TPS61178RNWT [TI]

具有负载断开控制功能的 20V、10A 全集成同步升压 | RNW | 13 | -40 to 85;
TPS61178RNWT
型号: TPS61178RNWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有负载断开控制功能的 20V、10A 全集成同步升压 | RNW | 13 | -40 to 85

文件: 总40页 (文件大小:1423K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
具备负载断开控制功能的 TPS61178x 20V10A 全集成同步升压器件  
1 特性  
3 说明  
1
输入电压范围:2.7V 20V  
输出电压范围:4.5V 20V  
可编程开关峰值电流:高达 10A  
集成了两个 16mΩ FET  
TPS61178x 系列是内置了栅极驱动器(以实现负载断  
开功能)的 20V 同步升压转换器。TPS61178x 集成了  
两个低导通电阻的功率 FET:一个 16m开关 FET 和  
一个 16m整流器 FET。  
效率高达 96%VIN = 7.2VVOUT = 16VIOUT  
2A  
=
TPS61178x 使用具有集成斜坡补偿功能的固定频率峰  
值电流模式控制。在轻负载时,TPS61178 进入自动  
PFM 模式,而 TPS611781 处于强制 PWM 模式。  
可调节开关频率:高达 2.2MHz  
外部时钟同步:  
200kHz 2.2MHz  
TPS61178x 可以在关断时将输出与输入侧隔离。输出  
短接后,它将进入间断模式以减小热应力,并可在短接  
结束后自动恢复。此外,TPS61178x 还具有 OVP 和  
过热保护以避免故障运行。TPS61178x 采用 3.0mm x  
3.5mm 13 引脚 VQFN 封装,具有增强的热耗散性  
能。  
可提供负载断开功能的栅极驱动器  
自动切断短路保护功能  
过压保护  
自动 PFM 操作 - TPS61178  
强制 PWM 模式 - TPS611781  
3mm x 3.5mm 13 引脚 VQFN Hotrod 封装  
使用 TPS61178 并借助 WEBENCH® 电源设计器  
创建定制设计方案  
器件信息(1)  
器件号  
TPS61178  
TPS611781  
封装  
封装尺寸(标称值)  
QFN (13)  
3.00mm × 3.5mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
便携式扬声器  
LCD 显示屏的电源驱动器  
功率放大器的电源  
电机驱动器的电源  
USB Type-C 电力输送  
典型应用  
L
VIN  
CIN  
VIN  
BST  
VCC  
CBST  
CVCC  
SW  
VOUT2  
P-FET (option)  
ON  
VOUT  
EN  
OFF  
RGATE  
CGATE  
RUP  
COUT2  
COUT1  
FREQ /  
SYNC  
RFreq  
DISDRV  
RDOWN  
FB  
ILIMIT  
AGND  
RLIMIT  
COMP  
PGND  
Cc  
RC  
Cp  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDA7  
 
 
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application ................................................. 16  
9.3 System Examples .................................................. 28  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings ............................................................ 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements ............................................... 6  
7.7 Switching Characteristics.......................................... 6  
7.8 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
9
10 Power Supply Recommendations ..................... 29  
11 Layout................................................................... 30  
11.1 Layout Guidelines ................................................. 30  
11.2 Layout Example .................................................... 30  
12 器件和文档支持 ..................................................... 31  
12.1 器件支持 ............................................................... 31  
12.2 文档支持 ............................................................... 31  
12.3 相关链接................................................................ 31  
12.4 接收文档更新通知 ................................................. 31  
12.5 社区资源................................................................ 32  
12.6 ....................................................................... 32  
12.7 静电放电警告......................................................... 32  
12.8 Glossary................................................................ 32  
13 机械、封装和可订购信息....................................... 32  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (July 2019) to Revision E  
Page  
Restored hyperlink cross reference at the Thermal Information table footnote. .................................................................... 4  
Deleted right-hand column (A/B/S) in the Electrical Characteristics table. ............................................................................ 5  
Changes from Revision C (March 2018) to Revision D  
Page  
Corrected term 1–DR to 1–D in 公式 21............................................................................................................................... 23  
Changes from Revision B (September 2017) to Revision C  
Page  
Changed 公式 21 ................................................................................................................................................................. 23  
Changes from Revision A (April 2017) to Revision B  
Page  
已更改 graphs for 1 through 6 to include 3-A load ....................................................................................................... 7  
Changes from Original (February 2017) to Revision A  
Page  
2
Copyright © 2017–2019, Texas Instruments Incorporated  
 
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
5 Device Comparison Table  
Part Number  
TPS61178  
Operation Mode at Light Load  
Auto PFM  
TPS611781  
Forced PWM  
6 Pin Configuration and Functions  
(RNW)  
(13-Pin QFN)  
Top View  
8
7
6
DISDRV  
VCC  
9
5
4
FB  
10  
COMP  
ILIMIT  
11  
12  
13  
3
2
1
EN  
VIN  
AGND  
FREQ/SYNC  
BST  
Pin Functions  
PIN  
NUMBER  
I/O  
DESCRIPTION  
NAME  
FREQ / SYNC  
1
I
The switching frequency is programmed by a resistor between this pin and the AGND. The  
internal oscillator can be synchronized by an external clock connecting into this pin. This pin  
can not be float in application.  
AGND  
2
-
Analog signal ground of the IC. Connect the AGND to PGND via a single point on the printed  
circuit board.  
ILIMIT  
COMP  
3
4
I
Programming the switching peak current limit by a resistor between this pin and AGND.  
O
Output of the internal error amplifier. The loop compensation network should be connected  
between this pin and AGND.  
FB  
5
6
7
I
Output voltage feedback, a resistor divider connecting to this pin sets the output voltage.  
Power ground  
PGND  
SW  
PWR  
PWR  
The switching node pin of the converter. It is connected to the drain of the internal low-side  
power FET and the source of the internal high-side power FET.  
VOUT  
8
9
PWR  
O
Boost converter output  
DISDRV  
A gate drive output for the external disconnect FET. Connect the DISDRV pin to the gate of  
the external FET. Leave it floating if not using the load disconnect function.  
VCC  
10  
O
Output of the internal regulator. A ceramic capacitor of more than 1.0 µF is required between  
this pin and ground  
EN  
11  
12  
13  
I
Enable logic input. Logic high level enables the device and low level shutdown the device.  
IC power supply input.  
VIN  
BST  
I
O
Power supply for high-side FET gate driver. A capacitor must be connected between this pin  
and the SW pin  
Copyright © 2017–2019, Texas Instruments Incorporated  
3
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–40  
MAX  
SW + 7  
23  
UNIT  
V
BST  
(2)  
Voltage range at terminals  
VIN, SW, VOUT, DISCRG, EN  
VCC, FB, COMP, FREQ / SYNC, ILIMIT  
Operating junction temperature  
Storage temperature  
V
7
V
TJ  
150  
°C  
°C  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(2)  
±2000  
V(ESD)  
Electrostatic discharge  
V
(1)  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(3)  
±750  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges in  
to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary  
precautions.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary  
precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
MAX  
20  
UNIT  
V
VIN  
VOUT  
L
Input voltage  
Outputvoltage  
4.5  
20  
V
Effective inductance range  
Feedback resistance (low side)  
Operating junction temperature  
0.47  
3.3  
µH  
kΩ  
°C  
RFB  
TJ  
200  
125  
–40  
7.4 Thermal Information  
TPS61178  
THERMAL METRIC(1)  
RNR (QFN Package)  
UNIT  
12 PINS  
60.2  
28.6  
14.5  
0.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
14.5  
0.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report..  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
7.5 Electrical Characteristics  
over operating free-air temperature range, VIN = 2.7 V to 14 V and VOUT = 16 V, VCC = 6 V, RLIMIT = 80.6 k. Typical values  
are at TJ = 25°C, (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
2.7  
20  
2.7  
2.3  
V
V
VIN rising  
VIN falling  
2.6  
2.2  
400  
6
Input voltage under voltage lockout  
(UVLO) threshold  
VIN_UVLO  
VIN_HYS  
VCC  
VIN UVLO hysteresis  
VCC regulation voltage  
VCC UVLO threshold  
mV  
V
ICC = 5mA, VIN = 8V  
VCC falling  
VCC_UVLO  
2.1  
V
IC enabled, no load, no ext. FET  
VIN = 6 V, VOUT = 20 V, VFB = 1.3  
V, TJ up to 85 C  
Quiescent current into VIN pin  
Quiescent current into VIN pin  
Quiescent current into VOUT pin  
Quiescent current into VOUT pin  
1.5  
270  
250  
5
3
320  
300  
12  
µA  
µA  
µA  
µA  
IC enabled, no load, no ext. FET  
VIN = 20 V, VOUT = 20 V, VFB = 1.3  
V,TJ up to 85 C  
IQ  
(TPS61178)  
IC enabled, no load, no ext. FET  
VIN = 6 V, VFB = 1.3 V, VOUT = 20 V,  
TJ up to 85 C  
IC enabled, no load, no ext. FET  
VIN = 20 V, VOUT = 20 V, VFB = 1.3  
V, TJ up to 85 C  
IC disabled, VIN = 6 V,  
–40 °C TJ 85°C  
1
3
3.5  
6
µA  
µA  
ISD  
Shutdown current into VIN pin  
IC disabled, VIN = 20 V,  
–40 °C TJ 85°C  
IC disabled, VIN = VOUT = SW = 20  
V
ILS_LKG  
Reverse leakage current into SW  
0.1  
6.5  
µA  
–40 °C TJ 85°C  
OUTPUT  
VOLTAGE  
VOUT  
VOVP  
Output voltage range  
Freq = 500kHz  
4.5  
20  
V
V
Output over-voltage protection  
threshold  
VIN = 8 V, VOUT rising  
20.5  
21  
21.5  
POWER  
SWITCHES  
RDS(on)  
High-side MOSFET on resistance  
Low-side MOSFET on resistance  
VCC = 6 V  
VCC = 6 V  
16  
16  
25  
25  
mΩ  
mΩ  
Power stage trans-conductance  
(peak current ratio with comp  
voltage)  
Gm  
VCC = 6 V  
12  
A/V  
CURRENT  
LIMIT  
ILIM_SW  
ILIM_SW  
TPS61178  
RLIMIT = 80.6 kΩ  
RLIMIT = 80.6 kΩ  
6.4  
5.7  
8
7.4  
20  
9.4  
8.7  
A
A
A
TPS611781  
ILIM_SHORT TPS61178 short current limit  
VOLTAGE  
REFERNCE  
PWM mode  
PFM mode  
1.180  
1.198  
101%  
10  
1.210  
60  
V
VREF  
Reference Voltage at FB pin  
Leakage current into FB pin  
VREF  
nA  
IFB_LKG  
EN / SYNC LOGIC  
VEN_H  
VEN_L  
EN Logic high threshold  
EN Logic Low threshold  
1.2  
V
V
0.4  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range, VIN = 2.7 V to 14 V and VOUT = 16 V, VCC = 6 V, RLIMIT = 80.6 k. Typical values  
are at TJ = 25°C, (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
kΩ  
V
REN  
EN pulldown resistor  
800  
VSYNC_H  
VSYNC_L  
SYNC clock high threshold  
SYNC clock low threshold  
1.2  
0.4  
V
ERROR  
AMPLIFIER  
VCOMPH  
VCOMPL  
GmEA  
COMP output high voltage  
COMP output low voltage  
Error amplifier trans conductance  
Comp pin sink current  
High threshold, VFB = VREF - 200 mV  
1.9  
1.25  
195  
20  
V
Low threshold, VFB = VREF + 200  
mV  
V
VCOMP = 1.5 V  
uS  
uA  
uA  
VFB = VREF + 200 mV, VCOMP = 1.5  
V
ISINK  
ISOURCE  
Comp pin source current  
VFB = VREF –200 mV, VCOMP = 1.5 V  
20  
7.6 Timing Requirements  
over operating free-air temperature range, VIN = 2.7 V to 14 V and VOUT = 16 V, VCC = 6 V, RLIMIT = 80.6 k. Typical values  
are at TJ = 25°C, (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
CURRENT  
LIMIT  
tSHORT_ON Short active time  
4
ms  
ms  
Time for Auto retry protection off  
tSHORT_OFF  
90  
time  
SOFT  
START  
tSTARTUP  
Startup time  
VIN = 8 V, VOUT = 16 V  
Pre charge time  
3.2  
2.6  
ms  
ms  
tPRE_CHARG Pre charge time  
1.8  
3.4  
PROTECTION  
tSD_R  
tSD_F  
Thermal shutdown rising threshold  
Thermal shutdown falling threshold  
TJ rising  
TJ falling  
150  
130  
°C  
°C  
7.7 Switching Characteristics  
over operating free-air temperature range, VIN = 2.7 V to 14 V and VOUT = 16 V, VCC = 6 V, RLIMIT = 80.6 k. Typical values  
are at TJ = 25°C, (unless otherwise noted)  
MIN  
TYP  
MAX  
Unit  
SWITCHING FREQUENCY / SYNC  
RFREQ = 342 kΩ  
RFREQ = 842 kΩ  
RFREQ = 75 kΩ  
400  
160  
500  
200  
600  
240  
kHz  
kHz  
kHz  
ns  
fSW  
Switching frequency  
1900  
2200  
105  
2500  
135  
tON_min  
Minimum on time  
tOFF_min  
fSYNC_MIN  
Minimum off time  
140  
180  
ns  
Min Frequency using external clock  
190  
200  
210  
kHz  
kHz  
fSYNC_MAX Max Frequency using external clock  
2090  
2200  
2310  
GATE DRIVER  
FOR LOAD DISCONNECT  
IGH_SINK  
External PFET drive current  
55  
uA  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
7.8 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 6 V  
VIN = 7.2 V  
VIN = 8.4 V  
VIN = 10.8 V  
VIN = 12 V  
VIN = 13.2 V  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
VOUT = 16 V  
L = 3.3 µH  
Auto PFM  
VOUT = 16 V  
L = 3.3 µH  
Auto PFM  
1. Efficiency vs. Output Current  
2. Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 6 V  
VIN = 7.2 V  
VIN = 8.4 V  
VIN = 3 V  
VIN = 3.6 V  
VIN = 4.2 V  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
0.001  
VOUT = 14 V  
3. Efficiency vs. Output Current  
0.01  
0.1  
Load (A)  
1
D046  
VOUT = 16 V  
L = 3.3 µH  
Forced PWM  
L = 1.8 µH  
Auto PFM  
4. Efficiency vs. Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
16.5  
16.4  
16.3  
16.2  
16.1  
16  
15.9  
15.8  
15.7  
15.6  
15.5  
VIN = 10.8 V  
VIN = 12 V  
VIN = 13.2 V  
VIN = 6 V  
VIN = 7.2 V  
VIN = 8.4 V  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
VOUT = 16 V  
L = 3.3 µH  
Forced PWM  
VOUT = 16 V  
L = 3.3 µH  
Auto PFM  
5. Efficiency vs. Output Current  
6. Output Voltage vs. Load  
版权 © 2017–2019, Texas Instruments Incorporated  
7
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
310  
290  
270  
250  
230  
210  
190  
170  
150  
16.5  
16.4  
16.3  
16.2  
16.1  
16  
15.9  
15.8  
15.7  
15.6  
15.5  
VIN = 10.8 V  
VIN = 12 V  
VIN = 13.2 V  
TJ = -40 èC  
TJ = 25 èC  
TJ = 85 èC  
0.0001  
0.001  
0.01  
Load (A)  
0.1  
1
3
8
10  
12  
14  
Input Voltage (V)  
16  
18  
20  
D010  
VOUT = 16 V  
L = 3.3 µH  
7. Output Voltage vs. Load  
TJ = -40 èC  
Auto PFM  
8. Quiescent Current vs VIN  
16  
14  
12  
10  
8
5
4.5  
4
Auto PFM  
TJ = 25 èC  
TJ = 85 èC  
3.5  
3
2.5  
2
6
1.5  
1
4
2
0.5  
0
0
40  
60  
80 100 120 140 160 180 200 220 240  
Resistor (kW)  
2
4
6
8
10 12  
Input Voltage (V)  
14  
16  
18  
20  
D040  
VOUT = 16 V  
VIN = 7.2 V  
Auto PFM  
D018  
10. Switch Current Limit vs Setting Resistor  
9. Shutdown Current vs VIN  
26  
24  
22  
20  
18  
16  
14  
12  
10  
24  
22  
20  
18  
16  
14  
12  
10  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
-40  
-20  
VCC = 6 V  
11. LS Rdson vs Temperature  
0
20  
40  
60  
80  
100  
120  
D013  
Temperature (èC)  
VCC = 6 V  
12. HS Rdson vs Temperature  
D014  
8
版权 © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
Typical Characteristics (接下页)  
3300  
3000  
2700  
2400  
2100  
1800  
1500  
1200  
900  
1.205  
1.203  
1.201  
1.199  
1.197  
1.195  
600  
300  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
100 200 300 400 500 600 700 800 900 1000  
Resistor (kW)  
Temperature (èC)  
D015  
VIN = 7.2 V  
VOUT = 16 V  
14. Reference Voltage vs Temperature  
13. Frequency vs Setting Resistor  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
1.2  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
Rising  
Falling  
1.9  
Rising  
Falling  
1.8  
-40  
-20  
0
20  
40  
60  
80  
100  
120130  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (èC)  
Temperature (èC)  
D023  
D024  
15. VIN UVLO Rising / Falling vs Temperature  
16. EN Threshold Rising / Falling vs Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
9
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS61178x family is a synchronous boost converter designed for delivering the switch peak current up to 10  
A and output voltage reaching to 20 V. The TPS61178x family operates at a fixed frequency pulse-width  
modulation (PWM) at the moderate to heavy load currents. At the light load current, the TPS61178 operates in  
the PFM mode while the TPS611781 operates in the Forced PWM mode. The PFM mode brings the high  
efficiency crossing the entire load range while the Forced PWM mode can avoid the noise interference at the  
light load.  
With the peak current mode control scheme, the TPS61178x provides the excellent line and load transient  
response with the minimal output capacitance. The external loop compensation brings the flexibility to use a  
wider range of the inductor and output capacitor combinations.  
The TPS61178x supports the adjustable switching frequency up to 2.2 MHz. The device implements a cycle-by-  
cycle current limit to protect the device from overload during the boost operation phase. Additionally, if the output  
current further increases and exceeds the short current threshold or the output voltage drops below the short  
threshold. The TPS61178x triggers the hiccup short protection and recovers automatically once the short  
condition releases.  
Additionally, the TPS61178x provides the gate driver for the external FET to isolate the output from input end  
during shutdown.  
8.2 Functional Block Diagram  
L
VIN  
CBST  
CIN  
VIN  
BST  
SW  
VOUT  
VCC  
VCC  
VOUT2  
COUT2  
LS HS  
DRV DRV  
P-FET  
CVCC  
VIN VOUT  
VCC  
BST  
SW  
COUT1  
RGATE  
CGATE  
LS  
DRV  
HS  
DRV  
CTL  
CRT  
REG  
EN  
ON  
DISDRV  
OFF  
CR LIM  
Comp  
VCC  
ISENSE  
VOUT2  
+
FREQ /  
SYNC  
ILimit  
REF  
RUP  
Slope Comp  
+
FB  
RFREQ  
OR  
+
+
VREF  
VCLK  
Gm  
RDOWN  
PWM  
Comp  
VCC  
ILIMIT  
+
SS  
ILimit REF  
COMP  
RLIMIT  
Cc  
RC  
Cp  
VOUT  
OVP TH.  
Temp  
OTP TH.  
AGND  
PGND  
Copyright © 2017, Texas Instruments Incorporated  
10  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
8.3 Feature Description  
8.3.1 Under-voltage Lockout  
An under-voltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below  
the UVLO threshold of 2.3 V. A hysteresis of 400 mV is added so that the device cannot be enabled again until  
the input voltage exceeds 2.7 V. This function is implemented in order to prevent malfunctioning of the device  
when the input voltage is between 2.3 V and 2.7 V.  
8.3.2 Enable and Disable  
When the input voltage is above UVLO rising threshold of 2.7 V and the EN pin is pulled high above 1.2 V, the  
TPS61178X is enabled. When the EN pin is pulled below 0.4 V, the TPS61178x goes into the shutdown mode  
and stops switching.  
8.3.3 Startup  
When the input voltage to the device exceeds the UVLO threshold and EN pin pulled to high as well, the  
TPS61178x starts to ramp up the output voltage. There is a switching pre-charge phase and the output voltage is  
charged up to 10% higher than the input voltage (1.1 x VIN). The switching frequency is a fixed 500 kHz at the  
pre-charge phase.  
After the pre-charge phase ends (typical 2.6 ms), The TPS61178x regulates the FB pin to the internal soft start  
voltage and results in a gradual rise of the output voltage starting from the input voltage level to the target output  
voltage. The soft start time is typical 3.2 ms, which helps the regulator to gradually reach the steady state setting  
point, thus reducing the startup stresses and surges. The switching frequency follows the oscillator setting by the  
resistor connecting with the FREQ / SYNC pin.  
If the device is synchronized by the external clock, the switching frequency is fixed 500 kHz at the soft start  
phase and changes to the external clock when the soft start phase ends.  
8.3.4 Load Disconnect Gate Driver  
The TPS61178 device provides a DISDRV pin to drive the external FET at the output side, which completely  
disconnects the output from the input end during shutdown or output short happens. During the device’s start-up  
phase, the disconnect FET is controlled by the gate driver voltage of the external disconnect FET, there is an  
internal 55 µA (typical) sink current. The load disconnect FET connection is shown as 17  
The driver voltage and turn on / off timing can be set via the resistor and capacitor connecting between with the  
DISDRV pin and the source of the external FET. See the Application and Implementation section for the details  
of how to select the gate resistor and capacitor  
P-MOS  
VOUT2  
VOUT  
COUT2  
COUT1  
CGATE  
VGS  
RGATE  
DISDRV  
17. The Load Disconnect FET Connected  
版权 © 2017–2019, Texas Instruments Incorporated  
11  
 
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
8.3.5 Adjustable Peak Current Limit  
When the TPS61178x is in the normal boost switching phase, the device is prevented from the over current  
condition via the cycle by cycle current limit by sensing the current through the internal low-side FET. When the  
peak switch current triggers the current limit threshold, the low-side switch turns off to prevent the switching  
current further increasing.  
The peak switch current limit can be set by a resistor connecting with the ILIMIT pin. The relationship between the  
current limit and the resistor is determined by 公式 1  
745  
RLIMIT  
=
ILIMIT  
(1)  
Where RLIMIT is the resistor for setting the current limit, with the unit of kΩ, ILIMIT is switching peak current limit,  
the unit is A. For instance, when the resistor value is 50 kΩ, the switch peak current limit is 15 A.  
18 shows the current limit versus the setting resistor for both TPS61178 ( Auto PFM ) and TPS611781 (  
Forced PWM ) with 7.2-V input to 16-V output.  
16  
Auto PFM  
14  
12  
10  
8
6
4
2
0
40  
60  
80 100 120 140 160 180 200 220 240  
Resistor (kW)  
D040  
18. Switch Current Limit vs. Setting Resistor  
The current limit value varies with the duty cycle, 30 shows the bench measurement current limit at different  
duty cycles at RLIMIT = 80.6 kΩ.  
9.9  
Auto PFM  
9.4  
8.9  
8.4  
7.9  
7.4  
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
Duty Cycle  
D041  
19. Switch Current Limit vs. Duty Cycle  
12  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
Feature Description (接下页)  
For the TPS611781, which works in the Forced PWM mode at the light load, the current limit is typically 0.8 A  
lower than TPS61178 (Auto PFM) with the same setting resistor.  
8.3.6 Output Short Protection (with load disconnected FET)  
In addition to the cycle-by-cycle current limiting, the TPS61178x also has the output short protection. If the  
inductor current reaches the short protection limit threshold (typical 20A ) or the output voltage drops below 30%  
(typical) of the normal output voltage, the device enters into the hiccup protection mode. In the hiccup mode, the  
device shuts down itself and restarts after 90ms (typical) waiting time which helps to reduce the total thermal  
dissipation. After the short condition releases, the device can recover automatically and restart the start-up  
phase. The hiccup protection scheme is illustrated in 20.  
VOUT2  
SW  
P_MOS gate disabled  
(Ilimit_short trigger or VOUT < 30%  
x VOUT_Normal )  
-VGS  
Ishort_limit  
(typical 20A )  
P-MOS date gate turn off time:  
2 = Rgate x Cgate  
IL  
Hiccup off time  
Retry after hiccup off  
time terminate  
20. Output Short Protection  
8.3.7 Adjustable Switching Frequency  
The TPS61178x features of a wide adjustable switching frequency ranging up to 2.2 MHz. The switching  
frequency is set by a resistor connecting with the FREQ / SYNC pin. This pin cannot be left floating in the  
application. Use 公式 2 and 公式 3 to calculate the resistor value for a desired frequency.  
1
T =  
= k ´ CFREQ ´ RFREQ + TDELAY  
Freq  
(2)  
1
- TDELAY  
Freq  
=
RFREQ  
k ´ CFREQ  
where  
版权 © 2017–2019, Texas Instruments Incorporated  
13  
 
 
 
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
Feature Description (接下页)  
TDELAY = 50 nS, k = 3, CFREQ = 1.8 pF  
(3)  
For instance, if the RFREQ is 342 k, the frequency is 500 kHz.  
21 shows the switching frequency versus the setting resistor, which is measured with VOUT = 16 V from VIN  
=
7.2 V .  
3300  
3000  
2700  
2400  
2100  
1800  
1500  
1200  
900  
600  
300  
0
0
100 200 300 400 500 600 700 800 900 1000  
Resistor (kW)  
21. Switching Frequency vs Setting Resistor  
8.3.8 External Clock Synchronization (TPS611781)  
The FREQ/ SYNC pin can be used to synchronize the internal oscillator by an external clock. A positive voltage  
at the FREQ / SYNC pin must exceed the rising threshold (1.2 V) while must be lower than the falling threshold  
(0.4 V) to trip the internal synchronization pulse detector. The recommended frequency for the external clock is  
between 200 kHz and 2.2 MHz.  
8.3.9 Error Amplifier  
The TPS61178x has a trans-conductance amplifier and compares the feedback voltage with the internal voltage  
reference (or the internal soft start voltage during startup phase). The trans-conductance of the error amplifier is  
195 µA / V typically. The loop compensation components are required to be placed between the COMP terminal  
and ground to balance the loop stability and the transient response time.  
8.3.10 Slope Compensation  
The TPS61178x adopts the peak current mode control and adds a compensating ramp to the switch current  
signal. This slope compensation prevents the sub-harmonic oscillations when the duty cycle is larger than 50%.  
The available peak inductor current varies a little bit with operating duty cycles shown in 19.  
8.3.11 Start-up with the Output Pre-Biased  
The TPS61178x has been designed to prevent the low-side FET from discharging a pre-biased output. During  
the pre-biased startup, both high-side and low-side FETs are not allowed to be turned on until the internal soft  
start voltage is higher than the sensed output voltage at FB pin.  
8.3.12 Bootstrap Voltage (BST)  
The TPS61178x has an integrated bootstrap regulator, and requires a small ceramic capacitor between the BST  
pin and SW pin to provide the gate drive voltage for the high-side FET. The bootstrap capacitor is charged when  
the BST-SW voltage is below regulation. The value of this ceramic capacitor should be above 0.1 µF. A ceramic  
capacitor with an X7R or X5R grade dielectric with a voltage rating of 10 V or higher is recommended because of  
the stable characteristics over temperature and DC biased voltage.  
14  
版权 © 2017–2019, Texas Instruments Incorporated  
 
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
Feature Description (接下页)  
8.3.13 Over-voltage Protection  
If the output voltage at the VOUT pin is detected above over-voltage protection threshold, typically 21 V, the  
TPS61178x stops switching immediately until the voltage at the VOUT pin drops lower than the output over-  
voltage protection threshold (with 500mV hysteresis). This function prevents the devices against the over-voltage  
and secures the circuits connected to the output from excessive over voltage.  
8.3.14 Thermal Shutdown  
A thermal shutdown is implemented to prevent the damage due to the excessive heat and power dissipation.  
Typically, the thermal shutdown occurs at the junction temperature exceeding 150°C. When the thermal  
shutdown is triggered, the device stops switching and recover when the junction temperature falls below 130°C  
(typical).  
8.4 Device Functional Modes  
8.4.1 Operation  
TPS61178x operates at the peak current-mode pulse-width-modulation (PWM). At the beginning of each  
switching cycle, the low-side FET switch turns on, and the inductor current ramps up to a peak current that is  
determined by the output of the internal error amplifier. The PWM controller turns off the low-side FET when the  
peak inductor current reaches a threshold level set by the error amplifier output. After the low-side FET turns off,  
the high-side synchronous FET is turned on after a short dead time until the beginning of the next oscillator clock  
cycle or until the inductor current reaches the reverse current sense threshold.  
During the portion of the switching cycle when the low-side FET is on, the input voltage is applied across the  
inductor and stores the energy as the inductor current ramps up. Meanwhile only the output capacitor supplies  
the load current. When it turns off the low-side FET, the inductor transfers the stored energy via the high-side  
synchronous FET to replenish the output capacitor and also supply the load current. This operation repeats every  
switching cycle.  
The device features the internal slope compensation to avoid sub-harmonic oscillation that is intrinsic to peak-  
current mode control at duty cycle larger than 50%. The internal slope compensation may not be adequate to  
maintain stability for a very low inductance in application.  
At the light load condition, the TPS61178x implements two options: Auto PFM mode (TPS61178) and Forced  
PWM mode (TPS611781) to meet different application requirements.  
8.4.2 Auto PFM Mode (TPS61178)  
The TPS61178 integrates a Power Save Mode with pulse frequency modulation ( PFM ) at the light load. When a  
light load condition occurs, the COMP pin voltage naturally decreases and reduces the peak current. When the  
COMP pin voltage further goes down with the load lowered and reaches the pre-set low threshold, the output of  
the error amplifier is clamped at this threshold and does not go down any more. If the load is further lowered, the  
output voltage of TPS61178 exceeds the nominal voltage and the device skips the switching cycles and regulate  
the output voltage at a higher threshold (typical 101%*VOUT_NORMAL).  
The Auto PFM mode reduces the switching losses and improves efficiency at the light load condition by reducing  
the average switching frequency.  
8.4.3 Forced PWM Mode (TPS611781)  
In the Forced PWM mode, the TPS611781 keeps the switching frequency being constant for the whole load  
range. When the load current decreases, the output of the internal error amplifier decreases as well to lower the  
inductor peak current and delivers less power from input to output. The high-side FET is not turned off even if the  
current through the FET goes negative to keep the switching frequency being the same as that of the heavy load.  
版权 © 2017–2019, Texas Instruments Incorporated  
15  
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS61178x family is the step up DC / DC converter. The following design procedure can be used to select  
component values for the TPS61178x. Alternately, the WEBENCH® software may be used to generate a  
complete design. The WEBENCH® software uses an interactive design procedure and accesses a  
comprehensive database of components when generating a design. This section presents a simplified discussion  
of the design process.  
9.2 Typical Application  
The application described is for 6-V to 14-V input, 16-V output converter.  
L
VIN  
1.8 uH  
CIN1  
22 uF  
VIN  
BST  
VCC  
CBST  
CVCC  
0.1 uH  
SW  
4.7 uF  
VOUT2  
M1  
VOUT  
EN  
RGATE CGATE  
150 k22 nF  
COUT1_2  
10 uF  
COUT1_1  
10 uF  
RUP  
860 kΩ  
COUT2_1 COUT2_2 COUT2_3  
FREQ /  
SYNC  
22 uF  
22 uF  
22 uF  
RFreq  
DISDRV  
348 kΩ  
RDOWN  
80.6 kΩ  
FB  
ILIMIT  
AGND  
RLIMIT  
COMP  
51.1 kΩ  
PGND  
Cc  
6.8 nF  
Cp  
RC  
10 pF  
15.0 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
22. TPS61178 16-V Output with Load Disconnect Schematic  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use 1 as the design parameters.  
1. Design Parameters  
PARAMETER  
Input voltage range  
Output voltage  
VALUE  
6 V to 14 V  
16 V  
Output ripple voltage  
Output current rating  
Operating frequency  
±3%  
3 A  
500 kHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS61178 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
To begin the design process a few parameters must be decided upon. The designer needs to know the following:  
Input voltage range  
Output voltage  
Output ripple voltage  
Output current rating  
Operating frequency  
Load disconnect needed or not  
9.2.2.2 Setting the Switching Frequency  
The switching frequency of the TPS61178 is set at 500 kHz. Use 公式 2 to calculate the required resistor value.  
The calculated value is 342 kΩ. Use the next higher standard value of 348 kΩ.  
9.2.3 Setting the Current Limit  
The current limit of the TPS61178 could be programmed by an external resistor. For a target current limit of 13  
A, the calculated resistor value is 57 kΩ. However, the minimum current limit is around 1.6 A lower than the  
typical one. Here, selecting the 51.1 kΩ resistor to deliver 13-A peak current at the worst case.  
9.2.4 Setting the Output Voltage  
The output voltage of the TPS61178 is externally adjustable using a resistor divider network. The relationship  
between the output voltage and the resistor divider is given by 公式 4.  
RUP  
VOUT = VFB ´ (1+  
)
RDOWN  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
 
 
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
where  
VOUT is the output voltage  
RUP the top divider resistor  
RDOWN is the bottom divider resistor  
(4)  
Choose RDOWN to be approximately 80.6 kΩ. Slightly increasing or decreasing RDOWN can result in closer output  
voltage matching when using standard value resistors. In this design, RDOWN = 80.6 kΩ and RUP = 1000 kΩ,  
resulting in an output voltage of 16 V.  
For the best accuracy, RDOWN is recommended to be smaller than 100 kΩ to ensure that the current following  
through RDOWN is at least 100 times larger than FB pin leakage current. Changing RDOWN towards the lower value  
increases the robustness against noise injection. Changing the RDOWN towards the higher values reduces the  
quiescent current for achieving higher efficiency at the light load currents.  
9.2.4.1 Selecting the Inductor  
A boost converter normally requires two main passive components for storing the energy during the power  
conversion: an inductor and an output capacitor. The inductor affects the steady state efficiency ( including the  
ripple and efficiency ) as well as the transient behavior and loop stability, which makes the inductor to be the  
most critical component in application.  
When selecting the inductor, as well as the inductance, the other parameters of importance are:  
The maximum current rating (RMS and peak current should be considered),  
The series resistance,  
Operating temperature  
Choosing the inductor ripple current with the low ripple percentage of the average inductor current results in a  
larger inductance value, maximizes the converter’s potential output current and minimizes EMI. The larger ripple  
results in a smaller inductance value, and a physically smaller inductor, improves transient response but results  
in potentially higher EMI.  
The rule of thumb to choose the inductor is that to make the inductor ripple current (ΔIL) is a certain percentage  
(Ripple % = 20 – 30 %) of the average current. The inductance can be calculated by 公式 5, 公式 6, and 公式 7:  
V
IN ´ D  
DIL =  
L ´ fSW  
(5)  
(6)  
VOUT ´ IOUT  
DIL _R = Ripple% ´  
h ´ V  
IN  
h ´ V  
IN  
V ´ D  
IN  
1
L =  
´
Ripple % VOUT ´ IOUT  
´
ƒSW  
where  
ΔIL is the peak-peak inductor current ripple  
VIN is the input voltage  
D is the duty cycle  
L is the inductor  
ƒSW is the switching frequency  
Ripple % is the ripple ration versus the DC current  
VOUT is the output voltage  
IOUT is the output current  
η is the efficiency  
(7)  
The current flowing through the inductor is the inductor ripple current plus the average input current. During  
power-up, load faults, or transient load conditions, the inductor current can increase above the peak inductor  
current calculated.  
The TPS61178x has built-in slope compensation to avoid sub-harmonic oscillation associated with the current  
mode control. If the inductor value is too low and makes the inductor peak-to-peak ripple higher than 4 A, the  
slope compensation may not be adequate, and the loop can be unstable. Therefore, it is recommended to make  
the peak-to-peak current ripple below 4 A when selecting the inductor.  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
Inductor values can have ± 20% or even ± 30% tolerance with no current bias. When the inductor current  
approaches the saturation level, its inductance can decrease 20% to 35% from the value at 0-A bias current  
depending on how the inductor vendor defines saturation. When selecting an inductor, make sure its rated  
current, especially the saturation current, is larger than its peak current during the operation.  
The inductor peak current varies as a function of the load, the switching frequency, the input and output voltages  
and it can be calculated by 公式 8 and 公式 9.  
1
IPEAK = I  
+
´ DIL  
IN  
2
where  
IPEAK is the peak current of the inductor  
IIN is the input average current  
ΔIL is the ripple current of the inductor  
(8)  
The input DC current is determined by the output voltage, the output current and efficiency can be calculated by :  
VOUT ´ IOUT  
I
=
IN  
VIN ´ h  
where  
IIN is the input current of the inductor  
VOUT is the output voltage  
VIN is the input voltage  
η is the efficiency  
(9)  
While the inductor ripple current depends on the inductance, the frequency, the input voltage and duty cycle  
calculated by 公式 5, replace 公式 5, 公式 9 into 公式 8 and get the inductor peak current:  
IOUT  
VIN ´ D  
1
IPEAK  
=
+
´
(1- D) ´ h  
2
L ´ fSW  
where  
IPEAK is the peak current of the inductor  
IOUT is the output current  
D is the duty cycle  
η is the efficiency  
VIN is the input voltage  
L is the inductor  
ƒSW is the switching frequency  
(10)  
The heat rating current (RMS) is as below:  
1
(DIL )2  
2
IL _RMS = I  
+
IN  
12  
where  
IL_RMS is the RMS current of the inductor  
IIN is the input current of the inductor  
ΔIL is the ripple current of the inductor  
(11)  
It is important that the peak current does not exceed the inductor saturation current and the RMS current is not  
over the temperature related rating current of the inductors.  
For a given physical inductor size, increasing inductance usually results in an inductor with lower saturation  
current. The total losses of the coil consists of the DC resistance ( DCR ) loss and the following frequency  
dependent loss:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
 
 
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
For a certain inductor, the larger current ripple (smaller inductor) generates the higher DC and also the  
frequency-dependent loss. An inductor with lower DCR is basically recommended for higher efficiency. However,  
it is usually a tradeoff between the loss and foot print.  
The following inductor series in 2 from the different suppliers are recommended. 74437368033 from Würth is  
used for this application case with balancing the size and power loss.  
2. Recommended Inductors for TPS61178x(1)  
SATURATION  
DCR Typ (mΩ) Max CURRENT / Heat  
SIZE (L × W × H  
mm)  
PART NUMBER  
L (μH)  
VENDOR(1)  
Rating Current (A)  
744325180  
1.8  
3.3  
3.3  
3.5  
11.8  
12  
18  
5 x 10 x 4  
Würth  
74437368033  
23 / 8  
10 / 10  
10 x 10 x 3.8  
10.9 x 10 x 4  
Würth  
DFEH10040D-  
3R3M#  
Murata / TOKO  
PIMB104T-4R7MS  
74437368068  
4.7  
6.8  
10  
20.0  
17.5  
27  
15 / 8.5  
14  
10.9 x 10 x 3.8  
11 x 10 x 3.8  
11 x 10 x 3.8  
Cyntec  
Würth  
Würth  
74437368100  
12.5  
(1) See Third-party Products Disclaimer  
9.2.4.2 Selecting the Output Capacitors  
The output capacitor is mainly selected to meet the requirements at load transient or steady state. Then the loop  
is compensated for the output capacitor selected. The output ripple voltage is related to the equivalent series  
resistance (ESR) of the capacitor and its capacitance. Assuming a capacitor with zero ESR, the minimum  
capacitance needed for a given ripple can be calculated by 公式 12:  
IOUT ´ (VOUT - V )  
IN  
COUT  
=
fSW ´ DV ´ VOUT  
where  
COUT is the output capacitor  
IOUT is the output current  
VOUT is the output voltage  
VIN is the input voltage  
ΔV is the output voltage ripple required  
ƒSW is the switching frequency  
(12)  
(13)  
The additional output ripple component caused by ESR is calculated by 公式 13:  
DVESR = IOUT ´ RESR  
where  
ΔVESR is the output voltage ripple caused by ESR  
RESR is the resistor in series with the output capacitor  
For the ceramic capacitor, the ESR ripple can be neglected. However, for the tantalum or electrolytic capacitors,  
it must be considered if used.  
The minimum ceramic output capacitance needed to meet a load transient requirement can be estimated using  
公式 14:  
DISTEP  
COUT  
=
2p ´ fBW ´ DVTRAN  
where  
ΔISTEP is the transient load current step  
ΔVTRAN is the allowed voltage dip for the load current step  
ƒBW is the control loop bandwidth (i.e., the frequency where the control loop gain crosses zero)  
(14)  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
 
 
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
Care must be taken when evaluating a ceramic capacitor’s derating under the DC bias. Ceramic capacitors can  
derate by as much as 70% of its capacitance at its rated voltage. Therefore, enough margins on the voltage  
rating should be considered to ensure adequate capacitance at the required output voltage.  
In applications of TPS61178x, it is recommended to run the converter with a reasonable amount of effective  
output capacitance, for instance 3 x 22-μF X5R or X7R MLCC capacitors connected in parallel.  
If the load disconnect FET is connected, the output capacitor should be split shown in 23. COUT2 should be no  
larger than 10 x COUT1 to avoid the inrush current when turning on the disconnect FET.  
P-FET  
VOUT2  
VOUT  
VGS  
CGATE  
COUT1  
RGATE  
COUT2  
DISDRV  
23. Output Capacitor Configuration with the Load Disconnect FET  
9.2.4.3 Selecting the Input Capacitors  
Multilayer ceramic capacitors are an excellent choice for the input decoupling of the step-up converter as they  
have extremely low ESR and are available in small footprints. Input capacitors should be located as close as  
possible to the device. While a 22-µF input capacitor is sufficient for the most applications, larger values may be  
used to reduce input current ripple.  
Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce  
ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even  
damage the part. Additional "bulk" capacitance (electrolytic or tantalum) in this circumstance, should be placed  
between CIN and the power source lead to reduce ringing that can occur between the inductance of the power  
source leads and CIN.  
9.2.4.4 Loop Stability and Compensation  
9.2.4.4.1 Small Signal Model  
The TPS61178x uses the fixed frequency peak current mode control; there is an internal adaptive slope  
compensation to avoid the sub-harmonic oscillation. With the inductor current information sensed, the small-  
signal model of the power stage reduces from a two-pole system, created by L and COUT, to a single-pole  
system, created by ROUT and COUT. The single-pole system is easily used with the loop compensation. 24  
shows the equivalent small signal elements of a boost converter.  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
 
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
L
VIN  
VOUT  
CIN  
Q
RESR  
COUT  
ROUT  
RSENSE  
Slope  
Comp  
ISENSE  
VOUT  
RUP  
Q
Q
S
FB  
VREF  
+
R
GEA  
RDOWN  
+
Cc  
RC  
Cp  
REA  
Copyright © 2017, Texas Instruments Incorporated  
24. TPS61178x Control Equivalent Circuitry Model  
The small signal of power stage including the slope compensation is:  
S
S
(1+  
)(1-  
)
ROUT ´ (1- D)  
2 ´ RSENSE  
2p ´ fESR  
2p ´ fRHP  
GPS(S) =  
´
´ He(S)  
S
1+  
2p ´ fP  
where  
D is the duty cycle  
ROUT is the output load resistor  
RSENSE is the equivalent internal current sense resistor, which is typically 0.083 Ω of TPS61178x  
(15)  
(16)  
The single pole of the power stage is:  
2
fP =  
2p ´ ROUT ´ COUT  
where  
COUT is the output capacitance, for a boost converter having multiple, identical output capacitors in parallel,  
simply combine the capacitors with the equivalent capacitance  
The zero created by the ESR of the output capacitor is:  
1
fESR  
=
2p ´ RESR ´ COUT  
where  
RESR is the equivalent resistance in series of the output capacitor.  
(17)  
The right-hand plane zero is:  
ROUT ´ (1- D)2  
fRHP  
=
2p ´ L  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
where  
D is the duty cycle  
ROUT is the output load resistor  
L is the inductance  
(18)  
Using He(s) to model the inductor current sampling effect as well as the slope compensation effect on the small  
signal response, is shown in 公式 19  
1
He(S) =  
Se  
Sn  
é
ù
S ´ (1+  
) ´ (1- D) - 0.5  
S2  
ê
ú
ë
û
1+  
+
2
fSW  
(p ´ fSW  
)
(19)  
(20)  
V
IN  
Sn =  
´ RSENSE  
L
where  
Sn is the slew rate of the inductor current ramping up  
fSW  
Se = 0.06 ´  
´ Rdson _ LS  
1 - D  
where  
Se is the slope compensation slew rate  
Rdson_LS is the on resistance of Low-side FET  
(21)  
The slope compensation adaptively changes with the switching frequency and duty cycle.  
He(s) models the inductor current sampling effect as well as the slope compensation effect on the small signal  
response. Note that if Sn > Se, e.g., when L is too small, the converter operates as a voltage mode converter  
and the above model no longer holds.  
The TPS61178x COMP pin is the output of the internal trans-conductance amplifier.  
公式 22 shows the equation for feedback resistor network and the error amplifier.  
S
1+  
RDOWN  
2´ p ´ fZ  
HEA(S) = GEA ´REA  
´
´
R
UP + RDOWN  
S
S
(1+  
)´(1+  
)
2´ p ´ fP1  
2´ p ´ fP2  
where  
kCOMP and REA are the ratio of peak current / comp voltage, for TPS61178x, the typical value is kCOMP = 12 A /  
V and REA = 20 M.  
ƒP1, ƒP2 is the pole's frequency of the compensation, fZ is the zero’s frequency of the compensation network.  
network  
(22)  
1
fP1  
=
2p ´ REA ´ Cc  
where  
CC is the zero capacitor compensation  
(23)  
1
fP2  
=
2p ´ RC ´ CP  
where  
CP is the pole capacitor compensation  
RC is the resistor of the compensation network  
(24)  
(25)  
23  
1
fZ =  
2p ´RC ´CC  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
9.2.4.4.2 Loop Compensation Design Steps  
With the small signal models coming out, the next step is to calculate the compensation network parameters with  
the given inductor and output capacitance.  
1. Set the Cross Over Frequency, ƒC  
The first step is to set the loop crossover frequency, ƒC. The higher crossover frequency, the faster the  
loop response is. It is generally accepted that the loop gain cross over no higher than the lower of either  
1/10 of the switching frequency, ƒSW, or 1/5 of the RHPZ frequency, ƒRHPZ. Then calculate the loop  
compensation network values of RC, CC, and CP by following below equations.  
2. Set the Compensation Resistor, RC  
By placing ƒZ below ƒC, for frequencies above ƒC, RC | | REA ~= RC and so RC × GEA sets the  
compensation gain. Setting the compensation gain, KCOMP-dB, at ƒZ, results in the total loop gain, T(s)  
GPS(s) × HEA(s) × He(s) being zero at ƒC.  
=
Therefore, to approximate a single-pole roll-off up to fP2, rearrange 公式 22 to solve for RC so that the  
compensation gain, KEA, at fC is the negative of the gain, KPS, read at frequency fC for the power stage  
bode plot or more simply:  
RDOWN  
KEA(fC ) = 20 ´ log(GEA ´ RC ´  
) = - KPS(fC)  
RUP + RDOWN  
where  
KEA is gain of the error amplifier network  
KPS is the gain of the power stage  
GEA is the amplifier’s trans-conductance, the typical value of GEA = 195 µA / V  
(26)  
3. Set the compensation zero capacitor, CC  
Place the compensation zero at the power stage ROUT ,COUT pole’s position, so to get:  
1
fZ =  
2p ´ RC ´ CC  
(27)  
(28)  
Set ƒZ = ƒP, and get the  
ROUT ´COUT  
CC =  
2RC  
4. Set the compensation pole capacitor, CP  
Place the compensation pole at the zero produced by the RESR and the COUT, it is useful for canceling  
unhelpful effects of the ESR zero.  
1
fP2  
=
2p ´ RC ´ CP  
(29)  
(30)  
1
fESR  
=
2p ´ RESR ´ COUT  
Set ƒP2 = ƒESR, and get the  
RESR ´ COUT  
CP =  
RC  
(31)  
If the calculated value of CP is less than 10 pF, it can be neglected.  
Designing the loop for greater than 45° of phase margin and greater than 6-dB gain margin eliminates output  
voltage ringing during the line and load transient. The RC = 15 kΩ , CC = 6.8 nF, Cp = 10 pF for this design  
example.  
9.2.4.4.3 Selecting the Disconnect FET  
The TPS61178x provides a gate driver to control an external FET to disconnect the output from the input at  
shutdown or output short conditions, shown in 25.  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
P-MOS  
VOUT2  
VOUT  
COUT2  
COUT1  
CGATE  
VGS  
RGATE  
DISDRV  
25. Load Disconnect FET Connection  
The VDS, IDS and safe operation area (SOA) should be taken into consideration when selecting the FET:  
The drain-to-source voltage rating should be higher than the output max. voltage, VDS_DIS_MAX = VOUT  
The drain-to-source RMS current rating is the maximum output current. I DS_DIS_RMS = IOUT  
The SOA should be considered when the output short occurs, and there is heat caused by the short  
,
,
protection response time and surge current, SOA > QSHORT  
.
1
QSHORT  
=
´ VOUT ´ ISHORT ´ TSHORT  
2
where  
VDS_DIS_Max is the maximum drain-source voltage  
IDS_DIS is the drain-source RMS current  
ISHORT is the short current  
TSHORT is the response time before the short protection triggered  
QSHORT is the heat produced for the output short  
(32)  
For instance: VOUT = 16 V, ISHORT = 20 A , TSHORT = 30 µs.  
SOA 4.8 mJ, VDS_DIS_MAX 16 V.  
The CSD25404Q3 –20 V P-Channel NexFET™ Power FET is used for this design example.  
An additional capacitor between the gate and source of the external FET is required to slow the turn-on speed.  
VTH_PFET ´ CGS_PFET  
=
TON_PFET  
IDIS_PFET  
where  
TON_PFET is the on time of external FET  
VTH_PFET is the gate threshold of external FET  
CGS_PFET is the total gate capacitance of connected between gate and source external FET. (including the self-  
gate-source capacitance of the FET)  
IDIS_PFET is the discharge current inside of TPS61178x, it is 55 µA typically  
(33)  
Given 1.5 V threshold, CGS_PFET is 10 nF, the TON_PFET is around 300 µs.Please be aware that the maximum turn-  
on time should not exceed 3 ms, and the maximum capacitance CGS_PFET should be < 100 nF. Otherwise, the  
TPS61178x could not startup normally if the disconnect FET could not be turn on within the 3 ms.  
The gate resistor depends on the gate-source voltage of the external FET,  
VGATE = RGATE ´ IDIS_PFET  
(34)  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
VGATE  
=
RGATE  
IDIS_PFET  
(35)  
Given the 5-V VGATE, the RGATE = 100 kΩ  
9.2.4.4.4 Selecting the Bootstrap Capacitor  
The bootstrap capacitor between the BST and SW pin supplies the gate current to charge the high-side FET  
device gate during each cycle’s turn-on and also supplies charge for the bootstrap capacitor. The recommended  
value of the bootstrap capacitor is 0.1 µF to 1 µF. CBST should be a good quality, low ESR, ceramic capacitor  
located at the pins of the device to minimize potentially damaging voltage transients caused by trace inductance.  
A value of 0.1 µF was selected for this design example.  
9.2.4.4.5 VCC Capacitor  
The primary purpose of the VCC capacitor is to supply the peak transient currents of the driver and bootstrap  
capacitor as well as provide stability for the VCC regulator. The value of CVCC should be at least 10 times greater  
than the value of CBST, and should be a good quality, low ESR, ceramic capacitor. CVCC should be placed close  
to the pins of the IC to minimize potentially damaging voltage transients caused by the trace inductance. A value  
of 4.7 µF was selected for this design example.  
9.2.5 TPS61178 Application Waveform  
Typical condition VIN = 6 V to 14 V, VOUT = 16 V, RLIMIT = 51.1 kΩ, RFREQ = 348 kΩ  
Application waveforms are measured with the inductor 3.3 µH, Würth 74437368033, and the output capacitance:  
3 x 22 µF, GRM32ER61E226KE15L plus 2 x 10 µF, GRM188R61E106MA73D.  
VOUT2_AC  
CH1: VOUT2_AC  
50 mV / div  
10 mV / div  
CH3: SW  
CH3: SW  
7 V / Div  
7 V / Div  
CH4: IL  
1 A / Div  
CH4: IL  
2 A / Div  
VIN = 7.2 V  
L = 3.3 µH  
VOUT= 16 V  
Auto PFM  
VIN = 7.2 V  
L = 3.3 µH  
VOUT= 16 V  
COUT= 86 µF  
Load = 10 mA  
COUT= 86 µF  
Load = 1000 mA  
27. Steady-state 10 mA  
26. Steady State 1000 mA  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
CH3: EN  
2 V / div  
CH3: EN  
2 V / div  
CH1: VOUT2  
CH1: VOUT2  
5 V / div  
5 V / div  
CH4: IL  
1 A / Div  
CH4: IL  
1 A / Div  
VIN = 7.2 V  
L = 3.3 µH  
VOUT= 16 V  
Auto PFM  
VIN = 7.2 V  
VOUT= 16 V  
Auto PFM  
COUT= 86 µF  
Load = 32 Ω  
L = 3.3 µH  
COUT= 86 µF  
Load = 32 Ω  
29. Shutdown by EN  
28. Startup by EN  
CH1: VOUT2  
8 V / div  
CH2: VOUT  
(before dis FET)  
5 V / Div  
CH1: VOUT2_AC  
500 mV / div  
CH4: Load  
1 A / Div  
M1: VGS  
5 V / Div  
CH4: IL  
6 A / Div  
VIN = 7.2 V  
L = 3.3 µH  
VOUT= 16 V  
VIN = 7.2 V  
L = 3.3 µH  
VOUT= 16 V  
Load = 500 mA to 2 A,  
0.1 A/µs slew rate  
COUT= 86 µF  
COUT= 86 µF  
31. Output Short (with Disconnect FET)  
30. Load Transient  
CH1: VOUT2  
8 V / div  
CH2: VOUT  
(before dis FET)  
5 V / Div  
M1: VGS  
5 V / Div  
CH4: IL  
900 mA / Div  
VIN = 7.2 V  
L = 3.3 µH  
VOUT= 16 V  
COUT= 86 µF  
32. Output Short Release (with Disconnect FET)  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
9.3 System Examples  
9.3.1 TPS61178 with 14-V Output from 2.7-V to 4.4-V Input Voltage  
The 33 is the typical application schematic for 2.7-V to 4.4-V input (single cell Li+ battery) to output 14-V  
output converter. The inductor can be lower to 1.8 µH for the 14-V output.  
L
VIN  
1.8 uH  
CIN1  
22 uF  
VIN  
BST  
VCC  
CBST  
CVCC  
0.1 uH  
SW  
4.7 uF  
VOUT2  
M1  
VOUT  
EN  
RGATE CGATE  
150 k22 nF  
COUT1_2  
10 uF  
COUT1_1  
10 uF  
RUP  
860 kΩ  
COUT2_1 COUT2_2 COUT2_3  
FREQ /  
SYNC  
22 uF  
22 uF  
22 uF  
RFreq  
DISDRV  
348 kΩ  
RDOWN  
80.6 kΩ  
FB  
ILIMIT  
AGND  
RLIMIT  
COMP  
51.1 kΩ  
PGND  
Cc  
6.8 nF  
Cp  
RC  
10 pF  
15.0 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
33. 14-V Output Voltage from 2.7-V to 4.4-V Input Voltage  
9.3.2 TPS61178 Without Load Disconnect Function  
The 34 is the typical application schematic is for 6-V to 14-V input (2 / 3 cells Li+ battery or 12-V bus) to  
output 14-V output converter without load disconnect. With removing the load disconnect FET, it simplifies the  
design and minimizes the external components.  
L
3.3 H  
VIN  
CIN1  
22 F  
VIN  
BST  
VCC  
CBST  
0.1 H  
CVCC  
4.7 F  
SW  
VOUT  
VOUT  
EN  
COUT1_1  
10 F  
COUT2_1  
COUT2_2  
COUT2_3  
22 F  
RUP  
1 M  
22 F  
22 F  
FREQ / SYNC  
RFREQ  
DISDRV  
348 kΩ  
RDOWN  
80.6 kΩ  
FB  
ILIMIT  
AGND  
RLIMIT  
51.1 kΩ  
COMP  
PGND  
Cc  
6.8 nF  
Cp  
10 pF  
RC  
15.0 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
34. 16-V Output Voltage Without Load Disconnect Function  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
System Examples (接下页)  
9.3.3 TPS611781 External Clock Synchronization  
The 35 is the typical application schematic for synchronized by an external clock of 2.2 MHz. It is for the  
Forced PWM mode operation to avoid the noise-sensitive frequency range, for instance the audible noise and  
AM band.  
L
1.8 uH  
VIN  
CIN1  
22 uF  
VIN  
BST  
VCC  
CBST  
0.1 uH  
CVCC  
SW  
VOUT  
VOUT  
EN  
COUT1_1  
10 uF  
RUP  
COUT2_1  
22 uF  
COUT2_2  
22 uF  
FREQ /  
SYNC  
1 M  
2.2 MHz  
DISDRV  
RDOWN  
80.6 kΩ  
FB  
ILIMIT  
RLIMIT  
51.1 kΩ  
COMP  
AGND  
PGND  
Cc  
5.6 nF  
RC  
13 kΩ  
Copyright © 2017, Texas Instruments Incorporated  
35. 16-V Output Voltage Synchronized by 2.2 MHz External Clock  
10 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply ranging from 2.7 V to 20 V. This input supply  
should be well regulated. If the input supply is located more than a few inches from the TPS61178x, the bulk  
capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value  
of 47 µF is a typical choice.  
版权 © 2017–2019, Texas Instruments Incorporated  
29  
 
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The basic PCB board layout requires a separation of sensitive signal and power paths. If the layout is not  
carefully done, the regulator could suffer from the instability or noise problems.  
The checklist below is suggested that be followed to get good performance for a well-designed board:  
1. Minimize the high current path including the switch FET, rectifier FET, and the output capacitor. This loop  
contains high di/dt switching currents ( nano seconds per ampere ) and easy to transduce the high frequency  
noise;  
2. Minimize the length and area of all traces connected to the SW pin, and always use a ground plane under  
the switching regulator to minimize inter plane coupling;  
3. Use a combination of bulk capacitors and smaller ceramic capacitors with low series resistance for the input  
and output capacitors. Place the smaller capacitors closer to the IC to provide a low impedance path for  
decoupling the noise;  
4. The ground area near the IC must provide adequate heat dissipating area. Connect the wide power bus  
(e.g., VOUT, SW, GND ) to the large area of copper, or to the bottom or internal layer ground plane, using vias  
for enhanced thermal dissipation;  
5. Place the input capacitor being close to the VIN pin and the PGND pin in order to reduce the input supply  
ripple;  
6. Place the noise sensitive network like the feedback and compensation being far away from the SW trace;  
7. Use a separate ground trace to connect the feedback, compensation, frequency set, and the current limit set  
circuitry. Connect this ground trace to the main power ground at a single point to minimize circulating  
currents.  
11.2 Layout Example  
REN  
CVCC  
CBST  
VIN  
RGATE CGATE  
VCC DISDRV  
BST VIN EN  
VOUT2  
VOUT  
s
s
G
D
VOUT  
SW  
COUT2  
COUT1  
L
s
s
D
D
PGND  
P-FET  
GND  
FREQ/  
SYNC  
ILIMIT  
FB  
AGND  
COMP  
RUP  
RCOMP RDOWN  
CCOMP  
RFREQ  
RLIMIT  
36. Recommended Layout  
30  
版权 © 2017–2019, Texas Instruments Incorporated  
TPS61178  
www.ti.com.cn  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.1.2 开发支持  
12.1.2.1 使用 WEBENCH® 工具创建定制设计  
请单击此处,使用 TPS61178 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
12.2 文档支持  
12.2.1 相关文档  
请参阅如下相关文档:  
TPS61178EVM 评估板用户指南》,SLVUB05  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
3. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TPS61178  
TPS611781  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
版权 © 2017–2019, Texas Instruments Incorporated  
31  
TPS61178  
ZHCSG87E FEBRUARY 2017REVISED AUGUST 2019  
www.ti.com.cn  
12.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.6 商标  
NexFET, E2E are trademarks of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
32  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS611781RNWR  
TPS611781RNWT  
TPS61178RNWR  
TPS61178RNWT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNW  
RNW  
RNW  
RNW  
13  
13  
13  
13  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
1CDI  
1CDI  
15RI  
15RI  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS611781RNWR  
TPS611781RNWT  
TPS61178RNWR  
TPS61178RNWT  
VQFN-  
HR  
RNW  
RNW  
RNW  
RNW  
13  
13  
13  
13  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.8  
3.8  
3.8  
3.8  
1.2  
1.2  
1.2  
1.2  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS611781RNWR  
TPS611781RNWT  
TPS61178RNWR  
TPS61178RNWT  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RNW  
RNW  
RNW  
RNW  
13  
13  
13  
13  
3000  
250  
346.0  
210.0  
346.0  
210.0  
346.0  
185.0  
346.0  
185.0  
33.0  
35.0  
33.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNW0013A  
VSON - 1 mm max height  
SCALE 3.200  
PLASTIC SMALL OUTLINE - NO LEAD  
3.55  
3.45  
A
B
PIN 1 INDEX AREA  
3.05  
2.95  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
TYP  
2X 0.55  
0.3  
0.2  
3X  
(0.2) TYP  
8
6
5
9
2X  
2
SYMM  
1
13  
8X 0.5  
0.3  
10X  
0.2  
0.1  
0.05  
SYMM  
C A B  
C
PIN 1 ID  
0.55  
0.45  
0.55  
0.45  
9X  
4222804/C 11/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNW0013A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (0.55)  
3X (0.25)  
10X (0.7)  
1
13  
10X (0.25)  
SYMM  
3X  
(3.4)  
8X (0.5)  
(R0.05) TYP  
9
5
6
8
SYMM  
(3.2)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
PADS 1-5 & 9-13  
SOLDER MASK  
DEFINED  
PADS 6-8  
SOLDER MASK DETAILS  
4222804/C 11/2019  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
4. If any vias are implemented, it is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNW0013A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
9X (0.25)  
10X (0.7)  
9X (1)  
13  
1
10X (0.25)  
SYMM  
8X (0.5)  
(1.2) TYP  
9
(R0.05) TYP  
5
EXPOSED METAL  
TYP  
SOLDER MASK  
EDGE  
TYP  
6
8
METAL UNDER  
SOLDER MASK  
TYP  
(0.55) TYP  
(3.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PADS 6-8  
87% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4222804/C 11/2019  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS61180

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61180RTE

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61180RTER

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61180RTERG4

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61180RTET

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61180RTETG4

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61180_17

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61181

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61181A

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61181ARTE

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61181ARTER

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61181ARTET

WLED DRIVER FOR NOTEBOOK DISPLAY

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI