TPS61379QWRTERQ1 [TI]

25µA 静态电流同步升压转换器 | RTE | 16 | -40 to 125;
TPS61379QWRTERQ1
型号: TPS61379QWRTERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

25µA 静态电流同步升压转换器 | RTE | 16 | -40 to 125

升压转换器
文件: 总34页 (文件大小:2439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
TPS61379-Q1 具有负载断开功能25µA 静态电流同步升压转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
TPS61379-Q1 是一款完全集成的同步升压转换器集  
成了负载断开功能。输入电压范围从 2.3V 14V最  
大输出电压高达 18.5V。开关电流限制典型值为 2A。  
它会消VIN 25μA 的静态电流。  
– 器件温度等1-40°C 125°C 环境工作温度  
范围  
提供功能安全  
可帮助进行功能安全系统设计的文档  
• 灵活的输入和输出工作范围  
– 输入电压范围2.3V 14V  
– 可编程输出电压范围4.0V 18.5V  
5V5.25V5.5V 固定输出选项  
– 固2A 峰值电流限制  
TPS61379-Q1 采用峰值电流模式控制可编程开关频  
率在 200kHz 2.2MHz 之间。在中等到重负载条件  
该器件在固定频PWM 模式下运行。在轻负载条  
件下通过配置 MODE 引脚可实现两种可选模式自  
PFM 模式和强制 PWM 模式以便在轻负载条件下  
实现效率和抗噪性平衡。可与外部时钟同步开关频率。  
TPS61379-Q1 使用内部时钟展频在 FPWM 模式下提  
EMI 友好性。此外还有内部软启动时间来限制浪  
涌电流。  
• 避AM 频带干扰和串扰  
– 动态可编程开关频率200kHz 2.2MHz  
– 扩频调频  
– 可选的时钟同步  
TPS61379-Q1 有各种固定输出电压版本可节省外部  
反馈电阻器。它支持外部环路补偿更广泛的  
VOUT/VIN 范围内优化稳定性和瞬态响应。它还集成了  
稳健的保护特性包括输出短路保护、输出过压保护和  
热关断保护。TPS61379-Q1 采用具有可湿性侧面的  
3mm × 3mm 16 QFN 封装。  
• 尽量减小解决方案尺寸用于空间受限型应用  
– 集成LS/HS/ISO FETRDS(ON) 50mΩ/  
50mΩ/100mΩ  
– 支持高2.2MHzL-C 较小  
• 尽量减少轻负载和空闲状态的电流消耗  
VIN 引脚静态电流25µA  
VIN 引脚关断电流0.5µA  
– 可选择自PFM 和强PWM 模式  
– 关断期间或出现故障时真正负载断开连接  
• 集成型保护特性  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS61379-Q1  
VQFN-16  
3.0mm × 3.0mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 支持接VOUT 运行电压VIN  
– 输入欠压锁定和输出过压保护  
– 断续输出短路保护  
VIN  
L1  
SW  
PG  
– 电源正常状态指示器  
C2  
R1  
VCC  
165°C 的热关断保护限制  
0.25A 负载条件下进3.3V 9V 转换时效率高于  
90%  
BST  
VIN  
C6  
OUT  
VO  
C1  
C3  
TPS61379-Q1  
EN  
VOUT  
FREQ  
2 应用  
R3  
R6  
R4  
COMP  
FB  
C4  
R2  
C5  
高级驾驶辅助系(ADAS)  
汽车信息娱乐系统与仪表组  
车身电子装置和照明  
紧急呼(eCall)  
NC  
MODE/SYNC  
GND  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFJ0  
 
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................13  
9 Application and Implementation..................................15  
9.1 Application Information............................................. 15  
9.2 Typical Application.................................................... 15  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 25  
12 Device and Documentation Support..........................26  
12.1 Device Support....................................................... 26  
12.2 接收文档更新通知................................................... 26  
12.3 支持资源..................................................................26  
12.4 Trademarks.............................................................26  
12.5 术语表..................................................................... 26  
12.6 静电放电警告.......................................................... 26  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings ....................................... 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions ........................5  
7.4 Thermal Information ...................................................5  
7.5 Electrical Characteristics ............................................6  
7.6 Typical Characteristics................................................8  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagrams....................................... 11  
8.3 Feature Description...................................................11  
Information.................................................................... 26  
4 Revision History  
Changes from Revision A (June 2021) to Revision B (October 2021)  
Page  
Replaced the operating ambient temperature with the operating junction temperature and added table note in  
7.3 ................................................................................................................................................................. 5  
Updated 8.3.12 ............................................................................................................................................13  
Updated 9-2 ................................................................................................................................................ 19  
Changes from Revision * (March 2021) to Revision A (June 2021)  
Page  
Updated resistor from FB to GND values........................................................................................................... 3  
Updated voltage reference specifications...........................................................................................................6  
Updated 9.2.2.1 ...........................................................................................................................................15  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
5 Device Comparison Table  
PART NUMBER  
OUTPUT VOLTAGE (V)  
RESISTOR FROM FB TO GND (RFB_LOW  
0RFB_LOW 2.4 kΩ  
)
SPREAD SPECTRUM  
5
5.25  
3.6kRFB_LOW 4.8 kΩ  
7.2kRFB_LOW 9.6kΩ  
14.4kRFB_LOW 100kΩ  
TPS61379-Q1  
Enable  
5.5  
Adjustable  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS61379-Q1  
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
16  
15  
14  
13  
1
VIN  
NC  
PG  
12  
BST  
2
11  
10  
9
Exposed  
Thermal Pad  
3
4
SW  
SW  
OUT  
VO  
8
5
7
6
6-1. 16-Pin WQFN RTE Package (Transparent Top View)  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
VIN  
1
I
I
IC power supply input  
Power supply for high-side N-MOSFET gate drivers. A capacitor must be connected  
between this pin and SW pin.  
BST  
SW  
2
The switching node pin of the converter. It is connected to the drain of the internal low-side  
FET and the source of the high-side FET.  
3, 4  
PWR  
Mode selection pin. MODE = high, forced PWM mode. MODE = low or floating, auto PFM  
mode. This pin can also be used to synchronize the external clock. Refer to 8-1 for  
details.  
MODE/SYNC  
VCC  
5
6
I
Output of internal regulator. A ceramic capacitor with more than 1 μF must be connected  
between this pin and GND.  
O
GND  
VO  
7, 8  
9
PWR  
PWR  
Power ground of the IC. It is connected to the source of the low-side FET.  
Output of the isolation FET. Connect load to this pin to achieve input/output isolation.  
Output of the drain of the HS FET. Connect this pin as the output can disable the load  
disconnect/short protection feature (or short this pin with VO pin).  
OUT  
10  
PWR  
PG  
NC  
11  
12  
O
I
Power good indicator, open-drain output  
No connection pin  
Feedback pin. Use a resistor divider to set the desired output voltage. Refer to 9.2.2.1 for  
details.  
FB  
13  
I
Output of the internal transconductance error amplifier. An external RC network is connected  
to this pin to optimize the loop stability and response time.  
COMP  
EN  
14  
15  
16  
-
I
I
I
-
Enable logic input  
Frequency setting pin. Connect a resistor between this pin and GND pin to set the desired  
frequency.  
FREQ  
Thermal Pad  
The thermal pad must be connected to power ground plane for good power dissipation.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.3  
MAX  
16  
UNIT  
V
Voltage range at terminals (2)  
Voltage range at terminals (2)  
VIN  
VO, SW, OUT  
23  
V
0.3  
0.3  
0.3  
-0.3  
BST  
SW + 6  
6
V
MODE/SYNC, FB, FREQ, ILIM, VCC, COMP, EN  
PG  
V
20  
V
(3)  
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
40  
65  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal.  
(3) High junction temperatures degrade operating lifetime. Operating lifetime is de-rated for junction temperatures greater than 125°C  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per AEC Q100-002(2)  
Charged-device model (CDM), per AEC Q100-011(3)  
All pins  
Corner  
pins (1,  
4, 5, 8, 9,  
12, 13,  
and16)  
(1)  
V(ESD)  
Electrostatic discharge  
V
±750  
(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges  
in to the device.  
(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows  
safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary  
precautions.  
(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe  
manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary  
precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.3  
NOM  
MAX  
14  
UNIT  
V
VIN  
VOUT  
TJ  
Input voltage  
Outputvoltage  
4
18.5  
150  
V
Operating junction temperature(1)  
°C  
40  
(1) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.4 Thermal Information  
TPS61379-Q1  
THERMAL METRIC(1)  
RTE  
16 PINS  
46.2  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
43.5  
18.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.1  
18.5  
ψJB  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS61379-Q1  
 
 
 
 
 
 
 
 
 
 
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
7.4 Thermal Information (continued)  
TPS61379-Q1  
RTE  
THERMAL METRIC(1)  
UNIT  
16 PINS  
8.8  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
7.5 Electrical Characteristics  
TJ = -40 to 125°C, L = 1 µH, VIN = 3.3 V and VOUT = 9 V (VO pin). Typical values are at TJ = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER SUPPLY  
VIN  
Input voltage range  
2.3  
14  
2.3  
2.2  
V
V
VIN rising  
VIN falling  
2.2  
2.04  
160  
2.2  
VIN_UVLO  
VIN under voltage lockout threshold  
V
VIN_HYS  
VCC_UVLO  
VCC_HYS  
VCC  
VIN UVLO hysteresis  
VCC UVLO threshold  
VCC UVLO hysteresis  
VCC regulation  
mV  
V
VCC rising  
VCC hysteresis  
150  
4.8  
mV  
V
IVCC = 6 mA, VOUT = 9V  
IC enabled, no load,  
VIN = 3.3 V, VOUT = 18.5 V, VFB = VREF  
0.1 V  
IQ  
Quiescent current into VIN pin  
Quiescent current into OUT pin  
+
+
25  
35  
20  
µA  
µA  
IC enabled, no load,  
VIN = 3.3 V, VOUT = 18.5 V, VFB = VREF  
0.1 V  
IQ  
10  
ISD  
Shutdown current into VIN pin  
Leakage current into SW  
IC disabled, VIN = 14 V, EN = GND  
IC disabled, VIN = OUT = SW = 14 V  
IC disabled, OUT= VO = 5 V, SW = 0  
0.6  
5
5
5
µA  
µA  
µA  
ISW_LKG  
IVO_LKG  
Reverse leakage current into VO  
OUTPUT VOLTAGE  
VOVP  
Output over-voltage protection threshold  
VIN = 3.3 V, VOUT rising  
19.3  
20  
20.5  
V
V
VOVP_HYS  
Output over-voltage protection hysteresis VIN = 3.3 V, OVP threshold  
0.5  
VOLTAGE REFERENCE  
VREF  
Reference Voltage at FB pin  
0.788  
4.85  
5.10  
5.35  
0.800  
5.00  
5.25  
5.50  
0.812  
5.15  
5.35  
5.65  
50  
V
V
TJ = -40 to 125°C, RFB = 16.0 k  
TJ = -40 to 125°C, RFB = 2.0 kΩ  
TJ = -40 to 125°C, RFB = 4.0 kΩ  
TJ = -40 to 125°C, RFB = 8.0 kΩ  
VOUT_5V  
VOUT_5.25V  
VOUT_5.5V  
IFB_LKG  
V
V
Leakage current into FB pin  
nA  
POWER SWITCH  
RDS(on)  
RDS(on)  
RDS(on)  
Low-side MOSFET on resistance  
VCC = 4.85 V  
VCC = 4.85 V  
VCC = 4.85 V  
50  
50  
mΩ  
mΩ  
mΩ  
High-side MOSFET on resistance  
Isolation MOSFET on resistance  
100  
CURRENT LIMIT  
ILIM_SW Peak switching current limit Auto PFM  
ILIM_SW Peak switching current limit FPWM  
SWITCHING FREQUENCY  
Duty cycle = 65%  
Duty cycle = 65%  
1.58  
1.58  
2
2
2.25  
2.25  
A
A
Fsw  
Switching frequency  
2050  
180  
78  
2200  
200  
2400  
230  
kHz  
kHz  
%
RFREQ = 18 kΩ  
RFREQ = 218 kΩ  
RFREQ = 18 kΩ  
Fsw  
Switching frequency  
Maximum Duty Cycle  
Minimal on time  
Dmax  
tON_min  
FDITHER  
Fpattern  
70  
10%  
0.4%  
ns  
Fsw  
Fsw  
ERROR AMPLIFIER  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = -40 to 125°C, L = 1 µH, VIN = 3.3 V and VOUT = 9 V (VO pin). Typical values are at TJ = 25°C, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
uA  
uA  
V
ISINK  
COMP pin sink current  
VFB = VREF + 0.2V  
6
ISOURCE  
VCCLPH  
VCCLPL  
GmEA  
COMP pin source current  
COMP pin high clamp voltage  
COMP pin low clamp voltage  
Error amplifier trans conductance  
VFB = VREF - 0.2V  
6
VFB = VREF - 0.2 V, ILIM = 2 A  
VFB = VREF + 0.2 V,  
VCOMP = 1.0 V  
1
0.6  
70  
V
uS  
POWER GOOD  
VPG_TH  
PG threhold for rising FB voltage  
Reference to VREF  
Reference to VREF  
VPG = 0.4 V  
90%  
5%  
20  
VPG_HYS  
PG hysteresis  
IPG_SINK  
PG pin sink current capability  
PG delay time  
mA  
ms  
tPG_DELAY  
DOWN MODE  
2.5  
3.4  
4.3  
Delay time between EN high and device  
working  
tEN_DELAY  
0.4  
ms  
tSS  
Softstart time  
Hiccup on time  
Hiccup off time  
2.5  
1.8  
67  
ms  
ms  
ms  
tHCP_ON  
tHCP_OFF  
SYNC TIMING  
fSYNC_MIN  
fSYNC_MAX  
200  
kHz  
kHz  
2200  
EN/SYNC LOGIC  
EN, MODE/SYNC pins Logic high  
threshold  
VIH  
1.2  
V
V
EN, MODE/SYNC pins Logic Low  
threshold  
VIL  
0.4  
EN, MODE/SYNC pins internal pull down  
resistor  
RDOWN  
800  
kΩ  
THERMAL SHUTDOWN  
tSD_R Thermal shutdown rising threshold  
tSD_F Thermal shutdown falling threshold  
TJ rising  
TJ falling  
165  
145  
°C  
°C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS61379-Q1  
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
7.6 Typical Characteristics  
VIN = 3.3 V, VOUT = 9 V (VO pin), TA = 25°C, Fsw = 2.2 MHz, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vin = 2.7 V  
Vin = 3.3 V  
Vin = 5 V  
Vin = 2.7 V  
Vin = 3.3 V  
Vin = 5 V  
1E-5 2E-5  
0.0001  
0.001  
0.005  
0.02 0.05 0.1 0.2  
0.5  
1E-5 2E-5  
0.0001  
0.001  
0.005  
0.02 0.05 0.1 0.2  
0.5  
Output Current (A)  
Output Current (A)  
VOUT = 9 V  
Auto PFM  
Fsw = 2.2 MHz  
VOUT = 9 V  
FPWM  
Fsw = 2.2 MHz  
7-1. 9 VOUT Efficiency vs Output Current  
7-2. 9 VOUT Efficiency vs Output Current  
8.97  
8.96  
8.95  
8.94  
8.93  
8.92  
8.91  
8.9  
30  
Vin = 2.7 V  
Vin = 3.3 V  
Vin = 5 V  
TJ = -40 °C  
TJ = 25 °C  
TJ = 125 °C  
28  
26  
24  
22  
20  
0.0001  
0.0005  
0.002 0.005 0.01 0.02  
0.05 0.1  
0.2 0.3 0.5  
2.3  
2.6  
2.9  
3.2  
3.5  
3.8  
4.1  
4.4  
4.7  
5
Output Current (A)  
Input Voltage (V)  
D001  
VOUT = 9 V  
Auto PFM  
Fsw = 2.2 MHz  
7-3. 9 VOUT Regulation vs Output Current  
7-4. Quiescent Current into VIN vs Input Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5
TJ = -40 °C  
TJ = 25 °C  
TJ = 125 °C  
5V Output (V)  
5.238V Output (V)  
5.5V Output (V)  
4.9  
-40  
2.3  
2.6  
2.9  
3.2  
3.5  
3.8  
4.1  
4.4  
4.7  
5
-20  
0
20  
40  
60  
80  
100  
120  
140  
Input Voltage (V)  
D002  
Temperature (°C)  
D014  
7-5. Shutdown Current vs Input Voltage  
7-6. Fixed Output Voltage vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
0.805  
0.804  
0.803  
0.802  
0.801  
0.8  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
0.799  
0.798  
0.797  
0.796  
0.795  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
0
25  
50  
75  
100  
125  
150  
175  
200  
225  
Temperature (°C)  
Resistor (kW)  
D003  
D005  
7-7. Reference Voltage vs Temperature  
7-8. Switching Frequency vs Setting Resistance  
2.3  
2.2  
2.1  
2
1.2  
Rising  
Falling  
Rising  
Falling  
1.1  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
Temperature (°C)  
D010  
D011  
7-9. VIN UVLO Threshold Voltage vs Temperature  
7-10. EN Threshold Voltage vs Temperature  
3.5  
150  
140  
130  
120  
110  
100  
90  
Low Side FET (mW)  
High Side FET (mW)  
Isolation FET (mW)  
3.475  
3.45  
3.425  
3.4  
80  
70  
60  
50  
40  
30  
20  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Temperature (°C)  
Temperature (°C)  
D012  
D013  
7-11. PG Delay Time vs Temperature  
7-12. RDSON vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS61379-Q1  
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS61379-Q1 is a fully integrated synchronous boost converter with load disconnect function. It supports  
output voltage up to 18.5 V with a maximum 2-A fixed switching peak current limit. The input voltage ranges from  
2.3 V to 14 V while consuming 25-µA quiescent current.  
The device utilizes the fixed frequency peak current control scheme, which has an internal oscillator and  
supports adjustable switching frequency from 200 kHz to 2.2 MHz.  
The device operates with fixed frequency pulse width modulation (PWM) from medium to heavy load. At the  
beginning of each switching cycle, the low-side N-MOSFET switch is turned on, and the inductor current ramps  
up to a peak current that is determined by the output of the internal error amplifier (EA). Once the switching peak  
current triggers the output of the EA, the low-side N-MOSFET is turned off and the high-side N-MOSFET is  
turned on after a short dead time. The high-side N-MOSFET switch is not turned off until the next cycle as  
determined by the internal oscillator. The low-side switch turns on again after a short dead time and the  
switching cycle is repeated.  
The TPS61379-Q1 provides either Auto PFM or Forced PWM option for light load operation by configuring the  
MODE/SYNC pin. In Forced PWM mode, the switching frequency remains constant across the entire load range,  
which helps avoid the frequency variation with load. The internal oscillator can be synchronized to an external  
clock applied on the MODE / SYNC pin. Spread spectrum modulation of the frequency in Forced PWM mode  
helps optimize the EMI performance for automotive applications. In Auto PFM mode, the switching frequency  
can decrease, resulting in higher efficiency.  
The device implements a cycle-by-cycle current limit to protect the device from overload during the boost  
operation phase. If the output current further increases and triggers the output voltage to fall below the input  
voltage, the TPS61379-Q1 enters into hiccup mode short protection.  
There is a built-in soft-start time that prevents the inrush current during the start-up. The TPS61379-Q1 also  
provides a power good (PG) indicator to enable the power sequence control for start-up.  
The TPS61379-Q1 also has a number of protection features including output short protection, output overvoltage  
protection (OVP), and thermal shutdown protection (OTP).  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
8.2 Functional Block Diagrams  
L1  
VIN  
C1  
C3  
C2  
OUT  
BST  
SW  
VIN  
OUT  
VCC  
VO  
VOUT  
1/K  
Logic  
HS  
BST  
SW  
ULVO  
LDO  
& BIAS  
EN  
C4  
COMP  
VUVLO  
Fixed  
Output  
OVP  
SCP  
ISO  
LS  
VCC  
OTP  
Soft  
Start  
VCC  
MODE  
C6  
COMP  
CLIM  
Slope Compensation  
R6  
R1  
COMP  
Vref  
Gm  
PG  
FB  
VO Voltage  
SELECT  
PGOOD  
VOVP  
R4  
COMP  
COMP  
OVP  
OTP  
1/N  
VOUT  
Dithering  
OSC  
SYNC  
MODE  
FREQ  
VOTP  
Temp  
R3  
GND  
COMP  
R2  
MODE/  
SYNC  
NC  
C5  
8.3 Feature Description  
8.3.1 VCC Power Supply  
The internal LDO in the TPS61379-Q1 outputs a regulated voltage of 4.8 V with 10-mA output current capability.  
A ceramic capacitor is connected between the VCC pin and GND pin to stabilize the VCC voltage and also  
decouple the noise on the VCC pin. The value of this ceramic capacitor must be above 1 µF. A ceramic capacitor  
with an X7R or X5R grade dielectric with a voltage rating higher than 10 V is recommended.  
8.3.2 Input Undervoltage Lockout (UVLO)  
An undervoltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below  
the UVLO threshold of 2.04 V (typical). A hysteresis of 160 mV (typical) is added so that the device cannot be  
enabled again until the input voltage exceeds 2.2 V (typical). This function is implemented to prevent  
malfunctioning of the device when the input voltage is between 2.04 V and 2.2 V.  
8.3.3 Enable and Soft Start  
When the input voltage is above the UVLO threshold and the EN pin is pulled above 1.2 V, the TPS61379-Q1 is  
enabled. The TPS61379-Q1 starts to monitor the FB pin. With a typical 400-µs delay time after EN is pulled high,  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS61379-Q1  
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
the TPS61379-Q1 starts switching. There is an internal built-in start-up time, which is typically 2.5 ms, to limit the  
inrush current during start-up.  
8.3.4 Shut Down  
When the input voltage is below the UVLO threshold or the EN pin is pulled low, the TPS61379-Q1 is in  
shutdown mode and all the functions are disabled. The input voltage is isolated from the output to minimize the  
leakage currents.  
8.3.5 Switching Frequency Setting  
The TPS61379-Q1 uses a fixed frequency control scheme. The switching frequency can be programmed  
between 200 kHz and 2.2 MHz using a resistor from the FREQ pin to GND. The resistor must be connected  
when the oscillator is synchronized by an external clock. The resistance is defined by 方程1.  
41.9  
(59 (/*V) =  
:
;
4(4'3 GÀ + 1.05  
(1)  
where  
RFREQ is the resistance between the FREQ pin and the GND pin  
For instance, the switching frequency is 2.2 MHz if the resistance between the FREQ pin and GND is 18 k.  
This pin cannot be left floating or tied to VCC.  
8.3.6 Spread Spectrum Frequency Modulation  
The TPS61379-Q1 uses a triangle waveform to spread the switching frequency with ±10% of normal frequency.  
The frequency of the triangle waveform is typically 0.4% of the switching frequency. For example, if the normal  
switching frequency of TPS61379-Q1 is programmed to 2.2 MHz, the spread spectrum function modulates the  
switching frequency in the range of 1.98 MHz to 2.42 MHz in a triangle behavior with 8.8 kHz rate.  
The spread spectrum is only available while the clock of the TPS61379-Q1 is free running at its natural  
frequency. Any of the following conditions overrides spread spectrum, turning it off:  
An external clock is applied to the MODE/SYNC pin.  
The device works in the PFM operation at light load.  
8.3.7 Bootstrap  
The TPS61379-Q1 has an integrated bootstrap regulator circuit. A small ceramic capacitor is needed between  
the BST pin and SW pin to provide the gate drive supply voltage for the high-side switches. The bootstrap  
capacitor is charged during the time when the low-side switch is in the ON state. The value of this ceramic  
capacitor must be above 0.1 µF. A ceramic capacitor with an X7R or X5R grade dielectric with a voltage rating  
higher than 6.3 V is recommended.  
8.3.8 Load Disconnect  
The TPS61379-Q1 integrates a load disconnect function when the input source is DC, which completely cuts off  
the path between the input side and the output side during shutdown.  
The output disconnect function also allows the output short protection and minimize the inrush current at start-  
up.  
8.3.9 MODE/SYNC Configuration  
8-1 summarizes the MODE/SYNC function and the entry condition.  
8-1. MODE/SYNC Configuration  
MODE/SYNC PIN CONFIGURATION  
Logic Low or Floating  
MODE  
Auto PFM Mode  
Forced PWM Mode  
Forced PWM Mode  
Logic High  
External Synchronization  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
The TPS61379-Q1 can be synchronized to an external clock applied to the MODE / SYNC pin.  
8.3.10 Overvoltage Protection (OVP)  
If the output voltage exceeds the OVP threshold (typical 20 V), the TPS61379-Q1 stops switching immediately  
until the output voltage drops below the recovery threshold (typical 19.5 V). This function protects the device  
against excessive voltage.  
8.3.11 Output Short Protection/Hiccup  
In addition to the cycle-by-cycle current limit function, the TPS61379-Q1 also has output short protection. If the  
output current causes low-side FET to reach current limit and pull the output voltage below the input voltage, the  
device enters into short circuit protection mode which triggers the hiccup timer. When the hiccup timer is  
triggered, the device limits the current to a relative lower level for 1.8 ms, and then shuts down. After 67 ms, it  
restarts. If the short condition disappears, the device automatically restarts.  
When FB voltage is below 0.1 V during fault condition, the current limit threshold is reduced to 1/5 of the  
programmed current limit, and frequency is clamped to 1.1 MHz if the FREQ pin setting is greater than 1.1 MHz  
and VIN and VO voltage delta is greater than 6 V.  
8.3.12 Power-Good Indicator  
The TPS61379-Q1 integrates a power-good function. The power-good output consists of an open-drain NMOS,  
requiring an external pullup resistor connect to a suitable voltage supply like VCC. The PG pin goes high with a  
typical 3.4-ms delay time after VOUT reaches 90% of the target output voltage. When the output voltage drops  
below 85% of the target output voltage, the PG pin immediately goes low without delay.  
8.3.13 Thermal Shutdown  
A thermal shutdown is implemented to prevent damage due to the excessive heat and power dissipation.  
Typically, the thermal shutdown occurs at the junction temperature exceeding 165°C. When the thermal  
shutdown is triggered, the device stops switching and recovers when the junction temperature falls below 145°C  
(typical).  
8.4 Device Functional Modes  
8.4.1 Forced PWM Mode  
The TPS61379-Q1 enters forced PWM mode by pulling the MODE/SYNC pin to logic high for more than five  
switching cycles. In forced PWM mode, the TPS61379-Q1 keeps the switching frequency constant at light load  
condition. When the load current decreases, the output of the internal error amplifier also decreases to keep the  
inductor peak current down. When the output current decreases further, the high-side switch is not turned off  
even if the current of the high-side switch goes negative to keep the frequency constant.  
8.4.2 Auto PFM Mode  
The TPS61379-Q1 enters auto PFM mode by pulling the MODE/SYNC pin to logic low for more than five  
switching cycles or leave the pin floating. The TPS61379-Q1 improves the efficiency at light load when operating  
in PFM mode. When the output current decreases to a certain level, the output voltage of the error amplifier is  
clamped by the internal circuit. If the output current reduces further, the inductor current through the high-side  
switch is clamped but not further lowered. Pulses are skipped to improve the efficiency at light load.  
8.4.3 External Clock Synchronization  
The TPS61379-Q1 supports external clock synchronization with a range of 200 kHz to 2.2 MHz. The TPS61379-  
Q1 remains in the forced PWM mode and operates in CCM across the entire load range if the oscillator is  
synchronized by an external clock. Spread spectrum feature is disabled when external synchronization is used.  
8.4.4 Down Mode  
The TPS61379-Q1 features Down mode operation when input voltage is close to or higher than output voltage.  
In Down mode, output voltage is regulated at target value even when VIN > VO. The high-side and low-side FETs  
of the TPS61379-Q1 are switching devices that always work in boost operation, where the isolation FET always  
works as a linear device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS61379-Q1  
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
For boost circuits, on time or duty cycle is reduced as input voltage approaches output voltage. The TPS61379-  
Q1 enters Down mode when VIN reaches 85% (typical) of VO voltage at 2.2 MHz; while exiting Down mode  
requires VIN to be reduced below 85% (typical) of VO voltage at 2.2 MHz.  
In normal operation, isolation FET is fully on.  
When Down mode is triggered and VIN is less than VO pin voltage, the OUT pin has a fixed 2 V (typical) above  
VO pin voltage. Isolation FET works in LDO mode to regulate VO pin voltage with a 2-V constant voltage drop.  
When Down mode is triggered and VIN is 100 mV (typical) higher than VO pin voltage, the OUT pin has an  
approximated 3 V (typical) above VIN pin voltage, as VIN keeps rising, the OUT pin continues to raise with 3 V on  
top of VIN, isolation FET works in LDO mode to regulate VO pin voltage with a voltage differential of OUT pin and  
VO pin.  
Refer to 8-1.  
Vin > Vo  
Vin < Vo  
Down Mode  
Entering  
Threshold  
Down Mode  
Exiting  
Threshold  
Voltage  
OUT  
VO  
VIN  
T
8-1. Down Mode  
Care should be taken during short-to-ground condition when operation VIN is above 6 V. During hiccup on, the  
device operates in Down mode and isolation FET voltage drop is VIN + 3 V (OUT pin to VO pin).  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS61379-Q1 is a 25-µA quiescent current boost converter that supports 2.3-V to 14-V input voltage range.  
It also supports load disconnect to minimize the leakage current. The following design procedure can be used to  
select component values for the TPS61379-Q1.  
9.2 Typical Application  
VIN  
L1  
SW  
PG  
C2  
R1  
VCC  
OUT  
BST  
VIN  
C6  
C1  
C3  
TPS61379-Q1  
EN  
VOUT  
VO  
FREQ  
R3  
R6  
R4  
COMP  
FB  
C4  
R2  
C5  
NC  
MODE/SYNC  
GND  
9-1. Typical Application  
9.2.1 Design Requirements  
A typical application example is dual cameras powered through a coax cable, which normally requires 9.0-V  
output as its bias voltage and consumes less than 200-mA current per camera. 250-mA load current is designed  
to provide margin. The following design procedure can be used to select external component values for the  
TPS61379-Q1.  
9-1. Design Requirements  
PARAMETERS  
Input voltage  
VALUES  
3.3 V to 6.4 V  
9.0 V  
Output voltage  
Switching frequency  
Output current  
2.2 MHz  
250 mA  
Output voltage ripple  
± 25 mV  
9.2.2 Detailed Design Procedure  
9.2.2.1 Programming the Output Voltage  
There are two ways to set the output voltage of the TPS61379-Q1: adjustable or fixed. If the resistance between  
FB and GND is higher than 14.4kΩ and less than 100kΩ during start-up, the TPS61379-Q1 works as an  
adjustable output version. The FB pin is connected to the negative input of the internal error amplifier directly.  
The output voltage can be programmed by adjusting the external resistor divider RUpper and RLower according to  
方程2. When the output voltage is in well regulation, the typical voltage at the FB pin is VREF of 0.8 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS61379-Q1  
 
 
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
(47LLAN + 4.KSAN  
)
8176 = 84'(  
×
4.KSAN  
(2)  
For some applications where the resistor needs to be as low as possible, the low-side divider can be 20 kΩ. The  
reference voltage is 0.8 V, the high-side divider is 205 kΩfor 9-V output voltage.  
For other applications without specific requirements on divider resistance, the user can choose RLower to be  
approximately 80.6 kΩ. Slightly increasing or decreasing RLower can result in closer output voltage matching  
when using standard values resistors.  
For the best accuracy, RLower is recommended to be smaller than 100 kΩ to ensure that the current following  
through RLower is at least 100 times larger than FB pin leakage current. Changing RLower towards the lower value  
increases the robustness against noise injection. Changing the RLower to higher values reduces the quiescent  
current for achieving higher efficiency at light load.  
If the resistance between FB and GND is less than 9.6kΩ during start-up, the TPS61379-Q1 works as a fixed  
output voltage version. The TPS61379-Q1 uses the internal resistor divider.  
For 5-V fixed output voltage, RLower is between 0Ωand 2.4kΩand RUpper should be removed.  
For 5.25-V fixed output voltage, RLower is between 3.6kΩand 4.8 kΩand RUpper should be removed.  
For 5.5-V fixed output voltage, RLower is between 7.2kΩand 9.6kΩand RUpper should be removed.  
9.2.2.2 Setting the Switching Frequency  
The switching frequency of the TPS61379-Q1 is set at 2.2 MHz. Use 方程式 1 to calculate the required resistor  
value. The calculated value is 18 kΩto get the frequency of 2.2 MHz.  
9.2.2.3 Selecting the Inductor  
A boost converter normally requires two main passive components for storing the energy during the power  
conversion: an inductor and an output capacitor. The inductor affects the steady state efficiency (including the  
ripple and efficiency) as well as the transient behavior and loop stability, which makes the inductor the most  
critical component in application.  
When selecting the inductor, as well as the inductance, the other important parameters are:  
The maximum current rating (RMS and peak current must be considered)  
The series resistance  
Operating temperature  
The TPS61379-Q1 has built-in slope compensation to avoid subharmonic oscillation associated with the current  
mode control. If the inductor value is too low and makes the inductor peak-to-peak ripple higher than 2 A, the  
slope compensation may not be adequate, and the loop can be unstable. Therefore, it is recommended to make  
the peak-to-peak current ripple between 800 mA to 2 A when selecting the inductor.  
The inductance can be calculated by 方程3, 方程4, and 方程5:  
V
IN ´ D  
DIL =  
L ´ fSW  
(3)  
(4)  
(5)  
VOUT ´ IOUT  
DIL _R = Ripple% ´  
h ´ V  
IN  
h ´ V  
´
Ripple % VOUT ´ IOUT  
V ´ D  
IN  
1
IN  
L =  
´
ƒSW  
where  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
 
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
• ΔIL is the peak-peak inductor current ripple  
VIN is the input voltage  
D is the duty cycle  
L is the inductor  
• ƒSW is the switching frequency  
Ripple % is the ripple ration versus the DC current  
VOUT is the output voltage  
IOUT is the output current  
ηis the efficiency  
The current flowing through the inductor is the inductor ripple current plus the average input current. During  
power up, load faults, or transient load conditions, the inductor current can increase above the peak inductor  
current calculated.  
Inductor values can have ±20% or even ±30% tolerance with no current bias. When the inductor current  
approaches the saturation level, its inductance can decrease 20% to 35% from the value at 0-A bias current  
depending on how the inductor vendor defines saturation. When selecting an inductor, make sure its rated  
current, especially the saturation current, is larger than its peak current during the operation.  
The inductor peak current varies as a function of the load, the switching frequency, the input and output voltages  
and it can be calculated by 方程6 and 方程7.  
1
IPEAK = I  
+
´ DIL  
IN  
2
(6)  
where  
IPEAK is the peak current of the inductor  
IIN is the input average current  
• ΔIL is the ripple current of the inductor  
The input DC current is determined by the output voltage, the output current can be calculated by:  
VOUT ´ IOUT  
I
=
IN  
VIN ´ h  
(7)  
where  
IIN is the input current of the inductor  
VOUT is the output voltage  
VIN is the input voltage  
ηis the efficiency  
While the inductor ripple current depends on the inductance, the frequency, the input voltage, and duty cycle are  
calculated by 方程3. Replace 方程3 and 方程7 into 方程6 and get the inductor peak current:  
IOUT  
VIN ´ D  
1
2
IPEAK  
=
+
´
(1- D) ´ h  
L ´ fSW  
(8)  
where  
IPEAK is the peak current of the inductor  
IOUT is the output current  
D is the duty cycle  
ηis the efficiency  
VIN is the input voltage  
L is the inductor  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS61379-Q1  
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
• ƒSW is the switching frequency  
The heat rating current (RMS) is as below:  
1
(DIL )2  
2
IL _RMS = I  
+
IN  
12  
(9)  
where  
IL_RMS is the RMS current of the inductor  
IIN is the input current of the inductor  
• ΔIL is the ripple current of the inductor  
It is important that the peak current does not exceed the inductor saturation current and the RMS current is not  
over the temperature related rating current of the inductors.  
For a given physical inductor size, increasing inductance usually results in an inductor with lower saturation  
current. The total losses of the coil consists of the DC resistance (DCR) loss and the following frequency  
dependent loss:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
For a certain inductor, the larger current ripple (smaller inductor) generates the higher DC and also the  
frequency-dependent loss. An inductor with lower DCR is basically recommended for higher efficiency. However,  
it is usually a tradeoff between the loss and foot print. 9-2 lists some recommended inductors.  
9-2. Recommended Inductors  
DCR TYP  
(mΩ) MAX  
SATURATION  
CURRENT (A)  
PART NUMBER  
SIZE (L × W × H mm)  
VENDOR(1)  
L (μH)  
XGL3515-451ME  
XGL3515-102ME  
0.45  
1
8.2  
18.5  
19  
3.2  
2.2  
4.9  
4.7  
3.5 × 3.2 × 1.5  
3.5 × 3.2 × 1.5  
3.2 × 2.5 × 1.2  
3.2 × 2.5 × 1.2  
Coilcraft  
Coilcraft  
TDK  
TFM252012ALMAR47MTAA  
TFM252012ALMA1R0MTAA  
0.47  
1
35  
TDK  
(1) See Third-party Products Disclaimer  
9.2.2.4 Selecting the Output Capacitors  
The output capacitor is mainly selected to meet the requirements at load transient or steady state. Then the loop  
is compensated for the output capacitor selected. The output ripple voltage is related to the equivalent series  
resistance (ESR) of the capacitor and its capacitance. Assuming a capacitor with zero ESR, the minimum  
capacitance needed for a given ripple can be calculated by 方程10:  
IOUT ´ (VOUT - V )  
IN  
COUT  
=
fSW ´ DV ´ VOUT  
(10)  
where  
COUT is the output capacitor  
IOUT is the output current  
VOUT is the output voltage  
VIN is the input voltage  
• ΔV is the output voltage ripple required  
• ƒSW is the switching frequency  
The additional output ripple component caused by ESR is calculated by 方程11:  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
DVESR = IOUT ´ RESR  
(11)  
where  
• ΔVESR is the output voltage ripple caused by ESR  
RESR is the resistor in series with the output capacitor  
For the ceramic capacitor, the ESR ripple can be neglected. However, for tantalum or electrolytic capacitors, it  
must be considered if used.  
The minimum ceramic output capacitance needed to meet a load transient requirement can be estimated using  
方程12:  
DISTEP  
COUT  
=
2p ´ fBW ´ DVTRAN  
(12)  
where  
• ΔISTEP is the transient load current step  
• ΔVTRAN is the allowed voltage dip for the load current step  
• ƒBW is the control loop bandwidth (that is, the frequency where the control loop gain crosses zero)  
For the output capacitor on the OUT pin, the effective capacitance is recommended between 0.22 μF to 1 μF.  
Care must be taken when evaluating the derating of a ceramic capacitor under the DC bias. Ceramic capacitors  
can derate by as much as 70% of its capacitance at its rated voltage. Therefore, enough margins on the voltage  
rating must be considered to ensure adequate capacitance at the required output voltage.  
9.2.2.5 Selecting the Input Capacitors  
Multilayer ceramic capacitors are an excellent choice for the input decoupling of the step-up converter as they  
have extremely low ESR and are available in small footprints. Input capacitors must be located as close as  
possible to the device. While a 22-µF input capacitor or equivalent is sufficient for the most applications, larger  
values can be used to reduce input current ripple.  
Take care when using only ceramic input capacitors. When a ceramic capacitor is used at the input and the  
power is being supplied through long wires, such as from a wall adapter, a load step at the output can induce  
ringing at the VIN pin. This ringing can couple to the output and be mistaken as loop instability or could even  
damage the part. Additional "bulk" capacitance (electrolytic or tantalum) in this circumstance, must be placed  
between CIN and the power source lead to reduce ringing that can occur between the inductance of the power  
source leads and CIN.  
9.2.2.6 Loop Stability and Compensation  
9.2.2.6.1 Small Signal Model  
The TPS61379-Q1 uses the fixed frequency peak current mode control. There is an internal adaptive slope  
compensation to avoid the subharmonic oscillation. With the inductor current information sensed, the small-  
signal model of the power stage reduces from a two-pole system, created by L and COUT, to a single-pole  
system, created by ROUT and COUT. The single-pole system is easily used with the loop compensation. 9-2  
shows the equivalent small signal elements of a boost converter.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS61379-Q1  
 
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
L
VIN  
VOUT  
CIN  
Q
RESR  
COUT  
ROUT  
RSENSE  
Slope  
Comp  
ISENSE  
VOUT  
RUP  
Q
Q
S
FB  
+
R
GEA  
RDOWN  
VREF  
Cc  
RC  
Cp  
REA  
9-2. TPS61379-Q1 Control Equivalent Circuitry Model  
The small signal of power stage is:  
5
2è × B  
5
2è × B  
(1 +  
)(1 F  
)
4176 × (1 F &)  
2 × 45'05'  
'54  
4*2  
-25 (5) =  
×
5
2è × B  
(1 +  
)
2
(13)  
where  
D is the duty cycle  
ROUT is the output load resistor  
RSENSE is the equivalent internal current sense resistor, which is typically 118 mΩ  
The single pole of the power stage is:  
2
fP =  
2p ´ ROUT ´ COUT  
(14)  
where  
COUT is the output capacitance. For a boost converter having multiple, identical output capacitors in parallel,  
simply combine the capacitors with the equivalent capacitance  
The zero created by the ESR of the output capacitor is:  
1
fESR  
=
2p ´ RESR ´ COUT  
(15)  
where  
RESR is the equivalent resistance in series of the output capacitor  
The right-hand plane zero is:  
ROUT ´ (1- D)2  
=
2p ´ L  
fRHP  
(16)  
where  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
D is the duty cycle  
ROUT is the output load resistor  
L is the inductance  
方程17 shows the equation for feedback resistor network and the error amplifier.  
S
1+  
RDOWN  
2´ p ´ fZ  
HEA(S) = GEA ´REA  
´
´
R
UP + RDOWN  
S
S
(1+  
)´(1+  
)
2´ p ´ fP1  
2´ p ´ fP2  
(17)  
where  
REA is the output impedance of the error amplifier and typical REA = 500 M.  
• ƒP1, ƒP2 is the pole's frequency of the compensation, fZ is the zeros frequency of the compensation network  
1
fP1  
=
2p ´ REA ´ Cc  
(18)  
where  
CC is the zero capacitor compensation  
1
fP2  
=
2p ´ RC ´ CP  
(19)  
where  
CP is the pole capacitor compensation  
RC is the resistor of the compensation network  
1
fZ =  
2p ´RC ´CC  
(20)  
9.2.2.6.2 Loop Compensation Design Steps  
With the small signal models coming out, the next step is to calculate the compensation network parameters with  
the given inductor and output capacitance.  
1. Set the Cross Over Frequency, ƒC.  
The first step is to set the loop crossover frequency, ƒC. The higher crossover frequency, the faster the loop  
response is. It is generally accepted that the loop gain cross over no higher than the lower of either 1/10 of  
the switching frequency, ƒSW, or 1/5 of the RHPZ frequency, ƒRHPZ. Then calculate the loop compensation  
network values of RC, CC, and CP by the following equations.  
2. Set the Compensation Resistor, RC.  
By placing ƒZ below ƒC, for frequencies above ƒC, RC | | REA ~ = RC and so RC × GEA sets the compensation  
gain. Setting the compensation gain, KCOMP-dB, at ƒZ, results in the total loop gain, T(s) = KPS(s) × HEA(s) being  
zero at ƒC.  
Therefore, to approximate a single-pole roll-off up to fP2, rearrange 方程17 to solve for RC so that the  
compensation gain, KEA, at fC is the negative of the gain, KPS, read at frequency fC for the power stage bode  
plot or more simply:  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS61379-Q1  
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
RDOWN  
RUP + RDOWN  
KEA(fC ) = 20 ´ log(GEA ´ RC ´  
) = - KPS(fC)  
(21)  
where  
KEA is gain of the error amplifier network  
KPS is the gain of the power stage  
GEA is the transconductance of the amplifier, the typical value of GEA = 70 µA / V  
3. Set the Compensation Zero capacitor, CC.  
Place the compensation zero at the power stage ROUT ,COUT poles position to get:  
1
fZ =  
2p ´ RC ´ CC  
(22)  
(23)  
Set ƒZ = ƒP, and get  
R
OUT ´COUT  
CC  
=
2RC  
4. Set the Compensation Pole Capacitor, CP.  
Place the compensation pole at the zero produced by the RESR and the COUT. It is useful for canceling  
unhelpful effects of the ESR zero.  
1
fP2  
=
2p ´ RC ´ CP  
(24)  
(25)  
1
fESR  
=
2p ´ RESR ´ COUT  
Set ƒP2 = ƒESR, and get  
RESR ´ COUT  
CP =  
RC  
(26)  
9.2.2.6.3 Selecting the Bootstrap Capacitor  
The bootstrap capacitor between the BST and SW pin supplies the gate current to charge the high-side FET  
device gate during turn-on of each cycle and also supplies charge for the bootstrap capacitor. The  
recommended value of the bootstrap capacitor is 0.1 µF to 1 µF. CBST must be a good quality, low-ESR, ceramic  
capacitor located at the pins of the device to minimize potentially damaging voltage transients caused by trace  
inductance. A value of 0.1 µF was selected for this design example.  
9.2.2.6.4 VCC Capacitor  
The primary purpose of the VCC capacitor is to supply the peak transient currents of the driver and bootstrap  
capacitor as well as provide stability for the VCC regulator. The value of CVCC must be at least 10 times greater  
than the value of CBST, and must be a good quality, low-ESR, ceramic capacitor. CVCC must be placed close to  
the pins of the IC to minimize potentially damaging voltage transients caused by the trace inductance. A value of  
2.2 µF was selected for this design example.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
9.2.3 Application Curves  
SW  
5 V/div  
SW  
5 V/div  
200 ns/div  
200 µs/div  
Inductor  
Current  
500 mA/div  
Inductor  
Current  
500 mA/div  
Vout (AC)  
10 mV/div  
Vout (AC)  
10 mV/div  
9-3. Switching Waveform VIN = 5 V, VOUT = 9 V,  
9-4. Switching Waveform VIN = 5 V, VOUT = 9 V,  
IOUT = 250 mA, FPWM  
IOUT = 0 mA, Auto PFM  
EN  
2 V/div  
Vout (AC)  
100 mV/div  
SW  
5 V/div  
Vout  
5 V/div  
500 µs/div  
Output  
Current  
100 mA/div  
50 µs/div  
Inductor  
Current  
500 mA/div  
9-5. Load Transient VIN = 5 V, VOUT = 9 V, IOUT = 9-6. Start-up from EN Waveform VIN = 5 V, VOUT  
50 mA to 250 mA, FPWM 9 V, IOUT = 250 mA, FPWM  
=
Vout  
5 V/div  
EN  
2 V/div  
SW  
5 V/div  
SW  
5 V/div  
200 µs/div  
Vout  
5 V/div  
20 µ s/div  
Inductor  
Current  
1 A/div  
Inductor  
Current  
500 mA/div  
9-7. Shutdown from EN Waveforms VIN = 5 V,  
9-8. Short Circuit Protection VIN = 5 V, VOUT = 9  
VOUT = 9 V, IOUT = 250 mA, FPWM  
V, FPWM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS61379-Q1  
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
Vout  
5 V/div  
Vout  
2 V/div  
SW  
2 V/div  
SW  
5 V/div  
500 µ s/div  
10 ms/div  
Inductor  
Current  
500 mA/div  
Inductor  
Current  
500 mA/div  
9-9. Short Circuit Recovery VIN = 5 V, VOUT = 9 V, 9-10. Hiccup Short Circuit Protection VIN = 5 V,  
IOUT = 0 mA, FPWM  
VOUT = 9 V, FPWM  
10 Power Supply Recommendations  
The TPS61379-Q1 is designed to operate from an input voltage supply range between 2.3 V to 14 V. This input  
supply must be well regulated. If the input supply is located more than a few inches from the device, the bulk  
capacitance can be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value  
of 47 µF is a typical choice.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design, especially at high peak currents  
and high switching frequencies. If the layout is not carefully done, the regulator can show stability problems as  
well as EMI problems. Therefore, use wide and short traces for the main current path and for the power ground  
paths. The input and output capacitor, as well as the inductor must be placed as close as possible to the IC.  
11.2 Layout Example  
The bottom layer is a large GND plane connected by vias.  
GND  
GND  
VIN  
NC  
BST  
PG  
GND  
SW  
OUT  
VIN  
SW  
VO  
VO  
SW  
GND  
11-1. Recommended Layout  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS61379-Q1  
 
 
 
TPS61379-Q1  
ZHCSNP9B MARCH 2021 REVISED OCTOBER 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS61379-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
26-Jul-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS61379QWRTERQ1  
ACTIVE  
WQFN  
RTE  
16  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 125  
2H1H  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS61379QWRTERQ1  
WQFN  
RTE  
16  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RTE 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TPS61379QWRTERQ1  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016K  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.1 MIN  
(0.13)  
A
-
A
4
0
.
0
0
0
SECTION A-A  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.08  
0.05  
0.00  
1.66 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
5
8
12X 0.5  
4
9
(0.16)  
TYP  
4X  
SYMM  
A
A
17  
1.5  
1
12  
0.30  
0.18  
16X  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4224938/C 03/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016K  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.66)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224938/C 03/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016K  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.51)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
84% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4224938/C 03/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS61390

具有电流镜和采样保持功能且输出电压为 85V 的升压转换器
TI

TPS61390RTER

具有电流镜和采样保持功能且输出电压为 85V 的升压转换器 | RTE | 16 | -40 to 125
TI

TPS61390RTET

具有电流镜和采样保持功能且输出电压为 85V 的升压转换器 | RTE | 16 | -40 to 125
TI

TPS61391

集成电流镜的 85V 输出电压升压转换器
TI

TPS61391RTER

集成电流镜的 85V 输出电压升压转换器 | RTE | 16 | -40 to 125
TI

TPS61391RTET

集成电流镜的 85V 输出电压升压转换器 | RTE | 16 | -40 to 125
TI

TPS614

PHOTO TRANSISTOR SILICON NPN EPITAXIAL PLANAR
TOSHIBA

TPS615

Silicon NPN Epitaxial Planar
TOSHIBA

TPS615(B,F)

Photo Transistor, PHOTO TRANSISTOR DETECTOR, PLASTIC, 0-3D1, 2 PIN
TOSHIBA

TPS615-C

Photo Transistor, PHOTO TRANSISTOR DETECTOR
TOSHIBA

TPS61500

3A Boost Converter for High Brightness LED Driver with Multiple Dimming Methods
TI

TPS61500PWP

3A Boost Converter for High Brightness LED Driver with Multiple Dimming Methods
TI