TPS62244QDDCRQ1 [TI]

采用 TSOT23 封装的 2.25MHz 300mA 降压转换器 | DDC | 5 | -40 to 125;
TPS62244QDDCRQ1
型号: TPS62244QDDCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 TSOT23 封装的 2.25MHz 300mA 降压转换器 | DDC | 5 | -40 to 125

转换器
文件: 总27页 (文件大小:2618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
采用 TSOT23 封装的 TPS6224X-Q1 汽车类 2.25MHz 300mA 降压转换器  
1 特性  
3 说明  
1
符合 AEC-Q100 标准,具有以下特性:  
TPS6224x-Q1 系列器件是高效同步直流/直流降压转换  
器,提供固定输出电压和高达 300mA 的输出电流。这  
些器件为电池供电的/永远在线的汽车 应用 (如遥控免  
钥匙进入 (RKE) 或被动进入被动启动 (PEPS) 钥匙和  
基站)提供了低功耗优势。借助 2V-6V 的输入电压范  
围,这些器件支持由锂二氧化锰 (Li-MnO2) 纽扣电  
池、锂离子电池、两节 (2S) 和三节 (3S) 碱性电池、  
3.3V 5V 输入电压轨进行供电的 应用 。TPS6224x-  
Q1 在高负载电流情况下以 2.25MHz 的固定开关频率  
运行,在轻负载电流情况下会进入省电模式,以便在整  
个负载电流范围内保持高效率和低功耗。此省电模式针  
对低输出电压纹波进行了优化。在关断模式下,电流消  
耗减少至 1μA 以下。TPS6224x-Q1 允许使用小型电感  
器和电容器来实现较小的解决方案尺寸,并采用 5 引  
TSOT23 封装。  
器件温度 1 级:-40°C 125°C 的工作结温范  
输出电流高达 300mA  
VIN 范围从 2V 6V  
PWM 模式下以 2.25MHz 固定频率运行  
轻负载电流上的省电模式  
脉宽调制 (PWM) 模式中的输出电压精度为 ±1.5%  
固定输出电压  
1.80V TPS62243-Q1  
1.25V TPS62244-Q1  
15μA 典型静态电流  
可实现 100% 占空比,以确保最低压降  
采用 TSOT 23 (5) 2.90mm × 1.60mm 封装  
2 应用  
器件信息(1)  
遥控免钥匙进入 (RKE)  
器件型号  
封装  
TSOT (5)  
封装尺寸(标称值)  
被动进入被动启动 (PEPS)  
高级驾驶员辅助系统 (ADAS)  
TPS6224X-Q1  
2.90mm x 1.60mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
前置摄像头、环视和停车辅助  
典型应用原理图  
效率与输出电流间的关系  
95  
90  
L1  
2.2µH  
TPS62244-Q1  
VIN 2.0V to 6.0V  
ON  
OFF  
VOUT 1.25V  
VOUT = 1.25V  
85  
VIN  
Up to 300mA  
SW  
COUT  
10µF  
80  
75  
70  
65  
60  
CIN  
EN  
4.7µF  
FB  
GND  
55  
VIN = 2.3V  
50  
45  
40  
35  
30  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.01  
0.1  
1
IOUT [mA ]  
10  
100 300  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSEK3  
 
 
 
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
目录  
8.4 Device Functional Modes.......................................... 8  
Application and Implementation ........................ 10  
9.1 Application Information............................................ 10  
9.2 Typical Application .................................................. 10  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
7.1 Absolute Maximum Ratings ...................................... 3  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
8.1 Overview ................................................................... 7  
8.2 Functional Block Diagram ......................................... 7  
8.3 Feature Description................................................... 8  
9
10 Power Supply Recommendations ..................... 14  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 15  
12 器件和文档支持 ..................................................... 16  
12.1 第三方产品免责声明.............................................. 16  
12.2 接收文档更新通知 ................................................. 16  
12.3 社区资源................................................................ 16  
12.4 ....................................................................... 16  
12.5 静电放电警告......................................................... 16  
12.6 Glossary................................................................ 16  
13 机械、封装和可订购信息....................................... 16  
13.1 Package Option Addendum .................................. 17  
8
4 修订历史记录  
日期  
修订版本  
说明  
2018 3 月  
*
初始发行版。  
2
版权 © 2018, Texas Instruments Incorporated  
 
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
5 Device Comparison Table  
PART NUMBER(1)  
TPS62243-Q1  
FIXED OUTPUT VOLTAGES [V]  
OPERATING MODE  
1.80 V  
1.25 V  
PFM/PWM with automatic transition  
PFM/PWM with automatic transition  
TPS62244-Q1  
(1) For all available packages, see the orderable addendum at the end of the data sheet.  
6 Pin Configuration and Functions  
DDC Package  
5-Pin SOT  
Top View  
VIN  
GND  
EN  
1
2
3
5
4
SW  
FB  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
This is the enable pin of the device. Pulling this pin to low forces the device into shutdown mode. Pulling  
this pin to high enables the device. This pin must be terminated.  
EN  
3
I
Feedback Pin for the internal regulation loop. Connect the external resistor divider to this pin. In case of  
fixed output voltage option, connect this pin directly to the output capacitor.  
FB  
4
2
5
1
I
GND  
SW  
VIN  
PWR  
O
GND supply pin.  
This is the switch pin and is connected to the internal MOSFET switches. Connect the inductor to this  
terminal.  
PWR  
VIN power supply pin.  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
VI  
Input voltage(2)  
7
Voltage at EN  
VIN + 0.3, 7  
V
Voltage on SW  
7
V
Peak output current  
Maximum operating junction temperature  
Storage temperature  
Internally limited  
A
TJ  
–40  
–65  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
Copyright © 2018, Texas Instruments Incorporated  
3
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Electrostatic  
V(ESD)  
V
discharge  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
V
VI  
Supply voltage, VIN  
2
6
300  
150  
4.7  
Output current, 2.3V < VIN < 6V  
Output current, 2V VIN 2.3V  
Inductance  
mA  
mA  
µH  
µF  
IOUT  
L
1.5  
4.7  
COUT Output capacitance  
10  
TJ  
Operating junction temperature  
–40  
125  
°C  
7.4 Thermal Information  
TPS6224X-Q1  
THERMAL METRIC(1)  
DDC (TSOT 23)  
UNIT  
5 PINS  
193.7  
40.7  
35  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.9  
ψJB  
34.7  
N/A  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2018, Texas Instruments Incorporated  
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
7.5 Electrical Characteristics  
TJ = -40°C to 125°C, typical values are at TJ = 25°C, unless otherwise noted. Specifications apply for condition VIN = 3.6 V.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
IOUT = 0 mA. Pulse frequency modulation (PFM)  
mode enabled, device not switching  
15  
IQ  
Operating quiescent current  
μA  
IOUT = 0 mA. PFM mode enabled, device switching,  
VOUT = 1.25 V  
18.5  
0.1  
EN = GND, TJ = 25°C  
EN = GND  
Falling  
1
μA  
10  
ISD  
Shutdown current  
1.85  
1.95  
UVLO  
Undervoltage lockout threshold  
V
Rising  
ENABLE, MODE  
VIH  
VIL  
IIN  
High-level input voltage, EN  
2 V VIN 6 V  
1
0
VIN  
0.35  
1
V
V
Low-level input voltage, EN  
Input bias current, EN  
2 V VIN 6 V,  
EN, MODE = GND or VIN  
0.01  
μA  
POWER SWITCH  
High-side MOSFET ON-resistance  
240  
180  
480  
380  
RDS(on)  
VIN = VGS = 3.6 V, TJ = 25°C  
VIN = VGS = 3.6 V,  
mΩ  
Low-side MOSFET ON-resistance  
Forward current limit MOSFET high-  
side and low-side  
ILIMF  
0.54  
0.95  
2.5  
A
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
140  
20  
°C  
°C  
TSD  
Thermal shutdown hysteresis  
OSCILLATOR  
ƒSW  
Oscillator frequency  
2 V VIN 6 V, PWM Mode  
2
2.25  
MHz  
OUTPUT  
VOUT  
Output voltage  
TPS62244 Q1 (fixed VOUT  
)
)
1.25  
1.80  
600  
V
V
TPS62243 Q1 (fixed VOUT  
VREF  
Internal reference voltage  
mV  
PWM operation, 2 V VIN 6 V, in fixed output  
–1.5%  
–1.5%  
0% 1.5%  
voltage versions VFB = VOUT, See (1) ,TJ = 25°C  
Feedback voltage  
PWM operation, 2 V VIN 6 V, in fixed output  
2.5%  
0%  
(1)  
VFB  
voltage versions VFB = VOUT, See  
Feedback voltage PFM mode  
Load regulation  
Device in PFM mode  
PWM mode  
–0.5  
%/A  
μs  
tStart up  
tRamp  
Start-up time  
Time from active EN to reach 95% of VOUT nominal  
Time to ramp from 5% to 95% of VOUT  
500  
250  
VOUT ramp UP time  
μs  
VIN = 3.6 V, VIN = VOUT = VSW, EN = GND, TJ =  
25°C(2)  
0.1  
1
Ilkg  
Leakage current into SW pin  
μA  
(2)  
VIN = 3.6 V, VIN = VOUT = VSW, EN = GND,  
10  
(1) For VIN = VO+ 0.6  
(2) The internal resistor divider network is disconnected from FB pin.  
版权 © 2018, Texas Instruments Incorporated  
5
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
7.6 Typical Characteristics  
1. Table of Graphs  
FIGURE  
1  
Shutdown Current into VIN  
Quiescent Current  
vs Input Voltage  
vs Input Voltage  
2  
3  
Static Drain-Source On-State Resistance vs Input Voltage  
4  
20  
18  
16  
14  
12  
10  
10  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 115°C  
TJ = 125°C  
MODE = GND,  
EN = VIN,  
Device Not Switching  
TJ = 85oC  
1
0.1  
TJ = 25oC  
0.01  
0.001  
TJ = -40oC  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN [V]  
SLVS  
8
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
V
− Input Voltage − V  
IN  
1. Shutdown Current vs Input Voltage  
2. Quiescent Current vs Input Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
TJ = -40°C  
TJ = -40°C  
TJ  
TJ  
=
=
25°C  
85°C  
TJ  
TJ  
=
=
25°C  
85°C  
TJ = 125°C  
TJ = 125°C  
0
0
2
2.5  
3
3.5  
4
VIN [V]  
4.5  
5
5.5  
6
2
2.5  
3
3.5  
4
VIN [V]  
4.5  
5
5.5  
6
3. High Side Switch Static Drain-Source  
4. Low Side Switch Static Drain-Source  
On-State Resistance vs Input Voltage  
On-State Resistance vs Input Voltage  
6
版权 © 2018, Texas Instruments Incorporated  
 
 
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
8 Detailed Description  
8.1 Overview  
The TPS6224X-Q1 step-down converter typically operates with 2.25-MHz fixed-frequency pulse width modulation  
(PWM) at moderate to heavy load currents. At light load currents, the converter can automatically enter power  
save mode and then operates in PFM mode.  
During PWM operation, the converter uses a unique fast-response voltage-mode control scheme with input  
voltage feed-forward to achieve good line and load regulation, allowing the use of small ceramic input and output  
capacitors. At the beginning of each clock cycle initiated by the clock signal, the high-side MOSFET switch is  
turned on. The current then flows from the input capacitor through the high-side MOSFET switch through the  
inductor to the output capacitor and load. During this phase, the current ramps up until the PWM comparator trips  
and the control logic turns off the switch. The current limit comparator also turns off the switch if the current limit  
of the high-side MOSFET switch is exceeded. After a dead time preventing shoot-through current, the low-side  
MOSFET rectifier is turned on and the inductor current ramps down. The current then flows from the inductor to  
the output capacitor and to the load. It returns back to the inductor through the low-side MOSFET rectifier.  
The next cycle is initiated by the clock signal again turning off the low-side MOSFET rectifier and turning on the  
high-side MOSFET switch.  
8.2 Functional Block Diagram  
VIN  
Current  
Limit Comparator  
VIN  
Thermal  
Shutdown  
Undervoltage  
Lockout 1.8 V  
Limit  
EN  
High Side  
PFM Comparator  
Reference  
0.6 V VREF  
FB  
VREF  
Gate Driver  
Anti-Shoot-Through  
Control  
Stage  
Error Amplifier  
Integrator  
SW1  
Softstart  
VOUT RAMP  
CONTROL  
VREF  
FB  
FB  
PWM  
Comp.  
Zero-Pole  
AMP.  
Limit  
RI 1  
GND  
Low Side  
RI..N  
Current  
Limit Comparator  
2.25 MHz  
Oscillator  
Sawtooth  
Generator  
Internal Resistor  
Network  
GND  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2018, Texas Instruments Incorporated  
7
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Undervoltage Lockout  
The undervoltage lockout circuit prevents the device from malfunctioning at low input voltages and from  
excessive discharge of the battery and disables the output stage of the converter. The undervoltage lockout  
threshold is typically 1.85 V with falling VIN.  
8.3.2 Enable  
The device is enabled by setting the EN pin to high. During the start-up time (tStart up), the internal circuits are  
settled and the soft-start circuit is activated. The EN input can be used to control power sequencing in a system  
with various DC-DC converters. The EN pin can be connected to the output of another converter, to drive the EN  
pin high and sequence supply rails. With EN pin = GND, the device enters shutdown mode in which all circuits  
are disabled. In fixed-output voltage versions, the internal resistor divider network is then disconnected from FB  
pin.  
8.3.3 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 140°C (typical) the device goes into thermal shutdown. In this  
mode, the high-side and low-side MOSFETs are turned off. The device continues its operation when the junction  
temperature falls below the thermal shutdown hysteresis.  
8.4 Device Functional Modes  
8.4.1 Soft Start  
The TPS6224X-Q1 device has an internal soft-start circuit that controls the ramp up of the output voltage. The  
output voltage ramps up from 5% to 95% of its nominal value within typical 250 μs. This limits the inrush current  
in the converter during ramp up and prevents possible input voltage drops when using a battery or high  
impedance power source. The soft-start circuit is enabled within the start-up time, tStart up  
.
8.4.2 Power Save Mode  
The power save mode is enabled. If the load current decreases, the converter enters power save mode operation  
automatically. During power save mode, the converter skips switching and operates with reduced frequency in  
PFM mode with a minimum-quiescent current to maintain high efficiency.  
The transition from PWM mode to PFM mode occurs once the inductor current in the low-side MOSFET switch  
becomes zero, which indicates discontinuous conduction mode.  
During the power save mode, a PFM comparator monitors the output voltage. As the output voltage falls below  
the PFM comparator threshold of VOUT nominal, the device starts a PFM current pulse. The high-side MOSFET  
switch turns on, and the inductor current ramps up. After the on-time expires, the switch turns off and the low-  
side MOSFET switch turns on until the inductor current becomes zero.  
The converter effectively delivers a current to the output capacitor and the load. If the load is below the delivered  
current, the output voltage rises. If the output voltage is equal to or greater than the PFM comparator threshold,  
the device stops switching and enters a sleep mode with typical 15-μA current consumption.  
If the output voltage is still below the PFM comparator threshold, a sequence of further PFM current pulses are  
generated until the PFM comparator threshold is reached. The converter starts switching again once the output  
voltage drops below the PFM comparator threshold.  
With a fast single-threshold comparator, the output-voltage ripple during PFM mode operation can be kept to a  
minimum. The PFM pulse is time controlled, allowing the user to modify the charge transferred to the output  
capacitor by the value of the inductor. The resulting PFM output voltage ripple and PFM frequency both depend  
on the size of the output capacitor and the inductor value. Increasing output capacitor values and inductor values  
minimize the output ripple. The PFM frequency decreases with smaller inductor values and increases with larger  
values.  
If the output current cannot be supported in PFM mode, the device exits PFM mode and enters PWM mode.  
8
版权 © 2018, Texas Instruments Incorporated  
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
Device Functional Modes (接下页)  
Output voltage  
VOUT nominal  
PWM + PFM  
moderate to heavy load  
PWM Mode  
Light load  
PFM Mode  
5. Power Save Mode  
8.4.2.1 100% Duty Cycle Low Dropout Operation  
The device starts to enter 100% duty-cycle mode once the input voltage comes close to the nominal output  
voltage. To maintain the output voltage, the high-side MOSFET switch is turned on 100% for one or more cycles.  
With further decreasing VIN the high-side MOSFET switch is turned on completely. In this case, the converter  
offers a low input-to-output voltage difference. This is particularly useful in battery-powered applications to  
achieve longest operation time by taking full advantage of the entire battery voltage range.  
The minimum input voltage to maintain regulation depends on the load current and output voltage, and can be  
calculated as:  
VINmin = VOmax + IOmax (RDS(on)max + RL)  
where  
IOmax = maximum output current plus inductor ripple current  
RDS(on)max = maximum P-channel switch RDS(on)  
RL = DC resistance of the inductor  
VOmax = nominal output voltage plus maximum output voltage tolerance  
(1)  
8.4.3 Short-Circuit Protection  
The high-side and low-side MOSFET switches are short-circuit protected with maximum switch current equal to  
ILIMF. The current in the switches is monitored by current limit comparators. Once the current in the high-side  
MOSFET switch exceeds the threshold of its current limit comparator, it turns off and the low-side MOSFET  
switch is activated to ramp down the current in the inductor and high-side MOSFET switch. The high-side  
MOSFET switch can only turn on again once the current in the low-side MOSFET switch has decreased below  
the threshold of its current limit comparator.  
版权 © 2018, Texas Instruments Incorporated  
9
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design by  
using typical applications as a reference.  
9.2 Typical Application  
L1  
2.2µH  
TPS62244-Q1  
VIN 2.0V to 6.0V  
VOUT 1.25V  
VIN  
Up to 300mA  
SW  
ON  
COUT  
10µF  
CIN  
4.7µF  
EN  
OFF  
FB  
GND  
6. TPS62244Q1, Fixed 1.25 V VOUT  
L1  
2.2µH  
TPS62243-Q1  
VIN 2.0V to 6.0V  
ON  
OFF  
VOUT 1.80V  
Up to 300mA  
COUT  
10µF  
VIN  
SW  
CIN  
4.7µF  
EN  
FB  
GND  
7. TPS62243Q1, Fixed 1.80 V VOUT  
9.2.1 Design Requirements  
The device operates over an input voltage range from 2 V to 6 V. The output voltage setting is fixed.  
9.2.2 Detailed Design Procedure  
2 shows the list of components for the Application Curves. Users must verify and validate these components  
for suitability with their application before using the components.  
2. List of Components  
VALUE  
COMPONENT REFERENCE  
PART NUMBER  
GRM188R60J475K  
GRM188R60J106M  
LPS3015  
MANUFACTURER(1)  
Murata  
4.7 μF, 6.3 V. X5R Ceramic  
10 μF, 6.3 V. X5R Ceramic  
2.2 μH, 110 mΩ  
CIN  
COUT  
L1  
Murata  
Coilcraft  
(1) See Third-party Products Disclaimer  
10  
版权 © 2018, Texas Instruments Incorporated  
 
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
9.2.2.1 Output Filter Design (Inductor and Output Capacitor)  
The TPS6224X-Q1 device is designed to operate with inductors in the range of 1.5 μH to 4.7 μH and with output  
capacitors in the range of 4.7 μF to 22 μF. The device is optimized for operation with a 2.2-μH inductor and  
10μF output capacitor.  
Larger or smaller inductor values can be used to optimize the performance of the device for specific operation  
conditions. For stable operation, the L and C values of the output filter may not fall below 1-μH effective  
Inductance and 3.5-μF effective capacitance.  
9.2.2.1.1 Inductor Selection  
The inductor value has a direct effect on the ripple current. The selected inductor must be rated for its DC  
resistance and saturation current (3). The inductor ripple current (ΔIL) decreases with higher inductance and  
increases with higher VI or VO.  
The inductor selection also has an impact on the output voltage ripple in the PFM mode. Higher inductor values  
lead to lower-output voltage ripple and higher PFM frequency, and lower inductor values lead to a higher-output  
voltage ripple with lower PFM frequency.  
公式 2 calculates the maximum inductor current in PWM mode under static load conditions. The saturation  
current of the inductor should be rated higher than the maximum inductor current as calculated with 公式 3. This  
is the recommendation because during heavy-load transients the inductor current rises above the calculated  
value.  
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ ƒ  
(2)  
DIL  
ILmax = IOUTmax  
+
2
where  
ƒ = Switching frequency (2.25-MHz typical)  
L = Inductor value  
ΔIL = Peak-to-Peak inductor ripple current  
ILmax = Maximum inductor current  
(3)  
A more conservative approach is to select the inductor current rating just for the maximum switch current limit  
ILIMF of the converter.  
Accepting larger values of ripple current allows the use of low inductance values, but results in higher output  
voltage ripple, greater core losses, and lower output current capability.  
The total losses of the coil strongly impact the efficiency of the DC-DC conversion and consist of both the losses  
in the DC resistance (R(DC)) and the following frequency-dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
3. List of Inductors  
INDUCTANCE (μH)  
DIMENSIONS (mm)  
2.5 × 2 × 1  
PART NUMBER  
MIPS2520D2R2  
MANUFACTURER(1)  
FDK  
2
2
2.5 × 2 × 1.2  
2.5 × 2 × 1  
MIPSA2520D2R2  
KSLI-252010AG2R2  
LQM2HPN2R2MJ0L  
LPS3015  
FDK  
2.2  
2.2  
2.2  
Hitachi Metals  
Murata  
2.5 × 2 × 1.2  
3 × 3 × 1.4  
Coilcraft  
(1) See Third-party Products Disclaimer  
版权 © 2018, Texas Instruments Incorporated  
11  
 
 
 
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
9.2.2.1.2 Output Capacitor Selection  
The advanced fast-response voltage-mode control scheme of the TPS6224X-Q1 device allows the use of tiny  
ceramic capacitors. Ceramic capacitors with low-ESR values have the lowest-output voltage ripple and are  
recommended. The output capacitor requires either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors,  
aside from their wide variation in capacitance over temperature, become resistive at high frequencies.  
At nominal load current, the device operates in PWM mode and the RMS ripple current is calculated as in 公式 4:  
VOUT  
1-  
V
1
IN  
´
IRMSC  
= VOUT  
´
OUT  
L ´ ƒ  
2´ 3  
(4)  
At nominal load current, the device operates in PWM mode and the overall output voltage ripple is the sum of the  
voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and discharging the  
output capacitor as in 公式 5:  
VOUT  
1-  
æ
ç
è
ö
÷
ø
V
1
IN  
D VOUT = VOUT  
´
´
+ ESR  
L ´ ƒ  
8´ COUT ´ ƒ  
(5)  
At light load currents, the converter operates in power save mode and the output voltage ripple depends on the  
output capacitor and inductor value. Larger output capacitor and inductor values minimize the voltage ripple in  
PFM mode and tighten DC output accuracy in PFM mode.  
9.2.2.1.3 Input Capacitor Selection  
The buck converter has a natural pulsating input current; therefore, a low-ESR input capacitor is required for best  
input voltage filtering and minimizing the interference with other circuits caused by high-input voltage spikes. For  
most applications, a 4.7-μF to 10-μF ceramic capacitor is recommended (4). Because ceramic capacitors lose  
up to 80% of their initial capacitance at 5 V, TI recommends using a 10-μF input capacitor for input voltages  
greater than 4.5 V. The input capacitor can be increased without any limit for better input voltage filtering.  
Take care when using only small ceramic input capacitors. When a ceramic capacitor is used at the input, and  
the power is being supplied through long wires, such as from a wall adapter, a load step at the output, or VIN step  
on the input, can induce ringing at the VIN pin. The ringing can couple to the output and be mistaken as loop  
instability, or could even damage the part by exceeding the maximum ratings.  
4. List of Capacitors  
CAPACITANCE (µF)  
DIMENSIONS (mm)  
0603: 1.6 × 0.8 × 0.8  
0603: 1.6 × 0.8 × 0.8  
PART NUMBER  
MANUFACTURER(1)  
Murata  
4.7  
10  
GRM188R60J475K  
GRM188R60J106M69D Murata  
(1) See Third-party Products Disclaimer  
12  
版权 © 2018, Texas Instruments Incorporated  
 
 
 
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
9.2.3 Application Curves  
The conditions for below application curves are VIN = 3.0V, VOUT= 1.25V and the components listed in 2,  
unless otherwise noted.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
1.312  
1.300  
1.288  
1.275  
1.262  
1.250  
1.238  
1.225  
1.212  
1.200  
1.188  
VOUT = 1.25V  
VIN = 2.3V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.3V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.01  
0.1  
1
IOUT [mA ]  
10  
100 300  
0.001  
0.01  
0.1  
1
IOUT [mA ]  
10  
100 300  
8. Efficiency vs Output Current, VOUT = 1.25V  
9. Output Voltage vs Output Current 1.25V VOUT  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
1.890  
1.872  
1.854  
1.836  
1.818  
1.800  
1.782  
1.764  
1.746  
1.728  
1.710  
VIN = 2.3V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 2.3V  
VIN = 2.7V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
0.01  
0.1  
1
IOUT [mA ]  
10  
100 300  
0.001  
0.01  
0.1  
1
IOUT [mA ]  
10  
100 300  
10. Efficiency vs Output Current, VOUT = 1.8V  
11. Output Voltage vs Output Current, VOUT = 1.8V  
VIN = 3V  
RLoad = 100Ω  
VOUT = 1.25V  
VIN = 3V  
IOUT = 150mA  
VOUT = 1.25V  
12. Start-Up Timing  
13. Typical PWM Mode Operation  
版权 © 2018, Texas Instruments Incorporated  
13  
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
VIN = 3V  
IOUT = 25mA  
VOUT = 1.25V  
VIN = 3V  
IOUT = 1mA to 25mA to 1mA  
Rise / Fall Time 1µs  
VOUT = 1.25V  
14. Typical PFM Mode Operation  
15. Load Transient PFM Mode  
VIN = 3V  
IOUT = 5mA to 150mA to 5mA  
Rise / Fall Time 1µs  
VOUT = 1.25V  
VIN = 2.3V to 2.7V to 2.3V  
Rise / Fall Time 10µs  
IOUT = 25mA  
VOUT = 1.25V  
16. Load Transient PFM / PWM Mode  
17. Line Transient PFM Mode  
10 Power Supply Recommendations  
The TPS6224X-Q1 device has no special requirements for its input power supply. The input power supply output  
current must be rated according to the supply voltage, output voltage, and output current of the TPS6224X-Q1.  
14  
版权 © 2018, Texas Instruments Incorporated  
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
11 Layout  
11.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. Proper function of the device  
demands careful attention to PCB layout. To get the specified performance, the board layout must be carefully  
done. If not carefully done, the regulator could show poor line or load regulation, and additional stability issues as  
well as EMI problems. 18 shows an example of layout design with the TLV62242-Q1 device.  
Providing a low-inductance, low-impedance ground path is critical. Therefore, use wide and short traces for  
the main current paths. The input capacitor as well as the inductor and output capacitor must be placed as  
close as possible to the IC pins.  
The FB line must be connected directly to the output capacitor and the FB line must be routed away from  
noisy components and traces (for example, the SW line).  
Because of the small package of this converter and the overall small solution size, the thermal performance of  
the PCB layout is important. For good thermal performance, PCB design of at least four layers is  
recommended.  
11.2 Layout Example  
VIN  
VIN  
GND  
EN  
SW  
U1  
FB  
GND  
VOUT  
18. Suggested Layout for Fixed Output Voltage  
版权 © 2018, Texas Instruments Incorporated  
15  
 
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收  
产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,也  
不会对此文档进行修订。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
16  
版权 © 2018, Texas Instruments Incorporated  
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
13.1 Package Option Addendum  
13.1.1 Packaging Information  
Package  
Type  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
Orderable Device  
TPS62243QDDCRQ1  
TPS62244QDDCRQ1  
Status  
Pins  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
Device Marking(5)(6)  
SOT-23-  
THIN  
Green (RoHS & no  
Sb/Br)  
PREVIEW  
PREVIEW  
DDC  
DDC  
5
5
3000  
3000  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
–40 to 115  
–40 to 115  
1I3Z  
1I2Z  
SOT-23-  
THIN  
Green (RoHS & no  
Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for  
release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
版权 © 2018, Texas Instruments Incorporated  
17  
TPS62243-Q1, TPS62244-Q1  
ZHCSHS4 MARCH 2018  
www.ti.com.cn  
13.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
SOT-23-  
THIN  
TPS62243QDDCRQ1  
TPS62244QDDCRQ1  
DDC  
DDC  
5
5
3000  
3000  
179.0  
179.0  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
SOT-23-  
THIN  
18  
版权 © 2018, Texas Instruments Incorporated  
TPS62243-Q1, TPS62244-Q1  
www.ti.com.cn  
ZHCSHS4 MARCH 2018  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
Package Drawing Pins  
SPQ  
3000  
3000  
Length (mm) Width (mm)  
Height (mm)  
35.0  
TPS62243QDDCRQ1  
TPS62244QDDCRQ1  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
5
5
203.0  
203.0  
2.3.0  
2.3.0  
35.0  
版权 © 2018, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62243QDDCRQ1  
TPS62244QDDCRQ1  
ACTIVE SOT-23-THIN  
ACTIVE SOT-23-THIN  
DDC  
DDC  
5
5
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1I3Z  
1I2Z  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Dec-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62243QDDCRQ1  
TPS62244QDDCRQ1  
SOT-  
23-THIN  
DDC  
DDC  
5
5
3000  
3000  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
SOT-  
180.0  
8.4  
3.2  
3.2  
1.4  
4.0  
8.0  
Q3  
23-THIN  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Dec-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62243QDDCRQ1  
TPS62244QDDCRQ1  
SOT-23-THIN  
SOT-23-THIN  
DDC  
DDC  
5
5
3000  
3000  
213.0  
213.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DDC0005A  
SOT-23 - 1.1 max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
3.05  
2.55  
1.1  
0.7  
1.75  
1.45  
0.1 C  
B
A
PIN 1  
INDEX AREA  
5
1
NOTE 4  
(0.15)  
0.95  
3.05  
2.75  
1.9  
2
3
(0.2)  
4
0.1  
TYP  
0.0  
0.5  
0.3  
5X  
0.2  
C A B  
0.25  
GAGE PLANE  
0.20  
0.12  
TYP  
0 -8 TYP  
C
SEATING PLANE  
0.6  
0.3  
TYP  
4220752/A 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Reference JEDEC MO-193.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDC0005A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
5X (1.1)  
5X (0.6)  
1
5
SYMM  
2
3
4X (0.95)  
4
(R0.05) TYP  
(2.7)  
LAND PATTERN EXAMPLE  
EXPLOSED METAL SHOWN  
SCALE:15X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDERMASK DETAILS  
4220752/A 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDC0005A  
SOT-23 - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
SYMM  
5X (1.1)  
5X (0.6)  
1
5
SYMM  
2
3
4X(0.95)  
4
(R0.05) TYP  
(2.7)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:15X  
4220752/A 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62250

Peak Current Limited Step Down Converter for USB Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62250DRV

Peak Current Limited Step Down Converter for USB Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62250DRVR

Peak Current Limited Step Down Converter for USB Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62250DRVRG4

Peak Current Limited Step Down Converter for USB Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62250DRVT

Peak Current Limited Step Down Converter for USB Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62250DRVTG4

Peak Current Limited Step Down Converter for USB Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62250_13

Peak Current Limited Step Down Converter for USB Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62260

2.25 MHz 600 mA Step Down Converter in 2x2SON/TSOT-23 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62260-Q1

2.25-MHz 600-mA STEP-DOWN CONVERTERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62260DDC

2.25 MHz 600 mA Step Down Converter in 2x2SON/TSOT-23 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62260DDCR

2.25 MHz 600 mA Step Down Converter in 2x2SON/TSOT-23 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62260DDCRG4

2.25 MHz 600 mA Step Down Converter in 2x2SON/TSOT-23 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI