TPS61169 [TI]

TPS61169 38V 高电流升压 WLED 驱动器;
TPS61169
型号: TPS61169
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS61169 38V 高电流升压 WLED 驱动器

驱动 驱动器
文件: 总22页 (文件大小:882K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS61169  
ZHCSD24 OCTOBER 2014  
TPS61169 采用 PWM 控制的 38V 高电流  
升压 WLED 驱动器  
1 特性  
3 说明  
1
2.7V 5.5V 输入电压  
TPS61169 是一款升压转换器,配有额定电压为 40V  
的集成开关场效应晶体管 (FET),可驱动 LED 串。 该  
升压转换器内部具有一个 40V1.8A 金属氧化物半导  
体场效应晶体管 (MOSFET),电流下限为 1.2A,可针  
对小型或大型面板背光照明驱动单个 LED LED  
串。 默认的白色 LED 电流通过外部传感器电阻 RSET  
设定,反馈电压稳压至 204mV,如简化电路原理图 所  
示。 运行期间,LED 电流可通过施加到 CTRL 引脚上  
的脉宽调制 (PWM) 信号加以控制,该信号的占空比决  
定反馈基准电压。 TPS61169 不会突发 LED 电流,因  
此不会在输出电容器上产生可闻噪声。 为提供最佳保  
护,该器件集成了 LED 开路保护特性,该特性会在  
LED 开路状态下禁用 TPS61169,以防止输出电压超  
IC 最大绝对额定电压。  
集成 40V1.8A 金属氧化物半导体场效应晶体管  
(MOSFET)  
高达 38V LED 串驱动电压  
1.2A 开关电流下限  
1.2MHz 开关频率  
204mV 基准电压  
内部补偿  
PWM 亮度控制  
LED 开路保护  
欠压保护  
内置软启动  
热关断  
效率高达 90%  
TPS61169 采用节省空间的 5 引脚 SC70 封装。  
2 应用  
器件信息(1)  
智能手机背光照明  
平板电脑背光照明  
器件型号  
TPS61169  
封装  
封装尺寸(标称值)  
SOT (5)  
2.00mm × 1.25mm  
PDA、掌上电脑、GPS 接收器  
便携式媒体播放器,便携式电视  
针对小尺寸媒体播放器的白色 LED 背光照明  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 简化电路原理图  
L
D
VBAT  
CIN  
TPS61169  
COUT  
VIN  
SW  
FB  
CTRL  
GND  
PWM DIMMING  
CONTROL  
RSET  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNVSA40  
 
 
 
 
TPS61169  
ZHCSD24 OCTOBER 2014  
www.ti.com.cn  
目录  
8.3 Feature Description .................................................. 8  
8.4 Device Functional Modes........................................ 10  
Application and Implementation ........................ 11  
9.1 Application Information............................................ 11  
9.2 Typical Application .................................................. 11  
9.3 TPS61169 Application Curves ................................ 13  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 Handling Ratings ...................................................... 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 5  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
8.1 Overview ................................................................... 7  
8.2 Functional Block Diagram ......................................... 8  
9
10 Power Supply Recommendations ..................... 16  
11 Layout................................................................... 16  
11.1 Layout Guidelines ................................................. 16  
11.2 Layout Example .................................................... 16  
12 器件和文档支持 ..................................................... 17  
12.1 第三方产品免责声明.............................................. 17  
12.2 ....................................................................... 17  
12.3 静电放电警告......................................................... 17  
12.4 术语表 ................................................................... 17  
13 机械封装和可订购信息 .......................................... 17  
8
5 修订历史记录  
日期  
修订版本  
注释  
2014 10 月  
*
最初发布版本  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS61169  
www.ti.com.cn  
ZHCSD24 OCTOBER 2014  
6 Pin Configuration and Functions  
SC70 (DCK) Package  
5 Pins  
(Top View)  
SW  
GND  
FB  
1
2
3
5
VIN  
4
CTRL  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
SW  
NO.  
1
I
O
I
Drain connection of the internal power FET.  
Ground  
GND  
FB  
2
3
Feedback pin for current. Connect the sense resistor from FB to GND.  
PWM dimming signal input  
CTRL  
VIN  
4
I
5
I
Supply input pin  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS61169  
ZHCSD24 OCTOBER 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
MAX  
7
UNIT  
Voltage(2)  
VIN, CTRL, PWM, FB  
SW  
V
40  
PD  
TJ  
Continuous power dissipation  
See Thermal Information  
Table  
Operating junction temperature  
–40  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 Handling Ratings  
MIN  
–65  
MAX  
150  
UNIT  
Tstg  
Storage temperature range  
°C  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins(1)  
–2000  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
–500  
500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
2.7  
VIN  
4.7  
1
NOM  
MAX  
UNIT  
V
VIN  
VOUT  
L
Input voltage  
5.5  
38  
10  
Output voltage  
V
Inductor  
µH  
µF  
µF  
kHz  
CI  
Input capacitor  
CO  
Output capacitor  
1
10  
100  
FPWM  
DPWM  
TJ  
PWM dimming signal frequency  
PWM dimming signal duty cycle  
Operating junction temperature  
5
1%  
–40  
100%  
125  
°C  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS61169  
www.ti.com.cn  
ZHCSD24 OCTOBER 2014  
7.4 Thermal Information  
TPS61169  
THERMAL METRIC(1)  
DCK  
(5 PINS)  
263.8  
76.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
51.4  
°C/W  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
1.1  
ψJB  
50.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining R θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining RθJA , using a procedure described in JESD51-2a (sections 6 and 7).  
7.5 Electrical Characteristics  
Over operating free-air temperature range, VIN = 3.6 V, CTRL = VIN (unless otherwise specified).  
PARAMETER  
POWER SUPPLY  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
2.7  
5.5  
V
V
VVIN_UVLO  
Undervoltage lockout threshold  
VIN falling  
VIN rising  
2
2.3  
2.6  
VVIN_HYS  
IQ_VIN  
VIN UVLO hysteresis  
200  
0.3  
mV  
mA  
Operating quiescent current into  
VIN  
Device enable, switching 1.2 MHz  
and no load,  
0.45  
2
ISD  
Shutdown current  
CTRL = GND  
1
µA  
CONTROL LOGIC AND TIMING  
VH  
CTRL Logic high voltage  
CTRL Logic Low voltage  
1.2  
V
V
VL  
0.4  
RPD  
CTRL pin internal pull-down  
resistor  
300  
204  
KΩ  
tSD  
CTRL logic low time to shutdown  
CTRL high to low  
2.5  
ms  
VOLTAGE AND CURRENT REGULATION  
VREF  
Voltage feedback regulation  
voltage  
Duty = 100%, TA 25ºC  
188  
220  
2.5  
mV  
IFB  
FB pin bias current  
VFB = 204 mV  
µA  
ms  
tREF  
VREF filter time constant  
1
POWER SWITCH  
RDS(ON) N-channel MOSFET on-resistance  
ILN_NFET N-channel leakage current  
SWITCHING FREQUENCY  
0.35  
0.7  
1
Ω
VSW = 35 V  
µA  
fSW  
Switching frequency  
VIN = 3 V  
0.75  
1.2  
1.2  
1.5  
2.4  
MHz  
PROTECTION AND SOFT START  
ILIM  
Switching MOSFET current limit  
D = DMAX , TA 85ºC  
1.8  
A
ILIM_Start  
Switching MOSFET start-up  
current limit  
TA 85ºC  
0.72  
tHalf_LIM  
Time step for half current limit  
6.5  
ms  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS61169  
ZHCSD24 OCTOBER 2014  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over operating free-air temperature range, VIN = 3.6 V, CTRL = VIN (unless otherwise specified).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOVP_SW  
Output voltage overvoltage  
threshold  
36  
37.5  
39  
V
THERMAL SHUTDOWN  
Tshutdown Thermal shutdown threshold  
Thys Thermal shutdown hysteresis  
160  
15  
°C  
°C  
7.6 Typical Characteristics  
At TA = 25°C, unless otherwise noted.  
250  
200  
150  
100  
50  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100 120  
Dimming Duty Cycle (%)  
Temperature (°C)  
D001  
D002  
Figure 1. FB Voltage vs Dimming Duty Cycle  
Figure 2. Current Limit vs Temperature  
6
Copyright © 2014, Texas Instruments Incorporated  
 
TPS61169  
www.ti.com.cn  
ZHCSD24 OCTOBER 2014  
8 Detailed Description  
8.1 Overview  
The TPS61169 is a high-efficiency, high-output voltage boost converter in small package size. The device  
integrates 40-V/1.8-A switch FET and is designed for output voltage up to 39 V with a switch peak current limit of  
1.2 A minimum. Its large driving capability can drive single or parallel LED strings for small to large size panel  
backlighting.  
The TPS61169 operates in a current mode scheme with quasi-constant frequency. It is internally compensated  
for maximum flexibility and stability. The switching frequency is 1.2 MHz, and the minimum input voltage is 2.7 V.  
During the on-time, the current rises into the inductor. When the current reaches a threshold value set by the  
internal GM amplifier, the power switch MOSFET is turned off. The polarity of the inductor changes and forward  
biases the schottky diode which lets the current flow towards the output of the boost converter. The off-time is  
fixed for a certain VIN and VOUT, and therefore maintains the same frequency when varying these parameters.  
However, for different output loads, the frequency slightly changes due to the voltage drop across the RDS(ON)  
of the power switch MOSFET, this has an effect on the voltage across the inductor and thus on tON (tOFF remains  
fixed). The fixed off-time maintains a quasi-fixed frequency that provides better stability for the system over a  
wider range of input and output voltages than conventional boost converters. The TPS61169 topology has also  
the benefits of providing very good load and line regulations, and excellent line and load transient responses.  
The feedback loop regulates the FB pin to a low reference voltage (204 mV typical), reducing the power  
dissipation in the current sense resistor.  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS61169  
ZHCSD24 OCTOBER 2014  
www.ti.com.cn  
8.2 Functional Block Diagram  
L
D
VBAT  
VOUT  
COUT  
CIN  
SW  
VIN  
UVLO  
OVP  
Current Limit and  
Soft Start  
TOFF  
Generator  
Ton  
PWM  
Gate Driver of  
Generator  
Power MOSFET  
FB  
GM Amplifier  
VREF  
RSET  
CTRL  
PWM Dimming  
Reference Control  
Shutdown  
GND  
8.3 Feature Description  
8.3.1 Soft Start-Up  
Soft-start circuitry is integrated into the IC to avoid high inrush current spike during start-up. After the device is  
enabled, the GM amplifier output voltage ramps up very slowly, which ensures that the output voltage rises  
slowly to reduce the input current. During this period, the switch current limit is set to 0.72 A. After around 6.5  
ms, the switch current limit changes back to ILIM, and the FB pin voltage ramps up to the reference voltage  
slowly. These features ensure the smooth start-up and minimize the inrush current. See Figure 12 for a typical  
example.  
8.3.2 Open LED Protection  
Open LED protection circuitry prevents IC damage as the result of white LED disconnection. The TPS61169  
monitors the voltage at the SW pin and FB pin during each switching cycle. The circuitry turns off the switch FET  
and shuts down the IC when both of the following conditions persist for 3 switching cycles: (1) the SW voltage  
exceeds the VOVP threshold, and (2) the FB voltage is less than 30 mV. As the result, the output voltage falls to  
the level of the input supply. The device remains in shutdown mode until it is enabled by toggling the CTRL pin.  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS61169  
www.ti.com.cn  
ZHCSD24 OCTOBER 2014  
Feature Description (continued)  
8.3.3 Shutdown  
The TPS61169 enters shutdown mode when the CTRL voltage is logic low for more than 2.5 ms. During  
shutdown, the input supply current for the device is less than 2 μA (max). Although the internal switch FET does  
not switch in shutdown, there is still a DC current path between the input and the LEDs through the inductor and  
Schottky diode. The minimum forward voltage of the LED array must exceed the maximum input voltage to  
ensure that the LEDs remain off in shutdown.  
8.3.4 Current Program  
The FB voltage is regulated by a low 204-mV reference voltage. The LED current is programmed externally using  
a current-sense resistor in series with the LED string(s). The value of the RSET is calculated using:  
VFB  
ILED  
 
RSET  
where  
ILED = total output current of LED string(s)  
VFB = regulated voltage of FB pin  
RSET = current sense resistor  
(1)  
The output current tolerance depends on the FB accuracy and the current sensor resistor accuracy.  
8.3.5 LED Brightness Dimming  
The TPS61169 receives PWM dimming signal at CTRL pin to control the total output current. When the CTRL  
pin is constantly high, the FB voltage is regulated to 204 mV typically. When the duty cycle of the input PWM  
signal is low, the regulation voltage at FB pin is reduced, and the total output current is reduced; therefore, it  
achieves LED brightness dimming. The relationship between the duty cycle and FB regulation voltage is given  
by:  
VFB   Duty u 204 mV  
where  
Duty = Duty cycle of the PWM signal  
204 mV = internal reference voltage  
(2)  
Thus, the user can easily control the WLED brightness by controlling the duty cycle of the PWM signal.  
As shown in Figure 3, the IC chops up the internal 204-mV reference voltage at the duty cycle of the PWM  
signal. The pulse signal is then filtered by an internal low-pass filter. The output of the filter is connected to the  
GM amplifier as the reference voltage for the FB pin regulation. Therefore, although a PWM signal is used for  
brightness dimming, only the WLED DC current is modulated, which is often referred as analog dimming. This  
eliminates the audible noise which often occurs when the LED current is pulsed in replica of the frequency and  
duty cycle of PWM control. Unlike other methods which filter the PWM signal for analog dimming, TPS61169  
regulation voltage is independent of the PWM logic voltage level which often has large variations.  
For optimum performance, use the PWM dimming frequency in the range of 5 kHz to 100 kHz. If the PWM  
frequency is lower than 5 kHz, it is out of the low pass filter's filter range, the FB regulation voltage ripple  
becomes large, causing large output ripple and may generate audible noise.  
Copyright © 2014, Texas Instruments Incorporated  
9
 
TPS61169  
ZHCSD24 OCTOBER 2014  
www.ti.com.cn  
Feature Description (continued)  
VBG  
204 mV  
CTRL  
VREF  
EA Output  
FB  
GM  
Amplifier  
Figure 3. Programmable FB Voltage Using PWM Signal  
8.3.6 Undervoltage Lockout  
An undervoltage lockout prevents operation of the device at input voltages below typical 2 V. When the input  
voltage is below the undervoltage threshold, the device is shut down, and the internal switch FET is turned off. If  
the input voltage rises by undervoltage lockout hysteresis, the IC restarts.  
8.3.7 Thermal Foldback and Thermal Shutdown  
When TPS61169 drives heavy load for large size panel applications, the power dissipation increases a lot and  
the device junction temperature may reach a very high value, affecting the device function and reliability. In order  
to lower the thermal stress, the TPS61169 features a thermal foldback function. When the junction temperature is  
higher than 100°C, the switch current limit ILIM is reduced automatically as Figure 2 shows. This thermal foldback  
mechanism controls the power dissipation and keeps the junction temperature from rising to a very high value. If  
the typical junction temperature of 160°C is exceeded, an internal thermal shutdown turns off the device. The  
device is released from shutdown automatically when the junction temperature decreases by 15°C.  
8.4 Device Functional Modes  
8.4.1 Operation With CTRL  
The enable rising edge threshold voltage is 1.2 V. With the CTRL terminal is held below that voltage the device  
is disabled and switching is inhibited. The IC quiescent current is reduced in this state. When input voltage is  
above the UVLO threshold, and the CTRL terminal voltage is increased above the rising edge threshold, the  
device becomes active. Switching enables, and the soft-start sequence initiates.  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS61169  
www.ti.com.cn  
ZHCSD24 OCTOBER 2014  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS61169 device is a step-up DC-DC converter which can drive single or parallel LED strings for small- to  
large-size panel backlighting. This section includes a design procedure (Detailed Design Procedure) to select  
component values for the TPS61169 typical application (Figure 4).  
9.2 Typical Application  
L
2.7 V to 5.5 V  
VBAT  
4.7 µH  
D
10s1p  
CIN  
4.7 µF  
COUT  
1 µF  
TPS61169  
VIN  
SW  
FB  
CTRL  
GND  
PWM DIMMING  
CONTROL  
RSET  
10.2  
Figure 4. TPS61169 2.7-V to 5.5-V Input, 10 LEDs in Series Output Converter  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 1 as the input parameters.  
Table 1. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
EXAMPLE VALUE  
2.7 V to 5.5 V  
Output, LED number in a string  
Output, LED string number  
Output, LED current per string  
10  
1
20 mA  
9.2.2 Detailed Design Procedure  
9.2.2.1 Inductor Selection  
The selection of the inductor affects power efficiency, steady state operation as well as transient behavior and  
loop stability. These factors make it the most important component in power regulator design. There are three  
important inductor specifications, inductor value, DC resistance and saturation current. Considering inductor  
value alone is not enough. The inductor value determines the inductor ripple current. Choose an inductor that  
can handle the necessary peak current without saturating. Follow Equation 3 to Equation 4 to calculate the  
inductor's peak current. To calculate the current in the worst case, use the minimum input voltage, maximum  
output voltage and maximum load current of application. In a boost regulator, the input DC current can be  
calculated as Equation 3.  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
 
 
TPS61169  
ZHCSD24 OCTOBER 2014  
www.ti.com.cn  
VOUT uIOUT  
IL(DC)  
 
V u K  
IN  
where  
VOUT = boost output voltage  
IOUT = boost output current  
VIN = boost input voltage  
η = power conversion efficiency  
(3)  
The inductor current peak to peak ripple can be calculated as Equation 4.  
1
'IL(PP)  
 
1
1
L u(  
)uFS  
VOUT  V  
V
IN  
IN  
where  
ΔIL(PP) = inductor peak-to-peak ripple  
L = inductor value  
FS = boost switching frequency  
VOUT = boost output voltage  
VIN = boost input voltage  
(4)  
(5)  
Therefore, the peak current IL(P) seen by the inductor is calculated with Equation 5.  
'IL(PP)  
IL(P)   IL(DC)  
2
Inductor values can have ±20% tolerance with no current bias. When the inductor current approaches saturation  
level, its inductance can decrease 20% to 35% from the 0-A value depending on how the inductor vendor defines  
saturation current. Using an inductor with a smaller inductance value forces discontinuous PWM when the  
inductor current ramps down to zero before the end of each switching cycle. This reduces the boost converter’s  
maximum output current, causes large input voltage ripple and reduces efficiency. Large inductance value  
provides much more output current and higher conversion efficiency. For these reasons, a 4.7-μH to 10-μH  
inductor value range is recommended, and 4.7-μH inductor is recommended for higher than 5-V input voltage by  
considering inductor peak current and loop stability. Table 2 lists the recommended inductor for the TPS61169.  
Table 2. Recommended Inductors for TPS61169  
SATURATION  
CURRENT (A)  
SIZE (L x W x H  
mm)  
PART NUMBER  
L (µH)  
DCR MAX (mΩ)  
VENDOR  
LPS4018-472ML  
LPS4018-103ML  
PCMB051H-4R7M  
PCMB051H-100M  
4.7  
10  
125  
200  
85  
1.9  
1.3  
4
4 x 4 x 1.8  
4 x 4 x 1.8  
Coilcraft  
Coilcraft  
Cyntec  
Cyntec  
4.7  
10  
5.4 x 5.2 x 1.8  
5.4 x 5.2x 1.8  
155  
3
9.2.2.2 Schottky Diode Selection  
The TPS61169 demands a low forward voltage, high-speed and low capacitance Schottky diode for optimum  
efficiency. Ensure that the diode average and peak current rating exceeds the average output current and peak  
inductor current. In addition, the diode reverse breakdown voltage must exceed the open LED protection voltage.  
ONSemi NSR0240 is recommended for the TPS61169.  
9.2.2.3 Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirement for the output ripple and loop stability. This ripple  
voltage is related to capacitor capacitance and its equivalent series resistance (ESR). Assuming a capacitor with  
zero ESR, the minimum capacitance needed for a given ripple can be calculated with Equation 6:  
(VOUT  V )uIOUT  
IN  
COUT  
 
VOUT uFS u V  
ripple  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
 
TPS61169  
www.ti.com.cn  
ZHCSD24 OCTOBER 2014  
where  
Vripple = peak-to-peak output ripple  
(6)  
The additional part of the ripple caused by ESR is calculated using: Vripple_ESR = IOUT × RESR  
Due to its low ESR, Vripple_ESR could be neglected for ceramic capacitors, a 1-µF to 4.7-µF capacitor is  
recommended for typical application.  
9.2.2.4 LED Current Set Resistor  
The LED current set resistor can be calculated by Equation 1.  
9.2.2.5 Thermal Considerations  
The allowable IC junction temperature should be considered under normal operating conditions. This restriction  
limits the power dissipation of the TPS61169. The allowable power dissipation for the device can be determined  
by Equation 7:  
TJ - TA  
PD   
RTJA  
where  
TJ is allowable junction temperature given in recommended operating conditions  
TA is the ambient temperature for the application  
RθJA is the thermal resistance junction-to-ambient given in Power Dissipation Table  
(7)  
The TPS61169 device also features a thermal foldback function to reduce the thermal stress automatically.  
9.3 TPS61169 Application Curves  
Typical application condition is as in Figure 4, VIN = 3.6 V, RSET=10.2 Ω, L = 4.7 µH, COUT = 1 µF, 10 LEDs in series (unless  
otherwise specified).  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
10 LEDs in series  
6 LEDs in series  
Vin = 3.0 V  
Vin = 3.6 V  
Vin = 4.2 V  
Vin = 5.0 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Dimming Duty Cycle (%)  
Dimming Duty Cycle (%)  
D003  
D004  
10 LEDs in series  
Figure 5. Efficiency vs Dimming Duty Cycle  
Figure 6. Efficiency vs Dimming Duty Cycle  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
TPS61169  
ZHCSD24 OCTOBER 2014  
www.ti.com.cn  
TPS61169 Application Curves (continued)  
Typical application condition is as in Figure 4, VIN = 3.6 V, RSET=10.2 Ω, L = 4.7 µH, COUT = 1 µF, 10 LEDs in series (unless  
otherwise specified).  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
Vin = 3.0 V  
Vin = 3.6 V  
Vin = 4.2 V  
Vin = 5.0 V  
Vin = 3.0 V  
Vin = 3.6 V  
Vin = 4.2 V  
Vin = 5.0 V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
Dimming Duty Cycle (%)  
Dimming Duty Cycle (%)  
D005  
D006  
8 LEDs in series  
6 LEDs in series  
Figure 7. Efficiency vs Dimming Duty Cycle  
Figure 8. Efficiency vs Dimming Duty Cycle  
SW (20 V/DIV)  
SW (20 V/DIV)  
VOUT (100 mV/DIV, AC coupled)  
IInductor (500 mA/DIV)  
VOUT (100 mV/DIV, AC coupled)  
IInductor (500 mA/DIV)  
ILED (9 mA/DIV)  
ILED (9 mA/DIV)  
Time = 1 µs/DIV  
Time = 1 µs/DIV  
Figure 9. Switching-Dimming Duty = 100%  
Figure 10. Switching-Dimming Duty = 50%  
SW (20 V/DIV)  
PWM  
(2 V/DIV)  
VOUT (100 mV/DIV, AC coupled)  
IInductor (500 mA/DIV)  
IInductor  
(300 mA/DIV)  
VOUT (20 V/DIV)  
ILED (9 mA/DIV)  
ILED (5 mA/DIV)  
Time = 2 µs/DIV  
Time = 2 ms/DIV  
Figure 11. Switching-Dimming Duty = 10%  
Figure 12. Start-Up Dimming Duty = 100%  
14  
Copyright © 2014, Texas Instruments Incorporated  
TPS61169  
www.ti.com.cn  
ZHCSD24 OCTOBER 2014  
TPS61169 Application Curves (continued)  
Typical application condition is as in Figure 4, VIN = 3.6 V, RSET=10.2 Ω, L = 4.7 µH, COUT = 1 µF, 10 LEDs in series (unless  
otherwise specified).  
PWM (2 V/DIV)  
PWM (2 V/DIV)  
IInductor (300 mA/DIV)  
IInductor  
(300 mA/DIV)  
VOUT (20 V/DIV)  
ILED (9 mA/DIV)  
VOUT (20 V/DIV)  
ILED (9 mA/DIV)  
Time = 2 ms/DIV  
Time = 2 ms/DIV  
Figure 13. Start-Up Dimming Duty = 50%  
Figure 14. Shutdown Dimming Duty = 100%  
PWM (2 V/DIV)  
PWM (2 V/DIV)  
VOUT (5 V/DIV, AC coupled)  
IInductor (300 mA/DIV)  
IInductor (300 mA/DIV)  
VOUT (20 V/DIV)  
ILED (9 mA/DIV)  
ILED (9 mA/DIV)  
Time = 2 ms/DIV  
Duty = 50%  
Time = 5 ms/DIV  
Duty = 1%-100%-1%  
Figure 15. Shutdown Dimming  
Figure 16. Dimming Transient-Dimming  
VFB (200 mV/DIV)  
VOUT (20 V/DIV)  
IInductor (600 mA/DIV)  
ILED (9 mA/DIV)  
Time = 50 µs/DIV  
Figure 17. Open LED Protection  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS61169  
ZHCSD24 OCTOBER 2014  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 2.7 V and 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the TPS61169 device,  
additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, especially those high frequency and high current ones, layout is an important  
design step. If layout is not carefully done, the regulator could suffer from instability as well as noise problems.  
Therefore, use wide and short traces for high current paths. The input capacitor CIN needs to be close to VIN pin  
and GND pin in order to reduce the input ripple seen by the IC. If possible choose higher capacitance value for it.  
The SW pin carries high current with fast rising and falling edge, therefore, the connection between the SW pin to  
the inductor should be kept as short and wide as possible. The output capacitor COUT should be put close to  
VOUT pin. It is also beneficial to have the ground of COUT close to the GND pin since there is large ground return  
current flowing between them. FB resistor should be put close to FB pin. When laying out signal ground, it is  
recommended to use short traces separated from power ground traces, and connect them together at a single  
point close to the GND pin.  
11.2 Layout Example  
Bottom  
GND  
GND  
Plane  
VIN  
GND  
VOUT  
Figure 18. TPS61169 Board Layout  
16  
版权 © 2014, Texas Instruments Incorporated  
TPS61169  
www.ti.com.cn  
ZHCSD24 OCTOBER 2014  
12 器件和文档支持  
12.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 商标  
All trademarks are the property of their respective owners.  
12.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61169DCKR  
ACTIVE  
SC70  
DCK  
5
3000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
-40 to 85  
SZL  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61169DCKR

TPS61169 38V 高电流升压 WLED 驱动器 | DCK | 5 | -40 to 85
TI

TPS61170

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61170-Q1

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61170DRV

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61170DRVR

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61170DRVRG4

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61170DRVT

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61170DRVTG4

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61170QDRVRQ1

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61170_08

1.2A High Voltage Boost Converter in 2x2mm2 QFN Package
TI

TPS61175

3-A High Voltage Boost Converter with Soft-start and Programmable Switching Frequency
TI

TPS61175-Q1

具有软启动功能和可编程开关频率的 3A、40V 高压升压转换器
TI