TPS62160QDSGTQ1 [TI]

采用 2x2SON 封装的 3V-17V 1A 汽车类降压转换器 | DSG | 8 | -40 to 125;
TPS62160QDSGTQ1
型号: TPS62160QDSGTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2x2SON 封装的 3V-17V 1A 汽车类降压转换器 | DSG | 8 | -40 to 125

转换器
文件: 总31页 (文件大小:2598K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
TPS62160-Q1 具有 DCS-Control™ 功能的 3V 17V 1A 降压转换器  
1 特性  
3 说明  
1
DCS-Control™ 拓扑技术  
符合汽车应用要求  
TPS62160-Q1 是一款易于使用的同步降压 DC-DC 转  
换器,针对高功率密度的应用进行了优化。 该器件的  
开关频率典型值高达 2.25MHz,允许使用小型电感  
器,通过利用 DCS-Control™ 拓扑技术提供快速的瞬  
态响应并实现高输出电压精度。  
具有符合 AEC-Q100 的下列结果:  
器件温度等级:-40°C 125°C 的运行结温范  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
H2  
此器件具有 3V 17V 宽运行输入电压范围,非常适  
用于由锂离子或其它电池以及 12V 中间电源轨供电的  
系统。 其输出电压为 0.9V 6V,支持高达 1A 的持  
续输出电流(使用 100% 占空比模式)。  
器件充电器件模型 (CDM) ESD 分类等级 C4B  
输入电压范围:3V 17V  
输出电流高达 1A  
可调输出电压范围为 0.9V 6V  
固定输出电压版本  
无缝省电模式转换  
静态电流典型值为 17µA  
电源正常输出  
通过配置使能引脚和开漏电源正常状态引脚也可以实现  
电源排序。  
在节能模式下,器件可根据输入电压 (VIN) 生成约  
17μA 的静态电流。 负载较小时可自动且无缝进入节能  
模式,同时该模式可保持整个负载范围内的高效率。  
在关断模式下,此器件会关闭且关断期间的流耗少于  
2μA。  
100% 占空比模式  
短路保护  
过热保护  
此器件采用 2mm × 2mm (DSG) 8 引脚 WSON 封装。  
采用 2mm x 2mm 晶圆级小外形无引线 (WSON)-8  
封装  
器件信息(1)  
器件型号  
封装  
WSON (8)  
封装尺寸(标称值)  
2 应用  
TPS62160-Q1  
2.00mm x 2.00mm  
汽车类 12V 导轨式电源  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
以太网供电 (POE) 的同轴负载点 (POL) 电源  
摄像机模块、视频模块  
低压降稳压器 (LDO)  
4 简化电路原理图  
VIN  
3.3V / 1A  
2.2µH  
VIN  
SW  
VOS  
PG  
EN  
470k  
150k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
PGND  
FB  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCK6  
 
 
 
 
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
目录  
8.4 Device Functional Modes.......................................... 8  
Application and Implementation ........................ 11  
9.1 Application Information............................................ 11  
9.2 Typical TPS62160-Q1 Application ......................... 11  
9.3 System Examples ................................................... 19  
1
2
3
4
5
6
7
特性.......................................................................... 1  
9
应用.......................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
8.1 Overview ................................................................... 7  
8.2 Functional Block Diagram ......................................... 7  
8.3 Feature Description................................................... 8  
10 Power Supply Recommendations ..................... 21  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 22  
11.3 Thermal Considerations........................................ 23  
12 器件和文档支持 ..................................................... 24  
12.1 器件支持 ............................................................... 24  
12.2 文档支持 ............................................................... 24  
12.3 ....................................................................... 24  
12.4 静电放电警告......................................................... 24  
12.5 术语表 ................................................................... 24  
13 机械封装和可订购信息 .......................................... 24  
8
5 修订历史记录  
日期  
修订版本  
注释  
201412月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
6 Pin Configuration and Functions  
space  
8-Pin WSON  
DSG Package  
(Top View)  
1
8
7
6
5
PGND  
VIN  
PG  
2
3
4
SW  
VOS  
FB  
Exposed  
Thermal  
Pad  
EN  
AGND  
space  
space  
Pin Functions  
PIN(1)  
I/O  
DESCRIPTION  
NAME  
NUMBER  
PGND  
VIN  
1
2
3
4
5
Power ground  
Supply voltage  
I
I
EN  
Enable input (High = enabled, Low = disabled)  
Analog Ground  
AGND  
FB  
I
Voltage feedback of adjustable version. Connect resistive voltage divider to this pin. It is  
recommended to connect FB to AGND on fixed output voltage versions for improved thermal  
performance.  
VOS  
SW  
PG  
6
7
8
I
Output voltage sense pin and connection for the control loop circuitry.  
Switch node, which is connected to the internal MOSFET switches. Connect inductor between SW and  
output capacitor.  
O
O
Output power good (High = VOUT ready, Low = VOUT below nominal regulation) ; open drain  
(requires pull-up resistor; goes high impedance, when device is switched off)  
Exposed  
Thermal Pad  
Must be connected to AGND. Must be soldered to achieve appropriate power dissipation and  
mechanical reliability.  
(1) For more information about connecting pins, see Detailed Description and Application Information sections.  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX UNIT  
VIN  
20  
VIN+0.3  
7
V
V
Pin voltage range(2)  
EN, SW  
FB, PG, VOS  
PG  
V
Power Good sink current  
10  
mA  
°C  
°C  
Operating junction temperature range, TJ  
Storage temperature range, Tstg  
–40  
–65  
125  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.  
(2) All voltages are with respect to network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN TYP  
MAX UNIT  
VIN  
VOUT  
TJ  
Supply voltage  
3
17  
6
V
V
Output voltage range  
Operating junction temperature  
0.9  
–40  
125  
°C  
7.4 Thermal Information  
TPS62160-Q1  
THERMAL METRIC(1)  
UNIT  
DSG (8 PINS)  
DGK (8 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
61.8  
61.3  
15.5  
0.4  
184.3  
74.6  
105.8  
13.3  
104.2  
-
RθJC(top)  
RθJB  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
15.4  
8.6  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
7.5 Electrical Characteristics  
Over junction temperature range (TJ = –40°C to +125°C), typical values at VIN = 12 V and TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
VIN  
Input voltage range(1)  
Operating quiescent current  
Shutdown current(2)  
3
17  
30  
V
µA  
µA  
V
IQ  
EN = High, IOUT = 0 mA, Device not switching  
17  
1.8  
2.7  
180  
160  
20  
ISD  
EN = Low  
25  
Falling input voltage  
Hysteresis  
2.6  
0.9  
2.82  
VUVLO  
Undervoltage lockout threshold  
mV  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
TSD  
°C  
CONTROL (EN, PG)  
VEN_H  
VEN_L  
High level input threshold voltage (EN)  
Low level input threshold voltage (EN)  
V
V
0.3  
1
ILKG_EN Input leakage current (EN)  
EN = VIN or GND  
0.01  
95%  
90%  
0.07  
1
µA  
Rising (%VOUT  
)
92%  
87%  
98%  
93%  
0.3  
VTH_PG Power Good threshold voltage  
Falling (%VOUT  
IPG = –2 mA  
VPG = 1.8 V  
)
VOL_PG Power Good output low  
ILKG_PG Input leakage current (PG)  
POWER SWITCH  
V
400  
nA  
VIN 6 V  
VIN = 3 V  
VIN 6 V  
VIN = 3 V  
300  
430  
120  
165  
600  
200  
High-side MOSFET ON-resistance  
RDS(ON)  
mΩ  
Low-side MOSFET ON-resistance  
mΩ  
High-side MOSFET forward current  
VIN = 12 V, TA = 25°C  
ILIMF  
1.45  
1.95  
2.45  
A
limit(3)  
OUTPUT  
VREF  
Internal reference voltage  
0.8  
5
V
nA  
V
ILKG_FB Pin leakage current (FB)  
Output voltage range  
VFB = 1.2 V  
400  
6.0  
3%  
4%  
VIN VOUT  
0.9  
–3%  
–3%  
PWM Mode operation, VIN VOUT + 1 V  
Power Save Mode operation, COUT = 2x22 µF(4)  
VIN = 12 V, VOUT = 3.3 V, PWM Mode operation  
Feedback voltage accuracy  
VOUT  
DC output voltage load regulation(5)  
0.05  
0.02  
% / A  
% / V  
(5)  
DC output voltage line regulation  
3 V VIN 17 V, VOUT = 3.3 V, IOUT = 0.5 A,  
PWM Mode operation  
(1) The device is still functional down to Under Voltage Lockout (see parameter VUVLO).  
(2) Current into VIN pin.  
(3) This is the static current limit. It can be temporarily higher in applications due to internal propagation delay (see Current Limit and Short  
Circuit Protection section).  
(4) The accuracy in Power Save Mode can be improved by increasing the COUT value, reducing the output voltage ripple.  
(5) Line and load regulation are depending on external component selection and layout (see Figure 14 and Figure 15).  
Copyright © 2014, Texas Instruments Incorporated  
5
 
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
7.6 Typical Characteristics  
At VIN = 12 V, VOUT = 3.3 V and TJ = 25°C (unless otherwise noted)  
Figure 1. Quiescent Current  
Figure 2. Shutdown Current  
Figure 3. High-Side Static Drain-Source-Resistance (RDSon  
)
Figure 4. Low-Side Static Drain-Source-Resistance (RDSon)  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
8 Detailed Description  
8.1 Overview  
The TPS62160-Q1 synchronous switched mode power converter is based on DCS-Control™ (Direct Control with  
Seamless transition into power  
save mode), an advanced regulation topology, that combines the advantages of hysteretic, voltage mode and  
current mode control including an AC loop directly associated to the output voltage. This control loop takes  
information about output voltage changes and feeds it directly to a fast comparator stage. It sets the switching  
frequency, which is constant for steady state operating conditions, and provides immediate response to dynamic  
load changes. To get accurate DC load regulation, a voltage feedback loop is used. The internally compensated  
regulation network achieves fast and stable operation with small external components and low ESR capacitors.  
The DCS-Control™ topology supports PWM (Pulse Width Modulation) mode for medium and heavy load  
conditions and a Power Save Mode at light loads. During PWM, it operates at its nominal switching frequency in  
continuous conduction mode. This frequency is typically about 2.25 MHz with a controlled frequency variation  
depending on the input voltage. If the load current decreases, the converter enters Power Save Mode to sustain  
high efficiency down to very light loads. In Power Save Mode the switching frequency decreases linearly with the  
load current. Since DCS-Control™ supports both operation modes within one single building block, the transition  
from PWM to Power Save Mode is seamless without effects on the output voltage.  
8.2 Functional Block Diagram  
PG  
VIN  
Soft  
start  
Thermal  
Shtdwn  
UVLO  
PG control  
HS lim  
comp  
power  
control  
gate  
drive  
control logic  
EN*  
SW  
comp  
LS lim  
direct control  
&
compensation  
VOS  
FB  
ramp  
_
comparator  
timer tON  
error  
amplifier  
+
DCS - ControlTM  
* This pin is connected to a pull down resistor internally  
(see Detailed Description section).  
AGND  
PGND  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Enable / Shutdown (EN)  
When Enable (EN) is set High, the device starts operation.  
Shutdown is forced if EN is pulled Low with a shutdown current of typically 1.5 µA. During shutdown, the internal  
power MOSFETs as well as the entire control circuitry are turned off. The internal resistive divider pulls down the  
output voltage smoothly. If the EN pin is Low, an internal pull-down resistor of about 400 kΩ is connected and  
keeps it Low in case of floating pin.  
Connecting the EN pin to an appropriate output signal of another power rail provides sequencing of multiple  
power rails.  
8.3.2 Softstart  
The internal soft start circuitry controls the output voltage slope during startup. This avoids excessive inrush  
current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high-  
impedance power sources or batteries. When EN is set to start device operation, the device starts switching after  
a delay of about 50 µs and VOUT rises with a slope of about 25 mV/µs. See Figure 26 and Figure 27 for typical  
startup operation.  
The TPS62160-Q1 can start into a pre-biased output. During monotonic pre-biased startup, the low-side  
MOSFET is not allowed to turn on until the device's internal ramp sets an output voltage above the pre-bias  
voltage.  
8.3.3 Power Good (PG)  
The TPS62160-Q1 has a built in power good (PG) function to indicate whether the output voltage has reached its  
appropriate level or not. The PG signal can be used for startup sequencing of multiple rails. The PG pin is an  
open-drain output that requires a pull-up resistor (to any voltage below 7 V). It can sink 2 mA of current and  
maintain its specified logic low level. It is high impedance when the device is turned off due to EN, UVLO or  
thermal shutdown.  
8.3.4 Under Voltage Lockout (UVLO)  
If the input voltage drops, the under voltage lockout prevents misoperation of the device by switching off both the  
power FETs. The under voltage lockout threshold is set typically to 2.7 V. The device is fully operational for  
voltages above the UVLO threshold and turns off if the input voltage trips the threshold. The converter starts  
operation again once the input voltage exceeds the threshold by a hysteresis of typically 180 mV.  
8.3.5 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 160°C  
(typ), the device goes into thermal shut down. Both the high-side and low-side power FETs are turned off and PG  
goes high impedance. When TJ decreases below the hysteresis amount, the converter resumes normal  
operation, beginning with Soft Start. To avoid unstable conditions, a hysteresis of typically 20°C is implemented  
on the thermal shut down temperature.  
8.4 Device Functional Modes  
8.4.1 Pulse Width Modulation (PWM) Operation  
The TPS62160-Q1 operates with pulse width modulation in continuous conduction mode (CCM) with a nominal  
switching frequency of about 2.25 MHz. The frequency variation in PWM is controlled and depends on VIN, VOUT  
and the inductance. The device operates in PWM mode as long the output current is higher than half the  
inductor's ripple current. To maintain high efficiency at light loads, the device enters Power Save Mode at the  
boundary to discontinuous conduction mode (DCM). This happens if the output current becomes smaller than  
half the inductor's ripple current.  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
Device Functional Modes (continued)  
8.4.2 Power Save Operation  
The TPS62160-Q1's built in Power Save Mode will be entered seamlessly, if the load current decreases. This  
secures a high efficiency in light load operation. The device remains in Power Save Mode as long as the inductor  
current is discontinuous.  
In Power Save Mode the switching frequency decreases linearly with the load current maintaining high efficiency.  
The transition into and out of Power Save Mode happens within the entire regulation scheme and is seamless in  
both directions.  
The TPS62160-Q1 includes a fixed on-time circuitry. This on-time, in steady-state operation, can be estimated  
as:  
space  
VOUT  
tON  
=
´ 420ns  
V
IN  
(1)  
space  
For very small output voltages, the on-time increases beyond the result of Equation 1, to stay above an absolute  
minimum on-time, tON(min), which is around 80 ns to limit switching losses. The peak inductor current in PSM can  
be approximated by:  
space  
V
IN - VOUT  
(
)
ILPSM(peak)  
=
´ tON  
L
(2)  
space  
When VIN decreases to typically 15% above VOUT, the TPS62160-Q1 does not enter Power Save Mode,  
regardless of the load current. The device maintains output regulation in PWM mode.  
8.4.3 100% Duty-Cycle Operation  
The duty cycle of the buck converter is given by D = Vout/Vin and increases as the input voltage comes close to  
the output voltage. In this case, the device starts 100% duty cycle operation turning on the high-side switch  
100% of the time. The high-side switch stays turned on as long as the output voltage is below the internal set  
point. This allows the conversion of small input to output voltage differences, e.g. for longest operation time of  
battery-powered applications. In 100% duty cycle mode, the low-side FET is switched off.  
The minimum input voltage to maintain output voltage regulation, depending on the load current and the output  
voltage level, can be calculated as:  
space  
V
= VOUT(min) + IOUT  
R
(
+ RL  
)
IN(min)  
DS(on)  
(3)  
where  
IOUT is the output current,  
RDS(on) is the RDS(on) of the high-side FET and  
RL is the DC resistance of the inductor used.  
space  
8.4.4 Current Limit and Short Circuit Protection  
The TPS62160-Q1 is protected against heavy load and short circuit events. At heavy loads, the current limit  
determines the maximum output current. If the current limit is reached, the high-side FET will be turned off.  
Avoiding shoot through current, the low-side FET will be switched on to sink the inductor current. The high-side  
FET will turn on again, only if the current in the low-side FET has decreased below the low side current limit  
threshold.  
Copyright © 2014, Texas Instruments Incorporated  
9
 
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
The output current of the device is limited by the current limit (see Electrical Characteristics). Due to internal  
propagation delay, the actual current can exceed the static current limit during that time. The dynamic current  
limit can be calculated as follows:  
space  
VL  
Ipeak(typ) = ILIMF  
+
´ tPD  
L
(4)  
where  
ILIMF is the static current limit, specified in the electrical characteristic table,  
L is the inductor value,  
VL is the voltage across the inductor and  
tPD is the internal propagation delay.  
space  
The dynamic high side switch peak current can be calculated as follows:  
space  
V
IN - VOUT  
(
)
Ipeak(typ) = ILIMF _HS  
+
´ 30ns  
L
(5)  
space  
Care on the current limit has to be taken if the input voltage is high and very small inductances are used.  
8.4.5 Operation Above TJ = 125°C  
The operating junction temperature of the device is specified up to 125°C. In power supply circuits, the self  
heating effect causes, that the junction temperature, TJ, is even higher than the ambient temperature TA.  
Depending on TA and the load current, the maximum operating temperature TJ can be exceeded. However, the  
electrical characteristics are specified up to a TJ of 125°C only. The device operates as long as thermal  
shutdown threshold is not triggered.  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
9 Application and Implementation  
9.1 Application Information  
The TPS62160-Q1 is a synchronous switched mode step-down converter, able to convert a 3 V to 17 V input  
voltage into a lower, 0.9 V to 6 V, output voltage, providing up to 1-A load current. The following section gives  
guidance on the external component selection to operate the device within the recommended operating  
conditions.  
9.2 Typical TPS62160-Q1 Application  
space  
space  
VIN  
3.3V / 1A  
2.2µH  
VIN  
EN  
SW  
VOS  
PG  
470k  
150k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
PGND  
FB  
Figure 5. 3.3-V / 1-A Power Supply  
space  
9.2.1 Design Requirements  
The step-down converter design can be adapted to different output voltage and load current needs by choosing  
external components appropriate. The following design procedure is adequate for whole VIN, VOUT, and load  
current range of TPS62160-Q1. Using Table 2, the design procedure needs minimum effort.  
space  
Table 1. Components Used for Application Characteristics  
REFERENCE  
DESCRIPTION  
17-V, 1-A step-down converter, WSON  
2.2-µH, 1.4-A, 3 x 2.8 x 1.2 mm  
10-µF, 25-V, ceramic  
MANUFACTURER  
TPS62160QDSG, Texas Instruments  
VLF3012ST-2R2M1R4, TDK  
Standard  
IC  
L1  
CIN  
COUT  
R1  
22-µF, 6.3-V, ceramic  
Standard  
Depending on Vout  
R2  
Depending on Vout  
R3  
100-kΩ, chip, 0603, 1/16-W, 1%  
Standard  
space  
9.2.2 Detailed Design Procedure  
9.2.2.1 Programming the Output Voltage  
The TPS62160-Q1 can be programmed for output voltages from 0.9 V to 6 V by using a resistive divider from  
VOUT to FB to AGND. The voltage at the FB pin is regulated to 800 mV. The value of the output voltage is set  
by the selection of the resistive divider from Equation 6. It is recommended to choose resistor values which allow  
a cross current of at least 2 uA, meaning the value of R2 should not exceed 400 kΩ. Lower resistor values are  
recommended for highest accuracy and most robust design. For applications requiring lowest current  
consumption, the use of fixed output voltage versions is recommended.  
space  
Copyright © 2014, Texas Instruments Incorporated  
11  
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
æ
2 ç  
è
ö
VOUT  
R1 = R  
space  
-1  
÷
VREF  
ø
(6)  
In case the FB pin gets opened, the device clamps the output voltage at the VOS pin to about 7.4 V.  
9.2.2.2 External Component Selection  
The external components have to fulfill the needs of the application, but also the stability criteria of the devices  
control loop. The TPS62160-Q1 is optimized to work within a range of external components. The LC output filters  
inductance and capacitance have to be considered together, creating a double pole, responsible for the corner  
frequency of the converter (see Output Filter And Loop Stability section). Table 2 can be used to simplify the  
output filter component selection.  
space  
Table 2. Recommended LC Output Filter Combinations(1)  
4.7µF  
10µF  
22µF  
47µF  
100µF  
200µF  
400µF  
1µH  
(2)  
2.2µH  
3.3µH  
4.7µH  
(1) The values in the table are nominal values. Variations of typically ±20% due to tolerance, saturation and DC bias are assumed.  
(2) This LC combination is the standard value and recommended for most applications.  
More detailed information on further LC combinations can be found in SLVA463.  
9.2.2.2.1 Inductor Selection  
The inductor selection is affected by several effects like inductor ripple current, output ripple voltage, PWM-to-  
PSM transition point and efficiency. In addition, the inductor selected has to be rated for appropriate saturation  
current and DC resistance (DCR). Equation 7 and Equation 8 calculate the maximum inductor current under  
static load conditions.  
spacer  
DIL(max)  
IL(max) = IOUT(max)  
spacer  
+
2
(7)  
VOUT  
æ
ö
÷
÷
÷
1-  
ç
ç
ç
V
IN(max)  
DIL(max) = VOUT  
´
L(min)´ ƒSW  
ç
÷
ç
÷
è
ø
(8)  
where  
IL(max) is the maximum inductor current,  
ΔIL is the Peak-to-Peak Inductor Ripple Current,  
L(min) is the minimum effective inductor value and  
fSW is the actual PWM Switching Frequency.  
spacer  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. A margin of about 20% is recommended to add. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well. The following  
inductors have been used with the TPS62160-Q1 and are recommended for use:  
12  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
Table 3. List of Inductors  
TYPE  
INDUCTANCE [µH]  
2.2 µH, ±20%  
2.2 µH, ±20%  
2.2 µH, ±20%  
2.2 µH, ±20%  
3.3 µH, ±20%  
3.3 µH, ±20%  
2.2 µH, ±20%  
3.3 µH, ±20%  
2.2 µH, ±20%  
CURRENT [A](1)  
DIMENSIONS [L x B x H] mm  
MANUFACTURER  
TDK  
VLF3012ST-2R2M1R4  
VLF302512MT-2R2M  
VLS252012T-2R2M1R3  
XFL3012-222MEC  
XFL3012-332MEC  
LPS3015-332ML_  
NR3015T-2R2M  
1.9 A  
3.0 x 2.8 x 1.2  
3.0 x 2.5 x 1.2  
2.5 x 2.0 x 1.2  
3.0 x 3.0 x 1.2  
3.0 x 3.0 x 1.2  
3.0 x 3.0 x 1.4  
3.0 x 3.0 x 1.5  
2.8 x 2.8 x 2.8  
2.0 x 2.5 x 1.2  
1.9 A  
TDK  
1.3 A  
TDK  
1.9 A  
Coilcraft  
Coilcraft  
Coilcraft  
Taiyo Yuden  
Wuerth  
1.6 A  
1.4 A  
1.5 A  
744025003  
1.5 A  
PSI25201B-2R2MS  
1.3 A  
Cyntec  
(1) IRMS at 40°C rise or ISAT at 30% drop.  
spacer  
The TPS62160-Q1 can be run with an inductor as low as 2.2 µH. However, for applications with low input  
voltages, 3.3 µH is recommended, to allow the full output current. The inductor value also determines the load  
current at which Power Save Mode is entered:  
space  
1
I
=
DIL  
load(PSM)  
2
(9)  
space  
Using Equation 8, this current level can be adjusted by changing the inductor value.  
9.2.2.2.2 Capacitor Selection  
9.2.2.2.2.1 Output Capacitor  
The recommended value for the output capacitor is 22 uF. The architecture of the TPS62160-Q1 allows the use  
of tiny ceramic output capacitors with low equivalent series resistance (ESR). These capacitors provide low  
output voltage ripple and are recommended. To keep its low resistance up to high frequencies and to get narrow  
capacitance variation with temperature, it's recommended to use X7R or X5R dielectric. Using a higher value can  
have some advantages like smaller voltage ripple and a tighter DC output accuracy in Power Save Mode (see  
SLVA463).  
NOTE  
In power save mode, the output voltage ripple depends on the output capacitance, its ESR  
and the peak inductor current. Using ceramic capacitors provides small ESR and low  
ripple.  
9.2.2.2.2.2 Input Capacitor  
For most applications, 10 µF is sufficient and is recommended, though a larger value reduces input current ripple  
further. The input capacitor buffers the input voltage for transient events and also decouples the converter from  
the supply. A low ESR multilayer ceramic capacitor is recommended for best filtering and should be placed  
between VIN and GND as close as possible to those pins.  
spacer  
NOTE  
DC Bias effect: High capacitance ceramic capacitors have a DC Bias effect, which will  
have a strong influence on the final effective capacitance. Therefore the right capacitor  
value has to be chosen carefully. Package size and voltage rating in combination with  
dielectric material are responsible for differences between the rated capacitor value and  
the effective capacitance.  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
9.2.2.3 Output Filter And Loop Stability  
The TPS62160-Q1 is internally compensated to be stable with L-C filter combinations corresponding to a corner  
frequency to be calculated with Equation 10:  
space  
1
ƒLC  
=
2p L ´ C  
(10)  
space  
Proven nominal values for inductance and ceramic capacitance are given in Table 2 and are recommended for  
use. Different values may work, but care has to be taken on the loop stability which might be affected. More  
information including a detailed L-C stability matrix can be found in SLVA463.  
The TPS62160-Q1 includes an internal 25-pF feedforward capacitor, connected between the VOS and FB pins.  
This capacitor impacts the frequency behavior and sets a pole and zero in the control loop with the resistors of  
the feedback divider, per Equation 11 and Equation 12:  
space  
1
ƒzero  
space  
ƒpole  
space  
=
2p´R1 ´ 25 pF  
(11)  
(12)  
æ
ö
÷
ø
1
1
1
=
´
+
ç
2p´ 25 pF R1 R2  
è
Though the TPS62160-Q1 is stable without the pole and zero being in a particular location, adjusting their  
location to the specific needs of the application can provide better performance in Power Save mode and/or  
improved transient response. An external feedforward capacitor can also be added. A more detailed discussion  
on the optimization for stability vs transient response can be found in SLVA289 and SLVA466.  
If using ceramic capacitors, the DC bias effect has to be considered. The DC bias effect results in a drop in  
effective capacitance as the voltage across the capacitor increases (see NOTE in DC Bias effect section).  
9.2.3 Application Performance Plots  
At VIN = 12 V, VOUT = 3.3 V and TJ = 25°C (unless otherwise noted)  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=17V  
IOUT=1mA  
IOUT=100mA  
IOUT=10mA  
IOUT=1A  
VIN=12V  
VIN=6V  
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Input Voltage (V)  
G001  
G001  
Vout = 6 V  
Vout = 6 V  
Figure 6. Efficiency vs Output Current  
Figure 7. Efficiency vs Input Voltage  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
At VIN = 12 V, VOUT = 3.3 V and TJ = 25°C (unless otherwise noted)  
100.0  
90.0  
80.0  
70.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
IOUT=1A  
IOUT=1mA  
IOUT=10mA  
60.0  
VIN=17V  
IOUT=100mA  
50.0  
VIN=12V  
40.0  
VIN=5V  
30.0  
20.0  
10.0  
0.0  
0.0001  
0.001  
0.01  
0.1  
1
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Output Current (A)  
Input Voltage (V)  
G001  
G001  
Vout = 3.3 V  
Vout = 3.3 V  
Figure 8. Efficiency vs Output Current  
Figure 9. Efficiency vs Input Voltage  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
VIN=5V  
IOUT=500mA  
VIN=17V  
IOUT=1mA  
IOUT=10mA  
IOUT=100mA  
VIN=12V  
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage (V)  
G001  
G001  
Vout = 1.8 V  
Vout = 1.8 V  
Figure 10. Efficiency vs Output Current  
Figure 11. Efficiency vs Input Voltage  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
IOUT=10mA  
VIN=5V  
IOUT=100mA  
IOUT=1A  
VIN=17V  
IOUT=1mA  
VIN=12V  
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17  
Input Voltage (V)  
G001  
G001  
Vout = 0.9 V  
Vout = 0.9 V  
Figure 12. Efficiency vs Output Current  
Figure 13. Efficiency vs Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
15  
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
At VIN = 12 V, VOUT = 3.3 V and TJ = 25°C (unless otherwise noted)  
3.35  
3.35  
3.30  
3.25  
3.20  
IOUT=1mA  
IOUT=10mA  
3.30  
VIN=5V  
VIN=12V  
VIN=17V  
IOUT=100mA  
IOUT=1A  
3.25  
3.20  
0.0001  
0.001  
0.01  
Output Current (A)  
0.1  
1
4
7
10  
13  
16  
Input Voltage (V)  
G001  
G001  
Figure 14. Output Voltage Accuracy (Load Regulation)  
Figure 15. Output Voltage Accuracy (Line Regulation)  
4
3.5  
3
4
3.5  
3
2.5  
2
IOUT=1A  
2.5  
2
IOUT=0.5A  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
4
6
8
10  
12  
14  
16  
18  
Input Voltage (V)  
G000  
G000  
Figure 16. Switching Frequency vs Output Current  
Figure 17. Switching Frequency vs Input Voltage  
0.05  
0.04  
0.03  
0.02  
0.01  
0
3
2.5  
2
VIN=17V  
−40°C  
25°C  
1.5  
1
VIN=12V  
85°C  
0.5  
0
VIN=5V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
4
5
6
7
8
9
Input Voltage (V)  
10 11 12 13 14 15 16 17  
G000  
G000  
Figure 18. Output Voltage Ripple  
Figure 19. Maximum Output Current  
16  
Copyright © 2014, Texas Instruments Incorporated  
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
At VIN = 12 V, VOUT = 3.3 V and TJ = 25°C (unless otherwise noted)  
Figure 20. PWM / PSM Mode Transitions  
Figure 21. PWM to PSM Mode Transition  
500 mA to 1 A  
100 mA to 500 mA  
Figure 22. Load Transient Response in PWM Mode  
Figure 23. Load Transient Response from Power Save  
Mode  
500 mA to 1 A, Rising edge  
500 mA to 1 A, Falling edge  
Figure 24. Load Transient Response in PWM Mode  
Figure 25. Load Transient Response in PWM Mode  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
At VIN = 12 V, VOUT = 3.3 V and TJ = 25°C (unless otherwise noted)  
Iout = 100 mA  
Iout = 1 A  
Figure 26. Startup  
Figure 27. Startup  
Iout = 1 A  
Iout = 66 mA  
Figure 29. Typical Operation in PWM Mode  
Figure 28. Typical Operation in Power Save Mode  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
9.3 System Examples  
9.3.1 Inverting Power Supply  
The TPS62160-Q1 can be used as inverting power supply by rearranging external circuitry as shown in  
Figure 30. As the former GND node now represents a voltage level below system ground, the voltage difference  
between VIN and VOUT has to be limited for operation to the maximum supply voltage of 17 V (see Equation 13).  
spacer  
VIN + VOUT £ V  
IN max  
(13)  
space  
10uF  
10uF  
2.2µH  
(3 .. 12)V  
VIN  
EN  
SW  
VOS  
PG  
680k  
130k  
100k  
TPS62160-Q1  
22uF  
GND  
PGND  
FB  
-5V  
Figure 30. –5-V Inverting Power Supply  
space  
The transfer function of the inverting power supply configuration differs from the buck mode transfer function,  
incorporating a Right Half Plane Zero additionally. The loop stability has to be adapted and an output  
capacitance of at least 22 µF is recommended. A detailed design example is given in SLVA469.  
9.3.2 Various Output Voltages  
The TPS62160-Q1 can be set for different output voltages between 0.9 V and 6 V. Some examples are shown  
below.  
space  
space  
(5 .. 17)V  
2.2µH  
5V / 1A  
VIN  
EN  
SW  
VOS  
PG  
680k  
130k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
PGND  
FB  
Figure 31. 5-V/1-A Power Supply  
space  
space  
Copyright © 2014, Texas Instruments Incorporated  
19  
 
 
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
System Examples (continued)  
(3.3 .. 17)V  
2.2µH  
3.3V / 1A  
VIN  
EN  
SW  
VOS  
PG  
470k  
150k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
PGND  
FB  
Figure 32. 3.3-V/1-A Power Supply  
space  
space  
(3 .. 17)V  
2.2µH  
2.5V / 1A  
VIN  
EN  
SW  
VOS  
PG  
390k  
180k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
PGND  
FB  
Figure 33. 2.5-V/1-A Power Supply  
space  
space  
(3 .. 17)V  
2.2µH  
1.8V / 1A  
VIN  
EN  
SW  
VOS  
PG  
200k  
160k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
PGND  
FB  
Figure 34. 1.8-V/1-A Power Supply  
space  
space  
(3 .. 17)V  
2.2µH  
1.5V / 1A  
VIN  
EN  
SW  
VOS  
PG  
130k  
150k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
PGND  
FB  
Figure 35. 1.5-V/1-A Power Supply  
space  
space  
20  
Copyright © 2014, Texas Instruments Incorporated  
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
System Examples (continued)  
(3 .. 17)V  
2.2µH  
1.2V / 1A  
VIN  
EN  
SW  
VOS  
PG  
75k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
150k  
PGND  
FB  
Figure 36. 1.2-V/1-A Power Supply  
space  
space  
(3 .. 17)V  
2.2µH  
1V / 1A  
VIN  
EN  
SW  
VOS  
PG  
51k  
100k  
10uF  
TPS62160-Q1  
22uF  
AGND  
200k  
PGND  
FB  
Figure 37. 1-V/1-A Power Supply  
space  
10 Power Supply Recommendations  
The TPS62160-Q1 is designed to operate from a 3-V to 17-V input voltage supply. The input power supply's  
output current needs to be rated according to the output voltage and the output current of the power rail  
application.  
Copyright © 2014, Texas Instruments Incorporated  
21  
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore the PCB layout of the TPS62160-Q1 demands careful attention to ensure operation and  
to get the performance specified. A poor layout can lead to issues like poor regulation (both line and load),  
stability and accuracy weaknesses, increased EMI radiation and noise sensitivity. Considering the following  
topics ensures best electrical and optimized thermal performance:  
1) The input capacitor must be placed as close as possible to the VIN and PGND pin of the IC. This provides low  
resistive and inductive path for the high di/dt input current.  
2) The VOS pin must be connect in the shortest way to VOUT at the output capacitor - avoiding noise coupling.  
3) The feedback resistors, R1 and R2 must be connected close to the FB and AGND pins - avoiding noise  
coupling.  
4) The output capacitor should be placed such that its ground is as close as possible to the IC's PGND pins -  
avoiding additional voltage drop in traces.  
5) The inductor should be placed close to the SW pin and connect directly to the output capacitor - minimizing  
the loop area between the SW pin, inductor, output capacitor and PGND pin.  
More detailed information can be found in the EVM Users Guide, SLVU483.  
The Exposed Thermal Pad must be soldered to the circuit board for mechanical reliability and to achieve  
appropriate power dissipation. Although the Exposed Thermal Pad can be connected to a floating circuit board  
trace, the device will have better thermal performance if it is connected to a larger ground plane. The Exposed  
Thermal Pad is electrically connected to AGND.  
11.2 Layout Example  
PGND  
COUT  
L
AGND  
VIN  
R2  
R1  
VIN  
Figure 38. Layout Example  
22  
Copyright © 2014, Texas Instruments Incorporated  
TPS62160-Q1  
www.ti.com.cn  
ZHCSD49 DECEMBER 2014  
11.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power-  
dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Improving the thermal coupling of the component to the PCB by soldering the Exposed Thermal Pad  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics  
Application Note (SZZA017), and (SPRA953).  
The TPS62160-Q1 is designed for a maximum operating junction temperature (TJ) of 125°C. Therefore the  
maximum output power is limited by the power losses that can be dissipated over the actual thermal resistance,  
given by the package and the surrounding PCB structures. Since the thermal resistance of the package is fixed,  
increasing the size of the surrounding copper area and improving the thermal connection to the IC can reduce  
the thermal resistance. To get an improved thermal behavior, it's recommended to use top layer metal to connect  
the device with wide and thick metal lines. Internal ground layers can connect to vias directly under the IC for  
improved thermal performance.  
If short circuit or overload conditions are present, the device is protected by limiting internal power dissipation.  
版权 © 2014, Texas Instruments Incorporated  
23  
TPS62160-Q1  
ZHCSD49 DECEMBER 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 文档支持  
12.2.1 相关文档ꢀ  
应用报告《优化 TPS62130/40/50/60/70 输出滤波器》(文献编号:SLVA463)  
应用报告《采用前馈电容优化内部补偿 DC-DC 转换器的瞬态响应》(文献编号:SLVA289)  
应用报告《采用前馈电容优化 TPS62130/40/50/60/70 的稳定性和带宽》(文件编号:SLVA466)  
用户指南《TPS62160EVM-627 TPS62170EVM-627 评估模块》(文献编号:SLVU483)  
应用报告《采用 JEDEC PCB 设计的线性和逻辑封装散热特性》(文件编号:SZZA017)  
应用报告《半导体和 IC 封装热指标》(文件编号:SPRA953)  
12.3 商标  
DCS-Control is a trademark of Texas Instruments.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62160QDSGRQ1  
TPS62160QDSGTQ1  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
QTVQ  
QTVQ  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS62160_14

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62161

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62161DSG

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62161DSGR

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62161DSGT

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62162

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62162-Q1

采用 2x2SON 封装的 3V-17V 1A 汽车类降压转换器
TI

TPS62162DSG

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62162DSGR

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62162DSGT

3V-17V 1A Step-Down Converters with DCS-ControlTM
TI

TPS62162QDSGRQ1

采用 2x2SON 封装的 3V-17V 1A 汽车类降压转换器 | DSG | 8 | -40 to 125
TI

TPS62162QDSGTQ1

采用 2x2SON 封装的 3V-17V 1A 汽车类降压转换器 | DSG | 8 | -40 to 125
TI