TPS62824A [TI]

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package;
TPS62824A
型号: TPS62824A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

文件: 总33页 (文件大小:2590K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output  
Accuracy in 1.5-mm × 1.5-mm QFN Package  
1 Features  
3 Description  
Available as an integrated-inductor power module:  
TPSM82821 and TPSM82822  
DCS-Controltopology  
1% feedback or output voltage accuracy (full  
temperature range)  
Up to 97% efficiency  
26-mΩ and 25-mΩ internal power MOSFETs  
2.4-V to 5.5-V input voltage range  
4-μA operating quiescent current  
2.2-MHz switching frequency  
Adjustable output voltage from 0.6 V to 4 V  
Power save mode for light load efficiency  
100% duty cycle for lowest dropout  
Active output discharge  
Power good output  
Thermal shutdown protection  
Hiccup short-circuit protection  
A forced-PWM version for CCM operation  
Create a custom design using the TPS6282x with  
the WEBENCH® Power Designer  
The TPS6282x is an easy-to-use synchronous step-  
down DC-DC converters family with a very low  
quiescent current of only 4 μA. Based on the DCS-  
Control topology, it provides a fast transient response.  
The internal reference allows to regulate the output  
voltage down to 0.6 V with a high feedback voltage  
accuracy of 1% over the junction temperature range  
of –40°C to 125°C. The family devices are pin-to-pin  
and BOM-to-BOM compatible. The entire solution  
requires a small 470-nH inductor, a single 4.7-µF  
input capacitor and two 10-µF or single 22-µF output  
capacitor.  
The TPS6282x is available in two flavors. The first  
includes an automatically entered power save mode  
to maintain high efficiency down to very light loads for  
extending the system battery run-time. The second  
runs in forced-PWM maintaining  
a
continuous  
conduction mode to ensure the least ripple in the  
output voltage and a quasi-fixed switching frequency.  
The device features a Power Good signal and an  
internal soft start circuit. It is able to operate in 100%  
mode. For fault protection, it incorporates a HICCUP  
short circuit protection as well as a thermal shutdown.  
The device is available in a 6-pin 1.5 x 1.5-mm QFN  
package, offering the highest power density solution.  
2 Applications  
Solid state drive  
Portable electronics  
Analog security and IP network cameras  
Industrial PC  
Multifunction printers  
Generic point of load  
Device Information  
PART NUMBER  
TPS62824A  
TPS62825x  
PACKAGE(1)  
BODY SIZE (NOM)  
6-Pin VSON-HR  
1.5 mm x 1.5 mm  
TPS62826x  
TPS62827  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
Vout=3.3V  
Vout=2.5V  
Vout=1.8V  
Vout=1.2V  
Vout=0.6V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
Efficiency at VIN = 5 V  
Typical Application Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
 
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................4  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................6  
8 Detailed Description........................................................7  
8.1 Overview.....................................................................7  
8.2 Functional Block Diagram...........................................8  
8.3 Feature Description.....................................................8  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation.................................. 11  
9.1 Application Information..............................................11  
9.2 Typical Application.................................................... 11  
10 Power Supply Recommendations..............................22  
11 Layout...........................................................................23  
11.1 Layout Guidelines................................................... 23  
11.2 Layout Example...................................................... 23  
11.3 Thermal Considerations..........................................23  
12 Device and Documentation Support..........................24  
12.1 Device Support....................................................... 24  
12.2 Documentation Support.......................................... 24  
12.3 Support Resources................................................. 24  
12.4 Trademarks.............................................................24  
12.5 Electrostatic Discharge Caution..............................24  
12.6 Glossary..................................................................24  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
Changes from Revision C (March 2019) to Revision D (October 2020)  
Page  
Updated the numbering format for tables, figures and cross-references throughout the document...................1  
Added F-PWM devices in 'Preview' status......................................................................................................... 1  
Added F-PWM devices part numbers.................................................................................................................3  
Added the F-PWM devices ................................................................................................................................4  
Added additional curves for F-PWM devices....................................................................................................15  
Changes from Revision B (September 2018) to Revision C (March 2019)  
Page  
Changed TPS62827 status to 'Active'................................................................................................................ 1  
Added minimum effective output capacitance in Capactior Selection.............................................................. 14  
Added switching frequency curves of TPS62827 ............................................................................................ 15  
Added thermal derating curves ........................................................................................................................15  
Changes from Revision A (May 2018) to Revision B (September 2018)  
Page  
Updated output current range in Description section for the device family.........................................................1  
Added Preview device TPS62827...................................................................................................................... 1  
Added TPS62827DMQ part number...................................................................................................................3  
Added the input voltage range of TPS62827......................................................................................................4  
Added the output current range of TPS62827. ..................................................................................................4  
Changes from Revision * (March 2018) to Revision A (May 2018)  
Page  
Deleted Advance Information banner................................................................................................................. 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
5 Device Options  
OPERATION  
OUTPUT CURRENT  
MODE  
PART NUMBER  
OUTPUT VOLTAGE  
TPS62825DMQ  
Adjustable  
1.8 V  
2 A  
TPS6282518DMQ  
TPS62826DMQ  
Adjustable  
1.8 V  
PSM/PWM  
3 A  
TPS6282618DMQ  
TPS62827DMQ  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
4 A  
1 A  
TPS62824ADMQ(1)  
TPS62825ADMQ(1)  
TPS62826ADMQ(1)  
Forced-PWM  
2 A  
3 A  
(1) Preview status  
6 Pin Configuration and Functions  
FB  
3
2
1
4
5
6
GND  
SW  
PG  
EN  
VIN  
Figure 6-1. DMQ Package 6-Pin VSON-HR Bottom View  
Table 6-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Device enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low  
disables the device. Do not leave floating.  
EN  
1
I
O
I
Power good open-drain output pin. The pullup resistor can be connected to voltages up to  
5.5 V. If unused, leave it floating.  
PG  
FB  
2
3
Feedback pin. For the fixed output voltage versions, this pin must be connected to the  
output.  
GND  
SW  
4
5
6
Ground pin  
PWR  
PWR  
Switch pin of the power stage  
Input voltage pin  
VIN  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
MIN  
–0.3  
–0.3  
–1.0  
–2.5  
–40  
MAX  
6
UNIT  
VIN, FB, EN, PG  
SW (DC)  
Voltage at Pins(1)  
VIN + 0.3  
VIN + 0.3  
10  
V
SW (DC, in current limit)  
SW (AC, less than 10ns)(2)  
Operating Junction, TJ  
Temperature  
Storage, Tstg  
150  
°C  
–65  
150  
(1) All voltage values are with respect to network ground terminal.  
(2) While switching  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification JESD22-  
C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
VIN  
Input voltage range, TPS62824A, TPS62825x and TPS62826x  
Input voltage range, TPS62827  
2.4  
2.5  
0.6  
0
5.5  
5.5  
4.0  
1
V
VOUT  
IOUT  
Output voltage range  
V
Output current range, TPS62824A  
Output current range, TPS62825x  
Output current range, TPS62826x  
Output current range, TPS62827(1)  
0
2
A
0
3
0
4
ISINK_PG Sink current at PG pin  
1
mA  
V
VPG  
TJ  
Pull-up resistor voltage  
5.5  
125  
Operating junction temperature  
–40  
°C  
(1) Lifetime is reduced when operating continuously at IOUT = 4 A and the junction temperature > 100 °C.  
7.4 Thermal Information  
TPS6282x, DMQ (6) -  
THERMAL METRIC(1)  
JEDEC  
TPS62826EVM-794  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
129.5  
103.9  
33.1  
3.8  
71.4  
n/a(2)  
n/a(2)  
3.9  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top) Junction-to-case (top) thermal resistance  
RθJB  
ψJT  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
ψJB  
33.1  
38.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Not applicable to an EVM.  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
 
 
 
 
 
 
 
 
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
7.5 Electrical Characteristics  
TJ = -40°C to 125°C, and VIN = 2.4 V to 5.5 V. Typical values are at TJ = 25°C and VIN = 5 V , unless otherwise  
noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
IQ  
Quiescent current  
EN = High, no load, device not switching  
EN = High, no load, FPWM devices  
4
8
10  
µA  
IQ  
Quiescent current  
mA  
ISD  
Shutdown current  
EN = Low, TJ = -40 to 85 ℃  
VIN falling  
0.05  
2.2  
0.5  
2.3  
µA  
V
Under voltage lock out threshold  
Under voltage lock out hysteresis  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
2.1  
1.0  
VUVLO  
VIN rising  
160  
150  
20  
mV  
°C  
°C  
TJ rising  
TJSD  
TJ falling  
LOGIC INTERFACE EN  
VIH  
High-level threshold voltage  
V
V
VIL  
Low-level threshold voltage  
0.4  
0.1  
IEN,LKG  
Input leakage current into EN pin  
EN = High  
0.01  
µA  
SOFT START, POWER GOOD  
Time from EN high to 95% of VOUT nominal, TPS62827  
1.75  
1.25  
ms  
ms  
tSS  
Soft start time  
Time from EN high to 95% of VOUT nominal,  
TPS62824x/5x/6x  
VPG rising, VFB referenced to VFB nominal  
VPG falling, VFB referenced to VFB nominal  
VPG rising, VFB referenced to VFB nominal  
VPG falling, VFB referenced to VFB nominal  
Isink = 1 mA  
94  
90  
96  
92  
98  
94  
%
%
%
%
V
Power good lower threshold  
Power good upper threshold  
VPG  
103  
108  
105  
110  
107  
112  
0.4  
0.1  
VPG,OL  
IPG,LKG  
Low-level output voltage  
Input leakage current into PG pin  
VPG = 5.0 V  
0.01  
100  
20  
µA  
PG rising edge  
tPG,DLY  
Power good deglitch delay  
µs  
PG falling edge  
OUTPUT  
VOUT  
Output voltage accuracy  
TPS6282x18, PWM mode  
PWM mode  
1.78  
594  
1.8  
1.82  
606  
V
VFB  
Feedback regulation voltage  
600  
mV  
Feedback input leakage current for adjustable  
output voltage  
IFB,LKG  
VFB = 0.6 V  
0.01  
7.5  
0.05  
µA  
Internal resistor divider connected to FB pin, for  
fixed output votlage  
RFB  
IDIS  
TPS6282518, TPS6282618  
MΩ  
Output discharge current  
Load regulation  
VSW = 0.4V; EN = LOW  
75  
400  
0.1  
mA  
IOUT = 0.5 A to 3 A, VOUT = 1.8 V  
%/A  
POWER SWITCH  
High-side FET on-resistance  
26  
25  
mΩ  
mΩ  
A
RDS(on)  
Low-side FET on-resistance  
ILIM  
High-side FET switch current limit, DC  
TPS62824A  
1.7  
2.7  
3.7  
4.8  
2.1  
3.3  
4.3  
5.6  
-1.6  
2.2  
2.4  
3.9  
5.0  
6.4  
TPS62825x  
A
ILIM  
High-side FET switch current limit, DC  
TPS62826x  
A
TPS62827  
A
ILIM  
fSW  
Low-side FET negative current limit, DC  
PWM switching frequency  
TPS62824A/5A/6A  
IOUT = 1 A, VOUT = 1.8 V  
A
MHz  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
7.6 Typical Characteristics  
70.0  
60.0  
50.0  
40.0  
30.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
20.0  
TJ = 0 °C  
TJ = 25 °C  
TJ = 0 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
10.0  
TJ = 85 °C  
TJ = 125 °C  
0.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D010  
D011  
Figure 7-1. High-Side FET On-Resistance  
Figure 7-2. Low-Side FET On-Resistance  
0.5  
8.0  
TJ = -40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
0.4  
0.3  
0.2  
0.1  
0.0  
6.0  
4.0  
2.0  
0.0  
TJ = -40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D000  
D001  
Figure 7-3. Shutdown Current  
Figure 7-4. Quiescent Current  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
TJ = 0 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
0
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D012  
Figure 7-5. Output Discharge Current  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
8 Detailed Description  
8.1 Overview  
The TPS6282x are synchronous step-down converters based on the DCS-Control topology with an adaptive  
constant on-time control and a stabilized switching frequency. It operates in PWM (pulse width modulation) mode  
for medium to heavy loads and in PSM (power save mode) at light load conditions, keeping the output voltage  
ripple small. The nominal switching frequency is about 2.2 MHz with a small and controlled variation over the  
input voltage range. As the load current decreases, the converter enters PSM, reducing the switching frequency  
to keep efficiency high over the entire load current range. Since combining both PWM and PSM within a single  
building block, the transition between modes is seamless and without effect on the output voltage. In forced-  
PWM devices, the converter maintains a continuous conduction mode operation and keeps the output voltage  
ripple very low across the whole load range and at a nominal switching frequency of 2.2 MHz. The devices offer  
both excellent dc voltage and fast load transient regulation, combined with a very low output voltage ripple.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
8.2 Functional Block Diagram  
PG  
Control Logic  
EN  
VFB  
VREF  
Thermal  
Shutdown  
Soft-Start  
UVLO  
VFB  
VIN  
VSW  
FB  
VIN  
Ramp  
Peak Current Detect  
EA  
VREF  
HICCUP  
Comp  
VSW  
Modulator  
SW  
Gate Drive  
Ton  
Output  
Discharge  
VIN  
VSW  
Zero Current Detect  
0.6 V  
Or  
Fixed Output Voltages  
VREF  
GND  
8.3 Feature Description  
8.3.1 Pulse Width Modulation (PWM) Operation  
At load currents larger than half the inductor ripple current, the device operates in pulse width modulation in  
continuous conduction mode (CCM). The PWM operation is based on an adaptive constant on-time control with  
stabilized switching frequency. To achieve a stable switching frequency in a steady state condition, the on-time is  
calculated as:  
VOUT  
TON  
=
× 450ns  
V
IN  
(1)  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
In forced-PWM devices, the device always operates in pulse width modulation in continuous conduction mode  
(CCM).  
8.3.2 Power Save Mode (PSM) Operation  
To maintain high efficiency at light loads, the device enters power save mode (PSM) at the boundary to  
discontinuous conduction mode (DCM). This happens when the output current becomes smaller than half of the  
ripple current of the inductor. The device operates now with a fixed on-time and the switching frequency further  
decreases proportional to the load current. It can be calculated as:  
2×IOUT  
fPSM  
=
V
V -V  
é
ù
TO2N  
×
IN  
IN  
OUT  
ê
ú
VOUT  
L
ë
û
(2)  
In PSM, the output voltage rises slightly above the nominal target, which can be minimized using larger output  
capacitance. At duty cycles larger than 90%, the device may not enter PSM. The device maintains output  
regulation in PWM mode.  
8.3.3 Minimum Duty Cycle and 100% Mode Operation  
There is no limitation for small duty cycles since even at very low duty cycles, the switching frequency is reduced  
as needed to always ensure a proper regulation.  
If the output voltage level comes close to the input voltage, the device enters 100% mode. While the high-side  
switch is constantly turned on, the low-side switch is switched off. The difference between VIN and VOUT is  
determined by the voltage drop across the high-side FET and the DC resistance of the inductor. The minimum  
VIN that is needed to maintain a specific VOUT value is estimated as:  
V
= VOUT + IOUT,MAX ´(RDS(on) + RL )  
IN,MIN  
(3)  
where  
VIN,MIN = Minimum input voltage to maintain an output voltage  
IOUT,MAX = Maximum output current  
RDS(on) = High-side FET ON-resistance  
RL = Inductor ohmic resistance (DCR)  
8.3.4 Soft Start  
About 250 μs after EN goes High, the internal soft-start circuitry controls the output voltage during start-up. This  
avoids excessive inrush current and ensures a controlled output voltage ramp. It also prevents unwanted voltage  
drops from high-impedance power sources or batteries. The TPS6282x can start into a pre-biased output.  
8.3.5 Switch Current Limit and HICCUP Short-Circuit Protection  
The switch current limit prevents the device from drawing excessive current in case of externally-caused  
overcurrent or short circuit condition. Due to an internal propagation delay (typically 60 ns), the actual AC peak  
current can exceed the static current limit during that time.  
If the current limit threshold is reached, the device delivers its maximum output current. Detecting this condition  
for 32 switching cycles (about 13 μs), the device turns off the high-side MOSFET for about 100 μs which allows  
the inductor current to decrease through the low-side MOSFET's body diode and then restarts again with a soft  
start cycle. As long as the overload condition is present, the device hiccups that way, limiting the output power.  
In forced PWM devices, a negative current limit (ILIMN) is enabled to prevent excessive current flowing  
backwards to the input. When the inductor current reaches ILIMN, the low-side MOSFET turns off and the high-  
side MOSFET turns on and kept on until TON time expires.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
8.3.6 Undervoltage Lockout  
The undervoltage lockout (UVLO) function prevents misoperation of the device if the input voltage drops below  
the UVLO threshold. It is set to about 2.2 V with a hysteresis of typically 160 mV.  
8.3.7 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds 150°C  
(typ.), the device goes in thermal shutdown with a hysteresis of typically 20°C. Once TJ has decreased enough,  
the device resumes normal operation.  
8.4 Device Functional Modes  
8.4.1 Enable, Disable, and Output Discharge  
The device starts operation when Enable (EN) is set High. The input threshold levels are typically 0.9 V for rising  
and 0.7 V for falling signals. Do not leave EN floating. Shutdown is forced if EN is pulled Low with a shutdown  
current of typically 50 nA. During shutdown, the internal power MOSFETs as well as the entire control circuitry  
are turned off and the output voltage is actively discharged through the SW pin by a current sink. Therefore VIN  
must remain present for the discharge to function.  
8.4.2 Power Good  
The TPS6282x has a built-in power good (PG) function. The PG pin goes high impedance when the output  
voltage has reached its nominal value. Otherwise, including when disabled, in UVLO or in thermal shutdown, PG  
is Low (see Table 8-1). The PG function is formed with a window comparator, which has an upper and lower  
voltage threshold. The PG pin is an open-drain output and is specified to sink up to 1 mA. The power good  
output requires a pullup resistor connecting to any voltage rail less than 5.5 V.  
The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other converters.  
Leave the PG pin unconnected when not used. The PG rising edge has a 100-µs blanking time and the PG  
falling edge has a deglitch delay of 20 µs.  
Table 8-1. PG Pin Logic  
LOGIC STATUS  
DEVICE CONDITIONS  
HIGH Z  
LOW  
EN = High, VFB ≥ 0.576 V  
EN = High, VFB ≤ 0.552 V  
EN = High, VFB ≤ 0.63 V  
EN = High, VFB ≥ 0.66 V  
EN = Low  
Enable  
Shutdown  
Thermal Shutdown  
UVLO  
TJ > TJSD  
0.7 V < VIN < VUVLO  
VIN < 0.7 V  
Power Supply Removal  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
9.2 Typical Application  
Figure 9-1. Typical Application of TPS62826x  
Figure 9-2. Typical Application of TPS62827  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 9-1 as the input parameters.  
Table 9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage, TPS62826x  
Input voltage, TPS62827x  
Output voltage  
EXAMPLE VALUE  
2.4 V to 5.5 V  
2.5 V to 5.5 V  
1.8 V  
Output ripple voltage  
<20 mV  
Maximum output current, TPS62826x  
Maximum output current, TPS62827x  
3 A  
4 A  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
Table 9-2 lists the components used for the example.  
Table 9-2. List of Components  
REFERENCE  
DESCRIPTION  
4.7 µF, Ceramic capacitor, 6.3 V, X7R, size 0603, JMK107BB7475MA  
2 x 10 µF, Ceramic capacitor, 10 V, X7R, size 0603, GRM188Z71A106MA73D  
3 x 10 µF, Ceramic capacitor, 10 V, X7R, size 0603, GRM188Z71A106MA73D  
120 pF, Ceramic capacitor, 50 V, size 0402  
MANUFACTURER  
C1  
Taiyo Yuden  
Murata  
Murata  
Std  
C2, TPS62826x  
C2, TPS62827  
C3  
L1  
0.47 µH, Power Inductor, XFL4015-471MEB  
Coilcraft  
Std  
R1  
R2  
R3  
Depending on the output voltage, 1%, size 0402  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0402  
Std  
100 kΩ, Chip resistor, 1/16 W, 1%, size 0402  
Std  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS6282x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Setting The Output Voltage  
The output voltage is set by an external resistor divider according to Equation 4:  
«
VOUT  
VFB  
V
OUT  
R1= R2ì  
-1 = R2ì  
-1  
÷
÷
«
0.6V  
(4)  
R2 must not be higher than 100 kΩ to achieve high efficiency at light load while providing acceptable noise  
sensitivity. Equation 5 shows how to compute the value of the feedforward capacitor for a given R2 value. For  
the recommended 100k value for R2, a 120-pF feedforward capacitor is used.  
12µ  
C3 =  
R2  
(5)  
For the fixed output voltage versions, connect the FB pin to the output. R1, R2, and C3 are not needed. The  
fixed output voltage devices have an internal feedforward capacitor.  
9.2.2.3 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify this process, Table 9-3  
outlines possible inductor and capacitor value combinations for most applications. Checked cells represent  
combinations that are proven for stability by simulation and lab test. Further combinations should be checked for  
each individual application.  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
Table 9-3. Matrix of Output Capacitor and Inductor Combinations, TPS62824x, TPS62825x, and  
TPS62826x  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
10  
2 x 10 or 22  
47  
100  
0.33  
0.47  
1.0  
(1)  
+
+
+
(1) This LC combination is the standard value and recommended for most applications.  
(2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and –30%.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and –35%.  
Table 9-4. Matrix of Output Capacitor and Inductor Combinations, TPS62827  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
22  
3 x 10  
47  
100  
0.33  
0.47  
1.0  
(1)  
+
+
+
9.2.2.4 Inductor Selection  
The main parameter for the inductor selection is the inductor value and then the saturation current of the  
inductor. To calculate the maximum inductor current under static load conditions, Equation 6 is given.  
DIL  
IL,MAX = IOUT,MAX  
+
2
VOUT  
1-  
V
IN  
DIL = VOUT  
´
L ´ fSW  
(6)  
where  
IOUT,MAX = Maximum output current  
ΔIL = Inductor current ripple  
fSW = Switching frequency  
L = Inductor value  
It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher than  
IL,MAX. In addition, DC resistance and size should also be taken into account when selecting an appropriate  
inductor. Table 9-5 lists recommended inductors.  
Table 9-5. List of Recommended Inductors  
CURRENT RATING DIMENSIONS [L x W  
MAX. DC  
RESISTANCE [mΩ]  
INDUCTANCE [µH]  
MFR PART NUMBER(1)  
[A]  
4.8  
4.6  
4.8  
4.8  
5.1  
5.2  
6.6  
8.0  
x H mm]  
2.0 x 1.6 x 1.0  
2.0 x 1.2 x 1.0  
2.0 x 1.6 x 1.0  
2.0 x 1.6 x 1.0  
2.0 x 1.6 x 1.0  
2.0 x 1.6 x 1.0  
4.0 x 4.0 x 1.6  
3.5 x 3.2 x 2.0  
32  
25  
HTEN20161T-R47MDR, Cyntec  
HTEH20121T-R47MSR, Cyntec  
DFE201610E - R47M, MuRata  
DFE201210S - R47M, MuRata  
TFM201610ALM-R47MTAA, TDK  
TFM201610ALC-R47MTAA, TDK  
XFL4015-471ME, Coilcraft  
32  
32  
0.47  
34  
25  
8.36  
10.85  
XEL3520-471ME, Coilcraft  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
 
 
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
Table 9-5. List of Recommended Inductors (continued)  
CURRENT RATING DIMENSIONS [L x W  
MAX. DC  
RESISTANCE [mΩ]  
INDUCTANCE [µH]  
MFR PART NUMBER(1)  
[A]  
x H mm]  
6.8  
4.5 x 4 x 1.8  
11.2  
WE-LHMI-744373240047, Würth  
(1) See the Third-party Products Disclaimer  
9.2.2.5 Capacitor Selection  
The input capacitor is the low-impedance energy source for the converters which helps provide stable operation.  
A low-ESR multilayer ceramic capacitor is recommended for best filtering and must be placed between VIN and  
GND as close as possible to those pins. For most applications, a minimum effective input capacitance of 3 µF  
should be present, though a larger value reduces input current ripple.  
The architecture of the device allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends  
using X7R or X5R dielectrics. Considering the DC-bias derating the capacitance, the minimum effective output  
capacitance is 10 µF for TPS62824x, TPS62825x, and TPS62826x and 20 µF for TPS62827.  
A feed forward capacitor is required for the adjustable version, as described in Section 9.2.2.2. This capacitor is  
not required for the fixed output voltage versions.  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
9.2.3 Application Curves  
VIN = 5.0 V, VOUT = 1.8 V, TA = 25°C, BOM = Table 9-2, unless otherwise noted.  
0.612  
0.609  
0.606  
0.603  
0.6  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
0.597  
0.594  
0.591  
0.588  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D021  
D002  
VOUT = 0.6 V  
VOUT = 0.6 V  
Figure 9-4. Load Regulation  
Figure 9-3. Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
0.609  
0.606  
0.603  
0.6  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
0.597  
0.594  
0.591  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 0.6 V  
F-PWM devices  
VOUT = 0.6 V  
F-PWM devices  
Figure 9-6. Load Regulation  
Figure 9-5. PWM Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
1.212  
1.209  
1.206  
1.203  
1.2  
1.197  
1.194  
1.191  
1.188  
VIN = 2.4 V  
VIN = 3.3 V  
VIN = 4.5 V  
VIN = 5.0 V  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D031  
D003  
VOUT = 1.2 V  
VOUT = 1.2 V  
Figure 9-8. Load Regulation  
Figure 9-7. Efficiency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1.218  
1.212  
1.206  
1.2  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
1.194  
1.188  
1.182  
55  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
50  
45  
40  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 1.2 V  
F-PWM devices  
VOUT = 1.2 V  
F-PWM devices  
Figure 9-10. Load Regulation  
Figure 9-9. PWM Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
1.818  
1.812  
1.806  
1.8  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
1.794  
1.788  
1.782  
VIN = 2.5V  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D041  
D004  
VOUT = 1.8 V  
VOUT = 1.8 V  
Figure 9-12. Load Regulation  
Figure 9-11. Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
1.827  
1.821  
1.815  
1.809  
1.803  
1.797  
1.791  
1.785  
1.779  
1.773  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
VIN=2.5V  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 1.8 V  
F-PWM devices  
VOUT = 1.8 V  
F-PWM devices  
Figure 9-14. Load Regulation  
Figure 9-13. PWM Efficiency  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
100  
95  
90  
85  
80  
75  
70  
65  
60  
2.525  
VIN = 3.3 V  
VIN = 4.2 V  
VIN = 5.0 V  
2.515  
2.505  
2.495  
2.485  
2.475  
VIN = 3.3V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D061  
D006  
VOUT = 2.5 V  
VOUT = 2.5 V  
Figure 9-16. Load Regulation  
Figure 9-15. Efficiency  
2.5375  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
2.53  
2.5225  
2.515  
2.5075  
2.5  
2.4925  
2.485  
2.4775  
2.47  
VIN=3.3V  
VIN=4.2V  
VIN=5.0V  
2.4625  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 2.5 V  
F-PWM devices  
VOUT = 2.5 V  
F-PWM devices  
Figure 9-18. Load Regulation  
Figure 9-17. PWM Efficiency  
100  
95  
90  
85  
80  
75  
70  
3.340  
3.320  
3.300  
3.280  
3.260  
VIN = 4.2V  
VIN = 5.0V  
VIN = 4.2V  
VIN = 5.0V  
100m  
1m  
10m  
Load (A)  
100m  
1
4
100m  
1m  
10m  
Load (A)  
100m  
1
4
D051  
D005  
VOUT = 3.3 V  
VOUT = 3.3 V  
Figure 9-20. Load Regulation  
Figure 9-19. Efficiency  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
3.3495  
3.3396  
3.3297  
3.3198  
3.3099  
3.3  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
VIN=4.2V  
VIN=5.0V  
3.2901  
3.2802  
3.2703  
3.2604  
3.2505  
50  
VIN=4.2V  
VIN=5.0V  
45  
40  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
VOUT = 3.3 V  
F-PWM devices  
VOUT = 3.3 V  
F-PWM devices  
Figure 9-22. Load Regulation  
Figure 9-21. PWM Efficiency  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
VOUT = 0.6V  
VOUT = 0.6V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
500  
500  
250  
250  
0
0
0.0  
0.5  
1.0  
1.5  
Load (A)  
2.0  
2.5  
3.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D008  
D009  
VIN = 3.3 V  
TPS62825 and TPS62826  
IOUT = 1.0 A  
TPS62825 and TPS62826  
Figure 9-23. Switching Frequency  
Figure 9-24. Switching Frequency  
3.00x106  
2.70x106  
2.75x106  
2.50x106  
2.25x106  
2.00x106  
1.75x106  
1.50x106  
1.25x106  
1.00x106  
750.00x103  
500.00x103  
250.00x103  
0.00x100  
2.40x106  
2.10x106  
1.80x106  
1.50x106  
1.20x106  
900.00x103  
600.00x103  
300.00x103  
0.00x100  
VOUT=3.3V  
VOUT=2.5V  
VOUT=1.8V  
VOUT=1.2V  
VOUT=0.6V  
VOUT=2.5V  
VOUT=1.8V  
VOUT=1.2V  
VOUT=0.6V  
2.5  
3
3.5  
4
Input Voltage (V)  
4.5  
5
5.5  
0
0.5  
1
1.5  
Load (A)  
2
2.5  
3
IOUT = 1.0 A  
TPS62825A and TPS62826A  
VIN = 3.3 V  
TPS62825A and TPS62826A  
Figure 9-26. Switching Frequency  
Figure 9-25. Switching Frequency  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
750  
3000  
2750  
2500  
2250  
2000  
1750  
1500  
1250  
1000  
VOUT = 0.6V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
VOUT = 3.3V  
750  
VOUT = 0.6V  
VOUT = 1.2V  
VOUT = 1.8V  
VOUT = 2.5V  
500  
500  
250  
0
250  
0
0.0  
0.5  
1.0  
1.5  
2.0  
Load (A)  
2.5  
3.0  
3.5  
4.0  
2.5  
3.0  
3.5  
4.0  
Input Voltage (V)  
4.5  
5.0  
5.5  
D013  
D014  
VIN = 3.3 V  
TPS62827  
IOUT = 1.0 A  
TPS62827  
Figure 9-27. Switching Frequency  
Figure 9-28. Switching Frequency  
5
4
3
2
1
5
4
3
2
1
0
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 2.5 V  
VIN = 3.3 V  
VIN = 5.0 V  
0
45  
55  
65  
75  
Ambient Temperature (°C)  
85  
95  
105  
115  
125  
45  
55  
65  
75  
Ambient Temperature (°C)  
85  
95  
105  
115  
125  
D020  
D015  
VOUT = 1.2 V  
θJA= 71.4°C/W  
VOUT = 1.8 V  
θJA= 71.4°C/W  
Figure 9-29. Thermal Derating  
Figure 9-30. Thermal Derating  
5
4
3
2
1
0
5
4
3
2
1
0
VIN = 3.3 V  
VIN = 5.0 V  
VIN = 5.0 V  
45  
55  
65  
75  
Ambient Temperature (°C)  
85  
95  
105  
115  
125  
45  
55  
65  
75  
Ambient Temperature (°C)  
85  
95  
105  
115  
125  
D017  
D016  
VOUT = 2.5 V  
θJA= 71.4°C/W  
VOUT = 3.3 V  
θJA= 71.4°C/W  
Figure 9-31. Thermal Derating  
Figure 9-32. Thermal Derating  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
IOUT = 1.0 A  
TPS62825 and TPS62826  
IOUT = 0.1 A  
TPS62825 and TPS62826  
Figure 9-33. PWM Operation  
Figure 9-34. PSM Operation  
IOUT = 1.0 A  
TPS6282xA  
No load  
TPS6282xA  
Figure 9-35. PWM Operation at F-PWM  
Figure 9-36. PWM Operation at F-PWM  
Load = 0.6 Ω  
TPS62825 and TPS62826  
TPS62825 and TPS62826  
Figure 9-37. Start-up with Load  
Figure 9-38. Start-up with No Load  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
Load = 0.6 Ω  
TPS6282xA  
TPS6282xA  
Figure 9-39. Start-up with Load  
Figure 9-40. Start-up with No Load  
Load = 1.8 Ω  
TPS62825x and TPS62826x  
TPS62825x and TPS62826x  
Figure 9-41. Disable, Active Output Discharge  
Figure 9-42. Disable, Active Output Discharge at  
No Load  
IOUT = 0.05 A to 1A  
TPS62825 and TPS62826  
IOUT = 1 A to 2 A  
TPS62825 and TPS62826  
Figure 9-43. Load Transient  
Figure 9-44. Load Transient  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
IOUT = 0.05 A to 1A  
TPS62825A and TPS62826A  
IOUT = 1 A to 2 A  
TPS62825A and TPS62826A  
Figure 9-45. Load Transient  
Figure 9-46. Load Transient  
VPG  
VPG  
5V/DIV  
5V/DIV  
ICOIL  
ICOIL  
2A/DIV  
2A/DIV  
VOUT  
VOUT  
1V/DIV  
1V/DIV  
Time - 200s/DIV  
Time - 2s/DIV  
D018  
D019  
IOUT = 1 A  
TPS62825 and TPS62826  
IOUT = 1 A  
TPS62825 and TPS62826  
Figure 9-47. HICCUP Short Circuit Protection  
Figure 9-48. HICCUP Short Circuit Protection  
(Zoom In)  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.4 V to 5.5 V. Ensure that the input  
power supply has a sufficient current rating for the application.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
11 Layout  
11.1 Layout Guidelines  
The printed-circuit-board (PCB) layout is an important step to maintain the high performance of the device. See  
Section 11.2 for the recommended PCB layout.  
The input/output capacitors and the inductor should be placed as close as possible to the IC. This keeps the  
power traces short. Routing these power traces direct and wide results in low trace resistance and low  
parasitic inductance.  
The low side of the input and output capacitors must be connected properly to the GND pin to avoid a ground  
potential shift.  
The sense traces connected to FB is a signal trace. Special care should be taken to avoid noise being  
induced. Keep these traces away from SW nodes. The connection of the output voltage trace for the FB  
resistors should be made at the output capacitor.  
Refer to Section 11.2 for an example of component placement, routing and thermal design.  
11.2 Layout Example  
L1  
C1  
VOUT  
VIN  
C2  
Solution size = 31mm2  
R2  
R1  
GND  
C3  
Figure 11-1. PCB Layout Recommendation  
11.3 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the power  
dissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
The Thermal Data section in Section 7.4 provides the thermal metric of the device on the EVM after considering  
the PCB design of real applications. The big copper planes connecting to the pads of the IC on the PCB improve  
the thermal performance of the device. For more details on how to use the thermal parameters, see the Thermal  
Characteristics Application Notes, SZZA017 and SPRA953.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.1.2 Development Support  
12.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS6282x device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Thermal Characteristics Application Note, SZZA017  
Thermal Characteristics Application Note, SPRA953  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
DCS-Controland TI E2Eare trademarks of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
 
 
 
 
 
 
TPS62825, TPS62826, TPS62827, TPS62825A, TPS62826A  
www.ti.com  
SLVSEF9D – MARCH 2018 – REVISED OCTOBER 2020  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS62825 TPS62826 TPS62827 TPS62825A TPS62826A  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Oct-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6282518DMQR  
TPS6282518DMQT  
ACTIVE  
VSON-HR  
VSON-HR  
DMQ  
6
6
Green (RoHS  
& no Sb/Br)  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
CJ  
CJ  
ACTIVE  
DMQ  
Green (RoHS  
& no Sb/Br)  
Call TI | NIPDAU  
TPS62825ADMQR  
TPS62825DMQR  
PREVIEW VSON-HR  
DMQ  
DMQ  
6
6
3000  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
Green (RoHS  
& no Sb/Br)  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
CI  
TPS62825DMQT  
TPS6282618DMQR  
TPS6282618DMQT  
DMQ  
DMQ  
DMQ  
6
6
6
250  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Call TI | NIPDAU  
Call TI | NIPDAU  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
CI  
Green (RoHS  
& no Sb/Br)  
CK  
CK  
Green (RoHS  
& no Sb/Br)  
TPS62826ADMQR  
TPS62826DMQR  
PREVIEW VSON-HR  
DMQ  
DMQ  
6
6
3000  
3000  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
Green (RoHS  
& no Sb/Br)  
Call TI | NIPDAU  
Level-1-260C-UNLIM  
CL  
CL  
EH  
EH  
TPS62826DMQT  
TPS62827DMQR  
TPS62827DMQT  
DMQ  
DMQ  
DMQ  
6
6
6
250  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Call TI | NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
XPS62825ADMQR  
XPS62826ADMQR  
PREVIEW VSON-HR  
ACTIVE VSON-HR  
DMQ  
DMQ  
6
6
3000  
3000  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Oct-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6282518DMQR  
TPS6282518DMQT  
TPS62825DMQR  
TPS62825DMQT  
TPS6282618DMQR  
TPS6282618DMQT  
TPS62826DMQR  
TPS62826DMQT  
TPS62827DMQR  
TPS62827DMQT  
VSON-  
HR  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
6
6
6
6
6
6
6
6
6
6
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
VSON-  
HR  
VSON-  
HR  
3000  
250  
VSON-  
HR  
VSON-  
HR  
3000  
250  
VSON-  
HR  
VSON-  
HR  
3000  
250  
VSON-  
HR  
VSON-  
HR  
3000  
250  
VSON-  
HR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Oct-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6282518DMQR  
TPS6282518DMQT  
TPS62825DMQR  
TPS62825DMQT  
TPS6282618DMQR  
TPS6282618DMQT  
TPS62826DMQR  
TPS62826DMQT  
TPS62827DMQR  
TPS62827DMQT  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
VSON-HR  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
DMQ  
6
6
6
6
6
6
6
6
6
6
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DMQ0006A  
VSON - 1 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
PIN 1 INDEX AREA  
1.55  
1.45  
1 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) MIN  
(0.2) TYP  
0.05  
0.00  
0.5  
3X  
0.3  
3
4
4X 0.5  
2X  
1
6
1
0.3  
3X  
0.25  
0.15  
3X  
0.2  
0.9  
3X  
0.1  
C A B  
C
0.1  
C A B  
C
0.7  
0.05  
0.05  
4222645/C 10/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMQ0006A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
3X (1)  
3X (0.6)  
3X (0.2)  
SYMM  
1
6
3X (0.25)  
4X (0.5)  
4
3
(R0.05) TYP  
(0.65)  
(0.45)  
PKG  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222645/C 10/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMQ0006A  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
3X  
EXPOSED METAL  
3X (0.85)  
3X (0.6)  
3X (0.25)  
3X (0.2)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
SOLDER MASK  
OPENING  
TYP  
(0.65)  
(0.525)  
METAL UNDER  
SOLDER MASK  
TYP  
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
PADS 4, 5 & 6:  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222645/C 10/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

TPS62824ADMQ

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62824ADMQR

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62824DMQ

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62824DMQR

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62824X

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62825

采用 1.5mm x 1.5mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、2A 降压转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6282518DMQR

采用 1.5mm x 1.5mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、2A 降压转换器 | DMQ | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6282518DMQT

采用 1.5mm x 1.5mm VSON-HR 封装、具有 1% 精度的 2.4V 至 5.5V 输入、2A 降压转换器 | DMQ | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6282533DMQ

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6282533DMQR

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62825A

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62825ADMQ

TPS6282x 2.4-V to 5.5-V Input, 1-, 2-, 3-, 4-A Step-down Converter with 1% Output Accuracy in 1.5-mm × 1.5-mm QFN Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI