TPS63027 [TI]

高效 4.5A 开关单电感器降压/升压转换器;
TPS63027
型号: TPS63027
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高效 4.5A 开关单电感器降压/升压转换器

升压转换器 开关 电感器
文件: 总25页 (文件大小:1191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS63027  
ZHCSFX4 DECEMBER 2016  
TPS63027 高电流、高效单电感器降压-升压转换器  
1 特性  
3 说明  
1
真正的降压或升压运行,可在降压与升压运行状态  
之间自动无缝切换  
TPS63027 是一款具有低静态电流的高效降压-升压转  
换器,适用于输入电压可能高于或低于输出电压的应  
用。在升压模式下,输出电流可高达 2A,而在降压模  
式下,输出电流可高达 4A。开关的最大平均电流限制  
4.5A(典型值)。TPS63027 能够根据输入电压在  
降压与升压模式之间自动切换,确保在两种模式之间无  
缝切换,从而在整个输入电压范围内调节输出电压。此  
降压-升压转换器基于一个使用同步整流的固定频率、  
脉宽调制 (PWM) 控制器以获得最高效率。在低负载电  
流情况下,此转换器进入省电模式,以便在整个负载电  
流范围内保持高效率。有一个使用户能够在自动  
PFM/PWM 模式运行和强制 PWM 运行之间进行选择  
PFM/PWM 引脚。在 PWM 模式下通常使用  
2.5MHz 固定频率。使用一个外部电阻器分压器可对输  
出电压进行编程,或者在芯片上对输出电压进行内部固  
定。转换器可被禁用以大大减少电池消耗。在关机期  
间,负载从电池上断开。此器件采用 25 引脚 2.1mm x  
2.1 mm WCSP 封装。  
2.3V 5.5V 输入电压范围  
1.0V 5.5V 输出电压范围  
2A 持续输出电流:VIN 2.5VVOUT = 3.5V  
效率高达 96%  
2.5MHz 典型开关频率  
35μA 静态工作电流  
集成软启动  
节能模式  
真正实现关断  
输出电容器放电功能  
过热保护以及过流保护  
宽泛的电容选择  
小型 2.1mm x 2.1mm25 引脚晶圆级芯片  
(WCSP) 封装  
2 应用范围  
手机、智能电话  
平板个人电脑  
器件信息(1)  
器件型号  
TPS63027  
封装  
封装尺寸(标称值)  
个人电脑和智能手机配件  
负载点稳压  
DSBGA (25)  
2.1mm x 2.1mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
电池供电类 应用  
4 典型应用  
sp  
效率与输出电流间的关系  
1uH  
L1  
L2  
VIN  
VOUT  
2.3V - 5.5V  
up to 5.5V / 2A  
VIN  
AVIN  
EN  
VOUT  
10µF  
FB  
2x  
22µF  
MODE  
GND  
AGND  
TPS63027  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSDK8  
 
 
 
TPS63027  
ZHCSFX4 DECEMBER 2016  
www.ti.com.cn  
目录  
9.3 Feature Description................................................... 7  
9.4 Device Functional Modes.......................................... 9  
10 Application and Implementation........................ 12  
10.1 Application Information.......................................... 12  
10.2 Typical Applications ............................................. 12  
11 Power Supply Recommendations ..................... 18  
12 Layout................................................................... 18  
12.1 Layout Guidelines ................................................. 18  
12.2 Layout Example .................................................... 18  
13 器件和文档支持 ..................................................... 19  
13.1 器件支持 ............................................................... 19  
13.2 文档支持 ............................................................... 19  
13.3 接收文档更新通知 ................................................. 19  
13.4 社区资源................................................................ 19  
13.5 ....................................................................... 19  
13.6 静电放电警告......................................................... 19  
13.7 Glossary................................................................ 19  
14 机械、封装和可订购信息....................................... 19  
1
2
3
4
5
6
7
8
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
典型应用................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
8.1 Absolute Maximum Ratings ...................................... 4  
8.2 ESD Ratings ............................................................ 4  
8.3 Recommended Operating Conditions....................... 4  
8.4 Thermal Information.................................................. 4  
8.5 Electrical Characteristics........................................... 5  
8.6 Timing Requirements................................................ 6  
8.7 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 7  
9.1 Overview ................................................................... 7  
9.2 Functional Block Diagram ......................................... 7  
9
5 修订历史记录  
日期  
修订版本  
注释  
2016 12 月  
*
最初发布版本  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
6
Device Comparison Table  
PART NUMBER  
VOUT  
TPS63027  
Adjustable  
7 Pin Configuration and Functions  
YFF Package  
DSBGA 25-Pin  
Top View  
1
2
VIN  
L1  
3
VIN  
L1  
4
VIN  
L1  
5
VIN  
AVIN  
A
L1  
EN  
B
GND  
GND  
GND  
MODE  
AGND  
AGND  
FB  
C
L2  
L2  
L2  
L2  
D
VOUT  
VOUT  
VOUT  
VOUT  
E
Pin Functions  
PIN  
DESCRIPTION  
NAME  
NO  
VIN  
A1, A2, A3, Supply voltage for power stage  
A4  
AVIN  
L1  
A5  
Supply voltage for control stage  
B1, B2, B3, Connection for Inductor  
B4  
EN  
B5  
Enable input. Set high to enable and low to disable. It must not be left floating  
GND  
MODE  
C1,C2,C3 Power Ground  
C4  
PFM/PWM Mode selection. Set HIGH for PFM mode, set LOW for forced PWM mode. It must not be left  
floating  
AGND  
L2  
C5, D5  
Analog Ground  
D1, D2, D3, Connection for Inductor  
D4  
VOUT  
FB  
E1, E2, E3, Buck-Boost converter output  
E4  
E5  
Voltage feedback of adjustable version, must be connected to VOUT on fixed output voltage versions  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS63027  
ZHCSFX4 DECEMBER 2016  
www.ti.com.cn  
8 Specifications  
D/S  
8.1 Absolute Maximum Ratings  
over junction temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
Voltage(2)  
VIN, L1, L2, EN, VINA, PFM/PWM, VOUT, FB  
Continuos average current into L1(3)  
–0.3  
7
Input current  
2.7  
125  
150  
A
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
(3) Maximum continuos average input current 3.5 A, under those condition do not exceed 105°C for more than 25% operating time.  
8.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
8.3 Recommended Operating Conditions  
(1)  
See  
MIN  
2.3  
1
NOM  
MAX  
5.5  
UNIT  
V
VIN  
VOUT  
TA  
Input voltage  
Output voltage  
5.5  
V
Operating ambient temperature  
Operating virtual junction temperature  
–40  
–40  
85  
°C  
°C  
TJ  
125  
(1) Refer to the Application and Implementation section for further information  
8.4 Thermal Information  
TPS63027  
YFF (DSBGA)  
25 PINS  
62.1  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
0.4  
10.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
10.5  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
8.5 Electrical Characteristics  
VIN= 2.3 V to 5.5 V, TJ= –40°C to +125°C, typical values are at TA= 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY  
VIN  
Input voltage range  
Minimum input voltage to turn on into full load IOUT = 2 A  
2.3  
5.5  
V
V
A
VIN;LOAD  
IOUT  
2.8  
2
Continuous output current(1)  
VIN 2.5 V, VOUT = 3.3 V  
IOUT = 0 mA, EN = VIN = 3.6 V,  
VOUT = 3.3 V TJ = –40°C to +85°C,  
not switching (PFM Mode)  
Quiescent current, VIN  
35  
70  
12  
μA  
μA  
IQ  
IOUT = 0 mA, EN = VIN = 3.6 V,  
VOUT = 3.3 V TJ = –40°C to +85°C,  
not switching (PFM Mode)  
Quiescent current, VOUT  
ISD  
Shutdown current  
EN = low, TJ = –40°C to +85°C  
VIN falling  
0.1  
1.7  
60  
2
2
μA  
V
Undervoltage lockout threshold  
Undervoltage lockout hysteresis  
Thermal shutdown  
1.6  
UVLO  
mV  
°C  
°C  
Temperature rising  
140  
20  
Thermal shutdown hysteresis  
LOGIC SIGNALS EN, PFM/PWM  
VIH  
High-level input voltage  
Low-level input voltage  
Input leakage current  
VIN = 2.3 V to 5.5 V  
VIN = 2.3 V to 5.5 V  
EN = GND or VIN  
1.2  
1
V
V
VIL  
0.4  
0.2  
Ilkg  
0.01  
0.8  
μA  
OUTPUT  
VOUT  
VFB  
Output voltage range  
VIN = 3.6 V, IOUT = 100 mA  
5.5  
V
V
Feedback regulation voltage  
Feedback voltage accuracy  
Feedback voltage accuracy(2)  
Output current to enter PFM mode  
Feedback input bias current  
High-side FET on-resistance  
Low-side FET on-resistance  
High-side FET on-resistance  
Low-side FET on-resistance  
VFB  
PWM mode  
–1%  
–1%  
1%  
3%  
VFB  
PFM mode  
1.3%  
350  
10  
IPWM/PFM  
IFB  
VIN = 3 V; VOUT = 3.3 V  
VFB = 0.8 V  
mA  
nA  
100  
VIN = 3 V, VOUT = 3.3 V  
VIN = 3 V, VOUT = 3.3 V  
VIN = 3 V, VOUT = 3.3 V  
VIN = 3 V, VOUT = 3.3 V  
48  
mΩ  
mΩ  
mΩ  
mΩ  
RDS;ON(Buc  
k)  
56  
33  
RDS;ON(Boo  
st)  
56  
VIN = 3 V, VOUT = 3.3 V TJ = 65°C to  
125°C  
IIN  
Average input current limit(3)  
3.5  
4.5  
5
A
fSW  
Switching frequency  
Discharge ON-resistance  
Line regulation  
2.5  
120  
7.4  
5
MHz  
RON_DISC  
EN = low  
VIN = 2.8 V to 5.5 V, IOUT = 2 A  
VIN= 3.6 V, IOUT = 0 A to 2 A  
mV/V  
mV/A  
Load regulation  
(1) For minimum output current in a specific working point see 6 and 公式 1 trough 公式 4.  
(2) Conditions: L = 1 µH, COUT = 2 × 22 µF.  
(3) For variation of this parameter with Input voltage and temperature see 6.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS63027  
ZHCSFX4 DECEMBER 2016  
www.ti.com.cn  
8.6 Timing Requirements  
VIN= 2.3 V to 5.5 V, TJ= –40°C to +125°C, typical values are at TA= 25°C (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
OUTPUT  
VOUT = EN = low to high, Buck mode VIN = 3.6 V,  
VOUT = 3.3 V, IOUT = 2 A  
450  
700  
100  
µs  
µs  
µs  
tSS  
Soft-start time  
Start up delay  
VOUT = EN = low to high, Boost mode VIN = 2.8 V,  
VOUT = 3.3 V, IOUT = 2 A  
Time from when EN = high to when device starts  
switching  
td  
8.7 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
47,5  
45  
42,5  
40  
37,5  
35  
32,5  
30  
27,5  
25  
22,5  
20  
17,5  
15  
12,5  
TPS63027 VOUT = 3.3V  
TPS63027 VOUT = 3.3V  
10  
7,5  
-40°C  
25 °C  
85°C  
-40°C  
25 °C  
85°C  
5
2,5  
0
2,5  
2,75  
3
3,25  
3,5  
3,75  
4
4,25  
4,5  
4,75  
5
5,25  
5,5  
2,5  
2,75  
3
3,25  
3,5  
3,75  
4
4,25  
4,5  
4,75  
5
5,25  
5,5  
Input Voltage [V]  
Input Voltage [V]  
1. High Side FET On-Resistance vs Input Voltage  
2. Quiescent Current vs Input Voltage  
6
版权 © 2016, Texas Instruments Incorporated  
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
9 Detailed Description  
9.1 Overview  
The TPS63027 use 4 internal N-channel MOSFETs to maintain synchronous power conversion at all possible  
operating conditions. This enables the device to keep high efficiency over the complete input voltage and output  
power range. To regulate the output voltage at all possible input voltage conditions, the device automatically  
switches from buck operation to boost operation and back as required by the configuration. It always uses one  
active switch, one rectifying switch, one switch is held on, and one switch held off. Therefore, it operates as a  
buck converter when the input voltage is higher than the output voltage, and as a boost converter when the input  
voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are switching at  
the same time. Keeping one switch on and one switch off eliminates their switching losses. The RMS current  
through the switches and the inductor is kept at a minimum, to minimize switching and conduction losses.  
Controlling the switches this way allows the converter to always keep higher efficiency.  
The device provides a seamless transition from buck to boost or from boost to buck operation.  
9.2 Functional Block Diagram  
L1  
L2  
VIN  
VOUT  
Current  
Sensor  
EN  
PGND  
PGND  
PGND  
VIN  
Gate  
Control  
VOUT  
_
+
_
+
VINA  
Modulator  
Oscillator  
FB  
+
-
VREF  
Device  
Control  
PFM/PWM  
EN  
Temperature  
Control  
PGND  
GND  
PGND  
Copyright © 2016, Texas Instruments Incorporated  
9.3 Feature Description  
9.3.1 Undervoltage Lockout (UVLO)  
To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. UVLO shuts  
down the device at low input voltages to ensure proper operation. See eletrical characteristics table for the  
dedicated values.  
版权 © 2016, Texas Instruments Incorporated  
7
TPS63027  
ZHCSFX4 DECEMBER 2016  
www.ti.com.cn  
Feature Description (接下页)  
9.3.2 Output Discharge Function  
When the device is disabled by pulling enable low and the supply voltage is still applied, the internal transistor  
use to discharge the output capacitor is turned on, and the output capacitor is discharged until UVLO is reached.  
This means, if there is no supply voltage applied the output discharge function is also disabled. The transistor  
which is responsible of the discharge function, when turned on, operates like an equivalent 120-resistor,  
ensuring typically less than 10ms discharge time for 20-µF output capacitance and a 3.3 V output.  
9.3.3 Thermal Shutdown  
The device goes into thermal shutdown once the junction temperature exceeds typically 140°C with a 20°C  
hysteresis.  
9.3.4 Softstart  
To minimize inrush current and output voltage overshoot during start up, the device has a Softstart. At turn on,  
the input current raises monotonic until the output voltage reaches regulation. During Softstart, the input current  
follows the current ramp charging the internal Softstart capacitor. The device smoothly ramps up the input current  
bringing the output voltage to its regulated value even if a large capacitor is connected at the output.  
The Softstart time is measured as the time from when the EN pin is asserted to when the output voltage has  
reached 90% of its nominal value. There is a delay time from when the EN pin is asserted to when the device  
starts the switching activity. The Softstart time depends on the load current, the input voltage, and the output  
capacitor. The Softstart time in boost mode is longer then the time in buck mode.  
The inductor current is able to increase and always assure a soft start unless a real short circuit is applied at the  
output.  
9.3.5 Short Circuit Protection  
The TPS63027 provides short circuit protection to protect itself and the application. When the output voltage  
does not increase above 1.2V, the device assumes a short circuit at the output and limits the input current to 4 A.  
8
版权 © 2016, Texas Instruments Incorporated  
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
9.4 Device Functional Modes  
9.4.1 Control Loop Description  
0.8V  
Ramp and Clock  
Generator  
3. Average Current Mode Control  
The controller circuit of the device is based on an average current mode topology. The average inductor current  
is regulated by a fast current regulator loop which is controlled by a voltage control loop. 3 shows the control  
loop.  
The non inverting input of the transconductance amplifier, gmv, is assumed to be constant. The output of gmv  
defines the average inductor current. The inductor current is reconstructed by measuring the current through the  
high side buck MOSFET. This current corresponds exactly to the inductor current in boost mode. In buck mode  
the current is measured during the on time of the same MOSFET. During the off time, the current is  
reconstructed internally starting from the peak value at the end of the on time cycle. The average current and the  
feedback from the error amplifier gmv forms the correction signal gmc. This correction signal is compared to the  
buck and the boost sawtooth ramp giving the PWM signal. Depending on which of the two ramps the gmc output  
crosses either the Buck or the Boost stage is initiated. When the input voltage is close to the output voltage, one  
buck cycle is always followed by a boost cycle. In this condition, no more than three cycles in a row of the same  
mode are allowed. This control method in the buck-boost region ensures a robust control and the highest  
efficiency.  
版权 © 2016, Texas Instruments Incorporated  
9
 
TPS63027  
ZHCSFX4 DECEMBER 2016  
www.ti.com.cn  
Device Functional Modes (接下页)  
9.4.2 Power Save Mode Operation  
Heavy Load transient step  
PFM mode at light load  
current  
Comparator High  
Vo+1.3%*Vo  
Vo  
30mV ripple  
Comparator low  
PWM mode  
Absolute Voltage drop  
with positioning  
4. Power Save Mode Operation  
Depending on the load current, in order to provide the best efficiency over the complete load range, the device  
works in PWM mode at load currents of typically 350mA or higher. At lighter loads, the device switches  
automatically into Power Save Mode to reduce power consumption and extend battery life. The MODE pin is  
used to select between the two different operation modes. To enable Power Save Mode, the MODE pin must be  
set HIGH.  
During Power Save Mode, the part operates with a reduced switching frequency and lowest supply current to  
maintain high efficiency. The output voltage is monitored with a comparator at every clock cycle by the thresholds  
comp low and comp high. When the device enters Power Save Mode, the converter stops operating and the  
output voltage drops. The slope of the output voltage depends on the load and the output capacitance. When the  
output voltage reaches the comp low threshold, at the next clock cycle the device ramps up the output voltage  
again, by starting operation. Operation can last for one or several pulses until the comp high threshold is  
reached. At the next clock cycle, if the load is still lower than about 350mA, the device switches off again and the  
same operation is repeated. Instead, if at the next clock cycle, the load is above 350mA, the device automatically  
switches to PWM mode.  
In order to keep high efficiency in PFM mode, there is only one comparator active to keep the output voltage  
regulated. The AC ripple in this condition is increased, compared to the PWM mode. The amplitude of this  
voltage ripple is typically 30 mV pk-pk, with 2-µF effective output capacitance. In order to avoid a critical voltage  
drop when switching from 0A to full load, the output voltage in PFM mode is typically 1.3% above the nominal  
value in PWM mode. This is called Dynamic Voltage Positioning and allows the converter to operate with a small  
output capacitor and still have a low absolute voltage drop during heavy load transients.  
Power Save Mode is disabled by setting the MODE pin LOW.  
10  
版权 © 2016, Texas Instruments Incorporated  
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
Device Functional Modes (接下页)  
9.4.3 Current Limit  
The current limit variation depends on the difference between the input and output voltage. The maximum current  
limit value is at the highest difference.  
Given the curves provided in 6, it is possible to calculate the output current reached in boost mode, using 公式  
1 and 公式 2 and in buck mode using 公式 3 and 公式 4.  
V
- V  
IN  
OUT  
V
Duty Cycle Boost  
D =  
OUT  
(1)  
(2)  
Output Current Boost  
IOUT = 0 x IIN (1-D)  
V
OUT  
V
Duty Cycle Buck  
D =  
IN  
(3)  
(4)  
Output Current Buck  
IOUT = ( 0 x IIN ) / D  
where  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
IIN= Minimum average input current (6)  
9.4.4 Supply and Ground  
The TPS63027 provides two input pins (VIN and AVIN) and two ground pins (GND and AGND).  
The VIN pin supplies the input power, while the AVIN pin provides voltage for the control circuits. A similar  
approach is used for the ground pins. AGND and GND are used to avoid ground shift problems due to the high  
currents in the switches. The reference for all control functions is the AGND pin. The power switches are  
connected to GND. Both grounds must be connected on the PCB at only one point, ideally, close to the AGND  
pin.  
9.4.5 Device Enable  
The device starts operation when the EN pin is set high. The device enters shutdown mode when the EN pin is  
set low. In shutdown mode, the regulator stops switching, all internal control circuitry is switched off, and the load  
is disconnected from the input.  
版权 © 2016, Texas Instruments Incorporated  
11  
 
 
 
 
TPS63027  
ZHCSFX4 DECEMBER 2016  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The TPS63027 are high efficiency, low quiescent current buck-boost converters suitable for application where the  
input voltage is higher, lower or equal to the output. Output currents can go as high as 2A in boost mode and as  
high as 5A in buck mode. The maximum average current in the switches is limited to a typical value of 4.5 A.  
10.2 Typical Applications  
L1  
1uH  
L1  
L2  
VOUT  
VIN  
3.5V  
2.3V - 5.5V  
VIN  
AVIN  
EN  
VOUT  
R1  
510kΩ  
C1  
10µF  
FB  
C3  
22µF  
C2  
22µF  
R2  
150kΩ  
MODE  
GND  
AGND  
TPS63027  
5. 3.3-V Output Voltage  
10.2.1 Design Requirements  
The design guideline provides a component selection to operate the device within the recommended operating  
conditions.  
1 shows the list of components for the Application Characteristic Curves.  
(1)  
1. Components for Application Characteristic Curves  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
Texas Instruments  
XAL4020-102MEB, Coilcraft  
Standard  
TPS63027  
L1  
1 μH, 8.75A, 13mΩ, SMD  
10 μF 6.3V, 0603, X5R ceramic  
47 μF 6.3V, 0603, X5R ceramic  
510kΩ  
C1  
C2  
R1  
R2  
Standard  
Standard  
150kΩ  
Standard  
(1) See Third-Party Products Discalimer  
12  
版权 © 2016, Texas Instruments Incorporated  
 
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
10.2.2 Detailed Design Procedure  
The first step is the selection of the output filter components. To simplify this process 2 outlines possible  
inductor and capacitor value combinations.  
10.2.2.1 Output Filter Design  
2. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL  
INDUCTOR  
NOMINAL OUTPUT CAPACITOR VALUE [µF](2)  
VALUE [µH](1)  
2x22  
47  
66  
88  
100  
0.680  
1.0  
+
+
+
+
+
+
+
+
+
+
+
+
(3)  
+
1.5  
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and –30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by 20% and –50%.  
(3) Typical application. Other check mark indicates recommended filter combinations  
10.2.2.2 Inductor Selection  
The inductor selection is affected by several parameter like inductor ripple current, output voltage ripple,  
transition point into Power Save Mode, and efficiency. See 3 for typical inductors.  
(1)  
3. List of Recommended Inductors  
INDUCTOR VALUE  
COMPONENT SUPPLIER  
Coilcraft XAL4020-102ME  
Toko, DFE322512C  
SIZE (LxWxH mm)  
4 X 4 X 2.10  
3.2 X 2.5 X 1.2  
4.4 X 4.1 X 1.2  
3 X 3 X 1.2  
Isat/DCR  
4.5A/10mΩ  
4.7A/34mΩ  
4.1A/38mΩ  
6.6A/42.10mΩ  
5A/17.40mΩ  
7.7A/36mΩ  
1 µH  
1 µH  
1 µH  
TDK, SPM4012  
1 µH  
Wuerth, 74438334010  
Coilcraft XFL4012-601ME  
Wuerth,744383340068  
0.6 µH  
0.68µH  
4 X 4 X 1.2  
3 X 3 X 1.2  
(1) See Third-Party Products Desclaimer  
For high efficiencies, the inductor should have a low dc resistance to minimize conduction losses. Especially at  
high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors,  
the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger  
inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for  
the inductor in steady state operation is calculated using Equation 6. Only the equation which defines the switch  
current in boost mode is shown, because this provides the highest value of current and represents the critical  
current value for selecting the right inductor.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
(5)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
=
+
2 ´ f ´ L  
where  
D =Duty Cycle in Boost mode  
f = Converter switching frequency (typical 2.5MHz)  
L = Inductor value  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.90 as an assumption)  
(6)  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It's recommended to choose an inductor with a saturation current 20% higher  
than the value calculated using 公式 6. Possible inductors are listed in 3.  
版权 © 2016, Texas Instruments Incorporated  
13  
 
 
 
TPS63027  
ZHCSFX4 DECEMBER 2016  
10.2.2.3 Capacitor Selection  
10.2.2.3.1 Input Capacitor  
www.ti.com.cn  
At least a 10μF input capacitor is recommended to improve line transient behavior of the regulator and EMI  
behavior of the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the  
VIN and PGND pins of the IC is recommended. This capacitance can be increased without limit. If the input  
supply is located more than a few inches from the TPS63027 converter additional bulk capacitance may be  
required in addition to the ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 μF  
is a typical choice.  
10.2.2.3.2 Output Capacitor  
For the output capacitor, use of a small ceramic capacitors placed as close as possible to the VOUT and PGND  
pins of the IC is recommended. The recommended effective output capacitance value is 20 µF with a variance as  
outlined in 2 . This translates into a 44uF nominal cpacitor (6.3V rated) for output voltages up to 3.5V.  
There is also no upper limit for the output capacitance value. Larger capacitors causes lower output voltage  
ripple as well as lower output voltage drop during load transients.  
10.2.2.4 Setting The Output Voltage  
When the adjustable output voltage version TPS63027 is used, the output voltage is set by an external resistor  
divider. The resistor divider must be connected between VOUT, FB and GND. When the output voltage is  
regulated properly, the typical value of the voltage at the FB pin is 800 mV. The current through the resistive  
divider should be about 10 times greater than the current into the FB pin. The typical current into the FB pin is  
0.1 μA, and the voltage across the resistor between FB and GND, R2, is typically 800 mV. Based on these two  
values, the recommended value for R2 should be lower than 180 k, in order to set the divider current at 4μA or  
higher. It is recommended to keep the value for this resistor in the range of 180k. From that, the value of the  
resistor connected between VOUT and FB, R1, depending on the needed output voltage (VOUT), can be  
calculated using 公式 7:  
æ
ç
è
ö
VOUT  
VFB  
R1 = R2 ×  
- 1  
÷
ø
(7)  
14  
版权 © 2016, Texas Instruments Incorporated  
 
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
10.2.3 Application Curves  
7
6
5
4
3
2
1
0
5
4,5  
4
3,5  
3
2,5  
2
1,5  
TPS63027 VOUT = 3.3V  
1
3.3 VOUT  
3.5 VOUT  
4A Load  
-40°C  
25 °C  
85°C  
0,5  
0
2,5  
2,75  
3
3,25  
3,5  
3,75  
4
4,25  
4,5  
4,75  
5
5,25  
5,5  
2,5  
3
3,5  
4
4,5  
5
5,5  
Input Voltage [V]  
Input Voltage [V]  
6. Average Input Current vs Input Voltage  
7. Maximum Output Current for a 4A Load  
3,6  
3,5  
3,4  
3,3  
3,2  
3,1  
3
TPS63027 VOUT = 3.3V  
2.5VIN  
3.0VIN  
3.3VIN  
3.7VIN  
4.3VIN  
1m  
10m  
100m  
Current [A]  
1
8. Efficiency vs Output Current  
9. Output Voltage vs Output Current  
L1 (5V/DIV)  
L2 (5V/DIV)  
L1 (5V/DIV)  
L2 (5V/DIV)  
0V  
0V  
0V  
0V  
VOUT (50mV/DIV)  
VOUT (50mV/DIV)  
3.5V  
3.5V  
ICOIL (500mA/DIV)  
ICOIL (500mA/DIV)  
0A  
0A  
Timebase 1us/DIV  
Timebase 400ns/DIV  
10. Output Voltage Ripple in Buck-Boost Mode, VIN =  
11. Switching Waveforms in Boost Mode, VIN = 3.0 V,  
3.6 V, VOUT = 3.5 V, no Load  
VOUT = 3.5 V, 1-A Load  
版权 © 2016, Texas Instruments Incorporated  
15  
TPS63027  
ZHCSFX4 DECEMBER 2016  
www.ti.com.cn  
L1 (5V/DIV)  
L1 (5V/DIV)  
0V  
0V  
0V  
L2 (5V/DIV)  
L2 (5V/DIV)  
0V  
VOUT (50mV/DIV)  
VOUT (50mV/DIV)  
3.5V  
3.5V  
ICOIL (500mA/DIV)  
ICOIL (500mA/DIV)  
0A  
0A  
Timebase 400ns/DIV  
Timebase 400ns/DIV  
12. Switching Waveforms in Buck Mode, VIN = 4.3 V,  
13. Switching Waveforms in Buck-Boost Mode, VIN =  
VOUT = 3.5 V, 1-A Load  
3.55 V, VOUT = 3.5 V, 1-A Load  
VOUT (200mV/DIV)  
VOUT (200mV/DIV)  
3.5V  
3.5V  
Load Current (1A/DIV)  
Load Current (1A/DIV)  
0A  
0A  
Timebase 200us/DIV  
Timebase 200us/DIV  
15. Load Transient Response Buck Mode, VIN = 4.3 V,  
14. Load Transient Response Boost Mode, VIN = 3.0 V,  
VOUT = 3.5 V  
VOUT = 3.5 V  
VIN (500mV/DIV)  
VOUT (100mV/DIV)  
3.5V  
VOUT (100mV/DIV)  
3.5V  
Load Current (500mA/DIV)  
0A  
Timebase 200us/DIV  
Timebase 1ms/DIV  
16. Load Transient Response, VIN = 3.5 V, VOUT = 3.5  
17. Line Sweep Response, VOUT = 3.5 V, 2-A Load  
V, PFM Mode  
16  
版权 © 2016, Texas Instruments Incorporated  
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
EN (5V/DIV)  
VIN (500mV/DIV)  
VOUT (1V/DIV)  
3.5V  
VOUT (50mV/DIV)  
ICOIL (500mA/DIV)  
0V  
Timebase 1ms/DIV  
Timebase 100µs/DIV  
19. Start Up After Enable, VIN = 3.7 V, VOUT = 3.5 V, no  
18. Line Transient Response,  
Load  
VOUT = 3.5 V, 1-A Load  
EN (5V/DIV)  
VOUT (1V/DIV)  
ICOIL (500mA/DIV)  
Timebase 100µs/DIV  
20. Start Up After Enable, VIN = 3.7 V, VOUT = 3.5 V, 1-A Load  
版权 © 2016, Texas Instruments Incorporated  
17  
TPS63027  
ZHCSFX4 DECEMBER 2016  
www.ti.com.cn  
11 Power Supply Recommendations  
The TPS63027 device family has no special requirements for its input power supply. The input power supply’s  
output current needs to be rated according to the supply voltage, output voltage and output current of the  
TPS63027.  
12 Layout  
12.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TPS63027 devices.  
Place input and output capacitors as close as possible to the IC. Traces need to be kept short. Routing wide  
and direct traces to the input and output capacitor results in low trace resistance and low parasitic inductance.  
Use a common-power GND  
Use separate traces for the supply voltage of the power stage; and, the supply voltage of the analog stage.  
The sense trace connected to FB is signal trace. Keep these traces away from L1 and L2 nodes.  
12.2 Layout Example  
R2  
GND  
AVIN  
FB  
VIN  
VOUT  
CIN  
COUT  
COUT  
CIN  
L
GND  
21. TPS63027 Layout  
18  
版权 © 2016, Texas Instruments Incorporated  
TPS63027  
www.ti.com.cn  
ZHCSFX4 DECEMBER 2016  
13 器件和文档支持  
13.1 器件支持  
13.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
13.2 文档支持  
13.2.1 相关文档ꢀ  
相关文档如下:  
TPS63027EVM-813 用户指南,TPS63027 高电流、高效率单电感器降压-升压转换器》SLVUA24  
13.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
13.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
19  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS63027YFFR  
TPS63027YFFT  
ACTIVE  
DSBGA  
DSBGA  
YFF  
25  
25  
3000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
TPS  
63027  
ACTIVE  
YFF  
SNAGCU  
TPS  
63027  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
YFF0025  
DSBGA - 0.625 mm max height  
S
C
A
L
E
6
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BUMP A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
1.6 TYP  
SYMM  
E
D
D: Max = 2.116 mm, Min =2.056 mm  
E: Max = 2.098 mm, Min =2.038 mm  
SYMM  
1.6  
C
B
A
TYP  
0.4 TYP  
3
4
5
1
2
0.3  
0.2  
25X  
0.4 TYP  
0.015  
C A B  
4223786/A 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0025  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
25X ( 0.23)  
(0.4) TYP  
1
2
4
5
A
B
SYMM  
C
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:25X  
0.05 MAX  
(
0.23)  
0.05 MIN  
(
0.23)  
METAL  
SOLDER MASK  
OPENING  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
EXPOSED METAL  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223786/A 06/2017  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0025  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
25X ( 0.25)  
(R0.05) TYP  
3
1
2
4
5
A
B
C
(0.4) TYP  
METAL  
TYP  
SYMM  
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4223786/A 06/2017  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS63027YFFR

高效 4.5A 开关单电感器降压/升压转换器 | YFF | 25 | -40 to 125
TI

TPS63027YFFT

高效 4.5A 开关单电感器降压/升压转换器 | YFF | 25 | -40 to 125
TI

TPS63030

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63030DSK

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63030DSKR

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63030DSKRG4

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63030DSKT

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63030DSKTG4

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63030_09

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63030_12

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63031

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI

TPS63031DSK

HIGH EFFICIENCY SINGLE INDUCTOR BUCK-BOOST CONVERTER WITH 1-A SWITCHES
TI