TPS62097-Q1 [TI]

采用具有可湿性侧面的 3x3 QFN 封装的 2A 汽车类降压转换器;
TPS62097-Q1
型号: TPS62097-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用具有可湿性侧面的 3x3 QFN 封装的 2A 汽车类降压转换器

转换器
文件: 总24页 (文件大小:1681K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
采用可湿侧面 QFN 封装的 TPS62097-Q1 2A 高效降压转换器  
1 特性  
3 说明  
1
符合 AEC-Q100 标准,其中包括以下内容:  
TPS62097-Q1 器件是一款同步降压转换器,经优化可  
用于高效率和噪声关键 应用。此器件主要用于宽输出  
电流范围内的高效转换。在中等负载至重负载状态下,  
此转换器在 PWM 模式下运行,且会在轻负载下自动  
进入节能运行模式。可使用外部电阻器在 1.5MHz 至  
2.5MHz 范围内选择开关频率。iDCS-Control 可在强制  
PWM 模式下以恒定开关频率实现低噪声运行。  
器件温度 1 级:–40°C 125°C 工作结温范围  
器件人体放电模型 (HBM) 静电放电 (ESD) 分类  
等级 2  
器件 CDM ESD 分类等级 C6  
具有可选开关频率的 iDCS-Control 拓扑  
强制 PWM 或省电模式  
效率高达 97%  
为了解决系统电源轨的需求,内部补偿电路支持使用电  
容值高于 150µF 的各种外部输出电容器。为在启动过  
程中控制浪涌电流,此器件通过连接至 SS/TR 引脚的  
外部电容器提供了可编程软启动功能。SS/TR 引脚还  
可用于电压跟踪配置中。此器件还集成了短路保护、电  
源正常和热关断 功能。  
2.5V 6.0V 输入电压  
0.8V VIN 可调输出电压  
3.3V 固定输出电压,TPS6209733-Q1  
输出电压精度为 ±1%  
间断短路保护功能  
可编程软启动  
器件信息(1)  
输出电压跟踪  
器件型号  
封装  
封装尺寸(标称值)  
3.0mm x 3.0mm  
3.0mm x 3.0mm  
可实现 100% 占空比,以确保最低压降  
输出放电  
TPS62097-Q1  
TPS6209733-Q1  
QFN (16)  
QFN (16)  
电源正常输出  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
热关断保护  
采用可湿侧面 3mm x 3mm QFN 封装  
输出电压选项  
2 应用  
器件型号  
输出电压  
可调  
标记符号  
9700Q  
网关  
TPS62097-Q1  
TPS6209733-Q1  
3.3V  
9733Q  
音响主机  
仪表组  
远程信息处理  
1.8V 输出,典型应用  
1.8V 输出,效率,模式 = 开环  
VIN  
5.0 V  
100  
90  
80  
70  
60  
TPS62097-Q1  
L1  
1.0 µH  
VOUT  
1.8 V  
PVIN  
AVIN  
SW  
VOS  
C1  
10 µF  
C2  
22 µF  
R1  
EN  
24.9 k  
SS/TR  
MODE  
FB  
VPG  
PG  
C3  
R2  
20 kꢀ  
R4*  
AGND PGND  
10 nF  
R3  
100 kꢀ  
R4: optional  
VIN  
Copyright Ú 2016, Texas Instruments Incorporated  
VIN = 3.3 V  
VIN = 5.0 V  
0
0.5  
1
1.5  
2
Load (A)  
D026  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDZ7  
 
 
 
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
目录  
7.4 Device Function Modes ............................................ 8  
Application Information....................................... 12  
8.1 Application Information............................................ 12  
8.2 1.8-V Output Application........................................ 12  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Terminal Configuration and Functions................ 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommend Operating Conditions........................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics.......................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
7.1 Overview ................................................................... 7  
7.2 Functional Block Diagram ......................................... 7  
7.3 Feature Description................................................... 8  
8
9
10 PCB Layout.......................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
10.3 Thermal Information.............................................. 18  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持 ............................................................... 19  
11.2 社区资源................................................................ 19  
11.3 ....................................................................... 19  
11.4 静电放电警告......................................................... 19  
11.5 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
Changes from Original (August 2017) to Revision A  
Page  
产品数据发布。....................................................................................................................................................................... 1  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
5 Terminal Configuration and Functions  
RGT Package with Wettable Flanks  
16-Pin VQFN  
(Top View)  
Anchor Pin  
Anchor Pin  
SW  
16  
SW  
SW  
SW  
13  
15  
14  
VOS  
FB  
1
2
3
4
12  
11  
10  
9
EN  
PG  
Exposed  
Thermal Pad  
MODE  
AGND  
SS/TR  
AVIN  
5
6
7
8
PGND PGND PVIN  
PVIN  
Anchor Pin  
Anchor Pin  
Copyright Ú 2016, Texas Instruments Incorporated  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
PGND  
SW  
NO.  
5,6  
Power ground pin.  
13,14,15,16 PWR Switch pin. It is connected to the internal MOSFET switches. Connect the external inductor between this  
terminal and the output capacitor.  
VOS  
FB  
1
2
I
I
Output voltage sense pin. This pin must be directly connected to the output capacitor.  
Feedback pin. For the adjustable output voltage version, a resistor divider sets the output voltage. For the  
fixed output voltage versions, this pin is recommended to be connected to AGND for improved thermal  
performance. The pin also can be left floating as an internal 400kΩ resistor is connected between this pin  
and AGND for fixed output voltage versions.  
PG  
EN  
11  
12  
O
I
Power good open drain output pin. The pull-up resistor should not be connected to any voltage higher than  
6 V. If it's not used, leave the pin floating.  
Enable pin. To enable the device this pin needs to be pulled high. Pulling this pin low disables the device.  
This pin has an internal pull-down resistor of typically 375kΩ when the device is disabled.  
PVIN  
AVIN  
SS/TR  
7,8  
9
PWR Power input supply pin.  
I
I
Analog input supply pin. Connect it to the PVIN pin together.  
10  
Soft startup and voltage tracking pin. A capacitor is connected to this pin to set the soft startup time. Leaving  
this pin floating sets the minimum startup time.  
MODE  
3
I
Mode selection pin. Connect this pin to AGND to enable Power Save Mode with automatic transition  
between PWM and Power Save Mode. Connect this pin to an external resistor or leave floating to enable  
forced PWM mode only. See 1.  
AGND  
4
Analog ground pin.  
Exposed Thermal Pad  
Anchor Pins  
The exposed thermal pad is connected to AGND. It must be soldered for mechanical reliability.  
These pins do not require an electrical connection but can be connected to AGND. They must be soldered  
for mechanical reliability. Refer to EXAMPLE BOARD LAYOUT at the end of this data sheet.  
Copyright © 2017, Texas Instruments Incorporated  
3
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
-3  
MAX  
6.0  
UNIT  
AVIN, PVIN, EN, VOS, PG  
MODE, SS/TR, SW (DC)  
VIN+0.3V  
3.0  
Voltage at Pins(2)  
FB  
V
SW (AC, less than 100ns)(3)  
11  
Sink current  
Temperature  
PG  
0
1.0  
mA  
°C  
Operating Junction, TJ  
Storage, Tstg  
-40  
–65  
150  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching.  
6.2 ESD Ratings  
VALUE  
±2500  
±1500  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011(1)  
Electrostatic  
discharge  
VESD  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommend Operating Conditions  
MIN  
2.5  
0
MAX  
6.0  
UNIT  
VIN  
Input voltage range  
V
V
VPG  
VOUT  
IOUT  
TJ  
Pull-up resistor voltage  
Output voltage range  
Output current range  
6.0  
0.8  
0
VIN  
V
2.0  
A
Operating junction temperature  
-40  
125  
°C  
6.4 Thermal Information  
THERMAL METRIC(1)  
TPS62097-Q1WRGT  
UNITS  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
44.2  
51.7  
19.3  
1.1  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
19.3  
3.6  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953  
4
Copyright © 2017, Texas Instruments Incorporated  
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
6.5 Electrical Characteristics  
TJ = -40°C to 125°C, and VIN = 2.5V to 6.0V. Typical values are at TJ = 25°C and VIN = 3.6V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
EN = High, Device not switching, TJ = –40°C to 85°C  
40  
40  
57  
µA  
65  
IQ  
Quiescent current into AVIN, PVIN  
EN = High, Device not switching  
EN = Low, TJ = –40°C to 85°C  
EN = Low  
0.7  
0.7  
2.3  
2.4  
160  
20  
3
µA  
10  
ISD  
Shutdown current into AVIN, PVIN  
Under voltage lock out threshold  
VIN falling  
2.2  
2.3  
2.4  
V
VUVLO  
VIN rising  
2.5  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
TJ rising  
°C  
°C  
TQ JSD  
TJ falling  
LOGIC INTERFACE (EN, MODE)  
VH_EN  
VL_EN  
High-level input voltage, EN pin  
Low-level input voltage, EN pin  
1.6  
1.3  
2.0  
0.9  
V
V
1.0  
IEN,LKG Input leakage current into EN pin  
EN = High  
EN = Low  
0.01  
375  
µA  
k  
V
RPD  
Pull-down resistance at EN pin  
High-level input voltage, MODE pin  
Low-level input voltage, MODE pin  
VH_MO  
VL_MO  
1.2  
0.4  
5.5  
V
IMO,LKG Input leakage current into MODE pin  
MODE = High  
0.01  
0.16  
9.5  
µA  
SOFT STARTUP, POWER GOOD (SS/TR, PG)  
ISS  
Soft startup current  
7.5  
1
µA  
Voltage tracking gain factor  
VFB / VSS/TR  
VOUT rising, referenced to VOUT nominal  
VOUT falling, referenced to VOUT nominal  
Isink = 1mA  
92  
87  
95  
90  
98  
92  
VPG  
Power good threshold  
%
VPG,OL Low-level output voltage, PG pin  
IPG,LKG Input leakage current into PG pin  
OUTPUT  
0.4  
1.6  
V
VPG = 5.0V  
0.01  
µA  
PWM mode, No load  
PSM mode(1)  
–1.0  
–1.0  
792  
792  
1.0  
2.1  
Output voltage accuracy  
TPS6209733Q  
VOUT  
%
PWM mode  
PSM mode(1)  
800  
800  
0.01  
165  
0.02  
0.2  
808  
817  
0.1  
VFB  
Feedback reference voltage  
mV  
IFB,LKG Input leakage current into FB pin  
VFB = 0.8V  
µA  
RDIS  
Output discharge resistor  
Line regulation  
EN = Low, VOUT = 1.8V  
IOUT = 0.5A, VOUT = 1.8V(1)  
%/V  
%/A  
(1)  
Load regulation  
PWM mode, VOUT = 1.8V  
POWER SWITCH  
ISW = 500mA, VIN = 5.0V  
ISW = 500mA, VIN = 3.6V  
ISW = 500mA, VIN = 5.0V  
ISW = 500mA, VIN = 3.6V  
42  
53  
High-side FET on-resistance  
mΩ  
mΩ  
RDS(on)  
40  
Low-side FET on-resistance  
50  
3.1  
3.3  
3.6  
3.6  
–1.1  
4.2  
3.9  
ILIMF  
ILIMN  
High-side FET forward current limit  
Low-side FET negative current limit  
A
A
VIN = 5.0V  
Forced PWM mode  
–1.25  
-0.7  
(1) Conditions: L = 1μH, COUT = 22μF, Switching Frequency = 2.0MHz  
版权 © 2017, Texas Instruments Incorporated  
5
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
120  
120  
100  
80  
60  
40  
20  
0
TJ = -40°C  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
100  
80  
60  
40  
20  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Input Voltage (V)  
D014  
D015  
1. High-Side FET On-Resistance  
2. Low-Side FET On-Resistance  
6
版权 © 2017, Texas Instruments Incorporated  
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
7 Detailed Description  
7.1 Overview  
The TPS62097-Q1 synchronous step-down converter is based on the iDCS-Control (Industrial Direct Control with  
Seamless transition into Power Save Mode) topology. The control topology not only keeps the advantages of  
DCS-Control, but also provides other features:  
Forced PWM mode over the whole load range  
Selectable PWM switching frequency  
1% output voltage accuracy  
Output voltage sequencing and tracking  
The iDCS-Control topology operates in PWM (Pulse Width Modulation) mode for medium to heavy load  
conditions and in Power Save Mode (PSM) at light load conditions. Or the forced PWM mode removes power  
save mode operation and operates the device always at its nominal switching frequency.  
In PWM mode, the device operates with a predictive On-time switching pulse. A constant switching frequency  
over the input and output voltage range is achieved by using an input and output voltage feed forward to set the  
on-time, as shown in 1. In PSM mode, the switching frequency is reduced to achieve high efficiency over the  
entire load current range. Since iDCS-Control supports both operation modes within a single building block, the  
transition from PWM mode to Power Save Mode is seamless and without effects on the output voltage.  
7.2 Functional Block Diagram  
AVIN  
Hiccup  
Counter  
PG  
PVIN  
VFB  
High-side  
Current Sense  
VREF  
Low-side  
Current Sense  
EN  
Bandgap  
Undervoltage Lockout  
Thermal Shutdown  
375k(2)  
AGND  
SW  
MOSFET Driver  
Control Logic  
VIN  
Voltage  
Clamp  
VREF  
PGND  
VOS  
SS/TR  
MODE  
Ramp  
VIN  
Direct Control  
and  
Compensation  
Comparator  
R1(1)  
R2(1)  
On time  
Selection  
tON  
Timer  
FB  
VREF  
Error Amplifier  
165Ω  
iDCS - Control  
EN Output Discharge  
Logic  
Note:  
(1) R1, R2 are implemented in the fixed output voltage versions only.  
(2) When the device is enabled, the 375 kΩ resistor is disconnected.  
版权 © 2017, Texas Instruments Incorporated  
7
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 100% Duty Cycle Mode  
The device offers a low input to output voltage dropout by entering 100% duty cycle mode, when the input  
voltage reaches the level of the output voltage. In this mode the high-side MOSFET switch is constantly turned  
on and the low-side MOSFET is switched off. The minimum input voltage to maintain output regulation,  
depending on the load current and output voltage, is calculated as:  
VIN(min) = VOUT(min) + IOUT x (RDS(on) + RL)  
where  
VIN(min) = Minimum input voltage to maintain a minimum output voltage  
IOUT = Output current  
RDS(on) = High side FET on-resistance  
RL = Inductor ohmic resistance (DCR)  
(1)  
When the device operates close to 100% duty cycle mode, the TPS62097-Q1 can't enter Power Save Mode  
regardless of the load current if the input voltage decreases to typically 15% above the output voltage. The  
device maintains output regulation in PWM mode.  
7.3.2 Switch Current Limit and Hiccup Short Circuit Protection  
The switch current limit prevents the devices from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a shorted/saturated inductor or a heavy  
load/shorted output circuit condition. If the inductor current reaches the threshold ILIMF, the high-side MOSFET is  
turned off and the low-side MOSFET is turned on to ramp down the inductor current. Once this switch current  
limit is triggered 32 times, the devices stop switching and enable the output discharge. The devices then  
automatically start a new startup after a typical delay time of 100µs has passed. This is HICCUP short circuit  
protection and is implemented to reduce the current drawn during a short circuit condition. The devices repeat  
this mode until the high load condition disappears.  
When the device is in forced PWM mode, the negative current limit of the low-side MOSFET is active. The  
negative current limit prevents excessive current from flowing back through the inductor to the input.  
7.3.3 Under Voltage Lockout (UVLO)  
To avoid mis-operation of the device at low input voltages, an under voltage lockout is implemented, which shuts  
down the devices at voltages lower than VUVLO with a hysteresis of 100mV.  
7.3.4 Thermal Shutdown  
The device goes into thermal shutdown and stops switching once the junction temperature exceeds TJSD. Once  
the device temperature falls below the threshold by 20°C, the device returns to normal operation automatically.  
7.4 Device Function Modes  
7.4.1 Enable and Disable (EN)  
The device is enabled by setting the EN pin to a logic High. Accordingly, shutdown mode is forced if the EN pin  
is pulled Low with a shutdown current of typically 0.7 μA.  
In shutdown mode, the internal power switches as well as the entire control circuitry are turned off. An internal  
resistor of 165 Ω discharges the output via the VOS pin smoothly. The output discharge function also works  
when thermal shutdown, undervoltage lockout or HICCUP short circuit protection are triggered.  
An internal pull-down resistor of 375 kΩ is connected to the EN pin when the EN pin is Low. The pull-down  
resistor is disconnected when the EN pin is High.  
7.4.2 Power Save Mode and Forced PWM Mode (MODE)  
The MODE pin is a multi-functional pin that allows the device operation in forced PWM mode or PWM/PSM  
mode, and to select the PWM switching frequency.  
8
版权 © 2017, Texas Instruments Incorporated  
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
Device Function Modes (接下页)  
Once the EN pin is pulled high, the IC enables internal circuit blocks and prepares to ramp the output up. The  
period between the rising edge of the EN pin and the beginning of the power stage switching is called the MODE  
detection time, typically 50µs. During the MODE detection time period, shown in 3, the PWM switching  
frequency and operating mode are set by the MODE pin status, as shown in 1.  
The PWM switching frequency can't be changed after the detection time period. Only when the device is set in  
PWM/PSM mode during the MODE detection time period (MODE = AGND), it is possible to switch between  
PWM/PSM and forced PWM operation modes by toggling the MODE pin with a GPIO pin of a micro-controller,  
for example. The other four MODE pin selections force the device in PWM mode only.  
EN  
Disable  
Enable  
VOUT  
Soft Startup  
PG  
MODE  
Detection  
3. Power Up Sequence  
1. Switching Frequency and Mode Selection  
Typical PWM  
Switching  
Frequency (MHz)  
Resistance at MODE pin  
Toggle MODE pin after  
MODE detection  
ON-Time Equation  
Operating Mode  
(E24 EIA Value)  
1.50  
1.75  
8.2kΩ ±5%  
18kΩ ±5%  
No  
No  
tON = 667ns x VOUT / VIN  
tON = 571ns x VOUT / VIN  
Forced PWM  
Forced PWM  
PWM/PSM and  
Forced PWM  
2.00  
AGND  
Yes  
tON = 500ns x VOUT / VIN  
2.25  
2.50  
39kΩ ±5%  
No  
No  
tON = 444ns x VOUT / VIN  
tON = 400ns x VOUT / VIN  
Forced PWM  
Forced PWM  
75kΩ ±5% or Open  
Connecting the MODE pin to AGND with a resistor or leaving the MODE pin open forces the device into PWM  
mode for the whole load range. The device operates with a constant switching frequency that allows simple  
filtering of the switching frequency for noise sensitive applications. In forced PWM mode, the efficiency is lower  
than that of PSM at light load.  
Connecting the MODE pin to the AGND pin enables Power Save Mode with an automatic transition between  
PWM and Power Save Mode. As the load current decreases and the inductor current becomes discontinuous,  
the device enters Power Save Mode operation automatically. In Power Save Mode, the switching frequency is  
reduced and estimated by 公式 2. In Power Save Mode, the output voltage rises slightly above the nominal  
output voltage, as shown in 13. This effect is minimized by increasing the output capacitor.  
2´IOUT  
fPSM  
=
V
VIN - VOUT  
2
IN  
´
tON  
´
VOUT  
L
(2)  
When the device operates close to 100% duty cycle mode, the TPS62097-Q1 can't enter Power Save Mode  
regardless of the load current if the input voltage decreases to typically 15% above the output voltage. The  
device maintains output regulation in PWM mode.  
版权 © 2017, Texas Instruments Incorporated  
9
 
 
 
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
7.4.3 Soft Startup (SS/TR)  
The TPS62097-Q1 programs its output voltage ramp rate with the SS/TR pin. Connecting an external capacitor  
to SS/TR enables output soft startup to reduce inrush current from the input supply. The device charges the  
capacitor voltage to the input supply voltage with a constant current of typically 7.5μA. The FB pin voltage follows  
the SS/TR pin voltage until the internal reference voltage of 0.8V is reached. The soft startup time is calculated  
using 公式 3. Keep the SS/TR pin floating to set the minimum startup time.  
0.8V  
tSS = CSS / TR  
´
7.5mA  
(3)  
An active pull-down circuit is connected to the SS/TR pin. It discharges the external soft startup capacitor in case  
of disable, UVLO, thermal shutdown and HICCUP short circuit protection.  
7.4.4 Voltage Tracking (SS/TR)  
The SS/TR pin is externally driven by another voltage source to achieve output voltage tracking. The application  
circuit is shown in 4. From 0 V to 0.8 V, the internal reference voltage to the internal error amplifier follows the  
SS/TR pin voltage. When the SS/TR pin voltage is above 0.8 V, the voltage tracking is disabled and the FB pin  
voltage is regulated at 0.8 V. The device achieves ratiometric or coincidental (simultaneous) output tracking, as  
shown in 5.  
VOUT1  
VOUT2  
TPS62097  
R1  
R3  
SS/TR  
FB  
R2  
R4  
4. Output Voltage Tracking  
Voltage  
Voltage  
VOUT1  
VOUT1  
VOUT2  
VOUT2  
R3 R1  
<
R3 R1  
=
R4 R2  
R4 R2  
t
t
a) Ratiometric Tracking  
b) Coincidental Tracking  
5. Voltage Tracking Options  
The R2 value should be set properly to achieve accurate voltage tracking by taking 7.5 µA soft startup current  
into account. 1 kΩ or smaller is a sufficient value for R2.  
For decreasing SS/TR pin voltage, the device doesn't sink current from the output when the device is in PSM. So  
the resulting decreases of the output voltage may be slower than the SS/TR pin voltage if the load is light. When  
driving the SS/TR pin with an external voltage, do not exceed the voltage rating of the SS/TR pin which is  
VIN+0.3V.  
10  
版权 © 2017, Texas Instruments Incorporated  
 
 
 
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
7.4.5 Power Good (PG)  
The TPS62097-Q1 has a power good output. The PG pin goes high impedance once the output voltage is above  
95% of the nominal voltage, and is driven low once the output voltage falls below typically 90% of the nominal  
voltage. The PG pin is an open drain output and is specified to sink up to 1mA. The power good output requires  
a pull-up resistor connected to any voltage rail less than 6V. The PG signal can be used for sequencing of  
multiple rails by connecting it to the EN pin of other converters. Leave the PG pin floating when not used. 2  
shows the PG pin logic.  
2. PG Pin Logic  
Logic Status  
Device Conditions  
High Z  
Low  
EN = High, VFB VPG  
EN = Low, VFB VPG  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
TJ > TJSD  
0.7 V < VIN < VUVLO  
VIN 0.7 V  
Power Supply Removal  
版权 © 2017, Texas Instruments Incorporated  
11  
 
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
8 Application Information  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The following section discusses the design of the external components to complete the power supply design of  
the TPS62097-Q1.  
8.2 1.8-V Output Application  
VIN  
5.0 V  
TPS62097-Q1  
L1  
1.0 µH  
VOUT  
1.8 V  
PVIN  
SW  
AVIN  
EN  
VOS  
C1  
10 µF  
C2  
22 µF  
R1  
24.9 k  
SS/TR  
MODE  
FB  
VPG  
PG  
C3  
10 nF  
R2  
20 kꢀ  
R4*  
AGND PGND  
R3  
100 kꢀ  
R4: optional  
VIN  
Copyright Ú 2016, Texas Instruments Incorporated  
6. 1.8-V Output Application Schematic  
8.2.1 Design Requirements  
For this design example, use the following as the input parameters.  
3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage range  
Output voltage  
2.5 V to 6 V  
1.8 V  
Output current  
2.0 A  
4 lists the components used for the example.  
4. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
C1  
C2  
C3  
L1  
10 μF, Ceramic Capacitor, 6.3V, X7R, size 0805, C2012X7R0J106M125AB  
22 μF, Ceramic Capacitor, 6.3V, X7S, size 0805, C2012X7S1A226M125AC  
10 nF, Ceramic Capacitor, 6.3V, X7R, size 0603, GRM188R70J103KA01  
1 µH, Shielded, 5.4A, XFL4020-102MEB  
TDK  
TDK  
Murata  
Coilcraft  
Std  
R1  
R2  
R3  
Depending on the output voltage, 1% accuracy  
20 kΩ, 1% accuracy  
Std  
100 kΩ, 1% accuracy  
Std  
(1) See Third-party Products Disclaimer  
12  
版权 © 2017, Texas Instruments Incorporated  
 
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
8.2.2 Detailed Design Procedure  
8.2.2.1 Setting the Output Voltage  
The output voltage is set by an external resistor divider according to the following equation:  
R1  
R1  
æ
ö
æ
ö
VOUT = VFB  
´
1 +  
= 0.8 V ´ 1 +  
ç
÷
ç
÷
R2  
R2  
è
ø
è
ø
(4)  
R2 should not be higher than 20 kΩ to reduce noise coupling into the FB pin and improve the output voltage  
regulation. Choose additional resistor values for other outputs. A feed forward capacitor is not required.  
The fixed output voltage version, TPS6209733-Q1, does not need an external resistor divider. TI recommends to  
connect the FB pin to AGND for improved thermal performance.  
8.2.2.2 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify the selection process, 5  
outlines possible inductor and capacitor value combinations for most applications.  
5. Output Capacitor / Inductor Combinations  
NOMINAL COUT [µF](2)  
NOMINAL L [µH](1)  
10  
22  
47  
100  
150  
0.47  
1
(3)  
+
+
+
+
2.2  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by +20% and  
-30%. The required effective inductance is 500nH minimum.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by  
20% and -50%.  
(3) Typical application configuration. Other '+' mark indicates recommended filter combinations. Other  
values may be acceptable in applications but should be fully tested by the user. Refer to the  
application note SLVA710.  
8.2.2.3 Inductor Selection  
The main parameters for the inductor selection are the inductor value and the saturation current. To calculate the  
maximum inductor current under static load conditions, 公式 5 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
Where:  
´
L ´ fSW  
(5)  
IOUT,MAX = Maximum output current  
ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
TI recommends to choose the saturation current for the inductor 20% to 30% higher than the IL,MAX, out of 公式 5.  
A higher inductor value is also useful to lower ripple current but increases the transient response time as well.  
8.2.2.4 Capacitor Selection  
The input capacitor is the low impedance energy source for the converters which helps to provide stable  
operation. A low ESR multilayer ceramic capacitor is required for best filtering and should be placed between  
PVIN and PGND as close as possible to those pins. For most applications a 10-μF capacitor is sufficient, though  
a larger value reduces input current ripple.  
版权 © 2017, Texas Instruments Incorporated  
13  
 
 
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
The architecture of the TPS62097-Q1 allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends to  
use X7R or X5R dielectrics. The recommended typical output capacitor value is 22 μF and can vary over a wide  
range as outlined in 5.  
Ceramic capacitors have a DC-Bias effect, which has a strong influence on the final effective capacitance.  
Choose the right capacitor carefully in combination with considering its package size and voltage rating. Ensure  
that the input effective capacitance is at least 5 μF and the output effective capacitance is at least 10 μF.  
8.2.3 Application Performance Curves  
TA = 25°C, BOM = 4 unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VIN = 3.3V PSM  
VIN = 5.0V PSM  
VIN = 3.3V FPWM  
VIN = 5.0V FPWM  
VIN = 3.3V PSM  
VIN = 5.0V PSM  
VIN = 3.3V FPWM  
VIN = 5.0V FPWM  
1m  
10m  
100m  
1
5
1m  
10m  
100m  
1
5
Load (A)  
Load (A)  
D001  
D002  
VOUT = 1.0 V  
FSW = 2.0 MHz  
7. Efficiency  
VOUT = 1.2 V  
FSW = 2.0 MHz  
8. Efficiency  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
VIN = 3.3V PSM  
VIN = 5.0V PSM  
VIN = 3.3V FPWM  
VIN = 5.0V FPWM  
VIN = 3.3V PSM  
VIN = 5.0V PSM  
VIN = 3.3V FPWM  
VIN = 5.0V FPWM  
30  
30  
1m  
10m  
100m  
1
5
1m  
10m  
100m  
1
5
Load (A)  
Load (A)  
D003  
D004  
VOUT = 1.8 V  
FSW = 2.0 MHz  
9. Efficiency  
VOUT = 2.5 V  
FSW = 2.0 MHz  
10. Efficiency  
14  
版权 © 2017, Texas Instruments Incorporated  
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
100  
90  
80  
70  
60  
50  
40  
95  
85  
75  
FSW = 1.5 MHz  
FSW = 2.0 MHz  
FSW = 2.5 MHz  
VIN = 5.0V PSM  
VIN = 5.0V FPWM  
30  
1m  
10m  
100m  
1
5
0
0.5  
1
1.5  
2
Load (A)  
Load (A)  
D005  
D016  
VOUT = 3.3 V  
FSW = 2.0 MHz  
VOUT = 1.8 V  
VIN = 5.0 V  
11. Efficiency  
12. Efficiency with Different Switching Frequency  
1.809  
1.8  
1.809  
1.8  
1.791  
1.782  
1.773  
1.791  
1.782  
VIN = 3.3V PSM  
IOUT = 1mA PSM  
IOUT = 1A PSM  
IOUT = 1mA FPWM  
IOUT = 1A FPWM  
VIN = 5.0V PSM  
VIN = 3.3V FPWM  
VIN = 5.0V FPWM  
1.773  
1m  
10m  
100m  
1
5
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Load (A)  
Input Voltage (V)  
D006  
D007  
13. Load Regulation  
14. Line Regulation  
1.8x106  
1.6x106  
1.4x106  
1.2x106  
1x106  
2x106  
1.8x106  
1.6x106  
1.4x106  
1.2x106  
1x106  
IOUT = 1mA FPWM  
IOUT = 1mA FPWM  
IOUT = 10mA FPWM  
IOUT = 0.1A FPWM  
IOUT = 1A FPWM  
IOUT = 2A FPWM  
IOUT = 10mA FPWM  
IOUT = 0.1A FPWM  
IOUT = 1A FPWM  
IOUT = 2A FPWM  
8x105  
6x105  
2.5  
8x105  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Input Voltage (V)  
Input Voltage (V)  
D008  
D009  
VOUT = 1.0 V  
RMode = 8.2 kΩ  
VOUT = 1.0 V  
MODE = AGND, Forced PWM  
15. Switching Frequency, Forced PWM Mode (1.5 MHz)  
16. Switching Frequency, Forced PWM Mode (2.0MHz)  
版权 © 2017, Texas Instruments Incorporated  
15  
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
2.2x106  
2x106  
VSW  
2V/DIV  
1.8x106  
1.6x106  
1.4x106  
VOUT  
10mV/DIV  
AC  
IOUT = 1mA FPWM  
IOUT = 10mA FPWM  
IOUT = 0.1A FPWM  
IOUT = 1A FPWM  
IOUT = 2A FPWM  
ICOIL  
200mA/DIV  
2A OFFSET  
1.2x106  
1x106  
Time - 200ns/DIV  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
D016  
Input Voltage (V)  
D010  
VOUT = 1.2 V  
IOUT = 2 A  
VOUT = 1.0 V  
MODE = Open  
18. Output Ripple, PWM Operation (2.0MHz)  
17. Switching Frequency, Forced PWM Mode (2.5MHz)  
IOUT  
2A/DIV  
VSW  
2V/DIV  
VOUT  
100mV/DIV  
AC  
VOUT  
20mV/DIV  
AC  
ICOIL  
2A/DIV  
ICOIL  
300mA/DIV  
Time - 2s/DIV  
Time - 5s/DIV  
D017  
D018  
VOUT = 1.2 V  
IOUT = 30 mA  
VOUT = 1.2 V  
IOUT = 0 A to 2 A, 1A / µs  
19. Output Ripple, PSM Operation  
20. Load Transient, PWM/PSM Mode (2.0MHz)  
VEN  
IOUT  
2V/DIV  
2A/DIV  
VOUT  
500mV/DIV  
VOUT  
100mV/DIV  
AC  
ICOIL  
ICOIL  
2A/DIV  
300mA/DIV  
Time - 5s/DIV  
Time - 250s/DIV  
D019  
D020  
VOUT = 1.2 V  
IOUT = 0 A to 2 A, 1A / µs  
VOUT = 1.2 V  
ROUT = No Load  
21. Load Transient, Forced PWM Mode (2.0MHz)  
22. Startup and Shutdown without Load  
16  
版权 © 2017, Texas Instruments Incorporated  
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
Short  
Recovery  
VEN  
2V/DIV  
VOUT  
500mV/DIV  
VOUT  
500mV/DIV  
ICOIL  
ICOIL  
1A/DIV  
2A/DIV  
Time - 250s/DIV  
Time - 300s/DIV  
D021  
D022  
VOUT = 1.2 V  
ROUT = 0.6 Ω (2 A)  
VOUT = 1.2 V  
ROUT = 0.8 Ω (1.5 A) with 1-ms short  
23. Startup and Shutdown with Load  
24. Short Circuit Protection, HICCUP  
9 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 2.5V and 6V. The average  
input current of the TPS62097-Q1 is calculated as:  
VOUT ´IOUT  
1
IIN  
=
´
h
V
IN  
(6)  
Ensure that the power supply has a sufficient current rating for the application.  
版权 © 2017, Texas Instruments Incorporated  
17  
TPS62097-Q1  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
www.ti.com.cn  
10 PCB Layout  
10.1 Layout Guidelines  
TI recommends to place all components as close as possible to the IC. Specially, the input capacitor  
placement must be closest to the PVIN and PGND pins of the device.  
The low side of the input and output capacitors must be connected directly to the PGND pin to avoid a ground  
potential shift.  
Use wide and short traces for the main current paths to reduce the parasitic inductance and resistance.  
The sense trace connected to VOS pin is a signal trace. Special care should be taken to avoid noise being  
induced. Keep the trace away from SW nodes.  
Refer to 25 for an example of component placement, routing and thermal design.  
10.2 Layout Example  
R4  
R2  
GND  
R1  
GND  
C2  
VOUT  
PGND  
SW  
SW  
SW  
SW  
PAC102  
C1  
PGNDP ANT102  
PVIN  
PVIN  
VIN  
L1  
C3  
25. TPS62097-Q1 PCB Layout  
10.3 Thermal Information  
Implementation of integrated circuits in low-profile and fine pitch surface mount packages typically requires  
special attention to power dissipation. Many system dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component. For more details on how to use the thermal parameters, see the  
application notes: Thermal Characteristics Application Notes SZZA017 and SPRA953.  
18  
版权 © 2017, Texas Instruments Incorporated  
 
TPS62097-Q1  
www.ti.com.cn  
ZHCSH71A SEPTEMBER 2017REVISED DECEMBER 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修  
订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6209733QWRGTRQ1  
TPS62097QWRGTRQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
9733Q  
9700Q  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6209733QWRGTRQ1 VQFN  
TPS62097QWRGTRQ1 VQFN  
RGT  
RGT  
16  
16  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6209733QWRGTRQ1  
TPS62097QWRGTRQ1  
VQFN  
VQFN  
RGT  
RGT  
16  
16  
3000  
3000  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS6209718RWKR

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6209718RWKT

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6209733QWRGTRQ1

采用具有可湿性侧面的 3x3 QFN 封装的 2A 汽车类降压转换器 | RGT | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6209733RWKR

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6209733RWKT

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62097QWRGTRQ1

采用具有可湿性侧面的 3x3 QFN 封装的 2A 汽车类降压转换器 | RGT | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62097RWKR

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62097RWKT

采用 HotRod 封装并具有可选开关频率的 2A 降压转换器 | RWK | 11 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS621

TOSHIBA PHOTO TRNSISTOR SILICON NPN EPITAXIAL PLANAR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS621(A)

Photo Transistor, PHOTO TRANSISTOR DETECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS621(A,F)

暂无描述

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA

TPS621(B)

Photo Transistor, PHOTO TRANSISTOR DETECTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOSHIBA