TPS61196PWPRQ1 [TI]

每个灯串具有独立的 PWM 调光的 6 灯串 400mA WLED 驱动器 | PWP | 28 | -40 to 125;
TPS61196PWPRQ1
型号: TPS61196PWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

每个灯串具有独立的 PWM 调光的 6 灯串 400mA WLED 驱动器 | PWP | 28 | -40 to 125

驱动 光电二极管 接口集成电路 驱动器
文件: 总30页 (文件大小:1695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
TPS61196-Q1 每个灯串具有  
独立 PWM 亮度调节的 6 灯串 400mA WLED 驱动器  
1 特性  
TPS61196-Q1 会自动调整升压控制器的输出电压,以  
1
提供具有最大正向压降的 LED 灯串所需要的电压以及  
该灯串 IFB 引脚上所需的最小电压,从而优化驱动器  
效率。 可通过外部电阻将其开关频率设定在 100kHz  
800kHz 之间。  
8V 30V 输入电压  
高达 120V 输出电压  
100kHz 800kHz 可编程开关频率  
LED 提供电压的自适应升压输出  
六路灌电流、200mA 连续输出、400mA 脉冲输出  
(每个灯串)  
TPS61196-Q1 支持直接 PWM 调光。 每个灯串均具  
有独立的 PWM 控制输入。 在 PWM 调光模式下,将  
通过外部 PWM 信号决定导通或关断 LED 电流的频率  
和占空比。 PWM 频率范围为 90kHz 22kHz。  
灯串之间 ±1.5% 的电流匹配  
分辨率高达 5000:1 的高精度 PWM 亮度调节  
可编程过压保护 (OVP) 阈值  
可编程输入欠压闭锁 (UVLO) 阈值  
可调软启动时间  
TPS61196-Q1 集成了过流保护、输出短路保护、ISET  
接地短路保护、二极管开路和短路保护、LED 开路和  
短路保护以及过热关断电路。 此外,TPS61196-Q1 还  
可检测 IFB 引脚接地短路以保护 LED 灯串。 该器件  
还具有可编程的输入欠压闭锁阈值和输出过压保护阈  
值。  
内置 LED 开路和短路保护  
内置肖特基二极管开路和短路保护  
内置 ISET 短路保护  
内置 IFB 短路保护  
热关断  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
2 应用范围  
TPS61196-Q1  
HTSSOP (28)  
9.70 mm x 4.40 mm  
汽车 LCD 背光  
汽车仪表板显示器  
汽车辅助显示器  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
L1  
D1  
68mH  
VIN = 24V  
3 说明  
C1  
EC1  
100mF  
EC2  
10mF  
100mF  
R19  
3
TPS61196-Q1 可为汽车 LCD 背光照明应用提供高度  
集成的解决方案,可使每个灯串都具有独立的 PWM  
调光功能。 该器件是一款电流模式升压控制器,能够  
驱动多达六个由多个 LED 串联组成的白色发光二极管  
(WLED) 灯串。 每个灯串均具有独立的电流稳压器,  
稳压器可在 50mA 400mA 范围内调节 LED 电流  
(匹配精度 ±1.5%)。 可在 0.3V 1V 范围内编程最  
低灌电流电压,以符合不同的 LED 电流设置。 器件的  
输入电压范围为 8V 30V。  
VIN  
R3  
Q1  
GDRV  
R5  
C2  
2.2mF  
255k  
200k  
ISNS  
R6  
200  
R4  
C4  
10nF  
R1  
182k  
R7  
0.1  
10k  
UVLO  
VDD  
PGND  
C5  
470pF  
TPS61196  
R2  
24.9k  
OVP  
COMP  
FSW  
C3  
1.0mF  
C8  
160pF  
R8  
150k  
REF  
R9  
200k  
C6  
47nF  
C7  
EN  
2.2mF  
FAULT  
IFB1  
IFB2  
IFB3  
IFB4  
IFB5  
IFB6  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
IFBV  
FBP  
ISET  
C9  
R10  
60.4k  
0.1mF  
R12  
196k  
R11  
37.4k  
R13 R14 R15 R16 R17 R18  
10M 10M 10M 10M 10M 10M  
Thermal pad  
AGND  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNVSA79  
 
 
 
 
 
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application ................................................. 19  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
8
9
10 Layout................................................................... 23  
10.1 Layout Guidelines ................................................. 23  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 ....................................................................... 24  
11.2 静电放电警告......................................................... 24  
11.3 术语表 ................................................................... 24  
12 机械封装和可订购信息 .......................................... 24  
7
4 修订历史记录  
日期  
修订版本  
注释  
2015 3 月  
*
最初发布。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
5 Pin Configuration and Functions  
PWP Package  
28-Pin HTSSOP  
Top View  
UVLO  
EN  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VIN  
2
FAULT  
FSW  
VDD  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
FBP  
3
4
5
GDRV  
ISNS  
PGND  
REF  
6
7
8
9
COMP  
OVP  
ISET  
10  
11  
12  
13  
14  
IFBV  
IFB1  
AGND  
IFB6  
IFB2  
IFB5  
IFB3  
IFB4  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NUMBER  
NAME  
UVLO  
EN  
Low input voltage lock out. Use a resistor divider from VIN to this pin to set the UVLO  
threshold.  
1
I
I
2
Enable and disable pin. EN high = enable, EN low = disable.  
PWM1 to  
PWM6  
3,4,5,6,7,8  
I
PWM signal input pins. The frequency of PWM signal is in the range of 90 Hz to 22 kHz.  
9
FBP  
ISET  
IFBV  
O
O
O
I
LED cross-short protection threshold program pin. Use a resistor to GND to set the threshold.  
Connecting a resistor to the pin programs the IFB pin current level for full brightness (that is,  
100% dimming).  
10  
11  
Minimum feedback voltage setting for LED strings.  
Regulated current sink input pins  
Analog ground  
IFB1 to  
IFB6  
12,13,14,15,16,17  
18  
19  
20  
AGND  
G
I
Overvoltage protection detection input. Connect a resistor divider from output to this pin to  
program the OVP threshold.  
OVP  
COMP  
O
Loop compensation for the boost converter. Connect a RC network to make loop stable.  
Internal reference voltage for the boost converter. Use a capacitor at this pin to adjust the soft  
start time. When two chips operate in parallel, connect the master's REF pin to the slave's  
COMP pin.  
21  
REF  
O
22  
23  
24  
PGND  
ISNS  
GND  
External MOSFET current sense ground.  
External MOSFET current sense positive input.  
External switch MOSFET gate driver output.  
I
GDRV  
O
Internal regulator output for device internal power supply. Connect a 1-µF ceramic capacitor to  
this pin.  
25  
VDD  
O
Switching frequency setting pin. Use a resistor to set the frequency between 100 kHz to  
800 kHz. An external input voltage above 3.5 V or below 0.5 V disables the internal clock and  
makes the device as slave device.  
26  
FSW  
O
27  
28  
FAULT  
VIN  
O
I
Fault indicator. Open-drain output. Output high impedance when fault conditions happens.  
Power supply input pin  
Copyright © 2015, Texas Instruments Incorporated  
3
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–2  
MAX  
UNIT  
VIN pin  
33  
FAULT pin  
FB1 to IFB6 pins  
VIN  
40  
FBP, ISET, ISNS, IFBV pins  
Voltage(2)  
3.3  
V
EN, PWM1 to PWM6 pins  
20  
GDRV pins  
GDRV 10-ns transient pins  
All other pins  
7
9
–0.3  
7
Continuous power dissipation  
Operating junction temperature range  
Storage temperature, Tstg  
See Thermal Information  
–40  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal  
6.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
8
NOM  
MAX  
30  
UNIT  
VIN  
VOUT  
L1  
Input voltage  
V
V
Output voltage  
VIN  
10  
120  
100  
Inductor  
µH  
µF  
µF  
kHz  
kHz  
°C  
CIN  
COUT  
fSW  
fDIM  
TA  
Input capacitor  
10  
Output capacitor  
22  
220  
800  
22  
Boost regulator switching frequency  
PWM dimming frequency  
Operating ambient temperature  
Operating junction temperature  
100  
0.09  
–40  
–40  
125  
125  
TJ  
°C  
(1) Customers need to verify the component value in their application if the values are different from the recommended values.  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
6.4 Thermal Information  
PWP (HTSSOP)  
THERMAL METRIC(1)  
UNIT  
28 PINS  
33.8  
18.8  
15.6  
0.6  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
15.4  
2.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6.5 Electrical Characteristics  
VIN= 24 V, C1 = 10 μF, C2 = 2.2 μF, C3 = 1 μF, EC1 = EC2 = 100 μF; Typical values are at TA = 25°C, Minimum and  
Maximum limits are over the operating temperature range (TA = –40°C to 125°C) (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
8
30  
7
V
V
VVIN_UVLO  
VVIN_HYS  
Undervoltage lockout threshold  
VIN UVLO hysteresis  
VIN falling  
6.5  
300  
mV  
Operating quiescent current into  
VIN  
Device enabled, no switching, VIN = 30  
V
Iq_VIN  
ISD  
2
mA  
µA  
V
VIN = 12 V,  
VIN = 30 V  
25  
50  
Shutdown current  
Regulation voltage for internal  
circuit  
VDD  
0 mA < IDD < 15 mA  
5.7  
6
6.3  
EN and PWMx  
VH  
Logic high input on EN,PWMx  
Logic Low input on EN, PWMx  
Pull-down resistance on EN, PWMx  
VIN = 8 V to 30 V  
VIN = 8 V to 30 V  
1.8  
0.8  
V
V
VL  
0.8  
3
RPD  
1.6  
MΩ  
UVLO  
VUVLOTH  
Threshold voltage at UVLO pin  
UVLO input bias current  
1.204  
1.229  
1.253  
V
VUVLO = VUVLOTH – 50 mV  
VUVLO = VUVLOTH + 50 mV  
–0.1  
–4.3  
a
-3.9  
0.1  
–3.3  
IUVLO  
µA  
SOFT START  
PWM ON, VREF< 2 V  
PWM ON, VREF> 2 V  
200  
10  
ISS  
Soft start charging current  
µA  
CURRENT REGULATION  
VISET  
ISET pin voltage  
1.217  
120  
1.229  
150  
1.240  
180  
V
ISET short-to-ground protection  
threshold  
IISET_P  
µA  
KISET  
Current multiple IIFB/IISET  
Current accuracy  
IISET = 32.56 µA, VIFB = 0.5 V  
IISET = 32.56 µA, VIFB = 0.5 V  
3932  
3992  
130  
4052  
IIFB(AVG)  
127.4  
132.6  
mA  
Current matching; (IFB(MAX)  
IFB(MIN))/2IFB(AVG)  
KIFB(M)  
IISET = 32.56 µA, VIFB = 0.5 V  
0.5%  
1.5%  
1
IFB pin leakage current at dimming  
off  
IIFB_LEAK  
IIFB_max  
IFB voltage < 40 V  
VIFBV = 350 mV  
µA  
Current sink max output current  
130  
mA  
Copyright © 2015, Texas Instruments Incorporated  
5
 
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
Electrical Characteristics (continued)  
VIN= 24 V, C1 = 10 μF, C2 = 2.2 μF, C3 = 1 μF, EC1 = EC2 = 100 μF; Typical values are at TA = 25°C, Minimum and  
Maximum limits are over the operating temperature range (TA = –40°C to 125°C) (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IFB REGULATION VOLTAGE  
Measured on VIFB(min), other IFB  
voltages are 0.5 V above VIFB(min).  
IIFB = 130 mA, VIFBV = 0.5 V  
VIFB  
Regulation voltage at IFB  
508  
mV  
IFB Regulation voltage setting  
sourcing current at IFBV  
IIFBV  
VIFBV = 0.5 V  
0.247  
0.3  
0.25  
0.253  
1
IISET  
V
VIFBV  
IFBV voltage setting range  
BOOST REFERENCE VOLTAGE  
Reference voltage range for Boost  
Controller  
VREF  
0
3.1  
25  
V
IREF_LEAK  
OSCILLATOR  
fSW  
Leakage current at REF pin  
–25  
nA  
Switching frequency  
RFSW = 200 kΩ  
187  
90%  
3.5  
200  
1.8  
213  
kHz  
V
VFSW  
FSW pin reference voltage  
Maximum duty cycle  
Dmax  
fSW = 200 kHz  
94%  
200  
98%  
ton(min)  
Minimum pulse width  
Logic high input voltage  
Logic low input voltage  
ns  
V
VFSW_H  
VFSW_L  
ERROR AMPLIFIER  
0.5  
V
ISINK  
Comp pin sink current  
VOVP = VREF + 200 mV, VCOMP = 1 V  
VOVP = VREF – 200 mV, VCOMP = 1 V  
20  
20  
µA  
µA  
ISOURCE  
GmEA  
Comp pin source current  
Error amplifier transconductance  
Error amplifier output resistance  
Error amplifier crossover frequency  
90  
120  
20  
150  
µs  
REA  
MΩ  
kHz  
fEA  
1000  
GATE DRIVER  
Gate driver impedance when  
sourcing  
RGDRV(SRC)  
RGDRV(SNK)  
VDD = 6 V, IGDRV = –20 mA  
VDD = 6 V, IGDRV = 20 mA  
2
1
3
Gate driver impedance when  
sinking  
1.5  
IGDRV(SRC)  
IGDRV(SNK)  
VISNS(OC)  
Gate driver source current  
Gate driver sink current  
VGDRV = 5 V  
200  
400  
376  
mA  
mA  
mV  
VGDRV = 1 V  
Overcurrent detection threshold  
VIN = 8 V to 30 V, TJ = 25°C to 125°C  
400  
424  
OVERVOLTAGE PROTECTION (OVP)  
VOVPTH  
IOVP  
Output voltage OVP threshold  
Leakage current  
2.95  
3.02  
0
3.09  
100  
V
nA  
V
–100  
VIFB_OVP  
IFBx over voltage threshold  
PWM ON  
38  
LED SHORT DETECTION  
LED short detection sourcing  
current  
FAULT INDICATOR  
IFAULT_H Leakage current in high impedance VFAULT = 24 V  
IFAULT_L  
THERMAL SHUTDOWN  
Tshutdown Thermal shutdown threshold  
IFBP  
VFBP = 1 V  
0.247  
1
0.25  
0.253  
IISET  
1
2
nA  
Sink current at low output  
VFAULT = 1 V  
mA  
150  
15  
°C  
°C  
Thermal shutdown threshold  
hysteresis  
Thys  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
6.6 Typical Characteristics  
800  
700  
16  
14  
12  
10  
8
600  
500  
400  
300  
200  
100  
0
100 Hz Dimming  
100 Hz Dimming  
1 kHz Dimming  
6
1 kHz Dimming  
4
2
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90 100  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
PWM Dimming Duty Cycle (%)  
PWM Dimming Duty Cycle (%)  
G003  
G004  
Figure 1. Dimming Linearity  
Figure 2. Dimming Linearity At Low Dimming Duty Cycle  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
50  
100 150 200 250 300 350 400 450  
0
50  
100 150 200 250 300 350 400 450  
LED Current (mA)  
Resistance (k)  
G005  
G006  
Figure 3. Switching Frequency Setting  
Figure 4. Recommended Minimum Headroom Voltage  
EN  
SW  
50 V/div  
5 V/div  
IFB1  
V
(AC)  
OUT  
10 V/div  
200 mV/div  
V
OUT  
Inductor  
Current  
1 A/div  
20 V/div  
I
IN  
1 A/div  
4 µs/div  
40 ms/div  
G007  
G008  
Figure 5. Boost Switching Waveform  
Figure 6. Start-up Waveform (1% Dimming)  
Copyright © 2015, Texas Instruments Incorporated  
7
 
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
SW  
50 V/div  
EN  
5 V/div  
IFB1  
10 V/div  
IFB1  
5 V/div  
V
(AC)  
OUT  
200 mV/div  
V
OUT  
20 V/div  
I
ILED  
100 mA/div  
IN  
1 A/div  
40 ms/div  
10 µs/div  
G009  
G010  
Figure 7. Start-up Waveform (100% Dimming)  
Figure 8. Dimming Waveform (0.1% Dimming)  
SW  
50 V/div  
EN  
5 V/div  
IFB1  
10 V/div  
IFB1  
10 V/div  
V
(AC)  
V
OUT  
OUT  
200 mV/div  
20 V/div  
ILED  
100 mA/div  
ILED  
100 mA/div  
20 µs/div  
2 s/div  
G011  
G012  
Figure 9. Dimming Waveform (2% Dimming)  
Figure 10. Shutdown Waveform (1% Dimming)  
EN  
Fault  
5 V/div  
5 V/div  
IFB1  
IFB1  
10 V/div  
10 V/div  
V
V
OUT  
OUT  
20 V/div  
20 V/div  
ILED  
ILED  
100 mA/div  
100 mA/div  
2 s/div  
10 ms/div  
G013  
G014  
Figure 11. Shutdown Waveform (100% Dimming)  
Figure 12. LED Open Protection (1% Dimming)  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
Typical Characteristics (continued)  
Fault  
Fault  
5 V/div  
5 V/div  
IFB1  
IFB1  
10 V/div  
10 V/div  
V
V
OUT  
OUT  
20 V/div  
20 V/div  
ILED  
ILED  
100 mA/div  
100 mA/div  
10 ms/div  
2 ms/div  
G015  
G016  
Figure 13. LED Open Protection (100% Dimming)  
Figure 14. LED Short Protection (1% Dimming)  
Fault  
Fault  
5 V/div  
5 V/div  
IFB1  
IFB1  
10 V/div  
10 V/div  
V
V
OUT  
OUT  
20 V/div  
20 V/div  
ILED  
ILED  
100 mA/div  
100 mA/div  
100 µs/div  
20 ms/div  
G017  
G018  
Figure 15. LED Short Protection (100% Dimming)  
Figure 16. IFB Short To Ground Protection (1% Dimming)  
Fault  
5 V/div  
IFB1  
500 mV/div  
V
OUT  
20 V/div  
ILED  
100 mA/div  
20 ms/div  
G019  
Figure 17. IFB Short-To-Ground Protection (100% Dimming)  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS61196-Q1 provides a highly integrated solution for automotive LCD backlight with an independent PWM  
dimming function for each string. This device is a current mode boost controller driving up to six WLED strings  
with multiple LEDs in series. Each string has an independent current regulator providing a LED current  
adjustable from 50 mA to 400 mA within ±1.5% matching accuracy. The minimal voltage at the current sink is  
programmable in the range of 0.3 V to 1 V to fit with different LED current settings. The input voltage range for  
the device is from 8 V to 30 V.  
7.2 Functional Block Diagram  
L1  
IN  
C1  
VIN  
VDD  
EN  
FAULT  
C2  
LDO  
Protection Logic  
D1  
C3  
OUT  
R1  
R2  
VDD  
GDRV  
ISNS  
UVLO  
PWM  
Logic  
C4  
Driver  
R6  
C5  
Oscillator  
and  
FSW  
Slope  
R5  
R7  
Compensation  
COMP  
PGND  
OVP  
Protection  
R8  
OC  
Protection  
VDD  
EA  
400mV  
C6  
R3  
R4  
3.0V  
OVP  
IFB1  
Iss  
Min IFB  
Selection  
6
REF  
EA  
C7  
IFBV  
FBP  
R11  
EA  
EN  
R10  
ISET  
AGND  
Current Sink  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
IFB2  
IFB3  
R9  
Current Sink  
Current Sink  
Current Sink  
Current Sink  
Current Sink  
IFB4  
IFB5  
IFB6  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
7.3 Feature Description  
7.3.1 Supply Voltage  
The TPS61196-Q1 has a built-in linear regulator to supply the device analog and logic circuitry. The VDD pin,  
output of the regulator, must be connected to a 1-µF bypass capacitor. VDD only has a current sourcing  
capability of 15 mA. VDD voltage is ready after the EN pin is pulled high.  
7.3.2 Boost Controller  
The TPS61196-Q1 regulates the output voltage with current mode pulse width modulation (PWM) control. The  
control circuitry turns on an external switch FET at the beginning of each switching cycle. The input voltage is  
applied across the inductor and stores the energy as the inductor current ramps up. During this portion of the  
switching cycle, the load current is provided by the output capacitor. When the inductor current rises to the  
threshold set by the Error Amplifier (EA) output, the switch FET is turned off and the external Schottky diode is  
forward biased. The inductor transfers stored energy to replenish the output capacitor and supply the load  
current. This operation repeats each switching cycle. The switching frequency is programmed by an external  
resistor.  
A ramp signal from the oscillator is added to the current ramp to provide slope compensation, shown in the  
Functional Block Diagram. The duty cycle of the converter is then determined by the PWM Logic block which  
compares the EA output and the slope compensated current ramp. The feedback loop regulates the OVP pin to  
a reference voltage generated by the minimum voltage across the IFB pins. The output of the EA is connected to  
the COMP pin. An external RC compensation network must be connected to the COMP pin to optimize the  
feedback loop for stability and transient response.  
The TPS61196-Q1 consistently adjusts the boost output voltage to account for any changes in LED forward  
voltages. In the event that the boost controller is not able to regulate the output voltage due to the minimum  
pulse width (ton(min) in the Electrical Characteristics), the TPS61196-Q1 enters pulse skip mode. In this mode, the  
device keeps the power switch off for several switching cycles to prevent the output voltage from rising above the  
regulated voltage. This operation typically occurs in light load condition or when the input voltage is higher than  
the output voltage.  
7.3.3 Switching Frequency  
The switching frequency is programmed between 100 kHz to 800 kHz by an external resistor (R9 in the  
简化电路原理图). To determine the resistance by a given frequency, use the curve in Figure 3 or calculate the  
resistance value by Equation 1. Table 1 shows the recommended resistance values for some switching  
frequencies.  
40000  
fSW  
=
kHz  
( )  
R9  
(1)  
Table 1. Recommended Resistance Values For  
Switching Frequencies  
R9  
ƒSW  
400 kΩ  
200 kΩ  
100 kΩ  
80 kΩ  
48 kΩ  
100 kHz  
200 kHz  
400 kHz  
500 kHz  
800 kHz  
7.3.4 Enable and Undervoltage Lockout  
The TPS61196-Q1 is enabled with the soft start-up when the EN pin voltage is higher than 1.8 V. A voltage of  
less than 1 V disables the device.  
An undervoltage lockout (UVLO) protection feature is provided. When the voltage at the VIN pin is less than 6.5  
V, the device is powered off. The TPS61196-Q1 resumes the operation once the voltage at the VIN pin recovers  
above the hysteresis (VVIN_HYS) more than the UVLO threshold of input falling voltage. If a higher UVLO voltage  
is required, use the UVLO pin as shown in Figure 18 to adjust the input UVLO threshold by using an external  
resistor divider. Once the voltage at the UVLO pin exceeds the 1.229-V threshold, the device is powered on, and  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
 
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
a hysteresis current source of 3.9 µA is added. When the voltage at the UVLO pin drops lower than 1.229 V, the  
current source is removed. The resistors of R1, R2, and R5 can be calculated by Equation 2 from required  
VSTART and VSTOP. To avoid noise coupling, the resistor divider R1 and R2 must be close to the UVLO pin.  
Placing a filter capacitor of more than 10 nF as shown in Figure 18 can eliminate the impact of the switching  
ripple and improve the noise immunity.  
If the UVLO function is not used, pull up the UVLO pin to the VDD pin.  
VIN  
R5  
IHYS  
R1  
C4  
UVLO  
Enable  
R2  
UVLO  
Comparator  
1.229V  
Figure 18. Undervoltage Lockout Circuit  
VSTART - VSTOP  
R1+ R5 =  
IHYS  
1.229V  
R2 = (R1+ R5)´  
VSTART -1.229V  
where  
IHYS is 3.9 µA sourcing current from the UVLO pin.  
(2)  
When the UVLO condition happens, the FAULT pin outputs high impedance. As long as the UVLO condition  
removes, the FAULT pin outputs low impedance.  
7.3.5 Power-Up Sequencing and Soft Start-up  
The input voltage, UVLO pin voltage, EN input signal and the input dimming PWM signal control the power up of  
the TPS61196-Q1. After the input voltage is above the required minimal input voltage of 7.5 V, the internal circuit  
is ready to be powered up. After the UVLO pin is above the threshold of 1.229 V and the EN signal is high, the  
internal LDO and logic circuit are activated. The device outputs a 20-ms pulse to detect the unused channels and  
remove them from the control loop. When any PWM dimming signal is high, the soft start-up begins. If the PWM  
dimming signals come before the EN signal is high, the soft start-up begins immediately after the detection of  
unused channels.  
12  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
VIN  
Rising Threshold  
Falling Threshold  
UVLO  
EN  
40μs  
VDD  
PWMx  
FAULT  
REF  
REF Voltage = OVP Voltage  
VOUT  
Switching  
IFBx  
Unused Channel  
Detection  
200μs  
20ms  
Figure 19. Power-Up Sequencing  
The TPS61196-Q1 has integrated the soft-start circuitry working with an external capacitor at the REF pin to  
avoid inrush current during start-up. During the start-up period, the capacitor at the REF pin is charged with a  
soft-start current source. When the REF pin voltage is higher than the output feedback voltage at the OVP pin,  
the boost controller starts switching and the output voltage starts to ramp up. At the same time, the LED current  
sink starts to drive the LED strings. At the beginning of the soft start, the charge current is 200 µA. Once the  
voltage of the REF pin exceeds 2 V, the charge current changes to 10 µA and continues to charge the capacitor.  
When the current sinks are driving the LED strings, the IFB voltages are monitored. When the minimum IFB  
voltage is above 200 mV less than the setting voltage at the IFBV pin, the charge current is stopped, and the soft  
start-up is finished. The TPS61196-Q1 enters normal operation to regulate the minimum IFB voltage to the  
required voltage set by the resistor at the IFBV pin. The total soft start time is determined by the external  
capacitance. The capacitance must be within 1 µF to 4.7 µF for different start-up time and different output  
voltage.  
Copyright © 2015, Texas Instruments Incorporated  
13  
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
UVLO  
VIN  
EN  
PWM  
Dimming  
10uA  
Charging  
Current  
200uA  
Charging  
Current  
Soft Startup Done  
VIFB(min)>VIFBV – 200mV  
VREF=2V  
Dimming Off  
(VOUT = VIN – VD)  
15ms  
200ms  
VOUT  
Figure 20. Soft-Start Waveforms  
7.3.6 Unused Led String  
If the application requires less than six LED strings, the TPS61196-Q1 simply requires connecting the unused  
IFB pin to ground through a resistor between 20 kΩ and 36 kΩ. Once the device is turned on, the TPS61196-Q1  
uses a 60-µA current source to detect the IFB pin voltage. If the IFB voltage is between 1 V and 2.5 V, the  
device immediately disables this string during start-up.  
7.3.7 Current Regulation  
The six channel current sink regulators can be configured to provide up to 400 mA per string. The expected LED  
current is programmed by a resistor (R11 in the 简化电路原理图) at the ISET using Equation 3.  
V
ISET  
ILED  
=
´KISET  
R11  
where  
VISET is the ISET pin voltage of 1.229 V  
KISET is the current multiple of 3992.  
(3)  
To sink the set LED current, the current sink regulator requires a minimum headroom voltage at the IFB pins for  
working properly. For example, when the LED current is set to 130 mA, the minimum voltage required at the IFB  
pin must be higher than 0.35 V. For other LED currents, refer to Figure 4 for recommended minimum headroom  
voltage required. The TPS61196-Q1 regulates the minimum voltage of the IFB pins to the IFBV voltage. The  
IFBV voltage is adjustable with an external resistor (R10 in the 简化电路原理图) at the IFBV pin. After choosing  
the minimum IFB voltage, the IFBV voltage must be set to this value and the setting resistance can be calculated  
by Equation 4.  
R10  
V
=
´ 307.3 mV  
( )  
IFBV  
R11  
(4)  
If a large LED current is set, the headroom voltage is required higher. This leads to more heat on the device. To  
maintain the total power dissipation in the range of the package limit, normally all strings can not sink large  
current in continuous mode but pulse mode.  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
7.3.8 PWM Dimming  
LED brightness dimming is set by applying an external PWM signal of 90 Hz to 22 kHz to the PWM pins. Each  
LED string has an independent PWM input. Varying the PWM duty cycle from 0% to 100% adjusts the LED from  
minimum to maximum brightness respectively. The recommended minimum on time of the LED string is 10 µsec.  
Thus, the device has a minimum dimming duty cycle of 500:1 at 200 Hz.  
When all PWM voltages are pulled low during dimming off, the TPS61196-Q1 turns off the LED strings and  
keeps the boost converter running at PFM mode. The output voltage is kept at the level which is a little bit lower  
than that when PWM is high. Thus, the device limits the output ripple due to the load transient that occurs during  
PWM dimming.  
When all PWM voltages are pulled low for more than 20 ms, to avoid the REF pin voltage dropping due to the  
leakage current, the voltage of the REF pin is held by an internal reference voltage which equals to the REF pin  
voltage in normal dimming operation. Thus, the output voltage will be kept at the same level as the normal output  
voltage.  
Since the output voltage in long time dimming off status is almost the same as the normal voltage for turning the  
LED on, the TPS61196-Q1 turns on the LED very fast without any flicker when recovering from long time  
dimming off to small duty cycle dimming on.  
7.4 Device Functional Modes  
7.4.1 Protections  
The TPS61196-Q1 has a full set of protections making the system safe to any abnormal conditions. Some  
protections will latch the TPS61196-Q1 in off state until its power supply is recycled or it is disabled and then  
enabled again. In latch off state, the REF pin voltage is discharged to 0 V.  
7.4.1.1 Switch Current Limit Protection Using the ISNS Pin  
The TPS61196-Q1 monitors the inductor current through the voltage across a sense resistor (R7 in the  
简化电路原理图) in order to provide current limit protection. During the switch FET on period, when the voltage at  
the ISNS pin rises above 400 mV (VISNS in the Electrical Characteristics table), the TPS61196-Q1 turns off the  
FET immediately and does not turn it back on until the next switch cycle. The switch current limit is equal to 400  
mV / R7.  
7.4.1.2 LED Open Protection  
When one of the LED strings is open, the voltage at the IFB pin connecting to this LED string drops to zero  
during dimming-on time. The TPS61196-Q1 monitors the IFB voltage for 20 ms. If the IFB voltage is still below  
the threshold of 0.2 V, the current sink is disabled and an internal pull-up current is activated to detect the IFB  
voltage again. If the IFB voltage is pulled up to a high voltage, this LED string is recognized as LED open. As a  
result, the device deactivates the open IFB pin and removes it from the voltage feedback loop. Afterwards, the  
output voltage returns to the voltage required for the connected LED strings. The IFB pin currents of the  
connected strings remain in regulation during this process. If all the LED strings are open, the TPS61196-Q1 is  
latched off.  
7.4.1.3 LED Short-Cross Protection Using the FBP Pin  
If one or several LEDs short in one string, the corresponding IFB pin voltage rises but continues to sink the LED  
current, causing increased device power dissipation. To protect the device, the TPS61196-Q1 provides a  
programmable LED short-across protection feature by properly sizing the resistor on the FBP pin (R12 in the  
简化电路原理图) using Equation 5.  
R12  
VLED _ SHORT  
=
´1.229V  
R11  
(5)  
If any IFB pin voltage exceeds the threshold (VLED_SHORT), the device turns off the corresponding current sink and  
removes this IFB pin from the output voltage regulation loop. Current regulation of the remaining IFB pins is not  
affected.  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.1.4 Schottky Diode Open Protection  
When the device is powered on, it checks the topology connection first. After the TPS61196-Q1 delays 400 µs, it  
checks the voltage at the OVP pin to see if the Schottky diode is not connected or the boost output is hard-  
shorted to ground. If the voltage at the OVP pin is lower than 70 mV, the TPS61196-Q1 is locked in off state until  
the input power is recycled or it is enabled again.  
7.4.1.5 Schottky Diode Short Protection  
If the rectifier Schottky diode is shorted, the reverse current from output capacitor to ground is very large when  
the switcher MOSFET is turned on. Because the current mode control topology has a minimum edge blanking  
time to immunize against the spike current through the switcher, if the parasite inductance between the output  
capacitor through the switcher to ground is zero, the external MOSFET will be damaged in this short period due  
to the huge power dissipation in this case. But with a small parasite inductance, the power dissipation is limited.  
The boost converter works in minimum pulse width in this situation due to cycle by cycle over-current protection.  
The output voltage drops and the all-string-open protection is triggered because of the low voltage at all IFB pins.  
The TPS61196-Q1 is latched off.  
7.4.1.6 IFB Overvoltage Protection During Start-up  
When any of IFB pins reaches the threshold (VOVP_IFB) of 38 V during start-up, the device stops switching and  
stays in latch-off immediately to protect from damage. In latch-off state, the REF pin voltage is discharged.  
7.4.1.7 Output Overvoltage Protection Using the OVP Pin  
Use a resistor divider to program the maximum output voltage of the boost converter. To ensure the LED string  
can be turned on with setting current, the maximum output voltage must be higher than the forward voltage drop  
of the LED string. The maximum required voltage can be calculated by multiplying the maximum LED forward  
voltage (VFWD(max)) and number (n) of series LEDs , and adding extra 1 V to account for regulation and resistor  
tolerances and load transients.  
The recommended bottom feedback resistor of the resistor divider (R4 in the 简化电路原理图) is 10 kΩ. Calculate  
the top resistor (R3 in the 简化电路原理图) using Equation 6, where VOVP is the maximum output voltage of the  
boost converter.  
V
æ
ö
OVP  
R3 =  
-1 ´R4  
ç
÷
3.02  
è
ø
(6)  
When the device detects that the voltage at the OVP pin exceeds overvoltage protection threshold of 3.02 V,  
indicating that the output voltage has exceeded the clamp threshold voltage, the TPS61196-Q1 clamps the  
output voltage to the set threshold. When the OVP pin voltage does not drop from the OVP threshold for more  
than 500 ms, the device is latched off until the input power or the EN pin voltage is re-cycled.  
7.4.1.8 Output Short-to-Ground Protection  
When the inductor peak current reaches twice the switch current limit in each switching cycle, the device  
immediately disables the boost controller until the fault is cleared. This protects the device and external  
components from damage if the output is shorted to ground.  
7.4.1.9 IFB Short-to-Ground Protection  
The IFB pin short to ground makes the LED current uncontrollable if there is no protection. If the device tries to  
increase the boost converter’s output voltage to lift the IFB voltage, it will make the situation worse and the LED  
string may be burned due to the high current. The TPS61196-Q1 implements a protection mechanism to protect  
the LED string in this failure mode.  
If the IFB is short to ground before the TPS61196-Q1 is turned on, the device detects the IFB voltage by  
sourcing a 60 µA current during start-up. If the IFB voltage is less than 0.4 V during start-up, the start-up stops  
and the device outputs fault indication so as to protect the LED string during start-up.  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
Device Functional Modes (continued)  
When a LED feedback pin is shorted to ground during normal operation, the device first turns off this LED string  
for a very short time and detects the IFB voltage again. If the IFB voltage is lower than 1.8 V, it sources a 60-µA  
current and detects the IFB voltage again in off state. If the IFB voltage is still less than 1.8 V, this means the IFB  
pin is shorted to ground. The boost converter is turned off and the REF voltage is discharged to ground to protect  
the LED string.  
7.4.1.10 ISET Short-to-Ground Protection  
The TPS61196-Q1 monitors the ISET pin voltage when the device is enabled. When the sourcing current from  
the ISET pin is larger than a threshold of 150 μA, the device disables the current sink because the ISET pin may  
be short to ground or the current setting resistor is too small. Once the current sourcing from the ISET pin  
recovers to the normal value, the current sink resumes working.  
7.4.1.11 Thermal Protection  
When the device junction temperature is over 150°C, the thermal protection circuit is triggered and shuts down  
the device immediately. The device automatically restarts when the junction temperature falls back to less than  
135°C, with approximate 15°C hysteresis.  
Table 2. Protection List  
PROTECTION ITEM  
Diode open  
RESULT  
FAULT  
LATCH OFF / RETRY  
Latch off  
Cannot start up  
Output voltage low  
LED string off  
IFB OVP  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Diode short  
Latch off  
LED string open  
LED string latch off  
Latch off  
LED string short during start-up  
LEDshort  
LED string off  
Boost off  
LED string latch off  
Latch off  
IFB short to GND  
ISET short to GND  
All LED strings open during start-up  
Input voltage UVLO  
Thermal shutdown  
All LED strings off  
VOUT OVP  
Boost off  
Retry  
Latch off  
Retry  
Shutdown  
Retry  
7.4.2 Indication For Fault Conditions  
The TPS61196-Q1 has an open-drain fault indicator pin to indicate abnormal conditions. When the device is  
operating normally, the voltage at the FAULT pin is low. When any fault condition happens, it is in high  
impedance, which can be pulled to high level through an external resistor. The FAULT pin can indicate following  
conditions:  
Overvoltage condition at the OVP or the IFB pin  
LED short and open  
IFB short to ground  
ISET short to ground  
Diode open and short  
Output short circuit  
Overtemperature  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
When more LED strings are required in the application, the TPS61196-Q1 can work in master/slave mode. The  
TPS61196-Q1 can be set as slave device when the voltage at the FSW pin is below 0.5 V or above 3.5 V. The  
master TPS61196-Q1 has booster controller and outputs the power rail for all LED strings. The slave TPS61196-  
Q1 only works as a LED driver and feedbacks the required headroom voltage to the master by connecting the  
slave's COMP pin to the master's REF pin. The ISNS pin of the slave TPS61196-Q1 must be connected to  
ground. The slave's OVP pin voltage must be 3% higher than the voltage at the master's OVP pin. The slave  
device can combine all fault conditions happening on both master and slave devices by connecting the master's  
FAULT output to the FSW pin of the slave device. The slave’s FAULT pin outputs the indication signal for all fault  
conditions.  
L1  
68uH  
D1  
8V to 30V  
C1  
EC1  
EC2  
10μF  
R3  
100μF  
100μF  
8V to 30V  
VIN  
VIN  
R15  
C2  
2.2μF  
R14  
GDRV  
ISNS  
GDRV  
ISNS  
R5  
R2  
R6  
C5  
R7  
R4  
R1  
C4  
10nF  
PGND  
PGND  
TPS61196  
TPS61196  
SLAVE  
UVLO  
VDD  
UVLO  
VDD  
MASTER  
OVP  
COMP  
FSW  
OVP  
COMP  
FSW  
C3  
1.0μF  
R8  
R9  
REF  
REF  
C6  
EN  
EN  
C7  
PWM1  
IFB1  
PWM1  
IFB1  
VDD  
R13  
PWM6  
FAULT  
IFB6  
IFBV  
FBP  
PWM6  
FAULT  
IFB6  
IFBV  
FBP  
R12  
R10  
ISET  
ISET  
AGND  
AGND  
R11  
Figure 21. Multi-Chip Operation In Parallel  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
8.2 Typical Application  
L1  
68mH  
D1  
VIN = 24V  
C1  
EC1  
100mF  
EC2  
10mF  
100mF  
R19  
3
VIN  
R3  
Q1  
GDRV  
R5  
C2  
2.2mF  
255k  
200k  
ISNS  
R6  
200  
R4  
C4  
10nF  
R1  
182k  
R7  
0.1  
10k  
UVLO  
VDD  
PGND  
C5  
470pF  
TPS61196  
R2  
24.9k  
OVP  
COMP  
FSW  
C3  
1.0mF  
C8  
160pF  
R8  
150k  
REF  
R9  
200k  
C6  
47nF  
C7  
EN  
2.2mF  
FAULT  
IFB1  
IFB2  
IFB3  
IFB4  
IFB5  
IFB6  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
IFBV  
FBP  
ISET  
C9  
R10  
60.4k  
0.1mF  
R12  
196k  
R11  
37.4k  
R13 R14 R15 R16 R17 R18  
10M 10M 10M 10M 10M 10M  
Thermal pad  
AGND  
Figure 22. TPS61196-Q1 Typical Application  
8.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
8 V to 16 V  
6 x 12  
Input voltage range  
Number of LED strings x number of LEDs per string  
Forward voltage of LED string  
LED string current  
36 V  
70 mA per channel  
200 kHz  
Switching frequency  
8.2.2 Detailed Design Procedure  
8.2.2.1 Inductor Selection  
The inductor is the most important component in switching power regulator design because it affects power  
supply steady state operation, transient behavior, and loop stability. The inductor value, DC resistance (DCR),  
and saturation current are important specifications to be considered for better performance. Although the boost  
power stage can be designed to operate in discontinuous mode at maximum load, where the inductor current  
ramps down to zero during each switching cycle, most applications will be more efficient if the power stage  
operates in continuous conduction mode, where a DC current flows through the inductor. Therefore, the  
Equation 8 and Equation 9 below are for CCM operation only. The TPS61196-Q1 is designed to work with  
inductor values between 10 µH and 100 µH, depending on the switching frequency. Running the controller at  
higher switching frequencies allows the use of smaller and/or lower profile inductors in the 10-µH range. Running  
the controller at slower switching frequencies requires the use of larger inductors, near 100 µH, to maintain the  
same inductor current ripple but may improve overall efficiency due to smaller switching losses. Inductor values  
can have ±20% tolerance with no current bias. When the inductor current approaches saturation level, its  
inductance can decrease 20% to 35% from the 0A value depending on how the inductor vendor defines  
saturation.  
In a boost regulator, the inductor DC current can be calculated with Equation 7.  
VOUT ´ IOUT  
IL(DC)  
=
V
´ η  
IN  
where  
VOUT = boost output voltage  
IOUT = boost output current  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
 
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
VIN = boost input voltage  
η = power conversion efficiency, use 95% for TPS61196-Q1 applications  
(7)  
The inductor current peak-to-peak ripple can be calculated with Equation 8.  
V ´ V  
- V  
IN  
(
L ´ fSW ´ VOUT  
)
IN  
OUT  
DIL(P-P)  
=
where  
ΔIL(P-P) = inductor ripple current  
L = inductor value  
fSW = switching frequency  
VOUT = boost output voltage  
VIN = boost input voltage  
(8)  
(9)  
Therefore, the inductor peak current is calculated with Equation 9.  
DIL(P-P)  
IL(P) = IL(DC)  
+
2
Select an inductor, which saturation current is higher than calculated peak current. To calculate the worst-case  
inductor peak current, use the minimum input voltage, maximum output voltage, and maximum load current.  
Regulator efficiency is dependent on the resistance of its high current path and switching losses associated with  
the switch FET and power diode. Besides the external switch FET, the overall efficiency is also affected by the  
inductor DCR. Usually the lower DC resistance shows higher efficiency. However, there is a trade-off between  
DCR and the inductor footprint; furthermore, shielded inductors typically have higher DCR than unshielded ones.  
8.2.2.2 Schottky Diode  
The TPS61196-Q1 demands a high-speed rectification for optimum efficiency. Ensure that the diode's average  
and peak current rating exceed the output LED current and inductor peak current. In addition, the diode's reverse  
breakdown voltage must exceed the application output voltage.  
8.2.2.3 Switch MOSFET And Gate Driver Resistor  
The TPS61196-Q1 demands a power N-MOSFET (see Q1 in the Figure 22) as a switch. The voltage and current  
rating of the MOSFET must be higher than the application output voltage and the inductor peak current. The  
applications benefit from the addition of a resistor (See R19 in the Figure 22) connected between the GDRV pin  
and the gate of the switch MOSFET. With this resistor, the gate driving current is limited and the EMI  
performance is improved. A 3-Ω resistor value is recommended. The device exhibits lower efficiency when the  
resistor value is above 3 Ω due to the more switching loss of the external MOSFET.  
8.2.2.4 Current Sense and Current Sense Filtering  
R7 determines the correct overcurrent limit protection. To choose the right value of R7, start with the total system  
power needed POUT, and calculate the input current IIN by Equation 7. Efficiency can be estimated between 90%  
to 95%. The second step is to calculate the inductor peak current based on the inductor value L using Equation 8  
and Equation 9. The maximum R7 can now be calculated as R7(max) = VISNS / IL(P). It is recommended to add  
20% or more margins to account for component variations. A small filter placed on the ISNS pin improves  
performance of the converter (See R6 and C5 in 简化电路原理图). The time constant of this filter should be  
approximately 100 ns. The range of R6 should be from about 100 Ω to 1 kΩ for best results. The C5 should be  
located as close as possible to the ISNS pin to provide noise immunity.  
8.2.2.5 Output Capacitor  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability of the whole  
system. This ripple voltage is related to the capacitance of the capacitor and its equivalent series resistance  
(ESR). Assuming a capacitor with zero ESR, the minimum capacitance needed for a given ripple can be  
calculated by:  
IOUT ´ DMAX  
VRIPPLE(C)  
=
fSW ´ COUT  
20  
Copyright © 2015, Texas Instruments Incorporated  
 
 
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
where  
VRIPPLE is the peak-to-peak output voltage ripple  
DMAX is the duty cycle of the boost converter.  
(10)  
DMAX is approximately equal to (VOUT(MAX) – VIN(MIN) / VOUT(MAX)) in applications. Care must be taken when  
evaluating a capacitor’s derating under DC bias. The DC bias can also significantly reduce capacitance. Ceramic  
capacitors can loss as much as 50% of its capacitance at its rated voltage. Therefore, leave the margin on the  
voltage rating to ensure adequate capacitance.  
The ESR impact on the output ripple must be considered as well if tantalum or aluminum electrolytic capacitors  
are used. Assuming there is enough capacitance such that the ripple due to the capacitance can be ignored, the  
ESR needed to limit the VRIPPLE is: VRIPPLE(ESR) = IL(P) × ESR  
Ripple current flowing through a capacitor’s ESR causes power dissipation in the capacitor. This power  
dissipation causes a temperature increase internally to the capacitor. Excessive temperature can seriously  
shorten the expected life of a capacitor. Capacitors have ripple current ratings that are dependent on ambient  
temperature and should not be exceeded. Therefore, high ripple current type electrolytic capacitor with small  
ESR is used in typical application as shown in 简化电路原理图.  
In the typical application, the output requires a capacitor in the range of 22 µF to 220 µF. The output capacitor  
affects the small signal control loop stability of the boost converter. If the output capacitor is below the range, the  
boost regulator may potentially become unstable.  
8.2.2.6 Loop Consideration  
The COMP pin on the TPS61196-Q1 is used for external compensation, allowing the loop response to be  
optimized for each application. The COMP pin is the output of the internal trans-conductance amplifier. The  
external resistor R8, along with ceramic capacitors C6 and C8 (see in 简化电路原理图), are connected to the  
COMP pin to provide poles and zero. The poles and zero, along with the inherent pole and zero in a peak current  
mode control boost converter, determine the closed loop frequency response. This is important to converter  
stability and transient response.  
The first step is to calculate the pole and the right half plane zero of the peak current mode boost converter by  
Equation 11 and Equation 12.  
2IOUT  
fP  
=
2πVOUT ´ COUT  
(11)  
2
VOUT ´ 1-D  
(
2πL ´ IOUT  
)
fZRHP  
=
(12)  
To make the loop stable, the loop must have sufficient phase margin at the crossover frequency where the loop  
gain is 1. To avoid the effect of the right half plane zero on the loop stability, choose the crossover frequency  
less than 1/5 of the ƒZRHP. Then calculate the compensation components by Equation 13 and Equation 14.  
R7 ´2πfco ´COUT  
VOVP  
R8 =  
´
1-D ´ Gm  
)
VOVPTH  
(
EA  
where  
VOVPTH = 3.02 V which is the internal reference for the output overvoltage-protection setting voltage.  
GmEA is the trans-conductance of the error amplifier. Its typical value is 120 μS.  
ƒCO is the crossover frequency, which normally is less than 1/5 of the ƒZRHP  
1
(13)  
(14)  
C6 =  
2πfP ´ R8  
where  
ƒP is the pole’s frequency of the power stage calculated by Equation 11  
If the output cap is the electrolytic capacitor, which may have large ESR, a capacitor is required to cancel the  
zero of the output capacitor. Equation 15 calculates the value of this capacitor.  
COUT ´ RESR  
C8 =  
R8  
(15)  
21  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
 
 
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
8.2.3 Application Curves  
100  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
8 LEDs, 100 mA/channel, 100% Brightness  
8 LEDs, 100 mA/channel, 50% Brightness  
12 LEDs, 70 mA/channel, 100% Brightness  
12 LEDs, 70 mA/channel, 50% Brightness  
50  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Input Voltage (V)  
Input Voltage (V)  
D001  
D002  
Figure 23. Efficiency vs Input Voltage (8 LEDs)  
Figure 24. Efficiency vs Input Voltage (12 LEDs)  
1
1
0.95  
0.9  
0.95  
0.9  
0.85  
0.8  
0.85  
0.8  
0.75  
0.7  
0.75  
0.7  
16 LEDs (VOUT = 50 V)  
200 Hz Dimming Frequency  
0.65  
0.6  
0.65  
0.6  
VIN = 24 V, 16 LEDs  
VIN = 24 V, 20 LEDs  
VIN = 12 V, 16 LEDs  
VIN = 12 V  
VIN = 24 V  
0.55  
0.5  
0.55  
0.5  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
10  
20  
30  
40  
50  
60  
PWM Dimming Duty Cycle (%)  
70  
80  
90 100  
Output Current (mA)  
G001  
G002  
Figure 26. DC Load Efficiency  
Figure 25. Efficiency (16 LEDs)  
9 Power Supply Recommendations  
The TPS61196-Q1 requires a single supply input voltage. This voltage can range between 8 V to 30 V and be  
able to supply enough current for a given application.  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPS61196-Q1  
www.ti.com.cn  
ZHCSDK1 MARCH 2015  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, especially those providing high current and using high switching frequencies,  
layout is an important design step. If layout is not carefully done, the regulator could show instability as well as  
EMI problems. Therefore, use wide and short traces for high current paths. The VDD capacitor, C3 (see  
Figure 22) is the filter and noise decoupling capacitor for the internal linear regulator powering the internal digital  
circuits. It should be placed as close as possible between the VDD and PGND pins to prevent any noise insertion  
to digital circuits. The switch node at the drain of Q1 carries high current with fast rising and falling edges.  
Therefore, the connection between this node to the inductor and the Schottky diode should be kept as short and  
wide as possible. It is also beneficial to have the ground of the capacitor C3 close to the ground of the current  
sense resistor R7 since there is large driving current flowing between them. The ground of output capacitor EC2  
should be kept close to input power ground or through a large ground plane because of the large ripple current  
returning to the input ground. When laying out signal grounds, it is recommended to use short traces separate  
from power ground traces and connect them together at a single point, for example on the thermal pad in the  
PWP package. Resistors R3, R4, R9, R10, R11, and R12 (see Figure 22) are setting resistors for switching  
frequency, LED current, protection threshold and feedback voltage programming. To avoid unexpected noise  
coupling into the pins and affecting the accuracy, these resistors need to be close to the pins with short and wide  
traces to GND. In the PWP package, the thermal pad needs to be soldered to the large ground plane on the PCB  
for better thermal performance. Additional thermal via can significantly improve power dissipation of the device.  
10.2 Layout Example  
GND  
VIN  
GND  
UVLO  
EN  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VIN  
2
FAULT  
FSW  
VDD  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
FBP  
3
4
5
GDRV  
ISNS  
PGND  
REF  
6
7
8
9
COMP  
OVP  
D1  
ISET  
10  
11  
12  
13  
14  
GND  
IFBV  
AGND  
IFB6  
IFB1  
IFB2  
IFB5  
IFB3  
IFB4  
GND  
Bottom GND Plane  
VOUT  
GND  
Figure 27. Layout Example  
版权 © 2015, Texas Instruments Incorporated  
23  
TPS61196-Q1  
ZHCSDK1 MARCH 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 商标  
All trademarks are the property of their respective owners.  
11.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2015, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2015, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61196PWPRQ1  
ACTIVE  
HTSSOP  
PWP  
28  
2000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
TPS61196Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS61196PWPT

6-String 400-mA WLED Driver with Independent PWM Dimming for Each String
TI

TPS61197

Single-String WLED Driver for LCD TV
TI

TPS61197DR

Single-String WLED Driver for LCD TV
TI

TPS61199

White LED Driver for LCD Monitors Backlighting
TI

TPS61199NSR

White LED Driver for LCD Monitors Backlighting
TI

TPS61199PWP

White LED Driver for LCD Monitors Backlighting
TI

TPS61199PWPR

White LED Driver for LCD Monitors Backlighting
TI

TPS611F

Silicon NPN Epitaxial Planar
TOSHIBA

TPS611_07

Silicon NPN Epitaxial Planar
TOSHIBA

TPS612

SILICON NPN EPITAXIAL PLANAR FOR PHOTO SENSOR
TOSHIBA

TPS612-A

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS612-AB

暂无描述
TOSHIBA