TPS62405-Q1 [TI]

具有单总线接口的汽车类、双通道固、定输出电压、400mA 和 600mA、2.25MHz 降压转换器;
TPS62405-Q1
型号: TPS62405-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有单总线接口的汽车类、双通道固、定输出电压、400mA 和 600mA、2.25MHz 降压转换器

转换器
文件: 总44页 (文件大小:1592K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
TPS6240x-Q1 2.25-MHz 400-mA and 600-mA Dual Step-Down Converter  
1 Features  
3 Description  
The TPS6240x-Q1 family of devices are synchronous  
dual step-down DC-DC converters optimized for  
battery-powered portable applications and automotive  
systems. They provide two independent output  
voltage rails powered by rechargeable batteries or  
standard 3.3-V or 5-V voltage rail.  
1
Qualified for automotive applications  
AEC-Q100 qualified with the following results:  
Device temperature grade 1: –40°C to 125°C  
operating junction temperature range  
Device HBM ESD classification level H2  
Device CDM ESD classification level C4B  
The EasyScale™ serial interface allows output-  
voltages modification during operation. The fixed-  
output-voltage versions, TPS62402-Q1,  
TPS62404-Q1, and TPS62405-Q1 support one-pin-  
controlled simple dynamic voltage scaling for low-  
power processors.  
High efficiency—up to 95%  
VIN Range from 2.5 V to 6 V  
2.25-MHz Fixed-frequency operation  
Output current 400 mA and 600 mA  
Adjustable output voltage from 0.6 V to VIN  
The TPS6240x-Q1 operates at 2.25-MHz fixed  
switching frequency and enters the power-save mode  
operation at light load currents to maintain high  
efficiency over the entire load-current range. For low-  
noise applications, one can force the devices into  
fixed-frequency PWM mode by pulling the  
MODE/DATA pin high. The shutdown mode reduces  
the current consumption to 1.2-μA, typical. The  
devices allow the use of small inductors and  
capacitors to achieve a small solution size.  
Pin selectable output voltage supports simple  
dynamic voltage scaling  
EasyScale™ optional one-pin serial interface  
Power-save mode at light load currents  
180° Out-of-phase operation  
Output-voltage accuracy in PWM mode ±1%  
Typical 32-μA quiescent current for both  
converters  
(1)  
Device Information  
100% Duty cycle for lowest dropout  
PART NUMBER  
TPS62400-Q1  
TPS62402-Q1  
TPS62404-Q1  
TPS62405-Q1  
PACKAGE  
BODY SIZE (NOM)  
2 Applications  
Infotainment and cluster  
ADAS  
VSON (10)  
3.00 mm × 3.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Simplified Schematic  
TPS62402-Q1  
TPS62402-Q1 Efficiency versus Output Current,  
VOUT1 and VOUT2  
100  
VIN 2.5 V to 6 V  
FB1  
VIN  
VIN = 3.7 V  
2.2 µH  
VOUT1 = 1.2 V  
400 mA  
VIN = 4.2 V  
SW1  
10 µF  
90  
VOUT2 = 3.3 V  
MODE/DATA = Low  
80  
10 µF  
DEF_1  
70  
60  
EN1  
EN2  
VIN = 3.7 V  
50  
VIN = 4.2 V  
2.2 µH  
VOUT1 = 1.2 V  
VOUT2 = 3.3 V  
600 mA  
40  
MODE/DATA = Low  
SW2  
VIN = 3.7 V  
VIN = 4.2 V  
30  
VOUT2 = 1.2 V  
VIN = 3.7 V  
MODE/  
DATA  
MODE/DATA = High  
VIN = 4.2 V  
10 µF  
20  
V
OUT2 = 3.3 V  
ADJ2  
GND  
MODE/DATA = High  
10  
0
0.01  
0.1  
1
10  
100  
1000  
Output Current (mA)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
 
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
Table of Contents  
9.3 Feature Description................................................. 13  
9.4 Device Functional Modes........................................ 14  
9.5 Programming........................................................... 16  
10 Application and Implementation........................ 23  
10.1 Application Information.......................................... 23  
10.2 Typical Application ............................................... 23  
10.3 System Examples ................................................ 31  
11 Power Supply Recommendations ..................... 33  
12 Layout................................................................... 34  
12.1 Layout Guidelines ................................................. 34  
12.2 Layout Example .................................................... 34  
13 Device and Documentation Support ................. 35  
13.1 Device Support...................................................... 35  
13.2 Related Links ........................................................ 35  
13.3 Support Resources ............................................... 35  
13.4 Trademarks........................................................... 35  
13.5 Electrostatic Discharge Caution............................ 35  
13.6 Glossary................................................................ 35  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings ............................................................ 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 Timing Requirements ............................................... 8  
7.7 Switching Characteristics.......................................... 8  
7.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information ................ 10  
Detailed Description ............................................ 11  
9.1 Overview ................................................................. 11  
9.2 Functional Block Diagram ....................................... 12  
8
9
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 35  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision E (June 2015) to Revision F  
Page  
Changed TPS62404-Q1, OUT1 from DEF_1 = Low 1.575 V to DEF_1 = Low 1.2 V............................................................ 4  
Changes from Revision D (October 2014) to Revision E  
Page  
Changed the Handling Ratings table to the ESD Ratings table and move storage temperature to the Absolute  
Maximum Ratings table ......................................................................................................................................................... 6  
Changed test conditions and MIN, TYP, and MAX values for the TPS62405-Q1 oscillator frequency in the Switching  
Characteristics table .............................................................................................................................................................. 8  
Changes from Revision C (October 2014) to Revision D  
Page  
Changed oscillator specification from 1.6 MHz to 2 MHz minimum switching frequency and to 1.7 MHz for VIN3 V......... 8  
Changes from Revision B (May 2013) to Revision C  
Page  
Changed the data sheet to meet the new TI standard format................................................................................................ 1  
Changed the VDEF_1H and VDEF_1L Test Conditions ................................................................................................................ 7  
Changed fSW 2.5 V VIN 6 V MIN value From: 2 MHz to 1.6 MHz ..................................................................................... 8  
Added fSW with Test Conditions 3.25 V VIN 6 V................................................................................................................ 8  
Changes from Revision A (March, 2013) to Revision B  
Page  
Changed TPS62405-Q1, OUT1 from DEF_1 = High 1.9 V to DEF_1 = High 1.925 V and DEF_1 = Low 1.575 V to  
DEF_1 = Low 1.215 V. Changed OUT2 from Fixed default 5 V to Fixed default 3.35 V. ..................................................... 4  
Added the part number to the Device column of Table 1..................................................................................................... 17  
2
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
 
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
Added 1.215 (default TPS62405-Q1) in row 16, Table 4..................................................................................................... 20  
Added part number to Table 4.............................................................................................................................................. 20  
Removed TPS62405-Q1 from Table 4................................................................................................................................. 20  
Added 1.925 (default TPS62405-Q1) in row 31, Table 4. ................................................................................................... 20  
Added part number to row 31, Table 4................................................................................................................................. 22  
Added part number to Converter 1 Fixed Default Output-Voltage Setting heading ............................................................ 24  
Added voltage for TPS62402-Q1 to Converter 1 Fixed for DEF_1 = low ............................................................................ 24  
Changed voltage from 1.2 V to 1.215 V for Pin DEF_1 = low.............................................................................................. 24  
Added part number TPS62405-Q1 for Pin DEF_1 = high.................................................................................................... 24  
Added part number and voltage to Converter 2 Fixed Default Output-Voltage Setting section........................................... 24  
Changed TPS62405-Q1, VOUT2 default = 5 V to 3.35 V....................................................................................................... 24  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
5 Device Comparison Table  
PART NUMBER  
DEFAULT OUTPUT VOLTAGE(1)  
OUTPUT CURRENT  
VOUT1  
VOUT2  
IOUT1  
IOUT2  
400 mA  
600 mA  
TPS62400-Q1  
Adjustable  
DEF_1 = High 1.8 V  
DEF_1 = Low 1.2 V  
Fixed default 3.3 V  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
VOUT1  
VOUT2  
Fixed default  
Fixed default  
Fixed default  
IOUT1  
IOUT2  
IOUT1  
IOUT2  
IOUT1  
IOUT2  
400 mA  
600 mA  
400 mA  
600 mA  
400 mA  
600 mA  
TPS62402-Q1  
TPS62404-Q1  
TPS62405-Q1  
DEF_1 = High 1.9 V  
DEF_1 = Low 1.2 V  
Fixed default 3.3 V  
DEF_1 = High 1.925 V  
DEF_1 = Low 1.215 V  
Fixed default 3.35 V  
(1) Contact TI for other fixed-output-voltage options.  
4
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
 
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
6 Pin Configuration and Functions  
DRC Package  
10-Pin VSON With Thermal Pad  
Bottom View  
10  
9
1
2
3
4
5
SW2  
EN2  
GND  
EN1  
SW1  
ADJ2  
MODE/DATA  
VIN  
Thermal  
Pad  
8
7
FB1  
6
DEF_1  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Input to adjust output voltage of converter 2. In the adjustable-output version (TPS62400-Q1), an external  
resistor network must connect to this pin to set the VOUT2 output voltage between 0.6 V and VIN (see  
Figure 6). In the fixed-output-voltage version (TPS62402-Q1, TPS62404-Q1, and TPS62405-Q1), this pin  
must connect directly to the output. If using the EasyScale interface-on converter 2, this pin must also  
connect directly to the output.  
ADJ2  
1
I
This pin defines the output voltage of converter 1. The pin acts either as analog input for output voltage  
setting via external resistors (TPS62400-Q1), or digital input to select between two fixed default output  
voltages (TPS62402-Q1, TPS62404-Q1, and TPS62405-Q1).  
DEF_1  
5
I
For the TPS62400-Q1, an external resistor network must connect to this pin to adjust the default output  
voltage (see Figure 6).  
When using the fixed-output-voltage device options, this pin selects between two fixed default output  
voltages, see the Device Comparison Table .  
EN1  
EN2  
7
9
I
I
Enable input for converter 1, active-high  
Enable input for converter 2, active-high  
Direct feedback voltage sense input of converter 1, connect directly to VOUT1. An internal feedforward  
capacitor connects between this pin and the error amplifier. In the case of fixed-output-voltage versions or  
when using the EasyScale interface, this pin connects to an internal resistor divider network.  
FB1  
4
8
I
GND  
GND for both converters; connect this pin to the thermal pad.  
This pin has two functions:  
1. Operation-mode selection: With low level, enables power-save mode where the device operates in  
PFM mode at light loads and automatically enters PWM mode at heavy loads. Pulling this PIN to  
high forces the device to operate in PWM mode over the whole load range.  
MODE/DATA  
2
I/O  
2. EasyScale interface function: One-wire serial interface to change the output voltage of both  
converters. The pin has an open-drain output to provide an acknowledge condition if requested. The  
current into the open-drain output stage may not exceed 500 μA. The EasyScale interface is active  
if either EN1 or EN2 is high.  
SW1  
6
10  
3
I/O  
I/O  
I
Switch pin of converter 1. Connect to inductor  
Switch pin of converter 2. Connect to inductor  
Input pin, connect to supply or battery voltage, 2.5 V to 6 V  
Connect to GND  
SW2  
VIN  
Thermal pad  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
V
Input voltage(2)  
Voltage  
VIN  
7
EN, MODE/DATA, DEF_1  
SW1, SW2  
VIN + 0.3, 7  
V
7
VIN + 0.3, 7  
0.5  
V
ADJ2, FB1  
V
Current  
MODE/DATA  
mA  
°C  
°C  
Maximum operating junction temperature, TJmax  
Storage temperature, Tstg  
150  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the network ground terminal.  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Electrostatic  
discharge  
V(ESD)  
Corner pins (1, 5, 6, and 10)  
Other pins  
V
Charged device model (CDM), per AEC  
Q100-011  
±500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted)  
MIN  
MAX  
6
UNIT  
V
VIN  
TJ  
Supply voltage  
2.5  
0.6  
Output voltage range for adjustable voltage  
Operating junction temperature  
VIN  
125  
V
–40  
°C  
7.4 Thermal Information  
TPS6240x-Q1  
THERMAL METRIC(1)  
UNIT  
DRC (10 PINS)  
RθJA  
Junction-to-ambient thermal resistance  
42.7  
46.9  
18.1  
0.5  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
18.3  
3.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
 
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
7.5 Electrical Characteristics  
VIN = 3.6 V, VOUT1 = VOUT2 = 1.8 V, EN1 = EN2 = VIN, MODE = GND, L1 = L2 = 2.2 μH, COUT1 = COUT2 = 20 μF, TJ = –40°C to  
125°C, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
VIN Input voltage range  
2.5  
6
V
One converter, no load on the output. PFM mode  
enabled (MODE/DATA = GND) device not switching,  
EN1 = 1 or EN2 = 1  
19  
32  
29  
Two converters, no load on the output. PFM mode  
enabled (MODE/DATA = GND) device not switching,  
EN1 = EN2 = 1  
μA  
48  
IQ  
Operating quiescent current  
No load on the output, MODE/DATA = GND, for one  
converter, VOUTx = 1.575 V(1)  
23  
No load on the output, MODE/DATA = VIN, for one  
converter, VOUTx = 1.575 V(1)  
3.6  
mA  
EN1, EN2 = GND, VIN = 3.6 V(2)  
EN1, EN2 = GND, VIN ramped from 0 V to 3.6 V(3)  
1.2  
0.1  
1.5  
3
1
ISD  
Shutdown current  
μA  
Falling  
Rising  
2.35  
2.4  
VUVLO  
Undervoltage lockout threshold  
V
ENABLE EN1, EN2  
VIH  
VIL  
IIN  
High-level input voltage range, EN1, EN2  
1.2  
0
VIN  
0.4  
1
V
V
Low-level input voltage range, EN1, EN2  
Input bias current, EN1, EN2  
EN1, EN2 = GND or VIN  
0.05  
0.01  
0.01  
μA  
DEF_1 INPUT  
VDEF_1H  
DEF_1 high-level digital input voltage range  
0.9  
0
VIN  
0.4  
1
V
V
TPS62402-Q1, TPS62404-Q1, TPS62405-Q1 only  
DEF_1 = GND or VIN  
VDEF_1L  
DEF_1 low-level digital input voltage range  
Input bias current DEF_1  
IIN  
μA  
MODE/DATA  
VIH  
VIL  
High-level input voltage range, MODE/DATA  
Low-level input voltage range, MODE/DATA  
Input bias current, MODE/DATA  
1.2  
0
VIN  
0.4  
1
V
V
IIN  
MODE/DATA = GND or VIN  
μA  
V
VOH  
VOL  
Acknowledge output voltage high  
Open drain, through external pullup resistor  
Open drain, sink current 500 μA  
VIN  
0.4  
Acknowledge output voltage low  
0
V
POWER SWITCH  
P-channel MOSFET on-resistance, converter  
1,2  
rDS(on)  
VIN = VGS = 3.6 V  
VDS = 6 V  
280  
620  
1
mΩ  
μA  
ILK_PMOS  
rDS(on)  
P-channel leakage current  
N-channel MOSFET on-resistance converter  
1,2  
VIN = VGS = 3.6 V  
200  
6
450  
mΩ  
Includes N-channel leakage current,  
VIN = open, VSW = 6 V, EN = GND(4)  
ILK_SW1/SW2 Leakage current into SW1 or SW2 pin  
7.5  
μA  
VOUT1  
0.68  
0.85  
0.8  
1
0.92  
1.15  
Forward current limit  
PMOS and NMOS  
ILIMF  
2.5 V VIN 6 V  
A
VOUT2  
TSD  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
20  
ºC  
ºC  
Thermal shutdown hysteresis  
OUTPUT  
VOUTx  
Vref  
Adjustable output 1 or output 2 voltage  
range  
0.6  
VIN  
V
Reference voltage  
600  
mV  
(1) Device is switching with no load on the output, L1 = L2 = 3.3 μH, value includes losses of the coil.  
(2) These values are valid after enabling the device one time (EN1 or EN2 = high) and maintaining supply voltage VIN  
.
(3) These values are valid when the device is disabled (EN1 and EN2 low) and supply voltage VIN is powered up. The values remain valid  
until enabling the device the first time (EN1 or EN2 = high). After the first enable, Note 3 becomes valid.  
(4) An internal resistor of 1 Mconnects pins SW1 and SW2 to GND.  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
Electrical Characteristics (continued)  
VIN = 3.6 V, VOUT1 = VOUT2 = 1.8 V, EN1 = EN2 = VIN, MODE = GND, L1 = L2 = 2.2 μH, COUT1 = COUT2 = 20 μF, TJ = –40°C to  
125°C, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Voltage positioning active,  
MODE/DATA = GND,  
VOUTx(PFM)  
–1.5%  
1%  
2.5%  
device operating in PFM mode,  
VIN = 2.5 V to 5 V(6)(7)  
DC output voltage accuracy adjustable and  
fixed output voltage(5)  
MODE/DATA = GND;  
device operating in PWM mode,  
–1%  
–1%  
0%  
0%  
1%  
VIN = 2.5 V to 6 V(7)  
VOUTx(PWM)  
VIN = 2.5 V to 6 V, MODE/DATA = VIN  
Fixed PWM operation,  
,
1%  
0.5  
0 mA < IOUT1 < 400 mA ; 0 mA < IOUT2 < 600 mA(8)  
PWM operation mode  
DC output voltage load regulation  
%/A  
(5) Output voltage specification does not include tolerance of external voltage-programming resistors.  
(6) Configuration L1 or L2 typ. 2.2 μH, COUTx typ 20 μF. See parameter measurement information, the output voltage ripple in PFM mode  
depends on the effective capacitance of the output capacitor; larger output capacitors lead to tighter output voltage tolerance.  
(7) In power-save mode, the device typically enters PWM operation at IPSM = VIN / 32 .  
(8) For VOUTx > 2 V, VIN min = VOUTx + 0.5 V  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
INTERFACE TIMING  
tStart  
Start time  
2
μs  
μs  
μs  
μs  
μs  
μs  
tH_LB  
tL_LB  
tL_HB  
tH_HB  
tEOS  
High-time low bit, logic 0 detection  
Low-time low bit, logic 0 detection  
Low-time high bit, logic 1 detection  
High-time high bit, logic 1 detection  
End of stream  
Signal level on MODE/DATA pin is > 1.2 V  
Signal level on MODE/DATA pin < 0.4 V  
Signal level on MODE/DATA pin < 0.4 V  
Signal level on MODE/DATA pin is > 1.2 V  
2
2 x tH_LB  
2
200  
400  
200  
400  
2 x tL_HB  
2
Duration of acknowledge condition  
(MODE/DATE line pulled low by the  
device)  
tACKN  
VIN 2.5 V to 6 V  
400  
520  
μs  
tvalACK  
ttimeout  
Acknowledge valid time  
2
μs  
μs  
Time-out for entering power-save mode MODE/DATA pin changes from high to low  
520  
7.7 Switching Characteristics  
VIN = 3.6 V, VOUT1 = VOUT2 = 1.8 V, EN1 = EN2 = VIN, MODE = GND, L1 = L2 = 2.2 μH, COUT1 = COUT2 = 20 μF, TJ = –40°C to  
125°C, typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OSCILLATOR  
2.5 V VIN 6 V; TPS62400-Q1  
1.7  
2
2.3  
2.3  
2.2  
2.7  
2.7  
adjustable version(1)  
3.0 V VIN 6 V; TPS62400-Q1,  
fSW  
Oscillator frequency  
MHz  
TPS62402-Q1, TPS62404-Q1(1)  
3.6 V VIN 5.1 V; TPS62405-Q1  
2.06  
2.49  
fixed output voltage version(1)  
OUTPUT  
tStart up  
Start-up time  
Activation time to start switching(2)  
170  
750  
μs  
μs  
Time to ramp from 5% to 95% of  
VOUTx  
tRamp  
VOUTx ramp-up time  
(1) For VOUTx > 2 V, VIN min = VOUTx + 0.5 V  
(2) This time is valid if one converter turns from shutdown mode (EN2 = 0) to active mode (EN2 = 1) with the other converter already  
enabled (for example, EN1 = 1). In case both converters are turned from shutdown mode (EN1 and EN2 = 0) to active mode (EN1  
and/or EN2 = 1), a typical value of typ 80 μs for ramp up of internal circuits must be added. After tStart, the converter starts switching and  
ramps VOUTx  
.
8
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
7.8 Typical Characteristics  
2.5  
24  
2.45  
23  
2.4  
85°C  
22  
2.35  
2.3  
25°C  
21  
20  
19  
–40°C  
2.25  
2.2  
–40°C  
25°C  
2.15  
85°C  
2.1  
18  
17  
2.05  
2
2.5  
4.5  
5.5  
6
3
3.5  
4
5
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN (V)  
VIN (V)  
Figure 1. fSW versus VIN  
Figure 2. IQ for One Converter, Not Switching  
0.55  
0.5  
42  
40  
38  
36  
34  
32  
0.45  
0.4  
85°C  
25°C  
0.35  
0.3  
85°C  
25°C  
–40°C  
0.25  
30  
28  
40°C  
0.2  
0.15  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
2.5  
3
3.5  
4
4.5  
VIN (V)  
5
5.5  
6
VIN (V)  
Figure 4. rDS(on) PMOS versus VIN  
Figure 3. IQ for Both Converters, Not Switching  
0.3  
0.25  
0.2  
85°C  
25°C  
0.15  
40°C  
0.1  
0.05  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VIN (V)  
Figure 5. rDS(on) NMOS versus VIN  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
8 Parameter Measurement Information  
TPS62400-Q1  
VIN 2.5 V to 6 V  
FB1  
VIN  
L1  
VOUT1  
CIN  
SW1  
10 µF  
2.2 µH  
LSP4018  
R11  
R12  
COUT1 2 × 10 µF  
GRM21BR61A106K  
DEF_1  
EN1  
EN2  
L2  
VOUT2  
SW2  
2.2 µH  
LSP4018  
C
ff2  
33 pF  
R21  
R22  
COUT2 2 × 10 µF  
MODE/  
DATA  
GRM21BR61A106K  
ADJ2  
GND  
Figure 6. Measurement Circuit  
10  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
9 Detailed Description  
9.1 Overview  
The TPS62400-Q1 device includes two synchronous step-down converters. The converters operate with typically  
2.25-MHz fixed-frequency pulse-width modulation (PWM) at moderate to heavy load currents. With the power-  
safe mode enabled, the converters automatically enter power-save mode at light load currents and operate in  
PFM (pulse frequency modulation).  
During PWM operation, the converters use a unique fast-response voltage-mode controller scheme with input-  
voltage feedforward to achieve good line and load regulation, allowing the use of small ceramic input and output  
capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch turns  
on and the inductor current ramps up until the comparator trips and the control logic turns off the switch.  
Each converter integrates two current limits, one in the P-channel MOSFET and another one in the N-channel  
MOSFET. When the current in the P-channel MOSFET reaches its current limit, the P-channel MOSFET turns off  
and the N-channel MOSFET turns on. If the current in the N-channel MOSFET is above the N-MOS current limit  
threshold, the N-channel MOSFET remains on until the current drops below its current limit.  
The two DC-DC converters operate synchronized to each other. A 180° phase shift between converter 1 and  
converter 2 decreases the input rms current.  
9.1.1 Converter 1  
In the adjustable output-voltage version, TPS62400-Q1 device, one can set the converter 1 default output  
voltage with an external resistor network on the DEF_1 pin, which operates as an analog input. In this case, one  
can set the output voltage in the range of 0.6 V to VIN V. The FB1 pin must directly connect to the converter 1  
output voltage VOUT1. It feeds back the output voltage directly to the regulation loop.  
One can also change the output voltage of converter 1 with the EasyScale serial Interface. This makes the  
device very flexible for output-voltage adjustment. In this case, the device uses an internal resistor network.  
In the fixed default output voltage version, TPS62402-Q1 for example, the DEF_1 pin configuration is as a digital  
input. Converter 1 defaults to 1.2 V or 1.8 V, depending on the level of the DEF_1 pin. If DEF_1 is low, the  
default is 1.2 V; if high, the default is 1.8 V. With the EasyScale interface, one can change the output voltage for  
each DEF_1 pin condition (high or low).  
9.1.2 Converter 2  
In the adjustable output-voltage version, TPS62400-Q1 device, an external resistor divider connected to ADJ2  
pin sets the converter 2 output voltage. The converter uses an external feedforward capacitor of 33 pF.  
For example, in the fixed output-voltage version TPS62402-Q1, the fixed default output voltage is fixed to 3.3 V.  
In this case, the ADJ2 pin must connect directly to the converter 2 output voltage, VOUT2  
.
It is also possible to change the output voltage of converter 2 via the EasyScale interface. In this case, the ADJ2  
pin must connect directly to converter 2 output voltage VOUT2, with no connection of external resistors permitted.  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
9.2 Functional Block Diagram  
VIN  
PMOS Current  
Limit Comparator  
Converter 1  
VIN  
FB_VOUT  
Thermal  
Shutdown  
Softstart  
VREF +1%  
Skip Comp.  
FB_VOUT  
EN1  
VREF- 1%  
Skip Comp. Low  
VREF  
Ext. res. network  
Error Amp.  
Gate Driver  
Control  
Stage  
Internal  
FB  
VOUT1  
DEF1  
Int. Resistor  
Network  
PWM  
Comp.  
compensated  
SW1  
Cff 25pF  
MODE  
Register  
RI 1  
Sawtooth  
Generator  
DEF1_High  
DEF1_Low  
GND  
RI..N  
FB1  
Average  
Current Detector  
Skip Mode Entry  
See (1)  
NMOS Current  
Limit Comparator  
CLK 0°  
Reference  
Load Comparator  
2.25MHz  
Oscillator  
Easy Scale  
Interface  
ACK  
MODE/  
DATA  
Undervoltage  
Lockout  
PMOS Current  
Limit Comparator  
CLK 180°  
MOSFET  
Open drain  
VIN  
FB_VOUT  
Converter 2  
Int. Resistor  
Network  
VREF +1%  
Skip Comp.  
Register  
FB_VOUT  
VREF- 1%  
DEF2  
See (2)  
VREF  
Skip Comp. Low  
Gate Driver  
Control  
Stage  
Cff 25pF  
Error Amp.  
RI 1  
Internal  
compensated  
PWM  
Comp.  
RI..N  
SW2  
MODE  
FB_VOUT2  
ADJ2  
EN2  
Sawtooth  
Generator  
GND  
Thermal  
Shutdown  
Average  
Current Detector  
Skip Mode Entry  
NMOS Current  
Limit Comparator  
CLK 180°  
Softstart  
Load Comparator  
GND  
(1) In the fixed output-voltage version, the DEF_1 pin connects to an internal digital input and disconnects from the error  
amplifier.  
(2) To set the output voltage of converter 2 through the EasyScale™ interface, the ADJ2 pin must directly connect to  
VOUT2  
.
12  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
9.3 Feature Description  
9.3.1 Enable  
The device has a separate EN pin for each converter to start up each converter independently. If EN1 or EN2 is  
set to high, the corresponding converter starts up with soft start.  
Pulling EN1 and EN2 pin low forces the device into shutdown, with a shutdown quiescent current of typically 1.2  
μA. In this mode, the P- and N-channel MOSFETs turn off and the entire internal control circuitry switches off.  
For proper operation, terminate the EN1 and EN2 pins, do not leave them floating.  
9.3.2 DEF_1 Pin Function  
The DEF_1 pin, dedicated to converter 1, makes the output voltage selection very flexible to support dynamic  
voltage management.  
Depending on the device version, this pin works either as:  
1. Analog input for adjustable output voltage setting (TPS62400-Q1):  
Connecting an external resistor network to this pin adjusts the default output voltage to any value starting  
from 0.6 V to VIN.  
2. Digital input for fixed default output voltage selection (TPS62402-Q1 for example):  
Having this pin tied to a low level sets the output voltage according to the value in register  
REG_DEF_1_Low. The default voltage is 1.2 V. Having the pin tied to a high level sets the output voltage  
according to the value in register REG_DEF_1_High. The default value in this case is 1.8 V. The level of  
the DEF_1 pin selects between the two registers, REG_DEF_1_Low and REG_DEF_1_High, for the  
output-voltage setting. One can change the content of each register (and therefore output voltage)  
individually through the EasyScale interface. This makes the device very flexible in terms of output  
voltage setting; see Table 4.  
9.3.3 180° Out-of-Phase Operation  
In PWM mode, the converters operate with a 180° turnon phase shift of the PMOS (high side) transistors. This  
prevents the high-side switches of both converters from turning on simultaneously, and therefore smooths the  
input current. This feature reduces the surge current drawn from the supply.  
9.3.4 Short-Circuit Protection  
Both outputs are short-circuit protected with maximum output current = ILIMF(P-MOS and N-MOS). Once the  
PMOS switch reaches its current limit, it turns off and the NMOS switch turns on. The PMOS only turns on again  
once the current in the NMOS decreases below the NMOS current limit.  
9.3.5 Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 150°C (typical) the device goes into thermal shutdown. In this  
mode, the P- and N-channel MOSFETs turn off. The device continues its operation when the junction  
temperature falls below the thermal-shutdown hysteresis.  
9.3.6 EasyScale Interface: One-Pin Serial Interface for Dynamic Output-Voltage Adjustment  
9.3.6.1 General  
The EasyScale interface is a simple but very flexible one-pin interface to configure the output voltage of both DC-  
DC converters. A master-slave structure is the basis of the interface, where the master is typically a  
microcontroller or application processor. Figure 9 and Table 3 give an overview of the protocol. The protocol  
consists of a device-specific address byte and a data byte. The device-specific address byte is fixed to 4E hex.  
The data byte consists of five bits for information, two address bits, and the RFA bit. The RFA bit set to high  
indicates the request-for-acknowledge condition. The acknowledge condition only applies after correct reception  
of the protocol.  
The advantage of the EasyScale interface compared to other one-pin interfaces is that its bit detection is to a  
large extent independent from the bit transmission rate. It can automatically detect bit rates between 1.7 kb/s and  
up to 160 kb/s. Furthermore, the interface shares the MODE/DATA pin and requires no additional pin.  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
 
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
Feature Description (continued)  
9.3.6.2 Protocol  
Transmission of all bits is MSB first and LSB last. Figure 10 shows the protocol without the acknowledge request  
(bit RFA = 0) and Figure 11 shows the protocol with the acknowledge request (bit RFA = 1).  
Prior to both bytes, device address byte and data byte, one must apply a start condition. For this, pull the  
MODE/DATA pin high for at least tStart before the bit transmission starts with the falling edge. In case the  
MODE/DATA line was already at a high level (forced PWM mode selection), the device requires no application of  
a start condition prior to the device address byte.  
Close the transmission of each byte with an end-of-stream condition for at least tEOS  
.
9.4 Device Functional Modes  
9.4.1 Power-Save Mode  
Setting the MODE/DATA pin to low for both converters enables power-save mode. If the load current of a  
converter decreases, this converter enters power-save-mode operation automatically. The transition of a  
converter to power-save mode is independent from the operating condition of the other converter. During power-  
save mode, the converter operates with reduced switching frequency in PFM mode and with a minimum  
quiescent current to maintain high efficiency. The converter positions the output voltage in PFM mode to typically  
1% above nominal VOUTx. This voltage positioning feature minimizes voltage drops caused by a sudden load  
step.  
In order to optimize the converter efficiency at light load, the device monitors average inductor current. The  
device changes from PWM mode to power-save mode if in PWM mode the inductor current falls below a certain  
threshold. The typical output current threshold, which one can calculate using Equation 1 for each converter,  
depends on VIN.  
Equation 1: Average output current threshold to enter PFM mode  
V
IN  
IOUTx _PFM_ enter  
=
32 W  
(1)  
Equation 2: Average output current threshold to leave PFM mode  
V
IN  
IOUTx _PFM_leave  
=
24 W  
(2)  
To keep the output-voltage ripple in power-save mode low, a single threshold comparator (skip comparator)  
monitors the output voltage. As the output voltage falls below the skip-comparator threshold (skip comp) of 1%  
above nominal VOUTx, the corresponding converter starts switching for a minimum time period of typically 1 μs  
and provides current to the load and the output capacitor. Therefore, the output voltage increases and the device  
maintains switching until the output voltage trips the skip comparator threshold (skip comp) again. At this  
moment, all switching activity stops and the quiescent current reduces to minimum. The output capacitor supplies  
the load until the output voltage has dropped below the threshold again. Hereupon, the device starts switching  
again.  
The converter leaves power-save mode and enters PWM mode if the output current exceeds the IOUT_PFM_leave  
current or if the output voltage falls below a second comparator threshold, called the skip-comparator-low (Skip  
Comp Low) threshold. This skip-comparator-low threshold is 2% below nominal VOUTx and enables a fast  
transition from power-save mode to PWM mode during a load step.  
Power-save mode typically reduces the quiescent current to 19 μA for one converter and 32 μA for both  
converters active. This single-skip comparator threshold method in power-save mode results in a very low  
output-voltage ripple. The ripple depends on the comparator delay and the size of the output capacitor.  
Increasing output capacitor values minimizes the output ripple. One can disable the power-save mode by setting  
the MODE/DATA pin to high. Both converters then operate in fixed PWM mode. Power-save mode enable or  
disable applies to both converters.  
14  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
 
 
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
Device Functional Modes (continued)  
9.4.1.1 Dynamic Voltage Positioning  
This feature reduces the voltage under- and overshoots at load steps from light to heavy load and from heavy to  
light. Power-save-mode operation activates dynamic voltage positioning and provides more headroom for both  
the voltage drop at a load step and the voltage increase when a load is switched off, which improves load-  
transient behavior.  
At light loads, in which the converter operates in PFM mode, the output voltage regulation is typically 1% higher  
than the nominal value. In case of a load transient from light load to heavy load, the output voltage drops until it  
reaches the skip comparator low threshold set to 2% below the nominal value and enters PWM mode. During a  
load transition from heavy load to light load, the device also minimizes voltage overshoot because of active  
regulation turning on the N-channel switch.  
Smooth  
Fast load transient  
increased load  
+1%  
PFM Mode  
light load  
PFM Mode  
light load  
VOUTx_NOM  
PWM Mode  
medium, heavy load  
PWM Mode  
PWM Mode  
medium, heavy load  
medium, heavy load  
COMP_LOW threshold –2%  
Figure 7. Dynamic Voltage Positioning  
9.4.1.2 Soft Start  
The two converters have an internal soft-start circuit that limits the inrush current during startup. Figure 8 shows  
control of the output-voltage ramp-up during soft start. The device is able to start into a pre-biased output  
capacitor.  
ENx  
95%  
5%  
VOUTx  
tRamp  
tStartup  
Figure 8. Soft Start  
9.4.1.3 100% Duty-Cycle Low-Dropout Operation  
The converters offer a low input-to-output voltage difference while still maintaining operation with the use of the  
100% duty-cycle mode. In this mode, the P-channel switch is constantly on. This is particularly useful in battery-  
powered applications to achieve longest operation time by taking full advantage of the whole battery-voltage  
range. The minimum input voltage to maintain regulation depends on the load current and output voltage, which  
one can calculate as:  
V
= VOUTxmax + IOUTxmax ´ r  
(
+ RL  
)
INmin  
DS(on)max  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
 
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
Device Functional Modes (continued)  
with  
IOUTxmax = maximum output current plus inductor ripple current  
rDS(on)max = maximum P-channel switch rDS(on)  
RL = dc resistance of the inductor  
VOUTxmax = nominal output voltage plus maximum output-voltage tolerance  
(3)  
With decreasing load current, the device automatically switches into pulse-skipping operation, in which the power  
stage operates intermittently based on load demand. Running cycles periodically minimizes the switching losses,  
and the device runs with a minimum quiescent current, maintaining high efficiency.  
9.4.1.4 Undervoltage Lockout  
The undervoltage lockout circuit prevents the device from malfunction at low input voltages and from excessive  
discharge of the battery, and disables the converters. The undervoltage lockout threshold is typically 1.5 V and a  
maximum of 2.35 V. In case the interface overwrites the default register values, the new values in the registers  
REG_DEF_1_High, REG_DEF_1_Low and REG_DEF_2 remain valid as long the supply voltage does not fall  
below the undervoltage lockout threshold, independent of disabling of the converters.  
9.4.2 Mode Selection  
The MODE/DATA pin allows mode selection between forced PWM mode and power-save mode for both  
converters. Furthermore, this pin is a multipurpose pin and provides (besides mode selection) a one-pin interface  
to receive serial data from a host to set the output voltage, as described in the EasyScale Interface section.  
Connecting this pin to GND enables the automatic PWM and power-save-mode operation. The converters  
operate in fixed-frequency PWM mode at moderate-to-heavy loads, and in the PFM mode during light loads,  
maintaining high efficiency over a wide load-current range.  
Pulling the MODE/DATA pin high forces both converters to operate constantly in the PWM mode, even at light  
load currents. The advantage is that the converters operate with a fixed frequency, allowing simple filtering of the  
switching frequency for noise-sensitive applications. In this mode, the efficiency is lower compared to the power-  
save mode during light loads. For additional flexibility, it is possible to switch from power-save mode to forced  
PWM mode during operation. This allows efficient power management by adjusting the operation of the converter  
to the specific system requirements.  
In the case of changing the operation mode from forced PWM mode (MODE/DATA = high) to power-save mode  
(MODE/DATA = 0), enabling the power-save mode occurs after a delay time of ttimeout, which is 520 μs maximum.  
Setting the MODE/DATA to 1 enables forced-PWM-mode operation immediately.  
9.5 Programming  
9.5.1 Addressable Registers  
Three registers with a data content of five bits are addressable. With 5-bit data content, 32 different values for  
each register are available. Table 1 shows the addressable registers to set the output voltage when the DEF_1  
pin works as a digital input. In this case, converter 1 has a related register for each DEF_1 pin condition, and one  
register for converter 2. A high or low condition on pin DEF_1 (TPS62402-Q1, TPS62404-Q1, and  
TPS62405-Q1) selects either the content of register REG_DEF_1_High or REG_DEF_1_Low, thus setting the  
output voltage of converter 1 according to the values in Table 4.  
Table 2 shows the addressable registers if the DEF_1 pin acts as an analog input with external resistors  
connected. In this case, one register is available for each converter. The values in Table 5 set the output voltage  
of converter 1. Table 6 shows the available voltages for converter 2. Use of a precise internal resistor divider  
network to generate these output voltages makes external resistors unnecessary (less board space) and  
provides higher output-voltage accuracy. Enabling at least one of the converters (EN1 or EN2 is high) activates  
the interface. After the start-up time tStart (170 μs), the interface is ready for data reception.  
16  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
Programming (continued)  
Table 1. Addressable Registers for Default Fixed-Output Voltage Options (PIN DEF_1 = Digital Input)  
DEVICE  
REGISTER  
DESCRIPTION  
DEF_1  
PIN  
A1  
A0  
D4  
D3  
D2  
D1  
D0  
REG_DEF_1_High  
Converter 1 output voltage setting for  
DEF_1 = High condition. The content of the  
register is active with the DEF_1 pin high.  
High  
0
1
Output voltage setting, see Table 4  
TPS62402-Q1,  
TPS62404-Q1,  
TPS62405-Q1  
REG_DEF_1_Low  
REG_DEF_2  
Converter 1 output voltage setting for  
DEF_1 = Low condition.  
Low  
0
1
1
0
0
1
Output voltage setting, see Table 4  
Output voltage setting, see Table 6  
Converter 2 output voltage  
Not  
applicable  
Do not use  
Table 2. Addressable Registers for Adjustable-Output Voltage Options (PIN DEF_1 = Analog Input)  
DEVICE  
REGISTER  
REG_DEF_1_High  
REG_DEF_1_ Low  
REG_DEF_2  
DESCRIPTION  
A1  
A0  
D4  
D3  
D2  
D1  
D0  
Not available  
Converter 1 output-voltage setting  
Converter 2 output voltage  
Do not use  
0
1
1
0
0
1
See Table 5  
See Table 6  
TPS62400-Q1  
9.5.1.1 Bit Decoding  
The bit detection is based on a PWM scheme, where the criterion is the relation between the low time and high  
time of the low or high bit (tL_xB and tH_xB). Bit detection can be simplified to:  
High bit: tH_HB > tL_HB, but with tH_HB at least 2× tL_HB, see Figure 9.  
Low bit: tL_LB > tH_LB, but with tL_LB at least 2× tH_LB, see Figure 9.  
The bit detection starts with a falling edge on the MODE/DATA pin and ends with the next falling edge. Detection  
of a 0 or 1 depends on the relation between tL_xB and tH_xB  
.
9.5.1.2 Acknowledge  
The device only applies the acknowledge condition if all of the following occurs:  
A set RFA bit requests an acknowledge  
The transmitted device address matches with the device address of the device  
Correct reception of 16 bits occurred  
In this case, the device turns on the internal ACKN-MOSFET and pulls the MODE/DATA pin low for the time  
tACKN, which is 520 μs maximum. The acknowledge condition is valid after an internal delay time tvalACK. This  
means the internal ACKN-MOSFET turns on after tvalACK, on detection of the last falling edge of the protocol. The  
master controller keeps the line low during this time.  
The master device can detect the acknowledge condition with its input by releasing the MODE/DATA pin after  
tvalACK and reading back a 0.  
In case of an invalid device address, or not-correctly-received protocol, application of a no-acknowledge  
condition does not occur; thus, the internal MOSFET does not turn on, and the external pullup resistor pulls the  
MODE/DATA pin high after tvalACK. One can use the MODE/DATA pin again after the acknowledge condition  
ends.  
NOTE  
The master device must have an open-drain output in order to request the acknowledge  
condition.  
In case of a push-pull output stage, TI recommends using a series resistor in the MODE/DATA line to limit the  
current to 500 μA in case of an accidentally requested acknowledge, to protect the internal ACKN-MOSFET.  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
9.5.1.3 Mode Selection  
Use of the MODE/DATA pin for two functions, interface and mode selection, necessitates a determination of  
when to decode the bit stream or to change the operation mode.  
The device enters forced PWM mode operation immediately whenever the MODE/DATA pin turns to high level.  
The device also stays in forced PWM mode during the entire protocol reception time.  
With a falling edge on the MODE/DATA pin, the device starts bit decoding. If the MODE/DATA pin stays low for  
at least ttimeout, the device gets an internal time-out and enables power-save-mode operation.  
The device ignores a protocol sent within this time because the first interpretation of a falling edge for the mode  
change is at the start of the first bit. In this case, TI recommends sending the protocol first, and then changing to  
power-save mode at the end of the protocol.  
DATA IN  
Device Address  
DATABYTE  
D4 D3 D2  
Start DA7 DA6 DA5 DA4 DA3 DA2 DA1 DA0  
RFA A1  
A0  
D1 D0  
EOS Start  
EOS  
0
1
0
0
1
1
1
0
DATA OUT ACK  
Figure 9. EasyScale Protocol Overview  
Table 3. EasyScale Bit Description  
BYTE  
BIT  
NUMBER  
NAME  
TRANSMISSION  
DIRECTION  
DESCRIPTION  
Device  
address  
byte  
7
DA7  
DA6  
DA5  
DA4  
DA3  
DA2  
DA1  
DA0  
RFA  
A1  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0 MSB device address  
6
1
5
0
4
0
4E hex  
3
1
2
1
1
1
0
0 LSB device address  
Data  
byte  
7 (MSB)  
Request for acknowledge; if high, the device applies an acknowledge condition.  
6
Address bit 1  
Address bit 0  
Data bit 4  
5
A0  
4
D4  
3
D3  
Data bit 3  
2
1
D2  
Data bit 2  
D1  
Data bit 1  
0 (LSB)  
D0  
Data bit 0  
ACK  
OUT  
Acknowledge condition active 0, the device applies this condition only in the case of  
a set RFA bit. Open-drain output, the host must pull the line high with a pullup  
resistor.  
One can only use this feature if the master has an open-drain output stage. In case  
of a push-pull output stage, do not request an acknowledge condition.  
tStart  
tStart  
Address Byte  
DATA Byte  
DATA IN  
Mode, Static  
High or Low  
Mode, Static  
High or Low  
DA7  
0
DA0  
0
RFA  
0
D0  
1
tEOS  
tEOS  
Figure 10. EasyScale Protocol Without Acknowledge  
18  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
tStart  
tStart  
Address Byte  
DATA Byte  
Mode, Static  
High or Low  
Mode, Static  
High or Low  
DATA IN  
DA7  
DA0  
0
D0  
1
RFA  
1
0
tEOS  
t
valACK  
Acknowledge  
true, Data Line  
pulled down by  
device  
ACKN  
t
ACKN  
Controller needs to  
Pullup Data Line via a  
resistor to detect ACKN  
DATA OUT  
Acknowledge  
false, no pull  
down  
Figure 11. EasyScale Protocol Including Acknowledge  
tH_LB  
tH_HB  
tL_LB  
tL_HB  
Low Bit  
(Logic 0)  
High Bit  
(Logic 1)  
Figure 12. EasyScale – Bit Coding  
MODE/DATA  
ttimeout  
Power Save Mode  
Forced PWM MODE  
Power Save Mode  
Figure 13. MODE/DATA PIN: Mode Selection  
tStart  
tStart  
Address Byte  
DATA Byte  
MODE/DATA  
tEOS  
tEOS  
ttimeout  
Power Save Mode  
Forced PWM MODE  
Power Save Mode  
Figure 14. MODE/DATA Pin: Power-Save-Mode and Interface Communication  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
Table 4. Selectable Output Voltages for Converter 1,  
With Pin DEF_1 as Digital Input (TPS62402-Q1)  
TPS62402-Q1 OUTPUT  
TPS62402-Q1 OUTPUT  
VOLTAGE [V]  
D4 D3 D2 D1 D0  
VOLTAGE [V]  
REGISTER REG_DEF_1_LOW  
REGISTER REG_DEF_1_HIGH  
0
1
0.8  
0.9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0.825  
0.85  
0.925  
0.95  
2
3
0.875  
0.9  
0.975  
1.0  
4
5
0.925  
0.95  
1.025  
1.050  
1.075  
1.1  
6
7
0.975  
1.0  
8
9
1.025  
1.050  
1.075  
1.1  
1.125  
1.150  
1.175  
1.2  
10  
11  
12  
13  
14  
15  
16  
1.125  
1.150  
1.175  
1.225  
1.25  
1.275  
1.3  
1.2 (default TPS62402-Q1)  
1.215 (default TPS62405-Q1)  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
1.225  
1.325  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.25  
1.350  
1.275  
1.375  
1.3  
1.4  
1.325  
1.425  
1.350  
1.450  
1.375  
1.475  
1.4  
1.5  
1.425  
1.525  
1.450  
1.55  
1.475  
1.575  
1.5  
1.6  
1.525  
1.55  
1.7  
1.8 (default TPS62402-Q1)  
1.575 (default TPS62404-Q1)  
1.9 (default TPS62404-Q1)  
1.925 (default TPS62405-Q1)  
20  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
Table 5. Selectable Output Voltages for Converter 1,  
With DEF1 Pin as Analog Input (Adjustable, TPS62400-Q1)  
TPS62400-Q1 OUTPUT VOLTAGE [V]  
REGISTER REG_DEF_1_LOW  
D4 D3 D2 D1 D0  
0
VOUT1 Adjustable with Resistor Network on DEF_1 Pin (default  
TPS62400-Q1)  
0
0
0
0
0
0.6 V with DEF_1 connected to VOUT1 (default TPS62400-Q1)  
1
0.825  
0.85  
0.875  
0.9  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
0.925  
0.95  
0.975  
1
6
7
8
9
1.025  
1.05  
1.075  
1.1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
1.125  
1.15  
1.175  
1.2  
1.225  
1.25  
1.275  
1.3  
1.325  
1.35  
1.375  
1.4  
1.425  
1.45  
1.475  
1.5  
1.525  
1.55  
1.575  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
Table 6. Selectable Output Voltages for Converter 2,  
(ADJ2 Connected to VOUT2  
)
OUTPUT VOLTAGE [V]  
D4 D3 D2 D1 D0  
FOR REGISTER REG_DEF_2  
0
VOUT2 Adjustable with resistor network and Cff on ADJ2 pin  
(default TPS62400-Q1)  
0
0
0
0
0
0.6 V with ADJ2 pin directly connected to VOUT2 (default  
TPS62400-Q1)  
1
0.85  
0.9  
0.95  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
1.05  
1.1  
1.15  
1.2  
1.25  
1.3  
1.35  
1.4  
1.45  
1.5  
1.55  
1.6  
1.7  
1.8  
1.85  
2
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.85  
3
3.3 (default TPS62402-Q1, TPS62404-Q1)  
3.35 (default TPS62405-Q1)  
22  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
10 Application and Implementation  
NOTE  
Information in the following application sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TPS6240x-Q1 family of devices are synchronous dual step-down DC-DC converters. The devices provide  
two independent output voltage rails. The following information provides guidance on selecting external  
components to complete the application design.  
10.2 Typical Application  
TPS62400-Q1  
VIN 2.5 V to 6 V  
FB1  
VIN  
L1  
VOUT1  
CIN  
SW1  
10 µF  
2.2 µH  
LSP4018  
R11  
R12  
COUT1 2 × 10 µF  
GRM21BR61A106K  
DEF_1  
EN1  
EN2  
L2  
VOUT2  
SW2  
2.2 µH  
LSP4018  
C
ff2  
33 pF  
R21  
R22  
COUT2 2 × 10 µF  
MODE/  
DATA  
GRM21BR61A106K  
ADJ2  
GND  
10.2.1 Design Requirements  
The step-down converter design can be adapted to different output voltage and load current needs by choosing  
external components appropriate. The following design procedure is adequate for whole VIN, VOUTx and load  
current range of the TPS6240x-Q1 family of devices.  
10.2.2 Detailed Design Procedure  
10.2.2.1 Output Voltage Setting  
10.2.2.1.1 Converter 1 Adjustable Default Output-Voltage Setting: TPS62400-Q1  
Calculate the output voltage as:  
R11  
æ
ö
VOUT1 = VREF ´ 1+  
ç
÷
R12  
è
ø
where  
VREF = 0.6-V (typical) internal reference voltage  
(4)  
23  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
Typical Application (continued)  
To keep the operating current to a minimum, TI recommends selecting R12 within a range of 180 kto 360 k.  
The sum of R12 and R11 must not exceed approximately 1 M. For output voltages higher than 3.3 V, TI  
recommends choosing lower values than 180 kfor R12. Route the DEF_1 line away from noise sources, such  
as the inductor or the SW1 line. The FB1 line requires a direct connection to the output capacitor. A feedforward  
capacitor is not necessary.  
10.2.2.1.2 Converter 1 Fixed Default Output-Voltage Setting (TPS62402-Q1, TPS62404-Q1, and  
TPS62405-Q1)  
The DEF_1 pin selects output voltage VOUT1  
.
Pin DEF_1 = low:  
TPS62402-Q1 = 1.2 V  
TPS62404-Q1 = 1.575 V  
TPS62405-Q1 = 1.215 V  
Pin DEF_1 = high:  
TPS62402-Q1 = 1.8 V  
TPS62404-Q1 = 1.9 V  
TPS62405-Q1 = 1.925 V  
10.2.2.1.3 Converter 2 Adjustable Default Output-Voltage Setting (TPS62400-Q1):  
One can set the output voltage of converter 2 by an external resistor network. For converter 2, the same  
recommendations apply as for converter 1. In addition to that, use a 33-pF feedforward capacitor Cff2 for good  
load transient response. Calculate the output voltage as:  
R21  
æ
ö
VOUT2 = VREF ´ 1+  
ç
÷
R22  
è
ø
where  
VREF = 0.6-V (typical) internal reference voltage  
(5)  
10.2.2.1.4 Converter 2 Fixed Default Output-Voltage Setting  
ADJ2 pin must be directly connected with VOUT2  
:
TPS62402-Q1, VOUT2 default = 3.3 V  
TPS62404-Q1, VOUT2 default = 3.3 V  
TPS62405-Q1, VOUT2 default = 3.35 V  
10.2.2.2 Output Filter Design (Inductor and Output Capacitor)  
The converters operate with a minimum inductance of 1.75 μH and minimum capacitance of 6 μF. The device  
operation is optimum with inductors of 2.2 μH to 4.7 μH and output capacitors of 10 μF to 22 μF.  
24  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
Typical Application (continued)  
10.2.2.2.1 Inductor Selection  
Select the inductor based on its ratings for dc resistance and saturation current. The dc resistance of the inductor  
directly influences the efficiency of the converter. Therefore, select an inductor with lowest dc resistance for  
highest efficiency.  
Equation 6 calculates the maximum inductor current under static load conditions. The saturation-current rating of  
the inductor must be higher than the maximum inductor current as calculated with Equation 7. TI makes this  
recommendation because during heavy load transients, the inductor current rises above the calculated value.  
VOUTx  
1-  
V
IN  
DIL = VOUTx  
´
L ´ fSW  
where  
ΔIL = peak-to-peak inductor ripple current  
L = inductor value  
fSW = switching frequency (2.25 MHz typical)  
(6)  
(7)  
DIL  
ILmax = IOUTxmax  
+
2
where  
ILmax = maximum inductor current and the highest inductor current occurs at maximum VIN  
Open-core inductors have a soft saturation characteristic and they can usually handle higher inductor currents  
versus a comparable shielded inductor.  
A more conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. Take into consideration that the core material from inductor to inductor differs, and this  
difference has an impact on the efficiency.  
See Table 7 and the typical application circuit examples for possible inductors.  
Table 7. List of Inductors  
DIMENSIONS [mm]  
3.2 × 2.6 × 1  
3 × 3 × 0.9  
INDUCTOR TYPE  
MIPW3226  
LPS3010  
SUPPLIER  
FDK  
Coilcraft  
TDK  
2.8 × 2.6 × 1  
2.8 x 2.6 × 1.4  
3 × 3 × 1.4  
VLF3010  
VLF3014  
TDK  
LPS3015  
Coilcraft  
Coilcraft  
3.9 × 3.9 × 1.7  
LPS4018  
10.2.2.2.2 Output-Capacitor Selection  
The advanced fast-response voltage-mode control scheme of the converters allows the use of tiny ceramic  
capacitors with a typical value of 10 μF to 22 μF, without having large output-voltage under- and overshoots  
during heavy load transients. Ceramic capacitors with low ESR values result in lowest output-voltage ripple, and  
TI therefore recommends them. The output capacitor requires either X7R or X5R dielectric. TI does not  
recommend Y5V and Z5U dielectric capacitors because of their wide variation in capacitance.  
If using ceramic output capacitors, the capacitor rms ripple-current rating always meets the application  
requirements. The rms ripple current can be calculated as:  
VOUTx  
1-  
V
1
IN  
IRMSCOUTx = VOUTx  
´
´
L ´ fSW  
2 ´  
3
(8)  
At nominal load current, the inductive converters operate in PWM mode and the overall output voltage ripple is  
the sum of the voltage spike caused by the output capacitor ESR, plus the voltage ripple caused by charging and  
discharging the output capacitor:  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
 
 
 
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
VOUTx  
1-  
æ
ö
÷
ø
V
1
IN  
DVOUTx = VOUTx  
´
´
+ ESR  
ç
L ´ fSW  
8 ´ COUTx ´ fSW  
è
where the highest output-voltage ripple occurs at the highest input voltage, VIN.  
(9)  
At light load currents, the converters operate in power-save mode and the output-voltage ripple depends on the  
output-capacitor value. The internal comparator delay and the external capacitor set the output-voltage ripple.  
Higher output capacitors like 22 μF values minimize the voltage ripple in PFM mode and tighten dc output  
accuracy in PFM mode.  
10.2.2.2.3 Input Capacitor Selection  
Because of the nature of the buck converter having a pulsating input current, the device requires a low-ESR  
input capacitor to prevent large voltage transients that can cause misbehavior of the device or interference with  
other circuits in the system. An input capacitor of 10 μF is sufficient.  
26  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
10.2.3 Application Curves  
100  
90  
100  
90  
VIN = 3.6 V  
VIN = 3.6 V  
80  
70  
60  
80  
70  
VIN = 2.7 V  
VIN = 2.7 V  
VIN = 3.6 V  
VIN = 5 V  
60  
VIN = 3.6 V  
VIN = 5 V  
50  
40  
30  
50  
VIN = 5 V  
VIN = 5 V  
40  
Forced PWM Mode  
MODE/DATA = 1  
Power Save Mode  
MODE/DATA = 0  
Power Save Mode  
MODE/DATA = 0  
Forced PWM Mode  
MODE/DATA = 1  
30  
20  
20  
10  
0
10  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
VOUT2 = 1.8 V  
VOUT2 = 3.3 V  
Figure 15. Efficiency  
Figure 16. TPS62400-Q1 Efficiency  
100  
95  
100  
90  
IOUT2 = 100 mA  
IOUT1 = 10 mA  
90  
IOUT2 = 10 mA  
85  
80  
IOUT2 = 1 mA  
80  
IOUT1 = 1 mA  
IOUT1 = 200 mA  
75  
70  
65  
60  
70  
60  
50  
55  
50  
2
3
4
5
6
3
4
5
6
VIN (V)  
VIN (V)  
VOUT2 = 3.3 V  
MODE/DATA = 0  
VOUT1 = 1.575 V  
MODE/DATA = 0  
Figure 18. Efficiency versus VIN  
Figure 17. Efficiency versus VIN  
3.400  
3.350  
1.854  
1.836  
1.818  
MODE/DATA = low, PFM Mode, voltage positioning active  
MODE/DATA = low, PFM Mode, voltage positioning active  
VIN = 5 V  
PWM Mode  
Operation  
PWM Mode  
Operation  
VIN = 5 V  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 4.2 V  
VIN = 3.6 V  
VIN = 2.7 V  
VIN = 4.2 V  
3.300  
1.800  
1.782  
VIN = 5 V  
MODE/DATA = high, forced PWM Mode  
VIN = 4.2 V  
VIN = 3.6 V  
VIN = 5 V  
VIN = 3.6 V  
VIN = 2.7 V  
MODE/DATA = high, forced PWM Mode  
3.250  
3.200  
1.764  
1.746  
0.01  
0.10  
1
10  
100  
1000  
0.01  
0.10  
1
10  
100  
1000  
IOUT2 (mA)  
IOUT2 (mA)  
VOUT2 = 3.3 V  
Figure 19. DC Output Accuracy  
VOUT2 = 1.8 V  
Figure 20. DC Output Accuracy  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
1.650  
1.650  
1.625  
MODE/DATA = low, PFM Mode, voltage positioning active  
1.625  
MODE/DATA = low, PFM Mode, voltage positioning active  
VIN = 4.2 V  
VIN = 4.2 V  
PWM Mode  
Operation  
PWM Mode  
Operation  
1.600  
1.600  
VIN = 2.7 V  
VIN = 3.6 V  
VIN = 3.6 V  
VIN = 2.7 V  
VIN = 2.7 V  
1.575  
1.550  
1.575  
1.550  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 3.6 V  
VIN = 4.2 V  
VIN = 2.7 V  
MODE/DATA = high, forced PWM Mode  
MODE/DATA = high, forced PWM Mode  
1.525  
1.500  
1.525  
1.500  
0.01  
0.10  
1
10  
100  
1000  
0.01  
0.10  
1
10  
100  
1000  
IOUT1 (mA)  
IOUT1 (mA)  
VOUT1 = 1.575 V  
L1 = 2.2 μH  
COUT1 = 22 μF  
VOUT1 = 1.575 V  
L1 = 3.3 μH  
COUT1 = 10 μF  
Figure 21. DC Output Accuracy  
Figure 22. DC Output Accuracy  
VOUTx = 1.8 V, 20 mV/Div  
VOUTx = 1.8 V, 20 mV/Div  
Inductor current 100 mA/Div  
Inductor current 100 mA/Div  
Time base – 400 ns/Div  
Time base – 10 µs/Div  
Forced PWM mode  
MODE/DATA = high  
IOUTx = 10 mA  
Power save mode  
MODE/DATA = low  
IOUTx = 10 mA  
Figure 24. Output-Voltage Ripple in Forced-PWM Mode  
Figure 23. Light-Load Output-Voltage Ripple in Power-  
Save Mode  
MODE/DATA 1 V/Div  
Forced PWM  
Mode  
VOUTx ripple 20 mV/Div  
Inductor current 200 mA/Div  
Time base – 200 ns/Div  
Enable Power Save Mode  
Entering PFM Mode  
Voltage positioning active  
VOUTx 20 mV/Div  
Time base – 200 µs/Div  
PWM mode  
VOUTx = 1.8 V  
IOUTx = 400 mA  
VOUTx = 1.8 V  
IOUTx = 20 mA  
Figure 25. Output-Voltage Ripple in PWM Mode  
Figure 26. Forced PWM-to-PFM Mode Transition  
28  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
VOUT1 = 1.575 V  
50 mV/Div  
VOUT1 = 1.575 V  
50 mV/Div  
Voltage positioning in PFM  
PWM Mode operation  
Mode reduces voltage drop  
during load step  
IOUT1 200 mA/Div  
IOUT1 200 mA/Div  
IOUT1 = 360 mA  
IOUT1 = 360 mA  
IOUT1 = 40 mA  
IOUT1 = 40 mA  
Time base – 50 µs/Div  
Time base – 50 µs/Div  
MODE/DATA = low  
PWM mode  
MODE/DATA = high  
Figure 27. Load-Transient Response, PFM-to-PWM  
Figure 28. Load-Transient Response, PWM Operation  
EN1, EN2 5 V/Div  
VIN 1 V/Div  
VOUT1  
500 mV/Div  
SW1 1 V/Div  
VOUT1 50 mV/Div  
Icoil 500 mA/Div  
Time base – 400 µs/Div  
Time base – 200 µs/Div  
MODE/DATA = low  
VIN = 3.6 to 4.6 V  
IOUT1 = 200 mA  
VOUT1 = 1.575 V  
VIN = 3.8 V  
IOUT1max = 400 mA  
Figure 29. Line-Transient Response  
Figure 30. Start-up Timing, One Converter  
DEF_1 pin  
2 V/Div  
SW1 5 V/Div  
I
200 mA/Div  
coil1  
VOUT1 = 1.8 V  
VOUT1  
SW2 5 V/Div  
500 mV/Div  
VOUT1 = 1.2 V  
I
coil2  
200 mA/Div  
Icoil 500 mA/Div  
Time base – 100 µs/Div  
Time base – 100 ns/Div  
VIN = 3.6 V  
VOUT1 = 1.575 V  
VOUT2 = 1.8 V  
VIN = 3.6 V  
MODE/DATA = low  
IOUT1 = 40 mA  
IOUT1 = IOUT2 = 200 mA  
Figure 32. Typical Operation  
Figure 31. TPS62402-Q1 DEF1_PIN Function for Output-  
Voltage Selection  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
SW1 5 V/Div  
SW1 5 V/Div  
200 mA/Div  
I
coil1  
I
200 mA/Div  
coil1  
SW2 5 V/Div  
SW2 5 V/Div  
I
200 mA/Div  
coil2  
I
200 mA/Div  
coil2  
Time base – 100 ns/Div  
Time base – 100 ns/Div  
VIN = 3.6 V  
VOUT1 = 1.8 V  
VOUT2 = 3 V  
VIN = 3.6 V  
VOUT1 = 1.2 V  
VOUT2 = 1.2 V  
IOUT1 = IOUT2 = 200 mA  
IOUT1 = IOUT2 = 200 mA  
Figure 33. Typical Operation  
Figure 34. Typical Operation  
MODE/DATA  
2 V/Div  
1.5 V  
V
OUT1  
V
200 mV/Div  
OUT1  
V
1.1 V  
OUT1  
Time base – 100 µs/Div  
VIN = 3.8 V  
ACKN = off  
REG_DEF_1_Low  
IOUT1 = 150 mA  
Figure 35. VOUT1 Change With EasyScale Interface  
30  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
10.3 System Examples  
TPS62402-Q1  
VIN 2.5 V to 6 V  
FB1  
VIN  
2.2 µH  
VOUT1 = 1.2 V  
400 mA  
SW1  
10 µF  
22 µF  
DEF_1  
EN1  
EN2  
2.2 µH  
VOUT2 = 3.3 V  
600 mA  
SW2  
MODE/  
DATA  
22 µF  
ADJ2  
GND  
Figure 36. TPS62402-Q1 Fixed 1.2-V and 3.3-V Outputs, Low PFM Ripple Voltage Optimized  
TPS62402-Q1  
VIN 2.5 V to 6 V  
FB1  
VIN  
2.2 µH  
VOUT1 = 1.8 V  
400 mA  
10 µF  
SW1  
DEF_1  
EN1  
22 µF  
EN2  
2.2 µH  
VOUT2 = 3.3 V  
SW2  
600 mA  
MODE/  
DATA  
22 µF  
ADJ2  
GND  
Figure 37. TPS62402-Q1 Fixed 1.8-V and 3.3-V Outputs, Low PFM Ripple Voltage Optimized  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
System Examples (continued)  
TPS62404-Q1  
VIN 2.5 V to 6 V  
VIN  
FB1  
L1  
VOUT1 = 1.575 V  
400 mA  
10 µF  
SW1  
2.2 µH  
COUT1  
10 µF  
DEF_1  
EN1  
EN2  
L2  
VOUT2 = 3.3 V  
600 mA  
SW2  
2.2 µH  
MODE/  
COUT2  
10 µF  
DATA  
ADJ2  
GND  
Figure 38. TPS62404-Q1 Fixed 1.575-V and 3.3-V Outputs  
VIN 2.5 V to 6 V  
TPS62402-Q1  
FB1  
TPS62405-Q1  
Processor  
VIN  
L1  
VOUT1 400 mA:  
VCore  
SW1  
10 µF  
TPS62402-Q1 DEF_1 = 0: 1.2 V  
TPS62402-Q1 DEF_1 = 1: 1.8 V  
TPS62405-Q1 DEF_1 = 0: 1.215 V  
TPS62405-Q1 DEF_1 = 1: 1.925 V  
10 µF  
EN1  
EN2  
DEF_1  
SW2  
VCore_Sel  
VI/O  
L2  
VOUT2 600 mA:  
TPS62402-Q1: 3.3 V  
TPS62405-Q1: 3.35 V  
10 µF  
MODE/  
DATA  
ADJ2  
GND  
Figure 39. Dynamic Voltage Scaling on VOUT1 Controlled by DEF_1 Pin  
32  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
System Examples (continued)  
TPS62405-Q1  
VIN 2.5 V to 6 V  
VIN  
FB1  
2.2 µH  
VOUT1 = 1.215 V  
SW1  
10 µF  
400 mA  
10 µF  
DEF_1  
EN1  
EN2  
3.3 µH  
VOUT2 = 3.35 V  
SW2  
600 mA  
10 µF  
MODE/  
DATA  
ADJ2  
GND  
Figure 40. TPS62405-Q1 1.215-V and 3.35 Outputs  
11 Power Supply Recommendations  
This device has no special recommendation for the power supply. TI recommends to use the values listed in the  
Recommended Operating Conditions.  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
www.ti.com  
12 Layout  
12.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design.  
Place the input capacitor as close as possible to the IC pins VIN and GND, then place the inductor and output  
capacitor as close as possible to the pins SW1 and GND.  
Connect the GND pin of the device to the PowerPAD of the PCB and use this pad as a star point. For each  
converter, use a common power GND node and a different node for the signal GND to minimize the effects of  
ground noise.  
Connect these ground nodes together to the PowerPAD (star point) underneath the IC. Keep the common  
path to the GND PIN, which returns the small signal components and the high current of the output  
capacitors, as short as possible to avoid ground noise.  
Connect the output voltage-sense lines (FB 1, DEF_1, ADJ2) right to the output capacitor and route them  
away from noisy components and traces (for example, the SW1 and SW2 lines).  
If operating the EasyScale interface with high transmission rates, route the MODE/DATA trace away from the  
ADJ2 line to avoid capacitive coupling into the ADJ2 pin.  
A GND guard ring between the MODE/DATA pin and ADJ2 pin avoids potential noise coupling.  
12.2 Layout Example  
CIN  
L2  
L1  
CO2  
CO1  
Figure 41. Layout Diagram  
34  
Submit Documentation Feedback  
Copyright © 2010–2020, Texas Instruments Incorporated  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
TPS62400-Q1, TPS62402-Q1, TPS62404-Q1, TPS62405-Q1  
www.ti.com  
SLVSA67F FEBRUARY 2010REVISED APRIL 2020  
13 Device and Documentation Support  
13.1 Device Support  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 8. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
TPS62400-Q1  
TPS62402-Q1  
TPS62404-Q1  
TPS62405-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 Trademarks  
EasyScale, the EasyScale, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2010–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: TPS62400-Q1 TPS62402-Q1 TPS62404-Q1 TPS62405-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62400QDRCRQ1  
TPS62402QDRCRQ1  
TPS62404QDRCRQ1  
TPS62405QDRCRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
SHI  
NIPDAU  
NIPDAU  
NIPDAU  
SJS  
OET  
SJT  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS62400-Q1, TPS62402-Q1, TPS62404-Q1 :  
Catalog: TPS62400, TPS62402, TPS62404  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62400QDRCRQ1  
TPS62402QDRCRQ1  
TPS62404QDRCRQ1  
TPS62405QDRCRQ1  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
3000  
3000  
3000  
3000  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62400QDRCRQ1  
TPS62402QDRCRQ1  
TPS62404QDRCRQ1  
TPS62405QDRCRQ1  
VSON  
VSON  
VSON  
VSON  
DRC  
DRC  
DRC  
DRC  
10  
10  
10  
10  
3000  
3000  
3000  
3000  
367.0  
367.0  
356.0  
367.0  
367.0  
367.0  
356.0  
367.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DRC 10  
3 x 3, 0.5 mm pitch  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226193/A  
www.ti.com  
PACKAGE OUTLINE  
DRC0010J  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
4X (0.25)  
5
6
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.30  
0.18  
10X  
SYMM  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
0.5  
0.3  
10X  
4218878/B 07/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.24)  
11  
(2.4)  
(3.4)  
SYMM  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
(
0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218878/B 07/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRC0010J  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.24)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4218878/B 07/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

TPS62405QDRCRQ1

具有单总线接口的汽车类、双通道固、定输出电压、400mA 和 600mA、2.25MHz 降压转换器 | DRC | 10 | -40 to 125
TI

TPS62406-Q1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 1000mA/400mA 降压转换器
TI

TPS62406QDRCRQ1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 1000mA/400mA 降压转换器 | DRC | 10 | -40 to 125
TI

TPS62407-Q1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 400mA/600mA 降压转换器
TI

TPS62407QDRCRQ1

用于 ADAS 摄像头应用的汽车类 2.25MHz 固定输出电压双路 400mA/600mA 降压转换器 | DRC | 10 | -40 to 125
TI

TPS62410

2.25MHz 2x800mA Dual Step Down Converter In Small 3x3mm QFN Package
TI

TPS62410-Q1

2.25MHz 2x800mA Dual Step Down Converter In Small 3x3mm QFN Package
TI

TPS62410DRC

2.25MHz 2x800mA Dual Step Down Converter In Small 3x3mm QFN Package
TI

TPS62410DRCR

2.25MHz 2x800mA Dual Step Down Converter In Small 3x3mm QFN Package
TI

TPS62410DRCRG4

具有 1 线接口、采用 QFN 封装的 2.25MHZ 2x800mA 双路降压转换器 | DRC | 10 | -40 to 85
TI

TPS62410DRCT

2.25MHz 2x800mA Dual Step Down Converter In Small 3x3mm QFN Package
TI

TPS62410DRCTG4

2.25MHZ 2x800mA Dual Step-Down Converter with 1-Wire Interface in QFN 10-VSON -40 to 85
TI