TPS62000-Q1_16 [TI]

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER;
TPS62000-Q1_16
型号: TPS62000-Q1_16
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

功效 DC-DC转换器
文件: 总26页 (文件大小:1215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER  
1
FEATURES  
High-Efficiency Synchronous Step-Down  
Converter With Greater Than 95% Efficiency  
Low-Noise Operation Antiringing Switch and  
PFM/PWM Operation Mode  
2 V to 5.5 V Operating Input Voltage Range  
Internal Softstart  
Adjustable Output Voltage Range From 0.8 V  
to VI  
50-µA Quiescent Current (TYP)  
Available in the 10-Pin Microsmall Outline  
Package (MSOP)  
Fixed Output Voltage Options Available in  
0.9 V, 1 V, 1.2 V, 1.5 V, 1.8 V, 1.9 V, 2.5 V, and  
3.3 V  
Evaluation Module Available  
Synchronizable to External Clock Signal up to  
1 MHz  
APPLICATIONS  
Low-Power CPUs and DSPs  
Cellular Phones  
Up to 600 mA Output Current  
Organizers, PDAs, and Handheld PCs  
MP-3 Portable Audio Players  
Digital Cameras  
USB-Based DSL Modems and Other Network  
Interface Cards  
Pin-Programmable Current Limit  
High Efficiency Over a Wide Load Current  
Range in Power Save Mode  
100% Maximum Duty Cycle for Lowest  
Dropout  
DESCRIPTION  
The TPS6200x devices are a family of low-noise synchronous step-down dc-dc converters that are ideally suited  
for systems powered from a 1-cell Li-ion battery or from a 2- to 3-cell NiCd, NiMH, or alkaline battery. The  
TPS6200x operates typically down to an input voltage of 1.8 V, with a specified minimum input voltage of 2 V.  
EFFICIENCY  
vs  
LOAD CURRENT  
10 mH  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V = 2 V  
I
1
8
V = 0.8 V  
O
9
5
V
L
FB  
IN  
to 5.5 V  
to V  
I
10 mF  
EN  
TPS6200x  
10 mF  
10  
4
SYNC = Low  
6
7
ILIM  
PGND  
SYNC = High  
SYNC  
GND  
PG  
PG  
FC  
3
2
0.1 mF  
WithVO 1.8 V; C = 10 mF, V <1.8 V; C = 47 mF  
o
o
O
V = 3.6 V,  
I
V
O
= 2.5 V  
0.1  
1
10  
100  
1000  
I
O
− Load Current − mA  
Figure 1.  
Figure 2. Typical Application Circuit for Fixed Output  
Voltage Option  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2000–2008, Texas Instruments Incorporated  
 
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
DESCRIPTION (CONTINUED)  
The TPS6200x is a synchronous current-mode PWM converter with integrated – and P-channel power MOSFET  
switches. Synchronous rectification is used to increase efficiency and to reduce external component count. To  
achieve the highest efficiency over a wide load current range, the converter enters a power-saving  
pulse-frequency modulation (PFM) mode at light load currents. Operating frequency is typically 750 kHz, allowing  
the use of small inductor and capacitor values. The device can be synchronized to an external clock signal in the  
range of 500 kHz to 1 MHz. For low-noise operation, the converter can be operated in the PWM mode and the  
internal antiringing switch reduces noise and EMI. In the shutdown mode, the current consumption is reduced to  
less than 1 µA. The TPS62000 is available in the 10-pin (DGS) microsmall outline package (MSOP). The device  
operates over a free-air temperature range of –40°C to 85°C.  
MSOP (DGS) PACKAGE  
(TOP VIEW)  
PGND  
V
1
2
3
4
5
10  
9
IN  
L
FC  
GND  
PG  
EN  
8
SYNC  
ILIM  
7
6
FB  
AVAILABLE OPTIONS  
PACKAGE(1)  
MARKING  
DGS  
AIH  
TA  
VOLTAGE OPTIONS  
MSOP  
Adjustable  
0.9 V  
1 V  
TPS62000DGS  
TPS62001DGS  
TPS62002DGS  
TPS62003DGS  
TPS62004DGS  
TPS62005DGS  
TPS62008DGS  
TPS62006DGS  
TPS62007DGS  
AII  
AIJ  
1.2 V  
1.5 V  
1.8 V  
1.9 V  
2.5 V  
3.3 V  
AIK  
–40°C to 85°C  
AIL  
AIM  
AJI  
AIN  
AIO  
(1) For shipment quantities and additional package information see the Package Option Addendum at the  
end of the data sheet.  
2
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
FUNCTIONAL BLOCK DIAGRAM  
PG  
FC (See Note B)  
V
IN  
Undervoltage  
Lockout  
10  
Bias Supply  
EN  
Current  
Sense  
P-Channel  
Power MOSFET  
Slope Compensation  
PFM/PWM  
Power Good  
+
_
Mode Select  
PFM/PWM  
Comparator  
_
Error Amplifier  
_
R1  
PFM/PWM  
Control Logic  
Current Limit  
Logic  
Driver  
Shoot-Through  
Logic  
FB  
(See  
L
+
+
Note A)  
Soft  
Compensation  
Start  
R2  
R1 + R2 1 MΩ  
N-Channel  
Power MOSFET  
EN  
Current Sense  
Sync  
+
+
_
Load Comparator  
V
ref  
= 0.45 V  
+
Offset  
Oscillator  
+
_
PGND  
Antiringing  
FB  
GND  
SYNC  
ILIM  
A. The adjustable output voltage version does not use the internal feedback resistor divider. The FB pin is directly  
connected to the error amplifier.  
B. Do not connect the FC pin to an external power source  
PIN FUNCTIONS  
PIN  
I/O DESCRIPTION  
NAME  
NO.  
Enable. A logic high enables the converter, logic low forces the device into shutdown mode reducing the supply  
current to less than 1 µA.  
EN  
FB  
8
I
I
Feedback pin for the fixed output voltage option. For the adjustable version an external resistive divider is  
connected to FB. The internal voltage divider is disabled for the adjustable version.  
5
Supply bypass pin. A 0.1 µF coupling capacitor should be connected as close as possible to this pin for good  
high frequency input voltage supply filtering.  
FC  
2
3
GND  
ILIM  
L
Ground  
Switch current limit. Connect ILIM to GND to set the switch current limit to typically 600 mA, or connect this pin  
to VIN to set the current limit to typically 1200 mA.  
6
I
9
I/O Connect the inductor to this pin. L is the switch pin connected to the drain of the internal power MOSFETS.  
Power good comparator output. This is an open-drain output. A pullup resistor should be connected between  
PG and VO. The output goes active high when the output voltage is greater than 92% of the nominal value.  
PG  
4
O
PGND  
10  
Power ground. Connect all power grounds to PGND.  
Input for synchronization to external clock signal. Synchronizes the converter switching frequency to an  
external clock signal with CMOS level:  
SYNC = HIGH: Low-noise mode enabled, fixed frequency PWM operation is forced  
SYNC  
VIN  
7
1
I
SYNC = LOW (GND): Power save mode enabled, PFM/PWM mode enabled.  
I
Supply voltage input  
Copyright © 2000–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
DETAILED DESCRIPTION  
Operation  
The TPS6200x is a step down converter operating in a current mode PFM/PWM scheme with a typical switching  
frequency of 750 kHz.  
At moderate to heavy loads, the converter operates in the pulse width modulation (PWM) and at light loads the  
converter enters a power save mode (pulse frequency modulation) to keep the efficiency high.  
In the PWM mode operation, the part operates at a fixed frequency of 750 kHz. At the beginning of each clock  
cycle, the high side P-channel MOSFET is turned on. The current in the inductor ramps up and is sensed via an  
internal circuit. The high side switch is turned off when the sensed current causes the PFM/PWM comparator to  
trip when the output voltage is in regulation or when the inductor current reaches the current limit (set by ILIM).  
After a minimum dead time preventing shoot through current, the low side N-channel MOSFET is turned on and  
the current ramps down again. As the clock cycle is completed, the low side switch is turned off and the next  
clock cycle starts.  
In discontinuous conduction mode (DCM), the inductor current ramps to zero before the end of each clock cycle.  
In order to increase the efficiency the load comparator turns off the low side MOSFET before the inductor current  
becomes negative. This prevents reverse current flowing from the output capacitor through the inductor and low  
side MOSFET to ground that would cause additional losses.  
As the load current decreases and the peak inductor current does not reach the power save mode threshold of  
typically 120 mA for more than 15 clock cycles, the converter enters a pulse frequency modulation (PFM) mode.  
In the PFM mode, the converter operates with:  
Variable frequency  
Constant peak current that reduces switching losses  
Quiescent current at a minimum  
Thus maintaining the highest efficiency at light load currents. In this mode, the output voltage is monitored with  
the error amplifier. As soon as the output voltage falls below the nominal value, the high side switch is turned on  
and the inductor current ramps up. When the inductor current reaches the peak current of typical: 150 mA +  
50 mA/V × (VI – VO), the high side switch turns off and the low side switch turns on. As the inductor current  
ramps down, the low side switch is turned off before the inductor current becomes negative which completes the  
cycle. When the output voltage falls below the nominal voltage again, the next cycle is started.  
The converter enters the PWM mode again as soon as the output voltage can not be maintained with the typical  
peak inductor current in the PFM mode.  
The control loop is internally compensated reducing the amount of external components.  
The switch current is internally sensed and the maximum current limit can be set to typical 600 mA by connecting  
ILIM to ground; or, to typically 1.2 A by connecting ILIM to VIN.  
100% Duty Cycle Operation  
As the input voltage approaches the output voltage and the duty cycle exceeds typical 95%, the converter turns  
the P-channel high side switch continuously on. In this mode, the output voltage is equal to the input voltage  
minus the voltage drop across the P-channel MOSFET.  
Synchronization, Power Save Mode and Forced PWM Mode  
If no clock signal is applied, the converter operates with a typical switching frequency of 750 kHz. It is possible to  
synchronize the converter to an external clock within a frequency range from 500 kHz to 1000 kHz. The device  
automatically detects the rising edge of the first clock and is synchronizes immediately to the external clock. If  
the clock signal is stopped, the converter automatically switches back to the internal clock and continues  
operation without interruption. The switch over is initiated if no rising edge on the SYNC pin is detected for a  
duration of four clock cycles. Therefore, the maximum delay time can be 8 µs in case the internal clock has a  
minimum frequency of 500 kHz.  
In case the device is synchronized to an external clock, the power save mode is disabled and the device stays in  
forced PWM mode.  
4
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
Connecting the SYNC pin to the GND pin enables the power save mode. The converter operates in the PWM  
mode at moderate to heavy loads and in the PFM mode during light loads maintaining high efficiency over a wide  
load current range.  
Connecting the SYNC pin to the VIN pin forces the converter to operate permanently in the PWM mode even at  
light or no load currents. The advantage is the converter operates with a fixed switching frequency that allows  
simple filtering of the switching frequency for noise sensitive applications. In this mode, the efficiency is lower  
compared to the power save mode during light loads (see Figure 1).  
It is possible to switch from forced PWM mode to the power save mode during operation.  
The flexible configuration of the SYNC pin during operation of the device allows efficient power management by  
adjusting the operation of the TPS6200x to the specific system requirements.  
Low Noise Antiringing Switch  
An antiringing switch is implemented in order to reduce the EMI radiated from the converter during discontinuous  
conduction mode (DCM). In DCM, the inductor current ramps to zero before the end of each switching period.  
The internal load comparator turns off the low side switch at that instant thus preventing the current flowing  
backward through the inductance which increases the efficiency. An antiringing switch across the inductor  
prevents parasitic oscillation caused by the residual energy stored in the inductance (see Figure 12).  
NOTE:  
The antiringing switch is only activated in the fixed output voltage versions. It is not  
enabled for the adjustable output voltage version TPS62000.  
Soft Start  
As the enable pin (EN) goes high, the soft-start function generates an internal voltage ramp. This causes the  
start-up current to slowly rise preventing output voltage overshoot and high inrush currents. The soft-start  
duration is typical 1 ms (see Figure 13). When the soft-start function is completed, the error amplifier is  
connected directly to the internal voltage reference.  
Enable  
Logic low on EN forces the TPS6200x into shutdown. In shutdown, the power switch, drivers, voltage reference,  
oscillator, and all other functions are turned off. The supply current is reduced to less than 1 µA in the shutdown  
mode.  
Undervoltage Lockout  
An undervoltage lockout circuit provides the save operation of the device. It prevents the converter from turning  
on when the voltage on VIN is less than typically 1.6 V.  
Power Good Comparator  
The power good (PG) comparator has an open drain output capable of sinking typically 10 µA. The PG is only  
active when the device is enabled (EN = high). When the device is disabled (EN = low), the PG pin is high  
impedance.  
The PG output is only valid after a 100 µs delay after the device is enabled and the supply voltage is greater  
than 1.2 V. This is only important in cases where the pullup resistor of the PG pin is connected to an external  
voltage source which might cause an initial spike (false high signal) within the first 100 µs after the input voltage  
exceeds 1.2 V. This initial spike can be filtered with a small R-C filter to avoid false power good signals during  
start-up.  
If the PG pin is connected to the output of the TPS62000 with a pullup resistor, no initial spike (false high signal)  
occurs and no precautions have to be taken during start-up.  
The PG pin becomes active high when the output voltage exceeds typically 94.5% of its nominal value. Leave  
the PG pin unconnected when not used.  
Copyright © 2000–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
No Load Operation  
In case the converter operates in the forced PWM mode and there is no load connected to the output, the  
converter will regulate the output voltage by allowing the inductor current to reverse for a short period of time.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
–0.3 to 6  
UNIT  
Supply voltages on pin VIN and FC(2)  
Voltages on pins EN, ILIM, SYNC, PG, FB, L(2)  
Peak switch current  
V
V
A
–0.3 to VIN + 0.3  
1.6  
Continuous power dissipation  
See Dissipation Rating Table  
–40 to 150  
TJ  
Operating junction temperature range  
Storage temperature range  
°C  
°C  
°C  
Tstg  
–65 to 150  
Lead temperature (soldering, 10 sec)  
260  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
DISSIPATION RATINGS  
T
A 25°C  
DERATING FACTOR  
TA = 25°C  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
PACKAGE(1)  
POWER RATING  
10 pin MSOP  
555 mW  
5.56 mW/°C  
305 mW  
221 mW  
(1) The thermal resistance junction to ambient of the 10-pin MSOP is 180°C/W. The device will not run into thermal limitations provided it is  
operated within the specified range.  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
TYP  
MAX  
5.5  
UNIT  
V
VI  
Supply voltage  
VO  
IO  
Output voltage range for adjustable output voltage version  
Output current for 3-cell operation (VI 2.5 V; L = 10 µH, f = 750 kHz)  
Output current for 2-cell operation (VI 2 V; L = 10 µH, f = 750 kHz)  
Inductor(1) (see Note 2)  
Input capacitor(1)  
Output capacitor(1) (VO 1.8 V)  
0.8  
VI  
V
600  
200  
mA  
mA  
µH  
µF  
µF  
µF  
°C  
IO  
L
10  
CI  
Co  
Co  
TA  
TJ  
10  
10  
Output capacitor(1) VO < 1.8 V)  
47  
Operating ambient temperature  
–40  
–40  
85  
Operating junction temperature  
125  
°C  
(1) Refer to application section for further information.  
6
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range, VI = 3.6 V, VO = 2.5 V, IO = 300 mA, EN = VIN, ILIM = VIN, TA =  
–40°C to 85°C (unless otherwise noted)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IO = 0 mA to 600 mA  
2.5  
2
5.5  
V
VI  
Input voltage range  
IO = 0 mA to 200 mA  
5.5  
I(Q)  
Operating quiescent current  
IO = 0 mA, SYNC = GND (PFM-mode  
enabled)  
50  
75  
1
µA  
µA  
I(SD)  
Shutdown current  
EN = GND  
0.1  
ENABLE  
VIH  
EN high-level input voltage  
EN low level input voltage  
EN input leakage current  
Undervoltage lockout threshold  
1.3  
V
V
VIL  
0.4  
0.1  
Ilkg  
EN = GND or VIN  
0.01  
1.6  
µA  
V
V(UVLO)  
1.2  
1.95  
POWER SWITCH AND CURRENT LIMIT  
VI = VGS = 3.6 V, I = 200 mA  
VI = VGS = 2 V, I = 200 mA  
VDS = 5.5 V  
200  
280  
480  
410  
P-channel MOSFET on-resistance  
mΩ  
µA  
P-channel leakage current  
rDS(on)  
1
VI = VGS = 3.6 V, IO = 200 mA  
VI = VGS = 2 V, IO = 200 mA  
VDS = 5.5 V  
200  
280  
500  
410  
N-channel MOSFET on-resistance  
mΩ  
µA  
N-channel leakage current  
1
1600  
900  
2.5 V VI 5.5 V, ILIM = VIN  
2 V VI 5.5 V, ILIM = GND  
800  
390  
1.3  
1200  
600  
I(LIM)  
P-channel current limit  
mA  
VIH  
VIL  
Ilkg  
ILIM high-level input voltage  
ILIM low-level input voltage  
V
V
0.4  
0.1  
ILIM input leakage current  
ILIM = GND or VIN  
0.01  
µA  
(1)  
POWER GOOD OUTPUT (see  
)
V(PG)  
Power good threshold  
Power good hysteresis  
PG output low voltage  
Feedback voltage falling  
88% VO 92% VO 94% VO  
V
V
2.5% VO  
0.3  
VOL  
Ilkg  
V(FB) = 0.8 × VO nominal, I(sink) = 10 µA  
V
PG output leakage current  
V(FB) = VO nominal  
0.01  
1
µA  
V
Minimum supply voltage for valid  
power good signal  
1.2  
OSCILLATOR  
fs  
Oscillator frequency  
500  
500  
1.3  
750  
1000  
1000  
kHz  
kHz  
V
f(SYNC)  
VIH  
VIL  
Synchronization range  
CMOS-logic clock signal on SYNC pin  
SYNC = GND or VIN  
SYNC high level input voltage  
SYNC low level input voltage  
SYNC input leakage current  
Duty cycle of external clock signal  
0.4  
0.1  
V
Ilkg  
0.01  
µA  
20%  
60%  
(1) Power good is not valid for the first 100 µs after EN goes high. Refer to the application section for more information.  
Copyright © 2000–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range, VI = 3.6 V, VO = 2.5 V, IO = 300 mA, EN = VIN, ILIM = VIN, TA =  
–40°C to 85°C (unless otherwise noted)  
PARAMETER  
Adjustable output voltage range  
Reference voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VO  
TPS62000  
TPS6200x  
0.8  
5.5  
Vref  
0.45  
V
VI = 2.5 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
–3%  
4%  
3%  
4%  
3%  
4%  
3%  
4%  
3%  
4%  
3%  
4%  
3%  
4%  
3%  
4%  
3%  
4%  
3%  
TPS62000  
adjustable  
VI = 2.5 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
TPS62001  
0.9 V  
VI = 2.5 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
TPS62002  
1 V  
VI = 2.5 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
TPS62003  
1.2 V  
VI = 2.5 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
TPS62004  
1.5 V  
(1)  
VO  
Fixed output voltage  
V
VI = 2.5 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
TPS62005  
1.8 V  
VI = 2.5 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
TPS62008  
1.9 V  
VI = 2.7 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
TPS62006  
2.5 V  
VI = 3.6 V to 5.5 V; 0 mA IO 600 mA  
10 mA < IO 600 mA  
TPS62007  
3.3 V  
Line regulation  
Load regulation  
VI = VO + 0.5 V (min. 2 V) to 5.5 V, IO = 10 mA  
VI = 5.5 V; IO = 10 mA to 600 mA  
VI = 5 V; VO = 3.3 V; IO = 300 mA  
VI = 3.6 V; VO = 2.5 V; IO = 200 mA  
IO = 0 mA, time from active EN to VO  
0.05  
%/V  
ms  
0.6%  
η
Efficiency  
95%  
Start-up time  
0.4  
2
(1) The output voltage accuracy includes line and load regulation over the full temperature range, TA = –40°C to 85°C.  
8
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
TYPICAL CHARACTERISTICS  
TABLE OF GRAPHS  
FIGURE  
η
Efficiency  
vs Load current  
3, 4, 5  
6
V(drop)  
IQ  
Dropout voltage  
vs Load current  
Operating quiescent current  
vs Input voltage (power save mode)  
vs Input voltage (forced PWM)  
vs Free-air temperature  
7
8
fOSC  
Oscillator frequency  
Load transient response  
Line transient response  
Power save mode operation  
Start-up  
9
10  
11  
12  
13  
14  
vs Time  
VO  
Output voltage  
vs Load current  
EFFICIENCY  
EFFICIENCY  
vs  
LOAD CURRENT  
vs  
LOAD CURRENT  
100  
V
O
= 2.5 V  
90  
80  
70  
V = 3.6 V  
I
V = 5 V  
I
60  
50  
40  
0.1  
1
10  
100  
1000  
I
− Load Current − mA  
O
Figure 3.  
Figure 4.  
Copyright © 2000–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
EFFICIENCY  
vs  
LOAD CURRENT  
DROPOUT VOLTAGE  
vs  
LOAD CURRENT  
Figure 5.  
Figure 6.  
OPERATING QUIESCENT CURRENT  
vs  
INPUT VOLTAGE (POWER SAVE MODE)  
OPERATING QUIESCENT CURRENT  
vs  
INPUT VOLTAGE (FORCED PWM)  
Figure 7.  
Figure 8.  
10  
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
OSCILLATOR FREQUENCY  
vs  
FREE-AIR TEMPERATURE  
LOAD TRANSIENT RESPONSE  
200 ms/div  
Figure 9.  
Figure 10.  
LINE TRANSIENT RESPONSE  
POWER SAVE MODE OPERATION  
400 ms/div  
10 ms/div  
Figure 11.  
Figure 12.  
Copyright © 2000–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
START-UP  
vs  
TIME  
EN  
2 V/div  
V
O
1 V/div  
Power Good  
1 V/div  
I
I
200 mA/div  
250 ms/div  
Figure 13.  
OUTPUT VOLTAGE  
vs  
LOAD CURRENT  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
0
100  
200  
300  
400  
500  
600  
I
− Load Current − mA  
O
Figure 14.  
12  
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
APPLICATION INFORMATION  
ADJUSTABLE OUTPUT VOLTAGE VERSION  
When the adjustable output voltage version (TPS62000DGS) is used, the output voltage is set by the external  
resistor divider (see Figure 15).  
The output voltage is calculated as:  
R1  
æ
ö
VO = 0.45 V ´ 1 +  
ç
÷
R2  
è
ø
(1)  
With R1 + R2 1 MΩ  
R1 + R2 should not be greater than 1 MW because of stability reasons.  
For stability reasons, a small bypass capacitor (Cff) is required in parallel to the upper feedback resistor, refer to  
Figure 15. The bypass capacitor value can be calculated as:  
1
C(ff)  
=
for Co < 47mF  
2p ´30000´R1  
1
(2)  
C(ff)  
=
for Co ³ 47mF  
2p ´5000´R1  
(3)  
R1 is the upper resistor of the voltage divider. For C(ff), choose a value which comes closest to the computed  
result.  
L1 = 10 mH  
V
= 2.5 V/600 mA  
O
V = 2.7 V to 5.5 V  
I
1
8
6
7
9
5
4
V
L
FB  
PG  
IN  
R3 = 320 k  
+
EN  
C = 10 mF  
i
C
(ff)  
=
6.8 pF  
R1 = 820 kΩ  
TPS62000  
+
ILIM  
PG  
C
o
= 10 mF  
10  
R2 = 180 kΩ  
SYNC  
GND  
3
PGND  
FC  
2
C3 = 0.1 mF  
Figure 15. Typical Application Circuit for Adjustable Output Voltage Option  
INDUCTOR SELECTION  
A 10 µH minimum output inductor is used with the TPS6200x. Values larger than 22 µH or smaller than 10 µH  
may cause stability problems because of the internal compensation of the regulator.  
For output voltages greater than 1.8 V, a 22 µH inductance might be used in order to improve the efficiency of  
the converter.  
After choosing the inductor value of typically 10 µH, two additional inductor parameters should be considered:  
first the current rating of the inductor and second the dc resistance.  
The dc resistance of the inductance influences directly the efficiency of the converter. Therefore, an inductor with  
lowest dc resistance should be selected for highest efficiency.  
In order to avoid saturation of the inductor, the inductor should be rated at least for the maximum output current  
plus the inductor ripple current which is calculated as:  
Copyright © 2000–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
 
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
VO  
1 -  
V
DIL  
I
DIL = VO  
´
IL(max) = IO(max) +  
L ´ f  
2
(4)  
Where:  
ƒ = Switching frequency (750 kHz typical)  
L = Inductor value  
ΔIL = Peak-to-peak inductor ripple current  
IL(max) = Maximum inductor current  
The highest inductor current occurs at maximum VI.  
A more conservative approach is to select the inductor current rating just for the maximum switch current of the  
TPS6200x which is 1.6 A with ILIM = VIN and 900 mA with ILIM = GND. See Table 1 for recommended inductors.  
Table 1. Tested Inductors  
OUTPUT CURRENT  
INDUCTOR VALUE  
COMPONENT SUPPLIER  
COMMENTS  
0 mA to 600 mA  
10 µH  
Coilcraft DO3316P-103  
Coilcraft DT3316P-103  
Sumida CDR63B-100  
Sumida CDRH5D28-100  
High efficiency  
Coilcraft DO1608C-103  
Sumida CDRH4D28-100  
Smallest solution  
0 mA to 300 mA  
10 µH  
Coilcraft DO1608C-103  
Murata LQH4C100K04  
High efficiency  
Smallest solution  
OUTPUT CAPACITOR SELECTION  
For best performance, a low ESR output capacitor is needed. At output voltages greater than 1.8 V, ceramic  
output capacitors can be used to show the best performance. Output voltages below 1.8 V require a larger output  
capacitor and ESR value to improve the performance and stability of the converter.  
Table 2. Capacitor Selection  
OUTPUT VOLTAGE RANGE  
1.8 V VI 5.5 V  
OUTPUT CAPACITOR  
OUTPUT CAPACITOR ESR  
ESR 120 mΩ  
Co 10 µF  
o 47 µF  
0.8 V VI < 1.8 V  
C
ESR > 50 mΩ  
See Table 3 for recommended capacitors.  
If an output capacitor is selected with an ESR value 120 m, its RMS ripple current rating always meets the  
application requirements. Just for completeness, the RMS ripple current is calculated as:  
VO  
1 -  
V
1
I
IRMS(C = VO  
´
´
)
O
L ´ f  
2´ 3  
(5)  
The overall output ripple voltage is the sum of the voltage spike caused by the output capacitor ESR plus the  
voltage ripple caused by charge and discharging the output capacitor:  
VO  
1 -  
æ
ç
è
ö
÷
ø
V
1
I
DVO = VO ´  
´
+ESR  
L ´ f  
8´CO ´ f  
(6)  
Where the highest output voltage ripple occurs at the highest input voltage VI.  
14  
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
 
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
Table 3. Tested Capacitors  
CAPACITOR VALUE  
ESR/mΩ  
50  
COMPONENT SUPPLIER  
Taiyo Yuden JMK316BJ106KL  
Sanyo 6TPA47M  
COMMENTS  
Ceramic  
10 µF  
47 µF  
68 µF  
100  
POSCAP  
Tantalum  
100  
Spraque 594D686X0010C2T  
INPUT CAPACITOR SELECTION  
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is  
required for best input voltage filtering and minimizing the interference with other circuits caused by high input  
voltage spikes.  
The input capacitor should have a minimum value of 10 µF and can be increased without any limit for better input  
voltage filtering.  
The input capacitor should be rated for the maximum input ripple current calculated as:  
æ
ö
÷
ø
VO  
VO  
IRMS = IO(max)  
´
´ 1-  
ç
V
V
I
I
è
(7)  
IO  
2
IRMS  
=
The worst case RMS ripple current occurs at D = 0.5 and is calculated as:  
Ceramic capacitor show a good performance because of their low ESR value, and they are less sensitive against  
voltage transients compared to tantalum capacitors.  
Place the input capacitor as close as possible to the input pin of the IC for best performance.  
LAYOUT CONSIDERATIONS  
As for all switching power supplies, the layout is an important step in the design especially at high peak currents  
and switching frequencies. If the layout is not carefully done, the regulator might show stability problems as well  
as EMI problems.  
Therefore, use wide and short traces for the main current paths as indicted in bold in Figure 16. The input  
capacitor should be placed as close as possible to the IC pins as well as the inductor and output capacitor. Place  
the bypass capacitor, C3, as close as possible to the FC pin. The analog ground, GND, and the power ground,  
PGND, need to be separated. Use a common ground node as shown in Figure 16 to minimize the effects of  
ground noise.  
L1  
1
8
6
7
9
V
I
V
O
V
L
FB  
PG  
IN  
+
R3  
5
4
EN  
C
i
C
(ff)  
R1  
TPS62000  
+
ILIM  
PG  
C
o
R2  
10  
SYNC  
GND  
PGND  
FC  
C3  
3
2
Figure 16. Layout Diagram  
Copyright © 2000–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
 
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
TYPICAL APPLICATION  
L1  
22 mH  
1
8
6
7
9
V
L
FB  
V
O
= 3.3 V/600 mA  
V = 5 V  
I
IN  
C1  
10 mF  
5
EN  
C2  
10 mF  
TPS62007DGS  
680 k  
10  
ILIM  
PGND  
4
SYNC  
GND  
Power  
Good  
PG  
FC  
3
2
L1: Sumdia CDRH5D28-220  
C1, C2: 10 mF Ceramic Taiyo Yuden  
C3  
0.1 mF  
JMK316BJ106KL  
0.1 mF Ceramic  
C3:  
Figure 17. Standard 5 V to 3.3 V/600 mA Conversion; High Efficiency  
L1  
10 mH  
1
8
6
7
9
V
L
FB  
V = 2.5 V/600 mA  
O
V = 2.7 V to 4.2 V  
I
IN  
C1  
10 mF  
5
EN  
C2  
10 mF  
TPS62006DGS  
470 k  
10  
ILIM  
PGND  
4
SYNC  
GND  
3
Power Good  
L1:  
PG  
FC  
Sumdia CDRH5D28-100  
C1,C2: 10 mF Ceramic Taiyo Yuden  
2
C3  
0.1 mF  
JMK316BJ106KL  
0.1 mF Ceramic  
C3:  
Figure 18. Single Li-ion to 2.5 V/600 mA Using Ceramic Capacitors Only  
16  
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
www.ti.com ........................................................................................................................................... SLVS294ESEPTEMBER 2000REVISED AUGUST 2008  
L1  
10 mH  
1
8
6
7
9
V
L
FB  
V
= 1.8 V/300 mA  
V = 2.5 V to 4.2 V  
I
IN  
O
C1  
10 mF  
5
EN  
C2  
10 mF  
TPS62005DGS  
10  
ILIM  
PGND  
4
SYNC  
GND  
PG  
FC  
L1: Murata LQH4C100K04  
C1,C2: 10 mF Ceramic Taiyo Yuden  
3
2
C3  
0.1 mF  
JMK316BJ106KL  
0.1 mF Ceramic  
C3:  
NOTE: For low noise operation connect SYNC to VIN  
Figure 19. Single Li-ion to 1.8 V/300 mA; Smallest Solution Size  
L1  
10 mH  
1
8
6
7
9
V
L
FB  
V = 1.2 V/200 mA  
O
V = 2 V to 3.8 V  
I
IN  
C1  
10 mF  
5
EN  
+
C2  
47 mF  
TPS62003  
10  
ILIM  
PGND  
4
SYNC  
GND  
PG  
FC  
L1:  
C1:  
Murata LQH4C100K04  
3
2
C3  
0.1 mF  
10 mF Ceramic Taiyo Yuden  
JMK316BJ106KL  
Sanyo 6TPA47M  
C2:  
C3:  
0.1 mF Ceramic  
Figure 20. Dual Cell NiMH or NiCd to 1.2 V/200 mA; Smallest Solution Size  
Copyright © 2000–2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
TPS62000, TPS62001, TPS62003  
TPS62004, TPS62005, TPS62006  
TPS62007, TPS62008  
SLVS294ESEPTEMBER 2000REVISED AUGUST 2008 ........................................................................................................................................... www.ti.com  
10 mH  
820 kW  
(2)  
470 kW  
10 mF  
47 mF  
326 kW  
524 kW  
0.1 mF  
Sumida CDRH5D28-100  
10 mF Ceramic Taiyo Yuden  
JMK316BJ106KL  
Sanyo 6TPA47M  
0.1 mF Ceramic  
(1) Use a small R-C filter to filter wrong reset signals during output voltage transitions.  
(2) A large value is used for C(ff) to compensate for the parasitic capacitance introduced into the regulation loop by Q1.  
Figure 21. Dynamic Output Voltage Programming As Used in Low Power DSP Applications  
18  
Submit Documentation Feedback  
Copyright © 2000–2008, Texas Instruments Incorporated  
Product Folder Link(s): TPS62000, TPS62001, TPS62003 TPS62004, TPS62005, TPS62006 TPS62007, TPS62008  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Aug-2013  
PACKAGING INFORMATION  
Orderable Device  
TPS62000DGS  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
10  
10  
10  
10  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
AIH  
AIH  
AIH  
AIH  
TPS62000DGSG4  
TPS62000DGSR  
TPS62000DGSRG4  
ACTIVE  
ACTIVE  
ACTIVE  
DGS  
DGS  
DGS  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
-40 to 85  
2500  
2500  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
-40 to 85  
TPS62000YZGR  
TPS62000YZGT  
TPS62002DGS  
OBSOLETE  
OBSOLETE  
ACTIVE  
DSBGA  
DSBGA  
VSSOP  
YZG  
YZG  
DGS  
12  
12  
10  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 85  
-40 to 85  
-40 to 85  
TPS62000  
80  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
AIJ  
AIJ  
AIJ  
AIJ  
AIK  
AIK  
AIK  
AIK  
AIL  
AIL  
AIL  
AIL  
TPS62002DGSG4  
TPS62002DGSR  
TPS62002DGSRG4  
TPS62003DGS  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
2500  
2500  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
TPS62003DGSG4  
TPS62003DGSR  
TPS62003DGSRG4  
TPS62004DGS  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
2500  
2500  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
TPS62004DGSG4  
TPS62004DGSR  
TPS62004DGSRG4  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
2500  
2500  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Aug-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
TPS62005DGS  
TPS62005DGSG4  
TPS62005DGSR  
TPS62005DGSRG4  
TPS62006DGS  
ACTIVE  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
80  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
AIM  
AIM  
AIM  
AIM  
AIN  
AIN  
AIN  
AIN  
AIO  
AIO  
AIO  
AIO  
AJI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
80  
2500  
2500  
80  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
TPS62006DGSG4  
TPS62006DGSR  
TPS62006DGSRG4  
TPS62007DGS  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
2500  
2500  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
TPS62007DGSG4  
TPS62007DGSR  
TPS62007DGSRG4  
TPS62008DGS  
80  
Green (RoHS  
& no Sb/Br)  
2500  
2500  
80  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
TPS62008DGSG4  
TPS62008DGSR  
TPS62008DGSRG4  
80  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
AJI  
2500  
2500  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
AJI  
Green (RoHS CU NIPDAUAG Level-1-260C-UNLIM  
& no Sb/Br)  
AJI  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Aug-2013  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS62000, TPS62004, TPS62005, TPS62006, TPS62007 :  
Automotive: TPS62000-Q1, TPS62004-Q1, TPS62005-Q1, TPS62006-Q1, TPS62007-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Nov-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62000DGSR  
TPS62002DGSR  
TPS62003DGSR  
TPS62004DGSR  
TPS62005DGSR  
TPS62006DGSR  
TPS62007DGSR  
TPS62008DGSR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
10  
10  
10  
10  
10  
10  
10  
10  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Nov-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62000DGSR  
TPS62002DGSR  
TPS62003DGSR  
TPS62004DGSR  
TPS62005DGSR  
TPS62006DGSR  
TPS62007DGSR  
TPS62008DGSR  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
DGS  
10  
10  
10  
10  
10  
10  
10  
10  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
2500  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

TPS62000DGS

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000DGSG4

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000DGSR

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000DGSRG4

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000SHKK

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000SKGD1

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000YEG

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000YEGR

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000YEGT

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62000YZG

1.6A SWITCHING REGULATOR, 1000kHz SWITCHING FREQ-MAX, BGA12, DSBGA-12

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62001

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62001DGS

HIGH-EFFICIENCY STEP-DOWN LOW POWER DC-DC CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI