TPS61085A-Q1 [TI]

符合 AEC-Q100 标准的 650kHz 和 1.2MHz、18.5V 升压直流/直流转换器;
TPS61085A-Q1
型号: TPS61085A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

符合 AEC-Q100 标准的 650kHz 和 1.2MHz、18.5V 升压直流/直流转换器

转换器
文件: 总29页 (文件大小:1418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
TPS61085A-Q1 650kHz 1.2MHz18.5V 升压直流/直流转换器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准:  
器件温度等级 2–40°C +105°CTA  
TPS61085A-Q1 器件是一款高频、高效的直流/直流升  
压转换器,具有能够提供高达 18.5V 输出电压的集成  
2A0.13Ω 电源开关。650kHz 1.2MHz 的可选频率  
使得此器件可使用小型外部电感器和电容器并提供快速  
瞬态响应。利用外部补偿,可以针对应用条件优化稳压  
器。连接至特定软启动引脚的电容器可最大程度地减小  
启动时的浪涌电流。  
2.3V 6V 输入电压范围  
具有 2A 开关电流的 18.5V 升压转换器  
650kHz 1.2MHz 可选开关频率  
可调节软启动  
热关断  
欠压锁定  
器件信息(1)  
8 引脚 VSSOP 封装  
器件型号  
封装  
封装尺寸(标称值)  
TPS61085A-Q1  
VSSOP (8)  
3.00mm × 3.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
汽车信息娱乐系统仪表组  
仪表组、音响主机  
无线电、导航  
音频放大器  
汽车车身电子设备  
车身控制模块  
网关  
远程信息处理和紧急呼叫  
高级驾驶辅助系统 (ADAS)  
简化原理图  
L
3.3 mH  
D
PMEG2010AEH  
V
V
S
12 V/300 mA  
IN  
2.3 V to 6 V  
6
3
5
2
IN  
SW  
FB  
CBY  
R1  
158 kΩ  
1 µF  
16 V  
COUT  
CIN  
EN  
10 µF  
16 V  
2* 10 µF  
25 V  
R2  
18.2 kΩ  
7
4
1
8
COMP  
SS  
FREQ  
GND  
RCOMP  
51 kΩ  
CCOMP  
1.1 nF  
CSS  
TPS61085A-Q1  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSE63  
 
 
 
 
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes.......................................... 9  
8
9
Application and Implementation ........................ 10  
8.1 Application Information............................................ 10  
8.2 Typical Application .................................................. 10  
8.3 System Examples .................................................. 16  
Power Supply Recommendations...................... 19  
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Example .................................................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 器件支持................................................................ 21  
11.2 接收文档更新通知 ................................................. 21  
11.3 社区资源................................................................ 21  
11.4 ....................................................................... 21  
11.5 静电放电警告......................................................... 21  
11.6 术语表 ................................................................... 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
Changes from Revision A (April 2018) to Revision B  
Page  
首次将数据表公开发布到网络 ................................................................................................................................................. 1  
Changes from Original (September 2017) to Revision A  
Page  
已更改 将状态更改成了生产数据.......................................................................................................................................... 1  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
5 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
COMP  
FB  
1
8
7
6
5
SS  
2
3
4
FREQ  
IN  
EN  
PGND  
SW  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
COMP  
FB  
I/O  
Compensation pin  
Feedback pin  
2
I
3
EN  
I
Shutdown control input. Connect this pin to logic high level to enable the device.  
4
PGND  
SW  
Power ground  
Switch pin  
5
I
6
IN  
PWR  
Input supply pin  
Frequency select pin. The power switch operates at 650 kHz if FREQ is connected to GND and at 1.2 MHz  
if FREQ is connected to IN.  
7
8
FREQ  
SS  
I
O
Soft-start control pin. Connect a capacitor to this pin if soft-start required. Open = no soft start  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX UNIT  
Input voltage, IN(2)  
7
7
V
V
V
Voltage on pins EN, FB, SS, FREQ, COMP  
Voltage on pin SW  
20  
Continuous power dissipation  
Lead temperature (soldering, 10 s)  
Operating junction temperature  
Storage temperature, Tstg  
See Thermal Information  
260  
°C  
°C  
°C  
–40  
–65  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability  
(2) All voltage values are with respect to network ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), Classification Level 2 per AEC  
Q100-002(1)  
±2000  
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), Classification Level C4A per  
AEC Q100-011  
V
±500  
±200  
Machine model (MM)  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
6
UNIT  
VIN  
VS  
TA  
TJ  
Input voltage  
2.3  
VIN + 0.5  
–40  
V
V
Boost output voltage  
18.5  
105  
125  
Operating free-air temperature  
Operating junction temperature  
°C  
°C  
–40  
6.4 Thermal Information  
TPS61085A-Q1  
DGK (VSSOP)  
8 PINS  
189.7  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
75.4  
110  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
13.7  
ψJB  
108.6  
(1) For more information about traditional and new thermal metrics, see the application report, Semiconductor and IC Package Thermal  
Metrics.  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
6.5 Electrical Characteristics  
VIN = 3.3 V, EN = IN, VS = 12 V, TA = –40°C to +105°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
VIN  
Input voltage  
2.3  
6
100  
1
V
IQ  
Operating quiescent current into IN  
Shutdown current into IN  
Device not switching, VFB = 1.3 V  
EN = GND  
70  
µA  
µA  
ISDVIN  
VIN falling  
2.2  
2.3  
UVLO  
Undervoltage lockout threshold  
V
VIN rising  
TSD  
Thermal shutdown  
Temperature rising, TJ  
150  
14  
°C  
°C  
TSD(HYS)  
Thermal shutdown hysteresis  
LOGIC SIGNALS EN, FREQ  
VIH  
VIL  
Ilkg  
High level input voltage  
VIN = 2.3 V to 6 V  
VIN = 2.3 V to 6 V  
EN = FREQ = GND  
2
V
V
Low level input voltage  
Input leakage current  
0.5  
0.1  
µA  
BOOST CONVERTER  
VS  
Boost output voltage  
VIN + 0.5  
18.5  
V
V
VFB  
gm  
IFB  
Feedback regulation voltage  
Transconductance error amplifier  
Feedback input bias current  
1.230 1.238  
107  
1.246  
µA/V  
µA  
VFB = 1.238 V  
0.1  
0.2  
0.24  
2
VIN = VGS = 5 V, ISW = current limit  
VIN = VGS = 3.3 V, ISW = current limit  
EN = GND, VSW = 6 V  
0.13  
0.15  
RDS(on)  
N-channel MOSFET ON-resistance  
Ω
Ilkg  
ILIM  
ISS  
SW leakage current  
µA  
A
N-channel MOSFET current limit  
Soft-start current  
2
7
2.6  
10  
3.2  
13  
VSS = 1.238 V  
µA  
FREQ = high  
0.9  
480  
1.2  
1.5  
820  
MHz  
kHz  
%/V  
%/A  
fosc  
Oscillator frequency  
FREQ = low  
650  
Line regulation  
Load regulation  
VIN = 2.3 V to 6 V, IOUT = 10 mA  
VIN = 3.3 V, IOUT = 1 mA to 400 mA  
0.0002  
0.11  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6 Typical Characteristics  
The typical characteristics are measured with the 3.3-µH inductor for high-frequency (part number-7447789003) or 6.8-µH  
inductor for low frequency (part number-B82464G4) and the rectifier diode with part number SL22.  
Table 1. Table of Graphs  
FIGURE  
vs Input voltage at high frequency (1.2 MHz)  
vs Input voltage at low frequency (650 kHz)  
vs Load current, VS = 12 V, VIN = 3.3 V  
vs Load current, VS = 9 V, VIN = 3.3 V  
vs Supply voltage  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
IOUT(max)  
Maximum load current  
η
Efficiency  
Supply current  
Frequency  
vs Load current  
vs Supply voltage  
1.6  
1.6  
fS = 1.2 MHz  
fS = 650 kHz  
1.4  
1.4  
1.2  
VOUT = 9 V  
VOUT = 9 V  
1.2  
1
VOUT = 12 V  
VOUT = 12 V  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
VOUT = 18.5 V  
VOUT = 15 V  
VOUT = 15 V  
VOUT = 18.5 V  
0
2.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
3.0  
3.5  
4.0 4.5  
Input Voltage (V)  
5.0  
5.5  
6.0  
VIN − Input Voltage (V)  
G000  
G000  
Figure 1. Maximum Load Current vs Input Voltage  
Figure 2. Maximum Load Current vs Input Voltage  
100  
100  
fS = 650 kHz  
L = 6.8 µH  
fS = 650 kHz  
L = 6.8 µH  
90  
90  
80  
fS = 1.2 MHz  
L = 3.3 µH  
80  
70  
60  
50  
40  
30  
20  
fS = 1.2 MHz  
L = 3.3 µH  
70  
60  
50  
40  
30  
20  
V
V
= 3.3 V  
= 9 V  
IN  
S
V
V
= 3.3 V  
= 12 V  
10  
0
IN  
S
10  
0
0.80  
0.60 0.70  
0
0.10 0.20  
0.50  
0.30 0.40  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
- Load current - A  
I
- Load current - A  
I
OUT  
OUT  
Figure 4. Efficiency vs Load Current, VS = 9 V, VIN = 3.3 V  
Figure 3. Efficiency vs Load Current, VS = 12 V, VIN = 3.3 V  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
 
 
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
2
1.8  
1.6  
1.4  
1.2  
1
1600  
1400  
1200  
1000  
FREQ = V  
IN  
L = 3.3 µH  
Switching  
= 1.2 MHz  
f
S
L = 3.3 µH  
800  
600  
400  
FREQ = GND  
L = 6.8 µH  
0.8  
Switching  
= 650 kHz  
f
S
L = 6.8 µH  
0.6  
0.4  
V
V
= 3.3 V  
= 12 V  
IN  
S
200  
0
Not Switching  
0.2  
0
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
V
- Supply Voltage - V  
I
- Load current - A  
CC  
OUT  
Figure 5. Supply Current vs Supply Voltage  
Figure 6. Frequency vs Load Current  
1400  
1200  
FREQ = V  
IN  
L = 3.3 µH  
1000  
800  
FREQ = GND  
L = 6.8 µH  
600  
400  
200  
V
= 12 V / 200 mA  
S
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
- Supply Voltage - V  
CC  
Figure 7. Frequency vs Supply Voltage  
Copyright © 2017–2019, Texas Instruments Incorporated  
7
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS61085A-Q1 boost converter is designed for output voltages up to 18.5 V with a switch-peak current limit  
of 2 A minimum. The device, which operates in a current mode scheme with quasi-constant frequency, is  
externally compensated for maximum flexibility and stability. The switching frequency is selectable between  
650 kHz or 1.2 MHz and the minimum input voltage is 2.3 V. To control the inrush current at start-up, a soft-start  
pin is available.  
The novel topology of the TPS61085A-Q1 boost converteruses adaptive OFF-time to provide superior load and  
line transient responses. The device also operates over a wider range of applications than conventional  
converters.  
The selectable switching frequency offers the possibility to optimize the design either for the use of small sized  
components (1.2 MHz) or for higher system efficiency (650 kHz). However, the frequency changes slightly  
because the voltage drop across the RDS(on) has some influence on the current and voltage measurement and  
thus on the ON-time (the OFF-time remains constant).  
Depending on the load current, the converter operates in continuous conduction mode (CCM), discontinuous  
conduction mode (DCM), or pulse skip mode to maintain the output voltage.  
7.2 Functional Block Diagram  
V
V
IN  
S
SW  
IN  
EN  
FREQ  
SS  
Current limit  
and  
Soft Start  
tOFF Generator  
Bias Vref = 1.238V  
UVLO  
Thermal Shutdown  
tON  
Gate Driver of  
Power  
PWM  
Generator  
Transistor  
COMP  
GM Amplifier  
FB  
Vref  
PGND  
Copyright © 2016, Texas Instruments Incorporated  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
7.3 Feature Description  
7.3.1 Soft Start  
The boost converter has an adjustable soft start to prevent high inrush current during start-up. To minimize the  
inrush current during start-up an external capacitor connected to the soft-start pin SS is used to slowly ramp up  
the internal current limit of the boost converter when charged with a constant current. When the EN pin is pulled  
high, the soft-start capacitor (CSS) is immediately charged to 0.3 V. The capacitor is then charged at a constant  
current of 10 µA typically until the output of the boost converter VS has reached its power good threshold (90% of  
VS nominal value). During this time, the SS voltage directly controls the peak inductor current, starting with 0 A at  
VSS = 0.3 V up to the full current limit at VSS 800 mV. The maximum load current is available after the soft start  
is completed. The larger the capacitor the slower the ramp of the current limit and the longer the soft-start time. A  
100-nF capacitor is usually sufficient for most of the applications. When the EN pin is pulled low, the soft-start  
capacitor is discharged to ground.  
7.3.2 Frequency Select Pin (FREQ)  
The frequency select pin FREQ allows to set the switching frequency of the device to 650 kHz (FREQ = low) or  
1.2 MHz (FREQ = high). Higher switching frequency improves load transient response but reduces slightly the  
efficiency. The other benefits of higher switching frequency are a lower output ripple voltage and smaller inductor  
size. Usually, TI recommends using 1.2-MHz switching frequency unless light-load efficiency is a major concern.  
7.3.3 Undervoltage Lockout (UVLO)  
To avoid misoperation of the device at low input voltages an undervoltage lockout is included that disables the  
device, if the input voltage falls below 2.2 V.  
7.3.4 Thermal Shutdown  
A thermal shutdown is implemented to prevent damages due to excessive heat and power dissipation. Typically  
the thermal shutdown threshold is at TJ = 150°C. When the thermal shutdown is triggered the device stops  
switching until the temperature falls below typically TJ = 136°C. Then the device starts switching again.  
7.3.5 Overvoltage Prevention  
If overvoltage is detected on the FB pin (typically 3% above the nominal value of 1.238 V) the part stops  
switching immediately until the voltage on this pin drops to its nominal value. This prevents overvoltage on the  
output and secures the circuits connected to the output from excessive overvoltage.  
7.4 Device Functional Modes  
The converter operates in continuous conduction mode (CCM) as soon as the input current increases above half  
the ripple current in the inductor. For lower load currents it switches into discontinuous conduction mode (DCM).  
If the load is further reduced, the part starts to skip pulses to maintain the output voltage.  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
With the TPS61085A-Q1 device, a boost regulator with an output voltage of up to 18.5 V can be designed with  
input voltage ranging from 2.3 V to 6 V. The TPS61085A-Q1 device has a peak switch current limit of 2 A  
minimum. The device, which operates in a current mode scheme and uses simple external compensation  
scheme for maximum flexibility and stability. Selectable switching frequency allows the regulator to be optimized  
either for smaller size (1.2 MHz) or for higher system efficiency (650 KHz). A dedicated soft-start (SS) pin allows  
the designer to control the inrush current at start-up.  
The following section provides a step-by-step design approach for configuring the TPS61085A-Q1 as a voltage  
regulating boost converter.  
8.2 Typical Application  
L
3.3 µH  
D
PMEG2010AEH  
V
V
S
12 V/600 mA max  
IN  
3.3 V 20ꢀ  
6
3
5
2
IN  
SW  
FB  
CBY  
R1  
158 kΩ  
1 µF  
COUT  
CIN  
EN  
10 µF  
16 V  
2* 10 µF  
25 V  
R2  
18.2 kΩ  
7
4
1
8
FREQ  
GND  
COMP  
SS  
RCOMP  
47 kΩ  
CCOMP  
CSS  
TPS61085A-Q1  
100nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 8. Typical Application, 3.3 V to 12 V (fsw = 1.2 MHz)  
8.2.1 Design Requirements  
Table 2 lists the design parameters for this application example.  
Table 2. TPS61085A-Q1 Output Design Requirements  
PARAMETER  
Input voltage  
VALUE  
3.3 V ± 20%  
12 V  
Output voltage  
Output current  
600 mA  
Switching frequency  
1.2 MHz  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
8.2.2 Detailed Design Procedure  
The first step in the design procedure is to verify that the maximum possible output current of the boost converter  
supports the specific application requirements. A simple approach is to estimate the converter efficiency, by  
taking the efficiency numbers from the provided efficiency curves or to use a worst-case assumption for the  
expected efficiency, for example, 90%.  
1. Duty cycle:  
VIN ´h  
D =1-  
VS  
(1)  
2. Maximum output current:  
DIL  
æ
ö
Iout = Iswpeak  
-
´ 1- D  
(
)
ç
÷
ø
2
è
(2)  
3. Peak switch current:  
DIL  
Iout  
Iswpeak  
=
+
2
1- D  
where  
VIN ´ D  
fs´ L  
DIL =  
Iswpeak = converter switch current (minimum switch current limit = 2 A)  
fs = Converter switching frequency (typically 1.2 MHz)  
L = Selected inductor value  
η = Estimated converter efficiency (please use the number from the efficiency plots or 90% as an estimation)  
ΔIL = Inductor peak-to-peak ripple current (3)  
The peak switch current is the steady-state peak switch current that the integrated switch, inductor, and external  
Schottky diode must be able to handle. The calculation must be done for the minimum input voltage where the  
peak switch current is the highest.  
8.2.2.1 Inductor Selection  
The TPS61085A-Q1 is designed to work with a wide range of inductors. The main parameter for the inductor  
selection is the saturation current of the inductor which must be higher than the peak switch current as calculated  
in Detailed Design Procedure with additional margin to cover for heavy load transients. An alternative, more  
conservative option is to choose an inductor with a saturation current at least as high as the maximum switch  
current limit of 3.2 A. The other important parameter is the inductor DC resistance. Usually, the lower the DC  
resistance the higher the efficiency. It is important to note that the inductor DC resistance is not the only  
parameter determining the efficiency. Especially for a boost converter where the inductor is the energy storage  
element, the type and core material of the inductor influences the efficiency as well. At high switching frequencies  
of 1.2-MHz inductor core losses, proximity effects and skin effects become more important. Usually, an inductor  
with a larger form factor gives higher efficiency. The efficiency difference between different inductors can vary  
between 2% to 10%. For the TPS61085A-Q1, inductor values between 3 µH and 6 µH are a good choice with a  
switching frequency of 1.2 MHz, typically 3.3 µH. At 650 kHz, TI recommends inductors between 6 µH and 13  
µH, typically 6.8 µH. Table 3 shows a few inductors. Customers must verify and validate these components for  
suitability with their application before using them.  
Typically, TI recommends the inductor current ripple is below 20% of the average inductor current. Calculate the  
inductor value using Equation 4.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
 
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
2
æ
ç
è
ö
÷
ø
VIN  
VS  
VS-VIN  
h
0.35  
æ
ö
æ
ö
L =  
×
×
ç
è
÷
ø
ç
è
÷
ø
Iout_max×f  
where  
L is the inductor value  
VIN is input voltage  
VS is boost output voltage  
η is efficiency  
Iout_max is the maximum output current  
f is frequency  
(4)  
Table 3. Inductor Selection  
L
(µH)  
COMPONENT  
CODE  
SIZE  
(L×W×H mm)  
DCR TYP  
(mΩ)  
(1)  
SUPPLIER  
Isat (A)  
1.2 MHz  
CDH38D09  
CDPH36D13  
CDPH4D19F  
CDRH6D12  
7447785004  
MSS7341  
3.3  
4.7  
3.3  
3.3  
4.7  
5
Sumida  
Sumida  
Sumida  
Sumida  
4 × 4 × 1  
240  
155  
33  
1.25  
1.36  
1.5  
5 × 5 × 1.5  
5.2 × 5.2 × 2  
6.7 × 6.7 × 1.5  
5.9 × 6.2 × 3.3  
7.3 × 7.3 × 4.1  
62  
2.2  
Würth Elektronik  
Coilcraft  
60  
2.5  
24  
2.9  
650 kHz  
6.8  
10  
Sumida  
Coilcraft  
CDP14D19  
LPS4414  
5.2 × 5.2 × 2  
4.3 × 4.3 × 1.4  
6.7 × 6.7 × 1.5  
5 × 5 × 2.4  
50  
380  
95  
1
1.2  
6.8  
10  
Sumida  
CDRH6D12/LD  
CDR6D23  
1.25  
1.75  
2.2  
Sumida  
133  
51  
10  
Würth Elektronik  
Sumida  
744778910  
CDRH6D26HP  
7.3 × 7.3 × 3.2  
7 × 7 × 2.8  
6.8  
52  
2.9  
(1) See Third-party Products Disclaimer  
8.2.2.2 Rectifier Diode Selection  
To achieve high efficiency, a Schottky type must be used for the rectifier diode. The reverse voltage rating must  
be higher than the maximum output voltage of the converter. The averaged rectified forward current Iavg, the  
Schottky diode requirement is rated for, is equal to the output current Iout  
:
Iavg = Iout  
(5)  
Usually a Schottky diode with 2-A maximum average rectified forward current rating is sufficient for most  
applications. The Schottky rectifier can be selected with lower forward current capability depending on the output  
current Iout but must be able to dissipate the power. The dissipated power is the average rectified forward current  
times the diode forward voltage.  
PD = Iavg × Vforward  
(6)  
Typically the diode must be able to dissipate around 500 mW depending on the load current and forward voltage.  
See Table 4 for few diode options. Customers must verify and validate these components for suitability with their  
application before using them.  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
Table 4. Rectifier Diode Selection  
CURRENT  
RATING (Iavg)  
COMPONENT  
PACKAGE  
TYPE  
Vr  
Vforward / Iavg  
SUPPLIER(1)  
CODE  
0.425 V /  
750 mA  
750 mA  
20 V  
Fairchild Semiconductor  
FYV0704S  
SOT-23  
1 A  
1 A  
1 A  
20 V  
20 V  
20 V  
0.39 V / 1 A  
0.52 V / 1 A  
0.5 V / 1 A  
NXP  
PMEG2010AEH  
B120  
SOD-123  
SMA  
Vishay Semiconductor  
Vishay Semiconductor  
SS12  
SMA  
µ-SMP  
(Low Profile)  
1 A  
20 V  
0.44 V / 1 A  
Vishay Semiconductor  
MSS1P2L  
(1) See Third-party Products Disclaimer  
8.2.2.3 Setting the Output Voltage  
The output voltage is set by an external resistor divider. Typically, a minimum current of 50 µA flowing through  
the feedback divider gives good accuracy and noise covering. A standard low-side resistor of 18 kΩ is typically  
selected. The resistors are then calculated as:  
æ
ç
è
ö
÷
ø
Vref  
VS  
R2 =  
»18kW  
R1 = R2´  
-1  
70mA  
Vref  
(7)  
8.2.2.4 Compensation (COMP)  
The regulator loop must be compensated by adjusting the external components connected to the COMP pin. The  
COMP pin is the output of the internal transconductance error amplifier. Standard values of RCOMP = 13 kΩ and  
CCOMP = 3.3 nF works for the majority of the applications.  
See Table 5 for dedicated compensation networks giving an improved load transient response. Equation 8 can  
be used to calculate RCOMP and CCOMP  
:
SPACE  
110×V ×V × COUT  
Vs ×COUT  
IN  
S
RCOMP  
=
CCOMP  
=
L× IOUT  
7.5× IOUT × RCOMP  
(8)  
Table 5. Recommended Compensation Network Values at High/Low Frequency  
FREQUENCY  
L
VS  
VIN ±20%  
5 V  
RCOMP  
82 kΩ  
75 kΩ  
51 kΩ  
47 kΩ  
30 kΩ  
27 kΩ  
43 kΩ  
39 kΩ  
27 kΩ  
24 kΩ  
15 kΩ  
13 kΩ  
CCOMP  
1.1 nF  
1.6 nF  
1.1 nF  
1.6 nF  
1.1 nF  
1.6 nF  
2.2 nF  
3.3 nF  
2.2 nF  
3.3 nF  
2.2 nF  
3.3 nF  
15 V  
3.3 V  
5 V  
High (1.2 MHz)  
3.3 µH  
12 V  
9 V  
3.3 V  
5 V  
3.3 V  
5 V  
15 V  
12 V  
9 V  
3.3 V  
5 V  
Low (650 kHz)  
6.8 µH  
3.3 V  
5 V  
3.3 V  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
 
 
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 5 gives conservatives RCOMP and CCOMP values for certain inductors, input and output voltages providing a  
very stable system. For a faster response time, a higher RCOMP value can be used to enlarge the bandwidth, as  
well as a slightly lower value of CCOMP to keep enough phase margin. These adjustments must be performed in  
parallel with the load transient response monitoring of TPS61085A-Q1.  
8.2.2.5 Input Capacitor Selection  
For good input voltage filtering, TI recommends low-ESR ceramic capacitors. TPS61085A-Q1 has an analog  
input (IN). Therefore, TI highly recommends placing a 1-uF bypass capacitor as close as possible to the IC from  
IN to GND.  
One 10-µF ceramic input capacitor is sufficient for most of the applications. For better input voltage, filtering this  
value can be increased. Refer to Table 6 and typical applications for input capacitor recommendations.  
Customers must verify and validate these components for suitability with their application before using them.  
8.2.2.6 Output Capacitor Selection  
For best output voltage filtering, TI recommends a low ESR output capacitor like ceramic capacitor. Two 10-µF  
ceramic output capacitors (or one 22-µF) work for most of the applications. Higher capacitor values can be used  
to improve the load transient response.  
Pay attention to the derating of capacitor value with the DC voltage.  
Table 6. Rectifier Input and Output Capacitor Selection  
CAPACITOR  
10 µF/1206  
1 µF/0603  
VOLTAGE RATING  
SUPPLIER(1)  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
COMPONENT CODE  
EMK212 BJ 106KG  
EMK107 BJ 105KA  
TMK316 BJ 106KL  
CIN  
IN bypass  
COUT  
16 V  
16 V  
25 V  
10 µF/1206  
(1) See Third-party Products Disclaimer  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
8.2.3 Application Curves  
V
SW  
5 V/div  
V
SW  
5 V/div  
V
S_AC  
50 mV/div  
V
S_AC  
50 mV/div  
V
V
= 3.3 V  
IN  
S
= 12 V/1 mA  
I
L
1 A/div  
fS = 1.2 MHz  
V
V
= 3.3 V  
IN  
I
L
200 mA/div  
= 12 V/300 mA  
S
fS = 1.2 MHz  
200 ns/div  
200 ns/div  
Figure 10. PWM Switching Continuous Conduction Mode  
Figure 9. PWM Switching Discontinuous Conduction Mode  
C
= 20 µF  
C
= 20 µF  
OUT  
L = 6.8 µH  
V
V
= 3.3 V  
= 12 V  
OUT  
L = 3.3 µH  
V
V
= 3.3 V  
= 12 V  
IN  
S
IN  
S
R
= 24 kΩ  
R
= 51 kΩ  
COMP  
COMP  
COMP  
COMP  
C
= 3.3 nF  
C
= 1.6 nF  
V
_AC  
V
_AC  
S
200 mV/div  
S
200 mV/div  
I
= 50 mA - 200 mA  
OUT  
I
= 50 mA - 200 mA  
OUT  
I
I
OUT  
100 mA/div  
OUT  
100 mA/div  
200 µs/div  
200 µs/div  
Figure 11. Load Transient Response High Frequency  
(1.2 MHz)  
Figure 12. Load Transient Response Low Frequency  
(650 kHz)  
EN  
5 V/div  
V
V
= 3.3 V  
IN  
= 12 V/300 mA  
S
V
S
5 V/div  
C
= 100 nF  
I
SS  
L
1 A/div  
2 ms/div  
Figure 13. Soft Start  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
8.3 System Examples  
Figure 14 to Figure 21 show application circuit examples using the TPS61085A-Q1 device. These circuits must  
be fully validated and tested by customers before using these circuits in their designs. TI does not warrant the  
accuracy or completeness of these circuits, nor does TI accept any responsibility for them.  
L
6.8 µH  
V
D
PMEG2010AEH  
V
IN  
3.3 V 20ꢀ  
S
12 V/600 mA max  
6
3
5
2
SW  
FB  
IN  
CBY  
R1  
158 kΩ  
1 µF  
16 V  
COUT  
CIN  
EN  
10 µF  
2* 10 µF  
25 V  
R2  
18.2 kΩ  
7
4
1
8
FREQ  
GND  
COMP  
SS  
RCOMP  
24 kΩ  
CCOMP  
CSS  
3.3 nF  
TPS61085A-Q1  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 14. Typical Application, 3.3 V to 12 V (fsw = 650 kHz)  
L
3.3 µH  
V
D
PMEG2010AEH  
V
IN  
3.3 V 20ꢀ  
S
9 V/800 mA max  
6
3
5
2
SW  
FB  
IN  
CBY  
R1  
113 kΩ  
1 µF  
16 V  
COUT  
CIN  
EN  
10 µF  
2* 10 µF  
25 V  
R2  
18 kΩ  
7
4
1
8
FREQ  
GND  
COMP  
SS  
RCOMP  
27 kΩ  
CCOMP  
1.6 nF  
CSS  
TPS61085A-Q1  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 15. Typical Application, 3.3 V to 9 V (fsw = 1.2 MHz)  
16  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
System Examples (continued)  
L
6.8 µH  
V
D
PMEG2010AEH  
V
IN  
3.3 V 20ꢀ  
S
9 V/800 mA max  
6
5
2
SW  
FB  
IN  
CBY  
R1  
113 kΩ  
1 µF  
16 V  
COUT  
3
7
4
CIN  
EN  
10 µF  
2* 10 µF  
25 V  
R2  
18 kΩ  
1
8
FREQ  
GND  
COMP  
SS  
RCOMP  
13 kΩ  
CCOMP  
CSS  
3.3 nF  
TPS61085A-Q1  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 16. Typical Application, 3.3 V to 9 V (fsw = 650 kHz)  
RISO  
10 kΩ  
L
6.8 µH  
V
D
PMEG2010AEH  
V
S
12 V/300 mA  
BC857C  
IN  
3.3 V 20ꢀ  
CBY  
6
3
5
2
IN  
SW  
FB  
CISO  
1 µF/ 25 V  
R1  
158 kΩ  
CIN  
EN  
COUT  
10 µF  
16 V  
2*10 µF  
25 V  
7
4
1
8
FREQ  
GND  
COMP  
SS  
R2  
18.2 kΩ  
RCOMP  
24 kΩ  
CCOMP  
CSS  
TPS61085A-Q1  
100nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. Typical Application With External Load Disconnect Switch  
Copyright © 2017–2019, Texas Instruments Incorporated  
17  
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
System Examples (continued)  
VGH  
20V/20mA  
T2  
BC850B  
3* VS  
C4  
100nF/  
50V  
D4  
T1  
BC857B  
D2  
C6  
VGL  
BAT54S  
BAT54S  
-VS  
470 nF  
50V  
R10  
kΩ  
-7 V/ 20 mA  
13  
D5  
BAT54S  
C8  
C3  
C2  
R8  
7 kΩ  
C1  
2*VS  
100nF  
50V  
470 nF  
25 V  
C5  
100nF  
50V  
1µF  
35V  
1µF/  
35V  
D6  
BAT54S  
C7  
D3  
BAT54S  
470nF  
50V  
D8  
D1  
BZX84C7V5  
BZX84C 20V  
D7  
BAT54S  
L
3.3µH  
V
V
S
9V/500mA  
D
PMEG2010AEH  
IN  
3.3V 20%  
6
5
2
VIN  
SW  
CBY  
1µF  
16V  
R1  
kΩ  
113  
COUT  
3
CIN  
EN  
FB  
COMP  
SS  
10µF  
16V  
2*10µF  
25V  
R2  
18 kΩ  
7
1
8
FREQ  
RCOMP  
27 kΩ  
4
GND  
CCOMP  
1.6 nF  
CSS  
100 nF  
TPS61085A-Q1  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. Typical Application 3.3 V to 9 V (fsw = 1.2 MHz) For  
TFT LCD With External Charge Pumps (VGH, VGL)  
L
6.8 µH  
optional  
CBY  
1 µF/ 16 V  
DZ  
V
D
SL22  
V
3S3P wLED  
LW E67C  
IN  
5 V 20ꢀ  
S
500 mA  
BZX84C 18 V  
5
2
6
3
SW  
IN  
COUT  
CIN  
EN  
2* 10 µF/  
25 V  
10 µF/  
16 V  
FB  
COMP  
SS  
RLIMIT  
110 Ω  
7
4
1
8
RSENSE  
15 Ω  
FREQ  
PGND  
RCOMP  
24 kΩ  
CCOMP  
3.3 nF  
TPS61085A-Q1  
CSS  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. Simple Application (5-V Input, fsw = 650 kHz) For  
wLED Supply (3S3P) (With Optional Clamping Zener Diode)  
18  
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
System Examples (continued)  
L
6.8 µH  
optional  
DZ  
CBY  
V
D
SL22  
V
3S3P wLED  
LW E67C  
IN  
5 V 20ꢀ  
S
500 mA  
1 µF/ 16 V  
BZX84C 18 V  
5
2
6
SW  
IN  
CIN  
3
COUT  
EN  
10 µF/  
16 V  
2* 10 µF/  
25 V  
FB  
COMP  
SS  
RLIMIT  
110 Ω  
7
4
1
8
RSENSE  
15 Ω  
FREQ  
PGND  
PWM  
100 Hz to 500 Hz  
RCOMP  
24 kΩ  
CCOMP  
3.3 nF  
TPS61085A-Q1  
CSS  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 20. Simple Application (3.3-V Input, fsw = 650 kHz) For  
wLED Supply (3S3P) With Adjustable Brightness Control  
Using a PWM Signal on the Enable Pin  
(With Optional Clamping Zener Diode)  
L
6.8 µH  
optional  
CBY  
1 µF/ 16 V  
V
DZ  
D
SL22  
V
3S3P wLED  
LW E67C  
IN  
5 V 20ꢀ  
S
500 mA  
BZX84C 18 V  
5
2
6
3
SW  
IN  
CIN  
COUT  
EN  
10 µF/  
16 V  
2* 10 µF/  
25 V  
R1  
180 kΩ  
RLIMIT  
110 Ω  
FB  
COMP  
SS  
7
4
1
8
RSENSE  
15 Ω  
FREQ  
PGND  
RCOMP  
24 kΩ  
R2  
127 kΩ  
CCOMP  
3.3 nF  
Analog Brightness Control  
3.3 V ~ wLED off  
TPS61085A-Q1  
CSS  
0 V ~ lLED = 30 mA (each string)  
PWM Signal  
Can be used swinging from 0 V to 3.3 V  
100 nF  
Copyright © 2017, Texas Instruments Incorporated  
Figure 21. Simple Application (3.3-V Input, fsw = 650 kHz) For  
wLED Supply (3S3P) With Adjustable Brightness Control  
Using an Analog Signal on the Feedback Pin  
(With Optional Clamping Zener Diode)  
9 Power Supply Recommendations  
The TPS61085A-Q1 is designed to operate from an input voltage supply range from 2.3 V to 6 V. The required  
power supply for the TPS61085A-Q1 must have a current rating according to the output voltage and output  
current of the TPS61085A-Q1.  
Copyright © 2017–2019, Texas Instruments Incorporated  
19  
TPS61085A-Q1  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems.  
Layout Example provides an example of layout design with the TPS61085A-Q1 device.  
Use wide and short traces for the main current path and for the power ground tracks.  
The input capacitor, output capacitor, and the inductor must be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects  
of ground noise. Connect these ground nodes at the GND terminal of the IC.  
The most critical current path for all boost converters is from the switching FET, through the rectifier diode,  
then the output capacitors, and back to ground of the switching FET. Therefore, the output capacitors and  
their traces must be placed on the same board layer as the IC and as close as possible between the SW pin  
and the GND terminal of the IC.  
10.2 Layout Example  
VIN  
VOUT  
TPS61085A-Q1  
GND  
Figure 22. TPS61085A-Q1 Layout Example  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS61085A-Q1  
www.ti.com.cn  
ZHCSJE4B SEPTEMBER 2017REVISED FEBRUARY 2019  
11 器件和文档支持  
11.1 器件支持  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
如需接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61085ATDGKRQ1  
TPS61085ATDGKTQ1  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2000 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
1EGV  
1EGV  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61085ATDGKRQ1 VSSOP  
TPS61085ATDGKTQ1 VSSOP  
DGK  
DGK  
8
8
2000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61085ATDGKRQ1  
TPS61085ATDGKTQ1  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS61085ATDGKRQ1

符合 AEC-Q100 标准的 650kHz 和 1.2MHz、18.5V 升压直流/直流转换器 | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085ATDGKTQ1

符合 AEC-Q100 标准的 650kHz 和 1.2MHz、18.5V 升压直流/直流转换器 | DGK | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085DGK

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085DGKR

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085DGKRG4

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085DGKT

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085DGKTG4

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085PW

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085PWG4

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085PWR

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085PWRG4

650 kHz/1.2 MHz, 18.5 V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61085T

650-kHz/1.2-MHz 18.5-V STEP-UP DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI