TPS6208812YFPT [TI]

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125;
TPS6208812YFPT
型号: TPS6208812YFPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125

开关 转换器
文件: 总33页 (文件大小:2865K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
TPS62088 and TPS6208xA, 2.4-V to 5.5-V Input, Tiny 6-Pin 2-A/3-A Step-Down  
Converter in 1.2-mm × 0.8-mm Wafer Chip Scale Package and Suitable for Embedding  
1 Features  
3 Description  
DCS-Control topology  
Up to 95% efficiency  
26-mΩ and 26-mΩ internal power MOSFETs  
2.4-V to 5.5-V input voltage range  
4-μA operating quiescent current  
1% output voltage accuracy  
The TPS6208xx device family is a high-frequency  
synchronous step-down converters optimized for  
small solution size and high efficiency. With an  
input voltage range of 2.4 V to 5.5 V, common  
battery technologies are supported. At medium  
to heavy loads, the converter operates in PWM  
mode and automatically enters power save mode  
operation at light load to maintain high efficiency  
over the entire load current range. The forced PWM  
version of the device maintains a CCM operation  
across any load. The 4-MHz switching frequency  
allows the device to use small external components.  
Together with its DCS-control architecture, excellent  
load transient performance, and output voltage  
regulation accuracy are achieved. Other features like  
overcurrent protection, thermal shutdown protection,  
active output discharge, and power good are built in.  
The device is available in a 6-pin WCSP package.  
4-MHz switching frequency  
Power save mode for light-load efficiency  
A forced-PWM version for CCM operation  
100% duty cycle for lowest dropout  
Active output discharge  
Power good output  
Thermal shutdown protection  
Hiccup short-circuit protection  
Available in 6-pin WCSP and PowerWCSP with  
0.4-mm pitch  
0.3-mm tall YWC package supports embedded  
systems  
Supports 12 mm2 solution size  
Supports < 0.6 mm height solution  
Create a custom design using the TPS62088 with  
the WEBENCH® Power Designer  
Device Information  
PART NUMBER  
TPS62088  
PACKAGE(1)  
BODY SIZE (NOM)  
YFP (6)  
YWC (6)  
0.8 mm × 1.2 mm × 0.5 mm  
0.8 mm × 1.2 mm × 0.3 mm  
TPS62089A  
TPS62088A  
2 Applications  
Solid-state drives  
Wearable products  
Smartphones  
Camera modules  
Optical modules  
VIN  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
VOUT  
1.8 V  
TPS6208818  
100  
95  
90  
85  
80  
75  
70  
65  
L1  
0.24 µH  
2.4 V to 5.5 V  
VIN  
SW  
FB  
C1  
4.7 µF  
C2  
10 µF  
C3  
10 µF  
R3  
100 k  
EN  
VPG  
PG GND  
60  
VOUT = 0.6V  
VOUT = 0.9V  
Copyright Ú 2017, Texas Instruments Incorporated  
55  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
50  
45  
40  
Typical Application Schematic  
100m  
1m  
10m  
Load (A)  
100m  
1
3
D007  
3.3-V Input Voltage Efficiency  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings .............................................................. 4  
7.3 Recommended Operating Conditions ........................4  
7.4 Thermal Information ..................................................4  
7.5 Electrical Characteristics ............................................5  
7.6 Typical Characteristics................................................6  
8 Detailed Description........................................................7  
8.1 Overview.....................................................................7  
8.2 Functional Block Diagram...........................................7  
8.3 Feature Description.....................................................7  
8.4 Device Functional Modes............................................9  
9 Application and Implementation..................................10  
9.1 Application Information............................................. 10  
9.2 Typical Application.................................................... 10  
10 Power Supply Recommendations..............................19  
11 Layout...........................................................................20  
11.1 Layout Guidelines................................................... 20  
11.2 Layout Example...................................................... 20  
12 Device and Documentation Support..........................21  
12.1 Device Support....................................................... 21  
12.2 Documentation Support.......................................... 21  
12.3 Receiving Notification of Documentation Updates..21  
12.4 Support Resources................................................. 21  
12.5 Trademarks.............................................................21  
12.6 Electrostatic Discharge Caution..............................22  
12.7 Glossary..................................................................22  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 22  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (September 2019) to Revision E (November 2021)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document. ................1  
Added information for the FPWM devices.......................................................................................................... 3  
Added new curves for FPWM devices..............................................................................................................14  
Changes from Revision C (May 2019) to Revision D (September 2019)  
Page  
Changed TPS62088YWC status to production.................................................................................................. 1  
Added TPS62088YWCEVM-084 to the Thermal information table.................................................................... 4  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
5 Device Options  
Device Options  
OPERATION MODE  
PART NUMBER(1)  
OUTPUT VOLTAGE  
3-A adjustable  
3-A adjustable  
3 A with 1.2 V  
3 A with 1.8 V  
3 A with 3.3 V  
3-A adjustable  
2-A adjustable  
TPS62088YFP  
TPS62088YWC  
TPS6208812YFP  
TPS6208818YFP  
TPS6208833YFP  
TPS62088AYFP  
TPS62089AYFP  
PFM/PWM  
PFM/PWM  
PFM/PWM  
PFM/PWM  
PFM/PWM  
Forced-PWM  
Forced-PWM  
(1) For detailed ordering information, please check the package option addendum section at the end of this data sheet.  
6 Pin Configuration and Functions  
1
2
1
2
A
B
C
EN  
VIN  
A
B
C
EN  
VIN  
PG  
SW  
PG  
SW  
FB  
GND  
FB  
GND  
Figure 6-1. YFP Package Top View  
Figure 6-2. YWC Package Top View  
Table 6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Device enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low  
disables the device. Do not leave floating.  
EN  
A1  
I
O
I
Power-good open-drain output pin. The pullup resistor can be connected to voltages up to  
5.5 V. If unused, leave it floating.  
PG  
FB  
B1  
C1  
Feedback pin. For the fixed output voltage versions, this pin must be connected to the  
output.  
GND  
SW  
C2  
B2  
A2  
O
I
Ground pin  
Switch pin of the power stage  
Input voltage pin  
VIN  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
MIN  
–0.3  
–0.3  
–1.0  
–2.5  
–40  
MAX  
6
UNIT  
VIN, FB, EN, PG  
SW (DC)  
Voltage at pins (2)  
VIN + 0.3  
VIN + 0.3  
10  
V
SW (DC, in current limit)  
SW (AC, less than 10 ns) (3)  
Operating junction temperature, TJ  
Temperature  
150  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)  
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
2.4  
0.6  
0
NOM  
MAX  
5.5  
4.0  
2
UNIT  
VIN  
Input voltage range  
V
V
VOUT  
IOUT  
IOUT  
ISINK_PG  
VPG  
Output voltage range  
Output current range, TPS62089A  
Output current range, TPS62088, TPS62088A (1)  
Sink current at the PG pin  
A
0
3
A
1
mA  
V
Pullup resistor voltage  
5.5  
125  
TJ  
Operating junction temperature  
-40  
°C  
(1) For YFP package versions, lifetime is reduced when operating continuously at 3-A output current with the junction temperature higher  
than 85°C.  
7.4 Thermal Information  
TPS62088/TPS6208xA  
THERMAL METRIC(1)  
6 PINS  
UNIT  
YFP (6 PINS)  
YWC (6 PINS)  
YFP EVM-814  
85.7  
YWC EVM-084  
70.6  
RθJA  
Junction-to-ambient thermal resistance  
141.3  
1.7  
130.9  
1.1  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
n/a (2)  
n/a (2)  
RθJB  
ψJT  
Junction-to-board thermal resistance  
47.3  
0.5  
27.3  
0.7  
n/a (2)  
n/a (2)  
Junction-to-top characterization parameter  
1.9  
0.5  
Junction-to-board characterization  
parameter  
ψJB  
47.5  
27.2  
55.9  
38.7  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Not applicable to an EVM.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
 
 
 
 
 
 
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
7.5 Electrical Characteristics  
TJ = –40°C to 125°C, and VIN = 2.4 V to 5.5 V. Typical values are at TJ = 25°C and VIN = 5 V , unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
IQ  
Quiescent current  
EN = HIGH, no load, device not switching  
4
8
10  
µA  
mA  
µA  
V
IQ  
Quiescent current  
EN = HIGH, no load, TPS62088A and TPS62089A  
ISD  
Shutdown current  
EN = LOW, TJ = –40to 85℃  
0.05  
2.2  
160  
150  
20  
0.5  
2.3  
Undervoltage lockout threshold  
Undervoltage lockout hysteresis  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
VIN falling  
VIN rising  
TJ rising  
TJ falling  
2.1  
VUVLO  
mV  
°C  
°C  
TJSD  
LOGIC INTERFACE EN  
VIH  
High-level input threshold voltage  
1.0  
V
V
VIL  
Low-level input threshold voltage  
Input leakage current into EN pin  
0.4  
0.1  
IEN,LKG  
0.01  
µA  
SOFT START, POWER GOOD  
tSS  
Soft-start time  
Time from EN high to 95% of VOUT nominal  
VPG rising, VFB referenced to VFB nominal  
VPG falling, VFB referenced to VFB nominal  
VPG rising, VFB referenced to VFB nominal  
VPG falling, VFB referenced to VFB nominal  
Isink = 1 mA  
1.25  
96%  
ms  
94%  
90%  
98%  
94%  
107%  
112%  
0.4  
Power-good lower threshold  
92%  
VPG  
103%  
108%  
105%  
110%  
Power-good upper threshold  
VPG,OL  
Low-level output voltage  
V
IPG,LKG  
Input leakage current into PG pin  
VPG = 5.0 V  
0.01  
0.1  
µA  
OUTPUT  
TPS6208812, PWM mode  
TPS6208818, PWM mode  
TPS6208833, PWM mode  
PWM mode  
1.188  
1.782  
3.267  
594  
1.2  
1.8  
1.212  
1.818  
3.333  
606  
VOUT  
Output voltage accuracy  
V
3.3  
VFB  
Feedback regulation voltage  
600  
0.01  
mV  
µA  
IFB,LKG  
Feedback input leakage current  
TPS62088, VFB = 0.6 V  
0.05  
Internal resistor divider connected to FB  
pin  
RFB  
IDIS  
TPS6208812, TPS6208818, TPS6208833  
VSW = 0.4V; EN = LOW  
7.5  
MΩ  
mA  
Output discharge current  
75  
400  
POWER SWITCH  
High-side FET on-resistance  
26  
26  
mΩ  
mΩ  
A
RDS(on)  
Low-side FET on-resistance  
ILIM  
ILIM  
ILIM  
fSW  
High-side FET switch current limit  
High-side FET switch current limit  
Low-side FET switch negative current limit  
PWM switching frequency  
TPS62089A  
2.7  
3.6  
3.3  
4.3  
-1.6  
4
3.9  
5.0  
TPS62088 and TPS62088A  
TPS62088A and TPS62089A  
IOUT = 1 A, VOUT = 1.8 V  
A
A
MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
7.6 Typical Characteristics  
70.0  
60.0  
50.0  
40.0  
30.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
20.0  
TJ = 0 °C  
TJ = 25 °C  
TJ = 0 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
10.0  
TJ = 85 °C  
TJ = 125 °C  
0.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D010  
D011  
Figure 7-1. High-Side FET On-Resistance  
Figure 7-2. Low-Side FET On-Resistance  
8.0  
0.5  
TJ = -40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
0.4  
0.3  
0.2  
0.1  
0.0  
6.0  
4.0  
2.0  
0.0  
TJ = -40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D000  
D001  
Figure 7-4. Shutdown Current  
Figure 7-3. Quiescent Current  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TPS62088xx family is synchronous step-down converter that adopts a new generation DCS-Control (Direct  
Control with Seamless transition into power save mode) topology without the output voltage sense (VOS) pin.  
This is an advanced regulation topology that combines the advantages of hysteretic, voltage, and current mode  
control schemes.  
The DCS-Control topology operates in PWM (pulse width modulation) mode for medium to heavy load conditions  
and in power save mode at light load currents. In PWM mode, the converter operates with its nominal switching  
frequency of 4 MHz, having a controlled frequency variation over the input voltage range. As the load current  
decreases, the converter enters Power Save Mode, reducing the switching frequency and minimizing the IC  
current consumption to achieve high efficiency over the entire load current range. In forced PWM devices,  
the converter maintains a continuous conduction mode operation and keeps the output voltage ripple very low  
across the whole load range and at a nominal switching frequency of 4 MHz. Because DCS-Control supports  
both operation modes (PWM and PFM) within a single building block, the transition from PWM mode to power  
save mode is seamless and without effects on the output voltage. The devices offer both excellent DC voltage  
and superior load transient regulation, combined with very low output voltage ripple, minimizing interference with  
RF circuits.  
8.2 Functional Block Diagram  
PG  
VIN  
VPG_H  
+
œ
VFB  
Control Logic  
VREF  
UVLO  
+
VPG_L  
GND  
EN  
œ
Thermal Shutdown  
Startup  
Peak Current Detect  
HICCUP  
VSW  
VIN  
TON  
Direct Control  
&
Compensation  
VSW  
SW  
Gate  
Drive  
Modulator  
VREF  
+
EA  
_
Comparator  
FB  
Zero Current Detect  
GND  
Fixed VOUT  
GND  
8.3 Feature Description  
8.3.1 Power Save Mode  
As the load current decreases, the device enters power save mode operation. The power save mode occurs  
when the inductor current becomes discontinuous. Power save mode is based on a fixed on-time architecture,  
as related in Equation 1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
VOUT  
tON = 250ns ì  
V
IN  
(1)  
In power save mode, the output voltage rises slightly above the nominal output voltage. This effect is minimized  
by increasing the output capacitor or inductor value.  
When the device operates close to 100% duty cycle mode, the device cannot enter power save mode regardless  
of the load current if the input voltage decreases to typically 10% above the output voltage. The device maintains  
output regulation in PWM mode.  
8.3.2 Pulse Width Modulation (PWM) Operation  
At load currents larger than half the inductor ripple current, the device operates in pulse width modulation in  
continuous conduction mode (CCM). The PWM operation is based on an adaptive constant on-time control with  
stabilized switching frequency.  
In forced-PWM devices, the device always operates in pulse width modulation in continuous conduction mode  
(CCM).  
8.3.3 100% Duty Cycle Low Dropout Operation  
The devices offer low input-to-output voltage difference by entering 100% duty cycle mode. In this mode, the  
high-side MOSFET switch is constantly turned on and the low-side MOSFET is switched off. This is particularly  
useful in battery powered applications to achieve the longest operation time by taking full advantage of the whole  
battery voltage range. The minimum input voltage to maintain output regulation, depending on the load current  
and output voltage can be calculated as:  
V
= VOUT + IOUT,MAX ´(RDS(on) + RL )  
IN,MIN  
(2)  
where  
VIN,MIN = Minimum input voltage to maintain an output voltage  
IOUT,MAX = Maximum output current  
RDS(on) = High-side FET ON-resistance  
RL = Inductor ohmic resistance (DCR)  
8.3.4 Soft Start  
After enabling the device, there is a 250-µs delay before switching starts. Then, an internal soft start-up circuitry  
ramps up the output voltage which reaches nominal output voltage during the start-up time of 1 ms. This avoids  
excessive inrush current and creates a smooth output voltage rise slope. It also prevents excessive voltage  
drops of primary cells and rechargeable batteries with high internal impedance.  
The device is able to start into a pre-biased output capacitor. It starts with the applied bias voltage and ramps the  
output voltage to its nominal value.  
8.3.5 Switch Current Limit and HICCUP Short-Circuit Protection  
The switch current limit prevents the device from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a shorted or saturated inductor or a heavy  
load or shorted output circuit condition. If the inductor current reaches the threshold ILIM, the high-side MOSFET  
is turned off and the low-side MOSFET remains off, while the inductor current flows through its body diode and  
quickly ramps down.  
When this switch current limits is triggered 32 times, the device stops switching. The device then automatically  
starts a new start-up after a typical delay time of 128 µs has passed. This is named HICCUP short-circuit  
protection. The device repeats this mode until the high load condition disappears.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
In forced PWM devices, a negative current limit (ILIMN) is enabled to prevent excessive current flowing  
backwards to the input. When the inductor current reaches ILIMN, the low-side MOSFET turns off and the  
highside MOSFET turns on and kept on until TON time expires.  
8.3.6 Undervoltage Lockout  
To avoid mis-operation of the device at low input voltages, undervoltage lockout is implemented that shuts down  
the device at voltages lower than VUVLO  
.
8.3.7 Thermal Shutdown  
The device goes into thermal shutdown and stops the power stage switching when the junction temperature  
exceeds TJSD. When the device temperature falls below the threshold by 20°C, the device returns to normal  
operation automatically by switching the power stage again.  
8.4 Device Functional Modes  
8.4.1 Enable and Disable  
The device is enabled by setting the EN pin to a logic HIGH. Accordingly, shutdown mode is forced if the EN pin  
is pulled LOW with a shutdown current of typically 50 nA. In shutdown mode, the internal power switches as well  
as the entire control circuitry are turned off. An internal switch smoothly discharges the output through the SW  
pin in shutdown mode. Do not leave the EN pin floating.  
The typical threshold value of the EN pin is 0.89 V for rising input signal, and 0.62 V for falling input signal.  
8.4.2 Power Good  
The device has a power-good output. The PG pin goes high impedance once the FB pin voltage is above 96%  
and less than 105% of the nominal voltage, and is driven low once the voltage falls below typically 92% or higher  
than 110% of the nominal voltage. The PG pin is an open-drain output and is specified to sink up to 1 mA. The  
power-good output requires a pullup resistor connecting to any voltage rail less than 5.5 V.  
The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other converters.  
Leave the PG pin unconnected when not used. The PG rising edge has a 100-µs blanking time and the PG  
falling edge has a deglitch delay of 20 µs.  
Table 8-1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH IMPEDANCE  
LOW  
EN = HIGH, VFB ≥ 0.576 V  
EN = HIGH, VFB ≤ 0.552 V  
EN = HIGH, VFB ≤ 0.63 V  
EN = HIGH, VFB ≥ 0.66 V  
EN = LOW  
Enable  
Shutdown  
Thermal shutdown  
UVLO  
TJ > TJSD  
0.7 V < VIN < VUVLO  
VIN < 0.7 V  
Power supply removal  
undefined  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
9.2 Typical Application  
VIN  
2.4 V to 5.5 V  
TPS62088  
VIN SW  
L1  
0.24 µH  
VOUT  
1.8 V  
C1  
4.7 µF  
C2  
10 µF  
C3  
10 µF  
C4  
120 pF  
R3  
100 k  
R1  
200 kꢀ  
EN  
VPG  
PG GND FB  
R2  
100 kꢀ  
Copyright Ú 2017, Texas Instruments Incorporated  
Figure 9-1. Typical Application of Adjustable Output  
VIN  
2.4 V to 5.5 V  
VOUT  
1.8 V  
TPS6208818  
L1  
0.24 µH  
VIN  
SW  
FB  
C1  
4.7 µF  
C2  
10 µF  
C3  
10 µF  
R3  
100 k  
EN  
VPG  
PG GND  
Copyright Ú 2017, Texas Instruments Incorporated  
Figure 9-2. Typical Application of Fixed Output  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 9-1 as the input parameters.  
Table 9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
2.4 V to 5.5 V  
1.8 V  
Output voltage  
Maximum peak output current  
3 A  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
Table 9-2 lists the components used for the example.  
Table 9-2. List of Components of Figure 9-1  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
C1  
C2, C3  
C4  
4.7 µF, Ceramic capacitor, 6.3 V, X7R, size 0603, JMK107BB7475MA  
10 µF, Ceramic capacitor, 10 V, X7R, size 0603, GRM188Z71A106MA73D  
120 pF, Ceramic capacitor, 50 V, size 0603, GRM1885C1H121JA01D  
0.24 µH, Power Inductor, size 0603, DFE160810S-R24M (DFE18SANR24MG0)  
Depending on the output voltage, 1%, size 0603  
Taiyo Yuden  
Murata  
Murata  
Murata  
Std  
L1  
R1  
R2  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0603  
Std  
R3  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0603  
Std  
(1) See Third-party Products disclaimer.  
Table 9-3. List of Components of Figure 9-2, Smallest Solution  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
C1, C2, C3  
10 µF, Ceramic capacitor, 6.3 V, X5R, size 0402, GRM155R60J106ME47  
0.24 µH, Power Inductor, size 0603, DFE160810S-R24M (DFE18SANR24MG0)  
100 kΩ, Chip resistor, 1/16 W, size 0402  
Murata  
Murata  
Std  
L1  
R3  
(1) See Third-party Products disclaimer.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62088 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Setting The Output Voltage  
Choose resistors R1 and R2 to set the output voltage within a range of 0.6V to 4V, according to Equation 3. To  
keep the feedback (FB) net robust from noise, set R2 equal to or lower than 100 kΩ to have at least 0.6 µA of  
current in the voltage divider. Lower values of FB resistors achieve better noise immunity, and lower light load  
efficiency, as explained in the Design Considerations For A Resistive Feedback Divider In A DC/DC Converter  
Analog Design Journal.  
«
VOUT  
VFB  
V
OUT  
R1= R2ì  
-1 = R2ì  
-1  
÷
÷
«
0.6V  
(3)  
For devices with a fixed output voltage, the FB pin must be connected to VOUT. R1, R2, and C4 are not needed.  
The fixed output voltage devices have an internal feedforward capacitor.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
9.2.2.3 Feedforward Capacitor  
A feedforward capacitor (C4) is required in parallel with R1. Equation 4 calculates the capacitor value. For  
the recommended 100 k value for R2, a 120 pF feedforward capacitor is used. For forced PWM devices, a  
feedforward capacitor is not needed.  
12 ms  
C4 =  
R2  
(4)  
9.2.2.4 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify this process, Table 9-4  
outlines possible inductor and capacitor value combinations for most applications. Checked cells represent  
combinations that are proven for stability by simulation and lab test. Further combinations should be checked for  
each individual application.  
Table 9-4. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
10  
+
2 x 10 or 1 x 22  
47  
+
100  
(1)  
0.24  
0.33  
0.47  
+
+
+
+
(1) This LC combination is the standard value and recommended for most applications. Other '+' marks indicate recommended filter  
combinations. Other values may be acceptable in some applications but should be fully tested by the user.  
(2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and –30%.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and –50%.  
9.2.2.5 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, Equation 5 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
(5)  
where  
IOUT,MAX = Maximum output current  
ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher than  
IL,MAX. In addition, DC resistance and size should also be taken into account when selecting an appropriate  
inductor. Table 9-5 lists recommended inductors.  
Table 9-5. List of Recommended Inductors(1)  
INDUCTANCE CURRENT RATING  
DIMENSIONS  
[L × W × H mm]  
DC RESISTANCE  
[mΩ]  
PART NUMBER  
[µH]  
0.24  
0.24  
[A]  
4.9  
6.5  
Murata, DFE160810S-R24M  
(DFE18SANR24MG0)  
1.6 × 0.8 × 1.0  
2.0 × 1.2 × 1.0  
30  
25  
Murata, DFE201210U-R24M  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
 
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
Table 9-5. List of Recommended Inductors(1) (continued)  
INDUCTANCE CURRENT RATING  
DIMENSIONS  
[L × W × H mm]  
DC RESISTANCE  
PART NUMBER  
[µH]  
0.24  
0.25  
0.24  
0.24  
[A]  
4.9  
9.7  
3.5  
3.5  
[mΩ]  
1.6 × 0.8 × 0.8  
4.0 × 4.0 × 1.2  
2.0 × 1.6 × 0.6  
2.0 × 1.6 × 0.6  
22  
Cyntec, HTEH16080H-R24MSR  
Coilcraft, XFL4012-251ME  
7.64  
35  
Wurth Electronics, 74479977124  
Sunlord, MPM201606SR24M  
35  
(1) See Third-party Products disclaimer.  
9.2.2.6 Capacitor Selection  
The input capacitor is the low-impedance energy source for the converters which helps to provide stable  
operation. A low-ESR multilayer ceramic capacitor is recommended for best filtering and must be placed  
between VIN and GND as close as possible to those pins. For most applications, 4.7 μF is sufficient, though a  
larger value reduces input current ripple.  
The architecture of the device allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends  
using X7R or X5R dielectrics. The recommended typical output capacitor value is 2 × 10 μF or 1 × 22 µF; this  
capacitance can vary over a wide range as outline in the output filter selection table.  
A feedforward capacitor is required for the adjustable version, as described in Section 9.2.2.2. This capacitor is  
not required for the fixed output voltage versions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
9.2.3 Application Curves  
VIN = 5.0 V, VOUT = 1.8 V, TA = 25°C, BOM = Table 9-2, unless otherwise noted.  
0.612  
0.609  
0.606  
0.603  
0.6  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.597  
0.594  
0.591  
0.588  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
3
100m  
1m  
10m  
Load (A)  
100m  
1
3
D021  
D002  
VOUT = 0.6 V  
VOUT = 0.6 V  
Figure 9-4. Load Regulation  
Figure 9-3. Efficiency  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
45%  
40%  
0.606  
0.604  
0.602  
0.6  
0.598  
0.596  
0.594  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 0.6 V  
FPWM devices  
VOUT = 0.6 V  
FPWM devices  
Figure 9-5. Efficiency  
Figure 9-6. Load Regulation  
0.909  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.906  
0.903  
0.9  
0.897  
0.894  
0.891  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
3
100m  
1m  
10m  
Load (A)  
100m  
1
3
D031  
D003  
VOUT = 0.9 V  
VOUT = 0.9 V  
Figure 9-8. Load Regulation  
Figure 9-7. Efficiency  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
100%  
0.909  
0.906  
0.903  
0.9  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
45%  
40%  
0.897  
0.894  
0.891  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 0.9 V  
FPWM devices  
VOUT = 0.9 V  
Figure 9-9. Efficiency  
Figure 9-10. Load Regulation  
100  
1.212  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.209  
1.206  
1.203  
1.2  
1.197  
1.194  
1.191  
1.188  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
3
100m  
1m  
10m  
Load (A)  
100m  
1
3
D041  
D004  
VOUT = 1.2 V  
VOUT = 1.2 V  
Figure 9-12. Load Regulation  
Figure 9-11. Efficiency  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
45%  
40%  
1.212  
1.209  
1.206  
1.203  
1.2  
1.197  
1.194  
1.191  
1.188  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 1.2 V  
FPWM devices  
VOUT = 1.2 V  
FPWM devices  
Figure 9-13. Efficiency  
Figure 9-14. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
100  
95  
90  
85  
80  
75  
1.818  
1.812  
1.806  
1.8  
1.794  
1.788  
1.782  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
70  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
65  
60  
100m  
1m  
10m  
Load (A)  
100m  
1
3
100m  
1m  
10m  
Load (A)  
100m  
1
3
D051  
D005  
VOUT = 1.8 V  
VOUT = 1.8 V  
Figure 9-16. Load Regulation  
Figure 9-15. Efficiency  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
45%  
40%  
1.818  
1.815  
1.812  
1.809  
1.806  
1.803  
1.8  
1.797  
1.794  
1.791  
1.788  
1.785  
1.782  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 1.8 V  
FPWM devices  
VOUT = 1.8 V  
FPWM devices  
Figure 9-17. Efficiency  
Figure 9-18. Load Regulation  
100  
3.333  
3.322  
3.311  
3.3  
95  
90  
85  
80  
75  
70  
3.289  
3.278  
3.267  
3.256  
3.245  
3.234  
VIN = 4.2V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
3
100m  
1m  
10m  
Load (A)  
100m  
1
3
D061  
D006  
VOUT = 3.3 V  
VOUT = 3.3 V  
Figure 9-20. Load Regulation  
Figure 9-19. Efficiency  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
100%  
3.356  
3.351  
3.346  
3.341  
3.336  
3.331  
3.326  
3.321  
3.316  
3.311  
3.306  
3.301  
3.296  
3.291  
3.286  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
45%  
40%  
VIN=4.2V  
VIN=5.0V  
VIN=4.2V  
VIN=5.0V  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 3.32 V  
FPWM devices  
VOUT = 3.32 V  
FPWM devices  
Figure 9-21. Efficiency  
Figure 9-22. Load Regulation  
5.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
4.0  
3.0  
2.0  
1.0  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 3.3V  
VOUT = 0.6V  
VOUT = 0.9V  
VOUT = 1.2V  
VOUT = 1.8V  
0.0  
0.5  
1.0  
1.5  
Load (A)  
2.0  
2.5  
3.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D008  
D009  
VIN = 3.3 V  
IOUT = 1.0 A  
Figure 9-23. Switching Frequency  
Figure 9-24. Switching Frequency  
4.50x106  
4.00x106  
3.50x106  
3.00x106  
2.50x106  
2.00x106  
1.50x106  
1.00x106  
500.00x103  
0.00x100  
4.50x106  
4.00x106  
3.50x106  
3.00x106  
2.50x106  
2.00x106  
1.50x106  
1.00x106  
500.00x103  
0.00x100  
VOUT=0.6V  
VOUT=0.9V  
VOUT=1.2V  
VOUT=1.8V  
VOUT=3.3V  
VOUT=0.6V  
VOUT=0.9V  
VOUT=1.2V  
VOUT=1.8V  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
VIN = 3.3 V  
FPWM devices  
IOUT = 1.0 A  
FPWM devices  
Figure 9-25. Switching Frequency  
Figure 9-26. Switching Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
ICOIL  
ICOIL  
1A/DIV  
1A/DIV  
VOUT  
10mV/DIV  
AC  
VOUT  
10mV/DIV  
AC  
VSW  
VSW  
5V/DIV  
5V/DIV  
Time - 200ns/DIV  
Time - 1s/DIV  
D014  
D013  
IOUT = 0.1 A  
IOUT = 3.0 A  
Figure 9-28. PSM Operation  
Figure 9-27. PWM Operation  
VEN  
5V/DIV  
VPG  
5V/DIV  
VOUT  
1V/DIV  
ICOIL  
0.5A/DIV  
IOUT = 0.1 A  
FPWM devices  
Time - 500s/DIV  
D015  
Figure 9-29. FPWM Operation  
No load  
Figure 9-30. Start-Up with No-Load  
VEN  
5V/DIV  
VPG  
5V/DIV  
VOUT  
1V/DIV  
ICOIL  
2A/DIV  
No load  
FPWM devices  
Time - 500s/DIV  
Figure 9-31. Start-Up with No-Load  
D016  
IOUT = 3.0 A  
Figure 9-32. Start-Up with Load  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
VPG  
5V/DIV  
VPG  
5V/DIV  
ILOAD  
ICOIL  
2A/DIV  
2A/DIV  
VOUT  
50mV/DIV  
AC  
VOUT  
1V/DIV  
Time - 10s/DIV  
Time - 200s/DIV  
D017  
D018  
IOUT = 0.1 A to 3 A  
IOUT = 1 A  
Figure 9-33. Load Transient  
Figure 9-34. HICCUP Short Circuit Protection  
VPG  
5V/DIV  
ICOIL  
2A/DIV  
VOUT  
1V/DIV  
Time - 2s/DIV  
D019  
IOUT = 1 A  
Figure 9-35. HICCUP Short Circuit Protection (Zoom In)  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.4 V to 5.5 V. Ensure that the input  
power supply has a sufficient current rating for the application.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the device. See  
Figure 11-1 and Figure 11-2 for the recommended PCB layout.  
The input/output capacitors and the inductor should be placed as close as possible to the IC. This keeps  
the power traces short. Routing these power traces direct and wide results in low trace resistance and low  
parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the power GND to avoid a  
GND potential shift.  
The sense traces connected to FB is a signal trace. Special care should be taken to avoid noise being  
induced. Keep these traces away from SW nodes. The connection of the output voltage trace for the FB  
resistors should be made at the output capacitor.  
Refer to Figure 11-1 and Figure 11-2 for an example of component placement, routing and thermal design.  
11.2 Layout Example  
Figure 11-2. PCB Layout of Fixed Output Voltage  
Application  
Figure 11-1. PCB Layout of Adjustable Output  
Voltage Application  
11.2.1 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the Thermal Characteristics Application Notes,  
Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs Application Report and  
Semiconductor and IC Package Thermal Metrics Application Report.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.1.2 Development Support  
12.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62088 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
Application Report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics Application Report  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
 
 
 
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
PACKAGE OUTLINE  
YWC0006A  
PowerWCSP - 0.3 mm max height  
S
C
A
L
E
1
5
.
0
0
0
POWER CHIP SCALE PACKAGE  
0.82  
0.78  
A
B
PIN A1 INDEX  
AREA  
1.22  
1.18  
0.20  
0.16  
C
0.3 MAX  
SEATING PLANE  
0.10  
0.07  
PKG  
0.378  
3X  
0.16  
3X  
0.358  
0.14  
C
B
SYMM  
0.86  
0.187  
2X  
0.167  
0.43  
0.015  
C A B  
A
0.247  
0.227  
1
2
4X  
0.165  
0.015  
C A B  
0.439  
4223997/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YWC0006A  
PowerWCSP - 0.3 mm max height  
POWER CHIP SCALE PACKAGE  
PKG  
PKG  
3X (0.15)  
3X (0.368)  
4X (0.237)  
3X (0.2)  
3X (0.368)  
4X (0.237)  
1
2
1
2
A
A
2X (0.2)  
SYMM  
(0.43) TYP  
B
2X (0.177)  
SYMM  
(0.43) TYP  
B
(R0.05) TYP  
SOLDER MASK  
OPENING  
TYP  
(R0.05) TYP  
SOLDER MASK  
OPENING  
TYP  
C
C
METAL UNDER  
SOLDER MASK  
TYP  
METAL EDGE  
TYP  
0.0375 MIN  
ALL AROUND  
TYP  
0.0375 MAX  
ALL AROUND  
TYP  
(0.165)  
(0.165)  
(0.464)  
(0.439)  
LAND PATTERN EXAMPLE  
NON SOLDER MASK DEFINED  
SCALE: 40X  
LAND PATTERN EXAMPLE  
SOLDER MASK DEFINED  
SCALE: 40X  
4223997/B 08/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YWC0006A  
PowerWCSP - 0.3 mm max height  
POWER CHIP SCALE PACKAGE  
PKG  
3X (0.2)  
3X (0.368)  
3X (0.2)  
3X (0.348)  
4X (0.237)  
1
2
A
(0.43) TYP  
B
4X (0.237)  
(0.43) TYP  
PKG  
SYMM  
SYMM  
2X (0.2)  
2X (0.2)  
(R0.05) TYP  
(R0.05) TYP  
METAL UNDER  
SOLDER MASK  
TYP  
C
SOLDER MASK  
OPENING  
TYP  
(0.165)  
EXPOSED  
METAL  
3X  
(0.175)  
TO PKG  
(0.464)  
(0.474)  
SOLDER PASTE EXAMPLE  
SOLDER MASK DEFINED  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 40X  
SOLDER PASTE EXAMPLE  
NON SOLDER MASK DEFINED  
BASED ON 0.075 mm THICK STENCIL  
SCALE: 40X  
4223997/B 08/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
PACKAGE OUTLINE  
YFP0006-C01  
DSBGA - 0.5 mm max height  
S
C
A
L
E
1
0
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
0.30  
0.25  
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.19  
0.13  
BALL TYP  
0.4  
TYP  
SYMM  
C
D: Max = 1.22 mm, Min = 1.18 mm  
E: Max = 0.82 mm, Min = 0.78 mm  
0.8  
SYMM  
B
A
TYP  
0.4 TYP  
0.25  
0.21  
6X  
0.015  
1
2
C A B  
4224455/B 02/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFP0006-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
6X ( 0.23)  
2
1
A
B
(0.4) TYP  
SYMM  
C
SYMM  
LAND PATTERN EXAMPLE  
SCALE:50X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224455/B 02/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
TPS62088, TPS62088A, TPS62089A  
SLVSD94E – NOVEMBER 2017 – REVISED NOVEMBER 2021  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFP0006-C01  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
6X ( 0.25)  
1
2
A
B
(0.4) TYP  
SYMM  
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:50X  
4224455/B 02/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS62088 TPS62088A TPS62089A  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6208812YFPR  
TPS6208812YFPT  
TPS6208818YFPR  
TPS6208818YFPT  
TPS6208833YFPR  
TPS6208833YFPT  
TPS62088AYFPR  
TPS62088YFPR  
TPS62088YFPT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YWC  
YFP  
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1B5  
1B5  
1B6  
1B6  
1B7  
1B7  
W
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Call TI  
3000 RoHS & Green  
3000 RoHS & Green  
15X  
15X  
1GB  
X
250  
RoHS & Green  
TPS62088YWCR  
TPS62089AYFPR  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Dec-2021  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6208812YFPR  
TPS6208812YFPT  
TPS6208818YFPR  
TPS6208818YFPT  
TPS6208833YFPR  
TPS6208833YFPT  
TPS62088AYFPR  
TPS62088YFPR  
TPS62088YFPT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YWC  
YFP  
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
0.9  
0.9  
1.3  
1.3  
0.62  
0.62  
0.62  
0.62  
0.62  
0.62  
0.57  
0.62  
0.62  
0.38  
0.57  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
2.0  
4.0  
4.0  
4.0  
2.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
0.9  
1.3  
0.9  
1.3  
3000  
250  
0.9  
1.3  
0.9  
1.3  
3000  
3000  
250  
0.89  
0.9  
1.31  
1.3  
0.9  
1.3  
TPS62088YWCR  
TPS62089AYFPR  
3000  
3000  
0.95  
0.89  
1.35  
1.31  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6208812YFPR  
TPS6208812YFPT  
TPS6208818YFPR  
TPS6208818YFPT  
TPS6208833YFPR  
TPS6208833YFPT  
TPS62088AYFPR  
TPS62088YFPR  
TPS62088YFPT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YFP  
YWC  
YFP  
6
6
6
6
6
6
6
6
6
6
6
3000  
250  
182.0  
210.0  
210.0  
210.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
185.0  
185.0  
185.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
35.0  
35.0  
35.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
3000  
250  
TPS62088YWCR  
TPS62089AYFPR  
3000  
3000  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS6208818YFPR

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125
TI

TPS6208818YFPT

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125
TI

TPS6208833YFPR

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125
TI

TPS6208833YFPT

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125
TI

TPS62088A

TPS62088 and TPS6208xA, 2.4-V to 5.5-V Input, Tiny 6-Pin 2-A/3-A Step-Down Converter in 1.2-mm × 0.8-mm Wafer Chip Scale Package and Suitable for Embedding
TI

TPS62088AYFP

TPS62088 and TPS6208xA, 2.4-V to 5.5-V Input, Tiny 6-Pin 2-A/3-A Step-Down Converter in 1.2-mm × 0.8-mm Wafer Chip Scale Package and Suitable for Embedding
TI

TPS62088AYFPJ

采用 1.2mm x 0.8mm WCS 封装且具有强制 PWM 的 2.4V 至 5.5V 输入、3A 降压转换器 | YFP | 6 | -40 to 125
TI

TPS62088AYFPR

TPS62088 and TPS6208xA, 2.4-V to 5.5-V Input, Tiny 6-Pin 2-A/3-A Step-Down Converter in 1.2-mm × 0.8-mm Wafer Chip Scale Package and Suitable for Embedding
TI

TPS62088YFPR

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125
TI

TPS62088YFPT

采用 1.2mm x 0.8mm WCSP 封装的 2.4V 至 5.5V 输入、6 引脚 3A 微型降压转换器 | YFP | 6 | -40 to 125
TI

TPS62088YWCR

TPS62088 and TPS6208xA, 2.4-V to 5.5-V Input, Tiny 6-Pin 2-A/3-A Step-Down Converter in 1.2-mm × 0.8-mm Wafer Chip Scale Package and Suitable for Embedding
TI

TPS62088_V02

TPS62088 and TPS6208xA, 2.4-V to 5.5-V Input, Tiny 6-Pin 2-A/3-A Step-Down Converter in 1.2-mm × 0.8-mm Wafer Chip Scale Package and Suitable for Embedding
TI