltage. When the inductor current hits a value that is the error amplifier's output, the next  
switching cycle starts again. The error amplifier compares the feedback voltage of the output voltage with an  
internal reference voltage; its output determines the inductor valley current in every switching cycle.  
In light load condition, the TPS61022 implements two operation modes (power-save mode with PFM and forced  
PWM mode) to meet different application requirements. The operation modes are set by the status of the MODE  
pin. When the MODE pin is connected to logic low, the device works in the PFM mode. When the MODE pin is  
connected to logic high, the device works in the forced PWM mode.  
7.4.1 Forced PWM Mode  
In the forced PWM mode, the TPS61022 keeps the switching frequency constant in light load condition. When  
the load current decreases, the output of the internal error amplifier decreases as well to keep the inductor  
current down and deliver less power from input to output. When the output current further reduces, the current  
through the inductor decreases to zero during the off-time. The high-side P-MOSFET is not turned off even if the  
current through the MOSFET is zero. Thus, the inductor current changes its direction after it runs to zero. The  
power flow is from output side to input side. The efficiency is low in this mode. But with the fixed switching  
frequency, there is no audible noise and other problems which might be caused by low switching frequency in  
light load condition.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
7.4.2 Power-Save Mode  
The TPS61022 integrates a power-save mode with PFM to improve efficiency at light load. When the load  
current decreases, the inductor valley current set by the output of the error amplifier no longer regulates the  
output voltage. When the inductor valley current hits the low limit of 150 mA, the output voltage exceeds the  
setting voltage as the load current decreases further. When the FB voltage hits the PFM reference voltage, the  
TPS61022 goes into the power-save mode. In the power-save mode, when the FB voltage rises and hits the  
PFM reference voltage, the device continues switching for several cycles because of the delay time of the  
internal comparator then it stops switching. The load is supplied by the output capacitor, and the output  
voltage declines. When the FB voltage falls below the PFM reference voltage, after the delay time of the  
comparator, the device starts switching again to ramp up the output voltage.  
Output  
Voltage  
PFM mode at light load  
1.01 x VOUT_NOM  
VOUT_NOM  
PWM mode at heavy load  
7-1. Output Voltage in PWM Mode and PFM Mode  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61022  
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
8 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The TPS61022 is a synchronous boost converter designed to operate from an input voltage supply range  
between 0.5 V and 5.5 V with a minimum 6.5-A valley switch current limit. The TPS61022 typically operates at a  
quasi-constant 1-MHz frequency PWM at moderate-to-heavy load currents when the input voltage is above 1.5  
V. The switching frequency changes to 0.6 MHz gradually with the input voltage changing from 1.5 V to 1 V for  
better efficiency and high step-up ratio. When the input voltage is below 1 V, the switching frequency is fixed at a  
quasi-constant 0.6 MHz. At light load currents, when the MODE pin is set to low logic level, the TPS61022  
converter operates in power-save mode with PFM to achieve high efficiency over the entire load current range.  
When the MODE pin is set to high logic level, the TPS61022 converter operates in forced PWM mode to keep  
the switching frequency constant.  
8.2 Typical Application  
The TPS61022 provides a power supply solution for portable devices powered by batteries or backup  
applications powered by super-capacitors. With minimum 6.5-A switch current capability, the TPS61022 can  
output 5 V and 3 A from a single-cell Li-ion battery.  
L1  
2.7 V to 4.35 V  
1 µH  
C1  
10 µF  
VIN  
SW  
5 V  
VOUT  
GND  
C2  
3 x 22 µF  
R1  
PWM  
TPS61022  
732 k  
PFM  
OFF  
FB  
MODE  
EN  
R2  
100 kꢀ  
ON  
8-1. Li-ion Battery to 5-V Boost Converter  
8.2.1 Design Requirements  
The design parameters are listed in 8-1.  
8-1. Design Parameters  
PARAMETERS  
Input voltage  
VALUES  
2.7 V to 4.35 V  
5 V  
Output voltage  
Output current  
3 A  
Output voltage ripple  
±50 mV  
8.2.2 Detailed Design Procedure  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61022  
 
 
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
8.2.2.1 Setting the Output Voltage  
The output voltage is set by an external resistor divider (R1, R2 in Li-ion Battery to 5-V Boost Converter). When  
the output voltage is regulated, the typical voltage at the FB pin is VREF. Thus the resistor divider is determined  
by 方程4.  
«
VOUT  
VREF  
R1=  
-1 ìR2  
÷
(4)  
where  
VOUT is the regulated output voltage  
VREF is the internal reference voltage at the FB pin  
For best accuracy, keep R2 smaller than 300 kΩ to ensure the current flowing through R2 is at least 100 times  
larger than the FB pin leakage current. Changing R2 towards a lower value increases the immunity against noise  
injection. Changing the R2 towards a higher value reduces the quiescent current for achieving highest efficiency  
at low load currents.  
8.2.2.2 Inductor Selection  
Because the selection of the inductor affects steady-state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications, inductor value, saturation current, and dc resistance (DCR).  
The TPS61022 is designed to work with inductor values between 0.33 µH and 2.9 µH. Follow 方程式 5 to 方程式  
7 to calculate the inductor peak current for the application. To calculate the current in the worst case, use the  
minimum input voltage, maximum output voltage, and maximum load current of the application. To have enough  
design margins, choose the inductor value with 30% tolerances, and low power-conversion efficiency for the  
calculation.  
In a boost regulator, the inductor dc current can be calculated by 方程5.  
VOUT ìIOUT  
IL DC  
=
(
)
V ì h  
IN  
(5)  
where  
VOUT is the output voltage of the boost converter  
IOUT is the output current of the boost converter  
VIN is the input voltage of the boost converter  
ηis the power conversion efficiency, use 90% for most applications  
The inductor ripple current is calculated by 方程6.  
V ìD  
L ì fSW  
IN  
DIL P-P  
=
(
)
(6)  
where  
D is the duty cycle, which can be calculated by 方程2  
L is the inductance value of the inductor  
fSW is the switching frequency  
VIN is the input voltage of the boost converter  
Therefore, the inductor peak current is calculated by 方程7.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61022  
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
DIL P-P  
(
)
IL P = IL DC  
+
(
)
(
)
2
(7)  
Normally, it is advisable to work with an inductor peak-to-peak current of less than 40% of the average inductor  
current for maximum output current. A smaller ripple from a larger valued inductor reduces the magnetic  
hysteresis losses in the inductor and EMI. But in the same way, load transient response time is increased. The  
saturation current of the inductor must be higher than the calculated peak inductor current. 8-2 lists the  
recommended inductors for the TPS61022.  
8-2. Recommended Inductors for the TPS61022  
DCR MAX  
(mΩ)  
SATURATION CURRENT  
(A)  
PART NUMBER  
L (µH)  
SIZE (LxWxH)  
VENDOR  
XAL7030-102MEC  
XAL6030-102MEC  
XEL5030-102MEC  
744316100  
1
1
1
1
5.00  
6.18  
8.40  
5.23  
28  
23  
8 × 8 × 3.1  
6.36 × 6.56 × 3.1  
5.3 × 5.5 × 3.1  
5.6 × 5.3 × 4.3  
Coilcraft  
Coilcraft  
16.9  
11.5  
Coilcraft  
Wurth Elecktronik  
8.2.2.3 Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. The ripple  
voltage is related to capacitor capacitance and its equivalent series resistance (ESR). Assuming a ceramic  
capacitor with zero ESR, the minimum capacitance needed for a given ripple voltage can be calculated by 方程  
8.  
IOUT ìDMAX  
fSW ì VRIPPLE  
COUT  
=
(8)  
where  
DMAX is the maximum switching duty cycle  
VRIPPLE is the peak-to-peak output ripple voltage  
IOUT is the maximum output current  
fSW is the switching frequency  
The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are  
used. The output peak-to-peak ripple voltage caused by the ESR of the output capacitors can be calculated by  
方程9.  
VRIPPLE(ESR) = IL(P) ìRESR  
(9)  
Take care when evaluating the derating of a ceramic capacitor under dc bias voltage, aging, and ac signal. For  
example, the dc bias voltage can significantly reduce capacitance. A ceramic capacitor can lose more than 50%  
of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to ensure adequate  
capacitance at the required output voltage. Increasing the output capacitor makes the output ripple voltage  
smaller in PWM mode.  
TI recommends using the X5R or X7R ceramic output capacitor in the range of 10-μF to 50-μF effective  
capacitance. The output capacitor affects the small signal control loop stability of the boost regulator. If the  
output capacitor is below the range, the boost regulator can potentially become unstable. Increasing the output  
capacitor makes the output ripple voltage smaller in PWM mode.  
8.2.2.4 Loop Stability, Feedforward Capacitor Selection  
When the switching waveform shows large duty cycle jitter or the output voltage or inductor current shows  
oscillations, the regulation loop may be unstable.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61022  
 
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
The load transient response is another approach to check the loop stability. During the load transient recovery  
time, VOUT can be monitored for settling time, overshoot or ringing that helps judge the stability of the converters.  
Without any ringing, the loop has usually more than 45° of phase margin.  
A feedforward capacitor (C3 in the 8-2) in parallel with R1 induces a pair of zero and pole in the loop transfer  
function. By setting the proper zero frequency, the feedforward capacitor can increase the phase margin to  
improve the loop stability. For large output capacitance more than 40 μF application, TI recommends a  
feedforward capacitor to set the zero frequency (fFFZ) to 2 kHz. As for the input voltage lower than 2-V  
application, TI recommends setting the zero frequency (fFFZ) to 20 kHz when the effective output capacitance is  
less than 40 μF. The value of the feedforward capacitor can be calculated by 方程10.  
1
C3 =  
2pì fFFZ ìR1  
(10)  
where  
R1 is the resistor between the VOUT pin and FB pin  
fFFZ is the zero frequency created by the feedforward capacitor  
L1  
VIN  
1 µH  
C1  
VIN  
SW  
VOUT  
C2  
VOUT  
GND  
C3  
R1  
R2  
PWM  
ON  
TPS61022  
PFM  
OFF  
FB  
MODE  
EN  
8-2. TPS61022 Circuit With Feedforward Capacitor  
8.2.2.5 Input Capacitor Selection  
Multilayer X5R or X7R ceramic capacitors are excellent choices for input decoupling of the step-up converter as  
they have extremely low ESR and are available in small footprints. Input capacitors must be located as close as  
possible to the device. While a 10-μF input capacitor is sufficient for most applications, larger values may be  
used to reduce input current ripple without limitations. Take care when using only ceramic input capacitors.  
When a ceramic capacitor is used at the input and the power is being supplied through long wires, a load step at  
the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop  
instability or could even damage the part. In this circumstance, place additional bulk capacitance (tantalum or  
aluminum electrolytic capacitor) between ceramic input capacitor and the power source to reduce ringing that  
can occur between the inductance of the power source leads and ceramic input capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS61022  
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
8.2.3 Application Curves  
VIN = 3.6 V, VOUT = 5 V, IOUT = 100 mA , MODE = low  
VIN = 3.6 V, VOUT = 5 V, IOUT = 3 A  
8-4. Switching Waveform at Light Load  
8-3. Switching Waveform at Heavy Load  
VIN = 3.6 V, VOUT = 5 V, 1.6-Ωresistance load  
VIN = 3.6 V, VOUT = 5 V, 1.6-Ωresistance load  
8-5. Start-up Waveform  
8-6. Shutdown Waveform  
VIN = 3.6 V, VOUT = 5 V, IOUT = 1 A to 3 A with 20-μs slew  
VIN = 2.7 V to 4.35 V with 50-μs slew rate, VOUT = 5 V,  
rate  
IOUT = 3 A  
8-7. Load Transient  
8-8. Line Transient  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61022  
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
VIN = 3.6 V, VOUT = 5 V, IOUT = 0 A to 3 A Sweep, MODE = low  
VIN = 0 V to 4.35 V Sweep, VOUT = 5 V, IOUT = 1 A  
8-9. Load Sweep  
8-10. Line Sweep  
VIN = 3.6 V, VOUT = 5 V, IOUT = 1 A  
VIN = 3.6 V, VOUT = 5 V, IOUT = 1 A  
8-11. Output Short Protection (Entry)  
8-12. Output Short Protection (Recover)  
8.3 System Examples  
For those applications with input voltage higher than 4.8 V, TI suggests adding a diode between the VIN pin and  
the VOUT pin to pre-bias the output before the TPS61022 is enabled. As an example shown in 8-13, the input  
voltage is from a USB port in the range of 4.5 V to 5.25 V. The target output voltage is 5 V to 5.25 V.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
L1  
4.75V ~ 5.25V  
C1  
1.0µH  
D1  
10µF  
VIN  
SW  
5.0V  
C2  
VOUT  
GND  
R1  
PWM  
3 x 22µF  
TPS61022  
732k  
PFM  
OFF  
FB  
MODE  
R2  
EN  
100kꢀ  
ON  
8-13. TPS61022 Circuit for VIN > 4.8-V Application  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 0.5 V to 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance may be required in addition to the ceramic bypass capacitors. A typical choice is a tantalum or  
aluminum electrolytic capacitor with a value of 100 µF. Output current of the input power supply must be rated  
according to the supply voltage, output voltage, and output current of the TPS61022.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, especially those running at high switching frequency and high currents,  
layout is an important design step. If the layout is not carefully done, the regulator could suffer from instability  
and noise problems. To maximize efficiency, switch rise and fall time are very fast. To prevent radiation of high  
frequency noise (for example, EMI), proper layout of the high-frequency switching path is essential. Minimize the  
length and area of all traces connected to the SW pin, and always use a ground plane under the switching  
regulator to minimize interplane coupling. The input capacitor needs not only to be close to the VIN pin, but also  
to the GND pin in order to reduce input supply ripple.  
The most critical current path for all boost converters is from the switching FET, through the rectifier FET, then  
the output capacitors, and back to ground of the switching FET. This high current path contains nanosecond rise  
and fall time and must be kept as short as possible. Therefore, the output capacitor not only must be close to the  
VOUT pin, but also to the GND pin to reduce the overshoot at the SW pin and VOUT pin.  
10.2 Layout Example  
GND  
VOUT  
FB  
VOUT  
EN  
SW  
GND  
MODE  
GND  
VIN  
VIN  
GND  
Note: A ceramic output capacitor is needed and must be close to VOUT pin and GND pin of the TPS61022  
10-1. Layout Example  
10.3 Thermal Considerations  
Restrict the maximum IC junction temperature to 125°C under normal operating conditions. Calculate the  
maximum allowable dissipation, PD(max), and keep the actual power dissipation less than or equal to PD(max). The  
maximum-power-dissipation limit is determined using 方程11.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61022  
 
 
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
125 - TA  
RqJA  
PD max  
=
(
)
(11)  
where  
TA is the maximum ambient temperature for the application  
RθJA is the junction-to-ambient thermal resistance given in Thermal Information  
The TPS61022 comes in a VQFN package. This package includes three power pads that improves the thermal  
capabilities of the package. The real junction-to-ambient thermal resistance of the package greatly depends on  
the PCB type, layout, and thermal pad connection. Using larger and thicker PCB copper for the power pads  
(GND, SW, and VOUT) to enhance the thermal performance. Using more vias connects the ground plate on the  
top layer and bottom layer around the IC without solder mask also improves the thermal capability.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61022  
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61022  
 
 
 
 
 
 
 
TPS61022  
www.ti.com.cn  
ZHCSJB0D JANUARY 2019 REVISED JULY 2021  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61022  
 
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任(1) 针对您的应用选择合适TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品TI 的销售条(https:www.ti.com/legal/termsofsale.html) ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI  
提供这些资源并不会扩展或以其他方式更TI TI 产品发布的适用的担保或担保免责声明。重要声明  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021德州仪(TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61022RWUR  
TPS61022RWUT  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RWU  
RWU  
7
7
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
(1UNF, 2GZH)  
(1UNF, 2GZH)  
Samples  
Samples  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Apr-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61022RWUR  
TPS61022RWUT  
VQFN-  
HR  
RWU  
RWU  
7
7
3000  
250  
180.0  
8.4  
2.3  
2.3  
1.15  
4.0  
8.0  
Q2  
VQFN-  
HR  
180.0  
8.4  
2.3  
2.3  
1.15  
4.0  
8.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61022RWUR  
TPS61022RWUT  
VQFN-HR  
VQFN-HR  
RWU  
RWU  
7
7
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RWU0007A  
A
2.1  
1.9  
B
2.1  
1.9  
PIN 1 INDEX AREA  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.35  
1.15  
1.05  
0.85  
2X  
(0.1) TYP  
0.4  
0.3  
2X  
3X 0.5  
4
2X 0.55  
3
SYMM  
1.5  
0.25  
0.15  
1
7
0.3  
0.2  
PIN 1 IDENTIFICATION  
(OPTIONAL)  
SYMM  
0.1  
0.05  
C A B  
C
0.3  
0.2  
4X  
4223724/C 02/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RWU0007A  
(0.625)  
(0.975)  
(0.475)  
2X (1.15)  
2X (0.35)  
7
1
3X  
(0.5)  
2X  
(0.55)  
PKG  
(1.5)  
(0.2)  
3
4
PKG  
4X (0.25)  
4X  
(0.45)  
(1.45)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.07 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223724/C 02/2018  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RWU0007A  
(0.675)  
(0.288)  
(0.975)  
4X (0.475)  
4X (0.35)  
7
1
3X  
(0.5)  
2X  
(0.55)  
(0.062)  
PKG  
(1.5)  
2X (0.2)  
3
4
4X (0.25)  
PKG  
2X  
(0.625)  
4X  
(0.45)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PADS 1-3: 83%  
SCALE: 30X  
4223724/C 02/2018  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61023

具有 0.5V 超低输入电压的 3.7A 升压转换器
TI

TPS61023DRLR

具有 0.5V 超低输入电压的 3.7A 升压转换器 | DRL | 6 | -40 to 125
TI

TPS61023DRLT

具有 0.5V 超低输入电压的 3.7A 升压转换器 | DRL | 6 | -40 to 125
TI

TPS61024

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER WITH 1.5-A SWITCH
TI

TPS61024DRC

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER WITH 1.5-A SWITCH
TI

TPS61024DRCR

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER
TI

TPS61024DRCRG4

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER
TI

TPS61024DRCT

暂无描述
TI

TPS61025

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER WITH 1.5-A SWITCH
TI

TPS61025DRC

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER WITH 1.5-A SWITCH
TI

TPS61025DRCR

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER
TI

TPS61025DRCRG4

96% EFFICIENT SYNCHRONOUS BOOST CONVERTER
TI