TPS62843 [TI]

1.8-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in WCSP;
TPS62843
型号: TPS62843
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1.8-V to 5.5-V input, 600-mA ultra-low IQ step-down converter in WCSP

文件: 总26页 (文件大小:1855K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62843  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
TPS62843 1.8V 5.5V600mA275nA IQ 小型降压转换器  
1 特性  
3 说明  
• 输入电压范围1.8V 5.5V  
0.4V 3.6V 输出电压范围  
275nA 静态电流典型值)  
• 输出电流600mA  
1% 的输出电压精度  
• 关断电流典型值4nA  
• 输出放电  
TPS62843 一款高效降压转换器有典型值为  
275nA 的超低工作静态电流。该器件在禁用状态时具  
4nA典型值关断电流。  
此器件采用 DCS-Control 技术具有射频友好型低输  
出电压纹波可以为无线电提供电源。  
此器件采用 1.5MHz 典型开关频率在低至  
100μA 负载电流及以下的轻负载条件下提供高效率。  
• 通过单个电阻器实VSET 引脚可选输出电压  
TPS6284360.4V 0.8V  
TPS6284370.8V 1.8V  
TPS6284381.8V 3.6V  
• 针对小型无源器件进行了优化  
1μH 电感器  
通过将一个电阻器连接到 VSET 引脚可选择 18 种预  
定义的输出电压因此只需很少的无源器件即可将该系  
列器件用于各种应用。  
器件信息  
封装尺寸标  
V
OUT 范围  
封装(1)  
– 低4.7μF COUT  
器件型号  
称值)  
• 在省电模式下具有低输出电压纹波  
• 射频友好型快速瞬DCS-Control  
• 自动转换至无纹100% 模式  
• 支0603 电感器0402 电感器  
0.84mm² 尺寸的微6 0.35mm WCSP  
封装  
TPS628436  
TPS628437  
TPS628438  
0.4V 0.8V  
0.8V 1.8V  
1.8V 3.6V  
0.80mm ×  
1.05mm ×  
0.40mm  
YKA  
DSBGA  
6)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
TPS6280x (1A) 引脚对引脚兼容  
2 应用  
可穿戴电子产品  
耳麦、耳机和耳塞  
手机  
医疗传感器贴片  
助听器  
TPS62843  
VIN  
1.8 V to 5.5 V  
VOUT  
0.4 V to 3.4 V  
1 µH  
100  
95  
90  
85  
80  
75  
70  
65  
60  
VIN  
SW  
10  
F
4.7  
F
GND  
VOS  
EN  
VSET  
VOUT = 0.7V  
55  
V
V
OUT = 1.2V  
OUT = 1.6V  
50  
1u  
10u  
100u  
1m  
10m  
100m 500m  
I
OUT [A]  
典型应用  
效率与输出电流间的关系曲线电压3.6VIN )  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSFU8  
 
 
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
Table of Contents  
8.3 Feature Description.....................................................9  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 12  
9.3 Power Supply Recommendations.............................17  
9.4 Layout....................................................................... 17  
10 Device and Documentation Support..........................19  
10.1 Device Support....................................................... 19  
10.2 接收文档更新通知................................................... 19  
10.3 支持资源..................................................................19  
10.4 Trademarks.............................................................19  
10.5 静电放电警告.......................................................... 19  
10.6 术语表..................................................................... 19  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................4  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Detailed Description........................................................8  
8.1 Overview.....................................................................8  
8.2 Functional Block Diagram...........................................8  
Information.................................................................... 20  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (January 2022) to Revision A (May 2023)  
Page  
• 将文档状态从“预告信息”更改为“量产数据”................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
2
Submit Document Feedback  
Product Folder Links: TPS62843  
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
5 Device Comparison Table  
Fixed VOUT  
Device  
fSW  
[MHz]  
Selectable Output Voltages  
Soft Start tSS  
Inductor  
VSET = GND  
TPS628436  
TPS628437  
TPS628438  
1.0 V  
1.8 V  
3.6 V  
1.5  
400 µs  
800 µs  
800 µs  
1 µH  
1 µH  
1 µH  
0.4 V 0.8 V in 25-mV steps  
0.8 V 1.6 V in 50-mV steps  
1.8 V 3.4 V in 100-mV steps  
1.5  
1.5  
6 Pin Configuration and Functions  
1
2
A
B
C
GND  
VOS  
VIN  
SW  
VSET  
EN  
6-1. 6-Pin DSBGA YKA Package (Top View)  
6-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
GND supply pin. Connect this pin close to the GND terminal of the input and output  
capacitor.  
GND  
A1  
PWR  
VIN power supply pin. Connect the input capacitor close to this pin for best noise and voltage  
spike suppression. A ceramic capacitor is required.  
VIN  
B1  
C1  
PWR  
I
VSET  
Connecting a resistor to GND selects a pre-defined output voltage.  
Output voltage sense pin for the internal feedback divider network and regulation loop. This  
pin also discharges VOUT by an internal MOSFET when the converter is disabled. Connect  
this pin directly to the output capacitor with a short trace.  
VOS  
A2  
I
The switch pin is connected to the internal MOSFET switches. Connect the inductor to this  
terminal.  
SW  
EN  
B2  
C2  
O
I
A high level enables the devices and a low level turns the device off. The pin features an  
internal pulldown resistor, which is disabled once the device has started up.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over operating junction temperature range (unless otherwise noted) (1)  
MIN  
0.3  
0.3  
2.5  
0.3  
0.3  
40  
55  
MAX  
UNIT  
V
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
Pin voltage  
TJ  
VIN  
6
SW, DC  
VIN + 0.3 V  
V
SW, transient < 10 ns, while switching  
EN, VSET  
9
6
V
V
VOS  
5
V
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC  
JS-001 (1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC  
JS-002 (2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
5.5  
0.6  
1.2  
25  
UNIT  
VIN  
Supply voltage VIN  
1.8  
V
IOUT  
L
Output current  
A
Effective inductance  
0.7  
4
1.0  
4.7  
µH  
µF  
µF  
pF  
COUT  
CIN  
Effective output capacitance  
Effective input capacitance  
External parasitic capacitance at VSET pin  
0.5  
CVSET  
30  
Resistance range for external resistor at VSET pin (E96 1%  
resistor values)  
10  
249  
k  
RSET  
External resistor tolerance E96 series at VSET pin  
E96 resistor series temperature coefficient (TCR)  
Operating junction temperature range  
1%  
+200  
125  
ppm/°C  
°C  
200  
40  
TJ  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
4
Submit Document Feedback  
Product Folder Links: TPS62843  
 
 
 
 
 
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
7.4 Thermal Information  
THERMAL METRIC(1)  
YKA (DSBGA) 6 PINS  
UNIT  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
147.7  
1.7  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
47.5  
0.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
47.6  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
TJ = 40°C to +125°C, VIN = 1.8 V to 5.5 V. Typical values are at TJ = 25°C, VIN = 3.6 V and VOUT = 0.7 V (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
Non-switching, VEN = VIN, IOUT = 0 µA, TJ =  
40°C to 85°C  
275  
350  
4
1500  
nA  
nA  
nA  
Operating Quiescent Current (Power Save  
Mode)  
IQ  
Switching, VEN = VIN, IOUT = 0 µA, VOUT  
0.7 V  
=
VEN = 0 V, VSET = GND, TJ = 40°C to  
85°C  
ISD  
Shutdown Current  
850  
UVLO  
VUVLO(R)  
VUVLO(F)  
VUVLO(H)  
VSET PIN  
VSET(LKG)  
VSET(H)  
RSET  
Undervoltage Lockout Rising Threshold  
Undervoltage Lockout Falling Threshold  
Undervoltage Lockout Hysteresis  
VIN rising, IOUT = 0 µA  
VIN falling, IOUT = 0 µA  
1.75  
1.65  
100  
1.8  
1.7  
V
V
mV  
VSET Input leakage current  
VSET High-level detection  
RSET accuracy  
TJ = -40°C to 85°C  
10  
800  
nA  
V
Voltage at VSET during startup  
TJ = 20°C to 125°C  
TJ = 40°C to 125°C  
1.0  
4  
4
%
%
RSET  
RSET accuracy  
3.5  
3.5  
ENABLE  
VEN(R)  
EN voltage rising threshold  
EN voltage falling threshold  
EN Input leakage current  
EN rising, enable switching  
EN falling, disable switching  
VEN > 0.8 V, TJ = 40°C to 85°C  
EN pin to GND  
0.8  
V
V
VEN(F)  
0.4  
25  
VEN(LKG)  
REN;PD  
1
nA  
EN internal pull-down resistance  
425  
500  
kΩ  
VOUT VOLTAGE  
VOUT  
DC Output voltage accuracy  
DC Output voltage accuracy  
TPS628436  
+1  
+1.5  
0.8  
%
%
V
PWM operation, TJ = 20°C to 125°C  
PWM operation, TJ = 40°C to 125°C  
1  
1.5  
0.4  
VOUT  
VOUT  
TPS628437  
0.8  
1.8  
V
TPS628438  
1.8  
3.6  
V
TPS628436, VEN = VIN, VVOS = 0.7 V, TJ =  
40°C to 85°C  
100  
250  
450  
nA  
nA  
TPS628437, VEN = VIN, VVOS = 1.2 V, TJ =  
40°C to 85°C  
IVOS(LKG)  
VOS input leakage current  
100  
TPS628438, VEN = VIN, VVOS = 3.3 V, TJ =  
40°C to 85°C  
275  
1.5  
nA  
fSW  
IOUT = 400 mA  
MHz  
STARTUP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
 
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
7.5 Electrical Characteristics (continued)  
TJ = 40°C to +125°C, VIN = 1.8 V to 5.5 V. Typical values are at TJ = 25°C, VIN = 3.6 V and VOUT = 0.7 V (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
0.45  
1.0  
MAX  
0.6  
UNIT  
ms  
TPS628436 soft-start time  
TPS628438 soft-start time  
TPS628437 soft-start time  
EN HIGH to start of switching delay  
From VOUT= 0% to VOUT= 95% of VOUT  
nominal  
tSS  
1.4  
0.7  
1.0  
tStartup_delay  
POWER STAGE  
RDSON(HS)  
R2D = GND  
330  
560  
µs  
High-side MOSFET on-resistance  
Low-side MOSFET on-resistance  
Leakage Current into SW-Pin  
Leakage Current into SW-Pin  
VIN = 3.6 V, IOUT = 300 mA  
VIN = 3.6 V, IOUT = 300 mA  
170  
70  
0
260  
115  
35  
mΩ  
mΩ  
nA  
RDSON(LS)  
VSW = 0.7 V, TJ = 40°C to 85°C  
ILKG_SW  
ILKG_SW  
VSW = 1.2V, TJ = -40°C to 85°C  
0
45  
nA  
VVIN > VSW, VSW = 3.3 V, TJ = 40°C to  
85°C  
Leakage Current into SW-Pin  
0
45  
nA  
ILKG_SW  
OVERCURRENT PROTECTION  
IHS(OC)  
High-side peak current limit  
0.9  
1.1  
1.0  
1.3  
A
A
VIN 2.2 V  
VIN 2.2 V  
ILS(OC)  
Low-side valley current limit  
0.79  
1.11  
OUTPUT DISCHARGE  
RDSCH_VOS  
Output discharge resistor on VOS pin  
7
22  
VEN = GND, I(VOS) = 10 mA  
THERMAL SHUTDOWN  
TJ(SD)  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
Temperature rising  
160  
20  
°C  
°C  
TJ(HYS)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
6
Submit Document Feedback  
Product Folder Links: TPS62843  
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
7.6 Typical Characteristics  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2000  
1500  
1000  
500  
0
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
Input Voltage (V)  
7-1. Shutdown Current ISD  
7-2. Quiescent Current IQ  
360  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
330  
300  
270  
240  
210  
180  
150  
120  
90  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
7-3. High Side Switch Drain Source Resistance  
7-4. Low Side Switch Drain Source Resistance  
RDS(ON)  
RDS(ON)  
20  
18  
16  
14  
12  
10  
8
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
6
4
2
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Input Voltage (V)  
7-5. VOS Discharge Switch Drain Source Resistance RDIS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
8 Detailed Description  
8.1 Overview  
The TPS62843 is a high-frequency, synchronous step-down converter with ultra-low quiescent current of  
typically 275 nA in a 0.84-mm² chip size. The device operates with a tiny 1-μH inductor and 10-μF output  
capacitor over the entire recommended operation range to provide one of the industry's smallest chip and  
solution size.  
Using TI's DCS-Control topology, the device extends the high efficiency operation area down to microamperes of  
load current during power save mode operation. TI's DCS-Control (Direct Control with Seamless Transition into  
power save mode) is an advanced regulation topology that combines the advantages of hysteretic and voltage  
mode control. Characteristics of DCS-Control are excellent AC load regulation and transient response, low  
output ripple voltage, and a seamless transition between PFM and PWM mode operation. DCS-Control includes  
an AC loop that senses the output voltage (VOS pin) and directly feeds the information to a fast comparator  
stage. This comparator sets the switching frequency, which is constant for steady state operating conditions, and  
provides immediate response to dynamic load changes. To achieve accurate DC load regulation, a voltage  
feedback loop is used. The internally compensated regulation network achieves fast and stable operation with  
small external components and low-ESR capacitors.  
8.2 Functional Block Diagram  
VIN  
VI  
HS Limit  
Device Control  
and Logic  
EN  
Smart-Enable  
UVLO  
Start-up Handling  
Thermal Shutdown  
Power Control  
Power Save Mode  
Gate  
PWM  
Operation  
VREF  
Driver  
Ultra Low Power  
Reference  
100% Mode  
Resistor-to-Digital  
Converter  
VSET  
LS Limit  
VO  
VOS  
Direct  
Control  
VI  
Active  
Discharge  
TON timer  
VFB  
+
VO  
EN  
DCS-Control  
VREF  
GND  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
8
Submit Document Feedback  
Product Folder Links: TPS62843  
 
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
8.3 Feature Description  
8.3.1 Smart Enable and Shutdown (EN)  
An internal 500-kΩ resistor pulls the EN pin to GND and avoids floating the pin. This action prevents an  
uncontrolled start-up of the device in case the EN pin cannot be driven to low level safely. With EN low, the  
device is in shutdown mode. The device is turned on with EN set to a high level. The pulldown control circuit  
disconnects the pulldown resistor on the EN pin once the internal control logic and the reference have been  
powered up. With EN set to a low level, the device enters shutdown mode and the pulldown resistor is activated  
again.  
8.3.2 Soft Start  
After the device has been enabled with EN high, the device initializes and powers up its internal circuits. This  
action occurs during the regulator start-up delay time, tStartup_delay. After tStartup_delay expires, the internal soft-start  
circuitry ramps up the output voltage within the soft-start time, tss. See 8-1.  
The start-up delay time, tStartup_delay, varies depending on the selected VSET value. The start-up delay is  
shortest with VSET = 0 and longest with VSET = 16.  
EN  
Device starts switching  
and ramps VOUT  
VOUT  
tStartup_delay  
tSS  
8-1. Device Start-Up  
8.3.3 VSET Pin: Output Voltage Selection  
The output voltage is set with a single external resistor connected between the VSET pin and GND. After the  
device has been enabled and the control logic as well as the internal reference have been powered up, a R2D  
(resistor-to-digital) conversion is started to detect the external resistor, RSET, within the regulator start-up delay  
time, tStartup_delay. An internal current source applies current through the external resistor and an internal ADC  
reads back the resulting voltage level. Depending on the level, an internal feedback divider network is selected  
to set the correct output voltage. After this R2D conversion is finished, the current source is turned off to avoid  
current flow through the external resistor. The circuit can detect resistive values, high-level, low-level, and a pin-  
open.  
For a proper reading, ensure that there is no additional current path or capacitance greater than 30 pF total to  
GND during R2D conversion. Otherwise, the additional current to GND is interpreted as a lower resistor value  
and a false output voltage is set. 8-1 lists the correct resistor values for RSET to set the appropriate output  
voltages. The R2D converter is designed to operate with resistor values out of the E96 table and requires 1%  
resistor value accuracy. The external resistor RSET is not a part of the regulator feedback loop and has therefore  
no impact on the output voltage accuracy. Ensure that there is no other leakage path than the RSET resistor at  
the VSET pin during an undervoltage lockout event. Otherwise, a false output voltage is set.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
8-1. Output Voltage Setting  
Output Voltage Setting [V]  
VSET  
RSET []  
TPS628436  
0.400  
0.425  
0.450  
0.475  
0.500  
0.525  
0.550  
0.575  
0.600  
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
0.8  
TPS628437  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.6  
TPS628438  
1.8  
1
2
10.0 k  
12.1 k  
1.9  
3
2.0  
15.4 k  
4
2.1  
18.7 k  
5
2.2  
23.7 k  
6
2.3  
28.7 k  
7
2.4  
36.5 k  
8
2.5  
44.2 k  
9
2.6  
56.2 k  
10  
11  
12  
13  
14  
15  
16  
17  
0
2.7  
68.1 k  
2.8  
86.6 k  
2.9  
105.0 k  
133.0 k  
162.0 k  
205.0 k  
249.0 k or larger  
VIN  
3.0  
3.1  
3.2  
3.3  
3.4  
1.0  
1.8  
3.6  
GND  
8.3.4 Undervoltage Lockout (UVLO)  
To avoid misoperation of the device at low input voltages, an undervoltage lockout (UVLO) comparator monitors  
the supply voltage. The UVLO comparator shuts down the device at an input voltage of 1.7 V (maximum) with  
falling VIN. The device starts at an input voltage of 1.8 V (maximum) rising VIN. After the device re-enters  
operation out of an undervoltage lockout condition, the device behaves like it does being enabled. The internal  
control logic is powered up and the external resistor at the VSET pin is read out.  
8.3.5 Switch Current Limit, Short-Circuit Protection  
The TPS62843 integrates a current limit on the high-side and low-side MOSFETs to protect the device against  
overload or short circuit conditions. The current in the switches is monitored cycle by cycle. If the high-side  
MOSFET current limit, ILIMF trips, the high-side MOSFET is turned off and the low-side MOSFET is turned on to  
ramp down the inductor current. After the inductor current through the low-side switch decreases beneath the  
low-side MOSFET current limit, ILIMF, the low-side MOSFET is turned off and the high-side MOSFET turns on  
again.  
8.3.6 Thermal Shutdown  
The junction temperature (TJ) of the device is monitored by an internal temperature sensor. If TJ exceeds the  
thermal shutdown temperature, TSD, of 160°C (typical), the device enters thermal shutdown. Both the high-side  
and low-side power FETs are turned off. When TJ decreases below the hysteresis amount of typically 20°C, the  
converter resumes operation, beginning with a soft start to the originally set VOUT (there is no R2D conversion of  
RSET). The thermal shutdown is not active in power save mode.  
8.3.7 Output Voltage Discharge  
The purpose of the output discharge function is to ensure a defined down-ramp of the output voltage when the  
device is disabled and to keep the output voltage close to 0 V.  
The internal discharge resistor is connected to the VOS pin. The discharge function is enabled as soon as the  
device is disabled. The minimum supply voltage required to keep the discharge function active is VIN  
VTH_UVLO-  
>
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
10  
Submit Document Feedback  
Product Folder Links: TPS62843  
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
8.4 Device Functional Modes  
8.4.1 Power Save Mode Operation  
The DCS-Control topology supports power save mode operation. At light loads, the device operates in PFM  
(pulse frequency modulation) mode that generates a single switching pulse to ramp up the inductor current and  
recharge the output capacitor, followed by a sleep period where most of the internal circuits are shut down to  
achieve the lowest operating quiescent current. During this time, the load current is supported by the output  
capacitor. The duration of the sleep period depends on the load current and the inductor peak current. During  
the sleep periods, the current consumption is reduced to typically 275 nA. This low quiescent current  
consumption is achieved by an ultra-low power voltage reference, an integrated high impedance feedback  
divider network, and an optimized power save mode operation.  
In PFM mode, the switching frequency varies linearly with the load current. At medium and high load conditions,  
the device enters automatically PWM (pulse width modulation) mode and operates in continuous conduction  
mode with a nominal switch frequency fsw of typically 1.5 MHz. The switching frequency in PWM mode is  
controlled and depends on VIN and VOUT. The boundary between PWM and PFM mode is when the inductor  
current becomes discontinuous.  
If the load current decreases, the converter seamlessly enters PFM mode to maintain high efficiency down to  
very light loads. Because DCS-Control supports both operation modes within one single building block, the  
transition from PWM to PFM mode is seamless with minimum output voltage ripple.  
8.4.2 100% Mode Operation  
The duty cycle of the buck converter operating in PWM mode is given as D = VOUT/VIN. The duty cycle increases  
as the input voltage comes close to the output voltage. In 100% duty cycle mode, the device keeps the high-side  
switch on continuously. The high-side switch stays turned on as long as the output voltage is below the internal  
set point. This allows the conversion of small input to output voltage differences.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The following sections discuss the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
9.2 Typical Application  
VIN  
VOUT  
0.4 V to 3.6 V  
L = 1 µH  
1.8 V to 5.5 V  
VIN  
SW  
COUT  
10 µF  
=
GND  
VOS  
CIN  
4.7  
=
F
EN  
VSET  
RSET  
9-1. TPS62843 Typical Application Circuit  
9.2.1 Design Requirements  
9-1 shows the list of components for the application circuit and the characteristic application curves.  
9-1. Components for Application Characteristic Curves  
Reference  
Description  
Value  
Size Code Inch [metric L × W × T]  
Manufacturer  
TPS628436,  
TPS628437,  
TPS628438  
275 nA-IQ buck converter  
[1.05 mm × 0.8 mm × 0.4 mm]  
TI  
Ceramic capacitor  
GRM155R60J475ME47D  
CIN  
L
0402 [1.0 mm × 0.5 mm × 0.5 mm]  
0806 [2.0 mm × 1.6 mm × 1.0 mm]  
0402 [1.0 mm × 0.5 mm × 0.5 mm]  
0402 [1.0 mm × 0.5 mm × 0.5 mm]  
Murata  
Murata  
Murata  
4.7 μF  
1 μH  
Inductor DFE201610-1R0M  
Ceramic capacitor  
GRM155R60J106ME15D  
COUT  
RSET  
10 μF  
See voltage setting table  
9.2.2 Detailed Design Procedure  
Follow the passive component selection per the typical application circuit.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
12  
Submit Document Feedback  
Product Folder Links: TPS62843  
 
 
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
9.2.3 Application Curves  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
V
V
V
V
V
V
IN = 1.8V  
IN = 2.5V  
IN = 3.0V  
IN = 3.6V  
IN = 4.2V  
IN = 5.0V  
V
V
V
V
V
V
IN = 1.8V  
IN = 2.5V  
IN = 3.0V  
IN = 3.6V  
IN = 4.2V  
IN = 5.0V  
1u  
10u  
100u  
1m  
10m  
100m 500m  
1u  
10u  
100u  
1m  
10m  
100m 500m  
I
OUT [A]  
I
OUT [A]  
9-2. Efficiency at 0.4 VOUT  
9-3. Efficiency at 0.7 VOUT  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
V
V
V
V
V
IN = 1.8V  
40  
35  
30  
25  
45  
40  
35  
30  
IN = 2.5V  
IN = 3.0V  
IN = 3.6V  
IN = 4.2V  
IN = 5.0V  
V
V
V
V
V
IN = 2.5V  
IN = 3.0V  
IN = 3.6V  
IN = 4.2V  
IN = 5.0V  
1u  
10u  
100u  
1m  
10m  
100m 500m  
1u  
10u  
100u  
1m  
10m  
100m 500m  
I
OUT [A]  
I
OUT [A]  
9-4. Efficiency at 1.2 VOUT  
9-5. Efficiency at 1.8 VOUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
1.25  
1.24  
1.23  
1.22  
1.21  
1.2  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
V
V
V
V
V
IN = 1.8V  
IN = 2.5V  
IN = 3.0V  
IN = 3.6V  
IN = 4.5V  
VIN = 5.0V  
VIN = 5.5V  
V
V
V
IN = 3.6V  
IN = 4.2V  
IN = 5.0V  
35  
30  
1μ  
10μ  
100μ  
10m  
100m 500m  
1m  
I
OUT [A]  
1u  
10u  
100u  
1m  
IOUT [A]  
10m  
100m 500m  
9-7. Output Voltage vs Output Current at 1.2  
9-6. Efficiency at 3.3 VOUT  
VOUT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0.72  
0.71  
0.7  
VIN = 1.8V  
VIN = 2.5V  
VIN = 3.0V  
VIN = 3.6V  
VIN = 4.2V  
VIN = 5.0V  
VIN = 5.5V  
V
V
V
V
V
V
V
IN = 1.8V  
IN = 2.5V  
IN = 3.0V  
IN = 3.6V  
IN = 4.5V  
IN = 5.0V  
IN = 5.5V  
0.69  
0.68  
0.67  
0
100  
200  
300  
IOUT [mA]  
400  
500  
600  
700  
1μ  
10μ  
100μ  
10m  
100m 500m  
1m  
I
OUT [A]  
9-9. Switching Frequency vs Output Current at  
0.4 VOUT  
9-8. Output Voltage vs Output Current at 0.7  
VOUT  
9-10. Switching Frequency vs Output Current at 9-11. Switching Frequency vs Output Current at  
0.7 VOUT  
1.2 VOUT  
9-12. Switching Frequency vs Output Current at  
9-13. Typical Operation at 0.7 VOUT, 100 μA IOUT  
1.8 VOUT  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
9-14. Typical Operation at 0.7 VOUT, 20 mA IOUT 9-15. Typical Operation at 0.7 VOUT, 400 mA IOUT  
9-16. Load Transient at 0.7 VOUT, IOUT = 100 μA 9-17. Load Transient at 0.7 VOUT, IOUT = 100 μA  
to 20 mA to 400 mA  
9-18. Load Transient at 0.7 VOUT, IOUT = 5 mA to 9-19. Load Transient at 1.2 VOUT, IOUT = 100 μA  
400 mA  
to 20 mA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
9-20. Load Transient at 1.2 VOUT, IOUT = 100 μA 9-21. Load Transient at 1.2 VOUT, IOUT = 5 mA to  
to 400 mA 400 mA  
9-22. AC Load Sweep at 0.7 VOUT, IOUT = 1 mA to 9-23. AC Load Sweep at 1.2 VOUT, IOUT = 1 mA to  
600 mA 600 mA  
9-24. Line Transient at 0.7 VOUT, IOUT = 400 mA, 9-25. Line Transient at 1.2 VOUT, IOUT = 400 mA,  
VIN = 3.6 V to 4.2 V  
VIN = 3.6 V to 4.2 V  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
16  
Submit Document Feedback  
Product Folder Links: TPS62843  
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
tstartup_delay  
=335μs  
9-26. Shutdown, Output Discharge at 0.7 VOUT  
9-27. Start-Up Delay Time, VSET = GND  
tstartup_delay  
=350μs  
9-28. Start-Up Delay Time, VSET = 10 kohms  
9.3 Power Supply Recommendations  
The power supply must provide a current rating according to the supply voltage, output voltage, and output  
current of the TPS62843.  
9.4 Layout  
9.4.1 Layout Guidelines  
The pinout of TPS62843 has been optimized to enable a single top layer PCB routing of the IC and its critical  
passive components such as CIN, COUT, and L. Furthermore, this pinout allows the user to connect tiny  
components such as 0201 (0603) size capacitors and 0402 (1005) size inductors. A solution size smaller than 5  
mm2 can be achieved with a fixed output voltage. As for all switching power supplies, the layout is an important  
step in the design. Care must be taken in board layout to get the specified performance. Providing a low  
inductance, low impedance ground path is critical. Therefore, use wide and short traces for the main current  
paths. Place the input capacitor as close as possible to the VIN of the IC and GND pins. This placement is the  
most critical component placement. The VOS line is a sensitive, high impedance line and must be connected to  
the output capacitor and routed away from noisy components and traces (for example, the SW line) or other  
noise sources.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
9.4.2 Layout Example  
VOUT  
GND  
COUT  
GND  
VOS  
SW  
EN  
CIN  
L
VIN  
VSET  
RVSET  
VIN  
GND  
9-29. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
18  
Submit Document Feedback  
Product Folder Links: TPS62843  
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
10 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62843  
English Data Sheet: SLVSFU8  
 
 
 
 
 
 
 
TPS62843  
www.ti.com.cn  
ZHCSLS3A JANUARY 2022 REVISED MAY 2023  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSFU8  
20  
Submit Document Feedback  
Product Folder Links: TPS62843  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS628436YKAR  
TPS628437YKAR  
TPS628438YKAR  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
YKA  
YKA  
YKA  
6
6
6
12000 RoHS & Green  
12000 RoHS & Green  
12000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
J
Samples  
Samples  
Samples  
SNAGCU  
SNAGCU  
K
L
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2023  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
YKA0006  
DSBGA - 0.4 mm max height  
SCALE 12.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
INDEX AREA  
D
0.40  
0.35  
C
SEATING PLANE  
0.05 C  
0.18  
0.13  
BALL  
TYP  
0.35 TYP  
C
B
A
0.7  
TYP  
SYMM  
D: Max = 1.04 mm, Min = 0.98 mm  
E: Max = 0.787 mm, Min =0.727 mm  
0.35  
TYP  
1
2
0.24  
6X  
0.19  
SYMM  
0.015  
C A B  
4223607/B 06/2023  
NanoFree Is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. NanoFreeTM package configuration.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YKA0006  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
6X ( 0.2)  
(0.35) TYP  
1
2
A
B
SYMM  
C
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:50X  
(
0.2)  
0.0325 MAX  
0.0325 MIN  
METAL  
UNDER  
METAL  
SOLDER MASK  
EXSPOSED  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
(
0.2)  
METAL  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223607/B 06/2023  
NOTES: (continued)  
4. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YKA0006  
DSBGA - 0.4 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.35) TYP  
6X ( 0.21)  
(R0.05) TYP  
1
2
A
(0.35) TYP  
SYMM  
B
METAL  
TYP  
C
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.075 mm - 0.1 mm THICK STENCIL  
SCALE:50X  
4223607/B 06/2023  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS62849DLCR

60nA 静态电流 (IQ)、1.8V 至 6.5V 输入电压、高效 750mA 降压转换器 | DLC | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628501

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628501-Q1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628501-Q1_V01

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628501-Q1_V02

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS628501-Q1_V03

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62850108QDRLRQ1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6285010MQDRLRQ1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6285010MQDYCRQ1

采用 SOT583 封装的 2.7V 至 6V、1A 汽车类降压转换器 | DYC | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62850120QDRLRQ1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS62850140QDYCRQ1

采用 SOT583 封装的 2.7V 至 6V、1A 汽车类降压转换器 | DYC | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6285018AQDRLRQ1

TPS62850x-Q1 2.7-V to 6-V, 1-A / 2-A / 3-A Automotive Step-Down Converter in SOT583 Package

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI