TPS62867RQYR [TI]

采用 1.5mm x 2.5mm QFN 封装的 2.4V 至 5.5V 输入、6A 同步降压转换器 | RQY | 9 | -40 to 125;
TPS62867RQYR
型号: TPS62867RQYR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 1.5mm x 2.5mm QFN 封装的 2.4V 至 5.5V 输入、6A 同步降压转换器 | RQY | 9 | -40 to 125

转换器
文件: 总29页 (文件大小:2069K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
TPS62865/TPS62867 1.5mm × 2.5mm QFN 封装2.4V 5.5V 输入电压、4A  
6A 同步降压转换器  
1 特性  
3 说明  
• 可实现快速瞬态响应DCS-Control 拓扑  
11mΩ10.5mΩ部功MOSFET  
1% 的输出电压精度  
TPS62865 TPS62867 器件是高频同步降压转换  
可提供高效、灵活和高功率密度解决方案。这些转  
换器在中高负载条件下PWM 模式运行并在轻负载  
时自动进入省电模式运行从而在整个负载电流范围内  
保持高效率。这些器件还可强制进PWM 模式运行,  
尽量减少输出电压纹波。凭借其 DCS-Control 架构,  
这些器件可实现出色的负载瞬态性能并符合严格的输出  
电压精度要求。此类器件可提供电源正常信号和内部软  
启动电路。这些器件能够以 100% 模式运行。在故障  
保护方面这些器件加入了断续短路保护以及热关断功  
能。  
4µA 工作静态电流  
2.4V 5.5V 输入电压范围  
0.6V VIN 输出电压范围  
Voltage Selection Table 固定可通过外部电阻器  
进行选择和可调节输出电压版本  
2.4MHz 开关频率  
• 强PWM 或省电模式  
• 输出电压放电  
100% 占空比模式  
• 断续短路保护  
• 具有窗口比较器的电源正常指示器  
• 热关断  
• 解决方案尺寸可降30mm2  
• 采用具0.5mm 间距1.5mm × 2.5mm QFN 封  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS62865  
TPS62867  
QFN (9)  
1.5 × 2.5 × 1mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 使TPS62865 并借WEBENCH® Power  
Designer 创建定制设计方案  
• 使TPS62867 并借WEBENCH® Power  
Designer 创建定制设计方案  
2 应用  
FPGACPUASIC 或视频芯片组提供内核电  
机器视觉摄像机  
IP 网络摄像头  
固态硬盘  
光学模块  
多功能打印机  
L1  
L1  
0.22 µH  
VIN  
VIN  
VOUT  
0.9 V  
VOUT  
1.8 V  
0.22 µH  
2.4 V to 5.5 V  
2.4 V to 5.5 V  
VIN  
EN  
VIN  
EN  
SW  
SW  
C3, C4  
2×22 µF  
C3, C4  
2×22 µF  
VOS  
VOS  
FB  
C1, C2  
2×10 µF  
C1, C2  
2×10 µF  
R3  
R3  
R1  
R2  
PG  
PG  
PG  
FB  
PG  
VSET/MODE  
VSET/MODE  
R4  
133 k  
PGND  
AGND  
PGND  
AGND  
典型应用原理- 可调输出电压  
典型应用原理- 固定输出电压  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLUSDN8  
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 12  
10 Power Supply Recommendations..............................19  
11 Layout...........................................................................20  
11.1 Layout Guidelines................................................... 20  
11.2 Layout Example...................................................... 20  
12 Device and Documentation Support..........................22  
12.1 Device Support....................................................... 22  
12.2 Documentation Support.......................................... 22  
12.3 支持资源..................................................................22  
12.4 Trademarks.............................................................22  
12.5 静电放电警告.......................................................... 22  
12.6 术语表..................................................................... 22  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings ....................................... 4  
7.2 ESD Ratings .............................................................. 4  
7.3 Recommended Operating Conditions ........................4  
7.4 Thermal Information ...................................................5  
7.5 Electrical Characteristics ............................................6  
7.6 Typical Characteristics................................................7  
8 Detailed Description........................................................8  
8.1 Overview.....................................................................8  
8.2 Functional Block Diagram...........................................8  
8.3 Feature Description.....................................................8  
Information.................................................................... 23  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
March 2021  
*
Initial Release  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
5 Device Options  
PART NUMBER(1)  
OUTPUT CURRENT  
TPS62865  
TPS62867  
4 A  
6 A  
(1) For all available packages, see the orderable addendum at the end of the data sheet.  
6 Pin Configuration and Functions  
1
9
8
PGND  
VIN  
2
7
SW  
3
4
5
6
Not to scale  
6-1. 9-Pin RQY QFN Package (Top View)  
6-1. Pin Functions  
PIN  
DESCRIPTION  
NAME  
AGND  
FB  
NO.  
1
Analog ground pin  
9
Feedback pin. For the fixed output voltage versions, the pin must be connected to the output directly.  
Output voltage sense pin. This pin must be directly connected to the output capacitor.  
Power ground pin  
VOS  
PGND  
SW  
8
2
7
Switch pin of the power stage  
VIN  
3
Power supply input voltage pin  
Device enable pin. To enable the device, this pin needs to be pulled high. Pulling this pin low disables  
the device. Do not leave floating.  
EN  
4
6
5
Voltage Set pin  
In fixed output voltage applications, connect a resistor between this pin and GND to set the output  
voltage (see 8-2). After start-up, connect this pin to a high level to enable forced-PWM operation, or  
to a low level to enable power-save mode.  
VSET/MODE  
In adjustable output voltage applications, connect this pin to a high level to enable forced-PWM  
operation, or to a low level to enable power-save mode operation.  
Power-good open-drain output pin. The pullup resistor can be connected to voltages up to 5.5 V. If  
unused, leave it floating.  
PG  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS62865 TPS62867  
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
See (1)  
MIN  
0.3  
0.3  
2.5  
MAX  
UNIT  
VIN, EN, VOS, FB, PG, VSET/MODE  
SW (DC)  
6
VIN + 0.3  
10  
Voltage(2)  
V
SW (AC, less than 10 ns)(3)  
Sink current at PG  
ISINK_PG  
TJ  
1
mA  
°C  
Junction temperature  
Storage temperature  
150  
40  
65  
Tstg  
150  
°C  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal.  
(3) While switching  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
Over operating junction temperature range (unless otherwise noted)  
MIN  
2.4  
NOM  
MAX  
5.5  
UNIT  
V
VIN  
Supply Voltage Range  
Output Voltage Range  
Slew rate at VIN(1)  
VOUT  
SR  
0.6  
VIN  
V
mV/µs  
10  
Output current, TPS62865  
Output current, TPS62867  
Junction temperature  
4
6
IOUT  
TJ  
A
125  
°C  
40  
(1) The falling slew rate of VIN must be limited if VIN goes below VUVLO  
.
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
 
 
 
 
 
 
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
7.4 Thermal Information  
TPS6286x  
TPS62867EVM-121  
THERMAL METRIC(1)  
JEDEC 51-7  
9 PINS  
90.9  
UNIT  
9 PINS  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
60.3  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
68.2  
n/a(2)  
n/a(2)  
3.3  
25.0  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.9  
24.7  
31.5  
ΨJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Not applicable to an EVM  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS62865 TPS62867  
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
TJ = 40°C to 125°C, and VIN = 2.4 V to 5.5 V. Typical values are at TJ = 25°C and VIN = 5 V, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
IQ  
Quiescent current  
EN = High, no load, device not switching  
4
8
10  
µA  
µA  
EN = High, no load, device not switching,  
VVOS = 1.8 V  
IQ_VOS  
ISD  
VUVLO  
Operating quiescent current into VOS pin  
Shutdown current  
0.24  
2.3  
2.2  
150  
20  
1
2.4  
2.3  
µA  
V
EN = Low, TJ = 40to 85℃  
VIN rising  
VIN falling  
TJ rising  
TJ falling  
2.2  
2.1  
Undervoltage lockout threshold  
V
Thermal shutdown threshold  
Thermal shutdown hysteresis  
°C  
°C  
TJSD  
LOGIC INTERFACE  
High-level input threshold voltage at EN  
and VSET/MODE  
VIH  
0.84  
V
Low-level input threshold voltage at  
EN and VSET/MODE  
VIL  
0.4  
0.1  
V
IEN,LKG  
Input leakage current into EN pin  
0.01  
µA  
STARTUP, POWER GOOD  
Time from EN high to device starts switching  
249-kresistor connected between VSET/MODE  
and GND  
tDelay  
Enable delay time  
420  
700 1100  
µs  
tRamp  
VPG  
Output voltage ramp time  
Power good lower threshold  
Power good upper threshold  
Low-level output voltage  
Power good deglitch delay  
Time from device starts switching to power good  
VVOS referenced to VOUT nominal  
VVOS referenced to VOUT nominal  
Isink = 1 mA, PG pin version  
0.8  
1
1.5  
ms  
85%  
91%  
96%  
103% 111% 120%  
VPG,OL  
0.36  
34  
V
tPG,DLY  
Rising and falling edges  
µs  
OUTPUT  
Fixed voltage operation, FPWM, no load, TJ =  
0°C to 85°C  
1%  
1%  
VOUT  
Output voltage accuracy  
Fixed voltage operation, FPWM, no load  
Adjustable voltage operation  
2%  
606  
0.4  
2.5  
2%  
VFB  
Feedback voltage  
594  
600  
0.01  
0.2  
mV  
µA  
µA  
IFB,LKG  
Input leakage into FB pin  
Adjustable voltage operation, VFB = 0.6 V  
Output discharge disabled, VVOS = 1.8 V  
IVOS,LKG Input leakage current into VOS pin  
RDIS  
Output discharge resistor at VOS pin  
Load regulation  
3.5  
VOUT = 0.9 V, FPWM  
0.04  
%/A  
POWER SWITCH  
High-side FET on-resistance  
11  
10.5  
5.5  
mΩ  
mΩ  
A
RDS(on)  
Low-side FET on-resistance  
TPS62865  
5
7
6
High-side FET forward current limit  
TPS62867  
7.7  
8.5  
A
TPS62865  
4.5  
A
ILIM  
Low-side FET forward current limit  
TPS62867  
6.5  
A
Low-side FET negative current limit  
PWM switching frequency  
TPS62865, TPS62867  
IOUT = 1 A, VOUT = 0.9 V  
A
3  
2.4  
fSW  
MHz  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
7.6 Typical Characteristics  
30  
27.5  
25  
27.5  
25  
TJ = –40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
TJ = –40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
22.5  
20  
22.5  
20  
17.5  
15  
17.5  
15  
12.5  
10  
12.5  
10  
7.5  
7.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Supply Voltage (V)  
Supply Voltage (V)  
7-1. High-Side FET On-Resistance  
7-2. Low-Side FET On-Resistance  
10  
8
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
TJ = –40 °C  
TJ = –40 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
TJ = 25 °C  
TJ = 85 °C  
TJ = 125 °C  
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Supply Voltage (V)  
Supply Voltage (V)  
7-3. Quiescent Current  
7-4. Shutdown Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS62865 TPS62867  
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS62865 and TPS62867 synchronous step-down converters use the DCS-Control (Direct Control with  
Seamless transition into Power Save Mode) topology. This is an advanced regulation topology that combines the  
advantages of hysteretic and current-mode control schemes.  
The DCS-Control topology operates in PWM (pulse width modulation) mode for medium to heavy load conditions  
and in Power Save Mode at light load currents. In PWM mode, the converter operates with its 2.4-MHz nominal  
switching frequency, having a controlled frequency variation over the input voltage range. Since DCS-Control  
supports both operation modes (PWM and PFM) within a single building block, the transition from PWM mode to  
Power Save Mode is seamless and does not affect on the output voltage. The devices offer both excellent DC  
voltage and superior load transient regulation combined with very low output voltage ripple.  
8.2 Functional Block Diagram  
PG  
VIN  
91%  
+
34-µs  
Deglitch  
VX  
Control Logic  
Reference Selection  
UVLO  
+
EN  
AGND  
111%  
Thermal Shutdown  
Startup Ramp  
VSET/MODE  
HS-FET Forward  
Current Limit  
VSW  
VIN  
TON  
HICCUP  
Direct Control  
&
VSW  
Compensation  
SW  
Gate  
Driver  
Modulator  
Vref  
+
Comparator  
EA  
FB  
VX  
LS-FET  
VOS  
Forward Current Limit  
Zero Current Detect  
Negative Current Limit  
k = 1, 0.5, 0.25  
k
PGND  
RDIS  
PGND  
AGND  
AGND  
AGND  
8.3 Feature Description  
8.3.1 Power Save Mode  
As the load current decreases, the device enters Power Save Mode (PSM) operation. PSM occurs when the  
inductor current becomes discontinuous, which is when it reaches 0 A during a switching cycle. Power Save  
Mode is based on a fixed on-time architecture, as shown in 方程1.  
VOUT  
tON  
=
× 416 ns  
V
IN  
(1)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
 
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
In Power Save Mode, the output voltage rises slightly above the nominal output voltage. This effect is minimized  
by increasing the output capacitor or inductor value.  
When VIN decreases to typically 15% above VOUT, the TP6286x does enter Power Save Mode, regardless of the  
load current. The device maintains output regulation in PWM mode.  
8.3.2 Forced PWM Mode  
Connecting the VSET/MODE pin to logic high after the start-up, the device switches at 2.4 MHz, even with a light  
load. This reduces the output voltage ripple and allows simple filtering of the switching frequency for noise-  
sensitive applications. Efficiency at light load is lower in Forced PWM mode (FPWM).  
8.3.3 100% Duty Cycle Mode Operation  
There is no limitation for small duty cycles since even at very low duty cycles, the switching frequency is reduced  
as needed to always ensure a proper regulation.  
If the output voltage level comes close to the input voltage, the device enters 100% mode. While the high-side  
switch is constantly turned on, the low-side switch is switched off. The difference between VIN and VOUT is  
determined by the voltage drop across the high-side MOSFET and the DC resistance of the inductor. The  
minimum VIN that is needed to maintain a specific VOUT value is estimated as:  
V
IN,MIN  
= VOUT + (RDS (ON) + RL)IOUT ,MAX  
(2)  
where  
VIN,MIN is the minimum input voltage to maintain an output voltage  
IOUT,MAX is the maximum output current  
RDS(on) is the high-side FET ON-resistance  
RL is the inductor ohmic resistance (DCR)  
8.3.4 Soft Start  
After enabling the device, there is a 700-µs (typical) enable delay (tdelay) before the device starts switching. After  
the enable delay, an internal soft start-up circuitry ramps up the output voltage with a period of 1 ms (tRamp). This  
avoids excessive inrush current and creates a smooth output voltage rise-slope. It also prevents excessive  
voltage drops of primary cells and rechargeable batteries with high internal impedance. The device is able to  
start into a pre-biased output capacitor. It starts with the applied bias voltage and ramps the output voltage to its  
nominal value.  
VIN  
EN  
VOUT  
ttDelay  
t
ttRamp  
ttStartupt  
t
8-1. Start-up Sequence  
8.3.5 Switch Current Limit and HICCUP Short-Circuit Protection  
The switch current limit prevents the device from high inductor current and from drawing excessive current from  
the battery or input voltage rail. Excessive current might occur with a shorted or saturated inductor or a heavy  
load or shorted output circuit condition. If the inductor current reaches the threshold ILIM, cycle by cycle, the high-  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS62865 TPS62867  
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
side MOSFET is turned off and the low-side MOSFET is turned on, while the inductor current ramps down to the  
low-side MOSFET current limit.  
When the high-side MOSFET current limit is triggered 32 times, the device stops switching. The device then  
automatically re-starts with an internal soft start-up after a typical delay time of 128 µs has passed. This is  
named HICCUP short-circuit protection. The device repeats this mode until the high load condition disappears.  
8.3.6 Undervoltage Lockout  
To avoid mis-operation of the device at low input voltages, undervoltage lockout (UVLO) is implemented when  
the input voltage is lower than VUVLO. The device stops switching and the output voltage discharge is active  
when the device is in UVLO. When the input voltage recovers, the device automatically returns to operation with  
an internal soft start-up.  
8.3.7 Thermal Shutdown  
When the junction temperature exceeds TJSD, the device goes into thermal shutdown, stops switching, and  
activates the output voltage discharge. When the device temperature falls below the threshold by the hysteresis,  
the device returns to normal operation automatically with an internal soft start-up. During thermal shutdown, the  
internal register values are kept.  
8.4 Device Functional Modes  
8.4.1 Enable and Disable (EN)  
The device is enabled by setting the EN pin to a logic high. In shutdown mode (EN = low), the internal power  
switches and the entire control circuitry are turned off. An internal switch smoothly discharges the output through  
the VOS pin in shutdown mode. Do not leave the EN pin floating.  
8.4.2 Power Good (PG)  
The device has an open-drain power-good pin, which is specified to sink up to 1 mA. The power-good output  
requires a pullup resistor connecting to any voltage rail less than 5.5 V. The PG has a deglitch delay of 34 µs.  
The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other converters.  
Leave the PG pin unconnected when not used.  
8-1. PG Function Table  
DEVICE CONDITIONS  
0.9 × VOUT_NOM VVOS 1.1 × VOUT_NOM  
VVOS < 0.9 × VOUT_NOM or VVOS > 1.1 × VOUT_NOM  
EN = low  
PG PIN  
Hi-Z  
Enable  
Low  
Shutdown  
Low  
Thermal shutdown  
UVLO  
TJ > TJSD  
Low  
1.8 V < VIN < VUVLO  
Low  
Power supply removal  
VIN < 1.8 V  
Undefined  
8.4.3 Voltage Setting and Mode Selection (VSET/MODE)  
During the enable delay (tDelay), the device configuration is set by an external resistor connected to the VSET/  
MODE pin through an internal R2D (resistor to digital) converter. 8-2 shows the options.  
The R2D converter has an internal current source that applies current through the external resistor and an  
internal ADC that reads back the resulting voltage level. Depending on the level, the output voltage is set. Once  
this R2D conversion is finished, the current source is turned off to avoid current flowing through the external  
resistor. Ensure that there is no additional current path or capacitance greater than 30 pF from this pin to GND  
during R2D conversion. Otherwise, a false value is set.  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
8-2. Voltage Selection Table  
RESISTOR (E96 SERIES, ±1% ACCURACY) AT VSET/MODE PIN  
FIXED OR ADJUSTABLE OUTPUT VOLTAGE  
adjustable  
3.30 V  
2.50 V  
1.80 V  
1.50 V  
reserved  
1.35 V  
1.20 V  
1.10 V  
1.05 V  
1.00 V  
0.95 V  
0.90 V  
0.85 V  
0.80 V  
adjustable  
249 kΩor logic high  
205 kΩ  
162 kΩ  
133 kΩ  
105 kΩ  
86.6 kΩ  
68.1 kΩ  
56.2 kΩ  
44.2 kΩ  
36.5 kΩ  
28.7 kΩ  
23.7 kΩ  
18.7 kΩ  
15.4 kΩ  
12.1 kΩ  
10 kΩor logic low  
When the device is set as a fixed output voltage converter, then FB pin must be connected to the output directly.  
Refer to 8-2.  
L1  
0.22 µH  
VIN  
VOUT  
1.8 V  
2.4 V to 5.5 V  
VIN  
EN  
SW  
C3, C4  
2×22 µF  
VOS  
FB  
C1, C2  
2×10 µF  
R3  
PG  
PG  
VSET/MODE  
R4  
133 k  
PGND  
AGND  
8-2. Fixed Start-up Output Voltage Application Circuit  
After the start-up period (tStartup), a different operation mode can be selected. When VSET/MODE is high, the  
device operates in forced PWM mode, otherwise the device operates in power save mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS62865 TPS62867  
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The following section discusses the design of the external components to complete the power supply design for  
several input and output voltage options by using typical applications as a reference.  
9.2 Typical Application  
L1  
0.22 µH  
VIN  
VOUT  
0.9 V  
2.4 V to 5.5 V  
VIN  
EN  
SW  
C3, C4  
2×22 µF  
VOS  
C1, C2  
2×10 µF  
R3  
R1  
R2  
PG  
PG  
FB  
VSET/MODE  
PGND  
AGND  
9-1. Typical Application  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 9-1 as the input parameters.  
9-1. Design Parameters  
DESIGN PARAMETER  
Input voltage  
EXAMPLE VALUE  
2.4 V to 5.5 V  
0.9 V  
Output voltage  
Maximum output current  
6 A  
9-2 lists the components used for the example.  
9-2. List of Components  
REFERENCE  
DESCRIPTION  
MANUFACTURER(1)  
C1, C2  
C3, C4  
L1  
Murata  
Murata  
Coilcraft  
Std  
10 μF, ceramic capacitor, 10 V, X7R, size 0603,GRM188Z71A106KA73  
22 µF, ceramic capacitor, 6.3 V, X7R, size 0805, GRM21BZ70J226ME44  
0.22 µH, power inductor, XAL4020-221ME (12 A, 5.81 mΩ)  
Depending on the output voltage, chip resistor, 1/16 W, 1%, size 0402  
100 kΩ, chip resistor, 1/16 W, 1%, size 0402  
R1  
R2  
Std  
R3  
Std  
100 kΩ, chip resistor, 1/16 W, 1%, size 0402  
(1) See the Third-party Products disclaimer.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
 
 
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62865 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62867 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.2.2.2 Setting The Output Voltage  
The output voltage is set by an external resistor divider according to 方程3:  
(3)  
R2 must not be higher than 200 kΩ to achieve high efficiency at light load while providing acceptable noise  
sensitivity.  
For the fixed output versions, connect the FB pin to the output. R1 and R2 are not needed.  
9.2.2.3 Output Filter Design  
The inductor and the output capacitor together provide a low-pass filter. To simplify this process, 9-3 outlines  
possible inductor and capacitor value combinations for most applications. Checked cells represent combinations  
that are proven for stability by simulation and lab testing. Further combinations must be checked for each  
individual application.  
9-3. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL COUT [µF](3)  
NOMINAL L [µH](2)  
0.22  
10  
2 × 22 or 47  
3 × 22  
150  
(1)  
+
+
+
(1) This LC combination is the standard value and recommended for most applications.  
(2) Inductor tolerance and current derating is anticipated. The effective inductance can vary by 20% and 30%.  
(3) Capacitance tolerance and bias voltage derating is anticipated. The effective capacitance can vary by 20% and 50%.  
9.2.2.4 Inductor Selection  
The main parameter for the inductor selection is the inductor value, then the saturation current of the inductor. To  
calculate the maximum inductor current under static load conditions, 方程4 is given.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS62865 TPS62867  
 
 
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
(4)  
where  
IOUT,MAX is the maximum output current  
• ΔIL is the inductor current ripple  
fSW is the switching frequency  
L is the inductor value  
It is recommended to choose a saturation current for the inductor that is approximately 20% to 30% higher than  
IL,MAX. In addition, DC resistance and size must also be taken into account when selecting an appropriate  
inductor. 9-4 lists recommended inductors.  
9-4. List of Recommended Inductors  
DC RESISTANCE  
INDUCTANCE CURRENT RATING  
DIMENSIONS  
[L × W × H mm]  
PART NUMBER  
[µH](1)  
[A]  
18.7  
6.6  
[mΩ]  
0.22  
4 × 4 × 2  
5.81  
13  
Coilcraft, XAL4020-221ME  
Murata, DFE201612E-R24M  
0.24  
2 × 1.6 × 1.2  
(1) See the Third-party Products disclaimer.  
9.2.2.5 Capacitor Selection  
The input capacitor is the low-impedance energy source for the convertersm which helps to provide stable  
operation. A low-ESR multilayer ceramic capacitor is recommended for the best filtering and must be placed  
between VIN and GND as close as possible to those pins. For most applications, 8 μF of effective 1 capacitance  
is sufficient, however, a larger value reduces input current ripple.  
The architecture of the device allows the use of tiny ceramic output capacitors with low equivalent series  
resistance (ESR). These capacitors provide low output voltage ripple and are recommended. To keep its low  
resistance up to high frequencies and to get narrow capacitance variation with temperature, TI recommends  
1
using X7R or X5R dielectrics. The recommended typical output capacitor value is 30 μF of effective  
capacitance. This capacitance can vary over a wide range as outlined in the output filter selection table.  
1
The effective capacitance is the capacitance after tolerance, temperature, and DC bias effects have been considered.  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
9.2.3 Application Curves  
VIN = 5.0 V, VOUT = 0.9 V, TA = 25 °C, BOM = 9-2, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.610  
0.605  
0.600  
0.595  
0.590  
0.585  
0.580  
0.575  
0.570  
+1%  
–1%  
VIN = 2.4 V – FPWM  
VIN = 2.4 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
VIN = 2.5 V – FPWM  
VIN = 2.5 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
1m  
10m  
100m  
Output Current (A)  
1
10  
1m  
10m  
100m  
Output Current (A)  
1
10  
VOUT = 0.6 V  
9-2. Efficiency  
VOUT = 0.6 V  
9-3. Load Regulation  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.92  
0.91  
0.90  
0.89  
0.88  
0.87  
0.86  
0.85  
0.84  
+1%  
–1%  
VIN = 2.4 V – FPWM  
VIN = 2.4 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
VIN = 2.5 V – FPWM  
VIN = 2.5 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
1m  
10m  
100m  
Output Current (A)  
1
10  
1m  
10m  
100m  
Output Current (A)  
1
10  
VOUT = 0.9 V  
9-4. Efficiency  
VOUT = 0.9 V  
9-5. Load Regulation  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
1.14  
+1%  
–1%  
VIN = 2.4 V – FPWM  
VIN = 2.4 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
VIN = 2.5 V – FPWM  
VIN = 2.5 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
1m  
10m  
100m  
Output Current (A)  
1
10  
1m  
10m  
100m  
Output Current (A)  
1
10  
VOUT = 1.2 V  
9-6. Efficiency  
VOUT = 1.2 V  
9-7. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS62865 TPS62867  
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
100  
90  
80  
70  
60  
50  
40  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
1.73  
+1%  
–1%  
VIN = 2.4 V – FPWM  
VIN = 2.5 V – FPWM  
30  
20  
10  
0
VIN = 2.4 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
VIN = 2.5 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
1m  
10m  
100m  
Output Current (A)  
1
10  
1m  
10m  
100m  
Output Current (A)  
1
10  
VOUT = 1.8 V  
9-8. Efficiency  
VOUT = 1.8 V  
9-9. Load Regulation  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.40  
2.38  
+1%  
–1%  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 3.7 V – FPWM  
VIN = 3.7 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
VIN = 3.3 V – FPWM  
VIN = 3.3 V – PSM  
VIN = 3.7 V – FPWM  
VIN = 3.7 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
1m  
10m  
100m  
Output Current (A)  
1
10  
1m  
10m  
100m  
Output Current (A)  
1
10  
VOUT = 2.5 V  
9-10. Efficiency  
VOUT = 2.5 V  
9-11. Load Regulation  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.18  
+1%  
–1%  
VIN = 3.7 V – FPWM  
VIN = 3.7 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
VIN = 3.7 V – FPWM  
VIN = 3.7 V – PSM  
VIN = 5.0 V – FPWM  
VIN = 5.0 V – PSM  
1m  
10m  
100m  
Output Current (A)  
1
10  
1m  
10m  
100m  
Output Current (A)  
1
10  
VOUT = 3.3 V  
9-12. Efficiency  
VOUT = 3.3 V  
9-13. Load Regulation  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
2.5  
2.0  
1.5  
VOUT = 0.6 V – FPWM  
1.0  
0.5  
0.0  
VOUT = 0.6 V – PSM  
VOUT = 1.8 V – FPWM  
VOUT = 1.8 V – PSM  
VOUT = 3.3 V – FPWM  
VOUT = 3.3 V – PSM  
VOUT = 0.6 V  
VOUT = 1.2 V  
VOUT = 3.3 V  
0
1
2
3
4
5
6
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Output Current (A)  
Input Voltage (V)  
VIN = 5 V  
IOUT = 1 A  
9-14. Switching Frequency  
9-15. Switching Frequency  
IOUT = 6 A  
IOUT = 0.1 A  
9-16. PWM Operation  
9-17. PSM Operation  
IOUT = 0.1 A  
No Load  
9-18. Forced-PWM Operation  
9-19. Startup with No-Load  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS62865 TPS62867  
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
9.2.3 Application Curves (continued)  
IOUT = 0.6 A to 5.4 A  
IOUT = 0.6 A to 5.4 A  
9-21. Load Transient - PSM Operation  
9-20. Load Transient - PWM Operation  
IOUT = 1 A  
9-22. HICCUP Short Circuit Protection  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 2.4 V to 5.5 V. Ensure that the input  
power supply has a sufficient current rating for the application.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS62865 TPS62867  
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A proper layout is critical for the operation of any switched mode power supply, especially at high switching  
frequencies. The PCB layout of the TPS62865 and TPS62867 devices requires careful attention to ensure best  
performance. A poor layout can lead to issues like bad line and load regulation, instability, increased EMI  
radiation, and noise sensitivity. Refer to the Five Steps to a Great PCB Layout for a Step-Down Converter  
technical brief for a detailed discussion of general best practices. The following are specific recommendations for  
the TPS62865 and TPS62867:  
The input capacitor or capacitors must be placed as close as possible to the VIN and PGND pins of the  
device. This is the most critical component placement. Route the input capacitor or capacitors directly to the  
VIN and PGND pins, avoiding vias.  
Place the output inductor close to the SW pins. Minimize the copper area at the switch node.  
Place the output capacitor or capacitors ground close to the PGND pin and route it directly, avoiding vias.  
Minimize the length of the connection from the inductor to the output capacitor. Connect the VOS pin directly  
to the output capacitor.  
Sensitive traces, such as the connections to the VOS, FB, and VSEL pins, must be connected with short  
traces and be routed away from any noise source, such as the SW pin.  
Make the connections from the input voltage of the system and the connection to the load as wide as  
possible to minimize voltage drops.  
Have a solid ground plane between PGND and the input and output capacitor ground connections.  
The sensitive signal ground connections for the feedback voltage divider must be connected to a separate  
signal ground trace.  
11.2 Layout Example  
Solution  
Size 63mm²  
VOUT  
GND  
SW  
VIN  
VIN  
L1  
GND  
11-1. Layout Example  
11.2.1 Thermal Considerations  
After the layout recommendations for component placement and routing have been followed, the PCB design  
must focus on thermal performance. Thermal design is important and must be considered to remove the heat  
generated in the device during operation. The device junction temperature must stay below its maximum rated  
temperature of 125°C for correct operation.  
Use wide traces and planes, especially to the PGND, VIN, and VOUT pins, and use vias to internal planes to  
improve the power dissipation capability of the design. If the application allows it, use airflow in the system to  
further improve cooling.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
The Thermal Information table provides the thermal parameters of the device and its package based on the  
JEDEC standard 51-7. See the Semiconductor and IC Package Thermal Metrics application report for a detailed  
explanation of each parameter. In addition to the JEDEC standard, the thermal information table also contains  
the thermal parameters of the EVM. The EVM better reflects a real-world PCB design with thicker traces  
connecting to the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS62865 TPS62867  
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.1.2 Development Support  
12.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS62865 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS62867 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs  
application report  
Texas Instruments, Semiconductor and IC Package Thermal Metrics application report  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
® are registered trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS62865 TPS62867  
 
 
 
 
 
 
 
TPS62865, TPS62867  
ZHCSNO7 MARCH 2021  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS62865 TPS62867  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Apr-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS62865RQYR  
TPS62867RQYR  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RQY  
RQY  
9
9
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
2EAH  
2DWH  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Apr-2021  
Addendum-Page 2  
PACKAGE OUTLINE  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQY0009A  
1.6  
1.4  
B
A
2.6  
2.4  
PIN 1 INDEX AREA  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
0.85  
0.65  
3X  
(0.1) TYP  
6
4
0.25  
0.15  
3X  
0.1  
C
C
A B  
3
2
0.05  
PKG  
7
2X 0.4  
0.4  
0.3  
6X  
PIN 1 ID  
(45° X 0.1)  
8
1
0.3  
0.2  
6X  
4X 0.5  
PKG  
4225639/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQY0009A  
PKG  
(0.95)  
3X (0.95)  
1
8
3X (0.2)  
2
PKG  
7
(2.35)  
2X (0.4)  
3
(R0.05) TYP  
6
4
6X (0.55)  
6X (0.25)  
4X (0.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
EXPOSED  
METAL UNDER  
SOLDER MASK  
METAL  
NON- SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4225639/A 03/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
4. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1 mm max height  
PLASTIC QUAD FLATPACK- NO LEAD  
RQY0009A  
PKG  
(0.95)  
3X (0.95)  
1
8
3X (0.2)  
2
PKG  
7
(2.35)  
2X (0.4)  
3
(R0.05) TYP  
6
4
6X (0.55)  
6X (0.25)  
4X (0.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
SCALE: 25X  
4225639/A 03/2020  
NOTES: (continued)  
5.  
Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS62868

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286800CRQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286800CRQYR

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628680ARQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628680ARQYR

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628680CRQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286810CRQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286810CRQYR

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628681ARQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628681ARQYR

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS628681CRQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI

TPS6286820CRQY

TPS62868x 2.4-V to 5.5-V Input, 4-A/6-A Synchronous Step-Down Converter with I2C Interface in QFN Package
TI