TPS61222-EP [TI]

具有 5.5μA 静态电流的 0.7V 输入电压、5V 固定输出电压升压转换器;
TPS61222-EP
型号: TPS61222-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 5.5μA 静态电流的 0.7V 输入电压、5V 固定输出电压升压转换器

升压转换器
文件: 总18页 (文件大小:709K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61222-EP  
www.ti.com.cn  
ZHCSAA0 SEPTEMBER 2012  
具有 5.5μA 静态电流的低输入电压,0.7V 升压转换器  
查询样品: TPS61222-EP  
1
特性  
在典型工作条件下效率高达 95%  
应用范围  
5.5μA 静态电流  
电池供电型应用  
在输入电压为 0.7V 时启动进入负载  
运行输入电压范围为 0.7V 5.5V  
停机期间具有导通功能  
最小开关电流为 200mA  
保护特性:  
1 3 节碱性电池、镍镉电池 (NiCd) 或者镍氢  
电池 (NiMH)  
1 节锂离子或者锂离子一次性电池  
太阳能或者燃料供电类应用  
消费类及便携式医疗产品  
个人护理产品  
输出过压  
过热  
白色或者状态发光二极管 (LED)  
智能电话  
输入欠压闭锁  
固定输出电压版本  
支持国防、航空航天、和医疗应用  
小型 6 引脚 SC-70 封装  
受控基线  
一个组装和测试场所  
一个制造场所  
(1)  
支持军用(-55°C 125°C)温度范围  
延长的产品生命周期  
延长的产品变更通知  
产品可追溯性  
(1) 可定制工作温度范围  
说明  
TLV61222 为通过单节、双节、或者三节碱性,NiCd 或者 NiMH,或单节锂离子或者锂聚合物电池供电的产品提供  
电源解决方案。 可实现的输出电流取决于输入输出电压比。 升压转换器建立在采用同步整流的磁滞控制器拓扑基  
础之上,能够以最少的静态电流实现最高的效率。 可通过一个外部电阻分压器对此可调版本的输出电压进行设定,  
或者可将此电压内部设定为一个固定值。 此转换器可由一个特定的使能引脚关闭。 关闭时,电池消耗降至最低。  
该器件采用 2mm x 2mm 6 引脚 SC-70 封装 (DCK) 以支持最小电路布局尺寸。  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2012, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
English Data Sheet: SLVSBI2  
TPS61222-EP  
ZHCSAA0 SEPTEMBER 2012  
www.ti.com.cn  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
AVAILABLE DEVICE OPTIONS(1)  
PACKAGE  
MARKING  
TJ  
PACKAGE(2)  
PART NUMBER  
VID NUMBER  
–55°C to 125°C  
SHL  
6-Pin SC-70  
TPS61222MDCKTEP  
V62/12603-01XE  
(1) Contact the factory to check availability of other fixed output voltage versions.  
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
UNIT  
VIN  
TJ  
Input voltage range on VIN, L, VOUT, EN, FB  
Operating junction temperature range  
Storage temperature range  
Human Body Model (HBM)(2)  
Machine Model (MM)(2)  
–0.3 to 7.5  
–55 to 145  
–65 to 150  
2
V
°C  
°C  
kV  
V
Tstg  
ESD  
200  
Charged Device Model (CDM)(2)  
1.5  
kV  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) ESD testing is performed according to the respective JESD22 JEDEC standard.  
THERMAL INFORMATION  
TPS61222  
THERMAL METRIC(1)  
DCK  
6 PINS  
231.2  
61.8  
78.8  
2.2  
UNITS  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
θJCtop  
θJB  
°C/W  
ψJT  
ψJB  
78  
θJCbot  
N/A  
(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。  
(2) JESD51-2a 描述的环境中,按照 JESD51-7 的指定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然 对流条件下的结至环  
境热阻。  
(3) 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但 可在 ANSI SEMI 标准 G30-  
88 中能找到内容接近的说明。  
(4) 按照 JESD51-8 中的说明,通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结板热阻。  
(5) 结至顶部特征参数, ψJT,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该参  
数以便获得 θJA  
(6) 结至电路板特征参数, ψJB,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该  
参数以便获得 θJA  
(7) 通过在外露(电源)焊盘上进行冷板测试仿真来获得 结至芯片外壳(底部)热阻。 不存在特定的 JEDEC 标准 测试,但可在 ANSI SEMI  
标准 G30-88 中能找到内容接近的说明。  
空白  
RECOMMENDED OPERATING CONDITIONS  
MIN  
0.7  
NOM  
MAX  
5.5  
UNIT  
V
VIN  
TJ  
Supply voltage at VIN  
Operating free air temperature range  
–55  
125  
°C  
2
Copyright © 2012, Texas Instruments Incorporated  
TPS61222-EP  
www.ti.com.cn  
ZHCSAA0 SEPTEMBER 2012  
ELECTRICAL CHARACTERISTICS  
TJ = 55°C to 125°C, TJ = TA and over recommended input voltage range (typical at an ambient temperature range of 25°C)  
(unless otherwise noted)  
DC/DC STAGE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNIT  
V
VIN  
Input voltage range  
0.7  
VIN  
Minimum input voltage at startup  
Output voltage (5 V)  
Inductor current ripple  
Switch current limit  
R
Load 150 Ω  
0.7  
V
VOUT  
ILH  
VIN < VOUT  
4.8  
5
200  
400  
700  
550  
0.5  
0.5  
0.5  
5
5.19  
V
mA  
mA  
mΩ  
mΩ  
%
ISW  
VOUT = 5 V, VIN = 1.2 V  
VOUT = 5 V  
200  
RDSon_HSD  
RDSon_LSD  
Rectifying switch on resistance  
Main switch on resistance  
Line regulation  
VOUT = 5 V  
VIN < VOUT  
Load regulation  
VIN < VOUT  
%
VIN  
1.4  
8.5  
μA  
μA  
Quiescent  
current  
IQ  
IO = 0 mA, VEN = VIN = 1.2 V, VOUT = 5 V  
VOUT  
Shutdown  
current  
ISD  
VIN  
VEN = 0 V, VIN = 1.2 V, VOUT VIN  
0.2  
0.96  
μA  
ILKG_L  
IEN  
Leakage current into L  
EN input current  
VEN = 0 V, VIN = 1.2 V, VL = 1.2 V, VOUT VIN  
0.01  
0.3  
μA  
μA  
Clamped on GND or VIN (VIN < 1.5 V)  
0.005  
0.13  
CONTROL STAGE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIL  
EN input low voltage  
EN input high voltage  
EN input low voltage  
EN input high voltage  
V
IN 1.5 V  
IN 1.5 V  
0.15 × VIN  
VIH  
V
0.8 × VIN  
1.28  
V
VIL  
5 V > VIN > 1.5 V  
5 V > VIN > 1.5 V  
0.34  
V
VIH  
V
VUVLO  
Undervoltage lockout threshold for turn off VIN decreasing  
Overvoltage protection threshold  
0.5  
0.72  
7.5  
V
5.5  
V
Overtemperature protection  
140  
20  
°C  
°C  
Overtemperature hysteresis  
Copyright © 2012, Texas Instruments Incorporated  
3
TPS61222-EP  
ZHCSAA0 SEPTEMBER 2012  
www.ti.com.cn  
10000.00  
1000.00  
100.00  
10.00  
Wirebond Voiding  
Fail Mode  
Electromigration Failure Mode  
1.00  
80  
90  
100  
110  
120  
130  
140  
150  
160  
Continuous TJ (°C)  
(1) See data sheet for absolute maximum and minimum recommended operating conditions.  
(2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect  
life).  
(3) Enhanced plastic product disclaimer applies.  
Figure 1. TPS61222-EP Operating Life Derating Chart  
4
Copyright © 2012, Texas Instruments Incorporated  
TPS61222-EP  
www.ti.com.cn  
ZHCSAA0 SEPTEMBER 2012  
PIN ASSIGNMENTS  
DCK PACKAGE  
(TOP VIEW)  
VIN  
FB  
EN  
L
GND  
VOUT  
Terminal Functions  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
EN  
NO.  
6
I
I
Enable input (1: enabled, 0: disabled). Must be actively tied high or low.  
FB  
2
Voltage feedback of adjustable version. Must be connected to VOUT at fixed output voltage versions.  
GND  
L
3
Control / logic and power ground  
Connection for Inductor  
5
I
I
VIN  
VOUT  
1
Boost converter input voltage  
Boost converter output voltage  
4
O
FUNCTIONAL BLOCK DIAGRAM  
L
VOUT  
VOUT  
VIN  
Gate  
Driver  
Start Up  
VIN  
Current  
Sensor  
FB  
Device  
Control  
EN  
VREF  
GND  
Copyright © 2012, Texas Instruments Incorporated  
5
TPS61222-EP  
ZHCSAA0 SEPTEMBER 2012  
www.ti.com.cn  
PARAMETER MEASUREMENT INFORMATION  
L1  
L
VOUT  
FB  
V
OUT  
R1  
R2  
V
VIN  
EN  
C2  
IN  
C1  
GND  
TPS6122x  
Table 1. List of Components(1)  
COMPONENT  
REFERENCE  
PART NUMBER  
MANUFACTURER  
VALUE  
C1  
C2  
L1  
GRM188R60J106ME84D  
GRM188R60J106ME84D  
EPL3015-472MLB  
Murata  
Murata  
Coilcraft  
10 μF, 6.3V. X5R Ceramic  
10 μF, 6.3V. X5R Ceramic  
4.7 μH  
adjustable version: Values depending on the  
programmed output voltage  
R1, R2  
fixed version: R1= 0 , R2 not used  
(1) Design was tested using these components at 25°C ambient temperature.  
6
Copyright © 2012, Texas Instruments Incorporated  
TPS61222-EP  
www.ti.com.cn  
ZHCSAA0 SEPTEMBER 2012  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Maximum Output Current  
Efficiency  
vs Input Voltage  
vs Output Current, VIN = [0.7 V; 1.2 V; 2.4V; 3.6 V; 4.2 V]  
vs Input Voltage, IOUT = [100 uA; 1 mA; 10 mA; 50 mA]  
at No Output Load, Device Enabled  
Input Current  
Output Voltage  
vs Output Current, VIN = [0.7 V; 1.2 V; 2.4 V; 3.6 V]  
Load Transient Response, VIN = 2.4 V, IOUT = 14 mA to 126 mA  
Line Transient Response, VIN = 2.8 V to 3.6 V, RLOAD = 100 Ω  
Waveforms  
MAXIMUM OUTPUT CURRENT  
EFFICIENCY  
vs  
vs  
INPUT VOLTAGE  
OUTPUT CURRENT AND INPUT VOLTAGE  
300  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 5 V  
V
= 5 V  
O
O
250  
200  
150  
V = 4.2 V  
I
V = 3.6 V  
I
V = 2.4 V  
I
V = 1.2 V  
I
V = 0.7 V  
I
100  
50  
0
10  
0
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
4.7  
0.01  
0.1  
1
10  
100  
I
- Output Current - mA  
V - Input Voltage - V  
I
O
Figure 2.  
Figure 3.  
EFFICIENCY  
vs  
NO LOAD INPUT CURRENT  
vs  
INPUT VOLTAGE AND OUTPUT CURRENT  
INPUT VOLTAGE, DEVICE ENABLED  
80  
70  
60  
50  
100  
80  
V
= 5 V  
O
Device Enabled  
V
= 5 V  
O
I
= 50 mA  
O
I
= 10 mA  
O
I
= 1 mA  
O
60  
I
= 100 mA  
O
40  
30  
20  
40  
20  
0
10  
0
1.7  
2.7  
0.7  
4.7  
3.7  
0.7  
1.7  
2.7  
3.7  
4.7  
V - Input Voltage - V  
I
V - Input Voltage - V  
I
Figure 4.  
Figure 5.  
Copyright © 2012, Texas Instruments Incorporated  
7
 
 
 
TPS61222-EP  
ZHCSAA0 SEPTEMBER 2012  
www.ti.com.cn  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT AND INPUT VOLTAGE  
LOAD TRANSIENT RESPONSE  
5.2  
5.1  
Offset: 0 A  
V
= 5 V  
O
I
L
200 mA/div  
V = 3.6 V  
I
I
O
Offset: 0 A  
50 mA/div  
5
4.9  
4.8  
V = 2.4 V  
I
V
O
V = 1.2 V  
I
50 mV/div  
V = 0.7 V  
I
Offset: 5 V  
V = 2.4 V, I = 14 mA to 126 mA  
I
O
200 ms/div  
0.01  
0.1  
1
10  
100  
I
- Output Current - mA  
O
Figure 6.  
Figure 7.  
LINE TRANSIENT RESPONSE  
V
I
200 mV/div  
Offset: 2.8 V  
V
O
20 mV/div  
Offset: 5 V  
V 2.8 to 3.6 V, R  
LOAD  
= 100 W, t  
= t = 20 ms  
rise fall  
I
200 ms/div  
Figure 8.  
8
Copyright © 2012, Texas Instruments Incorporated  
TPS61222-EP  
www.ti.com.cn  
ZHCSAA0 SEPTEMBER 2012  
DETAILED DESCRIPTION  
OPERATION  
The TPS61222 is a high performance, high efficient switching boost converter. To achieve high efficiency the  
power stage is realized as a synchronous boost topology. For the power switching two actively controlled low  
RDSon power MOSFETs are implemented.  
CONTROLLER CIRCUIT  
The device is controlled by a hysteretic current mode controller. This controller regulates the output voltage by  
keeping the inductor ripple current constant in the range of 200 mA and adjusting the offset of this inductor  
current depending on the output load. In case the required average input current is lower than the average  
inductor current defined by this constant ripple the inductor current gets discontinuous to keep the efficiency high  
at low load conditions.  
IL  
Continuous Current Operation  
Discontinuous Current Operation  
200 mA  
(typ.)  
200 mA  
(typ.)  
t
Figure 9. Hysteretic Current Operation  
The output voltage VOUT is monitored via the feedback network which is connected to the voltage error amplifier.  
To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage  
reference and adjusts the required offset of the inductor current accordingly. At fixed output voltage versions an  
internal feedback network is used to program the output voltage, at adjustable versions an external resistor  
divider needs to be connected.  
The self oscillating hysteretic current mode architecture is inherently stable and allows fast response to load  
variations. It also allows using inductors and capacitors over a wide value range.  
Device Enable and Shutdown Mode  
The device is enabled when EN is set high and shut down when EN is low. During shutdown, the converter stops  
switching and all internal control circuitry is turned off. In this case the input voltage is connected to the output  
through the back-gate diode of the rectifying MOSFET. This means that there always will be voltage at the output  
which can be as high as the input voltage or lower depending on the load.  
Startup  
After the EN pin is tied high, the device starts to operate. In case the input voltage is not high enough to supply  
the control circuit properly a startup oscillator starts to operate the switches. During this phase the switching  
frequency is controlled by the oscillator and the maximum switch current is limited. As soon as the device has  
built up the output voltage to about 1.8V, high enough for supplying the control circuit, the device switches to its  
normal hysteretic current mode operation. The startup time depends on input voltage and load current.  
Operation at Output Overload  
If in normal boost operation the inductor current reaches the internal switch current limit threshold the main  
switch is turned off to stop further increase of the input current.  
In this case the output voltage will decrease since the device can not provide sufficient power to maintain the set  
output voltage.  
If the output voltage drops below the input voltage the backgate diode of the rectifying switch gets forward biased  
and current starts flow through it. This diode cannot be turned off, so the current finally is only limited by the  
remaining DC resistances. As soon as the overload condition is removed, the converter resumes providing the  
set output voltage.  
Copyright © 2012, Texas Instruments Incorporated  
9
TPS61222-EP  
ZHCSAA0 SEPTEMBER 2012  
www.ti.com.cn  
Undervoltage Lockout  
An implemented undervoltage lockout function stops the operation of the converter if the input voltage drops  
below the typical undervoltage lockout threshold. This function is implemented in order to prevent malfunctioning  
of the converter.  
Overvoltage Protection  
If, for any reason, the output voltage is not fed back properly to the input of the voltage amplifier, control of the  
output voltage will not work anymore. Therefore an overvoltage protection is implemented to avoid the output  
voltage exceeding critical values for the device and possibly for the system it is supplying. For this protection the  
TPS61222 output voltage is also monitored internally. In case it reaches the internally programmed threshold of  
6.5 V typically the voltage amplifier regulates the output voltage to this value.  
If the TPS61222 is used to drive LEDs, this feature protects the circuit if the LED fails.  
Overtemperature Protection  
The device has a built-in temperature sensor which monitors the internal IC junction temperature. If the  
temperature exceeds the programmed threshold (see electrical characteristics table), the device stops operating.  
As soon as the IC temperature has decreased below the programmed threshold, it starts operating again. To  
prevent unstable operation close to the region of overtemperature threshold, a built-in hysteresis is implemented.  
10  
Copyright © 2012, Texas Instruments Incorporated  
TPS61222-EP  
www.ti.com.cn  
ZHCSAA0 SEPTEMBER 2012  
APPLICATION INFORMATION  
DESIGN PROCEDURE  
The TPS61222 DC/DC converter is intended for systems powered by a single cell battery to up to three Alkaline,  
NiCd or NiMH cells with a typical terminal voltage between 0.7 V and 5.5 V. It can also be used in systems  
powered by one-cell Li-Ion or Li-Polymer batteries with a typical voltage between 2.5 V and 4.2 V. Additionally,  
any other voltage source with a typical output voltage between 0.7 V and 5.5 V can be used with the TPS61222.  
Programming the Output Voltage  
Output voltage  
The output voltage is set by a resistor divider internally. The FB pin is used to sense the output voltage. To  
configure the fixed output devices properly, the FB pin needs to be connected directly to VOUT as shown in  
Figure 10.  
L1  
L
VOUT  
FB  
V
OUT  
V
VIN  
EN  
C2  
IN  
C1  
GND  
TPS61222  
Figure 10. Typical Application Circuit  
Inductor Selection  
To make sure that the TPS61222 can operate, a suitable inductor must be connected between pin VIN and pin L.  
Inductor values of 4.7 μH show good performance over the whole input and output voltage range .  
Choosing other inductance values affects the switching frequency f proportional to 1/L as shown in Equation 1.  
V ´(VOUT - V )  
´
1
IN  
IN  
L =  
f ´ 200 mA  
VOUT  
(1)  
Choosing inductor values higher than 4.7 μH can improve efficiency due to reduced switching frequency and  
therefore with reduced switching losses. Using inductor values below 2.2 μH is not recommended.  
Having selected an inductance value, the peak current for the inductor in steady state operation can be  
calculated. Equation 2 gives the peak current estimate.  
V
´ IOUT  
ì
ï
í
OUT  
+ 100 mA; continous current operation  
discontinuous current operation  
0.8´ V  
IL,MAX  
=
IN  
ï
200 mA;  
î
(2)  
For selecting the inductor this would be the suitable value for the current rating. It also needs to be taken into  
account that load transients and error conditions may cause higher inductor currents.  
Equation 3 provides an easy way to estimate whether the device will work in continuous or discontinuous  
operation depending on the operating points. As long as the inequation is true, continuous operation is typically  
established. If the inequation becomes false, discontinous operation is typically established.  
VOUT ´IOUT  
> 0.8´100 mA  
V
IN  
(3)  
11  
Copyright © 2012, Texas Instruments Incorporated  
 
 
 
 
TPS61222-EP  
ZHCSAA0 SEPTEMBER 2012  
www.ti.com.cn  
The following inductor series from different suppliers have been used with TPS61222 converters:  
Table 2. List of Inductors(1)  
VENDOR  
INDUCTOR SERIES  
EPL3015  
Coilcraft  
EPL2010  
Murata  
LQH3NP  
Tajo Yuden  
Wurth Elektronik  
NR3015  
WE-TPC Typ S  
(1) Design was tested using these components at 25°C ambient  
temperature.  
Capacitor Selection  
Input Capacitor  
At least a 10-μF input capacitor is recommended to improve transient behavior of the regulator and EMI behavior  
of the total power supply circuit. A ceramic capacitor placed as close as possible to the VIN and GND pins of the  
IC is recommended.  
Output Capacitor  
For the output capacitor C2 , it is recommended to use small ceramic capacitors placed as close as possible to  
the VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which  
can not be placed close to the IC, the use of a small ceramic capacitor with an capacitance value of around  
2.2μF in parallel to the large one is recommended. This small capacitor should be placed as close as possible to  
the VOUT and GND pins of the IC.  
A minimum capacitance value of 4.7 μF should be used, 10 μF are recommended. If the inductor value exceeds  
4.7 μH, the value of the output capacitance value needs to be half the inductance value or higher for stability  
reasons, see Equation 4.  
(4)  
The TPS61222 is not sensitive to the ESR in terms of stability. Using low ESR capacitors, such as ceramic  
capacitors, is recommended anyway to minimize output voltage ripple. If heavy load changes are expected, the  
output capacitor value should be increased to avoid output voltage drops during fast load transients.  
Layout Considerations  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
paths. The input and output capacitor, as well as the inductor should be placed as close as possible to the IC.  
The feedback divider should be placed as close as possible to the control ground pin of the IC. To lay out the  
ground, it is recommended to use short traces as well, separated from the power ground traces. This avoids  
ground shift problems, which can occur due to superimposition of power ground current and control ground  
current. Assure that the ground traces are connected close to the device GND pin.  
THERMAL INFORMATION  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
12  
Copyright © 2012, Texas Instruments Incorporated  
 
TPS61222-EP  
www.ti.com.cn  
ZHCSAA0 SEPTEMBER 2012  
Three basic approaches for enhancing thermal performance are listed below.  
Improving the power-dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
Introducing airflow in the system  
For more details on how to use the thermal parameters in the dissipation ratings table please check the Thermal  
Characteristics Application Note (SZZA017) and the IC Package Thermal Metrics Application Note (SPRA953).  
Copyright © 2012, Texas Instruments Incorporated  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61222MDCKTEP  
V62/12603-01XE  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
6
6
250  
250  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
SHL  
SHL  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS61222DCK

LOW INPUT VOLTAGE STEP-UP CONVERTER IN 6 PIN SC-70 PACKAGE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222DCKR

5V output voltage, tiny low input voltage boost converter 6-SC70 -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222DCKT

5V output voltage, tiny low input voltage boost converter 6-SC70 -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61222MDCKTEP

具有 5.5μA 静态电流的 0.7V 输入电压、5V 固定输出电压升压转换器 | DCK | 6 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230

5A 可调节输出电压高效同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230A

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230ARNSR

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器 | RNS | 7 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230ARNST

采用 2.0mm x 2.0mm QFN 封装的 5V/6A 高效率升压转换器 | RNS | 7 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230DRCR

5A 可调节输出电压高效同步升压转换器 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61230DRCT

5A 可调节输出电压高效同步升压转换器 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61232

5A、5V 固定输出电压高效同步升压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS61232DRCR

5A、5V 固定输出电压高效同步升压转换器 | DRC | 10 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI