TPS610994YFFR [TI]

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85;
TPS610994YFFR
型号: TPS610994YFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85

升压转换器
文件: 总35页 (文件大小:4067K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
TPS61099x Synchronous Boost Converter with Ultra-Low Quiescent Current  
The TPS61099x boost converter uses a hysteretic  
control topology to obtain maximal efficiency at  
minimal quiescent current. It only consumes 1-µA  
quiescent current under light load condition and can  
achieve up to 75% efficiency at 10-µA load with fixed  
output voltage version. It can also support up to 300-  
mA output current from 3.3 V to 5 V conversion, and  
achieve up to 93% at 200-mA load.  
1 Features  
1
600 nA Ultra-Low IQ into VOUT Pin  
400 nA Ultra-Low IQ into VIN Pin  
Operating Input Voltage from 0.7 V to 5.5 V  
Adjustable Output Voltage from 1.8 V to 5.5 V  
Fixed Output Voltage Versions Available  
Minimum 0.8 A Switch Peak Current Limit  
Regulated Output Voltage in Down Mode  
True Disconnection During Shutdown  
The TPS61099x also offers both Down Mode and  
Pass-Through operations for different applications. In  
Down Mode, the output voltage can still be regulated  
at target value even when input voltage is higher than  
output voltage. In Pass-Through Mode, the output  
voltage follows input voltage. The TPS61099x exits  
Down Mode and enters into Pass-Through Mode  
when VIN > VOUT + 0.5 V.  
Up to 75% Efficiency at 10 µA Load with Fixed  
Output Voltage Versions  
Up to 93% Efficiency from 10 mA to 300 mA Load  
6-Ball 1.23 mm x 0.88 mm WCSP package and 2-  
mm x 2-mm WSON package  
The TPS61099x supports true shutdown function  
when it is disabled, which disconnects the load from  
the input supply to reduce the current consumption.  
Create a Custom Design Using the TPS61099x  
With the WEBENCH® Power Designer  
The TPS61099x offers both adjustable output voltage  
version and fixed output voltage versions. It is  
2 Applications  
available in 6-ball 1.23-mm  
Package and 6-pin 2-mm x 2-mm WSON package .  
x 0.88-mm WCSP  
Memory LCD Bias  
Optical Heart Rate Monitor LED Bias  
Wearable Applications  
Device Information(1)  
Low Power Wireless Applications  
Portable Products  
PART NUMBER  
TPS61099  
PACKAGE  
BODY SIZE (NOM)  
WCSP (6)  
1.23 mm x 0.88 mm  
Battery Powered Systems  
TPS61099x  
TPS61099  
WSON(6)  
2 mm x 2 mm  
3 Description  
TPS61099x  
The TPS61099x device is a synchronous boost  
converter with 1-µA ultra-low quiescent current. The  
device is designed for products powered by an  
alkaline battery, NiMH rechargeable battery, Li-Mn  
battery or rechargeable Li-Ion battery, for which high  
efficiency under light load condition is critical to  
achieve long battery life operation.  
(1) For all available packages, see the orderable addendum at  
the end of this document.  
Typical Application Circuit  
1.8 V to 5.5 V  
VOUT  
L1  
SW  
VOUT  
FB  
2.2 µH  
C2  
C3  
R1  
R2  
VIN  
VIN TPS61099  
10 µF 10 µF  
0.7 V to 5.5 V  
C1  
10 µF  
EN  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
 
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
Table of Contents  
8.4 Device Functional Modes........................................ 14  
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application - 5 V Output Boost Converter .. 15  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 11  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 20  
11.1 Layout Guidelines ................................................. 20  
11.2 Layout Example .................................................... 20  
12 Device and Documentation Support ................. 22  
12.1 Device Support...................................................... 22  
12.2 Documentation Support ........................................ 22  
12.3 Receiving Notification of Documentation Updates 22  
12.4 Community Resources.......................................... 22  
12.5 Trademarks........................................................... 23  
12.6 Electrostatic Discharge Caution............................ 23  
12.7 Glossary................................................................ 23  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 23  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision J (October 2017) to Revision K  
Page  
Added Load Efficiency graph for TPS610995 device ............................................................................................................ 8  
Changes from Revision I (September 2017) to Revision J  
Page  
Changed from +0.3 V to +0.5 V in Description section .......................................................................................................... 1  
Changed graph image for Figure 7 ........................................................................................................................................ 8  
Changed from +0.3 V to +0.5 V in fourth paragraph of Down Mode Regulation and Pass-Through Operation section ..... 13  
Changed Image for Figure 20 ............................................................................................................................................. 14  
Changes from Revision H (July 2017) to Revision I  
Page  
Added devices to the Device Comparison Table and added graphs to Typical Characteristics section. .............................. 4  
Changes from Revision G (July 2017) to Revision H  
Page  
Changed TPS610994 Output accuracy typical value from 3.33 to 3.4 for "VIN < VOUT, PFM mode" in the Electrical  
Characteristics table. .............................................................................................................................................................. 6  
Changed TPS610993 Output accuracy typical value from 3.03 to 3.1 for "VIN < VOUT, PFM mode" in the Electrical  
Characteristics table. .............................................................................................................................................................. 6  
Changes from Revision F (June 2017) to Revision G  
Page  
Added TPS610993 device Output accuracy specs. to Electrical Characteristics table ........................................................ 6  
2
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
 
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
Changes from Revision E (April 2017) to Revision F  
Page  
Deleted voltage-variant devices from Data Sheet Header .................................................................................................... 1  
Added TPS610993 Load Efficiency with Different Inputs....................................................................................................... 8  
Changed Functional Block Diagram .................................................................................................................................... 11  
Changes from Revision D (March 2017) to Revision E  
Page  
Changed figures 1 and 2: Load Efficiency with Different Inputs, figure 3:TPS610994 Load Efficiency with Different  
Inputs, and figure 4:Load Efficiency with Different Outputs with new graph data.................................................................. 8  
Changes from Revision C (January 2017) to Revision D  
Page  
Changed text string in the Programming the Output Voltage section, 2nd para From "....the FB pin should be  
connected to the VOUT pin directly" To ".....the FB pin should be connected to the GND" .................................................. 16  
Changes from Revision B (December 2016) to Revision C  
Page  
Added WEBENCH® Model ..................................................................................................................................................... 1  
Added devices to the Device Comparison Table .................................................................................................................. 4  
Added TPS610994 device Output accuracy specs. to Electrical Characteristics table ........................................................ 6  
Added Figure 5 ...................................................................................................................................................................... 8  
Added Figure 15 .................................................................................................................................................................... 9  
Changes from Revision A (September 2016) to Revision B  
Page  
Added device TPS610997; global change ............................................................................................................................ 1  
Changed From: "Connect to VOUT pin...." To: " Connect to GND pin...." for C2 pin description in the Pin  
Configuration and Functions table, . ...................................................................................................................................... 4  
Added Output accuracy spec for TPS610997 device in the Output section of the Electrical Characteristics table .............. 6  
Added Figure 2 and Figure 14................................................................................................................................................ 9  
Changes from Original (June 2016) to Revision A  
Page  
Added full data sheet specs - global change ........................................................................................................................ 1  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS61099  
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
5 Device Comparison Table  
PART NUMBER  
TPS61099  
OUTPUT VOLTAGE  
Adjustable  
5.0 V  
TPS610997  
TPS610996  
TPS610995  
TPS610994  
TPS610993  
TPS610992  
TPS610991(1)  
4.5 V  
3.6 V  
3.3 V  
3.0 V  
2.5 V  
1.8 V  
(1) Product Preview. Contact TI factory for more information.  
6 Pin Configuration and Functions  
YFF Package  
6-Pin YFF  
Top View  
DRV Package  
6-Pin DRV  
Top View  
VIN  
SW  
EN  
A1  
B1  
C1  
A2  
B2  
C2  
GND  
VOUT  
FB  
1
2
3
6
5
4
Pin Functions  
PIN  
YFF  
TYPE  
DESCRIPTION  
NAME  
VIN  
DRV  
A1  
B1  
6
5
I
IC power supply input  
SW  
PWR Switch pin of the converter. It is connected to the inductor  
Enable logic input. Logic high voltage enables the device; logic low voltage disables the device.  
Do not leave it floating.  
EN  
C1  
4
I
GND  
A2  
B2  
1
2
PWR Ground  
VOUT  
PWR Boost converter output  
Voltage feedback of adjustable output voltage. Connect to the center tap of a resistor divider to  
program the output voltage. Connect to GND pin for fixed output voltage versions.  
FB  
C2  
3
7
I
PowerPad  
Connect to GND  
4
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
 
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
–40  
–65  
MAX  
6.0  
UNIT  
V
Voltage range at terminals(2)  
VIN, SW, VOUT, FB, EN  
Operating junction temperature, TJ  
Storage temperature range, Tstg  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged Device Model (CDM), per JEDEC specification JESD22-  
C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500V HBM rating allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250V CDM rating allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
0.7  
1.8  
0.7  
1.0  
10  
NOM  
MAX  
5.5  
UNIT  
VIN  
VOUT  
L
Input voltage range  
Output voltage range  
Inductor  
V
V
5.5  
2.2  
10  
20  
2.86  
µH  
µF  
µF  
°C  
CIN  
COUT  
TJ  
Input capacitor  
Output capacitor  
100  
125  
Operating virtual junction temperature  
–40  
7.4 Thermal Information  
TPS61099  
THERMAL METRIC(1)  
UNIT  
YFF (6 BALLS,  
WCSP)  
DRV(6 PINS,  
WSON)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
134.4  
0.9  
71.7  
83.0  
33.9  
2.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
36.1  
0.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
36.2  
N/A  
33.4  
14.4  
RθJCbot  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS61099  
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
7.5 Electrical Characteristics  
TJ = -40°C to 125°C and VIN = 0.7 V to 5.5 V. Typical values are at VIN = 3.7 V, TJ = 25°C, unless otherwise noted.  
PARAMETER  
Version  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
TPS61099x  
TPS61099x  
TPS61099x  
0.7  
5.5  
0.7  
V
V
VUVLO  
Input under voltage lockout threshold  
UVLO hysteresis  
VIN rising  
0.6  
200  
mV  
IC enabled, no Load, no Switching  
TJ = -40 °C to 85 °C  
Quiescent current into VIN pin  
Quiescent current into VOUT pin  
Shutdown current into VIN pin  
TPS61099x  
TPS61099x  
TPS61099x  
0.4  
0.6  
0.5  
1.1  
1.5  
1.6  
µA  
µA  
µA  
IQ  
IC enabled, no Load, no Switching,  
Boost or Down Mode  
TJ = -40 °C to 85 °C  
IC disabled, VIN = 3.7 V, VOUT = 0 V  
TJ = -40 °C to 85 °C  
ISD  
OUTPUT  
VOUT  
Output voltage range  
TPS61099  
1.8  
5.5  
V
V
VIN < VOUT, PWM mode  
VIN < VOUT, PFM mode  
VIN < VOUT, PWM mode  
VIN < VOUT, PFM mode  
VIN < VOUT, PWM mode  
VIN < VOUT, PFM mode  
VIN < VOUT, PWM mode  
VIN < VOUT, PFM mode  
VIN < VOUT, PWM mode  
VIN < VOUT, PFM mode  
VIN < VOUT, PWM mode  
VIN < VOUT, PFM mode  
VIN < VOUT, PWM mode  
VIN < VOUT, PFM mode  
4.90  
5.00  
5.15  
3.30  
3.4  
5.10  
TPS610997  
3.23  
2.94  
4.4  
3.37  
3.06  
4.6  
V
TPS610994  
TPS610993  
TPS610996  
TPS610992  
TPS610995  
3.0  
V
V
V
V
3.1  
Output accuracy  
4.5  
4.63  
2.5  
2.45  
3.53  
0.98  
2.55  
3.67  
1.02  
2.58  
3.6  
3.71  
1.00  
1.03  
VREF  
Feedback reference voltage  
TPS61099  
TPS61099  
V
V
Output overvoltage protection  
threshold  
VOVP  
TPS61099x  
VOUT rising  
5.6  
5.8  
6.0  
V
OVP hysteresis  
TPS61099x  
TPS61099x  
100  
10  
200  
50  
mV  
nA  
IFB_LKG  
Leakage current into FB pin  
VFB = 1.0 V  
POWER SWITCH  
VOUT = 5.0 V  
VOUT = 3.3 V  
VOUT = 1.8 V  
VOUT = 5.0 V  
VOUT = 3.3 V  
VOUT = 1.8 V  
VOUT = 5.0 V  
VOUT = 3.3 V  
VOUT = 1.8 V  
250  
300  
400  
300  
350  
500  
350  
300  
250  
1
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mA  
mA  
mA  
A
RDS(on)_LS  
Low side switch on resistance  
TPS61099x  
TPS61099x  
TPS61099x  
350  
450  
750  
RDS(on)_HS Rectifier on resistance  
ILH  
Inductor current ripple  
Current limit threshold  
VOUT 2.5 V, boost operation  
0.8  
0.5  
1.25  
200  
ILIM  
TPS61099x  
TPS61099x  
VOUT < 2.5 V, boost operation  
0.75  
A
Leakage current into SW pin (from SW  
pin to GND)  
ISW_LKG  
VSW = 5.0 V, no switch, TJ = -40 °C to 85 °C  
nA  
6
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
Electrical Characteristics (continued)  
TJ = -40°C to 125°C and VIN = 0.7 V to 5.5 V. Typical values are at VIN = 3.7 V, TJ = 25°C, unless otherwise noted.  
PARAMETER  
Version  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CONTROL LOGIC  
0.2 x  
VIN  
VIL  
VIH  
EN input low voltage threshold  
EN input high voltage threshold  
TPS61099x  
TPS61099x  
VIN 1.5 V  
VIN 1.5 V  
V
V
0.8 x  
VIN  
VIL  
EN input low voltage threshold  
EN input high voltage threshold  
Leakage current into EN pin  
Overtemperature protection  
Overtemperature hysteresis  
TPS61099x  
TPS61099x  
TPS61099x  
TPS61099x  
TPS61099x  
VIN > 1.5 V  
VIN > 1.5 V  
VEN = 5.0 V  
0.4  
V
V
VIH  
1.2  
50  
IEN_LKG  
nA  
°C  
°C  
150  
25  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS61099  
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
7.6 Typical Characteristics  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 3.0 V  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 3.0 V  
VIN = 3.6 V  
VIN = 4.2 V  
0.005  
0.1  
1
10  
100  
1000  
0.005  
0.1  
1
10  
100  
1000  
IOUT (mA)  
IOUT (mA)  
D001  
D002  
TPS61099, VIN = 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2 V, VOUT = 5.0 V  
TPS610997, VIN= 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2 V  
Figure 1. TPS61099 Load Efficiency with Different Inputs  
Figure 2. TPS610997 Load Efficiency with Different Inputs  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
VIN = 0.7V  
VIN = 1.5V  
VIN = 2.5V  
VIN = 3.0V  
60  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.2 V  
55  
55  
50  
VIN = 3.3V  
50  
0.01  
0.1 0.2 0.5  
1
2 3 5 710 20 50 100  
Iout (mA)  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current (mA)  
TPS6  
D016  
TPS610996, VIN= 0.7 V, 1.5 V, 2.7, 3.3 V, 4.2 V  
TPS610995, VIN= 0.7 V, 1.5 V, 2.0, 3.0 V, 3.3 V  
Figure 4. TPS610995 Load Efficiency with Different Inputs  
Figure 3. TPS610996 Load Efficiency with Different Inputs  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN = 0.7 V  
VIN = 1.5 V  
VIN = 2.5 V  
VIN = 3.0 V  
10  
IOUT (mA)  
0.1  
1
100  
1000  
0.005  
0.1  
1
10  
100  
1000  
IOUT (mA)  
D003  
TPS610993, VIN= 0.7 V, 1.5 V, 2.2 V, 2.5 V  
TPS610994, VIN= 0.7 V, 1.5 V, 2.5 V, 3.0 V  
Figure 6. TPS610993 Load Efficiency with Different Inputs  
Figure 5. TPS610994 Load Efficiency with Different Inputs  
8
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
Typical Characteristics (continued)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 0.7 V  
VIN = 1.2 V  
VIN = 1.5 V  
VIN = 2.2 V  
VOUT = 3.0 V  
VOUT = 3.6 V  
VOUT = 4.5 V  
VOUT = 5.0 V  
0.01  
0.1  
1
10  
100  
1000  
0.005  
0.1  
1
10  
100  
1000  
Output Current (mA)  
IOUT (mA)  
D014  
D004  
TPS610992, VIN= 0.7 V, 1.2 V, 1.5 V, 2.2 V  
TPS61099, VIN = 2.4 V, VOUT = 3.0 V, 3.6 V, 4.5 V, 5.0 V  
Figure 7. TPS610992 Load Efficiency with Different Inputs  
Figure 8. Load Efficiency with Different Outputs  
5.4  
5.3  
5.2  
5.1  
5
1.2  
Vin = 0.7 V  
Vin = 1.5 V  
Vin = 3.0 V  
Vin = 3.6 V  
Vin = 4.2 V  
VIN = 3.7 V  
1
0.8  
0.6  
0.4  
0.2  
0
4.9  
4.8  
4.7  
10 µ  
100 µ  
1 m  
10 m  
100 m  
600 m  
D003a  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
Output Current (A)  
D004  
TPS61099, VIN = 0.7 V, 1.5 V, 3.0 V, 3.6 V, 4.2 V, VOUT = 5.0 V  
VIN = 3.7 V  
No Switching  
Figure 9. Load Regulation  
Figure 10. Quiescent Current into VOUT vs Temperature  
0.7  
1.2  
VIN = 3.7 V  
0.6  
0.5  
0.4  
0.3  
0.2  
1
0.8  
0.6  
0.4  
0.2  
0
VIN = 3.7 V  
80 100  
0.1  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
-40  
-20  
0
20 40  
Temperature (°C)  
60  
80  
100  
D005  
D006  
VIN = 3.7 V  
No Switching  
VIN = 3.7 V, Into VIN and SW  
Figure 11. Quiescent Current into VIN vs Temperature  
Figure 12. Shutdown Current vs Temperature  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS61099  
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
Typical Characteristics (continued)  
1.009  
5.02  
5.018  
5.016  
5.014  
5.012  
5.01  
VIN = 3.7 V  
1.007  
1.005  
1.003  
1.001  
0.999  
0.997  
0.995  
5.008  
5.006  
5.004  
5.002  
5
-40  
-20  
0
20  
40  
Temperature (°C)  
TPS61099, VIN = 3.7 V  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
D010  
TJ = –40°C to 125°C  
TPS610997, VIN= 3.7 V, TJ = –40°C to 125°C  
Figure 13. Reference Voltage vs Temperature  
Figure 14. Output Voltage vs Temperature  
1.1  
1.05  
1
3.324  
VIN = 3.7 V  
3.322  
3.32  
3.318  
3.316  
3.314  
3.312  
3.31  
0.95  
3.308  
3.306  
3.304  
0.9  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
–40  
10  
60  
125  
Temperature (èC)  
D012  
Temperature (°C)  
D001  
VIN = 3.7 V  
TJ = –40°C to 125°C  
TPS610994, VIN= 2.5 V, TJ = –40°C to 125°C  
Figure 16. Current Limit vs Temperature  
Figure 15. TPS610994 Output Voltage vs Temperature  
10  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
8 Detailed Description  
8.1 Overview  
The TPS61099x synchronous step-up converter is designed for alkaline battery, coin-cell battery, Li-ion or Li-  
polymer battery powered systems, which requires long battery running time and tiny solution size. The  
TPS61099x can operate with a wide input voltage from 0.7 V to 5.5 V. It only consumes 1 µA quiescent current  
and can achieve high efficiency under light load condition.  
The TPS61099x operates in a hysteretic control scheme with typical 1-A peak switch current limit. The  
TPS61099x provides the true shutdown function and the load is completely disconnected from the input so as to  
minimize the leakage current. It also adopts Down Mode and Pass-Through operation when input voltage is  
close to or higher than the regulated output voltage. The TPS61099x family is available in both adjustable and  
fixed output voltage versions. Adjustable version offers programmable output voltage for flexible applications  
while fixed versions offer minimal solution size and achieve up to 75% high efficiency under 10-µA load.  
8.2 Functional Block Diagram  
B1  
B2 VOUT  
SW  
(1)  
Current  
Sense  
Protection  
(OCP, OVP)  
Boost  
Gate Driver  
Startup  
UVLO  
Pulse  
Modulator  
REF  
TPS61099x  
TPS61099  
OCP  
OVP  
C2  
FB  
VDOWN  
Down Mode  
Logic  
Control  
VIN  
A1  
Thermal  
Shutdown  
Pass-Through  
VPSTH  
A2  
GND  
EN C1  
Copyright © 2017, Texas Instruments Incorporated  
(1) Internal FB resistor divider is implemented in fixed output voltage versions.  
Figure 17. Functional Block Diagram  
8.3 Feature Description  
8.3.1 Boost Controller Operation  
The TPS61099x boost converter is controlled by a hysteretic current mode controller. This controller regulates  
the output voltage by keeping the inductor ripple current constant in the range of 300 mA and adjusting the offset  
of this inductor current depending on the output load. Since the input voltage, output voltage and inductor value  
all affect the rising and falling slopes of inductor ripple current, the switching frequency is not fixed and is  
determined by the operation condition. If the required average input current is lower than the average inductor  
current defined by this constant ripple, the inductor current goes discontinuously to keep the efficiency high under  
light load condition. Figure 18 illustrates the hysteretic current operation. If the load current is reduced further, the  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS61099  
 
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
Feature Description (continued)  
boost converter enters into Burst mode. In Burst mode, the boost converter ramps up the output voltage with  
several switching cycles. Once the output voltage exceeds a setting threshold, the device stops switching and  
goes into a sleep status. In sleep status, the device consumes less quiescent current. It resumes switching when  
the output voltage is below the setting threshold. It exits the Burst mode when the output current can no longer  
be supported in this mode. Refer to Figure 19 for Burst mode operation details.  
To achieve high efficiency, the power stage is realized as a synchronous boost topology. The output voltage  
VOUT is monitored via an external or internal feedback network which is connected to the voltage error amplifier.  
To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage  
reference and adjusts the required offset of the inductor current accordingly.  
IL  
Continuous Current Operation  
Discontinuous Current Operation  
300 mA  
(typ.)  
300 mA  
(typ.)  
t
Figure 18. Hysteretic Current Operation  
Output Voltage of  
Boost Converter  
Burst Mode Operation at  
Light Load  
VOUT_BST  
Continuous Current Operation at  
Heavy Load  
VOUT_NOM  
t
Figure 19. Burst Mode Operation  
8.3.2 Under-Voltage Lockout  
An under-voltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below  
the typical UVLO threshold of 0.4 V. A hysteresis of 200 mV is added so that the device cannot be enabled again  
until the input voltage goes up to 0.6 V. This function is implemented in order to prevent malfunctioning of the  
device when the input voltage is between 0.4 V and 0.6 V.  
8.3.3 Enable and Disable  
When the input voltage is above UVLO rising threshold and the EN pin is pulled to high voltage, the TPS61099x  
is enabled. When the EN pin is pulled to low voltage, the TPS61099x goes into shutdown mode. In shutdown  
mode, the device stops switching and the rectifying PMOS fully turns off, providing the completed disconnection  
between input and output. Less than 0.5-µA input current is consumed in shutdown mode.  
12  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
 
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
Feature Description (continued)  
8.3.4 Soft Start  
After the EN pin is tied to high voltage, the TPS61099x begins to startup. At the beginning, the device operates  
at the boundary of Discontinuous Conduction Mode (DCM) and Continuous Conduction Mode (CCM), and the  
inductor peak current is limited to around 200 mA during this stage. When the output voltage is charged above  
approximately 1.6 V, the device starts the hysteretic current mode operation. The current limit threshold is  
gradually increasing to 0.7× ILIM within 500 µs. In this way, the soft start function reduces the inrush current  
during startup. After VOUT reaches the target value, soft start stage ends and the peak current is now determined  
by the output of an internal error amplifier which compares the feedback of the output voltage and the internal  
reference voltage.  
The TPS61099x is able to start up with 0.7-V input voltage with larger than 3-kload. However, if the load during  
startup is so heavy that the TPS61099x fails to charge the output voltage above 1.6 V, the TPS61099x can't start  
up successfully until the input voltage is increased or the load current is reduced. The startup time depends on  
input voltage and load current.  
8.3.5 Current Limit Operation  
The TPS61099x employs cycle-by-cycle over-current protection (OCP) function. If the inductor peak current  
reaches the current limit threshold ILIM, the main switch turns off so as to stop further increase of the input  
current. In this case the output voltage will decrease until the power balance between input and output is  
achieved. If the output drops below the input voltage, the TPS61099x enters into Down Mode. The peak current  
is still limited by ILIM cycle-by-cycle in Down Mode. If the output drops below 1.6 V, the TPS61099 enters into  
startup process again. In Pass-Through operation, current limit function is not enabled.  
8.3.6 Output Short-to-Ground Protection  
The TPS61099x starts to limit the switch current to 200 mA when the output voltage is below 1.6 V. If short-to-  
ground condition occurs, switch current is limited at 200 mA. Once the short circuit is released, the TPS61099x  
goes back to soft start again and regulates the output voltage.  
8.3.7 Over Voltage Protection  
TPS61099x has an output over-voltage protection (OVP) to protect the device in case that the external feedback  
resistor divider is wrongly populated. When the output voltage of the TPS61099 exceeds the OVP threshold of  
5.8 V, the device stops switching. Once the output voltage falls 0.1 V below the OVP threshold, the device starts  
operating again.  
8.3.8 Down Mode Regulation and Pass-Through Operation  
The TPS61099x features Down Mode and Pass-Through operation when input voltage is close to or higher than  
output voltage.  
In the Down Mode, output voltage is regulated at target value even when VIN > VOUT. The control circuit changes  
the behavior of the rectifying PMOS by pulling its gate to input voltage instead of to ground. In this way, the  
voltage drop across the PMOS is increasing as high as to regulate the output voltage. The power loss also  
increases in this mode, which needs to be taken into account for thermal consideration.  
In the Pass-Through operation, the boost converter stops switching. The rectifying PMOS constantly turns on  
and low side switch constantly turns off. The output voltage is the input voltage minus the voltage drop across  
the dc resistance (DCR) of the inductor and the on-resistance of the rectifying PMOS.  
With VIN ramping up, the TPS61099x goes into Down Mode first when VIN > VOUT – 50mV. It stays in Down Mode  
until VIN > VOUT + 0.5 V and then goes automatically into Pass-Through operation. In the Pass-Through  
operation, output voltage follows input voltage. The TPS61099x exits Pass-Through Mode and goes back to  
Down Mode when VIN ramps down to 103% of the target output voltage. It stays in Down Mode until input voltage  
falls 100mV below the output voltage, returning to Boost operation.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS61099  
 
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
Feature Description (continued)  
3 1  
2
1 3  
Voltage  
1:Down Mode  
2:Pass-through Mode  
3:Boost Mode  
500mV  
VIN  
3%*VOUT  
VOUT  
50mV  
100mV  
t
Figure 20. Down Mode and Pass-Through Operation  
8.3.9 Thermal Shutdown  
The TPS61099x has a built-in temperature sensor which monitors the internal junction temperature in boost  
mode operation. If the junction temperature exceeds the threshold 150°C, the device stops operating. As soon as  
the junction temperature drops below the shutdown temperature minus the hysteresis, typically 125°C, it starts  
operating again.  
8.4 Device Functional Modes  
8.4.1 Burst Mode Operation under Light Load Condition  
The boost converter of TPS61099x enters into Burst Mode operation under light load condition. Refer to Boost  
Controller Operation for details.  
8.4.2 Down Mode Regulation and Pass-Through Mode Operation  
The boost converter of TPS61099x automatically enters into Down Mode or pass-through mode operation when  
input voltage is higher than the target output voltage. Refer to Down Mode Regulation and Pass-Through  
Operation for details.  
14  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS61099x is a synchronous boost converter designed to operate at a wide input voltage from 0.7 V to 5.5  
V with 1-A peak switch current limit. The device adopts a hysteretic control scheme so the operating frequency is  
not a constant value, which varies with different input/output voltages and inductor values. It only consumes 1-µA  
quiescent current under light load condition. It also supports true shutdown to disconnect the load from the input  
in order to minimize the leakage current. Therefore, it is very suitable for alkaline battery, coin-cell battery, Li-ion  
or Li-polymer battery powered systems to extend the battery running time.  
9.2 Typical Application - 5 V Output Boost Converter  
L1  
VOUT  
5 V  
SW  
VOUT  
FB  
2.2 µH  
C3  
C2  
R1  
R2  
VIN  
VIN TPS61099  
10 µF  
10 µF  
2.7 V to 4.2 V  
C1  
10 µF  
EN  
GND  
Copyright © 2016, Texas Instruments Incorporated  
9.2.1 Design Requirements  
A typical application example is the memory LCD, which normally requires 5-V output as its bias voltage and only  
consumes less than 1 mA current. The following design procedure can be used to select external component  
values for the TPS61099x.  
Table 1. Design Requirements  
PARAMETERS  
Input Voltage  
VALUES  
2.7 V ~ 4.2 V  
5 V  
Output Voltage  
Output Current  
1 mA  
Output Voltage Ripple  
± 50 mV  
9.2.1.1 Detailed Design Procedure  
9.2.1.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS61099 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS61099  
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.1.1.2 Programming the Output Voltage  
There are two ways to set the output voltage of the TPS61099x. For adjustable output voltage version, select the  
external resistor divider R1 and R2, as shown in Equation 1, the output voltage is programmed to the desired  
value. When the output voltage is regulated, the typical voltage at the FB pin is VREF of 1.0 V.  
R1+ R2  
VOUT = VREF  
R2  
(1)  
For fixed output voltage versions, the FB pin should be connected to the GND. The TPS61099x offers diverse  
fixed voltage versions, refer to Device Comparison Table for version details.  
In this example, 5-V output is required to bias the memory LCD. For the best accuracy, the current following  
through R2 should be 100 times larger than FB pin leakage current. Changing R2 towards a lower value  
increases the robustness against noise injection. Changing R2 towards higher values reduces the FB divider  
current for achieving the highest efficiency at low load currents. 1-MΩ and 249-kΩ resistors are selected for R1  
and R2 in this example. High accuracy resistors are recommended for better output voltage accuracy.  
9.2.1.1.3 Maximum Output Current  
The maximum output capability of the TPS61099x is determined by the input to output ratio and the current limit  
of the boost converter. It can be estimated by Equation 2.  
I
VIN (ILIM  
-
LH )∂ h  
2
IOUT(max)  
=
VOUT  
where  
η is the conversion efficiency, use 85% for estimation  
ILH is the current ripple value  
ILIM is the switch current limit  
(2)  
Minimum input voltage, maximum boost output voltage and minimum current limit ILIM should be used as the  
worst case condition for the estimation.  
9.2.1.1.4 Inductor Selection  
Because the selection of the inductor affects steady state operation, transient behavior, and loop stability, the  
inductor is the most important component in power regulator design. There are three important inductor  
specifications, inductor value, saturation current, and dc resistance (DCR).  
The TPS61099x is optimized to work with inductor values between 1 µH and 2.2 µH. For best stability  
consideration, a 2.2-µH inductor is recommended under Vout > 3.0V condition while choosing a 1-µH inductor for  
applications under Vout 3.0V condition. Follow Equation 3 and Equation 4 to calculate the inductor's peak  
current for the application. Depending on different load conditions, the TPS61099x works in continuous current  
mode or discontinuous mode. In different modes, the peak currents of the inductor are also different. Equation 3  
provides an easy way to estimate whether the device works in CCM or DCM. As long as the Equation 3 is true,  
continuous current mode is typically established. Otherwise, discontinuous current mode is typically established.  
VOUT IOUT ILH  
>
VIN ì h  
2
(3)  
The inductor current ripple ILH is fixed by design. Therefore, the peak inductor current is calculated with  
Equation 4.  
VOUT IOUT  
I
IL,peak  
=
+
LH ; continuous currentmode operation  
V ì h  
2
IN  
IL,peak = ILH;  
discontinuous currentmode operation  
16  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
 
 
 
 
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
where  
IL,peak is the peak inductor current.  
(4)  
The inductor's saturation current must be higher than the calculated peak inductor current. Table 2 lists the  
recommended inductors for TPS61099x device.  
After choosing the inductor, the estimated switching frequency ƒ in continuous current mode can be calculated  
by Equation 5. The switching frequency is not a constant value, which is determined by L, VIN and VOUT  
.
V
IN (VOUT - VIN ∂ h)  
f =  
L ILH VOUT  
(5)  
(1)  
Table 2. List of Inductors  
INDUCTANCE  
[µH]  
SATURATION  
CURRENT [A]  
DC RESISTANCE  
VOUT [V]  
SIZE (LxWxH)  
PART NUMBER  
MANUFACTURER  
[mΩ]  
2.2  
2.2  
2.2  
1.0  
1.0  
1.0  
1.95  
1.7  
80  
2.5 x 2.0 x 1.2  
2.5 x 2.0 x 1.1  
74404024022  
Würth Elektronik  
muRata  
> 3.0  
92  
LQH2HPN2R2MJR  
1.45  
2.6  
163  
37  
2.0 x 1.6 x 1.0 VLS201610CX-2R2M  
2.5 x 2.0 x 1.2 74404024010  
2.5 x 2.0 x 1.0 MLP2520W1R0MT0S1  
2.0 x 1.2 x 1.0 LQM21PN1R0MGH  
TDK  
Würth Elektronik  
TDK  
3.0  
2.3  
48  
1.5  
80  
muRata  
(1) See Third-Party Products disclaimer  
9.2.1.1.5 Capacitor Selection  
For best output and input voltage filtering, low ESR X5R or X7R ceramic capacitors are recommended.  
The input capacitor minimizes input voltage ripple, suppresses input voltage spikes and provides a stable system  
rail for the device. An input capacitor value of 10 μF is normally recommended to improve transient behavior of  
the regulator and EMI behavior of the total power supply circuit. A ceramic capacitor placed as close as possible  
to the VIN and GND pins of the IC is recommended.  
For the output capacitor of VOUT pin, small ceramic capacitors are recommended, placed as close as possible  
to the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors  
which cannot be placed close to the IC, the use of a small ceramic capacitor with a capacitance value of 1 μF in  
parallel to the large one is recommended. This small capacitor should be placed as close as possible to the  
VOUT and GND pins of the IC.  
From the power stage point of view, the output capacitor sets the corner frequency of the converter while the  
inductor creates a Right-Half-Plane-Zero. Consequently, with a larger inductor, a larger output capacitor must be  
used. The TPS61099x is optimized to work with the inductor from 1 µH to 2.2 µH, so the minimal output  
capacitor value is 20 μF (nominal value). Increasing the output capacitor makes the output ripple smaller in PWM  
mode.  
When selecting capacitors, ceramic capacitor’s derating effect under bias should be considered. Choose the right  
nominal capacitance by checking capacitor's DC bias characteristics. In this example, GRM188R60J106ME84D,  
which is a 10-µF ceramic capacitor with high effective capacitance value at DC biased condition, is selected for  
VOUT rail. The performance of TPS61099x is shown in Application Curves section.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS61099  
 
 
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
9.2.1.2 Application Curves  
VIN = 3.7 V  
VOUT = 5 V  
IOUT = 10 mA  
VIN = 3.7 V  
VOUT = 5 V  
IOUT = 200 mA  
Figure 22. Switching Waveform at Light Load  
Figure 21. Switching Waveform at Heavy Load  
VIN = 3.7 V  
VOUT = 5 V  
IOUT = 100 mA  
VIN = 3.7 V  
VOUT = 5 V  
IOUT = 50 mA  
Figure 24. Startup by EN  
Figure 23. Startup by VIN  
VIN = 2.4 V to 3.7 V  
VOUT = 5 V  
IOUT = 200 mA  
VIN = 3.7 V  
VOUT = 5 V  
IOUT = 50 mA to 200 mA  
Figure 25. Line Transient  
Figure 26. Load Transient  
18  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
VIN = 3.7 V  
VOUT = 5 V  
IOUT = 0 mA to 250 mA  
VIN = 2.4 to 5.5 V  
VOUT = 5 V  
IOUT = 200 mA  
Figure 27. Load Regulation  
Figure 28. Line Regulation  
10 Power Supply Recommendations  
The TPS61099x family is designed to operate from an input voltage supply range between 0.7 V to 5.5 V. The  
power supply can be alkaline battery, NiMH rechargeable battery, Li-Mn battery or rechargeable Li-Ion battery.  
The input supply should be well regulated with the rating of TPS61099x.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS61099  
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.  
11.2 Layout Example  
The bottom layer is a large GND plane connected by vias.  
GROUND  
INPUT  
Top Layer  
VIA  
VIN  
SW  
EN  
GND  
VOUT  
FB  
OUTPUT  
GROUND  
EN  
Figure 29. Layout -YFF  
20  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
Layout Example (continued)  
VIN  
GND  
GND  
VOUT  
FB  
VIN  
SW  
EN  
VOUT  
EN  
Figure 30. Layout - DRV  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS61099  
TPS61099  
SLVSD88K JULY 2016REVISED MAY 2018  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
12.1.1.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS61099x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.1.2 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Performing Accurate PFM Mode Efficiency Measurements, SLVA236  
Accurately measuring efficiency of ultralow-IQ devices, SLYT558  
IQ: What it is, what it isn’t, and how to use it, SLYT412  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
22  
Submit Documentation Feedback  
Copyright © 2016–2018, Texas Instruments Incorporated  
Product Folder Links: TPS61099  
TPS61099  
www.ti.com  
SLVSD88K JULY 2016REVISED MAY 2018  
12.5 Trademarks  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
12.6 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2016–2018, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPS61099  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jul-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
DRV  
DRV  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
DRV  
YFF  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS610992YFFR  
TPS610992YFFT  
TPS610993YFFR  
TPS610993YFFT  
TPS610994YFFR  
TPS610994YFFT  
TPS610995DRVR  
TPS610995DRVT  
TPS610995YFFR  
TPS610995YFFT  
TPS610996YFFR  
TPS610996YFFT  
TPS610997YFFR  
TPS610997YFFT  
TPS61099DRVR  
TPS61099YFFR  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WSON  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 125  
-40 to 125  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 150  
-40 to 85  
19J  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PREVIEW  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
19J  
3000  
250  
Green (RoHS  
& no Sb/Br)  
17X  
17X  
17N  
17N  
1NDU  
1NDU  
19K  
19K  
19I  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
WSON  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WSON  
3000  
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
NIPDAU  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
19I  
3000  
250  
Green (RoHS  
& no Sb/Br)  
14K  
14K  
1I8U  
12G  
Green (RoHS  
& no Sb/Br)  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
DSBGA  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Jul-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61099YFFT  
ACTIVE  
DSBGA  
YFF  
6
250  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 85  
12G  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS610992YFFR  
TPS610992YFFT  
TPS610993YFFR  
TPS610993YFFT  
TPS610994YFFR  
TPS610994YFFT  
TPS610995DRVR  
TPS610995DRVT  
TPS610995YFFR  
TPS610995YFFT  
TPS610996YFFR  
TPS610996YFFT  
TPS610997YFFR  
TPS610997YFFT  
TPS61099YFFR  
TPS61099YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WSON  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
DRV  
DRV  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
0.96  
0.96  
0.96  
0.96  
0.96  
0.96  
2.3  
1.36  
1.36  
1.36  
1.36  
1.36  
1.36  
2.3  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
1.15  
1.15  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q2  
Q2  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
3000  
250  
WSON  
2.3  
2.3  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
3000  
250  
0.96  
0.96  
0.96  
0.96  
0.96  
0.96  
0.96  
0.96  
1.36  
1.36  
1.36  
1.36  
1.36  
1.36  
1.36  
1.36  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-May-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS610992YFFR  
TPS610992YFFT  
TPS610993YFFR  
TPS610993YFFT  
TPS610994YFFR  
TPS610994YFFT  
TPS610995DRVR  
TPS610995DRVT  
TPS610995YFFR  
TPS610995YFFT  
TPS610996YFFR  
TPS610996YFFT  
TPS610997YFFR  
TPS610997YFFT  
TPS61099YFFR  
TPS61099YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WSON  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
DRV  
DRV  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
210.0  
210.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
185.0  
185.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
35.0  
35.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
250  
WSON  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
YFF0006  
DSBGA - 0.625 mm max height  
SCALE 10.500  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.625 MAX  
C
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
0.4 TYP  
C
B
SYMM  
0.8  
D: Max = 1.256 mm, Min =1.196 mm  
E: Max = 0.914 mm, Min =0.854 mm  
TYP  
0.4 TYP  
A
0.3  
6X  
2
1
0.2  
SYMM  
0.015  
C A B  
4223785/A 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0006  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
6X ( 0.23)  
(0.4) TYP  
1
2
A
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223785/A 06/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0006  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
2
6X ( 0.25)  
(0.4) TYP  
(R0.05) TYP  
1
A
B
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:35X  
4223785/A 06/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TPS610994YFFT

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85
TI

TPS610995

TPS61099x Synchronous Boost Converter with Ultra-Low Quiescent Current
TI

TPS610995DRVR

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | DRV | 6 | -40 to 125
TI

TPS610995DRVT

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | DRV | 6 | -40 to 125
TI

TPS610995YFFR

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85
TI

TPS610995YFFT

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85
TI

TPS610996

TPS61099x Synchronous Boost Converter with Ultra-Low Quiescent Current
TI

TPS610996YFFR

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85
TI

TPS610996YFFT

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85
TI

TPS610997YFFR

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85
TI

TPS610997YFFT

具有 800nA 超低静态电流的 0.7V 输入电压同步升压转换器 | YFF | 6 | -40 to 85
TI

TPS61099DRVR

TPS61099x Synchronous Boost Converter with Ultra-Low Quiescent Current
TI