TPS610982 [TI]

具有集成 LDO 的低输入电压、4.3V 输出电压、同步升压转换器;
TPS610982
型号: TPS610982
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 LDO 的低输入电压、4.3V 输出电压、同步升压转换器

升压转换器
文件: 总44页 (文件大小:4006K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
TPS61098x 具有集LDO/负载开关的超低静态电流同步升压转换器  
物电池供电的产品提供超低功耗解决方案。该器件集成  
了低压降线性稳压器 (LDO) 或者带有升压转换器的负  
1 特性  
载开关并且提供有双输出电源轨。升压转换器输出  
(MAIN) 用作主系统的电源并且始终开启LDO 或负载  
开关输V(SUB) 则为外设供电。  
• 低功耗模式下具300nA IQ  
• 启动至负载输入电压0.7V)  
• 工作输入电压范围0.7V 4.5V  
• 可选输出电压高4.3V  
• 最350mA 开关峰值电流限制  
• 集LDO/负载开关  
V
TPS61098x 具备由 MODE 引脚控制的两个模式工  
作模式和低功耗模式。在工作模式下两输出均启用并  
具有增强的响应性能。在低功耗模式下LDO 或负载  
开关被禁用断开与外设的连接。在低功耗模式下,  
TPS61098x 仅消耗 300nA 静态电流而且在 10µA 负  
载条件下能够实现高88% 的效率。  
MODE 引脚控制的两种模式  
– 工作模式两路输出均处于设定值  
– 低功耗模式LDO/负载开关关闭升压转换器  
继续运行  
TPS61098x 支持自动直通功能。当输入电压高于直通  
阈值时压转换器停止开关并将输入电压传送至  
VMAIN 当输入电压低于该阈值时升压转换器在  
升压模式下工作并将输出调节至目标值。TPS61098x  
针对不同的输出设定值提供了多种版本。  
• 自动直通  
10µA 负载条件下进2V 3.3V 转换时的效率  
88%低功耗模式)  
5mA 100mA 负载条件下进2V 3.3V 转  
换时的效率高93%  
1.5mm × 1.5mm WSON 封装  
0.7V 输入到 3.3V 输出的转换过程中TPS61098x  
可提供高达 50mA 的总输出电流。该升压转换器基于  
滞后控制器拓扑结构可利用同步整流器以超低的静态  
电流实现超高效率。  
2 应用  
• 智能远程控制  
BLE 标签  
可穿戴应用  
• 低功耗无线应用  
便携式消费类医疗类产品  
• 单节纽扣电池、单节或两节碱性电池供电的应用  
TPS61098x 可采用 1.5mm × 1.5mm WSON 封装从  
而实现小型电路布局。  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
3 说明  
TPS61098x  
1.50mm × 1.50mm  
6 WSON  
TPS61098x 可以为由单节或双节碱性电池、镍镉电池  
或镍氢电池、单节纽扣电池、单节锂离子电池或锂聚合  
(1) 如需了解所有可用封装请参阅本文档末尾的可订购产品附  
录。  
L
4.7µH  
0.7 V to 4.5 V  
SW  
VMAIN  
CBAT  
10µF  
400  
CO1  
10µF  
RIN  
BOOST  
CTRL  
LDO / LS  
CTRL  
VIN  
VSUB  
GND  
CIN  
0.1µF  
CO2  
10µF  
MODE  
Copyright © 2016, Texas Instruments Incorporated  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVS873  
 
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
Table of Contents  
9 Applications and Implementation................................21  
9.1 Application Information............................................. 21  
9.2 Typical Applications.................................................. 21  
10 Power Supply Recommendations..............................33  
11 Layout...........................................................................34  
11.1 Layout Guidelines................................................... 34  
11.2 Layout Example...................................................... 34  
12 Device and Documentation Support..........................35  
12.1 Device Support....................................................... 35  
12.2 Documentation Support.......................................... 35  
12.3 接收文档更新通知................................................... 35  
12.4 支持资源..................................................................35  
12.5 Trademarks.............................................................35  
12.6 静电放电警告.......................................................... 35  
12.7 术语表..................................................................... 35  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagrams....................................... 16  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................19  
Information.................................................................... 35  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (December 2016) to Revision F (September 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Changes from Revision D (April 2016) to Revision E (November 2016)  
Page  
Changed the HBM value From: ±1000 To: ±2000 in 7.2 ...............................................................................4  
Changed the CDM value From: ±250 To: ±750 in 7.2 ...................................................................................4  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
5 Device Comparison Table  
VSUB ACTIVE  
DISCHARGE IN LOW  
POWER MODE  
INTEGRATED LDO OR  
PART NUMBER  
VMAIN  
(ACTIVE MODE)  
VMAIN  
(LOW POWER MODE)  
VSUB  
(ACTIVE MODE)  
VSUB  
(LOW POWER MODE)  
LOAD SWITCH  
TPS61098DSE(1)  
TPS610981DSE  
TPS610982DSE  
TPS610985DSE  
TPS610986DSE  
TPS610987DSE  
LDO  
LDO  
4.3 V  
3.3 V  
3.3 V  
3.0 V  
3.3 V  
4.3 V  
2.2 V  
3.3 V  
3.3 V  
3.0 V  
3.3 V  
2.2 V  
3.1 V  
3.0 V  
2.8 V  
ON  
OFF  
OFF  
2.8 V  
OFF  
OFF  
OFF  
No  
Yes  
No  
LDO  
Load Switch  
Load Switch  
LDO  
Yes  
Yes  
Yes  
ON  
3.1 V  
(1) The DSE package is available taped and reeled. Add R suffix to device type (for example, TPS61098DSER) to order quantities of 3000  
devices per reel. Add T suffix to device type (for example, TPS61098DSET) to order quantities of 250 devices per reel. For detailed  
ordering informationm, please check the package option addendum at the end of this data sheet.  
6 Pin Configuration and Functions  
VMAIN  
GND  
SW  
VSUB  
MODE  
VIN  
6-1. DSE Package 6-Pin WSON Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VMAIN  
SW  
NO.  
1
PWR Boost converter output  
PWR Connection for inductor  
2
VIN  
3
I
I
IC power supply input  
Mode selection pin. 1: Active mode; 0: Low Power mode. Must be actively tied high or low. Do not leave  
floating.  
MODE  
4
VSUB  
GND  
5
6
PWR LDO or load switch output  
PWR IC ground  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
40  
65  
MAX  
4.7  
UNIT  
V
Input voltage  
VIN, SW, VMAIN, VSUB  
MODE  
5.0  
V
Operating junction temperature, TJ  
Storage temperature range, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V
V(ESD)  
Electrostatic discharge  
Charged Device Model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
(1) JEDEC document JEP155 states that 500V HBM rating allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250V CDM rating allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
0.7  
2.2  
1.8  
1.54  
5
NOM  
MAX  
4.5  
UNIT  
V
VIN  
Input voltage range  
V(MAIN) Boost converter output voltage range  
V(SUB) Load switch / LDO outut voltage range  
4.3  
V
3.7  
V
L
Effective inductance range  
4.7  
6.11  
µH  
µF  
µF  
µF  
µF  
°C  
CBAT  
CO1  
Effective input capacitance range at input(1)  
Effective output capacitance range at VMAIN pin for boost converter output(1)  
Effective output capacitance range at VSUB pin for LDO output(1)  
Effective output capacitance range at VSUB pin for load switch output(1) (3)  
Operating virtual junction temperature  
5
10  
5
22  
10  
1(2)  
CO2  
TJ  
1
2.2  
125  
40  
(1) Effective value. Ceramic capacitors derating effect under bias should be considered. Choose the right nominal capacitance by  
checking capacitor DC bias characteristics.  
(2) If LDO output current is lower than 20 mA, the minimum effective output capacitance value can be lower to 0.5 µF.  
(3) With load switch version, the output capacitor at VSUB pin is only required if smaller voltage ripple is needed.  
7.4 Thermal Information  
TPS61098x  
THERMAL METRIC(1)  
UNIT  
DSE 6 PINS  
207.3  
118.9  
136.4  
8.3  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
136.4  
N/A  
ψJB  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see theSemiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
 
 
 
 
 
 
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
7.5 Electrical Characteristics  
TJ = 40°C to 125°C and VIN = 0.7 V to 4.5 V. Typical values are at VIN = 1.5 V, TJ = 25°C, unless otherwise noted.  
PARAMETER  
VERSION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power Supply  
VIN  
Input voltage range  
TPS61098x  
0.7  
4.5  
0.7  
V
V
R
Load 3 k(1)  
VIN(start)  
Minimum input voltage at start-up  
TPS61098x  
MODE = High, Boost or Pass-through  
no load, no switching  
TJ = 40°C to 85°C  
Quiescent current into the VIN pin  
in Active mode  
TPS61098x  
2
5
4
90  
23  
µA  
nA  
µA  
IQ(VIN)  
Quiescent current into the VIN pin  
in Low Power mode  
MODE = Low, Boost or Pass-through  
no load, no switching  
TPS61098x  
MODE = High, Boost or Pass-through  
no load, no switching  
TPS61098/1/5/6/7  
15  
TJ = 40°C to 85°C  
Quiescent current into the VMAIN pin  
in Active mode  
MODE = High, Boost or Pass-through  
no load, no switching  
TPS610982  
18  
300  
300  
4
23  
400  
800  
10  
µA  
nA  
nA  
µA  
TJ = 40°C to 85°C  
MODE = Low, Boost or Pass-through  
no load, no switching  
TJ = 25°C  
IQ(VMAIN)  
TPS61098/1/7  
TPS61098/1/5/6/7  
TPS610982  
MODE = Low, Boost or Pass-through  
no load, no switching  
TJ = 40°C to 85°C  
Quiescent current into the VMAIN pin  
in Low Power mode  
MODE = Low, Boost or Pass-through  
no load, no switching  
TJ = 40°C to 85°C  
V(MAIN) = V(SW) = 4.7 V, no load  
TJ = 40°C to 85°C  
Leakage current of the SW pin  
(from the SW pin to GND pin)  
ILKG(SW)  
ILKG(MAIN)  
ILKG(SUB)  
TPS61098x  
5
10  
10  
5
100  
200  
150  
30  
nA  
nA  
nA  
nA  
V(MAIN) = 4.7 V, V(SW) = 0 V, no load  
TJ = 40°C to 85°C  
Leakage current of the VMAIN pin  
(from the VMAIN pin to SW pin)  
TPS61098x  
MODE = Low, V(MAIN) = 4.7 V, V(SUB) = 0 V  
TJ = 40°C to 85°C  
Leakage current of the VSUB pin  
(from the VMAIN pin to VSUB pin)  
TPS61098/1/5/6/7  
TPS61098x  
V(MODE) = 5 V  
TJ = 40°C to 85°C  
ILKG(MODE) Leakage current into the MODE pin  
Power Switch  
MODE = Low  
600  
300  
350  
400  
700  
450  
500  
550  
1.2  
1000  
600  
650  
700  
1000  
700  
700  
750  
2
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
TPS61098/7  
MODE = High  
RDS(on)_LS  
Low-side switch on resistance  
TPS610981/2/6  
TPS610985  
MODE = Low / High  
MODE = Low / High  
MODE = Low  
TPS61098/7  
MODE = High  
RDS(on)_HS Rectifier on resistance  
TPS610981/2/6  
TPS610985  
MODE = Low / High  
MODE = Low / High  
R(LS)  
Load switch on resistance  
LDO dropout voltage  
TPS610985/6  
TPS61098/1/2/7  
TPS61098x  
V(Dropout)  
ILH  
ILIM(BST)  
ILIM(SUB)  
ISUB = 50 mA  
60  
100  
mV  
mA  
mA  
Inductor current ripple  
Boost switch current limit  
VSUB output current limit  
100  
500  
TPS61098x  
0.7 V < VIN < V(MAIN)  
350  
200  
650  
TPS61098x  
mA  
mA  
TJ = 20°C to 125°C  
Discharge current from the VSUB pin to  
GND pin  
I(DISCH)  
TPS610981/5/6/7  
MODE = Low, V(SUB) = 3 V  
5
8
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
TJ = 40°C to 125°C and VIN = 0.7 V to 4.5 V. Typical values are at VIN = 1.5 V, TJ = 25°C, unless otherwise noted.  
PARAMETER  
VERSION  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output  
MODE = High, VIN < V(PSTH), Burst mode,  
open loop  
4.45  
4.27  
2.3  
2.23  
3.4  
3.3  
3.4  
3.3  
3.1  
3.0  
3.4  
3.3  
V
V
V
V
V
V
V
V
V
V
V
V
MODE = High, VIN < V(PSTH), PWM mode,  
open loop  
4.142  
2.163  
3.201  
3.201  
2.91  
4.398  
2.297  
3.399  
3.399  
3.09  
TPS61098/7  
MODE = Low, VIN < V(PSTH), Burst mode,  
open loop  
MODE = Low, VIN < V(PSTH), PWM mode,  
open loop  
MODE = High / Low, VIN < V(PSTH), Burst  
mode, open loop  
TPS610981  
TPS610982  
TPS610985  
TPS610986  
MODE = High / Low, VIN < V(PSTH), PWM  
mode, open loop  
V(MAIN)  
Boost converter output voltage  
MODE = High / Low, VIN < V(PSTH), Burst  
mode, open loop  
MODE = High / Low, VIN < V(PSTH), PWM  
mode, open loop  
MODE = High / Low, VIN < V(PSTH), Burst  
mode, open loop  
MODE = High / Low, VIN < V(PSTH), PWM  
mode, open loop  
MODE = High / Low, VIN < V(PSTH), Burst  
mode, open loop  
MODE = High / Low, VIN < V(PSTH), PWM  
mode, open loop  
3.201  
3.399  
TPS61098/7  
TPS610981  
TPS610982  
MODE = High  
3.038  
2.94  
3.1  
3.0  
3.162  
3.06  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
LDO output voltage  
(LDO version)  
V(SUB)  
MODE = High  
MODE = High / Low  
2.744  
2.8  
2.856  
MODE = High, VIN rising  
MODE = High, Hysteresis  
MODE = Low, VIN rising  
4.4  
0.1  
TPS61098/7  
2.25  
0.1  
MODE = Low, Hysteresis  
MODE = High / Low, VIN rising  
MODE = High / Low, Hysteresis  
MODE = High / Low, VIN rising  
MODE = High / Low, Hysteresis  
MODE = High / Low, VIN rising  
MODE = High / Low, Hysteresis  
MODE = High / Low, VIN rising  
MODE = High / Low, Hysteresis  
3.35  
0.1  
TPS610981  
TPS610982  
TPS610985  
TPS610986  
V(PSTH)  
Pass-through mode threshold  
3.35  
0.1  
3.05  
0.1  
3.35  
0.1  
f = 1kHz, CO2 = 10 µF, ISUB = 10 mA  
MODE = High  
TPS61098/1/2/7  
TPS610982  
40  
28  
1
dB  
dB  
ms  
Power-supply rejection ratio from LDO  
input to output  
PSRR  
f = 1kHz, CO2 = 10 µF, ISUB = 10 mA  
MODE = Low  
VSUB start-up time  
(LDO version and load switch version)  
No load  
tstup_LDO  
TPS61098x  
time from MODE high to 90% of V(SUB)  
Control Logic  
VIL  
VIH  
MODE input low voltage  
TPS61098x  
TPS61098x  
TPS61098x  
TPS61098x  
0.4  
V
V
MODE input high voltage  
Overtemperature protection  
Overtemperature hysteresis  
1.2  
150  
25  
°C  
°C  
(1) TPS61098x is able to drive RLoad > 150 after VMAIN is established over 1.8 V.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
7.6 Typical Characteristics  
20  
18  
16  
14  
12  
10  
8
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D002  
D001  
TPS61098, '1, '5, '6  
MODE = Low  
TPS61098, '1, '5, '6  
MODE = High  
7-2. IQ into VMAIN Pin at Low Power Mode vs  
7-1. IQ into VMAIN Pin at Active Mode vs  
Temperature  
Temperature  
30  
25  
20  
15  
10  
5
9
8
7
6
5
4
3
2
1
0
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D035  
D036  
TPS610982  
MODE = High  
TPS610982  
MODE = Low  
7-3. IQ into VMAIN Pin at Active Mode vs  
7-4. IQ into VMAIN Pin at Low Power Mode vs  
Temperature  
Temperature  
700  
600  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D022  
D021  
TPS61098, '7  
MODE = High  
TPS61098, '7  
MODE = High  
7-6. Low Side Switch On Resistance vs  
7-5. Rectifier On Resistance vs Temperature  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D024  
D023  
TPS61098, '7  
MODE = Low  
TPS61098, '7  
MODE = Low  
7-8. Low Side Switch On Resistance vs  
7-7. Rectifier On Resistance vs Temperature  
Temperature  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
D003  
D004  
TPS610981 MODE = High / Low  
TPS610981 MODE = High / Low  
7-9. Rectifier On Resistance vs Temperature  
7-10. Low Side Switch On Resistance vs  
Temperature  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D037  
D038  
TPS610982 MODE = High / Low  
TPS610982 MODE = High / Low  
7-11. Rectifier On Resistance vs Temperature  
7-12. Low Side Switch On Resistance vs  
Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D039  
D040  
TPS610985 MODE = High / Low  
TPS610985 MODE = High / Low  
7-13. Rectifier on Resistance vs Temperature  
7-14. Low Side Switch On Resistance vs  
Temperature  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
D042  
D041  
TPS610986 MODE = High / Low  
TPS610986 MODE = High / Low  
7-16. Low Side Switch on Resistance vs  
7-15. Rectifier on Resistance vs Temperature  
Temperature  
510  
500  
490  
480  
100  
90  
80  
70  
60  
50  
40  
470  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 3.1 V  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
30  
20  
460  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (èC)  
0.001  
0.01  
0.1 1  
Boost Output Current (mA)  
10  
100  
D005  
D006  
TPS61098x  
VIN < V(MAIN)  
TPS61098, '7  
MODE = Low  
V(MAIN) = 2.2 V  
7-17. Current Limit vs Temperature  
7-18. Boost Efficiency vs Output Current (Low  
Power Mode)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 2.5 V  
VIN = 3 V  
VIN = 3.6 V  
VIN = 4.3 V  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 3 V  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
D008  
D007  
TPS61098, '7  
MODE = High  
V(MAIN) = 4.3 V  
TPS610981  
MODE = Low  
V(MAIN) = 3.3 V  
7-19. Boost Efficiency vs Output Current (Active 7-20. Boost Efficiency vs Output Current (Low  
Mode)  
Power Mode)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 3 V  
VIN = 3 V  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
D009  
D025  
TPS610981  
MODE = High  
V(MAIN) = 3.3 V  
TPS610982  
MODE = Low  
V(MAIN) = 3.3 V  
7-21. Boost Efficiency vs Output Current (Active 7-22. Boost Efficiency vs Output Current (Low  
Mode) Power Mode)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 3 V  
VIN = 2.5 V  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
D026  
D043  
TPS610982  
MODE = High  
V(MAIN) = 3.3 V  
TPS610985  
Mode = Low  
V(MAIN) = 3 V  
7-23. Boost Efficiency vs Output Current (Active 7-24. Boost Efficiency vs Output Current (Low  
Mode)  
Power Mode)  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
30  
20  
VIN = 2.5 V  
VIN = 3 V  
0
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
D044  
D045  
TPS610985  
Mode = High  
V(MAIN) = 3 V  
TPS610986  
Mode = Low  
V(MAIN) = 3.3 V  
7-25. Boost Efficiency vs Output Current (Active 7-26. Boost Efficiency vs Output Current (Low  
Mode)  
Power Mode)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
2.4  
2.3  
2.2  
2.1  
2
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 3 V  
1.9  
0.001  
0.01  
0.1 1  
Boost Output Current (mA)  
10  
200  
0.001  
0.01  
0.1 1  
Boost Output Current (mA)  
10  
100  
D046  
D010  
TPS610986  
MODE = High  
V(MAIN) = 3.3 V  
TPS61098, '7  
MODE = Low  
V(MAIN) = 2.2 V  
7-27. Boost Efficiency vs Output Current (Active  
7-28. Boost Load Regulation (Low Power Mode)  
Mode)  
4.6  
4.5  
4.4  
4.3  
3.6  
3.5  
3.4  
3.3  
VIN = 0.7 V  
4.2  
3.2  
VIN = 1.5 V  
VIN = 2.5 V  
VIN = 3 V  
VIN = 0.7 V  
VIN = 1.2 V  
3.1  
4.1  
VIN = 2 V  
VIN = 3 V  
VIN = 3.6 V  
VIN = 4.3 V  
4
3
0.001  
0.01  
0.1 1  
Boost Output Current (mA)  
10  
200  
0.001  
0.01  
0.1 1  
Boost Output Current (mA)  
10  
200  
D011  
TPS610981  
MODE = Low  
V(MAIN) = 3.3 V  
TPS61098, '7  
MODE = High  
V(MAIN) = 4.3 V  
7-30. Boost Load Regulation (Low Power Mode)  
7-29. Boost Load Regulation (Active Mode)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 3 V  
VIN = 3 V  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
D027  
D013  
TPS610981  
MODE = High  
V(MAIN) = 3.3 V  
TPS610982  
MODE = Low  
V(MAIN) = 3.3 V  
7-31. Boost Load Regulation (Active Mode)  
7-32. Boost Load Regulation (Low Power Mode)  
3.6  
3.3  
3.5  
3.4  
3.3  
3.2  
3.1  
3
3.2  
2.9  
VIN = 0.7 V  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 2 V  
VIN = 3 V  
VIN = 1.5 V  
VIN = 2.5 V  
VIN = 2.5 V  
3.1  
2.8  
3
0.001  
2.7  
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
D028  
D047  
TPS610982  
MODE = High  
V(MAIN) = 3.3 V  
TPS610985  
MODE = Low  
V(MAIN) = 3 V  
7-33. Boost Load Regulation (Active Mode)  
7-34. Boost Load Regulation (Low Power Mode)  
3.3  
3.6  
3.2  
3.1  
3
3.5  
3.4  
3.3  
2.9  
3.2  
VIN = 0.7 V  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 2.5 V  
VIN = 2.5 V  
VIN = 1.5 V  
VIN = 2.5 V  
VIN = 3 V  
2.8  
3.1  
2.7  
0.001  
3
0.001  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
0.01  
0.1  
Boost Output Current (mA)  
1
10  
200  
D048  
D049  
TPS610985  
MODE = High  
V(MAIN) = 3 V  
TPS610986  
MODE = Low  
V(MAIN) = 3.3 V  
7-35. Boost Load Regulation (Active Mode)  
7-36. Boost Load Regulation (Low Power Mode)  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
3.6  
3.16  
3.14  
3.12  
3.1  
3.5  
3.4  
3.3  
3.2  
3.1  
3.08  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 2.5 V  
VIN = 3 V  
TA = -40èC  
TA = 25èC  
TA = 85èC  
3.06  
3.04  
0.001  
3
0.001  
0.01  
0.1 1  
LDO Output Current (mA)  
10  
200  
0.01  
0.1 1  
Boost Output Current (mA)  
10  
200  
D014  
D050  
TPS61098, '7  
MODE = High  
VIN = 3.6 V  
TPS610986  
MODE = High  
V(MAIN) = 3.3 V  
7-38. LDO Load Regulation  
7-37. Boost Load Regulation (Active Mode)  
3.06  
2.86  
2.84  
2.82  
2.8  
3.04  
3.02  
3
2.78  
2.76  
2.74  
2.72  
2.7  
2.98  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40°C  
TA = 25°C  
TA = 85°C  
2.96  
2.94  
0.001  
0.01  
0.1  
LDO Output Current (mA)  
1
10  
200  
0.001  
0.01  
0.1  
LDO Output Current (mA)  
1
10  
200  
D015  
D029  
TPS610981  
MODE = High  
VIN = 2.5 V  
TPS610982  
MODE = Low  
VIN = 2.5 V  
7-39. LDO Load Regulation  
7-40. LDO Load Regulation (Low Power Mode)  
2.86  
2.84  
2.82  
2.8  
5
TA = -40èC  
4.5  
TA = 25èC  
TA = 85èC  
4
3.5  
3
2.78  
2.76  
2.74  
2.72  
2.7  
2.5  
2
1.5  
1
TA = -40èC  
TA = 25èC  
TA = 85èC  
0.5  
0
0.001  
0.01  
0.1 1  
LDO Output Current (mA)  
10  
200  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
Input Voltage (V)  
1.9  
2.1  
2.3  
D030  
D016  
TPS610982  
MODE = High  
VIN = 2.5 V  
TPS61098, '7  
MODE = Low  
No Load  
7-41. LDO Load Regulation (Active Mode)  
7-42. Input Current vs Input Voltage (Low Power  
Mode)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
10  
9
8
7
6
5
4
3
2
1
0
180  
160  
140  
120  
100  
80  
TA = -40èC  
TA = 25èC  
TA = 85èC  
TA = -40èC  
TA = 25èC  
TA = 85èC  
60  
40  
20  
0
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3  
Input Voltage (V)  
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3  
Input Voltage (V)  
D018  
D017  
TPS610981  
MODE = High  
No Load  
TPS610981  
MODE = Low  
No Load  
7-44. Input Current vs Input Voltage (Active  
7-43. Input Current vs Input Voltage (Low Power  
Mode)  
Mode)  
60  
160  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
140  
120  
50  
40  
30  
20  
10  
100  
80  
60  
40  
20  
0
0
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3  
Input Voltage (V)  
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3  
Input Voltage (V)  
D032  
D031  
TPS610982  
MODE = High  
No Load  
TPS610982  
MODE = Low  
No Load  
7-46. No Load Input Current vs Input Voltage  
7-45. No Load Input Current vs Input Voltage  
(Active Mode)  
(Low Power Mode)  
10  
10  
TA = -40°C  
TA = 25°C  
TA = 85°C  
TA = -40°C  
TA = 25°C  
TA = 85°C  
9
9
8
8
7
6
5
4
3
2
1
7
6
5
4
3
2
1
0
0
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9  
Input Voltage (V)  
0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3  
Input Voltage (V)  
D051  
D053  
TPS610985  
MODE = Low  
V(MAIN) = 3 V  
TPS610986  
MODE = Low  
V(MAIN) = 3.3 V  
7-47. Input Current vs Input Voltage (Low Power 7-48. Input Current vs Input Voltage (Low Power  
Mode)  
Mode)  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 10 mA  
IOUT = 100 mA  
0
0
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D019  
D020  
TPS61098. '7  
MODE = High  
CO2 = 10 µF  
TPS610981  
MODE = High  
CO2 = 10 µF  
VIN - VOUT = 4.3 V - 3.1 V = 1.2 V  
VIN - VOUT = 3.3 V - 3 V = 0.3 V  
7-49. LDO PSRR vs Frequency  
7-50. LDO PSRR vs Frequency  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 10 mA  
IOUT = 100 mA  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
10  
100  
1k  
10k 100k  
Frequency (Hz)  
1M  
10M  
D033  
D034  
TPS610982  
MODE = Low  
CO2 = 10 µF  
TPS610982  
MODE = High  
CO2 = 10 µF  
VIN - VOUT = 3.3 V - 2.8 V = 0.5 V  
VIN - VOUT = 3.3 V - 2.8 V = 0.5 V  
7-51. LDO PSRR vs Frequency (Low Power  
7-52. LDO PSRR vs Frequency (Active Mode)  
Mode)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS61098x is an ultra-low power solution optimized for products powered by either a one-cell or two-cell  
alkaline, NiCd or NiMH, one-cell coin cell battery or one-cell Li-Ion or Li-polymer battery. To simplify system  
design and save PCB space, the TPS61098x integrates an LDO or load switch with a boost converter (different  
configurations for different versions) to provide two output rails in a compact package. The boost output V(MAIN)  
is designed as an always-on supply to power a main system, and the LDO or load switch output V(SUB) is  
designed to power peripheral devices and can be turned off.  
The TPS61098x features two modes controlled by MODE pin: Active mode and Low Power mode. In Active  
mode, both outputs are enabled, and the transient response performance of the boost converter and LDO/load  
switch are enhanced, so it is able to respond load transient quickly. In Low Power mode, the LDO/load switch is  
disabled, so the peripherals can be disconnected to minimize the battery drain. Besides that, the boost  
consumes only 300 nA quiescent current in Low Power mode, so up to 88% efficiency at 10 µA load can be  
achieved to extend the battery run time. The TPS610982 is an exception. Its LDO is always on in both Active  
mode and Low Power mode. The main differences between the two modes of the TPS610982 are the quiescent  
current and performance. Refer to 8.4.1 for details.  
The TPS61098x supports automatic pass-through function in both Active mode and Low Power mode. When VIN  
is detected higher than a pass-through threshold, which is around the target V(MAIN) voltage, the boost converter  
stops switching and passes the input voltage through inductor and internal rectifier switch to V(MAIN), so V(MAIN)  
follows VIN; when VIN is lower than the threshold, the boost works in boost mode and regulates V(MAIN) at the  
target value. The TPS61098x can support different V(MAIN) target values in Active mode and Low Power mode to  
meet various requirements. For example, for TPS61098, the set value of V(MAIN) is 4.3 V in Active mode but 2.2  
V in Low Power mode.  
8.2 Functional Block Diagrams  
SW  
2
1
VMAIN  
Current  
Sense  
Boost  
Gate Driver  
Startup  
OCP  
Pulse  
Modulator  
REF  
Pass_Through  
VIN  
3
5
VSUB  
VPSTH  
OCP_SUB  
Logic  
Control  
Thermal  
Shutdown  
ILIM_SUB  
1) LDO Version  
LDO/Load Switch  
Gate Driver  
MODE  
4
VREF  
Softstart  
6
GND  
Copyright © 2016, Texas Instruments Incorporated  
A. Implemented in versions with LDO configuration.  
16 Submit Document Feedback  
Copyright © 2021 Texas Instruments Incorporated  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
8.3 Feature Description  
8.3.1 Boost Controller Operation  
The TPS61098x boost converter is controlled by a hysteretic current mode controller. This controller regulates  
the output voltage by keeping the inductor ripple current constant in the range of 100 mA and adjusting the offset  
of this inductor current depending on the output load. Since the input voltage, output voltage and inductor value  
all affect the rising and falling slopes of inductor ripple current, the switching frequency is not fixed and is  
decided by the operation condition. If the required average input current is lower than the average inductor  
current defined by this constant ripple, the inductor current goes discontinuous to keep the efficiency high under  
light load conditions. 8-1 illustrates the hysteretic current operation. If the load is reduced further, the boost  
converter enters into Burst mode. In Burst mode, the boost converter ramps up the output voltage with several  
pulses and it stops operating once the output voltage exceeds a set threshold, and then it goes into a sleep  
status and consumes less quiescent current. It resumes switching when the output voltage is below the set  
threshold. It exits the Burst mode when the output current can no longer be supported in this mode. Refer to 图  
8-2 for Burst mode operation details.  
To achieve high efficiency, the power stage is realized as a synchronous boost topology. The output voltage  
V(MAIN) is monitored via an internal feedback network which is connected to the voltage error amplifier. To  
regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage  
reference and adjusts the required offset of the inductor current accordingly.  
IL  
Continuous Current Operation  
Discontinuous Current Operation  
100mA  
(typ.)  
100mA  
(typ.)  
t
8-1. Hysteretic Current Operation  
Output Voltage of  
Boost Converter  
Burst Mode Operation at  
Light Load  
VOUT_BST  
Continuous Current Operation at  
Heavy Load  
VOUT_NOM  
t
8-2. Burst Mode Operation  
8.3.2 Pass-Through Operation  
The TPS61098x supports automatic pass-through function for the boost converter. When the input voltage is  
detected higher than the pass-through threshold V(PSTH), which is around V(MAIN) set value, the boost converter  
enters into pass-through operation mode. In this mode, the boost converter stops switching, the rectifier is  
constantly turned on and the low side switch is turned off. The input voltage passes through external inductor  
and the internal rectifier to the output. The output voltage in this mode depends on the resistance between the  
input and the output, calculated as 方程1:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
VMAIN = V -(IMAIN +ISUB )ì(RL +RDSon _HS  
IN  
)
(1)  
where  
RL is the DCR of external inductor  
RDS(on)_HS is the resistance of internal rectifier  
When the input voltage is lower than V(PSTH), the boost converter resumes switching to regulate the output at  
target value.  
The TPS61098x can support automatic pass-through function in both Active mode and Low Power mode.  
8.3.3 LDO / Load Switch Operation  
The TPS61098x uses a PMOS as a pass element of its integrated LDO / load switch. The input of the PMOS is  
connected to the output of the boost converter. When the MODE pin is pulled logic high, the PMOS is enabled to  
output a voltage on VSUB pin.  
For load switch version, the PMOS pass element is fully turned on when enabled, no matter the boost converter  
works in boost operation mode or pass-through operation mode. So the output voltage at VSUB pin is decided  
by the output voltage at VMAIN pin and the current passing through the PMOS as 方程2:  
VSUB = VMAIN -ISUB ìRLS  
where  
(2)  
I(SUB) is the load of VSUB rail  
RLS is the resistance of the PMOS when it is fully turned on  
For LDO version, the output voltage V(SUB) is regulated at the set value when the voltage difference between its  
input and output is higher than the dropout voltage V(Dropout), no matter the boost converter works in boost  
operation mode or pass-through operation mode. The V(SUB) is monitored via an internal feedback network  
which is connected to the voltage error amplifier. To regulate V(SUB), the voltage error amplifier compares the  
feedback voltage to the internal voltage reference and adjusts the gate voltage of the PMOS accordingly. When  
the voltage drop across the PMOS is lower than the dropout voltage, the PMOS will be fully turned on and the  
output voltage at V(SUB) is decided by 方程2.  
When the MODE pin is pulled low, the LDO or load switch is turned off to disconnect the load at VSUB pin. For  
some versions, active discharge function at VSUB pin is offered, which can discharge the V(SUB) to ground after  
MODE pin is pulled low, to avoid any bias condition to downstream devices. For versions without the active  
discharge function, the VSUB pin is floating after MODE pin is pulled low, and its voltage normally drops down  
slowly due to leakage. Refer to the 5 for version differences.  
When MODE pin is toggled from low to high, soft-start is implemented for the LDO versions to avoid inrush  
current during LDO startup. The start up time of LDO is typically 1 ms. For load switch versions, the load switch  
is turned on faster, so the output capacitor at VSUB pin is suggested 10X smaller than the output capacitor at  
VMAIN pin to avoid obvious voltage drop of V(MAIN) during load switch turning on process.  
8.3.4 Start Up and Power Down  
The boost converter of the TPS61098x is designed always-on, so there is no enable or disable control of it. The  
boost converter starts operation once input voltage is applied. If the input voltage is not high enough, a low  
voltage startup oscillator operates the switches first. During this phase, the switching frequency is controlled by  
the oscillator, and the maximum switch current is limited. Once the converter has built up the output voltage  
V(MAIN) to approximately 1.8 V, the device switches to the normal hysteretic current mode operation and the  
VMAIN rail starts to supply the internal control circuit. If the input voltage is too low or the load during startup is  
too heavy, which makes the converter unable to build up 1.8 V at V(MAIN) rail, the boost converter can't start up  
successfully. It will keep in this status until the input voltage is increased or removed.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
The TPS61098x is able to startup with 0.7 V input voltage with 3 kload. The startup time depends on input  
voltage and load conditions. After the V(MAIN) reaches 1.8 V to start the normal hysteretic current mode  
operation, an internal ramp-up reference controls soft-start time of the boost converter until V(MAIN) reaches its  
set value.  
The TPS61098x does not support undervoltage lockout function. When the input voltage drops to a low voltage  
and can't provide the required energy to the boost converter, the V(MAIN) drops. When and to what extent V(MAIN)  
drops are dependent on the input and load conditions. When the boost converter is unable to maintain 1.8 V at  
VMAIN rail to supply the internal circuit, the TPS61098x powers down and enters into startup process again.  
8.3.5 Over Load Protection  
The boost converter of the TPS61098x supports a cycle-by-cycle current limit function in boost mode operation.  
If the peak inductor current reaches the internal switch current limit threshold, the main switch is turned off to  
stop a further increase of the input current. In this case the output voltage will decrease since the device cannot  
provide sufficient power to maintain the set output voltage. If the output voltage drops below the input voltage,  
the backgate diode of the rectifying switch gets forward biased and current starts to flow through it. Because this  
diode cannot be turned off, the load current is only limited by the remaining DC resistance. After the overload  
condition is removed, the converter automatically resumes normal operation.  
The overload protection is not active in pass-through mode operation, in which the load current is only limited by  
the DC resistance.  
The integrated LDO / load switch also supports over load protection. When the load current of VSUB rail reaches  
the ILIM_SUB, the V(SUB) output current will be regulated at this limit value and will not increase further. In this case  
the V(SUB) voltage will decrease since the device cannot provide sufficient power to the load.  
8.3.6 Thermal Shutdown  
The TPS61098x has a built-in temperature sensor which monitors the internal junction temperature in boost  
mode operation. If the junction temperature exceeds the threshold (150°C typical), the device stops operating.  
As soon as the junction temperature has decreased below the programmed threshold with a hysteresis, it starts  
operating again. There is a built-in hysteresis (25°C typical) to avoid unstable operation at the overtemperature  
threshold. The over temperature protection is not active in pass-through mode operation.  
8.4 Device Functional Modes  
8.4.1 Operation Modes by MODE Pin  
The TPS61098x features two operation modes controlled by MODE pin: the Active mode and Low Power mode.  
It can provide quick transient response in Active mode and ultra-low quiescent current in Low Power mode. So a  
low power system can easily use the TPS61098x to get high performance in its active mode and meantime  
minimize its power consumption to extend the battery run time in its sleep mode.  
The MODE pin is usually controlled by an I/O pin of a controller, and should not be left floating.  
8.4.1.1 Active Mode  
The TPS61098x works in Active mode when MODE pin is logic high. In Active mode, both of the boost converter  
and the integrated LDO/load switch are enabled, and the TPS61098x can provide dual outputs simultaneously.  
The transient response performance of the boost converter is enhanced in Active mode, and the device  
consumes around 15 µA quiescent current. It is able to respond load transient quickly.  
When MODE pin is toggled from low to high, soft-start is implemented for the LDO versions to avoid inrush  
current during startup. For load switch versions, the load switch is turned on faster, so the output capacitor at  
VSUB pin is suggested 10X smaller than the output capacitor at VMAIN pin to avoid obvious voltage drop of  
V(MAIN) during turning on process.  
8.4.1.2 Low Power Mode  
The TPS61098x works in Low Power mode when MODE pin is logic low. In Low Power mode, the LDO/load  
switch is turned off, so the peripherals can be disconnected to minimize the battery drain. The VSUB pin either  
outputs high impedance or is pulled to ground by internal active discharge circuit, depending on different  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
versions. The boost converter consumes only 300 nA quiescent current typically, and can achieve up to 88%  
efficiency at 10 µA load.  
The Low Power mode is designed to keep the load device powered with minimum power consumption. For  
example, it can be used to keep powering the main system, like an MCU, in a system's sleep mode even under  
< 0.7 V input voltage condition.  
8-3 and 8-4 illustrate the outputs of the TPS61098 and TPS610981 under different input voltages in Active  
mode and Low Power mode.  
Voltage (V)  
Voltage (V)  
VIN  
VIN  
4.5  
4.5  
VMAIN (Active Mode & Low  
Power Mode)  
VMAIN (Active Mode)  
VSUB (Active Mode)  
4.3  
3.3  
3.0  
3.1  
2.2  
VSUB (Active Mode)  
2.2  
VMAIN (Low Power Mode)  
0.7  
0
0.7  
0
t
t
8-3. TPS61098 Output under Different Input  
8-4. TPS610981 Output under Different Input  
Voltages  
Voltages  
The TPS610982 is an exception. Its LDO is always on in both Active mode and Low Power mode with higher  
quiescent current consumption than other versions. The TPS610982 can be used to replace discrete boost and  
LDO solutions where the LDO output is always on, and its two modes provide users two options of different  
quiescent current consumption and performance. Refer to 8.4.1, 7 and 7.6 for details.  
8.4.2 Burst Mode Operation under Light Load Condition  
The boost converter of TPS61098x enters into Burst Mode operation under light load condition. Refer to 8.3.1  
for details.  
8.4.3 Pass-Through Mode Operation  
The boost converter of TPS61098x automatically enters into pass-through mode operation when input voltage is  
higher than the target output voltage. Refer to 8.3.2 for details.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
9 Applications and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS61098x is an ultra low power solution for products powered by either a one-cell or two-cell alkaline,  
NiCd or NiMH, one-cell coin cell or one-cell Li-Ion or Li-polymer battery. It integrates either a Low-dropout Linear  
Regulator (LDO) or a load switch with a boost converter and provides dual output rails. The V(MAIN) rail is the  
output of the boost converter. It is an always-on output and can only be turned off by removing input voltage. The  
V(SUB) rail is the output of the integrated LDO or load switch, and it can be turned off by pulling the MODE pin  
low.  
9.2 Typical Applications  
9.2.1 VMAIN to Power MCU and VSUB to Power Subsystem  
The TPS61098x suits for low power systems very well, especially for the system which spends the most of time  
in sleep mode and wakes up periodically to sense or transmit signals. For this kind of application, the boost  
output V(MAIN) can be used as an always-on supply for the main system, such as an MCU controller, and the  
LDO or load switch output V(SUB) is used to power peripheral devices or subsystem.  
As shown in 9-1, the MCU can control both of the subsystem and the TPS61098x. When the system goes into  
sleep mode, the MCU can disable the subsystem first, and then force the TPS61098x enter into Low Power  
mode, where the VSUB rail is disconnected but the V(MAIN) rail still powers the MCU with only 300 nA quiescent  
current. When the system wakes up, the MCU pulls the MODE pin of TPS61098x high first to turn on the VSUB  
rail, and then enables the subsystem. In this way, the system can benefit both of the enhanced transient  
response performance in active mode and the ultra-low quiescent current in sleep mode.  
L
4.7µH  
0.7 V to 1.65 V  
3.3 V  
CO1  
SW  
VMAIN  
MCU  
CBAT  
10µF  
RIN  
400  
10µF  
BOOST  
CTRL  
LDO  
CTRL  
VIN  
3.0 V  
VSUB  
GND  
Subsystem  
CIN  
0.1µF  
CO2  
10µF  
MODE  
Copyright © 2016, Texas Instruments Incorporated  
9-1. Typical Application of TPS610981 to Power Low Power System  
9.2.1.1 Design Requirements  
3.3 V V(MAIN) rail to power MCU with 15 mA load current, 3 V V(SUB) rail to power subsystem with 10 mA load  
current  
Power source, single-cell alkaline battery (0.7 V to 1.65 V range)  
Greater than 90% conversion efficiency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Device Choice  
In the TPS61098x family, different versions are provided. Refer to 5 for version details and select the right  
version for target applications. It is OK to use only one output rail, either V(MAIN) or V(BUS), as long as it suits the  
application.  
In this example, dual rails of 3.3 V and 3 V are required to power both MCU and subsystem, so the TPS610981  
is selected.  
9.2.1.2.2 Maximum Output Current  
For the boost converter, it provides output current for both V(MAIN) and V(SUB) rails. Its maximum output capability  
is determined by the input to output ratio and the current limit of the boost converter and can be estimated by 方  
3.  
V ì(ILIM_BST - 50mA)ì h  
IN  
IOUT(max)  
=
VMAIN  
(3)  
where  
ηis the boost converter power efficiency estimation  
50 mA is half of the inductor current ripple value  
Minimum input voltage, maximum boost output voltage and minimum current limit ILIM_BST should be used as the  
worst case condition for the estimation.  
Internal current limit is also implemented for the integrated LDO/load switch. So the maximum output current of  
VSUB rail should be lower than ILIM_SUB, which has 200 mA minimum value. For LDO version, the maximum  
output current is also limited by its input to output headroom, that is V(MAIN) - V(SUB). Make sure the headroom  
voltage is enough to support the load current. Please refer to 7.5 for the dropout voltage information.  
In this example, assume the power efficiency is 80% (lower than typical value for the worst case estimation), so  
the calculated maximum output current of the boost converter is 50.9 mA, which satisfies the application  
requirements (15 mA + 10 mA). The load of VSUB rail is 10 mA, which is well below the V(SUB) rail current limit  
and the dropout voltage is also within the headroom.  
9.2.1.2.3 Inductor Selection  
Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications, inductor value, saturation current, and dc resistance (DCR).  
The TPS61098x is designed to work with inductor values between 2.2 µH and 4.7 µH. The inductance values  
affects the switching frequency ƒin continuous current operation, which is proportional to 1/L as shown in 方程式  
4.  
1
VIN ì(VMAIN - VIN ì h)  
VMAIN  
f =  
ì
L ì100mA  
(4)  
The inductor current ripple is fixed to 100mA typical value by internal design, but it can be affected by the  
inductor value indirectly. Normally when a smaller inductor value is applied, the inductor current ramps up and  
down more quickly, so the current ripple becomes bigger because the internal current comparator has some  
delay to respond. So if smaller inductor peak current is required in applications, a higher inductor value can be  
tried. However, the TPS61098x is optimized to work within a range of L and C combinations. The LC output filter  
inductance and capacitance must be considered together. The output capacitor sets the corner frequency of the  
converter while the inductor creates a Right-Half-Plane-Zero degrading the stability of the converter.  
Consequently with a larger inductor, a bigger capacitor normally should be used to ensure the same L/C ratio  
thus a stable loop.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
Having selected an inductance value, the peak current for the inductor in steady-state operation varies as a  
function of the load, the input and output voltages and can be estimated using 方程5.  
VMAIN  
ì
V
(
IMAIN +ISUB  
IN ì h  
)
+ 50mA; continuous current operation  
IL,MAX  
=
IL,MAX = 100mA;  
discontinu ous current operation  
(5)  
where, 80% can be used for the boost converter power efficiency estimation, 100 mA is the typical inductor  
current ripple value and 50mA is half of the ripple value, which may be affected a little bit by inductor value. 方程  
5 provides a suitable inductor current rating by using minimum input voltage, maximum boost output voltage  
and maximum load current for the calculation. Load transients and error conditions may cause higher inductor  
currents.  
方程6 provides an easy way to estimate whether the device will work in continuous or discontinuous operation  
depending on the operating points. As long as the 方程式 6 is true, continuous operation is typically established.  
If 方程6 becomes false, discontinuous operation is typically established.  
VMAIN  
ì
V
(
IMAIN +ISUB  
IN ì h  
)
> 50mA  
(6)  
Selecting an inductor with insufficient saturation performance can lead to excessive peak current in the  
converter. This could eventually harm the device and reduce it's reliability.  
In this example, the maximum load for the boost converter is 25 mA, and the minimum input voltage is 0.7 V, and  
the efficiency under this condition can be estimated at 80%, so the boost converter works in continuous  
operation by the calculation. The inductor peak current is calculated as 197 mA. To leave some margin, a 4.7 µH  
inductor with at least 250 mA saturation current is recommended for this application.  
9-1 also lists the recommended inductor for the TPS61098x device.  
9-1. List of Inductors  
INDUCTANCE [µH]  
ISAT [A]  
0.86  
IRMS [A]  
1.08  
PART NUMBER  
MANUFACTURER  
DC RESISTANCE [mΩ]  
4.7  
4.7  
2.2  
2.2  
168  
300  
84  
VLF302510MT-4R7M  
VLF252010MT-4R7M  
VLF302510MT-2R2M  
VLF252010MT-2R2M  
TDK  
TDK  
TDK  
TDK  
0.57  
0.95  
1.23  
1.5  
0.83  
0.92  
120  
9.2.1.2.4 Capacitor Selection  
For best output and input voltage filtering, low ESR X5R or X7R ceramic capacitors are recommended.  
The input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system  
rail for the device. An input capacitor value of at least 10 μF is recommended to improve transient behavior of  
the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible  
to the VIN and GND pins of the IC is recommended. For applications where line transient is expected, an input  
filter composed of 400-Ω resistor and 0.1-µF capacitor as shown in 9-1 is mandatory to avoid interference to  
internal pass-through threshold comparison circuitry.  
For the output capacitor of VMAIN pin, small ceramic capacitors are recommended, placed as close as possible  
to the VMAIN and GND pins of the IC. If, for any reason, the application requires the use of large capacitors  
which cannot be placed close to the IC, the use of a small ceramic capacitor with a capacitance value of around  
2.2 μF in parallel to the large one is recommended. This small capacitor should be placed as close as possible  
to the VMAIN and GND pins of the IC. The recommended typical output capacitor values are 10 μF and 22 µF  
(nominal values).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
For LDO version, like all low dropout regulators, VSUB rail requires an output capacitor connected between  
VSUB and GND pins to stabilize the internal control loop. Ceramic capacitor of 10 µF (nominal value) is  
recommended for most applications. If the V(SUB) drop during load transient is much cared, higher capacitance  
value up to 22 µF is recommended to provide better load transient performance. Capacitor below 10 µF is only  
recommended for light load operation. For load switch version, capacitor of 10x smaller value than capacitor at  
VMAIN pin is recommended to minimize the voltage drop caused by charge sharing when the load switch is  
turned on.  
When selecting capacitors, ceramic capacitors derating effect under bias should be considered. Choose the  
right nominal capacitance by checking capacitor's DC bias characteristics. In this example,  
GRM188R60J106ME84D, which is a 10 µF ceramic capacitor with high effective capacitance value at DC biased  
condition, is selected for both VMAIN and VSUB rails. The load transient response performance is shown in 节  
9.2.1.3.  
For load switch version, VSUB rails requires an output capacitor connected between VSUB and GND pins.  
Ceramic capacitor of 1 µF (nominal value) is recommended for most applications.  
9.2.1.2.5 Control Sequence  
In this example, the MCU is powered by the boost output V(MAIN) and the subsystem is powered by the LDO  
V
(SUB). MCU controls both of the TPS610981 and subsystem. The control sequence as shown in 9-2 is  
recommended.  
Logic  
High  
MODE  
Logic  
Low  
3.3V  
VMAIN  
3.0V  
VSUB  
0V  
Subsystem  
Load  
System  
status  
Sleep Mode  
Active Mode  
9-2. System Control Sequence  
When the system is waking up, the MCU wakes up itself first, and it then pulls the MODE pin of TPS610981 to  
high to turned on the V(SUB) rail. TPS610981 enters into Active mode and gets ready to provide power to the  
subsystem. Then the MCU enables the subsystem.  
When the system is entering into sleep mode, the MCU disables the subsystem first and then pulls the MODE  
pin to low to turn off the V(SUB), so the subsystem is disconnected from the supply to minimize the current drain.  
TPS610981 enters into Low Power mode and the VMAIN rail still powers the MCU with only 300 nA quiescent  
current. The MCU enters into sleep mode itself finally.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
9.2.1.3 Application Curves  
TPS610981  
MODE = L  
I(MAIN) = 1 mA  
VIN = 1.5 V  
I(SUB) = 0 mA  
TPS610981  
MODE = L  
I(MAIN) = 10 mA  
VIN = 1.5 V  
I(SUB) = 0 mA  
9-3. Switching Waveforms  
9-4. Switching Waveforms  
TPS610981  
MODE = L  
I(MAIN) = 100 mA  
VIN = 1.5 V  
I(SUB) = 0 mA  
TPS610981  
MODE = H  
I(MAIN) = 0 mA  
VIN = 1.5 V  
I(SUB) = 1 mA  
9-5. Switching Waveforms  
9-6. Switching Waveforms  
TPS610981  
MODE = H  
I(MAIN) = 0 mA  
VIN = 1.5 V  
I(SUB) = 10 mA  
TPS610981  
MODE = H  
I(MAIN) = 0 mA  
VIN = 1.5V  
I(SUB) = 100 mA  
9-7. Switching Waveforms  
9-8. Switching Waveforms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
TPS610986  
MODE = H  
I(MAIN) = 0 mA  
VIN = 1.5V  
I(SUB) = 1 mA  
TPS610986  
MODE = H  
I(MAIN) = 0 mA  
VIN = 1.5V  
I(SUB) = 10 mA  
9-9. Switching Waveforms  
9-10. Switching Waveforms  
TPS610986  
MODE = H  
I(MAIN) = 0 mA  
VIN = 1.5V  
I(SUB) = 100 mA  
TPS610981  
MODE = L  
VIN = 2.5 V  
I(SUB) = 0 mA  
I(MAIN) = 0 mA to 50 mA, 5 µs rising/falling  
edge  
9-11. Switching Waveforms  
9-12. Load Transient Response  
TPS610981  
MODE = H  
VIN = 2.5 V  
I(SUB) = 0 mA  
TPS610981  
MODE = H  
VIN = 2.5 V  
I(MAIN) = 0 mA  
I(MAIN) = 0 mA to 50 mA, 5 µs rising/falling  
edge  
I(SUB) = 0 mA to 50 mA, 5 µs rising/falling  
edge  
9-13. Load Transient Response  
9-14. LDO Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
TPS610981  
MODE = L  
I(MAIN) = 20 mA  
I(SUB) = 0 mA  
TPS610981  
MODE = H  
I(MAIN) = 20 mA  
I(SUB) = 0 mA  
VIN = 2 V to 2.5 V, 10 µs rising/falling edge  
VIN = 2 V to 2.5 V, 10 µs rising/falling edge  
9-15. Line Transient Response  
9-16. Line Transient Response  
TPS610981  
MODE = H  
I(MAIN) = 0 mA  
I(SUB) = 20 mA  
TPS610981  
VIN = 1.5 V  
I(SUB) = 0 mA  
VIN = 2 V to 2.5 V, 10 µs rising/falling edge  
MODE = L  
I(MAIN) = 0 mA to 120 mA to 0 mA, ramp  
up and down  
9-17. Line Transient Response  
9-18. Load Regulation  
TPS610981  
MODE = H  
VIN = 1.5 V  
I(MAIN) = 0 mA  
TPS610981  
MODE = H  
I(MAIN) = 0 mA  
I(SUB) = 30 mA  
I(SUB) = 0 mA to 120 mA to 0 mA, ramp  
up and down  
VIN = 0.7 V to 4.5 V, ramp up and down  
9-20. Line Regulation  
9-19. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
TPS610981  
R(SUB) = open load  
TPS610981  
MODE connected to GND  
VIN = 0.7 V  
R(MAIN) = 1 kΩ  
R(MAIN) = 3 kΩ  
MODE pin toggling  
9-21. Mode Toggling  
9-22. Startup  
TPS610981  
VIN = 1.5 V  
TPS610986  
VIN = 1.5 V  
R(MAIN) = 1 kΩ  
R(SUB) = 1 kΩ  
R(MAIN) = 1 kΩ  
R(SUB) = 1 kΩ  
MODE connected to VMAIN  
C(SUB) = 1 µF  
MODE connected to VMAIN  
9-23. Startup  
9-24. Startup  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
9.2.2 VMAIN to Power the System in Low Power Mode  
If only one power supply is needed for the whole system, users can easily leave the VSUB pin float and only use  
the VMAIN rail as the power supply. In this case, the TPS61098x functions as a standard boost converter. If  
enhanced load transient performance is needed when the system works in Active mode, the controller can  
control the MODE pin to switch the TPS61098x between the Active mode and Low Power mode. If the ultra-low  
Iq is critical for the application, users can connect the MODE pin to GND so the TPS61098x keeps working in  
Low Power mode with only 300 nA quiescent current. Below shows a typical application where the TPS61098 is  
used in Low Power mode to generate 2.2 V with only 300 nA Iq to power the whole system.  
L
4.7µH  
0.7 V to 1.65 V  
2.2 V  
SW  
VMAIN  
System  
CBAT  
10µF  
RIN  
400  
BOOST  
CTRL  
LDO  
CTRL  
VIN  
CO1  
10µF  
VSUB  
GND  
CIN  
0.1µF  
MODE  
Copyright © 2016, Texas Instruments Incorporated  
9-25. Typical Application of TPS61098 VMAIN to Power the System in Low Power Mode  
9.2.2.1 Design Requirements  
2.2 V V(MAIN) to power the whole system  
Power source, single-cell alkaline battery (0.7 V to 1.65 V range)  
80% conversion efficiency at 10 µA load  
9.2.2.2 Detailed Design Procedure  
Refer to 9.2.1.2 for the detailed design steps.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.2.2.3 Application Curves  
TPS61098  
MODE = L  
VIN = 1.5 V  
TPS61098  
MODE = L  
I(MAIN) = 100 mA I(SUB) = 0 mA  
I(MAIN) = 50 mA to 100 mA, 5 µs rising/falling  
edge  
VIN = 1.2 V to 1.8 V, 10 µs rising/falling  
edge  
9-26. Load Transient Response  
9-27. Line Transient Response  
TPS61098  
R(MAIN) = 3 kΩ  
MODE connected to GND  
VIN = 0.7 V  
9-28. Startup  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
9.2.3 VSUB to Power the System in Active Mode  
In some applications, the system controller can be powered by the battery directly, but a buck-boost or a boost  
converter with an LDO is needed to provide a quiet power supply for a subsystem like a sensor. In this type of  
application, the TPS61098x can be used to replace the discrete boost converter and the LDO, providing a  
compact solution to simplify the system design and save the PCB space. The LDO can be turned on and off by  
the MODE pin. When the MODE pin is pulled low, the LDO is turned off to disconnect the load, and the  
TPS61098x also enters into Low Power mode to save power consumption. 9-29 shows an application where  
the VSUB of the TPS61098 is used to supply the 3.1 V for a sensor in a system. The boost converter of the  
TPS61098 outputs 4.3 V and provides enough headroom for the LDO operation.  
L
4.7µH  
0.7 V to 1.65 V  
SW  
VMAIN  
CBAT  
10µF  
CO1  
10µF  
RIN  
400  
BOOST  
CTRL  
LDO  
CTRL  
VIN  
3.1 V  
VSUB  
GND  
Sensor  
CIN  
0.1µF  
CO2  
10µF  
MODE  
Copyright © 2016, Texas Instruments Incorporated  
9-29. Typical Application of TPS61098 VSUB to Power the System in Active Mode  
9.2.3.1 Design Requirements  
3.1 V rail to power a sensor  
Power source, single-cell li-ion battery (2.7 V to 4.3 V range)  
9.2.3.2 Detailed Design Procedure  
Refer to 9.2.1.2 for the detailed design steps.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
9.2.3.3 Application Curves  
TPS61098  
MODE = H  
VIN = 3.6 V  
I(MAIN) = 0 mA  
TPS61098  
MODE = H  
I(MAIN) = 0 mA  
I(SUB) = 100 mA  
I(SUB) = 0 mA to 50 mA , 5 µs rising/falling  
edge  
VIN = 2.7 V to 3.2 V, 5 µs rising/falling edge  
9-31. Line Transient Response  
9-30. LDO Load Transient Response  
TPS610982  
MODE = L  
I(MAIN) = 0 mA  
I(SUB) = 100 mA  
TPS610982  
MODE = H  
I(MAIN) = 0 mA  
I(SUB) = 100 mA  
VIN = 2 V to 2.5 V, 10 µs rising/falling edge  
VIN = 2 V to 2.5 V, 10 µs rising/falling edge  
9-32. Line Transient Response  
9-33. Line Transient Response  
TPS610982 VIN = 2.5 V  
I(MAIN) = 0 mA  
I(SUB) = 50 mA to 100 mA , 5 µs rising/falling  
edge  
TPS610982 VIN = 2.5 V  
I(MAIN) = 0 mA  
I(SUB) = 50 mA to 100 mA , 5 µs rising/falling  
edge  
MODE = L  
MODE = H  
9-34. LDO Load Transient Response  
9-35. LDO Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
TPS61098  
TPS61098  
MODE connected to VMAIN  
R(MAIN) = 10 kΩ  
R(SUB) = 3 kΩ  
R(MAIN) = 1 kΩ  
R(SUB) = 1 kΩ  
MODE pin toggling  
VIN = 3.6 V  
9-36. MODE Toggling  
9-37. Startup  
TPS610982  
TPS610982  
MODE connected to VMAIN  
R(MAIN) = 1 kΩ  
R(SUB) = 1 kΩ  
VIN = 1.5 V  
R(MAIN) = 1 kΩ  
R(SUB) = 1 kΩ  
MODE connected to GND  
VIN = 1.5 V  
9-38. Startup  
9-39. Startup  
10 Power Supply Recommendations  
The TPS61098x family is designed to operate from an input voltage supply range between 0.7 V to 4.5 V. The  
power supply can be either a one-cell or two-cell alkaline, NiCd or NiMH, one-cell coin cell or one-cell Li-Ion or  
Li-polymer battery. The input supply should be well regulated with the rating of TPS61098x.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.  
11.2 Layout Example  
The bottom layer is a large GND plane connected by vias.  
Top Layer  
INPUT  
VMAIN  
GROUND  
GROUND  
MODE VSUB  
11-1. Layout  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
TPS61098, TPS610981, TPS610982, TPS610985, TPS610986, TPS610987  
www.ti.com.cn  
ZHCSDX3F JUNE 2015 REVISED SEPTEMBER 2021  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 Documentation Support  
12.2.1 Related Documentation  
Texas Instruments, Performing Accurate PFM Mode Efficiency Measurements Application Report  
Texas Instruments, Accurately Measuring Efficiency Of Ultra Low-IQ Devices Technical Brief  
Texas Instruments, IQ: What It Is, What It Isnt, And How To Use It Techanical Brief  
12.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS61098 TPS610981 TPS610982 TPS610985 TPS610986 TPS610987  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS610981DSER  
TPS610981DSET  
TPS610982DSER  
TPS610982DSET  
TPS610985DSER  
TPS610985DSET  
TPS610986DSER  
TPS610986DSET  
TPS610987DSER  
TPS610987DSET  
TPS61098DSER  
TPS61098DSET  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
GM  
GM  
G8  
G8  
1G  
1G  
1H  
1H  
3X  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
3X  
GL  
GL  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
25-Jan-2021  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS610981DSER  
TPS610981DSET  
TPS610982DSER  
TPS610982DSET  
TPS610985DSER  
TPS610985DSET  
TPS610986DSER  
TPS610986DSET  
TPS610987DSER  
TPS610987DSET  
TPS61098DSER  
TPS61098DSET  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
0.95  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS610981DSER  
TPS610981DSET  
TPS610982DSER  
TPS610982DSET  
TPS610985DSER  
TPS610985DSET  
TPS610986DSER  
TPS610986DSET  
TPS610987DSER  
TPS610987DSET  
TPS61098DSER  
TPS61098DSET  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
DSE  
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
205.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
33.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSE0006A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
1.55  
1.45  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
0.6  
0.4  
5X  
3
4
2X 1  
4X 0.5  
6
1
0.3  
6X  
0.7  
0.5  
0.2  
0.1  
0.05  
PIN 1 ID  
C A B  
C
4220552/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.8)  
5X (0.7)  
1
6
6X (0.25)  
SYMM  
4X 0.5  
4
3
(R0.05) TYP  
(1.6)  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220552/A 04/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
5X (0.7)  
(0.8)  
6X (0.25)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:40X  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS610982DSER

具有集成 LDO 的低输入电压、4.3V 输出电压、同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610982DSET

具有集成 LDO 的低输入电压、4.3V 输出电压、同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610985

具有集成负载开关的低输入电压、3V 输出电压、同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610985DSER

具有集成负载开关的低输入电压、3V 输出电压、同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610985DSET

具有集成负载开关的低输入电压、3V 输出电压、同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610986

具有集成负载开关的低输入电压、3.3V 输出电压、同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610986DSER

具有集成负载开关的低输入电压、3.3V 输出电压、同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610986DSET

具有集成负载开关的低输入电压、3.3V 输出电压、同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610987

具有集成 LDO 和 VSUB 有源放电功能的 4.3V 输出电压同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610987DSER

具有集成 LDO 和 VSUB 有源放电功能的 4.3V 输出电压同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS610987DSET

具有集成 LDO 和 VSUB 有源放电功能的 4.3V 输出电压同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61098DSER

具有集成 LDO 的低输入电压、4.3V 输出电压、同步升压转换器 | DSE | 6 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI