TPS612592YFFR [TI]

采用 1.2mm x 1.3mm WCSP 封装的 3.5MHz、5.2V、1.5A 负载升压转换器 | YFF | 9 | -40 to 85;
TPS612592YFFR
型号: TPS612592YFFR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 1.2mm x 1.3mm WCSP 封装的 3.5MHz、5.2V、1.5A 负载升压转换器 | YFF | 9 | -40 to 85

升压转换器
文件: 总37页 (文件大小:6450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
TPS6125x 3.5-MHz High Efficiency Step-Up Converter In Chip Scale Packaging  
The TPS6125x operates at a regulated 3.5-MHz  
switching frequency and enters power-save mode  
operation at light load currents to maintain high  
efficiency over the entire load current range. The  
PFM mode extends the battery life by reducing the  
quiescent current to 37 μA (typ) during light load  
operation.  
1 Features  
1
93% Efficiency at 3.5-MHz Operation  
21-µA Quiescent Current in Standby Mode  
37-µA Quiescent Current in Normal Operation  
Wide VIN Range From 2.3 V to 5.5 V  
VIN VOUT Operation  
In addition, the TPS6125x device can also maintain  
its output biased at the input voltage level. In this  
mode, the synchronous rectifier is current limited  
allowing external load (e.g. audio amplifier) to be  
powered with a restricted supply. In this mode, the  
quiescent current is reduced to 21 µA. During  
shutdown, the load is completely disconnected from  
the battery. Input current in shutdown mode is less  
than 1 µA (typ), which maximizes battery life.  
IOUT 800 mA at VOUT = 4.5 V, VIN 2.65 V  
IOUT 1000 mA at VOUT = 5.0 V, VIN 3.3 V  
IOUT 1500 mA (Peak) at VOUT = 5.0 V, VIN 3.3  
V
±2% Total DC Voltage Accuracy  
Light-Load PFM Mode  
Selectable Standby Mode or True Load  
Disconnect During Shutdown  
The TPS6125x offers a very small solution size due  
to minimum amount of external components. It allows  
the use of small inductors and input capacitors to  
achieve a small solution size.  
Thermal Shutdown and Overload Protection  
Only Three Surface-Mount External Components  
Required  
Total Solution Size < 25 mm2  
9-Pin NanoFreeTM (CSP) Packaging  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TPS6125x  
DSBGA (9)  
1.206 mm × 1.306 mm  
2 Applications  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Cell Phones, Smart Phones  
Mono and Stereo APA Applications  
USB Charging Ports (5V)  
Efficiency vs Load Current  
VO = 5.0 V  
100  
3 Description  
90  
The TPS6125x device provides a power supply  
solution for battery-powered portable applications.  
Intended for low-power applications, the TPS6125x  
supports up to 800-mA load current from a battery  
discharged as low as 2.65V and allows the use of low  
cost chip inductor and capacitors.  
80  
70  
60  
50  
40  
With a wide input voltage range of 2.3 V to 5.5 V, the  
device supports applications powered by Li-Ion  
batteries with extended voltage range. Different fixed  
voltage output versions are available from 3.15 V to  
5.0 V.  
.
30  
20  
10  
0
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
 
 
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
Table of Contents  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Options....................................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings.............................................................. 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 6  
7.6 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 15  
9.1 Overview ................................................................. 15  
9.2 Functional Block Diagram ....................................... 15  
9.3 Feature Description................................................. 16  
9.4 Device Functional Modes........................................ 17  
10 Application and Implementation........................ 19  
10.1 Application Information.......................................... 19  
10.2 Typical Application ................................................ 19  
10.3 System Examples ................................................. 24  
11 Power Supply Recommendations ..................... 26  
12 Layout................................................................... 26  
12.1 Layout Guidelines ................................................. 26  
12.2 Layout Example .................................................... 26  
12.3 Thermal Considerations........................................ 27  
13 Device and Documentation Support ................. 28  
13.1 Device Support...................................................... 28  
13.2 Related Links ........................................................ 28  
13.3 Receiving Notification of Documentation Updates 28  
13.4 Community Resources.......................................... 28  
13.5 Trademarks........................................................... 28  
13.6 Electrostatic Discharge Caution............................ 28  
13.7 Glossary................................................................ 28  
8
9
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 29  
14.1 Package Summary................................................ 29  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (March 2016) to Revision G  
Page  
Changed the Package Dimensions section.......................................................................................................................... 29  
Changes from Revision E (March 2015) to Revision F  
Page  
Added device TPS612592...................................................................................................................................................... 4  
Changes from Revision D (December 2014) to Revision E  
Page  
Changed Body Size (NOM) from "1.60 mm × 1. 60" to "1.206 mm × 1. 306" in the Device Information table...................... 1  
Added table note reference to Third-Party Products Disclaimer .......................................................................................... 19  
Changes from Revision C (August 2012) to Revision D  
Page  
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation  
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and  
Mechanical, Packaging, and Orderable Information section .................................................................................................. 1  
Changes from Revision B (May 2012) to Revision C  
Page  
Added TPS61259 to data sheet header as production device............................................................................................... 1  
Changed device TPS61259 to production status................................................................................................................... 4  
2
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
Changes from Revision A (October 2011) to Revision B  
Page  
Added TPS61253 and TPS61258 to data sheet header as production devices.................................................................... 1  
Changed devices TPS61253 and TPS61258 to production status ........................................................................................ 4  
Changed graphic entity for Figure 3..................................................................................................................................... 10  
Changed graphic entity for Figure 10 and Figure 13............................................................................................................ 11  
Changed graphic entity for Figure 23................................................................................................................................... 13  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
5 Device Options  
OUTPUT  
VOLTAGE  
DEVICE  
SPECIFIC FEATURES  
TA  
PART NUMBER(1)  
Supports 5 V, up to 1500 mA peak loading  
down to 3.3 V input voltage  
TPS61253  
5.0 V  
Supports 4.5 V / 800 mA loading  
down to 2.65 V input voltage  
TPS61254  
TPS61255(2)  
TPS61256  
4.5 V  
3.75 V  
5.0 V  
4.3 V  
4.5 V  
Supports 5 V / 900 mA loading  
down to 3.3 V input voltage  
–40°C to 85°C  
TPS61257(2)  
TPS61258  
Supports 4.5 V, up to 1500 mA peak loading  
down to 3.3 V input voltage  
Supports 5.1 V, up to 1500 mA peak loading  
down to 3.3 V input voltage  
TPS61259  
5.1 V  
5.2 V  
Supports 5.2 V, up to 1500 mA peak loading  
down to 3.3 V input voltage  
TPS612592  
(1) For all available packages, see the orderable addendum at the end of the datasheet.  
(2) Product preview. Contact TI factory for more information  
6 Pin Configuration and Functions  
A1 A2 A3  
B1 B2 B3  
C1 C2 C3  
A3 A2 A1  
B3 B2 B1  
C3 C2 C1  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
This is the mode selection pin of the device and is only of relevance when the device is disabled  
(EN = Low). This pin must not be left floating and must be terminated. Refer to Table 2 for more  
details.  
BP  
C3  
I
BP = Low: The device is in true shutdown mode.  
BP = High: The output is biased at the input voltage level with a maximum load current capability of  
ca. 150mA. In standby mode, the device only consumes a standby current of 21µA (typ).  
This is the enable pin of the device. Connecting this pin to ground forces the device into shutdown  
mode. Pulling this pin high enables the device. This pin must not be left floating and must be  
terminated.  
EN  
B3  
I
GND  
SW  
C1, C2  
B1, B2  
A3  
Ground pin.  
I/O  
I
This is the switch pin of the converter and is connected to the drain of the internal Power MOSFETs.  
VIN  
Power supply input.  
VOUT  
A1, A2  
O
Boost converter output.  
4
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Input voltage  
Voltage at VIN(2), VOUT(2), SW(2), EN(2), BP(2)  
–0.3  
7
V
(3)  
Continuous average current into SW  
1.8  
Input current  
A
(4)  
Peak current into SW  
3.5  
Power dissipation  
Internally limited  
(5)  
Operating, TA  
–40  
–40  
–65  
85  
Temperature  
Operating virtual junction, TJ  
Storage, Tstg  
150  
150  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
(3) Limit the junction temperature to 105°C for continuous operation at maximum output power.  
(4) Limit the junction temperature to 125°C for 5% duty cycle operation.  
(5) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA(max)) is dependent on the maximum operating junction temperature (TJ(max)), the  
maximum power dissipation of the device in the application (PD(max)), and the junction-to-ambient thermal resistance of the part/package  
in the application (θJA), as given by the following equation: TA(max)= TJ(max)–(θJA X PD(max)). To achieve optimum performance, it is  
recommended to operate the device with a maximum junction temperature of 105°C.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
V(ESD)  
Electrostatic discharge  
V
Machine model (MM)  
±200  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
MIN  
2.65(1)  
2.5  
NOM  
MAX UNIT  
4.85  
TPS61253  
TPS61254  
TPS61256  
TPS61257  
TPS61258  
TPS61259  
TPS612592  
TPS6125x  
4.35  
2.5  
4.85  
VI  
Input voltage range  
2.5  
4.15  
4.35  
4.85  
4.85  
V
2.65(1)  
2.65(1)  
2.65(1)  
55  
RL  
L
Minimum resistive load for start-up  
Inductance  
Ω
0.7  
1.0  
5
2.9  
50  
µH  
µF  
°C  
°C  
CO  
TA  
TJ  
Output capacitance  
3.5  
Ambient temperature  
–40  
85  
Operating junction temperature  
–40  
125  
(1) Up to 1000mA peak output current.  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
7.4 Thermal Information  
TPS6125x  
YFF  
THERMAL METRIC(1)  
UNIT  
9 PINS  
108.3  
1.0  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
18  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
4.2  
ψJB  
17.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Minimum and maximum values are at VIN = 2.3V to 5.5V, EN = 1.8V, TA = –40°C to 85°C; Circuit of Parameter Measurement  
Information section (unless otherwise noted). Typical values are at VIN = 3.6V, EN = 1.8V, TA = 25°C (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
SUPPLY CURRENT  
IOUT = 0mA, VIN = 3.6V  
EN = VIN, BP = GND  
Device not switching  
30  
7
45  
15  
20  
15  
µA  
µA  
µA  
µA  
Operating quiescent current  
into VIN Operating quiescent current  
into VOUT Standby mode quiescent current  
into VIN Standby mode quiescent current  
into VOUT  
IQ  
IOUT = 0mA, VIN = VOUT = 3.6V  
EN = GND, BP = VIN  
Device not switching  
11  
9.5  
ISD  
Shutdown current  
EN = GND, BP = GND  
Falling  
0.85  
2.0  
5.0  
2.1  
μA  
V
VUVLO  
Under-voltage lockout threshold  
Hysteresis  
0.1  
V
ENABLE, BYPASS  
VIL  
VIH  
Ilkg  
Low-level input voltage  
0.4  
0.5  
V
V
High-level input voltage  
Input leakage current  
1.0  
Input connected to GND or VIN  
µA  
6
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
Electrical Characteristics (continued)  
Minimum and maximum values are at VIN = 2.3V to 5.5V, EN = 1.8V, TA = –40°C to 85°C; Circuit of Parameter Measurement  
Information section (unless otherwise noted). Typical values are at VIN = 3.6V, EN = 1.8V, TA = 25°C (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
OUTPUT  
2.3V VIN 4.85V, IOUT = 0mA  
PWM operation. Open Loop  
4.92  
4.85  
5
5
5.08  
5.2  
3.3V VIN 4.85V, 0mA IOUT 1000mA  
PFM/PWM operation  
Regulated DC output voltage  
TPS61253  
V
3.3V VIN 4.85V, 0mA IOUT 1500mA  
PFM/PWM operation  
Pulsed load test; Pulse width 20ms;  
Duty cycle 10%  
4.75  
5
5.2  
2.3V VIN 4.35V, IOUT = 0mA  
PWM operation. Open Loop  
4.43  
4.4  
4.5 4.57  
4.5 4.65  
Regulated DC output voltage  
Regulated DC output voltage  
Regulated DC output voltage  
TPS61254  
TPS61256  
TPS61257  
V
V
V
2.65V VIN 4.35V, 0mA IOUT 800mA  
PFM/PWM operation  
2.3V VIN 4.85V, IOUT = 0mA  
PWM operation. Open Loop  
4.92  
4.9  
5
5
5.08  
5.2  
2.65V VIN 4.85V, 0mA IOUT 700mA  
PFM/PWM operation  
2.3V VIN 4.15V, IOUT = 0mA  
PWM operation. Open loop.  
VOUT  
4.23  
4.2  
4.3 4.37  
4.3 4.45  
4.5 4.57  
2.65V VIN 4.15V, 0mA IOUT 800mA  
PFM/PWM operation  
2.3V VIN 4.35V, IOUT = 0mA  
PWM operation. Open Loop  
4.43  
3.3V VIN 4.35V, 0mA IOUT 1500mA  
PFM/PWM operation  
Pulsed load test; Pulse width 20ms;  
Duty cycle 10%  
Regulated DC output voltage  
TPS61258  
V
V
4.3  
5.02  
4.75  
5.1  
4.5 4.65  
5.1 5.18  
2.3V VIN 4.85V, IOUT = 0mA  
PWM operation. Open Loop  
3.4V VIN 4.85V, 0mA IOUT 1500mA  
PFM/PWM operation  
Pulsed load test; Pulse width 20ms;  
Duty cycle 10%  
Regulated DC output voltage  
Regulated DC output voltage  
TPS61259  
5.1  
5.3  
5.3  
2.7V VIN 4.8V, IOUT = 0mA  
PWM operation. Open Loop  
TPS612592  
5.2  
45  
V
Power-save mode output ripple  
voltage  
PFM operation, IOUT = 1mA  
TPS61254  
TPS61258  
Standby mode output ripple  
voltage  
mVpk  
EN = GND, BP = VIN, IOUT = 0mA  
PWM operation, IOUT = 200mA  
PFM operation, IOUT = 1mA  
80  
20  
50  
ΔVOUT  
PWM mode output ripple voltage  
Power-save mode output ripple  
voltage  
TPS61253  
TPS61256  
TPS61259  
TPS612592  
mVpk  
Standby mode output ripple  
voltage  
EN = GND, BP = VIN, IOUT = 0mA  
80  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
Electrical Characteristics (continued)  
Minimum and maximum values are at VIN = 2.3V to 5.5V, EN = 1.8V, TA = –40°C to 85°C; Circuit of Parameter Measurement  
Information section (unless otherwise noted). Typical values are at VIN = 3.6V, EN = 1.8V, TA = 25°C (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
POWER SWITCH  
High-side MOSFET on resistance  
Low-side MOSFET on resistance  
Reverse leakage current into VOUT  
170  
100  
3.5  
rDS(on)  
Ilkg  
mΩ  
EN = GND, BP = GND  
µA  
TPS61253  
TPS61258  
TPS61259  
TPS612592  
EN = VIN, BP = GND. Open Loop  
3300  
3620 3900  
2150 2400  
Switch valley current limit  
mA  
TPS61254  
TPS61256  
TPS61257  
ILIM  
EN = VIN, BP = GND. Open Loop  
EN = GND, BP = VIN  
1900  
165  
Pre-charge mode current limit  
(linear mode)  
215  
265  
mA  
Overtemperature protection  
Overtemperature hysteresis  
140  
20  
°C  
°C  
OSCILLATOR  
fOSC  
Oscillator frequency  
VIN = 3.6V VOUT = 4.5V  
3.5  
70  
MHz  
µs  
TIMING  
BP = GND, IOUT = 0mA.  
Time from active EN to start switching  
TPS6125x  
TPS61253  
TPS61254  
TPS61256  
TPS61258  
TPS61259  
TPS612592  
Start-up time  
BP = GND, IOUT = 0mA.  
Time from active EN to VOUT  
400  
µs  
8
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
7.6 Typical Characteristics  
Table 1. Table of Graphs  
FIGURE  
vs Output current  
Figure 1, Figure 2,  
Figure 3, Figure 5  
η
Efficiency  
vs Input voltage  
vs Output current  
Figure 4  
Figure 6, Figure 7,  
Figure 8, Figure 9,  
Figure 10,  
VO  
DC output voltage  
Figure 14  
vs Input voltage  
vs Input voltage  
Figure 11  
Figure 12,  
Figure 13  
IO  
Maximum output current  
vs Output current  
Figure 15,  
Figure 16,  
Figure 17  
ΔVO  
ICC  
Peak-to-peak output ripple voltage  
vs Input voltage  
Figure 18,  
Figure 19  
Supply current  
vs Differential input-output voltage  
vs Temperature  
Figure 20,  
Figure 21  
DC pre-charge current  
ILIM  
Figure 22,  
Figure 23  
Valley current limit  
MOSFET rDS(on)  
rDS(on)  
vs Temperature  
Figure 24  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
V = 4.5 V  
I
V
= 5 V (TPS61256)  
O
PFM/PWM Operation  
V = 4.5 V  
I
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V = 3.3 V  
I
V = 3.6 V  
I
V = 3 V  
V = 3.6 V  
V = 2.7 V  
I
I
V = 3.3 V  
I
I
V = 3 V  
I
V = 2.7 V  
I
V = 2.5 V  
I
V = 2.5 V  
I
VO = 4.5 V  
55  
50  
PFM/PWM Operation  
0.1  
1
10  
I - Output Current - mA  
O
100  
1000  
0.1  
1
10 100  
1000  
I
- Output Current - mA  
O
Figure 1. Efficiency vs Output Current  
Figure 2. Efficiency vs Output Current  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
VI = 4.5 V  
V
= 5 V  
O
PFM/PWM Operation  
VI = 4.2 V  
I
= 300 mA  
O
VI = 3.6 V  
VI = 3.3 V  
I
= 10 mA  
O
I
= 100 mA  
O
I
= 800 mA  
O
VO = 5 V (TPS61253),  
IO = Pulse Operation (tpulse = 20 ms, d = 10%),  
55  
50  
72  
70  
PFM/PWM Operation  
0
1
10  
100  
1000  
10000  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V - Input Voltage - V  
I
IO - Output Current - mA  
Figure 3. Efficiency vs Output Current  
Figure 4. Efficiency vs Input Voltage  
4.59  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V = 2.7 V  
I
V = 4.5 V  
I
V = 3.3 V  
I
V = 3 V  
I
4.55  
4.50  
4.46  
4.41  
V = 3.6 V  
I
V = 4.5 V  
I
V = 2.5 V  
I
V = 3.6 V  
I
V
= 4.5 V  
V
~ V  
I
Standby Operation  
O
PFM/PWM Operation  
O
10  
0
0.01  
0.1  
1
10  
100  
0.1  
1
10  
I - Output Current - mA  
O
100  
1000  
I
- Output Current - mA  
O
Figure 6. DC Output Voltage vs Output Current  
Figure 5. Efficiency vs Output Current  
4.545  
4.5  
5.15  
5.1  
V
= 5 V (TPS61256)  
O
PFM/PWM Operation  
V = 4.5 V  
O
PWM Operation  
V = 4.5 V  
I
V = 5 V  
I
V = 4.5 V  
I
V = 2.5 V  
I
V = 2.7 V  
I
4.455  
5.05  
V = 3 V  
I
V = 3.3 V  
I
V = 2.5 V  
I
V = 3.6 V  
I
V = 3.6 V  
I
5
4.41  
V = 4.2 V  
I
4.95  
0.1  
4.365  
1
10  
100  
1000  
500  
700  
900 1100 1300 1500 1700 1900  
- Output Current - mA  
I
- Output Current - mA  
O
I
O
Figure 7. DC Output Voltage vs Output Current  
Figure 8. DC Output Voltage vs Output Current  
10  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
5.05  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
5.1  
VO = 5 V (TPS61253),  
V
= 5 V (TPS61256)  
O
PWM Operation  
IO = Pulse Operation (tpulse = 20 ms, d = 10%),  
V = 3.6 V  
I
V = 4.2 V  
PWM Operation  
I
5.05  
5
5
4.95  
4.9  
VI = 4.5 V  
V = 4.5 V  
VI = 4.2 V  
I
V = 2.5 V  
I
V = 2.7 V  
I
4.95  
4.9  
VI = 3 V  
VI = 3.3 V  
VI = 3.6 V  
V = 3 V  
I
V = 3.3 V  
I
4.85  
4.8  
4.85  
4.8  
4.75  
500  
700  
900 1100 1300 1500 1700 1900  
- Output Current - mA  
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000  
I
O
IO - Output Current - mA  
Figure 9. DC Output Voltage vs Output Current  
Figure 10. DC Output Voltage vs Output Current  
5.55  
2300  
2100  
1900  
1700  
1500  
1300  
1100  
900  
V
= 5 V  
O
PFM/PWM Operation  
V
= 5 V (TPS61256)  
O
PWM Operation  
5.5  
5.45  
5.4  
T
= -40°C  
A
I
= 800 mA  
O
5.35  
5.3  
T
= 25°C  
A
I
= 500 mA  
O
5.25  
5.2  
T
A
= 85°C  
5.15  
5.1  
I
= 100 mA  
O
I
= 10 mA  
O
5.05  
700  
500  
5
4.95  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V - Input Voltage - V  
I
V - Input Voltage - V  
I
Figure 11. DC Output Voltage vs Input Voltage  
Figure 12. Maximum Output Current vs Input Voltage  
3000  
5
V
~ V  
I
Standby Operation  
O
4.8  
4.6  
4.4  
4.2  
4
2800  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
V = 4.5 V  
I
V = 4.2 V  
I
TA = -40 °C  
TA = 25 °C  
3.8  
3.6  
3.4  
3.2  
3
V = 3.6 V  
I
V = 3.3 V  
I
TA = 65 °C  
V = 3 V  
I
V = 2.7 V  
I
TA = 85 °C  
2.8  
2.6  
2.4  
VO = 5 V (TPS61253),  
V = 2.5 V  
I
IO = Pulse Operation (tpulse = 20 ms, d = 10%)  
2.2  
2
0
PWM Operation  
20 40 60 80 100 120 140 160 180 200 220 240  
- Output Current - mA  
2.5 2.75  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
I
VI - Input Voltage - V  
O
Figure 14. DC Output Voltage vs Output Current  
Figure 13. Maximum Output Current vs Input Voltage  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
V
= 5 V (TPS61256)  
O
PFM/PWM Operation  
V
= 5 V (TPS61256)  
O
PFM/PWM Operation  
V = 2.7 V  
I
V = 3.3 V  
I
V = 2.7 V  
I
V = 3.6 V  
I
V = 3.3 V  
I
V = 3.6 V  
I
V = 4.5 V  
I
V = 4.5 V  
I
CO = 10μF 6.3V (0603) X5R, muRata GRM188R60J106ME84D  
100 200 300 400 500 600 700 800 900 1000  
CO = 22μF 10V (1210) X5R, muRata GRM32ER71A226K  
100 200 300 400 500 600 700 800 900 1000  
5
0
5
0
0
0
I
- Output Current - mA  
I
- Output Current - mA  
O
O
Figure 16. Peak-to-Peak Output Ripple Voltage vs Output  
Current  
Figure 15. Peak-to-Peak Output Ripple Voltage vs Output  
Current  
60  
80  
V
= 5 V (TPS61253)  
O
PFM/PWM Operation  
V
I
= 5 V  
O
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
= 0 mA  
O
T
= 85°C  
A
V = 3.3 V  
I
T
= 25°C  
A
V = 3.6 V  
I
V = 4.5 V  
I
T
= -40°C  
A
CO = x2 10 mF 6.3 V (0603) X5R,  
muRata GRM188R60J106ME84D  
5
0
20  
15  
0
200  
400  
600  
800 1000 1200 1400  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9  
V - Input Voltage - V  
I
I
- Output Current - mA  
O
Figure 17. Peak-to-Peak Output Ripple Voltage vs Output  
Current  
Figure 18. Supply Current vs Input Voltage  
45  
250  
V ~ V  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
I
O
= 0 mA  
I
40  
35  
30  
25  
20  
15  
10  
O
Standby Operation  
T
= -40°C  
A
T
= 25°C  
A
V = 2.7 V,  
I
T
= 85°C  
A
T
= 25°C  
A
V = 4.5 V,  
I
T
= 25°C  
A
V = 3.6 V,  
I
T
= 25°C  
A
5
0
155  
150  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
V - Input Voltage - V  
I
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5  
Differential Input - Output Voltage - V  
Figure 19. Supply Current vs Input Voltage  
Figure 20. DC Pre-Charge Current vs Differential Input-  
Output Voltage  
12  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
250  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
25  
Sample Size = 200  
245  
240  
235  
230  
225  
220  
215  
210  
205  
200  
195  
190  
185  
180  
175  
170  
165  
160  
V
= 3.6 V  
IN  
T
= 130°C  
J
20  
15  
10  
T
J
= 25°C  
V = 3.6 V,  
I
V = 3.6 V,  
T
= 25°C  
I
A
T
= 85°C  
T
= -20°C  
A
J
V = 3.6 V,  
I
T
= -40°C  
A
5
0
155  
150  
0
0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3  
Differential Input - Output Voltage - V  
3.3 3.6  
I
- Valley Current Limit - mA  
LIM  
Figure 21. DC Pre-Charge Current vs Differential Input-  
Output Voltage  
Figure 22. Valley Current Limit  
= 5 V  
25  
200  
TPS61253  
VIN = 3.6 V,  
V
O
180  
160  
140  
120  
100  
80  
Sample Size = 200  
TJ = 125°C  
20  
Rectifier MOSFET  
TJ = 25°C  
15  
TJ = -20°C  
Switch MOSFET  
10  
60  
5
0
40  
20  
0
-30  
-10  
10  
30  
50  
70  
90  
110 130  
T
- Junction Temperature - °C  
ILIM - Valley Current Limit - mA  
J
Figure 23. Valley Current Limit  
Figure 24. MOSFET rDS(on) vs Temperature  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
8 Parameter Measurement Information  
TPS6125x  
L
SW  
VIN  
EN  
VOUT  
BP  
VOUT  
1 μH  
VIN  
CO  
10 uF  
CI  
4.7 μF  
GND  
EN  
0
BP  
0
Shutdown, True Load Disconnect (SD)  
Standby Mode, Output Pre-Biased (SM)  
Boost Operating Mode (BST)  
0
1
1
X
Figure 25. Parameter Measurement Schematic  
14  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
9 Detailed Description  
9.1 Overview  
The TPS6125x synchronous step-up converter typically operates at a quasi-constant 3.5-MHz frequency pulse  
width modulation (PWM) at moderate to heavy load currents. At light load currents, the TPS6125x converter  
operates in power-save mode with pulse frequency modulation (PFM).  
During PWM operation, the converter uses a novel quasi-constant on-time valley current mode control scheme to  
achieve excellent line/load regulation and allows the use of a small ceramic inductor and capacitors. Based on  
the VIN/VOUT ratio, a simple circuit predicts the required on-time.  
At the beginning of the switching cycle, the low-side N-MOS switch is turned-on and the inductor current ramps  
up to a peak current that is defined by the on-time and the inductance. In the second phase, once the on-timer  
has expired, the rectifier is turned-on and the inductor current decays to a preset valley current threshold. Finally,  
the switching cycle repeats by setting the on timer again and activating the low-side N-MOS switch.  
In general, a dc/dc step-up converter can only operate in "true" boost mode, i.e. the output “boosted” by a certain  
amount above the input voltage. The TPS6125x device operates differently as it can smoothly transition in and  
out of zero duty cycle operation. Therefore the output can be kept as close as possible to its regulation limits  
even though the converter is subject to an input voltage that tends to be excessive. In this operation mode, the  
output current capability of the regulator is limited to ca. 150mA. Refer to Figure 11 for further details.  
The current mode architecture with adaptive slope compensation provides excellent transient load response,  
requiring minimal output filtering. Internal soft-start and loop compensation simplifies the design process while  
minimizing the number of external components.  
9.2 Functional Block Diagram  
SW  
VOUT  
PMOS  
NMOS  
VIN  
Valley  
Current  
Sense  
Modulator  
Softstart  
VREF  
Thermal  
Shutdown  
EN  
BP  
Control  
Logic  
Undervoltage  
Lockout  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
9.3 Feature Description  
9.3.1 Current Limit Operation  
The TPS6125x device employs a valley current limit sensing scheme. Current limit detection occurs during the  
off-time by sensing of the voltage drop across the synchronous rectifier.  
The output voltage is reduced as the power stage of the device operates in a constant current mode. The  
maximum continuous output current (IOUT(CL)), before entering current limit (CL) operation, can be defined by  
Equation 1.  
1
IOUT(CL) = (1- D) g (IVALLEY  
+
DIL )  
2
(1)  
The duty cycle (D) can be estimated by Equation 2  
g h  
D = 1-  
V
IN  
VOUT  
(2)  
(3)  
and the peak-to-peak current ripple (ΔIL) is calculated by Equation 3  
V
D
f
IN  
DIL =  
g
L
The output current, IOUT(DC), is the average of the rectifier ripple current waveform. When the load current is  
increased such that the lower peak is above the current limit threshold, the off-time is increased to allow the  
current to decrease to this threshold before the next on-time begins (so called frequency fold-back mechanism).  
When the current limit is reached the output voltage decreases during further load increase.  
Figure 26 illustrates the inductor and rectifier current waveforms during current limit operation.  
I
PEAK  
I
L
Current Limit  
Threshold  
I
= I  
LIM  
VALLEY  
Rectifier  
Current  
I
DI  
OUT(CL)  
L
I
OUT(DC)  
Increased  
Load Current  
I
IN(DC)  
f
Inductorr  
Current  
I
IN(DC)  
DI  
L
V
D
f
IN  
×
ΔI  
=
L
L
Figure 26. Inductor/Rectifier Currents in Current Limit Operation  
9.3.2 Enable  
The TPS6125x device starts operation when EN is set high and starts up with the soft-start sequence. For proper  
operation, the EN pin must be terminated and must not be left floating.  
Pulling the EN and BP pins low forces the device in shutdown, with a shutdown current of typically 1 µA. In this  
mode, true load disconnect between the battery and load prevents current flow from VIN to VOUT, as well as  
reverse flow from VOUT to VIN.  
Pulling the EN pin low and the BP pin high forces the device in standby mode, refer to the Standby Mode section  
for more details.  
16  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
 
 
 
 
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
Feature Description (continued)  
9.3.3 Load Disconnect and Reverse Current Protection  
Regular boost converters do not disconnect the load from the input supply and therefore a connected battery will  
be discharged during shutdown. The advantage of TPS6125x is that this converter disconnects the output from  
the input of the power supply when it is disabled (so called true shutdown mode). In case of a connected battery  
it prevents it from being discharged during shutdown of the converter.  
9.3.4 Softstart  
The TPS6125x device has an internal softstart circuit that limits the inrush current during start-up. The first step  
in the start-up cycle is the pre-charge phase. During pre-charge, the rectifying switch is turned on until the output  
capacitor is charged to a value close to the input voltage. The rectifying switch is current limited (approximately  
200 mA) during this phase. This mechanism is used to limit the output current under short-circuit condition.  
Once the output capacitor has been biased to the input voltage, the converter starts switching. The soft-start  
system progressively increases the on-time as a function of the input-to-output voltage ratio. As soon as the  
output voltage is reached, the regulation loop takes control and full current operation is permitted.  
9.3.5 Undervoltage Lockout  
The under voltage lockout circuit prevents the device from malfunctioning at low input voltages and the battery  
from excessive discharge. It disables the output stage of the converter once the falling VIN trips the under-voltage  
lockout threshold VUVLO which is typically 2.0V. The device starts operation once the rising VIN trips VUVLO  
threshold plus its hysteresis of 100 mV at typically 2.1 V.  
9.3.6 Thermal Regulation  
The TPS6125x device contains a thermal regulation loop that monitors the die temperature during the pre-charge  
phase. If the die temperature rises to high values of about 110 °C, the device automatically reduces the current  
to prevent the die temperature from increasing further. Once the die temperature drops about 10 °C below the  
threshold, the device will automatically increase the current to the target value. This function also reduces the  
current during a short-circuit condition.  
9.3.7 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 140°C (typ.) the device goes into thermal shutdown. In this  
mode, the high-side and low-side MOSFETs are turned-off. When the junction temperature falls below the  
thermal shutdown minus its hysteresis, the device continuous the operation.  
9.4 Device Functional Modes  
9.4.1 Power Save Mode  
The TPS6125x integrates a power save mode to improve efficiency at light load. In power save mode the  
converter only operates when the output voltage trips below a set threshold voltage.  
It ramps up the output voltage with several pulses and goes into power save mode once the output voltage  
exceeds the set threshold voltage.  
The PFM mode is left and PWM mode entered in case the output current can not longer be supported in PFM  
mode.  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
Device Functional Modes (continued)  
Figure 27. Power Save  
9.4.2 Standby Mode  
The TPS6125x device is able to maintain its output biased at the input voltage level. In so called standby mode  
(EN = 0, BP = 1), the synchronous rectifier is current limited to ca. 150mA allowing an external load (e.g. audio  
amplifier) to be powered with a restricted supply. The output voltage is slightly reduced due to voltage drop  
across the rectifier MOSFET and the inductor DC resistance. The device consumes only a standby current of 21  
µA (typ).  
Table 2. Operating Mode Control  
OPERATING MODE  
EN  
0
BP  
0
Shutdown, True Load Disconnect (SD)  
Standby Mode, Output Pre-Biased (SM)  
0
1
1
0
Boost Operating Mode (BST)  
1
1
18  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
With a wide input voltage range of 2.3 V to 5.5 V, the TPS6125x supports applications powered by Li-Ion  
batteries with extended voltage range. Intended for low-power applications, it supports up to 800-mA load current  
from a battery discharged as low as 2.65 V and allows the use of low cost chip inductor and capacitors. Different  
fixed voltage output versions are available from 3.15 V to 5.0 V. The TPS6125x offers a very small solution size  
due to minimum amount of external components. It allows the use of small inductors and input capacitors to  
achieve a small solution size. During shutdown, the load is completely disconnected from the battery.  
10.2 Typical Application  
This section details an application with TPS61256 to output fixed 5.0 V.  
VOUT  
TPS61256  
L
5.0 V at 700mA  
SW  
VIN  
EN  
VOUT  
BP  
VIN  
1 μH  
2.65 V .. 4.85 V  
CO  
CI  
4.7 μF  
10 mF  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. Smallest Solution Size Application  
10.2.1 Design Requirements  
In this example, TPS61256 is used to design a 5-V power supply with up to 700-mA output current capability.  
The TPS61256 can be powered by one-cell Li-ion battery, and in this example the input voltage range is from  
2.65 V to 4.85 V.  
10.2.2 Detailed Design Procedure  
Table 3. List of Components  
REFERENCE  
DESCRIPTION  
PART NUMBER, MANUFACTURER(1)  
LQM32PN1R0MG0, muRata  
DFE322512C, TOKO  
L(2)  
L(3)  
CI  
1.0 μH, 1.8 A, 48 mΩ, 3.2 x 2.5 x 1.0mm max. height  
1.0 μH, 3.7 A, 37 mΩ, 3.2 x 2.5 x 1.2mm max. height  
4.7 μF, 6.3 V, 0402, X5R ceramic  
GRM155R60J475M, muRata  
GRM188R60J106ME84, muRata  
CO  
10 μF, 6.3 V, 0603, X5R ceramic  
(1) See Third-Party Products Discalimer  
(2) Inductor used to characterize TPS61254YFF, TPS61255YFF, TPS61256YFF and TPS61257YFF devices.  
(3) Inductor used to characterize TPS61253YFF, TPS61258YFF and TPS61259YFF devices.  
10.2.2.1 Inductor Selection  
A boost converter normally requires two main passive components for storing energy during the conversion, an  
inductor and an output capacitor. It is advisable to select an inductor with a saturation current rating higher than  
the possible peak current flowing through the power switches.  
The inductor peak current varies as a function of the load, the input and output voltages and can be estimated  
using Equation 4.  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
V gD  
IOUT  
V g h  
IN  
IN  
IL(PEAK)  
=
+
with D = 1-  
2 g f g L  
(1- D) g h  
VOUT  
(4)  
Selecting an inductor with insufficient saturation performance can lead to excessive peak current in the  
converter. This could eventually harm the device and reduce its reliability.  
When selecting the inductor, as well as the inductance, parameters of importance are: maximum current rating,  
series resistance, and operating temperature. The inductor DC current rating should be greater (by some margin)  
than the maximum input average current, refer to Equation 5 and Current Limit Operation section for more  
details.  
VOUT  
1
IL(DC)  
=
g
g IOUT  
V
h
IN  
(5)  
The TPS6125x series of step-up converters have been optimized to operate with a effective inductance in the  
range of 0.7 µH to 2.9 µH and with output capacitors in the range of 10 µF to 47 µF. The internal compensation  
is optimized for an output filter of L = 1 µH and CO = 10 µF. Larger or smaller inductor values can be used to  
optimize the performance of the device for specific operating conditions. For more details, see the Checking  
Loop Stability section.  
In high-frequency converter applications, the efficiency is essentially affected by the inductor AC resistance (i.e.  
quality factor) and to a smaller extent by the inductor DCR value. To achieve high efficiency operation, care  
should be taken in selecting inductors featuring a quality factor above 25 at the switching frequency. Increasing  
the inductor value produces lower RMS currents, but degrades transient response. For a given physical inductor  
size, increased inductance usually results in an inductor with lower saturation current.  
The total losses of the coil consist of both the losses in the DC resistance, R(DC) , and the following frequency-  
dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
The following inductor series from different suppliers have been used with the TPS6125x converters.  
Table 4. List of Inductors  
MANUFACTURER(1)  
SERIES  
DIMENSIONS (in mm)  
3.2 x 2.5 x 1.2 max. height  
3.2 x 2.5 x 1.0 max. height  
2.5 x 2.0 x 1.0 max. height  
2.0 x 1.2 x 0.55 max height  
3.2 x 2.5 x 1.2 max. height  
2.0 x 1.2 x 0.58 max height  
HITACHI METALS  
KSLI-322512BL1-1R0  
LQM32PN1R0MG0  
LQM2HPN1R0MG0  
LQM21PN1R5MC0  
DFE322512C-1R0  
MDT2012-CLR1R0AM  
MURATA  
TOKO  
(1) See Third-Party Products Disclaimer  
10.2.2.2 Output Capacitor  
For the output capacitor, it is recommended to use small ceramic capacitors placed as close as possible to the  
VOUT and GND pins of the IC. If, for any reason, the application requires the use of large capacitors which can  
not be placed close to the IC, using a smaller ceramic capacitor in parallel to the large one is highly  
recommended. This small capacitor should be placed as close as possible to the VOUT and GND pins of the IC.  
To get an estimate of the recommended minimum output capacitance, Equation 6 can be used.  
IOUT  
g
V
- V  
(
f g DV g VOUT  
)
OUT IN  
CMIN  
=
(6)  
Where f is the switching frequency which is 3.5 MHz (typ.) and ΔV is the maximum allowed output ripple.  
20  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
 
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
With a chosen ripple voltage of 20mV, a minimum effective capacitance of 9μF is needed. The total ripple is  
larger due to the ESR of the output capacitor. This additional component of the ripple can be calculated using  
Equation 7  
VESR = IOUT g RESR  
(7)  
An MLCC capacitor with twice the value of the calculated minimum should be used due to DC bias effects. This  
is required to maintain control loop stability. The output capacitor requires either an X7R or X5R dielectric. Y5V  
and Z5U dielectric capacitors, aside from their wide variation in capacitance over temperature, become resistive  
at high frequencies. There are no additional requirements regarding minimum ESR. Larger capacitors cause  
lower output voltage ripple as well as lower output voltage drop during load transients but the total output  
capacitance value should not exceed ca. 50µF.  
DC bias effect: high cap. ceramic capacitors exhibit DC bias effects, which have a strong influence on the  
device's effective capacitance. Therefore the right capacitor value has to be chosen very carefully. Package size  
and voltage rating in combination with material are responsible for differences between the rated capacitor value  
and it's effective capacitance. For instance, a 10-µF X5R 6.3-V 0603 MLCC capacitor would typically show an  
effective capacitance of less than 4 µF (under 5 V bias condition, high temperature).  
In applications featuring high pulsed load currents (e.g. TPS61253 based solution) it is recommended to run the  
converter with a reasonable amount of effective output capacitance, for instance x2 10-µF X5R 6.3-V 0603  
MLCC capacitors connected in parallel.  
10.2.2.3 Input Capacitor  
Multilayer ceramic capacitors are an excellent choice for input decoupling of the step-up converter as they have  
extremely low ESR and are available in small footprints. Input capacitors should be located as close as possible  
to the device. While a 4.7-μF input capacitor is sufficient for most applications, larger values may be used to  
reduce input current ripple without limitations.  
Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce  
ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even  
damage the part. Additional "bulk" capacitance (electrolytic or tantalum) should in this circumstance be placed  
between CI and the power source lead to reduce ringing that can occur between the inductance of the power  
source leads and CI.  
10.2.2.4 Checking Loop Stability  
The first step of circuit and stability evaluation is to look from a steady-state perspective at the following signals:  
Switching node, SW  
Inductor current, IL  
Output ripple voltage, VOUT(AC)  
These are the basic signals that need to be measured when evaluating a switching converter. When the  
switching waveform shows large duty cycle jitter or the output voltage or inductor current shows oscillations, the  
regulation loop may be unstable. This is often a result of board layout and/or L-C combination.  
As a next step in the evaluation of the regulation loop, the load transient response is tested. The time between  
the application of the load transient and the turn on of the P-channel MOSFET, the output capacitor must supply  
all of the current required by the load. VOUT immediately shifts by an amount equal to ΔI(LOAD) x ESR, where ESR  
is the effective series resistance of COUT. ΔI(LOAD) begins to charge or discharge COUT generating a feedback  
error signal used by the regulator to return VOUT to its steady-state value. The results are most easily interpreted  
when the device operates in PWM mode.  
During this recovery time, VOUT can be monitored for settling time, overshoot or ringing that helps judge the  
converter’s stability. Without any ringing, the loop has usually more than 45° of phase margin. Because the  
damping factor of the circuitry is directly related to several resistive parameters (e.g., MOSFET rDS(on)) that are  
temperature dependant, the loop stability analysis has to be done over the input voltage range, load current  
range, and temperature range.  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
10.2.3 Application Curves  
FIGURE  
PFM operation  
Figure 29  
Figure 30  
PWM operation  
Combined line/load transient response  
Load transient response  
AC load transient response  
Start-up  
Figure 31  
Figure 32, Figure 34  
Figure 33, Figure 35  
Figure 36, Figure 37  
spacing  
V = 3.6 V,  
I
V = 3.6 V,  
I
V
I
= 5.0 V,  
O
V
I
= 5.0 V,  
O
= 40 mA  
O
= 200 mA  
O
Figure 29. Power-Save Mode Operation  
Figure 30. PWM Operation  
V
= 5.0 V  
V = 3.6 V,  
O
I
V
= 5.0 V  
O
50 to 500 mA Load Step  
50mA to 500mA  
Load Step  
3.3V to 3.9V Line Step  
Figure 31. Combined Line/Load Transient Response  
Figure 32. Load Transient Response in PFM/PWM  
Operation  
22  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
 
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
V = 3.6 V,  
I
0 to 400mA Load Sweep  
V = 3.6 V,  
I
50 to 500 mA Load Step  
V
= 5.0 V  
O
V
= 5.0 V  
O
CO = 22μF 10V (1210) X5R, muRata  
Figure 33. AC Load Transient Response  
Figure 34. Load Transient Response in PFM/PWM  
Operation  
V = 3.6 V,  
I
0 to 400mA Load  
V
= 5.0  
O
V = 3.6 V,  
I
V
I
= 5.0 V,  
O
= 0 mA  
O
CO = 22μF 10V (1210) X5R, muRata  
Figure 35. AC Load Transient Response  
Figure 36. Start-Up  
V = 2.7 V  
I
V = 4.5 V  
I
V = 3.6 V  
I
V
I
= 5.0 V,  
O
= 0 mA  
O
Figure 37. Start-Up  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
10.3 System Examples  
CLASS-D APA  
Audio Input L  
Audio Input L  
TPS61253  
L
5 V, up to 1500mA  
EN APA  
SW  
VIN  
EN  
VOUT  
BP  
1 μH  
10 uF (x2)  
VIN  
3.3 V .. 4.35 V  
GND  
10 μF  
CLASS-D APA  
Audio Input R  
Audio Input R  
EN DC/DC  
EN APA  
HIGH-POWER CLASS-D AUDIO AMPLIFIER  
Copyright © 2016, Texas Instruments Incorporated  
Figure 38. "Boosted" Stereo Audio Power Supply  
4.7µF  
CLASS-D APA  
Audio Input L  
Audio Input L  
EN APA  
TPS61253  
SW  
L
5 V, up to 1500mA  
VOUT  
BP  
1 μH  
4.7µF  
VIN  
EN  
10 µF (x2)  
CLASS-D APA  
VIN  
3.3 V .. 4.35 V  
GND  
10 μF  
Audio Input R  
Audio Input R  
EN DC/DC  
EN APA  
HIGH-POWER CLASS-D AUDIO AMPLIFIER  
TPD4S214  
VUSB  
Data  
VOTG_IN  
VBUS  
5V, 500mA  
USB-OTG Port  
100nF  
4.7µF  
EN  
DET  
FLT  
ADJ  
D+  
D-  
ID  
GND  
VIO  
USB PHY  
Copyright © 2016, Texas Instruments Incorporated  
Figure 39. Single Cell Li-Ion Power Solution for Tablet PCs Featuring  
"Boosted" Audio Power Supply and USB-OTG I/F  
24  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
System Examples (continued)  
CLASS-D APA  
Audio Input  
Audio Input  
TPS61254  
L
4.5 V / VIN  
EN IHF  
SW  
VIN  
EN  
VOUT  
BP  
1 μH  
EN HP  
10 uF  
VIN  
2.65 V .. 4.35 V  
4.7 μF  
GND  
CLASS-AB APA  
Audio Input  
Audio Input  
EN DC/DC  
EN HP  
AUDIO AMPLIFIER (HANDS-FREE, HEADPHONE)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 40. Combined Audio Amplifier Power Supply  
TPS61256  
L
5.0 V, up to 750mA  
SW  
VIN  
EN  
VOUT  
BP  
VIN  
3.3 V .. 4.8 V  
1 μH  
Class-D APA  
Audio Input  
Audio Input  
10 uF  
4.7 μF  
GND  
EN  
EN DC/DC  
EN APA  
Copyright © 2016, Texas Instruments Incorporated  
Figure 41. "Boosted" Audio Power Supply  
TPS22945  
5V HDMI Power  
IN  
OUT  
5V, 100mA  
HDMI Port  
1 μF  
100nF  
Data  
Enable DC/DC  
Enable USB, HDMI  
VIO  
OC  
ON  
1000µs  
0µs  
Enable HDMI  
GND  
TPS61259  
L
TPS2052B  
IN  
L
1 μH  
VOUT  
BP  
5V USB Power  
100nF  
VIN  
3.2 V .. 5.25 V  
OUT1  
OUT2  
5V, 500mA  
USB Port #1  
100nF  
150µF(1)(2)  
VIN  
EN  
Data  
Data  
10 uF  
OC1  
EN1  
OC2  
4.7 μF  
GND  
5V USB Power  
100nF  
Enable USB1  
Enable USB2  
5V, 500mA  
USB Port #2  
150µF(1)(2)  
EN2  
GND  
Enable DC/DC  
(1) Requirement for USB host applications.  
Downstream facing ports should be bypassed with 120µF min. per hub.  
VIO  
(2) Bypass capacitor should be tantalum type (>10V rated voltage).  
Copyright © 2016, Texas Instruments Incorporated  
Figure 42. Single Cell Li-Ion Power Solution for Tablet PCs Featuring x2 USB Host Ports, HDMI I/F  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
11 Power Supply Recommendations  
The power supply can be three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-Polymer battery. The input  
supply should be well regulated with the rating of TPS6125x. If the input supply is located more than a few  
inches from the device, additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
An electrolytic or tantalum capacitor with a value of 47 µF is a typical choice.  
12 Layout  
12.1 Layout Guidelines  
For all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator could show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
tracks. The input capacitor, output capacitor, and the inductor should be placed as close as possible to the IC.  
Use a common ground node for power ground and a different one for control ground to minimize the effects of  
ground noise. Connect these ground nodes at any place close to the ground pins of the IC.  
12.2 Layout Example  
BP  
GND  
GND  
U1  
EN  
VIN  
VOUT  
L1  
Figure 43. Suggested Layout (Top)  
26  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
12.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB  
Introducing airflow in the system  
As power demand in portable designs is more and more important, designers must figure the best trade-off  
between efficiency, power dissipation and solution size. Due to integration and miniaturization, junction  
temperature can increase significantly which could lead to bad application behaviors (i.e. premature thermal  
shutdown or worst case reduce device reliability).  
Junction-to-ambient thermal resistance is highly application and board-layout dependent. In applications where  
high maximum power dissipation exists (e.g. TPS61253 or TPS61259 based solutions), special care must be  
paid to thermal dissipation issues in board design. The device operating junction temperature (TJ) should be kept  
below 125°C.  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 5. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
TPS61253  
TPS61254  
TPS61256  
TPS61258  
TPS61259  
TPS612592  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates — go to the product folder for your device on ti.com. In the  
upper right-hand corner, click the Alert me button to register and receive a weekly digest of product information  
that has changed (if any). For change details, check the revision history of any revised document.  
13.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
28  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
14.1 Package Summary  
Chip Scale Package  
(Bottom View)  
Chip Scale Package  
(Top View)  
A3  
B3  
C3  
A2  
A1  
B1  
C1  
YMS  
CC  
D
B2  
LLLL  
A1  
C2  
E
Code:  
YM - 2 digit date code  
S - assembly site code  
CC - chip code (see ordering table)  
LLLL - lot trace code  
14.1.1 Package Dimensions  
The dimensions for the YFF-9 package are shown in Table 6. See the package drawing at the end of this data  
sheet.  
Table 6. YFF-9 Package Dimensions  
PACKAGED DEVICES  
D
E
TPS6125xYFF  
max = 1.236mm; min = 1.176 mm  
max = 1.336 mm, min = 1.276 mm  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
 
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
PACKAGE OUTLINE  
YFF0009  
DSBGA - 0.625 mm max height  
SCALE 10.000  
DIE SIZE BALL GRID ARRAY  
A
D
B
E
BALL A1  
CORNER  
0.625 MAX  
C
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
0.8 TYP  
C
B
SYMM  
0.8  
TYP  
0.4 TYP  
A
0.3  
0.2  
3
1
2
9X  
SYMM  
0.015  
C A B  
0.4 TYP  
4219552/A 05/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
30  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
www.ti.com  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
EXAMPLE BOARD LAYOUT  
YFF0009  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
9X ( 0.23)  
1
2
3
A
(0.4) TYP  
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219552/A 05/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
Copyright © 2011–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
TPS61253, TPS61254, TPS61256, TPS61258, TPS61259, TPS612592  
SLVSAG8G SEPTEMBER 2011REVISED JUNE 2016  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0009  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
9X ( 0.25)  
1
3
2
A
(0.4) TYP  
B
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4219552/A 05/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
32  
Submit Documentation Feedback  
Copyright © 2011–2016, Texas Instruments Incorporated  
Product Folder Links: TPS61253 TPS61254 TPS61256 TPS61258 TPS61259 TPS612592  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61253YFFR  
TPS61253YFFT  
TPS61254YFFR  
TPS61254YFFT  
TPS61256YFFR  
TPS61256YFFT  
TPS61258YFFR  
TPS61258YFFT  
TPS612592YFFR  
TPS612592YFFT  
TPS61259YFFR  
TPS61259YFFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
9
9
9
9
9
9
9
9
9
9
9
9
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
SBF  
SBF  
QWR  
QWR  
RAV  
RAV  
SAZ  
SAZ  
14A  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
14A  
SAY  
SAY  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61253YFFR  
TPS61253YFFT  
TPS61254YFFR  
TPS61254YFFT  
TPS61256YFFR  
TPS61256YFFT  
TPS61258YFFR  
TPS61258YFFT  
TPS612592YFFR  
TPS612592YFFT  
TPS61259YFFR  
TPS61259YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
9
9
9
9
9
9
9
9
9
9
9
9
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.41  
1.31  
1.31  
1.31  
1.31  
1.31  
1.31  
1.31  
1.31  
1.31  
1.31  
1.31  
1.31  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Jul-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS61253YFFR  
TPS61253YFFT  
TPS61254YFFR  
TPS61254YFFT  
TPS61256YFFR  
TPS61256YFFT  
TPS61258YFFR  
TPS61258YFFT  
TPS612592YFFR  
TPS612592YFFT  
TPS61259YFFR  
TPS61259YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
9
9
9
9
9
9
9
9
9
9
9
9
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TPS612592YFFT

采用 1.2mm x 1.3mm WCSP 封装的 3.5MHz、5.2V、1.5A 负载升压转换器 | YFF | 9 | -40 to 85
TI

TPS61259YFF

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI

TPS61259YFFR

采用 1.2mm x 1.3mm WCSP 封装的 3.5MHz、5.1V、1.5A 负载升压转换器 | YFF | 9 | -40 to 85
TI

TPS61259YFFT

采用 1.2mm x 1.3mm WCSP 封装的 3.5MHz、5.1V、1.5A 负载升压转换器 | YFF | 9 | -40 to 85
TI

TPS6125XYFF

3.5-MHz HIGH EFFICIENCY STEP-UP CONVERTER IN CHIP SCALE PACKAGING
TI

TPS61260

TINY LOW INPUT VOLTAGE BOOST CONVERTER
TI

TPS61260DRVR

TINY LOW INPUT VOLTAGE BOOST CONVERTER
TI

TPS61260DRVT

TINY LOW INPUT VOLTAGE BOOST CONVERTER
TI

TPS61261

具有 3.3 输出电压的微型低输入电压升压转换器
TI

TPS61261DRVR

TINY LOW INPUT VOLTAGE BOOST CONVERTER
TI

TPS61261DRVT

TINY LOW INPUT VOLTAGE BOOST CONVERTER
TI

TPS61280D

具有直通模式和 I2C 控制接口的 2.3MHz、3A 同步升压转换器
TI