TPS62147RGXT [TI]

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 2.0A 降压转换器 | RGX | 11 | -40 to 125;
TPS62147RGXT
型号: TPS62147RGXT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 2.0A 降压转换器 | RGX | 11 | -40 to 125

开关 输出元件 转换器
文件: 总46页 (文件大小:2794K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
DCS-Control TPS62147TPS62148 高精3V 17V 2A 降压转换器  
1 特性  
3 说明  
• 额TJ 范围内的输出电压精度±1%PWM 模  
)  
• 输入电压范围3V 17V  
• 静态电18µA典型值)  
• 输出电压范围0.8V 12V  
• 可调软启动  
• 强PWM PWM/PFM 操作  
• 强PWM 模式中具1.25 MHz 2.5MHz 的开  
关频率  
TPS62147 TPS62148 是基于 DCS-Control 拓扑的  
高效且易于使用的同步直流/直流降压转换器。3V 至  
17V 的宽输入电压范围使这些器件适用于多节锂离子  
电池以及 12V 中间电源轨。该器件提供 2A 连续输出  
电流。这些器件可在轻负载时自动进入节能模式从而  
可在整个负载范围内保持高效率。因此这些器件非常  
适合需要联网待机性能的应用如工业 PC 和视频监  
控。MODE 引脚设置为低之后器件会根据输出电流  
以及输入和输出电压自动调整开关频率。该技术称为自  
动效率增强 (AEE)可在整个工作范围内保持高转换效  
率。TPS62147TPS62148 可在 PWM 模式中提供  
1% 的输出电压精度因此可支持高输出电压精度的电  
源设计。FSEL 引脚允许在强制 PWM 模式中分别设置  
1.25MHz 2.5MHz 的开关频率。  
• 精密使能输入可实现  
– 用户定义的欠压锁定  
– 准确排序  
100% 占空比模式  
• 自动效率增(AEE)  
DCS-Control 拓扑  
• 有源输出放(TPS62148)  
HICCUP 过流保(TPS62147)  
• 电源正常状态输出  
典型静态电流为 18µA。在关断模式中典型电流为  
1µA。  
此器件提供了可调节版本采用 3mm x 2mm VQFN  
封装。  
• 采2mm × 3mm VQFN 封装  
2 应用  
器件信息  
封装(1)  
器件型号(2)  
TPS62147  
TPS62148  
封装尺寸标称值)  
3.00mm x 2.00mm  
3.00mm x 2.00mm  
• 标12V 电源轨  
• 移动和嵌入式计算机  
• 多节电池组成POL 电源  
• 工厂自动化、PLC、工PC  
• 楼宇自动化、视频监控  
RGXVQFN11)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 请参Device Comparison Table。  
100  
90  
80  
70  
60  
50  
TPS62147  
VBAT = 3.0 V to 17 V  
10 uF  
1 uH / 2.2 uH  
VOUT = 0.8 V to 12 V  
VIN  
EN  
SW  
VOS  
R
R
22 uF / 2x22 uF  
1
FB  
FSEL  
2
FSEL = low: fsw = 1.25 MHz  
FSEL = high: fsw = 2.5 MHz  
VIN = 4 V  
VIN = 5 V  
40  
PG  
30  
20  
10  
0
VIN = 8 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
AGND  
GND  
MODE  
SS/TR  
10m  
100m  
1m 10m  
Output Current (A)  
100m  
1
D041  
简化原理图  
效率与输出电流间的关系Vo = 3.3Vfsw =  
1.25MHzPFM  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDR8  
 
 
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Table of Contents  
9.3 Feature Description...................................................11  
9.4 Device Functional Modes..........................................12  
10 Application and Implementation................................15  
10.1 Application Information........................................... 15  
10.2 Typical Applications................................................ 19  
10.3 System Examples................................................... 33  
10.4 Power Supply Recommendations...........................35  
10.5 Layout..................................................................... 35  
11 Device and Documentation Support..........................38  
11.1 Device Support........................................................38  
11.2 接收文档更新通知................................................... 38  
11.3 支持资源..................................................................38  
11.4 Trademarks............................................................. 38  
11.5 静电放电警告...........................................................38  
11.6 术语表..................................................................... 38  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Parameter Measurement Information............................7  
8.1 Schematic................................................................... 7  
9 Detailed Description........................................................9  
9.1 Overview.....................................................................9  
9.2 Functional Block Diagram.........................................10  
Information.................................................................... 38  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (January 2023) to Revision B (February 2023)  
Page  
Revision B expanded the listings shown in revision A......................................................................................20  
Updated 10-7 to the correct graph............................................................................................................... 20  
Changes from Revision * (April 2018) to Revision A (January 2023)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 删除了 DCS-Control AEE 商标...................................................................................................................... 1  
Updated Absolute Maximum Ratings table note.................................................................................................4  
Updated 10-4 Efficiency vs Output current graph on page 20..................................................................... 20  
Updated 10-8 Efficiency vs Output current graph on page 21..................................................................... 20  
Updated 10-66 Switching Frequency vs Input Voltage graph on page 30................................................... 20  
Updated 10-68 Switching Frequency vs Input Voltage graph on page 31................................................... 20  
Removed the graph Switching Frequency vs Junction Temperature (Vout = 1.2 V, 1.8 V, PWM, FSEL=  
high)" on page 30..............................................................................................................................................20  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
2
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE NUMBER  
FEATURES  
OUTPUT VOLTAGE  
MARKING  
frequency selection on FSEL  
HICCUP current limit  
TPS62147  
adjustable  
62147  
frequency selection on FSEL  
output voltage discharge  
TPS62148  
adjustable  
62148  
6 Pin Configuration and Functions  
bottom view  
top view  
7
6
8
7
8
9
EN  
PG  
VOS  
FB  
PG  
EN  
9
6
5
4
SS/TR  
VOS  
SS/TR  
5
4
SW  
VIN  
10  
GND  
GND  
SW  
10  
VIN  
MODE  
FB  
MODE  
11  
11  
FSEL  
AGND  
AGND  
FSEL  
3
2
1
2
3
1
6-1. RGX Package 11-Pin VQFN  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NUMBER  
NAME  
Power supply input. Make sure the input capacitor is connected as close as possible  
between pin VIN and GND.  
1
VIN  
SW  
I
2
3
4
5
6
7
Switch pin of the converter connected to the internal Power MOSFETs.  
Ground pin.  
GND  
AGND  
FB  
I
I
Connect to GND.  
I
Voltage feedback input. Connect resistive output voltage divider to this pin.  
Output voltage sense pin. Connect directly to the positive pin of the output capacitor.  
Open drain power good output. Leave open or tie to GND if not used.  
VOS  
PG  
I
O
Enable pin of the device. Connect to logic low to disable the device. Pull high to enable the  
device. Do not leave this pin unconnected.  
8
9
EN  
I
I
Soft-start / Tracking pin. An external capacitor connected from this pin to GND defines the  
rise time for the internal reference voltage. The pin can also be used as an input for tracking  
and sequencing - see Detailed Description section in this document.  
SS/TR  
The device runs in PFM/PWM mode when this pin is pulled low. When the pin is pulled high,  
the device runs in forced PWM mode. Do not leave this pin unconnected.  
10  
11  
MODE  
FSEL  
I
I
Switching frequency setting pin. Pull to logic low for a switching frequency of 1.25 MHz. Pull  
to logic high for a switching frequency of 2.5 MHz. Do not leave FSEL unconnected.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over junction temperature range of 40°C to 150°C (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
2  
MAX  
20  
UNIT  
V
Pin voltage range(2)  
VIN  
SW, VOS  
VIN+0.3  
25.5  
V
SW (transient for t<10ns)(2)  
EN, MODE, FSEL, PG, FB, , SS/TR  
V
VIN+0.3  
150  
V
0.3  
40  
65  
Operating junction temperature, TJ  
Storage temperature range, Tstg  
°C  
°C  
150  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Electrostatic discharge  
Human Body Model - (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Charge Device Model - (CDM), per JEDEC specification JESD22-C101(2)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
17  
UNIT  
V
VIN  
VOUT  
L
Supply voltage  
Output voltage  
0.7  
0.6  
12  
V
Effective inductance for fsw = 2.5 MHz  
Effective inductance for fsw = 1.25 MHz  
Effective output capacitance for fsw = 2.5 MHz(1)  
Effective output capacitance for fsw = 1.25 MHz(1)  
Effective input capacitance(1) (2)  
Operating junction temperature  
1
2.9  
µH  
µH  
µF  
µF  
µF  
°C  
L
0.7 1.5 or 2.2  
2.9  
CO  
CO  
CI  
6
12  
22  
47  
10  
200(3)  
200(3)  
3
125  
TJ  
40  
(1) The values given for all the capacitors are effective capacitance, which includes the dc bias effect. Please check the manufacturer´s dc  
bias curves for the effective capacitance vs dc bias voltage applied.  
(2) Larger values can be required if the source impedance can not support the transient requirements of the load.  
(3) This is for capacitors directly at the output of the device. More capacitance is allowed if there is a series resistance associated to the  
capacitors. See also the systems examples 10.3.2 for applications with many distributed capacitors on the output.  
7.4 Thermal Information  
TPS62147, TPS62148  
THERMAL METRIC(1)  
RGX (VQFN)  
UNIT  
11 PINS  
38.4  
2.0  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
7.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.1  
7.6  
ψJB  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
4
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
 
 
 
 
 
 
 
 
 
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
TPS62147, TPS62148  
THERMAL METRIC(1)  
RGX (VQFN)  
11 PINS  
3.2  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
TJ = 40 °C to +125 °C and VIN = 3 V to 17 V. Typical values at VIN = 12 V and TA = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
Operating Quiescent  
Current  
EN = high, IOUT= 0 mA, Device not switching, TJ= 85  
°C  
IQ  
35  
46  
8
µA  
µA  
µA  
Operating Quiescent  
Current  
EN = high, IOUT= 0 mA, Device not switching  
IQ  
18  
1
ISD  
EN = 0 V, Nominal value at TJ= 25 °C, Max value at  
TJ= 85 °C  
Shutdown Current  
VUVLO  
Rising Input Voltage  
2.8  
2.5  
2.9  
2.6  
3.0  
2.7  
V
V
Undervoltage Lockout  
Threshold  
Falling Input Voltage  
TSD  
Thermal Shutdown  
Temperature  
Rising Junction Temperature  
160  
20  
°C  
Thermal Shutdown  
Hysteresis  
CONTROL (EN, SS/TR, PG, MODE, FSEL)  
High Level Input Voltage  
for FSEL, MODE pin  
VIH  
0.9  
V
V
VIL  
VIH  
VIL  
Low Level Input Voltage  
for FSEL, MODE pin  
0.3  
0.83  
0.73  
100  
Input Threshold Voltage  
for EN pin; rising edge  
0.77  
0.67  
0.8  
0.7  
V
Input Threshold Voltage  
for EN pin; falling edge  
V
Input Leakage Current for  
EN, FSEL, MODE  
ILKG_EN  
VTH_PG  
VOL_PG  
VIH = VIN or VIL= GND  
nA  
Power Good Threshold  
Voltage; dc level  
Rising (%VOUT  
)
93%  
3%  
96%  
0.07  
98%  
4.5%  
0.3  
Hysteresis  
Falling (%VOUT  
IPG = -2 mA  
)
Power Good Output Low  
Voltage  
V
Input Leakage Current  
(PG)  
ILKG_PG  
ISS/TR  
VPG = 5 V  
100  
nA  
SS/TR pin source current  
ISS/TR tolerance  
2.5  
±0.2  
1
µA  
µA  
TJ= 40 °C to +125 °C  
VFB / VSS/TR  
Tracking gain  
Tracking offset  
feedback voltage with VSS/TR = 0 V  
11  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
TJ = 40 °C to +125 °C and VIN = 3 V to 17 V. Typical values at VIN = 12 V and TA = 25 °C, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER SWITCH  
RDS(ON)  
High-Side MOSFET ON-  
Resistance  
100  
39  
180  
67  
VIN 4 V  
mΩ  
mΩ  
Low-Side MOSFET ON-  
Resistance  
VIN 4 V  
High-Side MOSFET  
Current Limit  
dc value(2)  
ILIMH  
2.8  
2.8  
3.5  
3.5  
4.2  
4.2  
A
A
Low-Side MOSFET  
Current Limit  
dc value(2)  
dc value  
ILIML  
Negative current limit;  
average value  
1.5  
A
ILIMNEG  
OUTPUT  
VFB  
Feedback Voltage  
0.7  
1
V
Input Leakage Current  
(FB)  
ILKG_FB  
VFB  
VFB= 0.7 V  
70  
nA  
Feedback Voltage  
Accuracy(1)  
PWM mode  
-1%  
-1%  
1%  
2%  
VIN VOUT +1 V  
VIN VOUT +1 V; VOUT  
1.5 V  
PFM mode; Co,eff 47  
µF, L = 1 µH for FSEL =  
high, L = 1.5 µH for FSEL  
= low  
-1%  
-1%  
-2%  
2.5%  
2.5%  
7.5%  
1 V VOUT < 1.5 V  
PFM mode; Co,eff 47  
µF, L = 1 µH for FSEL =  
high, Co,eff 60 µF, L =  
1.5 µH for FSEL = low  
VOUT < 1 V  
PFM mode; Co,eff 75  
µF, L = 1 µH for FSEL =  
high, L = 1.5 µH for FSEL  
= low  
VFB  
Feedback Voltage  
Accuracy with Voltage  
Tracking  
PWM mode  
=
VIN VOUT +1 V; VSS/TR  
0.35 V  
Load Regulation  
Line Regulation  
PWM mode operation  
0.05  
0.02  
%/A  
%/V  
PWM mode operation, IOUT= 1 A, VIN Vout + 1 V or  
VIN 3.5 V whichever is larger  
Output Discharge  
Resistance  
100  
200  
Ω
tdelay  
tramp  
Start-up Delay time  
IO= 0 mA, Time from EN=high to start switching; VIN  
applied already  
300  
µs  
Ramp time; SS/TR pin  
open  
IO= 0 mA, Time from first switching pulse until 95% of  
nominal output voltage; device not in current limit  
150  
µs  
(1) The output voltage accuracy in Power Save Mode can be improved by increasing the output capacitor value, reducing the output  
voltage ripple (see Pulse Width Modulation (PWM) Operation).  
(2) See also 9.4.5.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
6
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
7.6 Typical Characteristics  
2.5  
35  
30  
25  
20  
15  
10  
5
2
1.5  
1
TA = 125oC  
TA = 85oC  
TA = 25oC  
TA = -40oC  
TA = 125oC  
TA = 85oC  
TA = 25oC  
TA = -40oC  
0.5  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
VIN (V)  
VIN (V)  
D001  
D001  
EN = low  
EN = high  
device not switching  
7-1. Shutdown Current vs Input Voltage  
7-2. Quiescent Supply Current vs Input Voltage  
8 Parameter Measurement Information  
8.1 Schematic  
TPS62147  
VBAT = 3.0 V to 17 V  
1 uH  
VOUT = 0.8 V to 12 V  
VIN  
EN  
SW  
10uF  
VOS  
R
3
R
R
1
100 kΩ  
22 uF  
FB  
2
FSEL  
MODE  
SS/TR  
PG  
AGND  
GND  
3.3 nF  
8-1. Measurement Setup with FSEL = high  
8-1. List of Components for FSEL = high (fsw = 2.5 MHz)  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
IC  
L
17 V, 2 A Step-Down Converter  
TPS62147; Texas Instruments  
XFL4020-102; Coilcraft  
1 µH inductor  
CIN  
10 µF, 25 V, Ceramic, 0805  
TMK212BBJ106MG-T; Taiyo Yuden  
EMK212BBJ106MG-T; Taiyo Yuden  
EMK212BBJ106MG-T; Taiyo Yuden  
EMK212BBJ106MG-T; Taiyo Yuden  
-
COUT  
COUT  
COUT  
CSS  
R1  
2 × 10 µF, 16 V, Ceramic, 0805; all VOUT except 9 V and 1.2 V  
3 × 10 µF, 16 V, Ceramic, 0805 for VOUT = 1.2 V  
4 × 10 µF, 16 V, Ceramic, 0805 for VOUT = 9 V  
3.3 nF, 10 V, Ceramic, X7R  
Standard 1% metal film  
Depending on Vout; see 10-4  
R2  
Standard 1% metal film  
Depending on Vout; see 10-4  
R3  
Standard 1% metal film  
470 kΩ, Chip, 0603, 1/16 W, 1%  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
TPS62147  
VBAT = 3.0 V to 17 V  
10uF  
2.2 uH  
VOUT = 0.8 V to 12 V  
VIN  
EN  
SW  
VOS  
R
3
R
1
100 kΩ  
2 x 22 uF  
FB  
R
2
FSEL  
MODE  
SS/TR  
PG  
AGND  
GND  
3.3 nF  
8-2. Measurement Setup with FSEL = low  
8-2. List of Components for FSEL = low (fsw = 1.25 MHz)  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
IC  
L
17 V, 2 A Step-Down Converter  
TPS62147; Texas Instruments  
2.2 µH inductor  
XFL4020-222; Coilcraft  
TMK212BBJ226MG-T; Taiyo Yuden  
EMK212BBJ226MG-T; Taiyo Yuden  
EMK212BBJ226MG-T; Taiyo Yuden  
-
CIN  
10 µF, 25 V, Ceramic, 0805  
COUT  
COUT  
CSS  
R1  
2 × 22 µF, 16 V, Ceramic, 0805; all VOUT except 9 V and 1.2 V  
3 × 22 µF, 16 V, Ceramic, 0805 for VOUT = 1.2 V and VOUT = 9 V  
3.3 nF, 10 V, Ceramic, X7R  
Standard 1% metal film  
Depending on Vout; see 10-4  
R2  
Standard 1% metal film  
Depending on Vout; see 10-4  
R3  
Standard 1% metal film  
470 kΩ, Chip, 0603, 1/16 W, 1%  
(1) See Third-party Products Disclaimer  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
8
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS62147, TPS62148 synchronous switched mode power converters are based on DCS-Control (Direct  
Control with Seamless Transition into Power Save Mode), an advanced regulation topology that combines the  
advantages of hysteretic, voltage mode and current mode control. This control loop takes information about  
output voltage changes and feeds it directly to a fast comparator stage. It sets the switching frequency, which is  
constant for steady state operating conditions, and provides immediate response to dynamic load changes. To  
get accurate dc load regulation, a voltage feedback loop is used. The internally compensated regulation network  
achieves fast and stable operation with small external components and low ESR capacitors.  
The DCS-Control topology supports PWM (Pulse Width Modulation) mode for medium and heavy load  
conditions and a Power Save Mode at light loads. During PWM, it operates at its nominal switching frequency in  
continuous conduction mode. This frequency is typically about 1.25 MHz or 2.5 MHz, depending on the setting of  
the FSEL pin, with a controlled frequency variation depending on the input voltage. If the load current decreases,  
the converter enters Power Save Mode to sustain high efficiency down to very light loads. In Power Save Mode  
the switching frequency decreases linearly with the load current. Because DCS-Control supports both operation  
modes within one single building block, the transition from PWM to Power Save Mode is seamless. An internal  
current limit supports nominal output currents of up to 2 A. The TPS62147, TPS62148 offer both excellent dc  
voltage and superior load transient regulation, combined with very low output voltage ripple, minimizing  
interference with RF circuits.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.2 Functional Block Diagram  
VIN  
PG  
Thermal  
Shutdown  
PG  
Control  
Soft Start  
UVLO  
HS Limit  
Comp  
EN  
SS/TR  
MODE  
FSEL  
SW  
Gate  
Driver  
Control Logic  
Power Control  
AGND  
Comp  
LS Limit  
VOS  
Output  
Discharge  
Direct Control  
and  
Compensation  
Comp  
Timer tON, tOFF  
VFB  
+
FB  
DCS-Control  
VREF  
GND  
The discharge switch on the VOS pin is not available in the TPS62147.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
10  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Precise Enable  
The voltage applied at the Enable pin of the TPS62147, TPS62148 is compared to a fixed threshold of 0.8 V for  
a rising voltage. This allows to drive the pin by a slowly changing voltage and enables the use of an external RC  
network to achieve a power-up delay.  
The Precise Enable input allows the use as a user programmable undervoltage lockout by adding a resistor  
divider to the input of the Enable pin.  
The enable input threshold for a falling edge is typically 100 mV lower than the rising edge threshold. The  
TPS62147, TPS62148 start operation when the rising threshold is exceeded. For proper operation, the EN pin  
must be terminated and must not be left floating. Pulling the EN pin low forces the device into shutdown, with a  
shutdown current of typically 1 μA. In this mode, the internal high side and low side MOSFETs are turned off  
and the entire internal control circuitry is switched off.  
9.3.2 Power Good (PG)  
The built-in power good (PG) function indicates whether the output voltage has reached its target. The PG signal  
can be used for startup sequencing of multiple rails. The PG pin is an open-drain output that requires a pull-up  
resistor to any voltage up to a voltage level of the input voltage at VIN. It can sink 2 mA of current and maintain  
its specified logic low level. PG is low when the device is turned off due to EN, UVLO or thermal shutdown, so it  
can be used to actively discharge Vout. VIN must remain present for the PG pin to stay low.  
The power good threshold in transient operation can be slightly different from the dc values given in the electrical  
specification in case a feed forward capacitor is used on the output voltage divider. Due to the capacitive  
coupling, power good can go high for a short time after a release of a short circuit on the output.  
If the power good output is not used, it is recommended to tie to GND or leave open.  
9.3.3 MODE  
When MODE is set low, the device operates in PWM or PFM mode depending on the output current. Automatic  
Efficiency Enhancement (AEE), which scales the switching frequency based on the input voltage and the output  
voltage, is enabled for highest efficiency over a wide input voltage, output voltage and output current range. The  
MODE pin allows to force PWM mode when set high. In forced PWM mode, AEE is disabled. See also Power  
Save Mode Operation (PWM/PFM).  
9.3.4 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both the  
power FETs. The device is fully operational for voltages above the rising UVLO threshold and turns off if the  
input voltage trips below the threshold for a falling supply voltage.  
9.3.5 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 160°C  
(typ), the device goes into thermal shutdown. Both the high-side and low-side power FETs are turned off and PG  
goes low. When TJ decreases below the hysteresis amount of typically 20°C, the converter resumes normal  
operation, beginning with soft-start. During a PFM skip pause, the thermal shutdown is not active. See also  
Power Save Mode Operation (PWM/PFM).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Pulse Width Modulation (PWM) Operation  
TPS62147, TPS62148 have two operating modes: Forced PWM mode discussed in this section and PWM/PFM  
as discussed in Power Save Mode Operation (PWM/PFM).  
With the MODE pin set to high, the TPS62147, TPS62148 operate with pulse width modulation in continuous  
conduction mode (CCM) with a nominal switching frequency of 2.5 MHz for FSEL = high and 1.25 MHz for FSEL  
= low. The frequency variation in PWM is controlled and depends on VIN, VOUT and the inductance. The on-  
time (TON) in forced PWM mode depends on the setting of FSEL.  
For FSEL = high (2.5 MHz):  
VOUT  
TON =  
´400[ns]  
VIN  
(1)  
For FSEL = low (1.25 MHz):  
VOUT  
TON =  
´800[ns]  
VIN  
(2)  
9.4.2 Power Save Mode Operation (PWM/PFM)  
When the MODE pin is low, Power Save Mode is allowed. The device operates in PWM mode as long the output  
current is higher than half the inductor ripple current. To maintain high efficiency at light loads, the device enters  
Power Save Mode at the boundary to discontinuous conduction mode (DCM). This happens if the output current  
becomes smaller than half the inductor ripple current. For improved transient response, PWM mode is forced for  
8 switching cycles if the output voltage is above target due to a load release. The Power Save Mode is entered  
seamlessly, if the load current decreases and the MODE pin is set low. This ensures a high efficiency in light  
load operation. The device remains in Power Save Mode as long as the inductor current is discontinuous.  
In Power Save Mode the switching frequency decreases linearly with the load current maintaining high efficiency.  
The transition into and out of Power Save Mode is seamless in both directions.  
The AEE function in TPS62147, TPS62148 adjusts the on-time (TON) in power save mode depending on the  
input voltage and the output voltage to maintain highest efficiency. The on-time, in steady-state operation, can be  
estimated as follows.  
For FSEL = high (2.5MHz):  
VIN  
TON =100´  
[ns]  
VIN -VOUT  
(3)  
For FSEL = low (1.25MHz):  
VIN  
TON = 200´  
[ns]  
VIN -VOUT  
(4)  
For very small output voltages, an absolute minimum on-time of about 50 ns is kept to limit switching losses. The  
operating frequency is thereby reduced from its nominal value, which keeps efficiency high. Using TON, the  
typical peak inductor current in Power Save Mode is approximated by:  
(V IN - VO U T )´ TO N  
=
IL P SM ( peak )  
L
(5)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
12  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
There is a minimum off-time which limits the duty cycle of the TPS62147, TPS62148. When VIN decreases to  
typically 15% above VOUT, the TPS62147, TPS62148 does not enter Power Save Mode, regardless of the load  
current. The device maintains output regulation in PWM mode.  
The output voltage ripple in power save mode is given by 方程6:  
2 æ  
ç
ö
÷
ø
L´VIN  
1
1
DV =  
+
200´C VIN -VOUT VOUT  
è
(6)  
9.4.3 100% Duty-Cycle Operation  
The duty cycle of the buck converter is given by D = VOUT / VIN and increases as the input voltage comes close  
to the output voltage. The minimum off-time is about 80 ns. When the minimum off-time is reached, TPS62147,  
TPS62148 scale down the switching frequency while they approach 100% mode. In 100% mode the high-side  
switch is on continuously. The high-side switch stays turned on as long as the output voltage is below the  
internal set point. This allows the conversion of small input to output voltage differences, for example for longest  
operation time of battery-powered applications. In 100% duty-cycle mode, the low-side FET is switched off.  
The minimum input voltage to maintain output voltage regulation, depending on the load current and the output  
voltage level, can be calculated as:  
spacing  
VIN(min) =VOUT + IOUT(RDS(on) + R  
)
L
(7)  
where  
IOUT is the output current,  
RDS(on) is the on-state resistance of the high-side FET and  
RL is the dc resistance of the inductor used.  
9.4.4 Current Limit And Short Circuit Protection (for TPS62148)  
The TPS62148 is protected against overload and short circuit events. If the inductor current exceeds the current  
limit I(LIMF), the high side switch is turned off and the low side switch is turned on to ramp down the inductor  
current. This allows it to provide the maximum current, for example, charging a large output capacitance without  
the must increase the soft-start time.  
Due to internal propagation delay, the actual current can exceed the static current limit during that time. The  
dynamic current limit is given as:  
V
L
Ipeak(typ) = ILIMH  
+
´tPD  
L
(8)  
where  
ILIMF is the static current limit as specified in the electrical characteristics  
L is the effective inductance at the peak current  
VL is the voltage across the inductor (VIN - VOUT) and  
tPD is the internal propagation delay of typically 50 ns.  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high side switch peak current can be calculated as follows:  
V IN - VO U T  
I
peak ( typ ) = IL IM H  
+
´ 50 ns  
L
(9)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
9.4.5 HICCUP Current Limit And Short Circuit Protection (for TPS62147)  
The TPS62147 is protected against overload and short circuit events. If the inductor current exceeds the current  
limit I(LIMF), the high side switch is turned off and the low side switch is turned on to ramp down the inductor  
current. After the switch current limit is triggered for 512 switching cycles, the device stops switching. After a  
typical delay of 800 µs, the device begins a new soft-start cycle. This is called HICCUP short circuit protection.  
TPS62147 repeats this mode until the short circuit condition disappears.  
Due to internal propagation delay, the actual current can exceed the static current limit during that time. The  
equations given under Current Limit And Short Circuit Protection (for TPS62148) also apply.  
9.4.6 Soft Start / Tracking (SS/TR)  
The internal soft-start circuitry controls the output voltage slope during startup. This avoids excessive inrush  
current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high  
impedance power sources or batteries. When EN is set high to start operation, the device starts switching after a  
delay of about 200 μs then the internal reference and hence VOUT rises with a slope controlled by an external  
capacitor connected to the SS/TR pin.  
Leaving SS/TR pin unconnected provides fastest startup ramp with 150 µs typically.  
If the device is set to shutdown (EN = GND), undervoltage lockout or thermal shutdown, an internal resistor pulls  
the SS/TR pin down to ensure a proper low level. Returning from those states causes a new startup sequence  
as set by the SS/TR connection.  
A voltage supplied to SS/TR can be used to track a master voltage. The output voltage follows this voltage in  
both directions up and down in forced PWM mode. In PFM mode, the output voltage decreases based on the  
load current. The SS/TR pin of several devices must not be connected with each other.  
9.4.7 Output Discharge Function (TPS62148 only)  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the device is  
being disabled but also to keep the output voltage close to 0 V when the device is off. The output discharge  
feature is only active once TPS62148 has been enabled at least once since the supply voltage was applied. The  
internal discharge resistor is connected to the VOS pin. The discharge function is enabled as soon as the device  
is disabled, in thermal shutdown or in undervoltage lockout. The minimum supply voltage required for the  
discharge function to remain active typically is 2 V.  
9.4.8 Starting into a Pre-Biased Load  
The TPS62147 is capable of starting into a pre-biased output. The device only starts switching when the internal  
soft-start ramp is equal or higher than the feedback voltage. If the voltage at the feedback pin is biased to a  
higher voltage than the nominal value, the TPS62147 does not start switching unless the voltage at the feedback  
pin drops to the target.  
This functionality actually also applies to TPS62148 but the discharge function in TPS62148 keeps the voltage  
close to 0 V, so starting into a pre-biased output does not apply.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
14  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
10.1.1 Programming the Output Voltage  
The output voltage is adjustable. It can be programmed for output voltages from 0.8 V to 12 V, using a resistor  
divider from VOUT to GND. The voltage at the FB pin is regulated to 0.7 V. The value of the output voltage is set  
by the selection of the resistor divider from 方程10. It is recommended to choose resistor values which allow a  
current of at least 2 uA, meaning the value of R2 must not exceed 400 kΩ. Lower resistor values are  
recommended for highest accuracy and most robust design.  
VOUT  
æ
ç
è
ö
÷
ø
R1  
= R2 ´  
-1  
VFB  
(10)  
10.1.2 External Component Selection  
The external components have to fulfill the needs of the application, but also the stability criteria of the device´s  
control loop. The TPS62147, TPS62148 are optimized to work within a range of external components. The LC  
output filters inductance and capacitance have to be considered together, creating a double pole, responsible for  
the corner frequency of the converter (see Output Filter and Loop Stability). 10-1 can be used to simplify the  
output filter component selection.  
10-1. Recommended LC Output Filter Combinations(1)  
4.7 µF  
10 µF  
22 µF  
47 µF  
100 µF  
200 µF  
400 µF  
0.68 µH  
1 µH  
(2)  
(4)  
(4)  
(4)  
1.5 µH  
2.2 µH  
3.3 µH  
(3)  
(1) The values in the table are nominal values.  
(2) This LC combination is the standard value and recommended for most applications with FSEL = high.  
(3) This LC combination is the standard value and recommended for most applications with FSEL = low.  
(4) Output capacitance must have a ESR of 10 mΩfor stable operation, see also Powering Multiple Loads.  
10.1.3 Inductor Selection  
The TPS62147, TPS62148 are designed for a nominal 1-µH inductor if FSEL = high and a 1.5-uH or 2.2-uH  
inductor if FSEL = low. Larger values can be used to achieve a lower inductor current ripple but they can have a  
negative impact on efficiency and transient response. Smaller values than 1 µH cause a larger inductor current  
ripple which causes larger negative inductor current in forced PWM mode at low or no output current. Therefore  
they are not recommended at large voltages across the inductor as it is the case for high input voltages and low  
output voltages. With low output current in forced PWM mode this causes a larger negative inductor current peak  
which can exceed the negative current limit.  
The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to-  
PFM transition point and efficiency. In addition, the inductor selected has to be rated for appropriate saturation  
current and dc resistance (DCR). 方程11 calculates the maximum inductor current.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
 
 
 
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
DIL(max)  
IL(max) = IOUT(max)  
+
2
(11)  
(12)  
VIN(max)  
DIL(max)  
=
´100ns  
L
(min)  
where  
IL(max) is the maximum inductor current  
• ΔIL is the Peak to Peak Inductor Ripple Current  
L(min) is the minimum effective inductor value.  
Above equation is valid for FSEL = high. With FSEL = low, the ON-time is doubled from 100 ns to 200 ns so the  
peak inductor current doubles given the same input voltage and inductor.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well. The following  
inductors have been used with the TPS62147, TPS62148 and are recommended for use:  
10-2. List of Inductors(1)  
TYPE  
INDUCTANCE [µH]  
1.0 µH, ±20%  
1.2µH, ±20%  
1.0 µH, ±20%  
1.5 µH, ±20%  
2.2 µH, ±20%  
2.2 µH, ±20%  
1.5 µH, ±20%  
1.0 µH, ±20%  
CURRENT [A](2)  
DIMENSIONS [LxBxH] mm MANUFACTURER(1)  
XFL3012-102ME  
XFL4015-122ME  
XFL4020-102ME  
XFL4020-152ME  
XFL4020-222ME  
DFE322512F-2R2M  
DFE322512F-1R5M  
DFE322512F-1R0M  
2.3  
4.5  
5.4  
4.6  
3.7  
2.6  
3.0  
3.8  
3 x 3 x 1.3  
4 x 4 x 1.6  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Murata  
4 × 4 x 2.1  
4 x 4 x 2.1  
4 x 4 x 2.1  
3.2 x 2.5 x 1.2  
3.2 x 2.5 x 1.2  
3.2 x 2.5 x 1.2  
Murata  
Murata  
(1) See Third-Party Products Disclaimer  
(2) Lower of IRMS at 40°C rise or ISAT at 30% drop.  
The inductor value also determines the load current at which Power Save Mode is entered:  
1
Iload(PSM )  
=
DIL  
2
(13)  
10.1.4 Capacitor Selection  
10.1.4.1 Output Capacitor  
The recommended value for the output capacitor is 22 µF with FSEL = high (fsw = 2.5 MHz) and 2 x 22 µF with  
FSEL = low (fsw = 1.25 MHz). The architecture of the TPS62147, TPS62148 allows the use of tiny ceramic  
output capacitors with low equivalent series resistance (ESR). These capacitors provide low output voltage ripple  
and are recommended. To keep its low resistance up to high frequencies and to get narrow capacitance  
variation with temperature, it is recommended to use X7R or X5R dielectric. Using a higher value has  
advantages like smaller voltage ripple and a tighter dc output accuracy in Power Save Mode.  
In Power Save Mode, the output voltage ripple depends on the output capacitance, its ESR, ESL and the peak  
inductor current. Using ceramic capacitors provides small ESR, ESL and low ripple. The output capacitor must  
be as close as possible to the device.  
For large output voltages the dc bias effect of ceramic capacitors is large and the effective capacitance has to be  
observed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
16  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
10.1.4.2 Input Capacitor  
For most applications, 10 µF nominal is sufficient and is recommended, though a larger value reduces input  
current ripple further. The input capacitor buffers the input voltage for transient events and also decouples the  
converter from the supply. A low ESR multilayer ceramic capacitor (MLCC) is recommended for best filtering and  
must be placed between VIN and GND as close as possible to those pins.  
10-3. List of Capacitors(1)  
NOMINAL CAPACITANCE [µF] VOLTAGE RATING [V]  
TYPE  
TMK212BBJ106MG-T  
SIZE  
MANUFACTURER(1)  
Taiyo Yuden  
10  
22  
25  
16  
0805  
0805  
EMK212BBJ226MG-T  
Taiyo Yuden  
(1) See Third-Party Products Disclaimer  
10.1.4.3 Soft-Start Capacitor  
A capacitor connected between SS/TR pin and GND sets user programmable start-up slope of the output  
voltage. A constant current source provides typically 2.5 µA to charge the external capacitance. The capacitor  
required for a given soft-start ramp time is given by:  
(14)  
where  
CSS is the capacitance required at the SS/TR pin and  
tSS is the desired soft-start ramp time  
The fastest achievable typical ramp time is 150 µs even if the external Css capacitance is lower than 680 pF or  
the pin is open.  
10.1.5 Tracking Function  
If a tracking function is desired, the SS/TR pin can be used for this purpose by connecting it to an external  
tracking voltage. The output voltage tracks that voltage with the typical gain and offset as specified in the  
electrical characteristics.  
VFB » VSS /TR  
(15)  
When the SS/TR pin voltage is above 0.7 V, the internal voltage is clamped and the device goes to normal  
regulation. This works for rising and falling tracking voltages with the same behavior, as long as the input voltage  
is inside the recommended operating conditions. For decreasing SS/TR pin voltage in PFM mode, the device  
does not sink current from the output. The resulting decrease of the output voltage can therefore be slower than  
the SS/TR pin voltage if the load is light. When driving the SS/TR pin with an external voltage, do not exceed the  
voltage rating of the SS/TR pin which is VIN + 0.3 V. The SS/TR pin is internally connected with a resistor to  
GND when EN = 0.  
If the input voltage drops below undervoltage lockout, the output voltage goes to zero, independent of the  
tracking voltage. 10-1 shows how to connect devices to get ratiometric and simultaneous sequencing by using  
the tracking function. See also 10.3.3 in the systems examples. SS/TR is internally clamped to approximately  
3 V.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
DEVICE 1  
TPS62147  
VIN = 12  
10 uF  
1 uH  
VOUT = 3.3 V  
VIN  
EN  
SW  
VOS  
560 k  
150 k  
22 uF  
FB  
FSEL  
MODE  
SS/TR  
PG  
AGND  
GND  
3.3 nF  
DEVICE 2  
TPS62147  
VIN = 12 V  
10 uF  
1 uH  
VOUT = 1.8 V  
VIN  
EN  
SW  
VOS  
470k  
22 uF  
FB  
300 k  
FSEL  
PG  
AGND  
MODE  
SS/TR  
R5 = 56 k  
R6 = 15 k  
GND  
10-1. Schematic for Ratiometric and Simultaneous Startup  
The resistive divider of R5 and R6 can be used to change the ramp rate of VOUT2 to be faster, slower or the  
same as VOUT1.  
A sequential startup is achieved by connecting the PG pin of VOUT of DEVICE 1 to the EN pin of DEVICE2. PG  
requires a pull-up resistor. Ratiometric start up sequence happens if both supplies are sharing the same soft-  
start capacitor. 方程14 gives the soft-start time, though the SS/TR current has to be doubled.  
Note: If the voltage at the FB pin is below its typical value of 0.7 V, the output voltage accuracy can have a wider  
tolerance than specified. The current of 2.5 µA out of the SS/TR pin also has an influence on the tracking  
function, especially for high resistive external voltage dividers on the SS/TR pin.  
10.1.6 Output Filter and Loop Stability  
The TPS62147, TPS62148 are internally compensated to be stable with L-C filter combinations corresponding to  
a corner frequency to be calculated with 方程16:  
1
fLC  
=
2p L × C  
(16)  
Proven nominal values for inductance and ceramic capacitance are given in 10-1 and are recommended for  
use. Different values can work, but care has to be taken for the loop stability which is affected.  
The TPS62147, TPS62148 include an internal 15 pF feedforward capacitor, connected between the VOS and  
FB pins. This capacitor impacts the frequency behavior and sets a pole and zero in the control loop with the  
resistors of the feedback divider, per equation 方程17 and 方程18:  
1
f
zero  
=
2p ´ R  
1
´15pF  
(17)  
1
1
1
æ
ö
÷
ø
f
pole  
=
+
ç
2p ´15pF R  
1
R
2
è
(18)  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Though the TPS62147, TPS62148 are stable without the pole and zero being in a particular location, adjusting  
their location to the specific needs of the application can provide better performance in Power Save mode and/or  
improved transient response. An external feedforward capacitor can also be added. A more detailed discussion  
on the optimization for stability versus transient response can be found in SLVA289 and SLVA466.  
10.2 Typical Applications  
10.2.1 Typical Application with Adjustable Output Voltage  
TPS62147  
VBAT = 3.0 V to 17 V  
10uF  
1 uH  
VOUT = 0.8 V to 12 V  
VIN  
EN  
SW  
VOS  
R
3
R
1
100 kΩ  
22 uF  
FB  
R
2
FSEL  
MODE  
SS/TR  
PG  
AGND  
GND  
3.3 nF  
10.2.1.1 Design Requirements  
The design guideline provides a component selection to operate the device within the recommended operating  
conditions. See 8-1 for the Bill of Materials used to generate the application curves.  
10.2.1.2 Detailed Design Procedure  
VOUT  
æ
ç
è
ö
÷
ø
R1  
= R2 ´  
-1  
VFB  
(19)  
With VFB = 0.7 V:  
10-4. Setting the Output Voltage  
NOMINAL OUTPUT VOLTAGE  
R1  
R2  
EXACT OUTPUT VOLTAGE  
0.799 V  
0.8 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
5 V  
51 kΩ  
130 kΩ  
150 kΩ  
470 kΩ  
620 kΩ  
560 kΩ  
510 kΩ  
510 kΩ  
1000 kΩ  
360 kΩ  
180 kΩ  
130 kΩ  
300 kΩ  
240 kΩ  
150 kΩ  
82 kΩ  
1.206 V  
1.508 V  
1.797 V  
2.508 V  
3.313 V  
5.054 V  
9.002 V  
9 V  
43 kΩ  
11.99 V  
12 V  
62 kΩ  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
10.2.1.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
10m  
100m  
1m 10m  
Output Current (A)  
100m  
1
D025  
D037  
Vout = 1.2 V PFM FSEL = high  
TA = 25°C  
Vout = 1.2 V  
PFM FSEL = low  
TA = 25°C  
10-2. Efficiency vs Output Current  
10-3. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3 V  
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
10m  
100m  
IOUT (A)  
1
2
10m  
100m  
Output Current (A)  
1
Vout = 1.2 V PWM FSEL = high  
TA = 25°C  
D038  
Vout = 1.2 V  
PWM FSEL = low  
TA = 25°C  
10-4. Efficiency vs Output Current  
10-5. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3 V  
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
10m  
100m  
1m 10m  
Output Current (A)  
100m  
1
D023  
D039  
Vout = 1.8 V PFM FSEL = high  
TA = 25°C  
Vout = 1.8 V  
PFM FSEL = low  
TA = 25°C  
10-6. Efficiency vs Output Current  
10-7. Efficiency vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
20  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
0
10m  
100m  
IOUT (A)  
1
2
10m  
100m  
Output Current (A)  
1
Vout = 1.8 V PWM FSEL = high  
TA = 25°C  
D040  
Vout = 1.8 V  
PWM FSEL = low  
TA = 25°C  
10-8. Efficiency vs Output Current  
10-9. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 4 V  
VIN = 4 V  
VIN = 5 V  
VIN = 6 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 5 V  
VIN = 8 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
10m  
100m  
1m 10m  
Output Current (A)  
100m  
1
D021  
D041  
Vout = 3.3 V PFM FSEL = high  
TA = 25°C  
Vout = 3.3 V  
PFM FSEL = low  
TA = 25°C  
10-10. Efficiency vs Output Current  
10-11. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 4 V  
VIN = 5 V  
VIN = 6 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 4 V  
VIN = 5 V  
VIN = 6 V  
VIN = 8 V  
VIN = 12 V  
VIN = 15 V  
10m  
100m  
IOUT (A)  
1
2
10m  
100m  
Output Current (A)  
1
D020  
D042  
Vout = 3.3 V PWM FSEL = high  
TA = 25°C  
Vout = 3.3 V  
PWM FSEL = low  
TA = 25°C  
10-12. Efficiency vs Output Current  
10-13. Efficiency vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 6 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 6 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
10m  
100m  
1m 10m  
Output Current (A)  
100m  
1
D019  
D043  
Vout = 5 V PFM FSEL = high  
TA = 25°C  
Vout = 5 V  
PFM FSEL = low  
TA = 25°C  
10-14. Efficiency vs Output Current  
10-15. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 6 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 6 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
10m  
100m  
IOUT (A)  
1
2
10m  
100m  
Output Current (A)  
1
D018  
D044  
Vout = 5 V PWM FSEL = high  
TA = 25°C  
Vout = 5 V  
PWM FSEL = low  
TA = 25°C  
10-16. Efficiency vs Output Current  
10-17. Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
10m  
100m  
1m 10m  
Output Current (A)  
100m  
1
D017  
D045  
Vout = 9 V PFM FSEL = high  
TA = 25°C  
Vout = 9 V  
PFM FSEL = low  
TA = 25°C  
10-18. Efficiency vs Output Current  
10-19. Efficiency vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
0
10m  
100m  
IOUT (A)  
1
2
0.01  
0.1  
Output Current (A)  
1
2
D046  
D016  
Vout = 9 V PWM FSEL = high  
TA = 25°C  
Vout = 9 V  
PWM FSEL = low  
TA = 25°C  
10-20. Efficiency vs Output Current  
10-21. Efficiency vs Output Current  
1.23  
1.225  
1.22  
1.21  
1.208  
1.206  
1.204  
1.202  
1.2  
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
1.215  
1.21  
1.198  
1.196  
1.194  
1.192  
1.19  
1.205  
1.2  
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
1.195  
1.19  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
D015  
D014  
Vout = 1.2 V  
PFM  
TA = 25°C  
Vout = 1.2 V  
PWM  
TA = 25°C  
10-22. Output Voltage vs Output Current  
10-23. Output Voltage vs Output Current  
1.82  
1.815  
1.81  
1.82  
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
1.815  
1.81  
1.805  
1.8  
1.805  
1.8  
1.795  
1.79  
1.795  
1.79  
VIN = 3 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
1.785  
1.78  
1.785  
1.78  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
D013  
D012  
Vout = 1.8 V  
PFM  
TA = 25°C  
Vout = 1.8 V  
PWM  
TA = 25°C  
10-24. Output Voltage vs Output Current  
10-25. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
3.34  
3.33  
3.32  
3.31  
3.3  
3.34  
3.33  
3.32  
3.31  
3.3  
3.29  
3.29  
3.28  
3.27  
3.26  
VIN = 4 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 4 V  
VIN = 5 V  
VIN = 8 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
3.28  
3.27  
3.26  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
1000m 100m  
1m  
10m  
IOUT [A]  
100m  
1
2
D011  
D008  
Vout = 3.3 V  
PFM  
TA = 25°C  
Vout = 3.3 V  
PWM  
TA = 25°C  
10-26. Output Voltage vs Output Current  
10-27. Output Voltage vs Output Current  
5.05  
5.05  
VIN = 6 V  
VIN = 8 V  
VIN = 6 V  
VIN = 8 V  
5.04  
5.04  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
5.03  
5.03  
5.02  
5.01  
5
5.02  
5.01  
5
4.99  
4.98  
4.97  
4.96  
4.95  
4.99  
4.98  
4.97  
4.96  
4.95  
10m  
100m  
1m  
10m  
IOUT [A]  
100m  
1
2
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
D010  
D009  
Vout = 5 V  
PFM  
TA = 25°C  
Vout = 5 V  
PWM  
TA = 25°C  
10-28. Output Voltage vs Output Current  
10-29. Output Voltage vs Output Current  
9.1  
VIN = 10 V  
VIN = 12 V  
VIN = 15 V  
9.08  
9.06  
9.04  
9.02  
9
8.98  
8.96  
8.94  
8.92  
8.9  
10m  
100m  
1m  
10m  
IOUT (A)  
100m  
1
2
Vin = 12 V;  
PFM  
Io = 200 mA to 1.8 A;  
TA= 25 °C  
D007  
Vout = 1.2 V; FSEL = high  
Vout = 9 V  
PFM  
TA = 25°C  
10-31. Load Transient Response  
10-30. Output Voltage vs Output Current  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Vin = 6 V to 8.4 V;  
Vout = 1.2 V  
PFM  
Io = 1 A  
Vin = 12 V;  
PWM Io = 200 mA to 1.8 A  
FSEL = high  
TA= 25 °C  
Vout = 1.2 V  
FSEL = high  
TA= 25 °C  
10-33. Line Transient Response  
10-32. Load Transient Response  
Vin = 6 V to 8.4 V;  
Vout = 1.2 V  
PWM  
Io = 1 A  
FSEL = high  
TA= 25 °C  
10-34. Line Transient Response  
Vin = 5 V;  
PFM  
Rload = 1 kΩ  
Vout = 1.2 V  
FSEL = high  
TA= 25 °C  
10-35. Start-Up Timing  
Vin = 5 V;  
PFM  
Io = 0.1 A  
TA= 25 °C  
Vin = 5 V;  
PWM  
Io = 1 A  
Vout = 1.2 V  
FSEL = high  
Vout = 1.2 V  
FSEL = high  
TA= 25 °C  
10-36. Output Voltage Ripple  
10-37. Output Voltage Ripple  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Vin = 12 V  
PFM Io = 200 mA to 1.8 A  
Vin = 12 V  
PWM Io = 200 mA to 1.8 A  
Vout = 1.8 V  
FSEL = high  
TA= 25 °C  
Vout = 1.8 V  
FSEL = high  
TA= 25°C  
10-38. Load Transient Response  
10-39. Load Transient Response  
Vin = 6 V to 8.4 V;  
Vout = 1.8 V  
PFM  
Io = 1 A  
Vin = 6 V to 8.4 V;  
Vout = 1.8 V  
PWM  
Io = 1 A  
FSEL = high  
TA= 25 °C  
FSEL = high  
TA= 25 °C  
10-40. Line Transient Response  
10-41. Line Transient Response  
Vin = 5 V  
PWM  
Vin = 5 V  
PFM  
Io = 0.1 A  
TA= 25 °C  
Rload = 1 kΩ  
Vout = 1.8 V  
FSEL = high  
Vout = 1.8 V  
FSEL = high  
TA= 25 °C  
10-43. Output Voltage Ripple  
10-42. Start-Up Timing  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
26  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Vin = 12 V  
PFM Io = 200 mA to 1.8 A  
Vout = 3.3 V  
FSEL = high  
TA= 25 °C  
Vin = 5 V  
Vout = 1.8 V  
PWM  
Io = 1 A  
10-45. Load Transient Response  
FSEL = high  
TA= 25 °C  
10-44. Output Voltage Ripple  
Vin = 6 V to 8.4 V;  
Vout = 3.3 V  
PFM  
Io = 1 A  
Vin = 12 V  
PWM Io = 200 mA to 1.8 A  
FSEL = high  
TA= 25 °C  
Vout = 3.3 V  
FSEL = high  
TA= 25 °C  
10-47. Line Transient Response  
10-46. Load Transient Response  
Vin = 6 V to 8.4 V;  
Vout = 3.3 V  
PWM  
Io = 1 A  
FSEL = high  
TA= 25 °C  
10-48. Line Transient Response  
Vin = 5V  
PWM  
Rload = 1 kΩ  
Vout = 3.3 V  
FSEL = high  
TA= 25 °C  
10-49. Start-Up Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Vin = 12 V  
PFM  
Io = 0.1 A  
TA= 25 °C  
Vin = 12 V  
PWM  
Io = 1 A  
Vout = 3.3 V  
FSEL = high  
Vout = 3.3 V  
FSEL = high  
TA= 25 °C  
10-50. Output Voltage Ripple  
10-51. Output Voltage Ripple  
Vin = 12 V  
Vout = 5 V  
PFM Io = 200 mA to 1.8 A  
Vin = 12 V  
Vout = 5 V  
PWM  
Io = 200 mA to 1.8 A  
TA= 25 °C  
FSEL = high  
TA= 25 °C  
FSEL = high  
10-52. Load Transient Response  
10-53. Load Transient Response  
Vin = 6 V to 8.4 V;  
Vout = 5 V  
PFM  
Io = 1 A  
Vin = 6 V to 8.4 V;  
Vout = 5 V  
PWM  
Io = 1 A  
FSEL = high  
TA= 25 °C  
FSEL = high  
TA= 25 °C  
10-54. Line Transient Response  
10-55. Line Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
28  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Vin = 12 V  
Vout = 5 V  
PWM  
Vin = 12 V  
Vout = 5 V  
PFM  
Io = 0.1 A  
TA= 25 °C  
Rload = 1 kΩ  
FSEL = high  
FSEL = high  
TA= 25 °C  
10-57. Output Voltage Ripple  
10-56. Start-Up Timing  
Vin = 12 V  
Vout = 9 V  
PFM Io = 200 mA to 1.8 A  
Vin = 12 V  
Vout = 5 V  
PWM  
Io = 1 A  
FSEL = high  
TA= 25 °C  
FSEL = high  
TA= 25 °C  
10-59. Load Transient Response  
10-58. Output Voltage Ripple  
Vin = 12 V to 15 V;  
Vout = 9 V  
PFM  
Io = 1 A  
FSEL = high  
TA= 25 °C  
Vin = 12 V  
Vout = 9 V  
PWM Io = 200 mA to 1.8 A  
FSEL = high TA= 25 °C  
10-61. Line Transient Response  
10-60. Load Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Vin = 12 V to 15 V;  
Vout = 9 V  
PWM  
Io = 1 A  
FSEL = high  
TA= 25 °C  
10-62. Line Transient Response  
Vin = 12 V  
Vout = 9 V  
PWM  
Rload = 1 kΩ  
FSEL = high  
TA= 25 °C  
10-63. Start-Up Timing  
Vin = 12 V  
Vout = 9 V  
PFM  
Io = 0.1 A  
TA= 25 °C  
Vin = 12 V  
Vout = 9 V  
PWM  
Io = 1 A  
FSEL = high  
FSEL = high  
TA= 25 °C  
10-64. Output Voltage Ripple  
10-65. Output Voltage Ripple  
2
1.75  
1.5  
1.25  
1
1.6  
1.4  
1.2  
1
.8  
0.75  
0.5  
0.25  
0
.6  
Io = 0 A  
Io = 1 A  
Io = 2 A  
.4  
IOUT = 0 A  
IOUT = 1 A  
IOUT = 2 A  
.2  
3
5
7
9
11  
13  
15  
17  
0
Input Voltage (V)  
PWM FSEL =  
high  
3
5
7
9
11  
Input Voltage (V)  
13  
15  
17  
Vout = 1.2 V  
TA= 25 °C  
D047  
Vout = 1.2 V  
PWM FSEL =  
low  
TA= 25 °C  
10-66. Switching Frequency vs Input Voltage  
10-67. Switching Frequency vs Input Voltage  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
2.5  
2.25  
2
1.6  
1.4  
1.2  
1
1.75  
1.5  
1.25  
1
.8  
.6  
0.75  
0.5  
Io = 0 A  
Io = 1 A  
Io = 2 A  
.4  
0.25  
IOUT = 0 A  
IOUT = 1 A  
IOUT = 2 A  
.2  
0
3
5
7
9
11  
13  
15  
17  
0
Input Voltage (V)  
3
5
7
9
11  
Input Voltage (V)  
13  
15  
17  
Vout = 1.8 V  
PWM FSEL = high  
TA= 25 °C  
D048  
Vout = 1.8 V  
PWM FSEL = low  
TA= 25 °C  
10-68. Switching Frequency vs Input Voltage  
10-69. Switching Frequency vs Input Voltage  
3
2.5  
2
1.6  
1.4  
1.2  
1
.8  
1.5  
.6  
.4  
1
IO = 0 A  
IO = 1 A  
IO = 2 A  
IOUT = 0 A  
IOUT = 1 A  
IOUT = 2 A  
.2  
0
0.5  
3
5
7
9 11  
Input Voltage (V)  
13  
15 17  
3
5
7
9 11  
Input Voltage (V)  
13  
15  
17  
D003  
D049  
Vout = 3.3 V  
PWM FSEL = high  
TA= 25 °C  
Vout = 3.3 V  
PWM FSEL = low  
TA= 25 °C  
10-70. Switching Frequency vs Input Voltage  
10-71. Switching Frequency vs Input Voltage  
2650  
3
2600  
2550  
2500  
2450  
2.5  
2
1.5  
1
2400  
VIN = 5 V  
VIN = 9 V  
VIN = 12 V  
IO = 0 A  
IO = 1 A  
IO = 2 A  
2350  
0.5  
2300  
-40  
0
-20  
0
20  
40  
60  
80  
100 120  
5
7
9
11  
Input Voltage (V)  
13  
15 17  
Temperature (oC)  
D001  
D004  
Vout = 3.3 V  
PWM FSEL = high  
Iout = 1 A  
Vout = 5 V  
PWM FSEL = high  
TA= 25 °C  
10-72. Switching Frequency vs Junction  
10-73. Switching Frequency vs Input Voltage  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
1.6  
1.4  
1.2  
1
2700  
2650  
2600  
2550  
2500  
2450  
2400  
2350  
2300  
2250  
.8  
.6  
.4  
VIN = 9 V  
VIN = 12 V  
VIN = 15 V  
IOUT = 0 A  
IOUT = 1 A  
IOUT = 2 A  
.2  
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
D001  
5
7
9
11  
Input Voltage (V)  
13  
15  
17  
Temperature (oC)  
D050  
Vout = 5 V  
PWM FSEL = high  
Iout = 1 A  
Vout = 5 V  
PWM FSEL = low  
TA= 25 °C  
10-75. Switching Frequency vs Junction  
10-74. Switching Frequency vs Input Voltage  
Temperature  
3
2.5  
2
1.6  
1.4  
1.2  
1
1.5  
1
.8  
.6  
.4  
IO = 0 A  
IO = 1 A  
IO= 2 A  
IOUT = 0 A  
IOUT = 1 A  
IOUT = 2 A  
0.5  
0
.2  
0
9
10  
11  
12  
Input Voltage (V)  
13  
14  
15  
16  
17  
9
10  
11  
12  
Input Voltage (V)  
13  
14  
15  
16  
17  
D005  
D051  
Vout = 9 V  
PWM FSEL = high  
TA= 25 °C  
Vout = 9 V  
PWM FSEL = low  
TA= 25 °C  
10-76. Switching Frequency vs Input Voltage  
10-77. Switching Frequency vs Input Voltage  
2600  
2580  
2560  
2540  
2520  
2500  
2480  
20  
MIN  
TYP  
MAX  
15  
10  
5
0
2460  
2440  
VIN = 12 V  
VIN = 15 V  
-5  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-10  
Temperature (oC)  
D001  
50 100 150 200 250 300 350 400 450 500 550 600 650  
VSS/TR (mV)  
Vout = 9.0 V PWM FSEL = high  
Iout = 1 A  
D001  
10-79. Feedback Voltage Accuracy with Voltage  
10-78. Switching Frequency vs Junction  
Tracking vs Voltage at VSS/TR  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
10.3 System Examples  
10.3.1 LED Power Supply  
The TPS62147, TPS62148 can be used as a power supply for power LEDs. The FB pin can be easily set down  
to lower values than nominal by using the SS/TR pin. With that, the voltage drop on the sense resistor is low to  
avoid excessive power loss. Because this pin provides 2.5 µA, the feedback pin voltage can be adjusted by an  
external resistor per 方程式 20. This drop, proportional to the LED current, is used to regulate the output voltage  
(anode voltage) to a proper level to drive the LED. Both analog and PWM dimming are supported with the  
TPS62147, TPS62148.  
10-80 shows an application circuit, tested with analog dimming:  
TPS62147  
VBAT = 3.0 V to 17  
10 uF  
1 uH  
VIN  
EN  
SW  
VOS  
22 uF  
FB  
R4  
FSEL  
MODE  
SS/TR  
PG  
AGND  
GND  
Analog Dimming  
R5  
470 pF  
10-80. Single Power LED Supply  
spacing  
The resistor at SS/TR defines the FB voltage. It is set to 350 mV by R5 = 140 kΩusing 方程式 20. This cuts the  
losses on R4 to half from the nominal 0.7 V of feedback voltage while it still provides good accuracy.  
spacing  
VFB = 2.5mA´ RSS /TR +11mV  
(20)  
spacing  
The device supplies a constant current set by resistor R4 from FB to GND. The minimum input voltage has to be  
rated according the forward voltage needed by the LED used. More information is available in the Application  
Note SLVA451.  
spacing  
10.3.2 Powering Multiple Loads  
In applications where TPS62147, TPS62148 are used to power multiple load circuits, it can be the case that the  
total capacitance on the output is very large. To properly regulate the output voltage, there must be an  
appropriate AC signal level on the VOS pin. Tantalum capacitors have a large enough ESR to keep output  
voltage ripple sufficiently high on the VOS pin. With low ESR ceramic capacitors, the output voltage ripple can  
get very low, so it is not recommended to use a large capacitance directly on the output of the device. If there are  
several load circuits with their associated input capacitor on a pcb, these loads are typically distributed across  
the board. This adds enough trace resistance (Rtrace) to keep a large enough AC signal on the VOS pin for  
proper regulation.  
The minimum total trace resistance on the distributed load is 10 mΩ. The total capacitance n × Cin in the use  
case below was 32 × 47 uF of ceramic X7R capacitors.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
Rtrace  
Rtrace  
Cin  
Cin  
Cin  
Cin  
Cin  
Cin  
Load  
Load  
Load  
Load  
Load  
Load  
TPS62147  
VIN = 12 V  
1 uH  
VOUT = 1.8 V  
VIN  
SW  
Rtrace  
Rtrace  
10 uF  
VOS  
R
EN  
3
R
1
100 kΩ  
22 uF  
FB  
R
2
MODE  
FSEL  
PG  
Rtrace  
Rtrace  
AGND  
GND  
SS/TR  
10-81. Multiple Loads  
10.3.3 Voltage Tracking  
DEVICE 2 follows the voltage applied to the SS/TR pin. A ramp on SS/TR to 0.7 V ramps the output voltage  
according to the 0.7 V reference.  
Tracking the 3.3 V of DEVICE 1 requires a resistor divider on SS/TR of DEVICE 2 equal to the output voltage  
divider of DEVICE 1.  
DEVICE 1  
TPS62147  
VIN = 12  
10 uF  
1 uH  
VOUT = 3.3 V  
VIN  
EN  
SW  
VOS  
560 k  
150 k  
22 uF  
FB  
FSEL  
MODE  
SS/TR  
PG  
AGND  
GND  
3.3 nF  
DEVICE 2  
TPS62147  
VIN = 12 V  
10 uF  
1 uH  
VOUT = 1.8 V  
VIN  
EN  
SW  
VOS  
470k  
22 uF  
FB  
300 k  
FSEL  
PG  
AGND  
MODE  
SS/TR  
R5 = 56 k  
GND  
R6 = 15 k  
10-82. Tracking Example  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
10-83. Tracking  
10.3.4 Precise Soft-Start Timing  
The SS/TR pin of the TPS62147, TPS62148 can be used for tracking as well as for setting the soft-start time.  
The TPS62147, TPS62148 has one GND terminal which is used for the power ground as well as for the analog  
ground connection. While starting the device with a load current above approximately 1 A, the noise on the GND  
connection can lead to a soft-start time shorter than calculated. There is an external work around as given below.  
Adding a 10 kΩ resistor filters the noise on the GND connection and keeps the soft-start time at the value  
calculated.  
TPS62147  
VBAT = 3.0 V to 17 V  
L
VOUT = 0.8 V to 12 V  
VIN  
EN  
SW  
CIN  
1 uH  
VOS  
10 uF  
R
3
R
1
100 kΩ  
COUT  
FB  
2 x 10 uF  
R
2
FSEL  
MODE  
SS/TR  
PG  
AGND  
GND  
CSS  
RSS  
10 kΩ  
10-84. Adding a Series Resistor to CSS  
10.4 Power Supply Recommendations  
The power supply to the TPS62147, TPS62148 must have a current rating according to the supply voltage,  
output voltage, and output current of the TPS62147, TPS62148.  
10.5 Layout  
10.5.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore the PCB layout of the TPS62147, TPS62148 demands careful attention to ensure  
operation and to get the performance specified. A poor layout can lead to issues like poor regulation (both line  
and load), stability and accuracy weaknesses, increased EMI radiation and noise sensitivity.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
 
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
See 10.5.2 for the recommended layout of the TPS62147, TPS62148, which is designed for common external  
ground connections. The input capacitor must be placed as close as possible between the VIN and GND pin of  
TPS62147, TPS62148. Also connect the VOS pin in the shortest way to VOUT at the output capacitor.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore paths conducting the switched load  
current must be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
wires with high dv/dt. Therefore the input and output capacitance must be placed as close as possible to the IC  
pins and parallel wiring over long distances as well as narrow traces must be avoided. Loops which conduct an  
alternating current must outline an area as small as possible, as this area is proportional to the energy radiated.  
Sensitive nodes like FB and VOS must be connected with short wires and not nearby high dv/dt signals (for  
example SW). As they carry information about the output voltage, they must be connected as close as possible  
to the actual output voltage (at the output capacitor). The capacitor on the SS/TR pin as well as the FB resistors,  
R1 and R2, must be kept close to the IC and connect directly to those pins and the system ground plane. The  
same applies to R3 if FB2 is used to scale the output voltage.  
The package uses the pins for power dissipation. Thermal vias on the VIN, GND and SW pins help to spread the  
heat through the pcb.  
In case any of the digital inputs EN, FSEL or MODE must be tied to the input supply voltage at VIN, the  
connection must be made directly at the input capacitor as indicated in the schematics. Please also see the EVM  
User´s Guide SLVUBE9.  
10.5.2 Layout Example  
GND  
GND  
C1  
C2  
EN  
PG  
VOS  
FB  
SS/TR  
MODE  
FSEL  
AGND  
VIN  
VOUT  
L1  
10-85. Layout  
10.5.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design, for example, increasing copper thickness,  
thermal vias, number of layers  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics  
Application Note (Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs), and  
(Semiconductor and IC Package Thermal Metrics application report).  
The TPS62147, TPS62148 are designed for a maximum operating junction temperature (TJ) of 125 °C.  
Therefore the maximum output power is limited by the power losses that can be dissipated over the actual  
thermal resistance, given by the package and the surrounding PCB structures. If the thermal resistance of the  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
36  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
package is given, the size of the surrounding copper area and a proper thermal connection of the IC can reduce  
the thermal resistance. To get an improved thermal behavior, TI recommends to use top layer metal to connect  
the device with wide and thick metal lines. Internal ground layers can connect to vias directly under the IC for  
improved thermal performance.  
If short circuit or overload conditions are present, the device is protected by limiting internal power dissipation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS62147 TPS62148  
English Data Sheet: SLVSDR8  
TPS62147, TPS62148  
ZHCSHZ8B APRIL 2018 REVISED FEBRUARY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDR8  
38  
Submit Document Feedback  
Product Folder Links: TPS62147 TPS62148  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Feb-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62147RGXR  
TPS62147RGXT  
TPS62148RGXR  
TPS62148RGXT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RGX  
RGX  
RGX  
RGX  
11  
11  
11  
11  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
62147  
62147  
62148  
62148  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Feb-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62147RGXR  
TPS62147RGXT  
TPS62148RGXR  
TPS62148RGXT  
VQFN-  
HR  
RGX  
RGX  
RGX  
RGX  
11  
11  
11  
11  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.25  
2.25  
2.25  
2.25  
3.25  
3.25  
3.25  
3.25  
1.05  
1.05  
1.05  
1.05  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
VQFN-  
HR  
VQFN-  
HR  
3000  
250  
VQFN-  
HR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62147RGXR  
TPS62147RGXT  
TPS62148RGXR  
TPS62148RGXT  
VQFN-HR  
VQFN-HR  
VQFN-HR  
VQFN-HR  
RGX  
RGX  
RGX  
RGX  
11  
11  
11  
11  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RGX0011A  
VQFN - 1 mm max height  
SCALE 4.250  
PLASTIC QUAD FLATPACK - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
3.1  
2.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 1.5  
(0.2) TYP  
6X 0.5  
7
4
0.3  
0.2  
3X  
2X 0.5  
3
1
SYMM  
1
0.45  
8X  
0.35  
PIN 1 ID  
11  
8
0.3  
SYMM  
8X  
0.2  
0.1  
0.05  
C B  
C
A
ALL PADS  
4221908/A 10/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGX0011A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
6X (0.5)  
8X (0.25)  
11  
8
8X (0.6)  
1
2X (0.5)  
SYMM  
(2.8)  
(R0.05) TYP  
3
3X (0.25)  
3X (2.4)  
4
7
SYMM  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
SOLDER MASK  
OPENING  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
PADS 4-7 & 8-11  
PADS 1-3  
SOLDER MASK DETAILS  
4221908/A 10/2015  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGX0011A  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
6X (0.5)  
8X (0.25)  
11  
8
8X (0.6)  
6X  
EXPOSED METAL  
9X (0.66)  
9X (0.25)  
1
SYMM  
(2.8)  
(0.5) TYP  
3
SOLDER MASK  
EDGE, TYP  
METAL UNDER  
SOLDER MASK  
TYP  
(0.86) TYP  
4
7
(R0.05) TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
FOR PADS 1-3  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:30X  
4221908/A 10/2015  
NOTES: (continued)  
5. For alternate stencil design recommendations, see IPC-7525 or board assembly site preference.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62148

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 2.0A 降压转换器
TI

TPS62148RGXR

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 2.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS62148RGXT

采用 2x3QFN 封装并具有 1% 精度和 PFM/强制 PWM 特性的 3-17V 2.0A 降压转换器 | RGX | 11 | -40 to 125
TI

TPS62150

3-17V 1A Step-Down Converter in 3x3 QFN Package
TI

TPS62150A

3-17V 1A Step-Down Converter in 3x3 QFN Package
TI

TPS62150A-Q1

TPS6215xA-Q1 3V to 17-V 1A Step-Down Converter with DCS-ControlTM
TI

TPS62150A-Q1_15

TPS6215xA-Q1 3V to 17-V 1A Step-Down Converter with DCS-ControlTM
TI

TPS62150AQRGTRQ1

TPS6215xA-Q1 3V to 17-V 1A Step-Down Converter with DCS-ControlTM
TI

TPS62150AQRGTTQ1

TPS6215xA-Q1 3V to 17-V 1A Step-Down Converter with DCS-ControlTM
TI

TPS62150ARGT

3-17V 1A Step-Down Converter in 3x3 QFN Package
TI

TPS62150ARGTR

3-17V 1A 3MHz Step-Down Converter with DCS-Control in 3x3 QFN Package 16-VQFN -40 to 125
TI

TPS62150ARGTT

采用 3x3 QFN 封装、具有 DCS-Control 的 3V 至 17V 1A 降压转换器 | RGT | 16 | -40 to 125
TI