TPS630241 [TI]

高效 1.5A 单电感器降压/升压转换器;
TPS630241
型号: TPS630241
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高效 1.5A 单电感器降压/升压转换器

升压转换器 电感器
文件: 总28页 (文件大小:2431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
TPS63024x 高电流、高效单电感器降压-升压转换器  
1 特性  
3 说明  
1
支持降压和升压运行间自动和无缝转换的实际降压  
或升压运行  
TPS63024 是一款高效、低静态电流降压-升压转换  
器,此转换器适用于输入电压会高于或低于输出的应  
用。在升压模式下,输出电流可高达 1.5A,而在降压  
模式下,输出电流可高达 3A。开关内的最大平均电流  
被限制在 3A(典型值)。TPS63024 根据输入电压在  
降压或升压模式之间自动切换,以便在整个输入电压范  
围内调节输出电压,从而确保两个模式间的无缝转换。  
此降压-升压转换器基于一个使用同步整流的固定频  
率、脉宽调制 (PWM) 控制器以获得最高效率。在低负  
载电流情况下,此转换器进入省电模式,以便在整个负  
载电流范围内保持高效率。有一个使用户能够在自动  
PFM/PWM 模式运行和强制 PWM 运行之间进行选择  
PFM/PWM 引脚。在 PWM 模式期间,通常使用一  
2.5MHz 的固定频率。使用一个外部电阻分压器可  
对输出电压进行编程,或者在芯片上对输出电压进行内  
部固定。转换器可被禁用以最大限度地减少电池消耗。  
在关机期间,负载从电池上断开。此器件采用 20 引  
脚,1.766mm x 2.086 mmWCSP 封装。  
输入电压范围 2.3V 5.5V  
1.5A 持续输出电流:VIN 2.5VVOUT = 3.3V  
可调和固定输出电压  
在降压或升压模式中效率高达 95%,而在 VIN  
=
VOUT 时,效率高达 97%  
2.5MHz 典型开关频率  
运行静态电流 35μA  
集成软启动  
省电模式  
真正关断功能  
输出电容器放电功能  
过热保护和过流保护  
宽电容值选择  
小型 1.766mm x 2.086mm20 引脚晶圆级芯片尺  
(WCSP) 封装  
2 应用范围  
器件信息(1)  
手机、智能电话  
平板个人电脑  
器件型号  
TPS63024  
封装  
封装尺寸(标称值)  
个人电脑和智能手机配件  
负载点稳压  
芯片尺寸球状引脚  
栅格阵列  
(DSBGA) (20)  
TPS630241  
TPS630242  
1.766mm x 2.086mm  
电池供电类 应用  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
器件比较  
器件编号  
TPS63024  
TPS630241  
TPS630242  
VOUT  
可调节  
2.9V  
3.3 V  
典型应用  
效率与输出电流间的关系  
L1  
1µH  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
TPS63024  
VIN  
VOUT  
L1  
L2  
2.5 V to 5.5 V  
3.3 V up to 1.5A  
VIN  
EN  
VOUT  
C1  
C2  
2X22µF  
FB  
10µF  
VINA  
GND  
PFM/  
PWM  
VIN = 2.8V, VOUT = 3.3V  
V
V
V
IN = 3.3V, VOUT = 3.3V  
IN = 3.6V, VOUT = 3.3V  
IN = 4.2V, VOUT = 3.3V  
PGND  
TPS630242  
100µ 1m  
10m  
100m  
1 1.5  
Output Current (A)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSCK8  
 
 
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 14  
Power Supply Recommendations...................... 21  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings ............................................................ 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 8  
7.3 Feature Description................................................... 9  
8
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Example .................................................... 21  
11 器件和文档支持 ..................................................... 22  
11.1 器件支持 ............................................................... 22  
11.2 文档支持 ............................................................... 22  
11.3 相关链接................................................................ 22  
11.4 ....................................................................... 22  
11.5 静电放电警告......................................................... 22  
11.6 Glossary................................................................ 22  
12 机械、封装和可订购信息....................................... 22  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (November 2014) to Revision A  
Page  
Added Specifications, Detailed Description section, Application and Implementation section, Power Supply  
Recommendations section, Layout section, Device and Documentation Support section; and, changed status to  
Production Data. .................................................................................................................................................................... 4  
2
Copyright © 2014, Texas Instruments Incorporated  
 
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
5 Pin Configuration and Functions  
WCSP  
20-Pin  
YFF (TOP VIEW)  
E1  
E2  
D1  
C1  
C2  
C3  
C4  
B1  
B2  
B3  
B4  
A1  
A2  
A3  
A4  
D2  
E3  
E4  
D3  
D4  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
VOUT  
FB  
NO.  
A1,A2,A3  
A4  
PWR Buck-boost converter output  
IN Voltage feedback of adjustable version, must be connected to VOUT for fixed output voltage versions  
PWR Connection for Inductor  
IN set low for PFM mode, set high for forced PWM mode. It must not be left floating  
L2  
B1,B2,B3  
B4  
PFM/PWM  
PGND  
GND  
L1  
C1,C2,C3  
C4  
PWR Power Ground  
PWR Analog Ground  
D1,D2,D3  
D4  
PWR Connection for Inductor  
EN  
IN  
Enable input. Set high to enable and low to disable. It must not be left floating.  
VIN  
E1,E2,E3  
E4  
PWR Supply voltage for power stage  
PWR Supply voltage for control stage.  
VINA  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
over junction temperature range (unless otherwise noted)  
VALUE  
MIN  
–0.3  
–0.3  
–0.3  
-0.3  
MAX  
7
UNIT  
Voltage(2)  
VIN, L1, EN, VINA, PFM/PWM  
VOUT, FB  
L2(3)  
V
V
V
V
A
4
4
L2(4)  
5.5  
2.7  
125  
150  
Input current  
Continuos average current into L1(5)  
Operating junction temperature  
Storage temperature range  
TJ  
–40  
–65  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
(3) DC voltage rating.  
(4) AC transient voltage rating.  
(5) Maximum continuos average input current 3.5A, under those condition do not exceed 105°C for more than 25% operating time.  
Copyright © 2014, Texas Instruments Incorporated  
3
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±700  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions(1)  
MIN  
2.3  
2.5  
0.5  
16  
TYP  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
L
Input Voltage Range  
Output Voltage  
3.6  
V
(2)  
Inductance  
1
1.3  
µH  
µF  
°C  
°C  
Cout  
TA  
Output Capacitance(3)  
Operating ambient temperature  
Operating virtual junction temperature  
–40  
–40  
85  
TJ  
125  
(1) Refer to the Application Information section for further information  
(2) Effective inductance value at operating condition. The nominal value given matches a typical inductor to be chosen to meet the  
inductance required.  
(3) Due to the dc bias effect of ceramic capacitors, the effective capacitance is lower then the nominal value when a voltage is applied. This  
is why the capacitance is specified to allow the selection of the nominal capacitor required with the dc bias effect for this type of  
capacitor. The nominal value given matches a typical capacitor to be chosen to meet the minimum capacitance required.  
6.4 Thermal Information  
TPS63024x  
THERMAL METRIC(1)  
YFF  
20 PINS  
53.8  
0.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
10.1  
1.4  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
9.8  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2014, Texas Instruments Incorporated  
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
6.5 Electrical Characteristics  
VIN=2.3V to 5.5V, TJ= –40°C to 125°C, typical values are at TA=25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
VIN  
Input voltage range  
2.3  
5.5  
V
V
VIN_Min  
Minimum input voltage to turn on into full load  
VIN  
Quiescent current  
RLOAD= 2.2  
2.7  
35  
IOUT=0mA, EN=VIN=3.6V,  
VOUT=3.3V TJ=-40°C to 85°C,  
not switching  
70 μA  
12 μA  
IQ  
VOUT  
Isd  
Shutdown current  
EN=low, TJ=-40°C to 85°C  
VIN falling  
0.1  
1.7  
70  
2
2
μA  
V
Under voltage lockout threshold  
Under voltage lockout hysteresis  
Thermal shutdown  
1.6  
1.2  
2.5  
UVLO  
mV  
°C  
Temperature rising  
140  
LOGIC SIGNALS EN, PFM/PWM  
VIH  
High level input voltage  
Low level input voltage  
Input leakage current  
VIN=2.3V to 5.5V  
V
V
VIL  
VIN=2.3V to 5.5V  
0.4  
Ilkg  
PFM/PWM, EN=GND or VIN  
0.01  
0.8  
0.2 μA  
OUTPUT  
VOUT  
VFB  
Output Voltage range  
3.6  
V
V
Feedback regulation voltage  
Feedback voltage accuracy  
Feedback voltage accuracy  
Output voltage accuracy  
Output voltage accuracy(1)  
Output voltage accuracy  
Output voltage accuracy(1)  
TPS63024  
VFB  
PWM mode, TPS63024  
PFM mode, TPS63024  
PWM mode, TPS630241  
PFM mode, TPS630241  
PWM mode, TPS630242  
PFM mode, TPS630242  
VIN =3V; VOUT = 3.3V  
VFB = 0.8V  
-1%  
-1%  
1%  
+3%  
(1)  
VFB  
1.3%  
2.9  
VOUT  
VOUT  
VOUT  
VOUT  
IPWM/PFM  
IFB  
2.871  
2.871  
3.267  
3.267  
2.929  
2.987  
3.333  
3.399  
V
V
2.938  
3.3  
V
3.343  
350  
10  
V
Output current to enter PFM mode  
Feedback input bias current  
High side FET on-resistance  
Low side FET on-resistance  
High side FET on-resistance  
Low side FET on-resistance  
mA  
100 nA  
mΩ  
VIN=3.0V, VOUT=3.3V  
VIN=3.0V, VOUT=3.3V  
VIN=3.0V, VOUT=3.3V  
VIN=3.0V, VOUT=3.3V  
35  
RDS_Buck(on)  
50  
mΩ  
25  
mΩ  
RDS_Boost(on)  
IIN  
50  
mΩ  
VIN=3.0V, VOUT=3.3V TJ= 25°C  
to 125°C  
(2)  
Average input current limit  
2.12  
3
3.54  
A
fs  
Switching Frequency  
2.5  
MHz  
RON_DISC  
Discharge ON-Resistance  
EN=low  
120  
mV/  
V
Line regulation  
Load regulation  
VIN=2.8V to 5.5V, IOUT=1.5A  
7.4  
2.5  
mV/  
A
VIN=3.6V,IOUT=0A to 1.5A  
(1) Conditions: L=1 µH, COUT= 2 × 22µF.  
(2) For variation of this parameter with Input voltage and temperature see Figure 8. To calculate minimum output current in a specific  
working point see Figure 8 and Equation 1 trough Equation 4.  
Copyright © 2014, Texas Instruments Incorporated  
5
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
6.6 Timing Requirements  
VIN= 2.3V to 5.5V, TJ= –40°C to 125°C, typical values are at TA= 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OUTPUT  
EN=low to high, Buck mode  
VIN=3.6V, VOUT=3.3V,  
IOUT=1.5A  
450  
µs  
tSS  
Softstart time  
EN=low to high, Boost mode  
VIN=2.8V, VOUT=3.3V,  
IOUT=1.5A  
700  
100  
µs  
µs  
Time from when EN=high to  
when device starts switching  
td  
Start up delay  
6
Copyright © 2014, Texas Instruments Incorporated  
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
6.7 Typical Characteristics  
.
.
60  
50  
40  
30  
20  
0.016  
0.012  
0.008  
0.004  
T
= -40 ºC  
= 25 ºC  
= 85 ºC  
A
T
A
T
A
T
= -40 ºC  
= 25 ºC  
= 85 ºC  
A
10  
0
T
A
TPS630242  
T
A
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
2.5 2.8 3.1 3.4 3.7  
4
4.3 4.6 4.9 5.2 5.5  
Input Voltage (V)  
Input Voltage (V)  
Figure 1. High Side FET On-Resistance vs VIN  
Figure 2. Quiescent Current vs Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
7
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS63024x use 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible  
operating conditions. This enables the device to keep high efficiency over the complete input voltage and output  
power range. To regulate the output voltage at all possible input voltage conditions, the device automatically  
switches from buck operation to boost operation and back as required by the configuration. It always uses one  
active switch, one rectifying switch, one switch is held on, and one switch held off. Therefore, it operates as a  
buck converter when the input voltage is higher than the output voltage, and as a boost converter when the input  
voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are switching at  
the same time. Keeping one switch on and one switch off eliminates their switching losses. The RMS current  
through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses.  
Controlling the switches this way allows the converter to always keep higher efficiency.  
The device provides a seamless transition from buck to boost or from boost to buck operation.  
7.2 Functional Block Diagram  
L1  
L2  
VIN  
VOUT  
Current  
Sensor  
EN  
PGND  
PGND  
PGND  
VIN  
Gate  
Control  
VOUT  
_
+
_
+
VINA  
Modulator  
Oscillator  
FB  
+
-
VREF  
Device  
Control  
PFM/PWM  
EN  
Temperature  
Control  
PGND  
GND  
PGND  
Figure 3. Functional Block Diagram (Adjustable Output Voltage)  
8
Copyright © 2014, Texas Instruments Incorporated  
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
Functional Block Diagram (continued)  
L1  
L2  
VIN  
VOUT  
Current  
Sensor  
EN  
PGND  
PGND  
PGND  
VIN  
Gate  
Control  
VOUT  
FB  
_
+
_
+
VINA  
Modulator  
Oscillator  
+
-
VREF  
Device  
Control  
PFM/PWM  
EN  
Temperature  
Control  
PGND  
GND  
PGND  
Figure 4. Functional Block Diagram (Fixed Output Voltage)  
7.3 Feature Description  
7.3.1 Undervoltage Lockout (UVLO)  
To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. UVLO shuts  
down the device at input voltages lower than typically 1.7V with a 70 mV hysteresis.  
7.3.2 Output Discharge Function  
When the device is disabled by pulling enable low and the supply voltage is still applied, the internal transistor  
use to discharge the output capacitor is turned on, and the output capacitor is discharged until UVLO is reached.  
This means, if there is no supply voltage applied the output discharge function is also disabled. The transistor  
which is responsible of the discharge function, when turned on, operates like an equivalent 120resistor,  
ensuring typically less than 10ms discharge time for 20uF output capacitance and a 3.3V output.  
7.3.3 Thermal Shutdown  
The device goes into thermal shutdown once the junction temperature exceeds typically 140°C.  
Copyright © 2014, Texas Instruments Incorporated  
9
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Feature Description (continued)  
7.3.4 Softstart  
To minimize inrush current and output voltage overshoot during start up, the device has a Softstart. At turn on,  
the input current raises monotonically until the output voltage reaches regulation. During Softstart, the input  
current follows the current ramp charging the internal Softstart capacitor. The device smoothly ramps up the input  
current bringing the output voltage to its regulated value even if a large capacitor is connected at the output.  
The Softstart time is measured as the time from when the EN pin is asserted to when the output voltage has  
reached 90% of its nominal value. There is typically a 100µs delay time from when the EN pin is asserted to  
when the device starts the switching activity. The Softstart time depends on the load current, the input voltage,  
and the output capacitor. The Softstart time in boost mode is longer then the time in buck mode. The total typical  
Softstart time is 1ms.  
The inductor current is able to increase and always assure a soft start unless a real short circuit is applied at the  
output.  
7.3.5 Short Circuit Protection  
The TPS63024x provides short circuit protection to protect itself and the application. When the output voltage  
does not increase above 1.2V, the device assumes a short circuit at the output and limits the input current to 3A.  
10  
Copyright © 2014, Texas Instruments Incorporated  
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
7.4 Device Functional Modes  
7.4.1 Control Loop Description  
0.8V  
Ramp and Clock  
Generator  
Figure 5. Average Current Mode Control  
The controller circuit of the device is based on an average current mode topology. The average inductor current  
is regulated by a fast current regulator loop which is controlled by a voltage control loop. Figure 5 shows the  
control loop.  
The non inverting input of the transconductance amplifier, gmv, is assumed to be constant. The output of gmv  
defines the average inductor current. The inductor current is reconstructed by measuring the current through the  
high side buck MOSFET. This current corresponds exactly to the inductor current in boost mode. In buck mode  
the current is measured during the on time of the same MOSFET. During the off time, the current is  
reconstructed internally starting from the peak value at the end of the on time cycle. The average current and the  
feedback from the error amplifier gmv forms the correction signal gmc. This correction signal is compared to the  
buck and the boost sawtooth ramp giving the PWM signal. Depending on which of the two ramps the gmc output  
crosses either the Buck or the Boost stage is initiated. When the input voltage is close to the output voltage, one  
buck cycle is always followed by a boost cycle. In this condition, no more than three cycles in a row of the same  
mode are allowed. This control method in the buck-boost region ensures a robust control and the highest  
efficiency.  
Copyright © 2014, Texas Instruments Incorporated  
11  
 
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.2 Power Save Mode Operation  
Heavy Load transient step  
PFM mode at light load  
current  
Comparator High  
Vo+1.3%*Vo  
Vo  
30mV ripple  
Comparator low  
PWM mode  
Absolute Voltage drop  
with positioning  
Figure 6. Power Save Mode Operation  
Depending on the load current, in order to provide the best efficiency over the complete load range, the device  
works in PWM mode at load currents of approximately 350 mA or higher. At lighter loads, the device switches  
automatically into Power Save Mode to reduce power consumption and extend battery life. The PFM/PWM pin is  
used to select between the two different operation modes. To enable Power Save Mode, the PFM/PWM pin must  
be set low.  
During Power Save Mode, the part operates with a reduced switching frequency and lowest supply current to  
maintain high efficiency. The output voltage is monitored with a comparator at every clock cycle by the thresholds  
comp low and comp high. When the device enters Power Save Mode, the converter stops operating and the  
output voltage drops. The slope of the output voltage depends on the load and the output capacitance. When the  
output voltage reaches the comp low threshold, at the next clock cycle the device ramps up the output voltage  
again, by starting operation. Operation can last for one or several pulses until the comp high threshold is  
reached. At the next clock cycle, if the load is still lower than about 350mA, the device switches off again and the  
same operation is repeated. Instead, if at the next clock cycle, the load is above 350mA, the device automatically  
switches to PWM mode.  
In order to keep high efficiency in PFM mode, there is only one comparator active to keep the output voltage  
regulated. The AC ripple in this condition is increased, compared to the PWM mode. The amplitude of this  
voltage ripple in the worst case scenario is 50mV pk-pk, (typically 30mV pk-pk), with 20µF effective output  
capacitance. In order to avoid a critical voltage drop when switching from 0A to full load, the output voltage in  
PFM mode is typically 1.3% above the nominal value in PWM mode. This is called Dynamic Voltage Positioning  
and allows the converter to operate with a small output capacitor and still have a low absolute voltage drop  
during heavy load transients.  
Power Save Mode is disabled by setting the PFM/PWM pin high.  
12  
Copyright © 2014, Texas Instruments Incorporated  
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
Device Functional Modes (continued)  
7.4.3 Current Limit  
The current limit variation depends on the difference between the input and output voltage. The maximum current  
limit value is at the highest difference.  
Given the curves provided in Figure 8, it is possible to calculate the output current reached in boost mode, using  
Equation 1 and Equation 2 and in buck mode using Equation 3 and Equation 4.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
(1)  
(2)  
Output Current Boost  
IOUT = 0 x IIN (1-D)  
V
OUT  
V
Duty Cycle Buck  
D =  
IN  
IOUT = ( 0 x IIN ) / D  
(3)  
Output Current Buck  
where  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
IIN= Minimum average input current (Figure 8)  
(4)  
7.4.4 Supply and Ground  
The TPS63024x provides two input pins (VIN and VINA) and two ground pins (PGND and GND).  
The VIN pin supplies the input power, while the VINA pin provides voltage for the control circuits. A similar  
approach is used for the ground pins. GND and PGND are used to avoid ground shift problems due to the high  
currents in the switches. The reference for all control functions is the GND pin. The power switches are  
connected to PGND. Both grounds must be connected on the PCB at only one point, ideally, close to the GND  
pin.  
7.4.5 Device Enable  
The device starts operation when the EN pin is set high. The device enters shutdown mode when the EN pin is  
set low. In shutdown mode, the regulator stops switching, all internal control circuitry is switched off, and the load  
is disconnected from the input.  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
 
 
 
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS63024x are high efficiency, low quiescent current buck-boost converters suitable for application where  
the input voltage is higher, lower or equal to the output. Output currents can go as high as 1.5A in boost mode  
and as high as 3A in buck mode. The maximum average current in the switches is limited to a typical value of  
3A.  
8.2 Typical Application  
L1  
1µH  
TPS63024  
VIN  
VOUT  
L1  
L2  
2.5 V to  
5.5 V  
3.3 V up to 1.5A  
VIN  
EN  
VOUT  
C1  
C2/C3  
2X22µF  
R1  
560k  
FB  
10µF  
VINA  
GND  
PFM/  
PWM  
R2  
180k  
V
IN or GND  
PGND  
Figure 7. 3.3-V Adjustable Version  
8.2.1 Design Requirements  
The design guideline provides a component selection to operate the device within the recommended operating  
conditions.  
Table 1 shows the list of components for the Application Characteristic Curves.  
(1)  
Table 1. Components for Application Characteristic Curves  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
Texas Instruments  
XAL4020-102MEB, Coilcraft  
Standard  
TPS63024  
L1  
1 μH, 8.75A, 13mΩ, SMD  
10 μF 6.3V, 0603, X5R ceramic  
22 μF 6.3V, 0603, X5R ceramic  
560kΩ  
C1  
C2,C3  
R1  
Standard  
Standard  
R2  
180kΩ  
Standard  
(1) See Third-Party Products Discalimer  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
8.2.2 Detailed Design Procedure  
The first step is the selection of the output filter components. To simplify this process Table 2 outline possible  
inductor and capacitor value combinations.  
8.2.2.1 Output Filter Design  
Table 2. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL  
INDUCTOR  
NOMINAL OUTPUT CAPACITOR VALUE [µF](2)  
VALUE [µH](1)  
44  
47  
66  
88  
100  
0.680  
1.0  
+
+
+
+
+
+
+
+
+
(3)  
+
+
1.5  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and –30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by 20% and –50%.  
(3) Typical application. Other check mark indicates recommended filter combinations  
8.2.2.2 Inductor Selection  
The inductor selection is affected by several parameter like inductor ripple current, output voltage ripple,  
transition point into Power Save Mode, and efficiency. See Table 3 for typical inductors.  
(1)  
Table 3. List of Recommended Inductors  
INDUCTOR VALUE  
COMPONENT SUPPLIER  
Coilcraft XAL4020-102ME  
Toko, DFE322512C  
SIZE (LxWxH mm)  
4 X 4 X 2.10  
3.2 X 2.5 X 1.2  
4.4 X 4.1 X 1.2  
3 X 3 X 1.2  
Isat/DCR  
4.5A/10mΩ  
4.7A/34mΩ  
4.1A/38mΩ  
6.6A/42.10mΩ  
5A/17.40mΩ  
7.7A/36mΩ  
1 µH  
1 µH  
1 µH  
TDK, SPM4012  
1 µH  
Wuerth, 74438334010  
Coilcraft XFL4012-601ME  
Wuerth,744383340068  
0.6 µH  
0.68µH  
4 X 4 X 1.2  
3 X 3 X 1.2  
(1) See Third-Party Products Desclaimer  
For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses. Especially at  
high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors,  
the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger  
inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for  
the inductor in steady state operation is calculated using Equation 6. Only the equation which defines the switch  
current in boost mode is shown, because this provides the highest value of current and represents the critical  
current value for selecting the right inductor.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
(5)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
=
+
2 ´ f ´ L  
where  
D =Duty Cycle in Boost mod  
ƒ = Converter switching frequency (typical 2.5MHz)  
L = Inductor value  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
Note: The calculation must be done for the minimum input voltage which is possible to have in boost mode (6)  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It's recommended to choose an inductor with a saturation current 20% higher  
than the value calculated using Equation 6. Possible inductors are listed in Table 3.  
Copyright © 2014, Texas Instruments Incorporated  
15  
 
 
 
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
8.2.2.3 Capacitor Selection  
8.2.2.3.1 Input Capacitor  
At least a 10μF input capacitor is recommended to improve line transient behavior of the regulator and EMI  
behavior of the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the  
VIN and PGND pins of the IC is recommended. This capacitance can be increased without limit. If the input  
supply is located more than a few inches from the TPS63024x converter additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 μF  
is a typical choice.  
8.2.2.3.2 Output Capacitor  
For the output capacitor, use of a small ceramic capacitors placed as close as possible to the VOUT and PGND  
pins of the IC is recommended. The recommended nominal output capacitance value is 20 µF with a variance as  
outlined in Table 2.  
There is also no upper limit for the output capacitance value. Larger capacitors causes lower output voltage  
ripple as well as lower output voltage drop during load transients.  
8.2.2.4 Setting The Output Voltage  
When the adjustable output voltage version TPS63024x is used, the output voltage is set by an external resistor  
divider. The resistor divider must be connected between VOUT, FB and GND. When the output voltage is  
regulated properly, the typical value of the voltage at the FB pin is 800mV. The current through the resistive  
divider should be about 10 times greater than the current into the FB pin. The typical current into the FB pin is  
0.1μA, and the voltage across the resistor between FB and GND, R2, is typically 800 mV. Based on these two  
values, the recommended value for R2 should be lower than 180k, in order to set the divider current at 4μA or  
higher. It is recommended to keep the value for this resistor in the range of 180k. From that, the value of the  
resistor connected between VOUT and FB, R1, depending on the needed output voltage (VOUT), can be  
calculated using Equation 7:  
æ
ç
è
ö
VOUT  
VFB  
R1 = R2 ×  
- 1  
÷
ø
(7)  
8.2.3 Application Curves  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
4.5  
TA  
TA  
TA  
= - 40 °C  
TPS630242  
4
=
=
25 °C  
85 °C  
3.5  
3
2.5  
2
VIN = 2.8V, VOUT = 3.3V  
1.5  
1
V
V
V
IN = 3.3V, VOUT = 3.3V  
IN = 3.6V, VOUT = 3.3V  
IN = 4.2V, VOUT = 3.3V  
TPS630242  
100µ 1m  
0.5  
2.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
10m  
100m  
1 1.5  
Input Voltage (V)  
Output Current (A)  
VOUT = 3.3 V  
PFM/PWM = Low  
Figure 8. Minimum Average Input Current vs Input Voltage  
Figure 9. Efficiency vs Output Current  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TPS630242  
VIN = 2.8V, VOUT = 3.3V  
V
V
V
IN = 3.3V, VOUT = 3.3V  
IN = 3.6V, VOUT = 3.3V  
IN = 4.2V, VOUT = 3.3V  
100µ  
1m  
10m  
Output Current (A)  
100m  
1 1.5  
PFM/PWM = High  
Figure 10. Efficiency vs Output Current  
100  
100  
TPS630241  
90  
TPS630241  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
80  
70  
60  
50  
40  
30  
VIN = 2.8V, VOUT = 2.9V  
VIN = 2.8V, VOUT = 2.9V  
20  
10  
0
V
V
V
IN = 2.9V, VOUT = 2.9V  
IN = 3.6V, VOUT = 2.9V  
IN = 4.2V, VOUT = 2.9V  
V
V
V
IN = 2.9V, VOUT = 2.9V  
IN = 3.6V, VOUT = 2.9V  
IN = 4.2V, VOUT = 2.9V  
100µ  
1m  
10m  
100m  
11.5  
100µ  
1m  
10m  
100m  
1 1.5  
Output Current (A)  
Output Current (A)  
PFM/PWM = High  
PFM/PWM = Low  
Figure 12. Efficiency vs Output Current  
Figure 11. Efficiency vs Output Current  
100  
95  
90  
85  
80  
75  
70  
100  
90  
80  
70  
60  
50  
40  
30  
20  
I
I
OUT = 10mA  
OUT = 10mA  
I
I
OUT = 200mA  
= 1A  
OUT = 200mA  
= 1A  
IOUT  
IOUT = 1.5A  
IOUT  
IOUT = 1.5A  
TPS630242  
TPS630242  
2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7  
5
5.3 5.5  
2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7  
5
5.3 5.5  
Input Voltage (V)  
Input Voltage (V)  
PFM/PWM = Low  
VOUT = 3.3 V  
PFM/PWM = High  
VOUT = 3.3 V  
Figure 13. Efficiency vs Input Voltage  
Figure 14. Efficiency vs Input Voltage  
Copyright © 2014, Texas Instruments Incorporated  
17  
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
95  
90  
85  
80  
I
I
OUT = 10mA  
OUT = 10mA  
I
OUT = 200mA  
= 1A  
I
OUT = 200mA  
= 1A  
75  
70  
IOUT  
IOUT = 1.5A  
IOUT  
IOUT = 1.5A  
TPS630241  
TPS630241  
2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7  
5
5.3 5.5  
2.3 2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7  
5
5.3 5.5  
Input Voltage (V)  
Input Voltage (V)  
PFM/PWM = Low  
VOUT = 2.9 V  
PFM/PWM = High  
VOUT = 2.9 V  
Figure 15. Efficiency vs Input Voltage  
Figure 16. Efficiency vs Input Voltage  
3.3050  
3.3600  
3.3500  
3.3400  
3.3300  
3.3200  
3.3100  
3.3000  
3.2900  
3.2800  
VIN = 2.8V  
VIN = 3.3V  
VIN = 3.6V  
3.3000  
3.2950  
3.2900  
3.2850  
3.2800  
VIN = 4.2V  
VIN = 2.8V  
VIN = 3.3V  
VIN = 3.6V  
TPS630242  
VIN = 4.2V  
10  
TPS630242  
1k 1.5k  
1
100  
1k 1.5k  
1
10  
100  
Output Current (mA)  
Output Current (mA)  
PFM/PWM = Low  
PFM/PWM = High  
Figure 17. Output Voltage vs Output Current  
Figure 18. Output Voltage vs Output Current  
TPS630242  
TPS630242  
L2  
L2  
L1  
L1  
V
50mV/div  
V
50mV/div  
OUT_Ripple  
OUT_Ripple  
Time 4µs/div  
Time 4µs/div  
VIN = 3.3 V  
IOUT = 290 mA  
VIN = 2.8 V  
IOUT = 16 mA  
Figure 19. Output Voltage Ripple in Buck-Boost Mode  
and PFM to PWM Transition  
Figure 20. Output Voltage Ripple in Boost Mode and PFM  
Operation  
18  
Copyright © 2014, Texas Instruments Incorporated  
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
TPS630242  
TPS630242  
L1  
L2  
L2  
L1  
V
50mV/div  
OUT_Ripple  
V
50mV/div  
OUT_Ripple  
Time 4µs/div  
Time 1µs/div  
VIN = 4.2 V  
IOUT = 16 mA  
VIN = 2.5 V  
IOUT = 1 A  
Figure 21. Output Voltage Ripple in Buck Mode  
and PFM Operation  
Figure 22. Switching Waveforms in Boost Mode  
and PWM Operation  
TPS630242  
TPS630242  
L1  
L2  
L2  
L1  
V
50mV/div  
V
10mV/div  
OUT_Ripple  
OUT_Ripple  
Time 1µs/div  
Time 1µs/div  
VIN = 4.5 V  
IOUT = 1 A  
VIN = 3.3 V  
IOUT = 1 A  
Figure 23. Switching Waveforms in Buck Mode  
and PWM Operation  
Figure 24. Switching Waveforms in Buck-Boost Mode  
and PWM Operation  
TPS630242  
TPS630242  
Output Current  
1A/div  
Output Current  
1A/div  
Output Voltage  
200mV/div, AC  
Output Voltage  
200mV/div, AC  
Time 200µs/div  
Time 200µs/div  
VIN = 2.8 V  
IOUT = 0 A to 1.5 A  
VIN = 4.2 V  
IOUT = 0 A to 1.5 A  
Figure 25. Load Transient Response Boost Mode  
Figure 26. Load Transient Response Buck Mode  
Copyright © 2014, Texas Instruments Incorporated  
19  
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
TPS630242  
TPS630242  
Enable  
2V/div, DC  
Input Voltage  
200mV/div,  
Offset 3V  
Output Voltage  
1V/div, DC  
Output Voltage  
50mV/div  
Inductor Current  
500mA/div  
Time 100µs/div  
Time 100µs/div  
VIN = from 3.5 V to 3.6 V  
IOUT = 1.5 A  
VIN = 2.5 V  
Figure 28. Start Up After Enable  
IOUT = 0 A  
Figure 27. Line Transient Response  
TPS630242  
Enable  
2V/div, DC  
Output Voltage  
1V/div, DC  
Inductor Current  
500mA/div  
Time 100µs/div  
VIN = 4.5 V  
Figure 29. Start Up After Enable  
IOUT = 0 A  
20  
Copyright © 2014, Texas Instruments Incorporated  
TPS63024  
TPS630241, TPS630242  
www.ti.com.cn  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
9 Power Supply Recommendations  
The TPS63024x device family has no special requirements for its input power supply. The input power supply’s  
output current needs to be rated according to the supply voltage, output voltage and output current of the  
TPS63024x.  
10 Layout  
10.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TPS63024x devices.  
Place input and output capacitors as close as possible to the IC. Traces need to be kept short. Routing wide  
and direct traces to the input and output capacitor results in low trace resistance and low parasitic inductance.  
Use a common-power GND.  
The sense trace connected to FB is signal trace. Keep these traces away from L1 and L2 nodes.  
10.2 Layout Example  
L
GND  
GND  
Vout  
Cin  
Cout  
Vin  
R1  
R2  
Figure 30. TPS63024x Layout  
版权 © 2014, Texas Instruments Incorporated  
21  
TPS63024  
TPS630241, TPS630242  
ZHCSDM2A NOVEMBER 2014REVISED DECEMBER 2014  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
TPS63024EVM-553 用户指南,TPS63024 高电流、高效率单电感器降压-升压转换器》SLVUA24  
11.3 相关链接  
下面的表格列出了快速访问链接。范围包括技术文档、支持与社区资源、工具和软件,以及样片或购买的快速访  
问。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
请单击此处  
支持与社区  
请单击此处  
请单击此处  
请单击此处  
TPS63024  
TPS630241  
TPS630242  
11.4 商标  
All trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
22  
版权 © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS630241YFFR  
TPS630241YFFT  
TPS630242YFFR  
TPS630242YFFT  
TPS63024YFFR  
TPS63024YFFT  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
20  
20  
20  
20  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
TPS  
630241  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
YFF  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
TPS  
630241  
YFF  
TPS  
630242  
YFF  
TPS  
630242  
YFF  
TPS  
63024  
YFF  
TPS  
63024  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS630241YFFR  
TPS630241YFFT  
TPS630242YFFR  
TPS630242YFFT  
TPS63024YFFR  
TPS63024YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
20  
20  
20  
20  
20  
20  
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
1.89  
1.89  
1.89  
1.89  
1.89  
1.89  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
0.69  
0.69  
0.69  
0.69  
0.69  
0.69  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-Jun-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS630241YFFR  
TPS630241YFFT  
TPS630242YFFR  
TPS630242YFFT  
TPS63024YFFR  
TPS63024YFFT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
20  
20  
20  
20  
20  
20  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
3000  
250  
Pack Materials-Page 2  
D: Max = 2.116 mm, Min =2.056 mm  
E: Max = 1.796 mm, Min =1.736 mm  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS630241YFFR

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS630241YFFT

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS630242

高效 1.5A 单电感器降压/升压转换器
TI

TPS630242YFFR

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS630242YFFT

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS63024YFFR

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS63024YFFT

高效 1.5A 单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS630250

采用 3.7mm² DSBGA 封装的 4A 开关单电感器降压/升压转换器
TI

TPS630250RNCR

采用 3.7mm² DSBGA 封装的 4A 开关单电感器降压/升压转换器 | RNC | 14 | -40 to 125
TI

TPS630250RNCT

采用 3.7mm² DSBGA 封装的 4A 开关单电感器降压/升压转换器 | RNC | 14 | -40 to 125
TI

TPS630250YFFR

采用 3.7mm² DSBGA 封装的 4A 开关单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI

TPS630250YFFT

采用 3.7mm² DSBGA 封装的 4A 开关单电感器降压/升压转换器 | YFF | 20 | -40 to 125
TI