TPS62442 [TI]

采用 QFN 封装的 2.75V 至 6V 双路 2A 或 3A/1A 降压转换器;
TPS62442
型号: TPS62442
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 QFN 封装的 2.75V 至 6V 双路 2A 或 3A/1A 降压转换器

转换器
文件: 总38页 (文件大小:2706K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
TPS6244x 具有可调频率1% 精度并采QFN 封装2.75V 6V 双通道降压  
转换器  
1 特性  
3 说明  
功能安全型  
TPS6244x 系列是一款引脚对引脚双路 1A、双路 2A  
3A/1A 高效且易于使用的同步降压直流/直流转换  
器。该器件系列基于峰值电流模式控制拓扑。这些器件  
专为电机驱动器和机器人等工业应用而设计。低阻开关  
可在高温环境下支持高达 3A 的持续输出电流和高达  
4A 最大总输出电流。用户可通过外部方式在  
1.8MHz 4MHz 范围内调节开关频率亦可在该频率  
范围内将其同步至外部时钟。在 PWM/PFM 模式下,  
TPS6244x 会在轻负载情况下自动进入省电模式从而  
在整个负载范围内维持高效率。TPS6244x 可在 PWM  
模式下提1% 的输出电压精度这有助于实现具有高  
输出电压精度的电源设计。  
可提供用于功能安全系统设计的文档  
0.6V 5.5V 双通道输出电压  
1A/1A2A/2A3A/1A 输出电流  
• 输入电压范围2.75V 6V  
1% 反馈电压精度PWM 工作模式)  
TJ = -40°C +150°C  
• 两个精密使能输入可实现:  
– 用户定义的欠压锁定  
– 准确排序  
• 具有窗口比较器的两个电源正常输出  
1.8MHz 4MHz 可调开关频率  
• 可选择与外部时钟同步  
• 可选展频时钟  
• 强PWM PWM/PFM 操作  
• 可选择高200µF 的补偿网络  
22µA 静态电流  
180° 相移运行  
100% 占空比模式  
• 有源输出放电  
• 热关断保护  
2.3mm x 2.7mm QFN 封装  
TPS6244x 提供了可调节电压版本采用 VQFN 封  
装。  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS62441  
TPS62442  
RQRVQFN142.30 mm x 2.70 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
电机驱动器/无人机控制器  
机器HMI  
测试和测量  
机器视觉  
串式逆变器  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
L1  
0.47 µH  
VIN  
TPS6244x  
VOUT1  
COUT1  
2.75 V - 6 V  
VIN1  
SW1  
CFF1  
VIN2  
EN1  
R1  
R2  
CIN1, CIN2  
FB1  
2 × 10  
µF  
2 × 4.7 µF  
EN2  
L2  
0.47 µH  
MODE/SYNC  
SW2  
VOUT2  
COUT2  
CFF2  
V+  
R3  
R4  
FB2  
2 × 10  
µF  
COMP/FSET  
R5  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
RCF  
50  
PG1  
45  
V+  
40  
100m  
R6  
1m  
10m  
Load (A)  
100m  
1
PG2  
GND  
D000  
GND  
效率与输出电流间的关系VOUT = 3.3VPWM/PFM;  
fsw = 2.25MHz  
原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSEQ8  
 
 
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
9.2 Functional Block Diagram......................................... 11  
9.3 Feature Description...................................................11  
9.4 Device Functional Modes..........................................14  
10 Application and Implementation................................16  
10.1 Application Information........................................... 16  
10.2 Typical Application.................................................. 17  
10.3 Power Supply Recommendations...........................27  
10.4 Layout..................................................................... 27  
11 Device and Documentation Support..........................29  
11.1 Device Support........................................................29  
11.2 Documentation Support.......................................... 29  
11.3 接收文档更新通知................................................... 29  
11.4 支持资源..................................................................29  
11.5 Trademarks............................................................. 29  
11.6 静电放电警告...........................................................29  
11.7 术语表..................................................................... 29  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Timing Requirements..................................................8  
7.7 Typical Characteristics................................................8  
8 Parameter Measurement Information............................9  
8.1 Schematic................................................................... 9  
9 Detailed Description......................................................10  
9.1 Overview...................................................................10  
Information.................................................................... 29  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2021) to Revision A (May 2023)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
2
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE NUMBER  
FEATURES  
OUTPUT VOLTAGE  
2 × 1-A output current  
VOUT discharge  
TPS62441RQRR  
adjustable  
2 × 2-A or 3-A and 1-A output current  
VOUT discharge  
TPS62442RQRR  
adjustable  
6 Pin Configuration and Functions  
Top view  
GND  
9
EN2  
10  
EN1  
8
VIN1  
SW1  
7
6
5
4
VIN2 11  
SW2  
12  
MODE  
/SYNC  
PG2 13  
COMP  
/FSET  
14  
PG1  
1
3
2
FB2  
GND  
FB1  
6-1. 14-Pin QFN RQR Package Top View  
6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
This pin is the enable pin of converter 1. Connect to logic low to disable the device. Pull high to  
enable the device. Do not leave this pin unconnected.  
EN1  
8
I
I
This pin is the enable pin of converter 2. Connect to logic low to disable the device. Pull high to  
enable the device. Do not leave this pin unconnected.  
EN2  
10  
FB1  
FB2  
3
1
I
Voltage feedback input for converter 1. Connect the resistive output voltage divider to this pin.  
Voltage feedback input for converter 2. Connect the resistive output voltage divider to this pin.  
Open-drain power-good output of converter 1  
I
PG1  
PG2  
SW1  
SW2  
4
O
O
13  
6
Open-drain power-good output of converter 2  
This pin is the switch pin of converter 1 and is connected to the internal power MOSFETs.  
This pin is the switch pin of converter 2 and is connected to the internal power MOSFETs.  
12  
The device runs in PFM/PWM mode when this pin is pulled low. When the pin is pulled high, the  
device runs in forced PWM mode. Do not leave this pin unconnected. The mode pin can also be  
used to synchronize the device to an external frequency. See the electrical characteristics for the  
detailed specification for the digital signal applied to this pin for external synchronization.  
MODE/SYNC  
COMP/FSET  
5
I
I
Device compensation and frequency set input. A resistor from this pin to GND defines the  
compensation of the control loop as well as the switching frequency if not externally synchronized.  
Do not leave this pin floating.  
14  
Power supply input. Make sure the input capacitor is connected as close as possible between pin  
VIN1 and GND. Connect VIN1 to VIN2.  
VIN1  
VIN2  
7
Power supply input. Make sure the input capacitor is connected as close as possible between pin  
VIN2 and GND. Connect VIN2 to VIN1.  
11  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
GND  
2, 9  
Ground pins. The GND pins are internally connected.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
4
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
3  
MAX  
6.5  
UNIT  
V
VIN1, VIN2  
SW1, SW2 (DC)  
VIN + 0.3  
10  
V
SW1, SW2 (AC, less than 10ns)(3)  
V
Pin voltage(2)  
FB1, FB2  
4
V
0.3  
0.3  
0.3  
65  
PG1, PG2, COMP/FSET  
EN1, EN2, MODE/SYNC  
VIN + 0.3  
6.5  
V
V
Tstg  
Storage temperature  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to the network ground terminal  
(3) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002, all pins (2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
VIN1, VIN2 Input voltage range  
2.75  
6
V
VOUT1 ,  
Output voltage range  
VOUT2  
0.6  
0.32  
8
5.5  
0.9  
V
L1, L2  
Effective inductance  
0.47  
10  
μH  
μF  
COUT1 ,  
COUT2  
Effective output capacitance(1)  
200  
CIN1, CIN2 Effective input capacitance on each pin (1)  
10  
μF  
kΩ  
mA  
°C  
RCF  
4.5  
0
100  
2
ISINK_PG  
TJ  
Sink current at PG pin  
Junction temperature  
150  
40  
(1) The values given for all the capacitors in the table are effective capacitance, which includes the DC bias effect. Due to the DC bias  
effect of ceramic capacitors, the effective capacitance is lower than the nominal value when a voltage is applied. Please check the  
manufacturer´s DC bias curves for the effective capacitance vs DC voltage applied. Further restrictions may apply. Please see the  
feature description for COMP/FSET about the output capacitance vs compensation setting and output voltage.  
7.4 Thermal Information  
TPS6244x  
(JEDEC)  
14 PINS  
68.7  
TPS6244x  
(EVM)  
THERMAL METRIC(1)  
UNIT  
14 PINS  
53.9  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
 
 
 
 
 
 
 
 
 
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
UNIT  
7.4 Thermal Information (continued)  
TPS6244x  
(JEDEC)  
14 PINS  
50.8  
TPS6244x  
(EVM)  
14 PINS  
n/a  
THERMAL METRIC(1)  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
15.1  
n/a  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.5  
1.9  
ΨJT  
14.9  
20.1  
ΨJB  
RθJC(bot)  
n/a  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Over operating junction remperature range (TJ = -40°C to +150°C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
EN1 or EN2 = VIN, no load, device not  
switching, TJ = 25°C, MODE = GND, one  
converter enabled  
IQ  
Quiescent current  
27  
66  
38  
80  
µA  
µA  
µA  
µA  
EN1 or EN2 = VIN, no load, device not  
switching, MODE = GND, one converter  
enabled  
IQ  
IQ  
IQ  
Quiescent current  
Quiescent current  
Quiescent current  
22  
EN1 = EN2 = VIN, no load, device not  
switching, TJ = 25°C, MODE = GND, both  
converters enabled  
EN1 = EN2 = VIN, no load, device not  
switching, MODE = GND, both converters  
enabled  
33  
ISD  
ISD  
Shutdown current  
Shutdown current  
EN1 = EN2 = Low, at TJ = 25°C  
2
µA  
µA  
EN1 = EN2 = GND, Nominal value at TJ =  
25°C, Max value at TJ = 150°C  
1.5  
26  
VIN rising  
VIN falling  
TJ rising  
TJ falling  
2.5  
2.3  
2.6  
2.5  
170  
15  
2.75  
2.6  
V
V
VUVLO  
Under voltage lock out threshold  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
°C  
°C  
TJSD  
CONTROL and INTERFACE  
Input-threshold voltage at EN1, EN2,  
rising edge  
VEN,IH  
1.06  
0.96  
1.1  
1.0  
1.15  
V
Input-threshold voltage at EN1, EN2,  
falling edge  
VEN,IL  
IEN,LKG  
VIH  
1.05  
450  
V
nA  
V
Input leakage current into EN1, EN2  
VIH = VIN or VIL = GND  
High-level input-threshold voltage at  
MODE/SYNC  
1.1  
Low-level input-threshold voltage at  
MODE/SYNC  
VIL  
0.3  
700  
300  
V
ILKG  
tDelay  
Input leakage current into MODE/SYNC  
Enable delay time  
nA  
µs  
Time from ENx high to device starts  
switching; VIN applied already  
110  
200  
100  
Enable delay time if one converter  
already enabled  
Time from ENx high to device starts  
switching; VIN applied already  
tDelay  
µs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
6
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Over operating junction remperature range (TJ = -40°C to +150°C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Time from device starts switching to  
power good; device not in current limit  
tRamp  
fSYNC  
Output voltage ramp time  
0.7  
1.1  
1.5  
ms  
Frequency range on MODE/SYNC pin for  
synchronization  
2
0
4
MHz  
kΩ  
V
Resistance from COMP/FSET to GND for internal frequency setting with  
2.5  
logic low  
f = 2.25 MHz  
internal frequency setting with  
f = 2.25 MHz  
Voltage on COMP/FSET for logic high  
VIN  
96.5%  
94.5%  
107%  
UVP power good threshold voltage;  
dc level  
VTH_PG  
VTH_PG  
rising (%VFB  
)
94%  
92%  
99%  
97%  
UVP power good threshold voltage;  
dc level  
falling (%VFB  
)
)
OVP power good threshold voltage;  
dc level  
rising (%VFB  
)
104%  
110%  
107%  
VTH_PG  
OVP power good threshold voltage;  
dc level  
falling (%VFB  
102% 104.5%  
0.07  
VPG,OL  
IPG,LKG  
Low-level output voltage at PG  
Input leakage current into PG  
ISINK_PG = 2 mA  
VPG = 5 V  
0.3  
V
100  
nA  
for a high-level to low-level transition on  
the power good output  
tPG  
PG deglitch time  
40  
µs  
OUTPUT  
VFB1  
VFB2  
,
Feedback voltage  
0.6  
V
IFB1,LKG,  
IFB2,LKG  
Input leakage current into FB  
Feedback voltage accuracy  
Feedback voltage accuracy  
VFB = 0.6 V  
1
80  
1%  
nA  
VFB1  
,
,
,
PWM, VIN VOUT + 1 V  
1%  
VFB2  
VFB1  
VFB2  
PFM, VIN VOUT + 1 V, VOUT 1.5 V,  
2.5%  
1%  
Co,eff 22µF, L = 0.47µH  
VFB1  
VFB2  
PFM, VIN VOUT + 1 V, 1V VOUT  
1.5 V, Co,eff 47µF, L = 0.47µH  
<
Feedback voltage accuracy  
-1%  
2.5%  
Load regulation  
PWM  
0.05  
0.02  
50  
%/A  
%/V  
Ω
Line regulation  
PWM, IOUT = 1 A, VIN VOUT + 1 V  
RDIS  
fSW  
fSW  
fSW  
Output discharge resistance  
150  
4
see the FSET pin functionality about  
setting the switching frequency  
PWM Switching frequency range  
PWM Switching frequency  
1.8  
2.025  
2.25  
2.25  
MHz  
MHz  
with COMP/FSET tied to GND or VIN  
2.475  
17%  
75  
using a resistor from COMP/FSET to  
GND  
PWM Switching frequency tolerance  
16%  
ton,min  
ton,min  
Minimum on-time of high-side FET  
Minimum on-time of low-side FET  
High-side FET on-resistance  
50  
30  
55  
25  
1
ns  
ns  
VIN 3.3 V  
100  
50  
VIN 5 V  
VIN 5 V  
mΩ  
mΩ  
µA  
RDS(ON)  
Low-side FET on-resistance  
High-side MOSFET leakage current  
Low-side MOSFET leakage current  
86  
1
205  
µA  
DC value, for TPS62442;  
VIN = 3 V to 6 V  
ILIMH  
High-side FET switch current limit  
3.8  
4.7  
5.5  
A
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Over operating junction remperature range (TJ = -40°C to +150°C) and VIN = 2.75 V to 6 V. Typical values at VIN = 5 V and TJ  
= 25°C. (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DC value, for TPS62441;  
ILIMH  
High-side FET switch current limit  
Low-side FET negative current limit  
2.1  
2.6  
3.1  
A
VIN = 3 V to 6 V  
DC value  
ILIMNEG  
A
1.8  
7.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Synchronization clock frequency range  
(MODE/SYNC)  
Nominal fSW determined through COMP/  
FSET  
fSW +  
20%  
f(SYNC)  
fSW  
MHz  
Synchronization clock duty cycle range  
(MODE/SYNC)  
D(SYNC)  
45%  
55%  
7.7 Typical Characteristics  
105  
40  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
-40.0  
-10.0  
20.0  
Junction Temperature (°C)  
50.0  
80.0  
110.0  
140.0  
-40.0  
-10.0  
20.0  
Junction Temperature (°C)  
50.0  
80.0  
110.0  
140.0  
D020  
D021  
7-1. Rds(on) of High-Side Switch  
7-2. Rds(on) of Low-Side Switch  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
8
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
8 Parameter Measurement Information  
8.1 Schematic  
L1  
0.47 µH  
VIN  
TPS6244x  
VOUT1  
2.75 V - 6 V  
VIN1  
VIN2  
EN1  
SW1  
CFF1  
COUT1  
R1  
R2  
CIN1, CIN2  
FB1  
2 × 10  
µF  
2 × 4.7 µF  
EN2  
L2  
0.47 µH  
MODE/SYNC  
SW2  
VOUT2  
COUT2  
CFF2  
V+  
R3  
R4  
FB2  
2 × 10  
µF  
COMP/FSET  
R5  
RCF  
PG1  
V+  
R6  
PG2  
GND  
GND  
8-1. Measurement Setup  
8-1. List of Components  
DESCRIPTION  
REFERENCE  
MANUFACTURER (1)  
IC  
L1, L2  
CIN1, CIN2  
COUT1, COUT2  
RCF  
TPS62442RQRR  
Texas Instruments  
0.47-µH inductor DFE252012PD  
4.7 µF / 6.3 V  
Murata  
Murata  
Murata  
any  
2 × 10 µF / 6.3 V  
8.06 kΩ  
10 pF  
CFF1, CFF2  
R1  
any  
Depending on VOUT  
Depending on VOUT  
Depending on VOUT  
Depending on VOUT  
100 kΩ  
any  
R2  
any  
R3  
any  
R4  
any  
R5, R6  
any  
(1) See the Third-Party Products Disclaimer.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
 
 
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS6244x synchronous dual switch mode power converters are based on a peak current mode control  
topology. The control loop is internally compensated. To optimize the bandwidth of the control loop to the wide  
range of output capacitance that can be used with TPS6244x, the internal compensation has two settings. See  
COMP/FSET. One of the two compensation settings is chosen either by a resistor from COMP/FSET to GND, or  
by the logic state of this pin. The regulation network achieves fast and stable operation with small external  
components and low-ESR ceramic output capacitors. The devices can be operated without a feedforward  
capacitor on the output voltage divider, however, using a typically 10-pF feed forward capacitor improves  
transient response.  
The devices support forced fixed-frequency PWM operation with the MODE pin tied to a logic high level. The  
frequency is defined as either 2.25 MHz internally fixed when COMP/FSET is tied to GND or VIN or in a range of  
1.8 MHz to 4 MHz defined by a resistor from COMP/FSET to GND. Alternatively, the devices can be  
synchronized to an external clock signal in a range from 1.8 MHz to 4 MHz, applied to the MODE pin with no  
need for additional passive components. External synchronization can only be used when there is a resistor from  
COMP/FSET to GND. When COMP/FSET is directly tied to GND or VIN, the TPS6244x cannot be synchronized  
externally. The TPS6244x allows for a change from internal clock to external clock during operation. When the  
MODE pin is set to a logic low level, the device operates in power save mode (PFM) at low output current and  
automatically transfers to fixed frequency PWM mode at higher output current. In PFM mode, the switching  
frequency decreases linearly based on the load to sustain high efficiency down to very low output current. When  
a converter switches from PFM to PWM operation, there can be a maximum delay of one clock cycle because in  
this case, the converter has to synchronize to the other converter to achieve 180 degrees phase shift.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
10  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
9.2 Functional Block Diagram  
9.3 Feature Description  
9.3.1 Precise Enable (EN)  
The voltage applied at EN1 and EN2 is compared to a fixed threshold of 1.1 V for a rising voltage. This  
comparison allows the user to drive the pin by a slowly changing voltage and enables the use of an external RC  
network to achieve a power-up delay.  
The precise enable input provides a user-programmable undervoltage lockout by adding a resistor divider to the  
input of EN1 and EN2.  
The enable input threshold for a falling edge is typically 100 mV lower than the rising edge threshold. The  
TPS6244x starts operation when the rising threshold is exceeded. For proper operation, the enable (EN) pin  
must be terminated and must not be left floating. Pulling the enable pin low forces the device into shutdown, with  
a shutdown current of typically 1.5 μA. In this mode, the internal high-side and low-side MOSFETs are turned off  
and the entire internal control circuitry is switched off.  
The enable delay time is defined from EN1 or EN2 going high to when the converter starts switching. The  
converter is enabled first, the internal bandgap is started, and bias currents and configuration bits are read, so its  
start-up delay time is longer than for the converter being enabled when this is already done.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
9.3.2 COMP/FSET  
This pin allows to set three different parameters:  
Internal compensation settings for the control loop (two settings available)  
The switching frequency in PWM mode from 1.8 MHz to 4 MHz  
Enable/ disable spread spectrum clocking (SSC)  
A resistor from COMP/FSET to GND changes the compensation as well as the switching frequency. The change  
in compensation allows the user to adopt the device to different values of output capacitance. The resistor must  
be placed close to the pin to keep the parasitic capacitance on the pin to a minimum. The compensation setting  
is sampled at start-up of the converter, so a change in the resistor during operation only has an effect on the  
switching frequency but not on the compensation.  
To save external components, the pin can also be directly tied to VIN or GND to set a pre-defined setting. Do not  
leave the pin floating.  
The switching frequency has to be selected based on the input voltage and the output voltage to meet the  
specifications for the minimum on time and minimum off time.  
Example:  
1V  
V
IN  
= 5.5V; V  
= 1  
Duty Cycle =  
= 0.2  
5.5V  
OUT  
1
t
=
× 0.2  
on, min  
f
s
1
1
f
=
× 0.2 =  
× 0.2 = 2.67MHz  
sw, max  
t
0.075μs  
on, min  
The compensation range has to be chosen based on the minimum capacitance used. The capacitance can be  
increased from the minimum value as given in 9-1, up to the maximum of 200-µF effective capacitance in both  
compensation ranges. If the capacitance of an output changes during operation, for example, when load  
switches are used to connect or disconnect parts of the circuitry, the compensation has to be chosen for the  
minimum capacitance on the output. With large output capacitance, the compensation must be done based on  
that large capacitance to get the best load transient response. Compensating for large output capacitance but  
placing less capacitance on the output can lead to instability.  
The switching frequency for the different compensation setting is determined by the following equations.  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) disabled:  
Space  
18 MHz × kΩ  
fs MHz  
R
kΩ =  
0.18k  
(1)  
(2)  
CF  
For compensation (comp) setting 1 with spread spectrum clocking (SSC) enabled:  
Space  
60 MHz × kΩ  
fs MHz  
R
kΩ =  
0.6k  
CF  
Space  
For compensation (comp) setting 2 with spread spectrum clocking (SSC) disabled:  
Space  
180 MHz × kΩ  
R
kΩ =  
1.8k  
(3)  
CF  
fs MHz  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
12  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
 
 
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
9-1. Switching Frequency, Compensation, and Spread Spectrum Clocking  
MINIMUM  
OUTPUT  
CAPACITANCE  
MINIMUM  
OUTPUT  
CAPACITANCE  
FOR VOUT < 1 V  
MINIMUM OUTPUT  
CAPACITANCE  
RCF  
COMPENSATION  
SWITCHING FREQUENCY  
FOR 1 V VOUT < 3.3 V FOR VOUT 3.3  
V
for smallest output capacitance  
(comp setting 1)  
10  
1.8 MHz (10 kΩ) .. 4 MHz (4.5 kΩ)  
according to 方程1  
11 µF  
11 µF  
7 µF  
7 µF  
5 µF  
5 µF  
kΩ.. 4.5 kΩ  
SSC disabled  
for smallest output capacitance  
(comp setting 1)  
1.8 MHz (33 kΩ) .. 4 MHz (18 kΩ)  
according to 方程2  
33 kΩ.. 18 kΩ  
SSC enabled  
for best transient response  
(larger output capacitance)  
(comp setting 2)  
100  
1.8 MHz (100 kΩ) ..4 MHz (45 kΩ)  
according to 方程3  
30 µF  
11 µF  
30 µF  
18 µF  
7 µF  
15 µF  
5 µF  
kΩ.. 45 kΩ  
SSC disabled  
for smallest output capacitance  
(comp setting 1)  
tied to GND  
tied to VIN  
internally fixed 2.25 MHz  
internally fixed 2.25 MHz  
SSC disabled  
for best transient response  
(larger output capacitance)  
(comp setting 2)  
18 µF  
15 µF  
SSC enabled  
Refer to 10.1.2.2.2 for further details on the output capacitance required depending on the output voltage.  
A too-high resistor value for RCF is decoded as "tied to VIN", a value below the lowest range as "tied to GND".  
The minimum output capacitance in 9-1 is for capacitors close to the output of the device. If the capacitance is  
distributed, a lower compensation setting can be required.  
9.3.3 MODE/SYNC  
When MODE/SYNC is set low, the device operates in PWM or PFM mode, depending on the output current. The  
MODE/SYNC pin allows the user to force PWM mode when set high. The pin also allows the user to apply an  
external clock in a frequency range from 1.8 MHz to 4 MHz for external synchronization. Similar to COMP/FSET,  
the specifications for the minimum on time and minimum off time have to be observed when setting the external  
frequency. For use with external synchronization on the MODE/SYNC pin, the internal switching frequency must  
be set by RCF to a similar value of the externally applied clock. This makes sure that, if the external clock fails,  
the switching frequency stays in the same range and the compensation settings are still valid. When there is no  
resistor from COMP/FSET to GND but the pin is pulled high or low, external synchronization is not possible. If  
the device is externally synchronized, both converters are forced to run on that clock frequency preserving 180°  
phase relation. The internally generated spread spectrum clocking is turned off while running on an external  
clock.  
9.3.4 Undervoltage Lockout (UVLO)  
If the input voltage drops, the undervoltage lockout prevents mis-operation of the device by switching off both the  
power FETs. The device is fully operational for voltages above the rising UVLO threshold and turns off if the  
input voltage trips below the threshold for a falling supply voltage.  
9.3.5 Power-Good Output (PG)  
Power good is an open-drain output driven by a window comparator. PG is held low when the device is:  
Disabled  
In undervoltage lockout  
In thermal shutdown  
Not in soft start  
When the output voltage is in regulation hence, within the window defined in the electrical characteristics, the  
output is high impedance.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
9-2. PG Status  
DEVICE STATUS  
VIN < 2 V  
EN  
X
PG STATE  
undefined  
low  
low  
VIN 2 V  
2 V VIN UVLO OR in thermal shutdown OR VOUT not in  
high  
high  
low  
regulation OR device in soft start  
VOUT in regulation  
high impedance  
9.3.6 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 170°C  
(typical), the device goes into thermal shutdown. Both the high-side and low-side power FETs of both converters  
are turned off and PG goes low. When TJ decreases below the hysteresis amount of typically 20°C, the  
converters resume normal operation, beginning with soft start. When both converters are in a PFM pause, the  
thermal shutdown is not active. After the PFM pause, the device needs up to 9 µs to detect a too high junction  
temperature. If the PFM burst is shorter than this delay, the device does not detect a too high junction  
temperature. As long as one converter is in PWM, thermal shutdown is always active.  
9.4 Device Functional Modes  
9.4.1 Pulse Width Modulation (PWM) Operation  
The TPS6244x has two operating modes. Forced PWM mode is discussed in this section and PWM/PFM as  
discussed in 9.4.2.  
With the MODE/SYNC pin set to high, the TPS6244x operates with pulse width modulation in continuous  
conduction mode (CCM). The switching frequency is either defined by a resistor from the COMP pin to GND or  
by an external clock signal applied to the MODE/SYNC pin. With an external clock applied to MODE/SYNC, the  
TPS6244x follows the frequency applied to the pin. The frequency must be in a range the device can operate at,  
taking the minimum on time into account.  
9.4.2 Power Save Mode Operation (PWM/PFM)  
When the MODE/SYNC pin is low, power save mode is allowed. The device operates in PWM mode as long as  
the peak inductor current is above the PFM threshold of approximately 0.8 A. When the peak inductor current  
drops below the PFM threshold, the device starts to skip switching pulses. In power save mode, the switching  
frequency decreases with the load current maintaining high efficiency.  
9.4.3 100% Duty-Cycle Operation  
The duty cycle of a buck converter operated in PWM mode is given as D = VOUT / VIN. The duty cycle increases  
as the input voltage comes close to the output voltage and the off time gets smaller. When the minimum off time  
of typically 30 ns is reached, the TPS6244x skips switching cycles while it approaches 100% mode. In 100%  
mode, the device keeps the high-side switch on continuously. The high-side switch stays turned on as long as  
the output voltage is below the target. In 100% mode, the low side switch is turned off. The maximum dropout  
voltage in 100% mode is the product of the on-resistance of the high-side switch plus the series resistance of the  
inductor and the load current.  
9.4.4 Current Limit and Short-Circuit Protection  
The TPS6244x is protected against overload and short circuit events. The converter is not switching with the  
fixed frequency when in current limit. The converter resumes the fixed frequency operation when the converter  
leaves current limit condition. If the inductor current exceeds the current limit, ILIMH, the high-side switch is turned  
off and the low-side switch is turned on to ramp down the inductor current. The high-side switch turns on again  
only if the current in the low-side switch has decreased below the low-side current limit. This can cause bursts or  
single pulses between the high-side and low-side current limit. Due to internal propagation delay, the actual  
current can exceed the static current limit. The dynamic current limit is given as:  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
14  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
V
L
I
= I  
+
× t  
PD  
(4)  
peak typ  
LIMH  
L
where  
ILIMH is the static current limit as specified in the electrical characteristics.  
L is the effective inductance at the peak current.  
VL is the voltage across the inductor (VIN VOUT).  
tPD is the internal propagation delay of typically 50 ns.  
The current limit can exceed static values, especially if the input voltage is high and very small inductances are  
used. The dynamic high-side switch peak current can be calculated as follows:  
V
− V  
L
IN  
OUT  
I
= I  
+
× 50ns  
(5)  
peak typ  
LIMH  
9.4.5 Output Discharge  
The purpose of the discharge function is to ensure a defined down-ramp of the output voltage when the device is  
being disabled but also to keep the output voltage close to 0 V when the device is off. The output discharge  
feature is only active after the TPS6244x has been enabled at least once since the supply voltage was applied.  
The discharge function is enabled as soon as the device is disabled, in thermal shutdown, or in undervoltage  
lockout. The minimum supply voltage required for the discharge function to remain active typically is 2 V. Output  
discharge is not activated during a current limit or foldback current limit event.  
9.4.6 Soft Start  
The internal soft-start circuitry controls the output voltage slope during start-up. This action avoids excessive  
inrush current and ensures a controlled output voltage rise time. This action also prevents unwanted voltage  
drops from high impedance power sources or batteries. When EN1 and EN2 are set high, the device starts  
switching after tDelay. The output voltage is ramped with a slope defined by tRamp  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
10.1.1 Programming the Output Voltage  
The output voltage of the TPS6244x is adjustable. The output voltage can be programmed for output voltages  
from 0.6 V to 5.5 V, using a resistor divider from VOUT to GND. The voltage at the FB pin is regulated to 600  
mV. The value of the output voltage is set by the selection of the resistor divider from 方程式 6. TI recommends  
to choose resistor values, which allows a current of at least 6 µA, meaning the value of R2 mu×st not exceed  
100 kΩ. TI recommends lower resistor values for highest accuracy and most robust design.  
V
OUT  
R = R ×  
1  
(6)  
1
2
V
FB  
10.1.2 External Component Selection  
10.1.2.1 Inductor Selection  
The TPS6244x is designed for a nominal 0.47-µH inductor with a switching frequency of typically 2.25 MHz.  
Larger values can be used to achieve a lower inductor current ripple but they can have a negative impact on  
efficiency and transient response. Smaller values than 0.47 µH cause a larger inductor current ripple, which  
causes larger negative inductor current in forced PWM mode at low or no output current. For a higher or lower  
nominal switching frequency, the inductance must be changed accordingly.  
The inductor selection is affected by several effects like the following:  
Inductor ripple current  
Output ripple voltage  
PWM-to-PFM transition point  
Efficiency  
In addition, the inductor selected has to be rated for appropriate saturation current and DC resistance (DCR).  
THe following equation calculates the maximum inductor current.  
ΔI  
L max  
2
I
= I  
+
(7)  
(8)  
L max  
OUT max  
V
OUT  
V
OUT × 1 −  
V
IN  
1
ΔI  
=
×
f
L max  
L
min  
sw  
where  
IL(max) is the maximum inductor current.  
• ΔIL(max) is the peak-to-peak inductor ripple current.  
Lmin is the minimum inductance at the operating point.  
10-1. Typical Inductors  
NOMINAL  
SWITCHING  
FREQUENCY  
DIMENSIONS [L × B  
× H] mm  
TYPE  
INDUCTANCE [µH]  
CURRENT [A](1)  
FOR DEVICE  
MANUFACTURER(2)  
DFE201210U-  
R47M  
0.47 µH, ±20%  
0.68 µH, ±20%  
see data sheet  
see data sheet  
TPS62442  
TPS62441  
2.25 MHz  
2.25 MHz  
2.0× 1.2 × 1.0  
2.0 × 1.2 × 1.0  
Murata  
Murata  
DFE201210U-  
R68M  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
16  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
 
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
TYPE  
10-1. Typical Inductors (continued)  
NOMINAL  
SWITCHING  
FREQUENCY  
DIMENSIONS [L × B  
× H] mm  
INDUCTANCE [µH]  
CURRENT [A](1)  
FOR DEVICE  
MANUFACTURER(2)  
DFE201610E-  
R47M#  
0.47 µH, ±20%  
see data sheet  
TPS62442  
2.25 MHz  
2.0 × 1.6 × 1.0  
Murata  
XEL3515-561ME  
XFL4015-701ME  
XFL4015-471ME  
0.56 µH, ±20%  
0.70 µH, ±20%  
0.47 µH, ±20%  
4.5  
5.3  
5.4  
TPS62442  
TPS62442  
TPS62442  
2.25 MHz  
2.25 MHz  
2.25 MHz  
3.5 × 3.2 × 1.5  
4.0 × 4.0 × 1.6  
4.0 × 4.0 × 1.6  
Coilcraft  
Coilcraft  
Coilcraft  
TFM201610ALM-  
R47MTAA  
0.47 µH, ±20%  
5.8  
TPS62442  
2.25 MHz  
2.0 × 1.6 × 1.0  
TDK  
(1) Lower of IRMS at 20°C rise or ISAT at 20% drop.  
(2) See the Third-Party Products Disclaimer.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. TI recommends to add a margin of about 20%. A larger inductor value is also  
useful to get lower ripple current, but increases the transient response time and size as well.  
10.1.2.2 Capacitor Selection  
10.1.2.2.1 Input Capacitor  
For most applications, 10-µF nominal is sufficient and recommended. The input capacitor buffers the input  
voltage for transient events and also decouples the converter from the supply. A low-ESR multilayer ceramic  
capacitor (MLCC) is recommended for best filtering and must be placed between VIN and GND as close as  
possible to those pins.  
10.1.2.2.2 Output Capacitor  
The architecture of the TPS6244x allows the use of tiny ceramic output capacitors with low-equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, use X7R or X5R  
dielectric. Using a higher value has advantages like smaller voltage ripple and a tighter DC output accuracy in  
power save mode. By changing the device compensation with a resistor from COMP/FSET to GND, the device  
can be compensated in three steps based on the minimum capacitance used on the output. The maximum  
capacitance is 200 µF in any of the compensation settings.  
10.2 Typical Application  
L1  
0.47 µH  
VIN  
TPS6244x  
VOUT1  
COUT1  
2.75 V - 6 V  
VIN1  
SW1  
CFF1  
VIN2  
EN1  
R1  
R2  
CIN1, CIN2  
FB1  
2 × 10  
µF  
2 × 4.7 µF  
EN2  
L2  
0.47 µH  
MODE/SYNC  
SW2  
VOUT2  
COUT2  
CFF2  
V+  
R3  
R4  
FB2  
2 × 10  
µF  
COMP/FSET  
R5  
RCF  
PG1  
V+  
R6  
PG2  
GND  
GND  
10-1. Typical Application Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
 
 
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
10.2.2 Detailed Design Procedure  
V
OUT  
R = R ×  
1  
(9)  
1
2
V
FB  
With VFB = 0.6 V:  
10-2. Setting the Output Voltage  
NOMINAL OUTPUT VOLTAGE  
VOUT  
R1, R3  
R2, R4  
CFF1, CFF2  
EXACT OUTPUT VOLTAGE  
0.8 V  
1.0 V  
1.1 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
10 pF  
0.7988 V  
1.0 V  
16.9 kΩ  
20 kΩ  
51 kΩ  
30 kΩ  
47 kΩ  
68 kΩ  
51 kΩ  
40.2 kΩ  
15 kΩ  
19.6 kΩ  
1.101 V  
1.2 V  
39.2 kΩ  
68 kΩ  
1.5 V  
76.8 kΩ  
80.6 kΩ  
47.5 kΩ  
88.7 kΩ  
1.803 V  
2.5 V  
3.315 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
18  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves  
All plots have been taken with a nominal switching frequency of 2.25 MHz when set to PWM mode, unless  
otherwise noted. The BOM is according to 8-1.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D000  
D002  
D004  
D001  
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-2. Efficiency Versus Output Current  
10-3. Efficiency Versus Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
95  
90  
85  
80  
75  
70  
65  
VIN = 2.75 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D003  
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-4. Efficiency Versus Output Current  
10-5. Efficiency Versus Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.75 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D005  
VOUT = 1.2 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
PWM  
TA = 25°C  
10-6. Efficiency Versus Output Current  
10-7. Efficiency Versus Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
90  
85  
80  
75  
70  
65  
60  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D006  
D007  
VOUT = 1.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
10-8. Efficiency Versus Output Current  
10-9. Efficiency Versus Output Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 2.7 V  
VIN = 3.3 V  
VIN = 4.0 V  
100m  
1m  
10m  
Load (A)  
100m  
1
1
2
3
Load (A)  
D008  
D009  
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
PWM  
TA = 25°C  
10-10. Efficiency Versus Output Current  
10-11. Efficiency Versus Output Current  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
3.29  
3.28  
3.27  
3.29  
3.28  
3.27  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
100m  
1m  
10m 100m  
Ouput Current (A)  
1
100m  
1m  
10m 100m  
Ouput Current (A)  
1
D010  
D011  
VOUT = 3.3 V  
PFM  
TA = 25°C  
VOUT = 3.3 V  
PWM  
TA = 25°C  
10-12. Output Voltage Versus Output Current  
10-13. Output Voltage Versus Output Current  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
20  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
1.84  
1.836  
1.832  
1.828  
1.824  
1.82  
1.84  
1.836  
1.832  
1.828  
1.824  
1.82  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.816  
1.812  
1.816  
1.812  
1.808  
1.804  
1.8  
1.808  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.804  
1.8  
1.796  
1.792  
1.796  
1.792  
100m  
1m  
10m 100m  
Ouput Current (A)  
1
100m  
1m  
10m 100m  
Ouput Current (A)  
1
D012  
D014  
D016  
D013  
D015  
D017  
VOUT = 1.8 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
PWM  
TA = 25°C  
10-14. Output Voltage Versus Output Current  
10-15. Output Voltage Versus Output Current  
1.2275  
1.225  
1.2225  
1.22  
1.21  
1.2075  
1.205  
1.2025  
1.2  
1.2175  
1.215  
1.2125  
1.21  
1.1975  
1.195  
1.1925  
1.19  
1.2075  
1.205  
1.2025  
1.2  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
1.1875  
1.185  
1.1825  
1.1975  
1.195  
1.1925  
100m  
1m  
10m  
Ouput Current (A)  
100m  
1
100m  
1m  
10m  
Ouput Current (A)  
100m  
1
VOUT = 1.2 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
PWM  
TA = 25°C  
10-16. Output Voltage Versus Output Current  
1.03  
10-17. Output Voltage Versus Output Current  
1.0075  
1.005  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
1.0275  
1.025  
1.0225  
1.02  
1.0175  
1.015  
1.0125  
1.01  
0.9875  
0.985  
0.9825  
0.98  
0.9775  
0.975  
0.9725  
0.97  
1.0075  
1.005  
1.0025  
1
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
VIN = 5.0 V  
VIN = 6.0 V  
0.9975  
0.995  
0.9925  
0.9675  
100m  
1m  
10m  
Ouput Current (A)  
100m  
1
100m  
1m  
10m  
Ouput Current (A)  
100m  
1
VOUT = 1.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
PWM  
TA = 25°C  
10-18. Output Voltage Versus Output Current  
10-19. Output Voltage Versus Output Current  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
0.634  
0.63  
0.606  
0.605  
0.604  
0.603  
0.602  
0.601  
0.6  
0.626  
0.622  
0.618  
0.614  
0.61  
0.599  
0.598  
0.597  
0.596  
0.595  
0.594  
0.606  
0.602  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 2.75 V  
VIN = 3.3 V  
VIN = 4.0 V  
0.598  
VIN = 4.0 V  
0.594  
100m  
1m  
10m 100m  
Ouput Current (A)  
1
100m  
1m  
10m 100m  
Ouput Current (A)  
1
D018  
D019  
VOUT = 0.6 V  
PFM  
TA = 25°C  
VOUT = 0.6 V  
PWM  
TA = 25°C  
10-20. Output Voltage Versus Output Current  
10-21. Output Voltage Versus Output Current  
VOUT = 3.3 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
VOUT = 3.3 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-23. Load Transient Response  
10-22. Load Transient Response  
VOUT = 1.8 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.8 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-24. Load Transient Response  
10-25. Load Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
22  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.2 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.2 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-26. Load Transient Response  
10-27. Load Transient Response  
VOUT = 1.0 V  
VIN = 5.0 V  
PFM  
TA = 25°C  
VOUT = 1.0 V  
VIN = 5.0 V  
PWM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-28. Load Transient Response  
10-29. Load Transient Response  
VOUT = 0.6 V  
VIN = 3.3 V  
PWM  
TA = 25°C  
VOUT = 0.6 V  
VIN = 3.3 V  
PFM  
TA = 25°C  
IOUT = 0.2 A to 1.8 A to 0.2 A  
IOUT = 0.2 A to 1.8 A to 0.2 A  
10-31. Load Transient Response  
10-30. Load Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 3.3 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-33. Line Transient Response  
10-32. Line Transient Response  
VOUT = 1.8 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-35. Line Transient Response  
10-34. Line Transient Response  
VOUT = 1.2 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 1.2 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-37. Line Transient Response  
10-36. Line Transient Response  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
24  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.0 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 1.0 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-39. Line Transient Response  
10-38. Line Transient Response  
VOUT = 0.6 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 0.6 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VIN = 4.5 V to 5.5 V to 4.5 V  
VIN = 4.5 V to 5.5 V to 4.5 V  
10-41. Line Transient Response  
10-40. Line Transient Response  
VOUT = 3.3 V  
IOUT = 3 A  
10-43. Output Voltage Ripple  
PWM  
TA = 25°C  
VOUT = 3.3 V  
IOUT = 0.3 A  
10-42. Output Voltage Ripple  
PFM  
TA = 25°C  
VIN = 5.0 V  
BW = 20 MHz  
VIN = 5.0 V  
BW = 20 MHz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 1.8 V  
IOUT = 0.3 A  
PFM  
TA = 25°C  
VOUT = 1.8 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
BW = 20 MHz  
VIN = 5.0 V  
BW = 20 MHz  
10-44. Ouput Voltage Ripple  
10-45. Output Voltage Ripple  
VOUT = 3.3 V  
IOUT = 3 A  
PWM  
TA = 25°C  
VOUT = 1.8 V  
IOUT1 = 2 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
VIN = 5.0 V  
IOUT2 = 2 A  
10-46. Start-Up Timing  
10-47. Start-Up Timing  
VOUT = 1.2 V  
IOUT1 = 1 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
VOUT = 1.0 V  
IOUT1 = 3 A  
PWM  
TA = 25°C  
IOUT2 = 3 A  
VIN = 5.0 V  
10-48. Start-Up Timing  
10-49. Start-Up Timing  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
26  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.2.3 Application Curves (continued)  
VOUT = 0.6 V  
IOUT1 = 3 A  
PWM  
TA = 25°C  
VIN = 5.0 V  
10-50. Start-Up Timing  
10.3 Power Supply Recommendations  
The TPS6244x device family has no special requirements for its input power supply. The output current of the  
input power supply must be rated according to the supply voltage, output voltage, and output current of the  
TPS6244x.  
10.4 Layout  
10.4.1 Layout Guidelines  
A proper layout is critical for the operation of a switched mode power supply, even more at high switching  
frequencies. Therefore, the PCB layout of the TPS6244x demands careful attention to ensure operation and to  
get the performance specified. A poor layout can lead to issues like the following:  
Poor regulation (both line and load)  
Stability and accuracy weaknesses  
Increased EMI radiation  
Noise sensitivity  
See 10-51 for the recommended layout of the TPS6244x, which is designed for common external ground  
connections. The input capacitor must be placed as close as possible between the VIN and GND pin.  
Provide low inductive and resistive paths for loops with high di/dt. Therefore, paths conducting the switched load  
current must be as short and wide as possible. Provide low capacitive paths (with respect to all other nodes) for  
wires with high dv/dt. Therefore, the input and output capacitance must be placed as close as possible to the IC  
pins and parallel wiring over long distances as well as narrow traces must be avoided. Loops which conduct an  
alternating current must outline an area as small as possible, as this area is proportional to the energy radiated.  
Sensitive nodes like FB must be connected with short wires and not nearby high dv/dt signals (for example SW).  
As they carry information about the output voltage, they must be connected as close as possible to the actual  
output voltage (at the output capacitor). The FB resistors, R1, R2 as well as R3, R4 must be kept close to the IC  
and connect directly to those pins and the system ground plane.  
The package uses the pins for power dissipation. Thermal vias on the VIN, GND, and SW pins help to spread  
the heat into the PCB.  
The recommended layout is implemented on the EVM and shown in the TPS62442EVM-122 User's Guide.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
 
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
10.4.2 Layout Example  
10-51. Example Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLUSEQ8  
28  
Submit Document Feedback  
Product Folder Links: TPS62441 TPS62442  
 
TPS62441, TPS62442  
ZHCSPA9A NOVEMBER 2021 REVISED MAY 2023  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, TPS62442EVM-122 User's Guide  
11.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS62441 TPS62442  
English Data Sheet: SLUSEQ8  
 
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62441RQRR  
TPS62442RQRR  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RQR  
RQR  
14  
14  
3000 RoHS & Green  
3000 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 150  
-40 to 150  
62441  
441  
Samples  
Samples  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Jun-2023  
OTHER QUALIFIED VERSIONS OF TPS62441, TPS62442 :  
Automotive : TPS62441-Q1, TPS62442-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS62441RQRR  
TPS62442RQRR  
VQFN-  
HR  
RQR  
RQR  
14  
14  
3000  
3000  
180.0  
8.4  
2.6  
3.0  
1.2  
4.0  
8.0  
Q1  
VQFN-  
HR  
180.0  
8.4  
2.6  
3.0  
1.2  
4.0  
8.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS62441RQRR  
TPS62442RQRR  
VQFN-HR  
VQFN-HR  
RQR  
RQR  
14  
14  
3000  
3000  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RQR 14  
2.3 x 2.7, 0.5 mm pitch  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229224/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQR0014B  
2.4  
2.2  
A
B
PIN 1 INDEX AREA  
2.8  
2.6  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.5  
0.875  
0.675  
2X  
(0.1) TYP  
4
7
4X (0.2 MIN)  
10X 0.5  
3
1
8
(0.8 MIN)  
PKG  
1
0.525  
0.325  
1.125  
0.925  
10  
5X  
0.575  
0.375  
6X  
11  
14  
PIN 1 ID  
(45°X 0.125)  
0.3  
0.2  
0.1  
14X  
C
A B  
0.05  
C
4229193/A 11/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQR0014B  
(2.075)  
(0.7375)  
(R0.05) TYP  
14  
11  
2X (0.975)  
1
10  
(1.225)  
(2.425) (2.125)  
PKG  
8
3
14X (0.25)  
7
4
6X (0.675)  
5X (0.625)  
10X (0.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
NON- SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4229193/A 11/2022  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQR0014B  
(2.075)  
(0.7375)  
(R0.05) TYP  
14  
11  
2X (0.975)  
1
10  
(1.225)  
(2.425) (2.125)  
PKG  
8
3
14X (0.25)  
7
4
6X (0.675)  
5X (0.625)  
10X (0.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 18X  
4229193/A 11/2022  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62442-Q1

具有可调频率的汽车类 2.75V 至 6V 双路 2A 或 3A/1A 输出降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62442QWRQRRQ1

具有可调频率的汽车类 2.75V 至 6V 双路 2A 或 3A/1A 输出降压转换器 | RQR | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62480

6A、2.4V 至 5.5V 输入、同步降压转换器,具有 PG 输出、可调节软启动和可选

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62480RNCR

6A、2.4V 至 5.5V 输入、同步降压转换器,具有 PG 输出、可调节软启动和可选 | RNC | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62480RNCT

6A、2.4V 至 5.5V 输入、同步降压转换器,具有 PG 输出、可调节软启动和可选 | RNC | 16 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS624G1

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS624G10

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS624G11

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS624G12

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS624G14

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS624G2

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TPS624G20

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC