TPS627451 [TI]

10Vin 超低 Iq 降压转换器;
TPS627451
型号: TPS627451
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10Vin 超低 Iq 降压转换器

转换器
文件: 总35页 (文件大小:5427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
TPS62745 面向低功耗无线应用的双节超低 IQ 降压转换器  
1 特性  
3 说明  
1
3.3V 10V 的输入电压 (VIN) 范围  
400nA 静态电流典型值  
TPS62745 是一款高效超低功耗同步降压转换器,针  
对低功耗无线应用进行了优化。 其提供的稳压输出仅  
消耗 400nA 的静态电流。 该器件由两节可再充电的锂  
离子电池(锂电池主要化学成分是 Li-SOCl2Li-  
SO2Li-MnO2)或者四到六节碱性电池供电。 该器  
件的输入电压范围高达 10V,因此也可以通过 USB 端  
口和薄膜太阳能模块供电。 输出电压通过四个 VSEL  
引脚设置,TPS62745 的电压范围为 1.8V 至  
3.3VTPS627451 的电压范围为 1.3V 2.8V。  
TPS62745 搭配使用小型输出电容,特有低输出纹波  
电压和低噪声。 由引脚 EN_VIN_SW 控制的内部输入  
电压开关将电源电压连接至引脚 VIN_SW。 此开关专  
用于外部分压器,按比例降低外部 ADC 的输入电压。  
当电源电压低于欠压锁定阈值时,此开关会自动断开。  
TPS62745 采用小型 12 引脚 3mm × 2mm WSON 封  
装。  
负载电流 >15µA 时的效率高达 90%  
输出电流高达 300mA  
射频 (RF) 友好型 DCS-Control™  
低输出纹波电压  
16 种可选输出电压:  
1.8V 3.3V (TPS62745)  
1.3V 2.8V (TPS627451)  
集成输入电压开关  
VOUT 集成放电功能  
漏极开路电源正常输出  
采用微型 3.3µH 4.7µH 电感  
小型 3mm x 2mm WSON 封装  
2 应用  
Bluetooth® 低功耗、消费类电子产品用射频  
(RF4CE)、短距离低功耗通信技术 (Zigbee)  
器件信息(1)  
器件型号  
TPS62745  
TPS627451  
封装  
封装尺寸(标称值)  
工业用仪表计量  
WSON  
3mm x 2mm  
能量采集  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
4 典型应用电路原理图  
空白  
空白  
TPS62745  
VIN = 3.3 V to 10 V  
4.7 µH  
L
VOUT = 1.8 V  
效率与输出电流间的关系;Vo = 3.3V  
VIN  
CIN  
SW  
COUT  
10 µF  
100  
90  
80  
70  
60  
50  
10 µF  
EN  
VOUT  
PG  
EN_VIN_SW  
VIN_SW  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
40  
GND  
VIN = 4.0V  
30  
20  
10  
0
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
1P  
10P  
100P  
1m  
10m  
100m  
Output Current (A)  
D001  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSC68  
 
 
 
 
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
目录  
9.4 Device Functional Modes........................................ 12  
9.5 VOUT Discharge..................................................... 12  
9.6 Internal Current Limit .............................................. 12  
10 Application and Implementation........................ 13  
10.1 Application Information.......................................... 13  
10.2 Typical Application ............................................... 13  
10.3 System Examples ................................................ 21  
11 Power Supply Recommendations ..................... 25  
12 Layout................................................................... 25  
12.1 Layout Guidelines ................................................. 25  
12.2 Layout Example .................................................... 25  
13 器件和文档支持 ..................................................... 26  
13.1 器件支持 ............................................................... 26  
13.2 相关链接................................................................ 26  
13.3 社区资源................................................................ 26  
13.4 ....................................................................... 26  
13.5 静电放电警告......................................................... 26  
13.6 Glossary................................................................ 26  
14 机械、封装和可订购信息....................................... 26  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
典型应用电路原理图................................................. 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
8.1 Absolute Maximum Ratings ...................................... 5  
8.2 ESD Ratings ............................................................ 5  
8.3 Recommended Operating Conditions....................... 5  
8.4 Thermal Information ................................................. 6  
8.5 Electrical Characteristics........................................... 6  
8.6 Timing Characteristics............................................... 8  
8.7 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 10  
9.1 Overview ................................................................. 10  
9.2 Functional Block Diagram ....................................... 10  
9.3 Feature Description................................................. 10  
9
5 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (May 2015) to Revision A  
Page  
已更改 状态至量产数据” ........................................................................................................................................................ 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
6 Device Comparison Table(1)  
Device Number  
TPS62745  
Output voltage range  
marking  
PD5I  
1.8 V to 3.3 V in 100-mV steps  
1.3 V to 2.8 V in 100-mV steps  
TPS627451  
PD6I  
(1) For all available packages, see the orderable addendum at the end of the datasheet.  
7 Pin Configuration and Functions  
DSS Package  
12-Pin WSON  
Top View  
1
2
3
4
5
6
12  
11  
10  
9
VIN  
SW  
EN  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
PG  
GND  
EN_VIN_SW  
VOUT  
8
7
VIN_SW  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
VIN power supply pin. Connect this pin close to the VIN terminal of the input capacitor. A  
ceramic capacitor of 4.7 µF from this pin to GND is required.  
VIN  
1
PWR  
OUT  
PWR  
This is the switch pin which is connected to the internal MOSFET switches. Connect the  
inductor to this terminal.  
SW  
2
3
GND supply pin. Connect this pin close to the GND terminal of the input and output  
capacitor.  
GND  
This pin connects / disconnects the internal switch from VIN to pin VIN_SW. With  
EN_VIN_SW = Low, the switch is open. With EN_VIN_SW = High, the switch is closed  
connecting VIN with VIN_SW. If not used, the pin should be tied to GND.  
EN_VIN_SW  
4
IN  
Feedback pin for the internal feedback divider network and regulation loop. Connect this pin  
directly to the output capacitor with a short trace.  
VOUT  
5
6
IN  
This is the output of a switch connecting VIN with VIN_SW when EN_VIN_SW = High. If not  
used, leave this pin open.  
VIN_SW  
OUT  
PG  
7
8
OUT  
IN  
This is an open drain power good output.  
VSEL4  
VSEL3  
VSEL2  
VSEL1  
9
IN  
Output voltage selection pins. See Table 1 and Table 2 for VOUT selection. These pins must  
be terminated.  
10  
11  
IN  
IN  
High level enables the devices, low level turns the device into shutdown mode. This pin must  
be terminated.  
EN  
12  
IN  
EXPOSED  
THERMAL  
PAD  
Not electrically connected to the IC. Connect this pad to GND and use it as a central GND  
plane.  
NC  
Copyright © 2015, Texas Instruments Incorporated  
3
 
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Table 1. Output Voltage Setting for TPS62745  
Device  
VOUT / V  
1.8  
VSEL4  
VSEL 3  
VSEL 2  
VSEL 1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
TPS62745  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
Table 2. Output Voltage Setting for TPS627451  
Device  
VOUT / V  
1.3  
VSEL4  
VSEL 3  
VSEL 2  
VSEL 1  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
TPS627451  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
4
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
8 Specifications  
8.1 Absolute Maximum Ratings  
(1)  
Over operating free-air temperature range (unless otherwise noted)  
PIN  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
12  
UNIT  
V
VIN  
SW, VIN_SW(2)  
VIN +0.3  
VIN +0.3  
6
V
EN  
V
Voltage  
EN_VIN_SW, VSEL1-4  
V
PG  
6
V
VOUT  
3.6  
V
Power Good Sink Current  
VIN Switch Output Current  
Junction temperature, TJ  
Storage temperature, Tstg  
PG  
10  
mA  
mA  
°C  
°C  
VIN_SW  
10  
–40  
–65  
150  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The DC voltage on the SW pin must not exceed 3.6 V  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-C101,  
all pins(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
10  
UNIT  
V
Supply voltage VIN  
3.3  
Output current IOUT  
VOUT + 0.7 V VIN 10 V  
300  
6.2  
mA  
µH  
µF  
Effective inductance  
2.8  
3
4.7  
10  
Capacitance connected to VIN pin  
Total effective capacitance connected to  
5
10  
22  
µF  
(1)  
VOUT pin  
Operating junction temperature range, TJ  
Operating ambient temperature range, TA  
–40  
–40  
125  
85  
°C  
°C  
(1) Due to the DC bias effect of ceramic capacitors, the effective capacitance is lower then the nominal value when a voltage is applied.  
This is why the capacitance is specified to allow the selection of the smallest capacitor required with the DC bias effect for this type of  
capacitor in mind. The nominal value given matches a typical capacitor to be chosen to meet the minimum capacitance required.  
Copyright © 2015, Texas Instruments Incorporated  
5
 
 
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
8.4 Thermal Information  
TPS62745  
DSS  
THERMAL METRIC(1)  
UNIT  
12 PINS  
61.8  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
70.9  
25.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.9  
ψJB  
25.7  
RθJC(bot)  
7.2  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
8.5 Electrical Characteristics  
VIN = 6 V, TJ = –40°C to 125°C typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
VOUT + 0.7 V VIN 10 V ; min 3.3 V, whichever  
value is higher  
VIN  
Input voltage range  
3.3  
10  
1960  
1200  
V
EN = VIN, device not switching; IOUT = 0 µA;  
VOUT = 2 V; TJ = –40°C to 85°C  
IQ  
Operating quiescent current  
400  
130  
nA  
EN = GND, shutdown current into VIN  
;
TJ = -40°C to 85°C  
ISD  
Shutdown current  
nA  
V
EN = GND, shutdown current into VIN; TJ = 60°C  
Rising VIN; TJ = –40°C to 85°C  
830  
3.3  
3.1  
VTH_UVLO+  
VTH_UVLO-  
3.1  
2.9  
Undervoltage lockout  
threshold  
Falling VIN; TJ = –40°C to 85°C  
INPUTS (EN, EN_VIN_SW, VSEL1-4)  
VIH TH  
VIL TH  
High level input voltage  
Low level input voltage  
V
TH_UVLO- VIN 10 V  
TH_UVLO- VIN 10 V  
1.2  
V
V
V
0.35  
10  
TJ = 25°C  
Input bias current; except EN  
pin  
IIN  
TJ = 60°C  
20  
nA  
nA  
TJ = –40°C to 85°C  
TJ = 25°C  
50  
20  
IIN  
Input bias current for EN pin  
TJ = 60°C  
40  
TJ = –40°C to 85°C  
100  
POWER SWITCHES  
High side MOSFET on-  
0.6  
0.5  
0.98  
0.85  
720  
resistance  
RDS(ON)  
VIN = 4 V, I = 140 mA  
Low side MOSFET on-  
resistance  
High side MOSFET DC switch  
current limit  
480  
600  
600  
ILIMF  
3.6 V VIN 10 V; device not in soft start  
mA  
Low side MOSFET DC switch  
current limit  
6
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
Electrical Characteristics (continued)  
VIN = 6 V, TJ = –40°C to 125°C typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT DISCHARGE SWITCH (VOUT)  
RDSCH_VOUT MOSFET on-resistance  
EN = GND, IOUT = –10 mA into VOUT pin  
TJ = 25°C  
25  
40  
60  
100  
500  
IIN_VOUT  
Bias current into VOUT pin(1) EN = VIN, VOUT = 2 V  
nA  
TJ = –40°C to 85°C  
INPUT VOLTAGE SWITCH (VIN_SW)  
RDS(ON)  
MOSFET on-resistance  
EN_VIN_SW = High, IVIN_SW = 1 mA  
85  
160  
20  
5
EN_VIN_SW = GND; leakage from VIN to VIN_SW  
when pulled to GND; TJ = –40°C to 85°C  
IVIN_SW_LKG VIN-switch leakage current  
-20  
95  
nA  
mA  
IVIN_SW  
POWER GOOD OUTPUT (PG)  
VTH_PG+ Power good threshold voltage Rising output voltage on VOUT pin  
VIN-switch current  
97.5  
3
%
Power good threshold  
hysteresis  
VTH_HYS  
Falling output voltage on VOUT pin  
3.3 V VIN 10 V, EN = GND,  
current into PG pin IPG = 4 mA  
VOL  
VOH  
Low level output threshold  
High level output threshold  
0.3  
6
V
V
3.3 V VIN 10 V, EN = high,  
current into PG pin IPG = 0 mA  
Bias current into power good  
pin  
PG pin is high impedance, VOUT = 2 V,  
EN = VIN, IOUT = 0 mA; TJ = –40°C to 85°C  
IIN_PG  
20  
nA  
OUTPUT  
ILIM_softstart  
Switch current limit during soft Current limit is reduced during soft start,  
40  
1.8  
1.3  
110  
180  
3.3  
2.8  
mA  
V
start  
TJ = –40°C to 85°C  
For TPS627450; output voltages are selected with  
pins VSEL1 - 4  
Output voltage range  
For TPS627451; output voltages are selected with  
pins VSEL1 - 4  
PFM mode, IOUT = 0 mA, VOUT + 0.6 V VIN 10 V;  
min 3.3 V, whichever value is higher;  
TJ = –40°C to 85°C  
-2.5  
–2  
0
2.5  
2
Output voltage accuracy  
%
VVOUT  
PWM Mode, VOUT + 0.7 V VIN 10 V; min 3.3 V,  
whichever value is higher; TJ = –40°C to 85°C  
0
0.005  
0.001  
0.015  
DC output voltage load  
regulation  
VOUT = 2.0 V; IOUT = 2 mA to 80 mA (PFM mode)  
%/mA  
%/mA  
%/V  
DC output voltage load  
regulation  
VOUT = 2.0 V; IOUT = 150 mA to 300 mA (PWM  
mode)  
DC output voltage line  
regulation  
VOUT = 2.0 V, IOUT = 300 mA, 4 V VIN 10 V  
(1) A 50-M(typical) internal resistor divider is internally connected to the VOUT pin  
Copyright © 2015, Texas Instruments Incorporated  
7
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
8.6 Timing Characteristics  
VIN = 6 V, TJ = –40°C to 125°C typical values are at TJ = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
tdelay  
UVLO delay time  
response time of UVLO circuit  
200  
µs  
INPUT VOLTAGE SWITCH (VIN_SW)  
VIN-switch turn-on settling  
Time from EN_VIN_SW = High until RDS(ON) is within  
specification  
tVIN_SW  
time  
100  
200  
µs  
µs  
POWER GOOD OUTPUT (PG)  
tdelay  
PGOOD delay time  
Response time of PGOOD circuit; falling edge  
OUTPUT  
tONmin  
Minimum ON time  
Minimum OFF time  
VIN = 6 V, VOUT = 2.0 V, IOUT = 0 mA  
VIN = 3.3 V  
256  
50  
ns  
ns  
tOFFmin  
VIN = 6 V, from transition EN = Low to High until  
device starts switching, TJ = -40°C to 85°C  
tStart  
Regulator start up time  
15  
50  
ms  
µs  
Softstart time with reduced  
switch current limit  
tSoftstart  
3.3 V VIN 10 V, EN = VIN  
700  
8
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
8.7 Typical Characteristics  
700  
600  
500  
400  
300  
200  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TA = -40qC  
TA = 0qC  
TA = 25qC  
TA = 60qC  
TA = 85qC  
TA = -40qC  
TA = 60qC  
TA = 85qC  
100  
0
TA = 0qC  
TA = 25qC  
0
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Input Voltage (V)  
Input Voltage (V)  
D038  
D039  
EN = VIN, VOUT = 1.8 V,  
EN_VIN_SW = GND  
Device Not Switching  
EN = GND, EN_VIN_SW = GND  
Figure 2. Shutdown Current  
Figure 1. Quiescent Current  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
TA = -40qC  
TA = 0qC  
TA = 25qC  
TA = 85qC  
TA = -40qC  
TA = 0qC  
TA = 25qC  
TA = 85qC  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Input Voltage (V)  
Input Voltage (V)  
D037  
D040  
Figure 3. RDS(ON) High-Side MOSFET  
Figure 4. RDS(ON) Low-Side MOSFET  
Copyright © 2015, Texas Instruments Incorporated  
9
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TPS62745 is the first dual-cell, ultra low power step down converter combining TI's DCS-Control™ topology  
and ultra low quiescent current consumption (400 nA typical) while maintaining a regulated output voltage. The  
device extends high efficiency operation to output currents down to a few micro amperes.  
9.2 Functional Block Diagram  
Current  
Limit Comparator  
Power Stage  
PMOS  
VIN  
Timer  
UVLO  
EN  
DCS  
Control  
VIN  
Limit  
High Side  
Min. On  
VOS  
Min. OFF  
VOUT  
Control  
Logic  
Direct Control  
& Compensation  
Gate Driver  
Anti  
Comparator  
SW  
Shoot-Through  
VOUT_SET  
NMOS  
Limit  
Low Side  
Error  
amplifier  
GND  
Current  
Limit Comparator  
UVLO  
EN  
Ultra Low Power  
Reference 1.2V  
VOUT  
Discharge  
VOUT  
Softstart  
EN  
VREF  
PG  
VIN  
VSEL 1  
VSEL 2  
Vin-switch  
VOUT  
Selection +  
VOUT_SET  
UVLO  
Comp  
PG Comp  
EN_VIN_SW  
VOUT  
EN  
VIN  
VSEL 3  
VSEL 4  
UVLO  
Setting  
VTH_PG  
UVLO  
VTH_UVLO  
VIN_SW  
9.3 Feature Description  
9.3.1 DCS-Control™  
TI's DCS-Control™ (Direct Control with Seamless Transition into Power Save Mode) is an advanced regulation  
topology, which combines the advantages of hysteretic and voltage mode control. Characteristics of DCS -  
ControlTM are excellent AC load regulation and transient response, low output ripple voltage and a seamless  
transition between pulse frequency modulation (PFM) and pulse width modulation (PWM) mode operation. DCS-  
ControlTM includes an AC loop which senses the output voltage (VOUT pin) and directly feeds the information to  
a fast comparator stage. This comparator sets the switching frequency, which is constant for steady state  
operating conditions, and provides immediate response to dynamic load changes. In order to achieve accurate  
DC load regulation, a voltage feedback loop is used. The internally compensated regulation network achieves  
fast and stable operation with small external components and low ESR capacitors. The DCS-ControlTM topology  
supports PWM mode for medium and high load conditions and a power save mode at light loads. During PWM  
mode, it operates in continuous conduction. The switching frequency is up to 2.5 MHz with a controlled frequency  
variation depending on the input voltage. If the load current decreases, the converter seamlessly enters power  
save mode to maintain high efficiency down to very light loads. In power save mode the switching frequency  
varies linearly with the load current. Since DCS-ControlTM supports both operation modes within one single  
building block, the transition from PWM to power save mode is seamless without effects on the output voltage.  
The TPS62745 offers both excellent DC voltage and superior load transient regulation, combined with very low  
10  
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
Feature Description (continued)  
output voltage ripple, minimizing interference with RF circuits. At high load currents the converter operates in  
quasi fixed frequency PWM mode operation and at light loads in PFM mode to maintain highest efficiency over  
the full load current range. In PFM mode, the device generates a single switching pulse to ramp up the inductor  
current and recharge the output capacitor, followed by a sleep period where most of the internal circuits are  
shutdown to achieve a quiescent current of typically 400-nA. During this time, the load current is supported by  
the output capacitor. The duration of the sleep period depends on the load current and the inductor peak current.  
9.3.2 Enable / Shutdown  
The DC/DC converter is activated when EN pin is set to High. For proper operation, the pin must be terminated  
and must not be left floating. With EN pin set to Low, the device enters shutdown mode with typical 130 nA  
current consumption.  
9.3.3 Power Good Output (PG)  
The power good comparator features an open drain output. The PG comparator is active with EN pin set to high  
and VIN above the threshold VTH_UVLO+. It is driven to high impedance once VOUT trips the threshold VTH_PG+ for  
rising VOUT. The output is pulled to low level once VOUT falls below the threshold VTH_PG- . The output is as well  
pulled to low level in case the input voltage VIN falls below the undervoltage lockout threshold VTH_UVLO- or the  
device is disabled with EN = Low. With EN = High, the output is driven to high impedance state, once the load  
current falls below ~1 mA. In this case the PG comparator is turned off to achieve lowest quiescent current. PG  
will be triggered when a output voltage change is ongoing due to a change in VSEL pin levels if the new target is  
high enough to trigger the PG threshold.  
9.3.4 Output Voltage Selection (VSEL1 - 4)  
The TPS62745 does not require an external resistor divider network to program the output voltage. The device  
integrates a high impedance (typical 50 M) feedback resistor divider network which is programmed by the pins  
VSEL1-4. TPS62745 supports an output voltage range of 1.8 V to 3.3 V in 100-mV steps while the TPS627451  
supports an output voltage range of 1.3 V to 2.8 V. The output voltage can be changed during operation and  
supports simple dynamic output voltage scaling; see the Application and Implementation section for further  
details. The output voltage is programmed according to Table 1 for TPS62745 and Table 2 for TPS627451.  
9.3.5 Input Voltage Switch  
There is an internal switch that connects the input voltage applied at pin VIN to the VIN_SW output. The switch  
can be used to connect an external voltage divider for an ADC monitoring to the input voltage. An enable pin  
EN_VIN_SW turns the switch on and off, making sure there is no current through that external voltage divider  
when not needed. A logic high level on EN_VIN_SW turns the switch on once the input voltage is above the  
undervoltage lockout threshold and the device is enabled. The switch can be used for other purposes as long as  
the current rating of 5 mA and its turn-on resistance is observed. An external voltage divider should be in a range  
of 10 kΩ to 100 kΩ. Larger values than 100 kΩ can be used as long as the input resistance and capacitance of  
the external circuit (e.g. ADC input) is observed.  
Copyright © 2015, Texas Instruments Incorporated  
11  
 
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
9.4 Device Functional Modes  
9.4.1 Soft Start  
When the device is enabled, the internal reference is powered up and after the startup delay time t Startup_delay has  
expired, the device enters soft start, starts switching and ramps up the output voltage. During soft start the  
device operates with a reduced current limit, ILIM_softstart , of typical 1/5 of the nominal current limit. This reduced  
current limit is active during the soft start time tSoftstart. The current limit is increased to its nominal value, ILIMF  
,
once the soft start time has expired or the power good comparator detects that the output voltage reached its  
target value.  
9.5 VOUT Discharge  
The VOUT pin has a discharge circuit to connect the rail to GND, once it is disabled. This feature prevents  
residual charge voltages on the output capacitor, which may impact proper power up of the systems connected  
to the converter. With the EN pin pulled to low, the discharge circuit at the VOUT pin becomes active. The  
discharge circuit on VOUT is also associated with the UVLO comparator. The discharge circuit becomes active  
once the UVLO comparator triggers and the input voltage VIN has dropped below the UVLO comparator  
threshold VTH_UVLO- (typical 2.9 V).  
9.6 Internal Current Limit  
The TPS62745 integrates a current limit on the high side, as well on the low side MOSFETs to protect the device  
against overload or short circuit conditions. The peak current in the switches is monitored cycle by cycle. If the  
high side MOSFET current limit is reached, the high side MOSFET is turned off and the low side MOSFET is  
turned on until the current decreases below the low side MOSFET current limit.  
12  
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
10 Application and Implementation  
10.1 Application Information  
The TPS62745 devices are a step down converter family featuring typical 400-nA quiescent current and  
operating with a tiny 4.7-μH inductor and a 10-μF output capacitor. These DCS-Control™ based devices extend  
the light load efficiency range below 10-μA load currents. TPS62745 supports output currents up to 300 mA,  
10.2 Typical Application  
TPS62745  
VIN = 3.3 V to 10 V  
4.7 µH  
L
VOUT = 1.8 V  
VIN  
SW  
CIN  
COUT  
10 µF  
10 µF  
EN  
VOUT  
PG  
EN_VIN_SW  
VIN_SW  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
GND  
Figure 5. TPS62745 Typical Application  
10.2.1 Design Requirements  
The TPS62745 is a highly integrated DC/DC converter. The output voltage is set via the VSEL pin interface  
without any additional external components. For proper operation only an input and output capacitor and an  
inductor is required. When the input voltage switch is not used, its enable input should be tied to GND. The  
output VIN_SW can either be left open or tied to GND. Table 3 shows the components used for the application  
characteristic curves.  
Table 3. List of Components  
(1)  
REFERENCE  
DESCRIPTION  
TPS62745  
Value  
MANUFACTURER  
Texas Instruments  
Toko  
IC  
L
DFE252010  
4.7 µH  
TMK212BBJ106MG  
10 µF / 25 V / X5R /  
0805  
CIN  
Taiyo Yuden  
Taiyo Yuden  
LMK212ABJ106KG-T  
10 µF / 10 V / X5R /  
0805  
COUT  
(1) See Third-Party Products Disclaimer  
10.2.2 Detailed Design Procedure  
10.2.2.1 Output Voltage Selection (VSEL1 - 4)  
The VSEL pins select the output voltage of the converters. See the Output Voltage Selection (VSEL1 - 4) of the  
Feature Descriptions. The output voltage can be changed during operation by changing the logic level of these  
pins. The output voltage of the TPS62745 ramps to the new target with a slew rate as defined in the electrical  
characteristics. Typically these pins are driven by an applications processor with an I/O voltage of either 1.8 V or  
3.3 V or hard wired to a logic high or logic low signal. In case the pins are not driven from an applications  
processor and the supply voltage is higher than the voltage rating of the VSEL pins, a logic high level can be  
taken from the output voltage at pin VOUT. During start-up, when the output is rising from 0 V to its target, the  
VSEL pins connected to VOUT will change their logic level from low to high. TPS62745 is designed such that  
such a configuration ensures a steadily rising output voltage.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
10.2.2.2 Output Filter Design (Inductor and Output Capacitor)  
The external components have to fulfill the needs of the application, but also the stability criteria of the devices  
control loop. The TPS62745 is optimized to work within a range of L and C combinations. The LC output filter  
inductance and capacitance have to be considered together, creating a double pole, responsible for the corner  
frequency of the converter. Table 4 can be used to simplify the output filter component selection.  
Table 4. Recommended LC Output Filter Combinations  
Inductor Value [µH](1)  
Output Capacitor Value [µF](2)  
10 µF  
22 µF  
(3)  
4.7  
3.3  
(1) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and -  
30%.  
(2) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by  
20% and -50%.  
(3) This LC combination is the standard value and recommended for most applications.  
10.2.2.3 Inductor Selection  
The inductor value affects its peak-to-peak ripple current, the PWM-to-PFM transition point, the output voltage  
ripple and the efficiency. The selected inductor has to be rated for its DC resistance and saturation current. The  
inductor ripple current (ΔIL) decreases with higher inductance and increases with higher VIN or VOUT and can be  
estimated according to Equation 1.  
Equation 2 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current as calculated with Equation 2. This is  
recommended because during heavy load transient the inductor current will rise above the calculated value. A  
more conservative way is to select the inductor saturation current according to the high-side MOSFET switch  
current limit ILIMF  
.
Vout  
Vin  
1-  
DIL = Vout ´  
L ´ ¦  
(1)  
DI  
L
I
= I  
+
Lmax  
outmax  
2
where:  
f = Switching frequency  
L = Inductor value  
ΔIL= Peak-to-peak inductor ripple current  
ILmax = Maximum inductor current  
(2)  
In DC/DC converter applications, the efficiency is essentially affected by the inductor AC resistance (i.e. quality  
factor) and by the inductor DCR value. To achieve high efficiency operation, care should be taken in selecting  
inductors featuring a quality factor above 25 at the switching frequency. Increasing the inductor value produces  
lower RMS currents, but degrades transient response. For a given physical inductor size, increased inductance  
usually results in an inductor with lower saturation current.  
The total losses of the coil consist of both the losses in the DC resistance RDC) and the following frequency-  
dependent components:  
The losses in the core material (magnetic hysteresis loss, especially at high switching frequencies)  
Additional losses in the conductor from the skin effect (current displacement at high frequencies)  
Magnetic field losses of the neighboring windings (proximity effect)  
Radiation losses  
The following inductor series from different suppliers have been used:  
14  
Copyright © 2015, Texas Instruments Incorporated  
 
 
 
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
Table 5. List of Inductors  
INDUCTANCE  
[µH]  
DIMENSIONS  
INDUCTOR  
(1)  
DCR [], typical  
SUPPLIER  
[mm3]  
TYPE  
4.7  
3.3  
4.7  
3.3  
4.7  
4.7  
0.250  
0.190  
0.336  
0.207  
0.217  
0.270  
2.5 x 2.0 x 1.0  
2.5 x 2.0 x 1.0  
2.0 x 1.9 x 1.0  
2.0 x 1.9 x 1.0  
3.0 x 3.0 x 1.1  
4.5 x 3.2 x 3.2  
DFE252010  
DFE252010  
XPL2010  
TOKO  
TOKO  
Coilcraft  
Coilcraft  
Coilcraft  
Bourns  
XPL2010  
XFL3010  
CC453232  
(1) See Third-Party Products Disclaimer  
10.2.2.4 DC/DC Output Capacitor Selection  
The DCS-Control™ scheme of the TPS62745 allows the use of tiny ceramic capacitors. Ceramic capacitors with  
low ESR values have the lowest output voltage ripple and are recommended. The output capacitor requires  
either an X7R or X5R dielectric. Y5V and Z5U dielectric capacitors, aside from their wide variation in capacitance  
over temperature, become resistive at high frequencies. At light load currents, the converter operates in power  
save mode and the output voltage ripple is dependent on the output capacitor value and the PFM peak inductor  
current. A larger output capacitor can be used, but it should be considered that larger output capacitors lead to  
an increased leakage current in the capacitor and may reduce overall conversion efficiency. Furthermore, larger  
output capacitors impact the start up behavior of the DC/DC converter. Furthermore, the contol loop of the  
TPS62745 requires a certain voltage ripple across the output capacitor. Super-capacitors can be used in parallel  
to the ceramic capacitors when it is made sure that the super-capacitors series resistance is large enough to  
provide a valid feedback signal to the error amplifier which is in phase with the inductor current. Applications  
using an output capacitance above of what is stated under Recommended Operating Conditions should be  
checked for stability over the desired operating conditions range.  
10.2.2.5 Input Capacitor Selection  
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is  
required for best input voltage filtering to ensure proper function of the device and to minimize input voltage  
spikes. For most applications a 10 µF or 4.7 µF ceramic capacitor is recommended. The input capacitor can be  
increased without any limit for better input voltage filtering.  
Table 6 shows a list of tested input/output capacitors.  
Table 6. List of Input and Output Capacitors  
(1)  
CAPACITANCE [μF]  
SIZE  
0603  
0603  
0805  
0805  
0805  
CAPACITOR TYPE  
GRM188R61C106MA73  
EMK107BBJ106MA  
EMK212ABJ475KG  
TMK212BBJ106MG  
LMK212ABJ106KG-T  
SUPPLIER  
Murata  
10  
10  
4.7  
10  
10  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
(1) See Third-Party Products Disclaimer  
Copyright © 2015, Texas Instruments Incorporated  
15  
 
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
10.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
1P  
10P  
10P  
10P  
100P  
1m  
10m  
100m  
1P  
10P  
100P  
1m  
10m  
100m  
Output Current (A)  
Output Current (A)  
D001  
D002  
Figure 6. VOUT = 3.3 V  
Figure 7. VOUT = 2.5 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
1P  
100P  
Output Current (A)  
1m  
10m  
100m  
1P  
10P  
100P  
Output Current (A)  
1m  
10m  
100m  
D003  
D004  
Figure 8. VOUT = 1.8 V  
Figure 9. VOUT = 1.5 V  
3.399  
2.625  
2.600  
2.575  
2.550  
2.525  
2.500  
2.475  
2.450  
2.425  
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
3.366  
3.333  
3.300  
3.267  
3.234  
3.201  
VIN = 10.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
1P  
100P  
Output Current (A)  
1m  
10m  
100m  
1P  
10P  
100P  
Output Current (A)  
1m  
10m  
100m  
D005  
D006  
Figure 10. VOUT = 3.3 V  
Figure 11. VOUT = 2.5 V  
16  
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
1.854  
1.545  
1.530  
1.515  
1.500  
1.485  
1.470  
1.455  
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
1.836  
1.818  
1.800  
1.782  
1.764  
1.746  
1P  
10P  
100P  
1m  
10m  
100m  
1P  
10P  
100P  
1m  
10m  
100m  
Output Current (A)  
Output Current (A)  
D007  
D009  
D011  
D008  
D010  
D012  
Figure 12. VOUT = 1.8 V  
Figure 13. VOUT = 1.5 V  
1.6M  
1.5M  
1.4M  
1.3M  
1.2M  
1.1M  
1M  
900k  
800k  
700k  
600k  
500k  
400k  
300k  
200k  
100k  
0
1.6M  
1.5M  
1.4M  
1.3M  
1.2M  
1.1M  
1M  
900k  
800k  
700k  
600k  
500k  
400k  
300k  
200k  
100k  
0
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.4V  
VIN = 8.4V  
VIN = 10.0V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Output Current (A)  
Output Current (A)  
Figure 14. VOUT = 3.3 V  
Figure 15. VOUT = 2.5 V  
1.5M  
1.4M  
1.3M  
1.2M  
1.1M  
1M  
900k  
800k  
700k  
600k  
500k  
400k  
300k  
200k  
100k  
0
1.6M  
1.5M  
1.4M  
1.3M  
1.2M  
1.1M  
1M  
900k  
800k  
700k  
600k  
500k  
400k  
300k  
200k  
100k  
0
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.4V  
VIN = 8.4V  
VIN = 10.0V  
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.4V  
VIN = 8.4V  
VIN = 10.0V  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
Output Current (A)  
Output Current (A)  
Figure 16. VOUT = 1.8 V  
Figure 17. VOUT = 1.5 V  
Copyright © 2015, Texas Instruments Incorporated  
17  
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
10m  
8m  
6m  
4m  
2m  
0
10m  
8m  
6m  
4m  
2m  
0
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
1P  
10P  
100P  
1m  
10m  
100m  
1
1P  
10P  
100P  
1m  
10m  
100m  
1
Output Current (A)  
Output Current (A)  
D014  
D015  
Figure 18. VOUT = 3.3 V  
Figure 19. VOUT= 2.5 V  
10m  
10m  
8m  
6m  
4m  
2m  
0
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
VIN = 3.6V  
VIN = 4.0V  
VIN = 5.0V  
VIN = 6.0V  
VIN = 7.2V  
VIN = 8.4V  
VIN = 10.0V  
8m  
6m  
4m  
2m  
0
1P  
10P  
100P  
1m  
10m  
100m  
1
1P  
10P  
100P  
1m  
10m  
100m  
1
Output Current (A)  
Output Current (A)  
D016  
D017  
Figure 20. VOUT = 1.8 V  
Figure 21. VOUT= 1.5 V  
Figure 22. Line Transient Response; VOUT = 3.3 V  
Figure 23. Line Transient Response; VOUT = 2.5 V  
18  
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
Figure 24. Line Transient Response; VOUT = 1.8 V  
Figure 25. Line Transient Response; VOUT = 1.5 V  
Figure 26. Load Transient Response; VOUT = 3.3 V  
Figure 27. Load Transient Response; VOUT = 2.5 V  
Figure 28. Load Transient Response; VOUT = 1.8 V  
Figure 29. Load Transient Response; VOUT = 1.5 V  
Copyright © 2015, Texas Instruments Incorporated  
19  
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
Figure 31. Startup with VOUT = 2.5 V  
Figure 30. Startup with VOUT = 3.3 V  
Figure 32. Startup with VOUT = 1.8 V  
Figure 33. Startup with VOUT = 1.5 V  
20  
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
10.3 System Examples  
10.3.1 TPS62745 Set to a Fixed Voltage of 3.3 V  
TPS62745  
VIN = 3.9 V to 10 V  
4.7 µH  
L
VOUT = 3.3 V  
VIN  
SW  
CIN  
COUT  
10 µF  
10 µF  
EN  
VOUT  
PG  
EN_VIN_SW  
VIN_SW  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
GND  
Figure 34. TPS62745 Typical Application for Vout = 3.3 V  
10.3.1.1 Design Requirements  
The minimum input voltage needs to be at least 700 mV above the desired output voltage for full output current.  
Table 7. List of Components  
(1)  
REFERENCE  
DESCRIPTION  
TPS62745  
Value  
MANUFACTURER  
Texas Instruments  
Toko  
IC  
L
DFE252010  
4.7 µH  
CIN  
COUT  
TMK212BBJ106MG  
LMK212ABJ106KG-T  
10 µF / 25 V / X5R / 0805  
10 µF / 10 V / X5R / 0805  
Taiyo Yuden  
Taiyo Yuden  
(1) See Third-Party Products Disclaimer  
Copyright © 2015, Texas Instruments Incorporated  
21  
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
10.3.1.2 Detailed Design Procedure  
The logic level of the VSEL pins sets the output voltage. The maximum high level does not allow a direct  
connection to the supply voltage if it is above 6 V. The output voltage can be used instead to provide a logic high  
level.  
10.3.1.3 Application Curves  
Figure 36. TPS62745 with VOUT = 3.3 V; Output Voltage  
Ripple for IOUT = 1 mA  
Figure 35. TPS62745 with VOUT = 3.3 V Startup  
22  
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
10.3.2 Dynamic Voltage Change on TPS62745  
TPS62745 allows to change its output voltage during operation by changing the logic level of the VSEL pins.  
TPS62745  
VIN = 3.9 V to 10 V  
4.7 µH  
L
VOUT = 2.0 V / 3.3 V  
VIN  
SW  
CIN  
10 µF  
COUT  
10 µF  
EN  
VOUT  
PG  
EN_VIN_SW  
VIN_SW  
VSEL1  
VSEL2  
VSEL3  
VSEL4  
0: VOUT = 2.0 V  
1: VOUT = 3.3 V  
GND  
Figure 37. TPS62745 Typical Application for Switching Between Two Output Voltages  
10.3.2.1 Design Requirements  
The minimum input voltage needs to be at least 700 mV above the maximum output voltage for full output  
current. For an input voltage above 6V, the VSELx pins have to be tied to the output for a logic high level as their  
voltage rating is 6V.  
Table 8. List of Components  
(1)  
REFERENCE  
DESCRIPTION  
TPS62745  
Value  
MANUFACTURER  
Texas Instruments  
Toko  
IC  
L
DFE252010  
4.7 µH  
CIN  
COUT  
TMK212BBJ106MG  
LMK212ABJ106KG-T  
10 µF / 25 V / X5R / 0805  
10 µF / 10 V / X5R / 0805  
Taiyo Yuden  
Taiyo Yuden  
(1) See Third-Party Products Disclaimer  
Copyright © 2015, Texas Instruments Incorporated  
23  
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
10.3.2.2 Detailed Design Procedure  
Toggle the logic level at VSEL1, VSEL3 and VSEL4 to change the output voltage from 2.0 V to 3.3 V and vice  
versa. The slope from higher output voltage to the lower output voltage is determined by the load current and  
output capacitance because the discharge of the output capacitor is through the load current only.  
10.3.2.3 Application Curves  
Figure 38. TPS62745 Output Voltage Change from 2.0 V to  
3.3 V for IOUT = 10 mA  
Figure 39. TPS62745 Output Voltage Change from 3.3 V to  
2.0 V for IOUT = 10 mA  
24  
Copyright © 2015, Texas Instruments Incorporated  
TPS62745, TPS627451  
www.ti.com.cn  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
11 Power Supply Recommendations  
The power supply to the TPS62745 needs to have a current rating according to the supply voltage, output  
voltage and output current of the TPS62745 shown in the Specifications section.  
12 Layout  
12.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. Especially RF designs demand  
careful attention to the PCB layout. Care must be taken in board layout to get the specified performance. If the  
layout is not carefully done, the regulator could show poor line and/or load regulation, stability issues as well as  
EMI problems and interference with RF circuits. It is critical to provide a low inductance, impedance ground path.  
Therefore, use wide and short traces for the main current paths. The input capacitor should be placed as close  
as possible to the IC pins as well as the inductor and output capacitor. Use a common power GND node and a  
different node for the signal GND to minimize the effects of ground noise. Keep the common path to the GND  
pin, which returns the small signal components and the high current of the output capacitors as short as possible  
to avoid ground noise. The VOUT line should be connected to the output capacitor and routed away from noisy  
components and traces (e.g. SW line).  
12.2 Layout Example  
GND  
GND  
COUT  
CIN  
VIN  
L
SW  
VOUT  
Figure 40. Recommended PCB Layout  
版权 © 2015, Texas Instruments Incorporated  
25  
TPS62745, TPS627451  
ZHCSE11A JUNE 2015REVISED JUNE 2015  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 相关链接  
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买  
链接。  
9. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
TPS62745  
TPS627451  
13.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.4 商标  
DCS-Control, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不  
对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS627451DSSR  
TPS627451DSST  
TPS62745DSSR  
TPS62745DSST  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DSS  
DSS  
DSS  
DSS  
12  
12  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
PD6I  
PD6I  
PD5I  
PD5I  
NIPDAU  
NIPDAU  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jul-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS627451DSSR  
TPS627451DSST  
TPS62745DSSR  
TPS62745DSST  
WSON  
WSON  
WSON  
WSON  
DSS  
DSS  
DSS  
DSS  
12  
12  
12  
12  
3000  
250  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
2.25  
2.25  
2.25  
2.25  
3.25  
3.25  
3.25  
3.25  
1.05  
1.05  
1.05  
1.05  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jul-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS627451DSSR  
TPS627451DSST  
TPS62745DSSR  
TPS62745DSST  
WSON  
WSON  
WSON  
WSON  
DSS  
DSS  
DSS  
DSS  
12  
12  
12  
12  
3000  
250  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSS0012A  
WSON - 0.8 mm max height  
SCALE 5.000  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
0.35  
0.25  
PIN 1 INDEX AREA  
3.1  
2.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.9±0.1  
4X (0.2)  
(0.7)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
0.05  
0.00  
6
7
SEE TERMINAL  
DETAIL  
2X  
13  
2.5  
2±0.1  
12  
1
10X 0.5  
0.35  
0.25  
0.3  
0.2  
12X  
12X  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
C
B
0.05  
4222684/A 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSS0012A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
12X (0.5)  
12  
1
12X (0.25)  
13  
SYMM  
10X (0.5)  
(2)  
(0.75)  
(R0.05) TYP  
(
0.2) VIA TYP  
NOTE 5  
6
7
SYMM  
(1.9)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222684/A 02/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
It is recommended that vias located under solder paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSS0012A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
12X (0.5)  
1
12  
12X (0.25)  
METAL  
TYP  
SYMM  
10X (0.5)  
13  
(0.9)  
(R0.05) TYP  
6
7
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 13:  
90% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222684/A 02/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS627451DSSR

10Vin 超低 Iq 降压转换器 | DSS | 12 | -40 to 125
TI

TPS627451DSST

10Vin 超低 Iq 降压转换器 | DSS | 12 | -40 to 125
TI

TPS62745DSSR

具有 VSEL 和输入电压开关的 3.3V 至 10V 输入、300mA 超低 Iq 降压转换器 | DSS | 12 | -40 to 125
TI

TPS62745DSST

具有 VSEL 和输入电压开关的 3.3V 至 10V 输入、300mA 超低 Iq 降压转换器 | DSS | 12 | -40 to 125
TI

TPS62746

TPS62746 300 mA High Efficiency Buck Converter with Ultra-low Quiescent Current and VIN Switch
TI

TPS62746YFPR

TPS62746 300 mA High Efficiency Buck Converter with Ultra-low Quiescent Current and VIN Switch
TI

TPS62746YFPT

TPS62746 300 mA High Efficiency Buck Converter with Ultra-low Quiescent Current and VIN Switch
TI

TPS62746_15

TPS62746 300 mA High Efficiency Buck Converter with Ultra-low Quiescent Current and VIN Switch
TI

TPS62748

TPS62748 300 mA High Efficiency Buck Converter with Ultra-low Quiescent Current and Load Switch
TI

TPS62748YFPR

TPS62748 300 mA High Efficiency Buck Converter with Ultra-low Quiescent Current and Load Switch
TI

TPS62748YFPT

TPS62748 300 mA High Efficiency Buck Converter with Ultra-low Quiescent Current and Load Switch
TI

TPS62748_15

TPS62748 300 mA High Efficiency Buck Converter with Ultra-low Quiescent Current and Load Switch
TI