TPS61299 [TI]

具有输入电流限制和快速瞬态性能的 95nA 低 IQ 5.5V 升压转换器;
TPS61299
型号: TPS61299
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有输入电流限制和快速瞬态性能的 95nA 低 IQ 5.5V 升压转换器

升压转换器
文件: 总28页 (文件大小:3323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61299  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
TPS61299 具有输入电流限制和快速瞬态性能的  
95nA 静态电流、5.5V 升压转换器  
1 特性  
3 说明  
• 输入电压范围0.5V 5.5V  
• 启动时的最小输入电压0.7V  
• 输入工作电压低150mVVIN > 0.7V  
• 输出电压范围VSEL 引脚选择输出电压1.8V 至  
5.5V  
TPS61299 是一款同步升压转换器具有 95nA 超低静  
态电流和平均输入电流限制。该器件为具有碱性电池和  
纽扣电池的便携式设备提供电源解决方案。该器件在轻  
负载条件下具有高效率可实现较长的工作时间平均  
输入电流限制可避免电池以高电流放电。  
• 平均输入电流限制5mA25mA50mA;  
100mA250mA500mA1.2A1.5A不同版  
)  
VOUT 静态电流典型值95nA  
VIN SW 关断电流典型值60nA  
VIN = 3.6VVOUT = 5V IOUT = 10μA 时效率高  
91%  
TPS61299 具有 0.5V 5.5V 的宽输入电压范围和  
1.8V 5.5V 的输出电压范围。该器件具有不同版本,  
可提供 5mA 1.5A 的平均输入电流限制。具有 1.2A  
电流限制的 TPS61299 可在 3V 5V 转换过程中支持  
高达 500mA 的输出电流200mA 负载条件下可实  
现大94% 的效率。  
TPS61299 在输出电压为 4.5V5V 5.5V 时具有可  
选的快速负载瞬态性能。在快速负载瞬态中当输出电  
流瞬态0A 200mA 典型稳定时间8μs。  
VIN = 3.6VVOUT = 5V IOUT = 200mA 时效率高  
94%  
• 快速瞬态性能VIN = 3.6VVOUT = 5VIOUT = 0A  
-> 200mA 稳定时间约8μs  
EN 为低电平时真正断开  
• 自PFM/PWM 模式转换  
VIN > VOUT 时自动直通  
• 输SCP 和热关断保护  
6 WCSP (1.2 x 0.8) / SOT563 (1.6 x 1.6)  
TPS61299 在禁用时支持可选强制直通或真正关断功  
这对于常开型系统非常灵活。  
TPS61299 采用 6 焊球 1.2mm x 0.8mm WCSP 封装  
6 引脚 1.6mm x 0.6mm SOT563 封装提供非常小  
的解决方案尺寸。  
器件信息  
封装(1)  
2 应用  
封装尺寸标称值)  
1.2mm x 0.8mm  
1.6mm x 1.6mm  
器件型号  
智能手表、智能手环  
便携式医疗设备  
TWS  
TPS61299YBHR  
TPS61299DRLR  
WCSP  
SOT563  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
L
VOUT  
VIN  
SW  
VOUT  
C2  
C1  
VIN  
VSEL  
R1  
ON  
EN  
GND  
OFF  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGS9  
 
 
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
Table of Contents  
7.4 Device Functional Modes..........................................15  
8 Application and Implementation..................................16  
8.1 Application Information............................................. 16  
8.2 Typical Application-Li-ion Battery to 5-V Boost  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics................................................7  
7 Detailed Description........................................................9  
7.1 Overview.....................................................................9  
7.2 Functional Block Diagram...........................................9  
7.3 Feature Description.....................................................9  
Converter under Fast Mode........................................ 16  
9 Thermal Information......................................................21  
10 Device and Documentation Support..........................22  
10.1 Device Support....................................................... 22  
10.2 Documentation Support.......................................... 22  
10.3 接收文档更新通知................................................... 22  
10.4 支持资源..................................................................22  
10.5 Trademarks.............................................................22  
10.6 静电放电警告.......................................................... 22  
10.7 术语表..................................................................... 22  
11 Mechanical, Packaging, and Orderable  
Information.................................................................... 23  
4 Revision History  
Changes from Revision * (March 2023) to Revision A (June 2023)  
Page  
Updated Electrical Characteristics Iq from 100 nA to 95 nA ..............................................................................4  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
2
Submit Document Feedback  
Product Folder Links: TPS61299  
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
5 Pin Configuration and Functions  
5-2. DRV 6-Pin Package Top View  
5-1. YFF 6-Pin Package Top View  
5-1. Pin Functions  
TERMINAL  
YBH  
I/O  
DESCRIPTION  
NAME  
DRL  
IC power supply input  
VIN  
A1  
1
PWR  
I
The switch pin of the converter. It is connected to the drain of the internal low-side  
power MOSFET and source of the internal high-side power MOSFET.  
SW  
EN  
B1  
C1  
C2  
2
3
4
Enable logic input. Logic high voltage enables the device. Logic low voltage disables  
the device.  
I
I
Boost output voltage selection pin. Connect a resistor between this pin and ground to  
select one of 21 output voltages.  
VSEL  
VOUT  
GND  
B2  
A2  
5
6
PWR  
PWR  
Boost converter output  
Ground  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
-0.7  
MAX  
6.5  
8
UNIT  
V
VIN, VOUT, SW, EN, VSEL  
Voltage  
SW spike at 10 ns  
V
SW spike at 1 ns  
-0.7  
10  
V
TJ  
Operating Junction Temperature  
Storage temperature  
125  
150  
°C  
°C  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specificationJESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. [Following  
sentence optional; see the wiki.] Manufacturing with less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. [Following  
sentence optional; see the wiki.] Manufacturing with less than 250-V CDM is possible with the necessary precautions.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
0.5  
NOM  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
TJ  
Input voltage  
Boost output voltage  
1.8  
5.5  
V
Junction temperature  
125  
°C  
µH  
µF  
µF  
40  
0.47*0.7  
5*0.8  
2.2  
L
Effective Inductance  
1.0  
10  
1.0*1.3  
COUT  
CIN  
Effective Output Capacitance at the OUT pin  
Effective Input Capacitance at the VIN pin  
6.4 Thermal Information  
TPS61299  
YFF 6-BALLS  
Standard  
TPS61299  
YFF 6-BALLS  
EVM  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
130.0  
0.9  
107.1  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
N/A  
N/A  
4.1  
39.4  
0.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
39.4  
N/A  
62.7  
N/A  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
4
Submit Document Feedback  
Product Folder Links: TPS61299  
 
 
 
 
 
 
 
 
 
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
6.5 Electrical Characteristics  
TJ = -40°C to 125°C, VIN = 3.6V and VOUT = 5.0V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
Version  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
All  
0.5  
5.5  
0.7  
V
V
Under-voltage lockout  
threshold  
TPS61299,  
TPS61299X  
VIN_UVLO  
VIN rising  
Under-voltage lockout  
threshold  
VIN_UVLO  
All  
VIN falling  
0.5  
V
IC enabled, No load, No  
switching, TJ up to 85°C  
IQ  
Quiescent current into VIN pin All  
1
95  
60  
60  
nA  
Quiescent current into VOUT  
pin  
IC enabled, No load, No  
switching, TJ up to 85°C  
IQ  
All  
300 nA  
nA  
TPS61299,  
TPS61299X  
EN = LOW, VIN = 3.6 V,  
VOUT = 0 V  
ISD  
IBY  
Shutdown current into VIN pin  
Quiescent current into VIN pin TPS61299A,  
EN = LOW  
nA  
at force pass through mode  
TPS61299XA  
All  
TJ = 25°C  
1
1
1
1
4
nA  
Leakage current into SW pin  
(from SW pin to VOUT pin)  
TJ up to 85°C  
TJ = 25°C  
20 nA  
15 nA  
200 nA  
ILKG_SW  
Leakage current into SW pin  
(from SW pin to GND pin)  
TJ up to 85°C  
OUTPUT  
VOUT  
Output voltage setting range All  
1.8  
-2  
5.5  
2
V
VOUT_PWM_ACY Output voltage accuracy  
All  
PWM, PFM mode  
normal mode  
%
VOUT_PWM_  
ACY+37.5m  
V
V
V
VOUT_SNOOZE_  
Output voltage accuracy  
All  
ACY  
VOUT_PWM_  
ACY+15mV  
fast mode  
POWER SWITCH  
High-side MOSFET on  
resistance  
TPS61299X,  
TPS61299XA  
mOh  
m
RDS(on)  
VOUT = 5.0 V  
150  
88  
1.2  
5
Low-side MOSFET on  
resistance  
TPS61299X,  
TPS61299XA  
mOh  
m
RDS(on)  
VOUT = 5.0 V  
TPS61299,  
TPS61299A  
ILIM  
ILIM  
ILIM  
ILIM  
ILIM  
Input current limit  
Input current limit  
Input current limit  
Input current limit  
VIN = 3.6 V, VOUT = 5.0 V  
VIN = 3.6 V, VOUT = 5.0 V  
VIN = 3.6 V, VOUT = 5.0 V  
VIN = 3.6 V, VOUT = 5.0 V  
0.96  
3
1.44  
7
A
TPS612991,  
TPS612991A  
mA  
TPS612992,  
TPS612992A  
20  
40  
80  
25  
50  
30 mA  
60 mA  
TPS612993,  
TPS612993A  
TPS612994,  
TPS612994A  
Input current limit  
VIN = 3.6 V, VOUT = 5.0 V  
PWM  
100  
350  
120 mA  
mA  
ILH  
Inductor current ripple  
All  
APPLICATION  
LOGIC INTERFACE  
VEN_H  
VEN_L  
VEN_H  
VEN_L  
IEN_LKG  
EN logic high threshold  
All  
All  
All  
All  
All  
VIN >= 1.05 V  
VIN >= 1.05 V  
VIN < 1.05 V  
VIN < 1.05 V  
VEN=5V  
0.84  
V
V
V
V
EN logic low threshold  
EN logic high threshold  
EN logic low threshold  
Leakage current into EN pin  
0.36  
0.8*VIN  
0.2*VIN  
1
50 nA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
TJ = -40°C to 125°C, VIN = 3.6V and VOUT = 5.0V. Typical values are at TJ = 25°C, unless otherwise noted.  
PARAMETER  
Version  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
REN  
EN pin pulldown resistor  
All  
EN=low  
800  
kOhm  
PROTECTION  
TSD  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
150  
20  
°C  
°C  
TSD_HYS  
TJ falling below TSD  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
6
Submit Document Feedback  
Product Folder Links: TPS61299  
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
6.6 Typical Characteristics  
VIN = 3.6 V, VOUT = 5 V, Normal Mode, TJ = 25°C, unless otherwise noted  
100  
80  
5.1  
5.05  
5
60  
VIN=0.7V  
VIN=1.8 V  
VIN=2.7 V  
VIN=3.6 V  
VIN=4.3 V  
VIN=5.0 V  
VIN=0.7V  
VIN=1.8V  
VIN=2.7V  
VIN=3.6V  
VIN=4.3V  
VIN=5.0V  
40  
20  
0.0001  
4.95  
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Output Current (A)  
1
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Output Current (A)  
1
VIN = 0.7V, 1.8V, 2.7V, 3.6V, 4.3V, 5.0V VOUT = 5.0 V  
VIN = 0.7V, 1.8V, 2.7V, 3.6V, 4.3V, 5.0V  
VOUT = 5.0 V  
6-1. 5.0-V VOUT Efficiency with Different Inputs  
6-2. 5.0-V VOUT Load Regulation under Normal  
under Normal Mode  
Mode  
100  
95  
3.35  
90  
3.3  
85  
80  
VIN=0.7V  
VIN=1.9V  
VIN=3.0V  
VIN=0.7V  
VIN=1.9 V  
VIN=3.0 V  
3.25  
1E-5  
75  
1E-5  
0.0001  
0.001  
Output Current (A)  
0.01  
0.1 0.2 0.5 1  
VOUT= 3.3 V  
0.0001  
0.001  
Output Current (A)  
0.01  
0.1 0.2 0.5 1  
VOUT = 3.3 V  
VIN =0.7 V, 1.9 V, 3.0V  
VIN = 0.7 V, 1.9 V, 3.0 V  
6-4. 3.3-V VOUT Load Regulation under Normal  
6-3. 3.3-V VOUT Efficiency with Different Inputs  
Mode  
under Normal Mode  
97.5  
95  
5.1  
5.05  
5
92.5  
90  
87.5  
4.95  
VIN=3.0 V  
VIN=3.6 V  
VIN=4.3 V  
VIN=3.0V  
VIN=3.6V  
VIN=4.3V  
85  
82.5  
4.9  
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Output Current (A)  
1
0.0001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Output Current (A)  
1
VIN = 3.0 V, 3.6 V, 4.3 V  
VOUT = 3.3 V  
VIN =3.0 V, 3.6 V, 4.3 V  
VOUT= 5 V  
6-5. 5.0-V VOUT Efficiency with Different Inputs 6-6. 5-V VOUT Load Regulation under Fast Mode  
under Fast Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
50  
0
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
-50  
-100  
-150  
-200  
-250  
-300  
500  
VIN=4.3V  
VIN=3.6V  
VIN=0.7V  
VIN=0.7V  
VIN=3.6V  
VIN=4.3V  
-350  
250  
0
-400  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
Temperature (C)  
VIN = 0.7 V, 3.6 V 4.3 V; VOUT = 5 V, TJ = 40°C to +150 °C,  
VIN = 0.7 V, 3.6 V 4.3 V; VOUT = 5 V, TJ = 40°C to +150 °C,  
No switching  
No switching  
6-8. Quiescent Current into VOUT vs  
6-7. Quiescent Current into VIN vs Temperature  
Temperature  
1400  
VIN=0.7V  
VIN=3.6V  
1200  
VIN=4.3V  
1000  
800  
600  
400  
200  
0
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (C)  
VIN = 0.7 V, 3.6 V 4.3 V; VOUT = 0 V, TJ = 40°C to +150 °C  
6-9. Shutdown Current vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
7 Detailed Description  
7.1 Overview  
The TPS61299 is a synchronous step-up converter and operates in a hysteretic control scheme. The TPS61299  
has a wide input voltage supply range between 0.5 V and 5.5 V ( 0.7V rising voltage for start-up). It only  
consumes 95 nA quiescent current and can achieve up high efficiency under light load condition.  
The TPS61299 family provide wide input current limit from 5 mA to 1.5 A and support optional true shutdown  
function or force pass through function at EN is low.  
TPS61299 provides a fast transient performance mode and accurate load regulation mode for different system.  
7.2 Functional Block Diagram  
7-1. Functional Block Diagram  
7.3 Feature Description  
7.3.1 Boost Control Operation  
The TPS61299 boost converter is controlled by a hysteretic current mode controller. This controller regulates the  
output voltage by keeping the inductor ripple current constant in the range of 350 mA and adjusting the valley  
current of this inductor depending on the output load. Since the input voltage, output voltage and inductor value  
all affect the rising and falling slopes of inductor ripple current, the switching frequency is not fixed and is  
determined by the operation condition. If the required average input current is lower than the average inductor  
current defined by this constant ripple, the inductor current goes discontinuously to keep the efficiency high  
under light load condition. If the load current is reduced further, the boost converter enters into Burst mode. In  
Burst mode, the boost converter ramps up the output voltage with several switching cycles. Once the output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
 
 
 
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
voltage exceeds a setting threshold (Vout_target + 50 mV in normal mode and Vout_target + 25 mV in fast load  
transient mode), the device stops switching and goes into a sleep status. In sleep status, the device consumes  
less quiescent current, 95 nA. The boost converter resumes switching when the output voltage is below the  
setting threshold ( Vout_target + 25 mV). The device exits the Burst mode when the output current can no longer  
be supported in this mode.  
7-2. Control Modes under Different Load  
7.3.2 Version Detection  
The TPS61299 supports 21 internal output voltage setting options by connecting a resistor between the VSEL  
pin and ground.  
During start-up, when output voltage reaches close to 1.8V, the device starts to detect the configuration  
conditions of the VSEL pin. The TPS61299 checks the VSEL pin by lowering resistance setting options to higher  
setting options until the user finds the setting configuration by a 10-μs clock. After detecting the configuration,  
the TPS61299 latches the setting output regulation voltage.  
The TPS61299 does not detect the VSEL pins during operation, so changing the resistor during operation does  
not change the VSEL setting. Toggling the EN pin during operation is one way to refresh the it.  
For proper operation, TI suggests that the setting resistance accuracy must be 1% and the parasitic capacity of  
the VSEL pin be less than 10 pF.  
7-1. VSEL Pin Configuration  
VOUT_REG (V)  
VOUT_REG (V)  
VOUT_REG (V)  
VOUT_REG (V)  
Resistance (k)  
0(GND)  
3.01  
Resistance (k)  
Resistance (k)  
Resistance (k)  
3.3  
12.1  
14.7  
18.2  
22.6  
28.7  
4.5  
49.9  
75  
3.6  
3.5  
3.2  
3
191  
237  
294  
365  
2.5  
2.2  
2
5.5  
4.5(fast)  
4.3  
4.75  
5.5(fast)  
5.2  
100  
124  
154  
6.19  
4
1.8  
5(fast)  
7.87  
5
3.8  
2.8  
442/  
Vout pin  
9.76  
4.8  
7.3.3 Under-voltage Lockout  
The TPS61299 has a built-in under-voltage lockout (UVLO) circuit to ensure the device working properly. When  
the input voltage is above the UVLO rising threshold of 0.7 V, the TPS61299 can be enabled to boost the output  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
10  
Submit Document Feedback  
Product Folder Links: TPS61299  
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
voltage. After the TPS61299 starts up and the output voltage is above 1.8 V, the TPS61299 can work with the  
input voltage as low as 0.5 V.  
7.3.4 Switching Frequency  
The TPS61299 boost converter does not have fixed frequency and it keeps the inductor ripple current constant  
in the range of 350 mA, so the frequency is determined by the operation condition. E.g. the frequency is  
approximately 3MHz for the input is 3.6V, output is 5V, inductor is 1uH.  
7.3.5 Input Current Limit  
The TPS61299 employs the input average current protection (OCP) function. If the inductor average current  
reaches the current limit threshold ILIM, the control loop can limit the inductor average current. In this case the  
output voltage decreases until the power balance between input and output is achieved. If the output drops  
below the input voltage, the TPS61299 enters into Down Mode. If the output drops below 1.6 V, the TPS61299  
enters into startup process again. In Pass-Through operation, input current limit function is not enabled.  
7.3.6 Enable and Disable  
When the input voltage is above UVLO rising threshold and the EN pin is pulled to high voltage, the TPS61299  
is enabled. When the EN pin is pulled to low voltage, the TPS61299 goes into shutdown mode. In shutdown  
mode, TPS61299 has two versions, true shutdown version and force pass through version. In true shutdown  
version, the device stops switching and the high-side MOSFET fully turns off, providing the completed  
disconnection between input and output. And in force pass through version, the high-side MOSFET turns on and  
output connects with input. Less than 60-nA input current is consumed in shutdown mode.  
7.3.7 Soft Start  
After the EN pin is tied to high voltage, the TPS61299 begins to startup.  
For the high input current limit is 250 mA, 500 mA, 1.2 A and 1.5 A version, at the beginning, when output  
voltage is lower than 0.5V, device limits the output power for the short protection. As output voltage is higher  
than 0.5V, the device operates at the boundary of Discontinuous Conduction Mode (DCM) and Continuous  
Conduction Mode (CCM), and the inductor peak current is limited to around 350 mA during this stage. After the  
output voltage reaches close to 1.8 V, the TPS61299 starts to detect the output voltage configuration of the  
VSEL pins, then latches the configuration. The version detection time depends on the resistance at VSEL pin,  
the higher resistance, the longer version detection time. Eg. for 5V normal version, the TPS61299 needs  
approximately 170 us for version detection. After version detection, TPS61299 continues switching and output  
ramps up further. The internal soft-start time is approximately 1.3ms, and the output soft start time varies with the  
different output capacitance, load condition, and configuration conditions. The TPS61299 limits the inductor  
average current lower than 500mA, (input current limit to 250mA for 250mA version) when output voltage is  
lower than 2.5V. In this way, the soft start function reduces the inrush current during startup.  
For the low input current limit 5 mA, 25 mA, 50 mA and 100 mA version, the device limits the input current limit to  
25 mA during the soft start. The device works at DCM during start up.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
7-3. Soft Start Procedure  
7.3.8 Down Mode  
During the start-up, when the input voltage is higher than the output voltage, the TPS61299 works at the down  
mode to keep the switching. In the Down Mode, the behavior of the rectifying PMOS by pulling its gate to input  
voltage instead of to ground. In this way, the voltage drop across the PMOS is increasing as high as to regulate  
the output voltage. The power loss also increases in this mode, which needs to be taken into account for thermal  
consideration.  
7.3.9 Pass-Through Operation  
The TPS61299 features down mode and pass-through operation when input voltage is close to or higher than  
output voltage.  
In the down mode, output is regulated at target voltage even when input voltage is higher than output voltage.  
The control circuit changes the behavior of the rectifying PMOS by pulling its gate to input voltage instead of to  
ground. In this way, the voltage drop across the PMOS is increasing as high as to regulate the output voltage.  
In pass through mode, the TPS61299 stops switching and turns on the high side PMOS FET. The output voltage  
is the input voltage minus the voltage drop across the DCR of the inductor and the Rdson of the PMOS FET. In  
pass though operation, the input current limit function, reverse current protection and thermal shutdown are not  
enable.  
For the input current limit is equal or higher than 250mA version, TPS61299, TPS612995, TPS612996 and  
TPS612997. With input voltage ramping up, the TPS61299 goes into down mode when Vin >Vout-35mV. The  
device stays in down mode until Vin >Vout+100mV and then goes automatically into pass through operation. In  
the pass through operation, output voltage follows input voltage. The TPS61299 exits pass though operation and  
goes back to boost mode when the output voltage drops below the setting target voltage minus 75mV.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
12  
Submit Document Feedback  
Product Folder Links: TPS61299  
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
7-4. Mode Transition for 250mA and Higher Input Current Limit Version  
For the input current limit is equal or lower than 100mA version, TPS612991, TPS612992, TPS612993 and  
TPS612994. With input voltage ramping up, the TPS61299 goes into down mode when Vin  
>Vout-35mV(Vboost_down). It stays in down mode until Vin >Vout+23mV(Vdown_pass) and then goes automatically  
into pass through operation. In the pass through operation, output voltage follows input voltage. The TPS61299  
exits pass though operation and goes back to boost mode when the output voltage drops below the setting  
target voltage minus 75mV(Vpass_boost).  
7-5. Mode Transition for 100mA and Lower Input Current Limit Version  
7.3.10 Output Short-to-ground Protection  
When the VOUT pin is short to ground and the output voltage becomes less than 0.5 V, the TPS61299 starts to  
limit the inductor current, the same with soft start operation. The TPS61299 works at the boundary of  
Discontinuous Conduction Mode (DCM) and Continuous Conduction Mode (CCM) when the input voltage is  
lower than 1.8V and works at DCM at input voltage is higher than 1.8V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
Once the short circuit is released, the TPS61299 goes through the soft startup again to the regulated output  
voltage.  
7.3.11 Thermal Shutdown  
The TPS61299 goes into thermal shutdown once the junction temperature exceeds 150°C. When the junction  
temperature drops below the thermal shutdown temperature threshold less the hysteresis, typically 130°C, the  
device starts operating again.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
14  
Submit Document Feedback  
Product Folder Links: TPS61299  
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
7.4 Device Functional Modes  
7.4.1 Fast Load transient Mode and Normal Mode  
The TPS61299 has two modes, fast load transient mode and normal mode, which is selected by VSEL pin.  
In the fast load transient mode, the loop response speed is fast. Eg the load transient settling time is about 8 us  
when output current transient from 0A to 200mA at 3.6V to 5V condition. But the trade-off is the load regulation.  
Normal mode has the better load regulation.  
7-6. Transient performance comparison under Fast Mode and Normal Mode  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS61299 is a synchronous step-up converter and operates in a hysteretic control scheme. The TPS61299  
has a wide input voltage supply range between 0.5 V and 5.5 V(0.7V rising voltage for start up). The device only  
consumes 95 nA quiescent current and can achieve up high efficiency under light load condition.  
The TPS61299 family provide wide input current limit from 5mA to 1.5A and support optional true shutdown  
function or force pass through function at EN is low.  
TPS61299 provides a fast transient performance mode and accurate load regulation mode for different system.  
8.2 Typical Application-Li-ion Battery to 5-V Boost Converter under Fast Mode  
The TPS61299 can operate under fast transient mode with 8-μs settling time under 0 to 200-mA load step. Set  
the VSEL according to table 8-1 to select different target VOUT under fast mode.  
8-1. 3.6-V Input Source to 5-V Boost Converter under Fast Mode  
8.2.1 Design Requirements  
The design parameters are listed in 8-1.  
8-1. Design Requirements  
PARAMETERS  
VALUES  
2.7 V ~ 4.3 V  
5 V ( fast mode )  
500 mA  
Input Voltage  
Output Voltage  
Output Current  
Output Voltage Ripple  
± 50 mV  
8.2.2 Detailed Design Procedure  
8.2.2.1 Maximum Output Current  
The maximum output capability of the TPS61299 is determined by the input-to-output ratio and the current limit  
of the boost converter. The maximum output current can be estimated by 方程1.  
V I  
IOUT (max )  
=
IN LIM η  
VOUT  
(1)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
16  
Submit Document Feedback  
Product Folder Links: TPS61299  
 
 
 
 
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
where  
ηis the conversion efficiency, use 85% for estimation.  
ILIM is the average switch current limit.  
Minimum input voltage, maximum boost output voltage, and minimum current limit ILIM are used as the worst  
case condition for the estimation.  
8.2.2.2 Inductor Selection  
The TPS61299 boost converter does not have fixed frequency and it keeps the inductor ripple current constant  
in the range of 350 mA, so the frequency is determined by the inductance and working voltage.  
The TPS61299 is designed to work with inductor value of 1 uH.  
8-2. Recommended Inductors for the TPS61299  
DCR MAX  
(mΩ)  
SATURATION CURRENT  
(A)  
(1)  
PART NUMBER  
L (µH)  
SIZE (LxWxH)  
VENDOR  
HTTH16080H-1R0MSR-99  
WIP252010P-1R0ML  
WPN252010H1R0MT  
1
1
1
110  
54  
2.3  
3.5  
3.5  
1.6 × 0.8 × 0.8  
2.5 x 2.0 x 1.0  
2.5 x 2.0 x 1.0  
Cyntec  
INPAQ  
Sunlord  
76  
(1) See the Third-Party Products disclaimer  
8.2.2.3 Output Capacitor Selection  
The output capacitor is mainly selected to meet the requirements for output ripple and loop stability. The ripple  
voltage is related to capacitor capacitance and its equivalent series resistance (ESR). Assuming a ceramic  
capacitor with zero ESR, the minimum capacitance needed for a given ripple voltage can be calculated by 方程  
2.  
IOUT ìDMAX  
fSW ì VRIPPLE  
COUT  
=
(2)  
where  
DMAX is the maximum switching duty cycle.  
VRIPPLE is the peak-to-peak output ripple voltage.  
IOUT is the maximum output current.  
fSW is the switching frequency.  
The ESR impact on the output ripple must be considered if tantalum or aluminum electrolytic capacitors are  
used. The output peak-to-peak ripple voltage caused by the ESR of the output capacitors can be calculated by  
方程3.  
VRIPPLE(ESR) = IL(P) ìRESR  
(3)  
Take care when evaluating the derating of a ceramic capacitor under DC bias voltage, aging, and AC signal. For  
example, the DC bias voltage can significantly reduce capacitance. A ceramic capacitor can lose more than 50%  
of its capacitance at its rated voltage. Therefore, always leave margin on the voltage rating to make sure there is  
adequate capacitance at the required output voltage. Increasing the output capacitor makes the output ripple  
voltage smaller in PWM mode.  
TI recommends using the X5R or X7R ceramic output capacitor in the range of 4-μF to 1000-μF effective  
capacitance. The output capacitor affects the small signal control loop stability of the boost regulator. If the  
output capacitor is below the range, the boost regulator can potentially become unstable. Increasing the output  
capacitor makes the output ripple voltage smaller in PWM mode.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
 
 
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
8.2.2.4 Input Capacitor Selection  
Multilayer X5R or X7R ceramic capacitors are excellent choices for the input decoupling of the step-up converter  
as they have extremely low ESR and are available in small footprints. Input capacitors must be located as close  
as possible to the device. While a 10-μF input capacitor is sufficient for most applications, larger values can be  
used to reduce input current ripple without limitations. Take care when using only ceramic input capacitors.  
When a ceramic capacitor is used at the input and the power is being supplied through long wires, a load step at  
the output can induce ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop  
instability or can even damage the part. In this circumstance, place additional bulk capacitance (tantalum or  
aluminum electrolytic capacitor) between ceramic input capacitor and the power source to reduce ringing that  
can occur between the inductance of the power source leads and ceramic input capacitor.  
8.2.3 Application Curves  
Vout(5V o set)  
20mV/div  
Vout(5V o set)  
10mV/div  
SW  
SW  
5V/div  
5V/div  
Inductor Current  
200mA/div  
Inductor Current  
200mA/div  
Time scale: 20ms/div  
Time scale: 10us/div  
VIN = 3.6 V  
IOUT = 0A  
VIN = 3.6 V  
IOUT = 1 mA  
8-2. Switching Waveform at Open Load  
8-3. Switching Waveform at Light Load  
Vout (5V o set)  
20mV/div  
Vout(5V o set)  
10mV/div  
SW  
5V/div  
SW  
5V/div  
Inductor Current  
200mA/div  
Inductor current  
200mA /div  
Time scale: 200ns/div  
Time scale: 200ns/div  
VIN = 3.6 V  
IOUT = 300 mA  
VIN = 3.6 V  
IOUT = 50mA  
8-5. Switching Waveform at Heavy Load  
8-4. Switching Waveform at Medium Load  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
EN  
2V/div  
EN  
2V/div  
Vout  
2V/div  
Vout  
2V/div  
Inductor Current  
200mA/div  
Inductor Current  
200mA/div  
Time scale: 2ms/div  
Time scale: 500us/div  
VIN = 3.6 V  
VOUT =5 V  
Rload = 500 Ω  
VIN = 3.6 V  
VOUT =5 V  
Rload = 500 Ω  
8-7. Shutdown by EN  
8-6. Start-Up by EN  
Vout (5V o set)  
100mV/div  
Vout (5V o set)  
100mV/div  
Vin  
2V /div  
Output Current  
100mA/div  
Time scale: 50us/div  
Time scale: 200us/div  
VIN = 3.6V, VOUT =5V, IOUT = 0 to 200mA with 20-μs slew rate  
VIN= 2.0V to 4.5V with 20-μs slew rate,VOUT =5V,Rload = 25  
Ω
8-8. Load Transient  
8-9. Line Transient  
Vout (5V o set)  
100mV/div  
Vout (5V o set)  
200mV/div  
Vin  
1V /div  
Output current  
100mA /div  
Inductor current  
500mA /div  
Time scale: 200us/div  
Time scale: 10ms/div  
VIN = 2 V to 4.5 V Sweep, VOUT = 5 V, 25-Ωresistance load  
VIN = 3.6 V, VOUT = 5 V, IOUT = 0 A to 400 mA Sweep  
8-10. Load Sweep  
8-11. Line Sweep  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
8.2.4 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 0.7 V to 5.5 V. This input supply  
must be well regulated. If the input supply is located more than a few inches from the converter, additional bulk  
capacitance can be required in addition to the ceramic bypass capacitors. A typical choice is a tantalum or  
aluminum electrolytic capacitor with a value of 100 µF. Output current of the input power supply must be rated  
according to the supply voltage, output voltage, and output current of the TPS61299.  
8.2.5 Layout  
8.2.5.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator can show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
paths. The input and output capacitors , as well as the inductor are placed as close as possible to the IC.  
8.2.5.2 Layout Example  
The bottom layer is a large GND plane connected by vias.  
8-12. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
20  
Submit Document Feedback  
Product Folder Links: TPS61299  
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
9 Thermal Information  
The maximum IC junction temperature is restricted to 125°C under normal operating conditions. Calculate the  
maximum allowable dissipation, PD(max) , and keep the actual power dissipation less than or equal to  
PD(max) . The maximum-power-dissipation limit is determined using equation (10)8.2.5.  
125 - TA  
RqJA  
PD max  
=
(
)
(4)  
Where  
TA is the maximum ambient temperature for the application  
JA is the junction-to-ambient thermal resistance given in the Thermal Information table.  
Ɵ
The TPS61299 comes in a WCSP or SOT583 package. The real junction-to-ambient thermal resistance of the  
package greatly depends on the PCB type and layout. Using thick PCB copper and soldering GND pin to a large  
ground plate enhances the thermal performance. Using more vias connects the ground plate on the top layer  
and bottom layer around the IC without solder mask also improves the thermal capability.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Performing Accurate PFM Mode Efficiency Measurements Application Report  
Texas Instruments, Accurately Measuring Efficiency of Ultra-low-IQ Devices Technical Brief  
Texas Instruments, IQ: What it is, What it isnt, and How to Use it Techanical Brief  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSGS9  
22  
Submit Document Feedback  
Product Folder Links: TPS61299  
 
 
 
 
 
 
 
 
 
TPS61299  
www.ti.com.cn  
ZHCSPX6A MARCH 2023 REVISED JUNE 2023  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61299  
English Data Sheet: SLVSGS9  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
XTPS61299YBHR  
ACTIVE  
DSBGA  
YBH  
6
6000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YBH0006  
DSBGA - 0.4 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.4 MAX  
SEATING PLANE  
0.05 C  
0.16  
0.10  
BALL TYP  
0.4  
TYP  
C
SYMM  
D: Max = 1.258 mm, Min =1.198 mm  
E: Max = 0.87 mm, Min = 0.81 mm  
0.8  
TYP  
B
A
0.4  
TYP  
1
2
0.225  
0.185  
C A B  
6X  
0.015  
SYMM  
4224514/A 08/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBH0006  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
6X ( 0.2)  
2
1
A
(0.4) TYP  
SYMM  
B
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.2)  
METAL  
(
0.2)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
(PREFERRED)  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224514/A 08/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBH0006  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
6X ( 0.21)  
1
2
A
B
(0.4) TYP  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 50X  
4224514/A 08/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS613

SILICON NPN EPITAXIAL PLANAR FOR PHOTO SENSOR
TOSHIBA

TPS613-A

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS613-BC

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS613-C

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS613-CD

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS61300

1.5A/4.1A Multiple LED Camera Flash Driver With I2CTM Compatible Interface
TI

TPS61300YFFR

具有 I2C™ 兼容接口、支持驱动多个 LED 摄像机闪光灯的 1.5A/4.1A 驱动器 | YFF | 20 | -40 to 85
TI

TPS61300YFFT

具有 I2C™ 兼容接口、支持驱动多个 LED 摄像机闪光灯的 1.5A/4.1A 驱动器 | YFF | 20 | -40 to 85
TI

TPS61301

1.5A/4.1A Multiple LED Camera Flash Driver With I2CTM Compatible Interface
TI

TPS61301YFF

LED DISPLAY DRIVER, BGA20, LEAD FREE, CSP-20
TI

TPS61301YFFR

1.5A/4.1A multiple LED Camera flash driver with I2CTM compatible interface and Hardware Reset Input 20-DSBGA -40 to 85
TI

TPS61301YFFT

1.5A/4.1A multiple LED Camera flash driver with I2CTM compatible interface and Hardware Reset Input 20-DSBGA -40 to 85
TI