TPS63050RMWT [TI]

具有 1A 开关电流和可调节软启动功能的 TPS6305x 单电感器降压/升压转换器 | RMW | 12 | -40 to 125;
TPS63050RMWT
型号: TPS63050RMWT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 1A 开关电流和可调节软启动功能的 TPS6305x 单电感器降压/升压转换器 | RMW | 12 | -40 to 125

升压转换器 开关 软启动 电感器
文件: 总36页 (文件大小:3681K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
TPS6305x 开关电流为 1A、具备可调节软启动功能的单电感降压-升压转换  
1 特性  
3 说明  
1
实时降压或升压,支持在降压和升压模式之间无缝  
转换  
TPS6305x 系列器件是一款静态电流较低的高效降压/  
升压转换器 , 适用于输入电压高于或低于输出电压的  
应用。  
输入电压范围为 2.5V 5.5V  
0.5A 持续输出电流:VIN 2.5V、  
在升压模式下,持续输出电流最高可达 500mA;在降  
压模式下,持续输出最高可达 1A。最大平均开关电流  
限制为 1A(典型值)。TPS6305x 系列器件在整个输  
入电压范围内针对输出电压进行稳压操作,可根据输入  
电压自动切换为降压或升压模式,从而在两种模式之间  
实现无缝转换。  
VOUT = 3.3V  
具有可调节输出电压和固定输出电压两个版本可选  
在升压模式中效率大于 90%,在降压模式中效率大  
95%  
开关频率典型值为 2.5MHz  
平均输入电流限制可调节  
软启动时间可调节  
该降压/升压转换器基于使用同步整流的固定频率  
PWM 控制器,可实现最高效率。在负载电流较低的情  
况下,该转换器进入节能模式,从而在整个负载电流范  
围内保持高效率。  
器件静态电流小于 60μA  
具有自动节电模式或强制 PWM 模式  
关断期间负载断开  
提供过热保护  
用户可以通过脉频调制 (PFM)/PWM 引脚选择自动  
PFM/PWM 工作模式或强制 PWM 工作模式。在 PWM  
模式下通常使用 2.5MHz 固定频率。使用一个外部电  
阻分压器可对输出电压进行编程,或者在芯片上对输出  
电压进行内部固定。转换器可被禁用以最大限度地减少  
电池消耗。在关断期间,负载从电池上断开。该器件采  
12 引脚芯片尺寸球状引脚栅格阵列 (DSBGA) 封装  
12 引脚 HotRod 封装。  
采用 1.6mm x 1.2mm12 引脚 WCSP 小型封装  
2.5mm x 2.5mm12 引脚、HotRod™ QFN 封  
借助以下工具创建定制设计方案:  
TPS63050,使用 WEBENCH® 电源设计器  
TPS63051,使用 WEBENCH® 电源设计器  
2 应用  
手机和智能电话  
器件信息(1)  
平板电脑  
器件型号  
封装  
DSBGA (12)  
VQFN (12)  
封装尺寸(标称值)  
1.56mm x 1.16mm  
2.50mm x 2.50mm  
PC 和智能手机附件  
通过电池供电的 应用  
智能电网/智能仪表  
TPS63050  
TPS63051  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图 (WCSP)  
效率与输出电流间的关系  
L1 1.5 µH  
TPS63051  
L1  
L2  
2.5 V to 5.5 V  
3.3 V/ 500mA  
VIN  
EN  
VOUT  
FB  
R2  
VOUT  
VIN  
C1  
10µF  
C2  
C3  
1MΩ  
10µF  
10µF  
ILIM0  
PG  
VIH or VIL  
PFM/  
PWM  
ILIM1  
SS  
VIH or VIL  
GND  
C3  
1nF  
VIN = 2.8V, VOUT = 3.3V  
V
IN = 3.6V, VOUT = 3.3V  
TPS63051  
Output Current (mA)  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSAM8  
 
 
 
 
 
 
 
 
 
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ...................................... 5  
7.2 ESD Ratings ............................................................ 5  
7.3 Recommended Operating Conditions....................... 5  
7.4 Thermal Information ................................................. 5  
7.5 Electrical Characteristics........................................... 6  
7.6 Switching Characteristics.......................................... 7  
7.7 Typical Characteristics.............................................. 8  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagrams ....................................... 9  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 12  
9
Application and Implementation ........................ 15  
9.1 Application Information............................................ 15  
9.2 Typical Application ................................................. 15  
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 23  
11.1 Layout Guidelines ................................................. 23  
11.2 Layout Example (WCSP) ...................................... 23  
11.3 Layout Example (HotRod)..................................... 23  
11.4 Thermal Considerations........................................ 24  
12 器件和文档支持 ..................................................... 24  
12.1 使用 WEBENCH® 工具创建定制设计 ................... 24  
12.2 器件支持 ............................................................... 24  
12.3 相关链接................................................................ 24  
12.4 接收文档更新通知 ................................................. 25  
12.5 社区资源................................................................ 25  
12.6 ....................................................................... 25  
12.7 静电放电警告......................................................... 25  
12.8 Glossary................................................................ 25  
13 机械、封装和可订购信息....................................... 25  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (July 2015) to Revision D  
Page  
在数据表中添加了 Webench 链接........................................................................................................................................... 1  
Changed the Pin Configurations............................................................................................................................................. 4  
Changed the quiescent current VIN max value From: 60 µA To: 65 µA in the Electrical Characteristics ............................. 6  
Added Note: Conditions: TJ = –40°C to 85°C To the quiescent current and shutdown current in the Electrical  
Characteristics........................................................................................................................................................................ 6  
Changes from Revision B (April 2015) to Revision C  
Page  
已添加 新封装选项至 项目符............................................................................................................................................... 1  
已添加 VQFN 封装至器件信息表 ............................................................................................................................................ 1  
Added HotRod Pin Configuration and Functions ................................................................................................................... 4  
Added Parameter Measurement Circuit for HotRod package option ................................................................................... 15  
Changes from Revision A (February 2014) to Revision B  
Page  
已更改 说明 部分的第四段 ..................................................................................................................................................... 1  
已更改 图形图像 .................................................................................................................................................................... 1  
Changed Ordering Information table To:Device Comparison Table ..................................................................................... 4  
Changed "Handling Ratings" table to "ESD Rating" table and moved Tstg spec to the Absolute Maximum Ratings table.... 5  
Moved some Typical Characteristics graphs to the Application Curves section ................................................................... 8  
2
版权 © 2013–2019, Texas Instruments Incorporated  
 
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
Changes from Original (July 2013) to Revision A  
Page  
已添加 器件信息表,ESD 额定值表,特性 描述部分,器件功能模式应用和实施部分,电源相关建议部分,布局部  
分,器件和文档支持部分以及机械、封装和可订购信息部分 .................................................................................................. 1  
已添加 TPS63050 器件规范和 说明 至整篇数据手册 ............................................................................................................. 1  
Changed Figure 34, PCB Layout ........................................................................................................................................ 23  
Changed Figure 35, PCB Layout ........................................................................................................................................ 23  
Copyright © 2013–2019, Texas Instruments Incorporated  
3
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
5 Device Comparison Table  
(1)  
PART NUMBER  
VOUT  
Adjustable  
3.3 V  
TPS63050  
TPS63051  
(1) For all available packages, see the orderable addendum at the end of the datasheet  
6 Pin Configuration and Functions  
YFF Package  
12-Pin DSBGA  
Top View  
RMW Package  
12-Pin HotRod  
Top View  
1
2
3
A
B
C
D
L1  
VIN  
EN  
L1  
1
2
10  
9
ILIM0  
GND  
GND  
GND  
ILIM0  
PFM/PWM  
FB  
ILIM1  
8
7
PG  
SS  
L2  
3
4
VOUT  
L2  
PG  
Not to scale  
VOUT  
SS  
Not to scale  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
EN  
WCSP  
A3  
HotRod  
11  
5
I
I
Enable input. (1 enabled, 0 disabled). It must not be left floating  
FB  
D2  
Voltage feedback of adjustable versions, must be connected to VOUT on fixed output  
voltage versions1  
GND  
B1  
B2  
2,9  
10  
Ground for Power stage and Control stage  
Programmable inrush current limit input works together with lLIM1. See table on page 1.  
It must not be left floating  
ILIM0  
I
I
Programmable inrush current limit input works together with lLIM0  
See 效率与输出电流间的关系 on page 1. Do not leave floating  
.
(1)  
ILIM1  
B3  
See  
L1  
L2  
A1  
C1  
C2  
C3  
D3  
A2  
D1  
1
3
Connection for Inductor  
Connection for Inductor  
PFM/PWM  
PG  
6
I
O
I
0 for PFM mode 1 for forced PWM mode. It must not be left floating  
Power good open drain output  
8
SS  
7
Adjustable Soft-Start. If left floating default soft-start time is set  
Supply voltage for power stage and control stage  
Buck-boost converter output  
VIN  
12  
4
I
VOUT  
O
(1) Only available with DSBGA package, for VQFN package ILIM1 is internally connected to voltage level > VIH  
4
Copyright © 2013–2019, Texas Instruments Incorporated  
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
7 Specifications  
7.1 Absolute Maximum Ratings  
over junction temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
–0.3  
–0.3  
–40  
–40  
–65  
MAX  
7
UNIT  
VIN, L1, EN, VOUT, FB, VINA, PFM/PWM  
Voltage(2)  
L2(3)  
L2(4)  
7
V
9.5  
150  
85  
Operating junction temperature, TJ  
Operating ambient temperature, TA  
Storage temperature, Tstg  
°C  
°C  
°C  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground pin.  
(3) DC voltage rating.  
(4) AC voltage rating.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±700  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
(1)  
See  
VIN  
IOUT  
L
MIN  
NOM MAX UNIT  
Input voltage  
2.5  
5.5  
0.5  
2.2  
V
A
Output current  
Inductance(2)  
Output capacitance(3)  
Operating ambient temperature  
Operating virtual junction temperature  
1
10  
1.5  
µH  
µF  
°C  
°C  
COUT  
TA  
–40  
–40  
85  
TJ  
125  
(1) Refer to the Application Information section for further information  
(2) Effective inductance value at operating condition. The nominal value given matches a typical inductor to be chosen to meet the  
inductance required.  
(3) Due to the DC bias effect of ceramic capacitors, the effective capacitance is lower then the nominal value when a voltage is applied.  
This is why the capacitance is specified to allow the selection of the nominal capacitor required with the DC bias effect for this type of  
capacitor. The nominal value given matches a typical capacitor to be chosen to meet the minimum capacitance required.  
7.4 Thermal Information  
TPS6305x  
THERMAL METRIC(1)  
WCSP  
12 PINS  
89.9  
RMW  
12 PINS  
37.3  
30.4  
8.0  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
0.7  
43.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.9  
0.4  
ψJB  
43.7  
7.8  
RθJC(bot)  
n/a  
2.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2013–2019, Texas Instruments Incorporated  
5
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
7.5 Electrical Characteristics  
VIN = 3.6 V, TJ = –40°C to 125°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
SUPPLY  
VIN  
Input voltage range  
2.5  
5.5  
V
V
VIN_Min  
IOUT  
Minimum input voltage to turn on in full load  
Output current(1)  
IOUT = 500 mA  
ILIM0 = VIH, ILIM1 = VIH  
2.7  
,
500  
mA  
IOUT = 0 mA, EN = VIN = 3.6 V,  
VOUT = 3.3 V  
VIN  
43  
65  
10  
(2)  
IQ  
Quiescent current  
μA  
IOUT = 0 mA, EN = VIN = 3.6 V,  
VOUT = 3.3 V  
VOUT  
(2)  
Isd  
Shutdown current  
EN = 0 V  
VIN falling  
0.1  
1.7  
200  
140  
20  
1
μA  
V
UVLOTH  
UVLOhys  
TSD  
Undervoltage lockout threshold  
Undervoltage lockout hysteresis  
Thermal shutdown  
1.6  
1.2  
1.8  
mV  
°C  
°C  
Temperature rising  
TSD(hys)  
Thermal shutdown hysteresis  
LOGIC SIGNALS EN, ILIM0, ILIM1  
VIH  
VIL  
High level input voltage  
VIN = 2.5 V to 5.5 V  
VIN = 2.5 V to 5.5 V  
V
V
Low level voltage Input Voltage  
0.3  
0.1  
PFM / PWM, EN, ILIM0, ILIM1 = GND or  
VIN  
Ilkg  
Input leakage current  
0.01  
μA  
POWER GOOD  
VOL  
Low level voltage  
PG sinking current  
Input leakage current  
Isink = 100 μA  
V = 0.3 V  
0.3  
0.1  
0.1  
V
IPG  
mA  
μA  
Ilkg  
VPG = 3.6 V  
0.01  
0.8  
OUTPUT  
VOUT  
VFB  
Output voltage range  
2.5  
5.5  
V
V
TPS63050 feedback regulation voltage  
TPS63050 feedback voltage accuracy  
TPS63050 feedback voltage accuracy(3)  
TPS63051 output voltage accuracy  
TPS63051 output voltage accuracy(3)  
Minimum output current to enter PFM mode  
TPS63050 feedback input bias current  
Input high-side FET on-resistance  
Output high-side FET on-resistance  
Input low-side FET on-resistance  
Output low-side FET on-resistance  
VFB  
PWM mode  
–1.1%  
–1%  
3.27  
1.1%  
3%  
VFB  
PFM mode  
VOUT  
VOUT  
IPWM->PFM  
IFB  
PWM mode  
3.3 3.34  
3.3 3.39  
150  
V
PFM mode  
3.27  
V
VIN = 3 V; VOUT = 3.3 V  
VFB = 0.8 V  
mA  
nA  
10  
145  
95  
100  
ISW = 500 mA  
ISW = 500 mA  
ISW = 500 mA  
ISW = 500 mA  
m  
mΩ  
mΩ  
mΩ  
RDS(on)  
170  
115  
ILIM0 = VIH, ILIM1 = VIH,VIN = 2.7 V to 3  
V, VOUT = 3 V  
480  
550  
630  
1240  
1400  
1950  
mA  
mA  
mA  
ILIM0 = VIH, ILIM1 = VIH,VIN = 2.7 V to  
3.3 V, VOUT = 3.3 V,  
IIN_MAX  
Input current-limit boost mode  
ILIM0 = VIH, ILIM1 = VIH,VIN = 2.7 V to  
4.5 V, VOUT = 4.5 V,  
(1) For minimum and maximum output current in a specific working point see Figure 1 and Figure 2; and Equation 1 through Equation 4.  
(2) Conditions: TJ = –40°C to 85°C  
(3) Conditions: f = 2.5 MHz, L = 1.5 µH, COUT = 10 µF  
6
Copyright © 2013–2019, Texas Instruments Incorporated  
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
Electrical Characteristics (continued)  
VIN = 3.6 V, TJ = –40°C to 125°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
ILIM0 = VIL, ILIM1 = VIL,  
VIN = 3 V,VOUT = 3.3 V, (Available for  
DBGA only)  
0.4×IIN_MAX  
ILIM0 = VIH, ILIM1 = VIL,  
VIN = 3 V,VOUT = 3.3 V, (Available for  
DBGA only)  
0.5×IIN_MAX  
ISS_IN  
Programmable inrush current limit(4)  
mA  
ILIM0 = VIL, ILIM1 = VIH  
VIN = 3 V,VOUT = 3.3 V  
,
0.65×IIN_MAX  
IIN_MAX  
ILIM0 = VIH, ILIM1 = VIH  
VIN = 3 V,VOUT = 3.3 V  
,
ISS  
ISS  
Soft-start current TPS63051  
Soft-start current TPS63050  
1
μA  
μA  
3.2  
VIN = 2.5 V to 5.5 V, IOUT = 500 mA,  
PWM mode  
Line regulation  
Load regulation  
0.963  
4
mV/V  
mV/A  
VIN = 3.6 V, IOUT = 0 mA to 500 mA,  
PWM mode  
(4) For variation of this parameter with Input voltage see Figure 3.  
7.6 Switching Characteristics  
VIN = 3.6 V, TJ = –40°C to 125°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OUTPUT  
fs  
Switching frequency  
2.5  
MHz  
VOUT = EN = low to high, SS = floating, Buck mode  
VIN = 3.6 V, VOUT = 3.3 V, IOUT = 500 mA(1)  
280  
600  
100  
tSS  
Softstart time  
µs  
µs  
VOUT = EN = low to high, SS = floating, Boost mode  
VIN = 2.5 V, VOUT = 3.3 V, IOUT = 500 mA(1)  
Time from when EN = high to when device starts  
switching  
td  
Start up delay  
(1) For variation of this parameter with Input voltage see Figure 3.  
Copyright © 2013–2019, Texas Instruments Incorporated  
7
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
7.7 Typical Characteristics  
TPS63051  
TPS63051  
TA  
TA  
TA  
= -40 °C  
= 25 °C  
= 85 °C  
TA  
= -40 °C  
= 25 °C  
= 85 °C  
TA  
TA  
Input Voltage (V)  
Input Voltage (V)  
VOUT = 3.3 V  
VOUT = 3.3 V  
Figure 2. Minimum Average Input Current vs Input Voltage  
Figure 1. Maximum Average Input Current vs Input Voltage  
TPS63051  
ILM0  
ILM0  
ILM0  
= VIL, ILM1 = VIL  
= VIH, ILM1 = VIL  
= VIL, ILM1 = VIH  
Input Voltage (V)  
Figure 3. Programmable Average Input Current vs Input Voltage(1)  
(1) All options only available with the DSBGA package. For VQFN package ILIM1 is internally connected to voltage level > VIH  
8
Copyright © 2013–2019, Texas Instruments Incorporated  
 
 
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
8 Detailed Description  
8.1 Overview  
The TPS6305x devices use 4 internal N-channel MOSFETs to maintain synchronous power conversion at all  
possible operating conditions. This enables the device to keep high efficiency over the complete input voltage  
and output power range. To regulate the output voltage at all possible input voltage conditions, the device  
automatically switches from buck operation to boost operation and back as required by the configuration. It  
always uses one active switch, one rectifying switch, one switch held on, and one switch held off. Therefore, it  
operates as a buck converter when the input voltage is higher than the output voltage, and as a boost converter  
when the input voltage is lower than the output voltage. There is no mode of operation in which all 4 switches are  
switching at the same time. Keeping one switch on and one switch off eliminates their switching losses. The  
RMS current through the switches and the inductor is kept at a minimum, to minimize switching and conduction  
losses. Controlling the switches this way allows the converter to always keep higher efficiency.  
The device provides a seamless transition from buck to boost or from boost to buck operation.  
8.2 Functional Block Diagrams  
L1  
L2  
VIN  
VOUT  
Current  
Sensor  
GND  
GND  
VIN  
Gate  
Control  
VOUT  
_
_
+
SS  
Modulator  
Oscillator  
FB  
+
ILIM1  
ILIM0  
PG  
+
-
VREF  
Device  
Control  
PFM/PWM  
EN  
Temperature  
Control  
GND  
GND  
GND  
Figure 4. TPS63050 Block Diagram  
Copyright © 2013–2019, Texas Instruments Incorporated  
9
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
Functional Block Diagrams (continued)  
L1  
L2  
VIN  
VOUT  
Current  
Sensor  
GND  
GND  
VIN  
Gate  
Control  
VOUT  
FB  
_
_
+
SS  
Modulator  
Oscillator  
+
ILIM1  
ILIM0  
PG  
+
-
Device  
Control  
VREF  
PFM/PWM  
EN  
Temperature  
Control  
GND  
GND  
GND  
Figure 5. TPS63051 Block Diagram  
10  
Copyright © 2013–2019, Texas Instruments Incorporated  
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
8.3 Feature Description  
8.3.1 Power Good  
The TPS6305x devices have a PG output. The power good goes high impedance once the output is above 95%  
of the nominal voltage, and is driven low once the output voltage falls below typically 90% of the nominal voltage.  
The PG pin is an open drain output and is specified to sink up to 0.1 mA. The power good output requires a  
pullup resistor connecting to any voltage rail less than 5.5 V. The power good is valid as long as the converter is  
enabled and VIN is present. The power good goes low when the device is in undervoltage lockout, in thermal  
shutdown or in current limit.  
If EN is pulled low and one of the pins ILIM0 or ILIM1 is high, then the PG pin is low. If both pins, ILIM0 and ILIM1 are  
low, the PG is open drain. In this case the PG pin, follows its pullup voltage. If this is not desired, one of the two  
pins ILIM0 or ILIM1, must be set high. Table 1 lists the PG pin functionality.  
Table 1. Power Good Settings  
EN  
0
ILIM1  
ILIM0  
PG  
1
1
0
0
1
0
1
0
0
0
0
0
0
0
Open Drain  
8.3.2 Overvoltage Protection  
Overvoltage protection is implemented to limit the maximum output voltage. In case of overvoltage condition, the  
voltage amplifier regulates the output voltage to typically 6.7 V.  
8.3.3 Undervoltage Lockout (UVLO)  
To avoid mis-operation of the device at low input voltages, an undervoltage lockout is included. UVLO shuts  
down the device at input voltages lower than typically 1.7 V with a 200-mV hysteresis.  
8.3.4 Thermal Shutdown  
The device goes into thermal shutdown once the junction temperature exceeds typically 140°C with a 20°C  
hysteresis.  
8.3.5 Soft Start  
To minimize inrush current and output voltage overshoot during start up, the device has a soft start. At turn on,  
the input current raises monotonically until the output voltage reaches regulation. The TPS6305x devices charge  
the soft start capacitor, at the SS pin, with a constant current of typically 1 µA. The input current follows the  
current used to charge the capacitor at the SS pin. The soft start operation is completed once the voltage at the  
SS pin has reached typically 1.3 V. Figure 3 shows the value of the soft start capacitor in respect to the soft-start  
time.  
The soft-start time is the time from when the EN pin is asserted to when the output voltage has reached 90% of  
its nominal value. There is typically a 100-µs delay time from EN pin assertion to the start of the switching  
activity. The soft-start time depends on the load current, the input voltage, and the output capacitor. The soft-start  
time in boost mode is longer then the time in buck mode and it also depends on the load current, input voltage  
and output capacitor.  
The soft-start time in Figure 3 is referred to typical application with 10-µF effective output capacitance.  
The inductor current is able to increase and always assure a soft start unless a real short circuit is applied at the  
output.  
8.3.6 Short Circuit Protection  
The TPS6305x devices provide short circuit protection. When the output voltage does not increase above 1.2 V,  
a short circuit is detected and the output current is limited to 1.5 A.  
Copyright © 2013–2019, Texas Instruments Incorporated  
11  
 
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Control Loop Description  
0.8V  
Ramp and Clock  
Generator  
Figure 6. Average Current Mode Control  
The controller circuit of the device is based on an average current mode topology. The average inductor current  
is regulated by a fast current regulator loop which is controlled by a voltage control loop. Figure 6 shows the  
control loop.  
The noninverting input of the transconductance amplifier, gmv, is assumed to be constant. The output of gmv  
defines the average inductor current. The inductor current is reconstructed by measuring the current through the  
high side buck MOSFET. This current corresponds exactly to the inductor current in boost mode. In buck mode  
the current is measured during the on time of the same MOSFET. During the off time, the current is  
reconstructed internally starting from the peak value at the end of the on time cycle. The average current and the  
feedback from the error amplifier gmv forms the correction signal gmc. This correction signal is compared to the  
buck and the boost sawtooth ramp giving the PWM signal. Depending on which of the two ramps the gmc output  
crosses either the Buck or the Boost stage is initiated. When the input voltage is close to the output voltage, one  
buck cycle is always followed by a boost cycle. In this condition, no more than three cycles in a row of the same  
mode are allowed. This control method in the buck-boost region ensures a robust control and the highest  
efficiency.  
12  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
Device Functional Modes (continued)  
8.4.2 Power Save Mode Operation  
Heavy Load transient step  
PFM mode at light load  
current  
Comparator High  
Vo+1.3%*Vo  
Vo  
30mV ripple  
Comparator low  
PWM mode  
Absolute Voltage drop  
with positioning  
Figure 7. Power Save Mode Operation  
Depending on the load current, the device works in PWM mode at load currents of approximately 350 mA or  
higher to provide the best efficiency over the complete load range. At lighter loads, the device switches  
automatically into Power Save Mode to reduce power consumption and extend battery life. The PFM/PWM pin is  
used to select between the two different operation modes. To enable Power Save Mode, the PFM/PWM pin must  
be set low.  
During Power Save Mode, the part operates with a reduced switching frequency and lowest supply current to  
maintain high efficiency. The output voltage is monitored with a comparator at every clock cycle by the thresholds  
comp low and comp high. When the device enters Power Save Mode, the converter stops operating and the  
output voltage drops. The slope of the output voltage depends on the load and the output capacitance. When the  
output voltage reaches the comp low threshold, at the next clock cycle the device ramps up the output voltage  
again, by starting operation. Operation can last for one or several pulses until the comp high threshold is  
reached. At the next clock cycle, if the load is still lower than 150 mA, the device switches off again and the  
same operation is repeated. If at the next clock cycle the load is above 150 mA, the device automatically  
switches to PWM mode.  
To keep high efficiency in PFM mode, there is only one comparator active to keep the output voltage regulated.  
The AC ripple in this condition is increased, compared to the PWM mode. The amplitude of this voltage ripple in  
the worst case scenario is 50 mV peak to peak, (typically 30 mV peak-to-peak), with 10 µF of effective output  
capacitance. To avoid a critical voltage drop when switching from 0 A to full load, the output voltage in PFM  
mode is typically 1.5% above the nominal value in PWM mode. This is called Dynamic Voltage Positioning and  
allows the converter to operate with a small output capacitor and still have a low absolute voltage drop during  
heavy load transients.  
Power Save Mode is disabled by setting the PFM/PWM pin high.  
8.4.3 Adjustable Current Limit  
The TPS6305x devices have an internal user programmable current limit that monitors the input current during  
start-up. This prevents high inrush current protecting the device and the application. During start-up the input  
current does not exceed the current limit that is set by ILIM0 pin and ILIM1 pin. Depending on the logic level applied  
at these two pins, switching between four different current limit-levels is possible. The variation of those values  
over input voltage and temperature is shown in Figure 1 through Figure 2. Adjusting the soft-start time further  
using the soft-start capacitor is possible.  
ILIM0 and ILIM1 set the current limit as listed in Table 2.  
Copyright © 2013–2019, Texas Instruments Incorporated  
13  
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
Device Functional Modes (continued)  
Table 2. Adjustable Current Limit  
ILIM1  
Low  
ILIM0  
Low  
CURRENT LIMIT SET (WCSP)  
0.4 × IIN_MAX  
CURRENT LIMIT SET (HotRod)  
Not Available  
Low  
High  
Low  
High  
0.5 × IIN_MAX  
0.65 × IIN_MAX  
IIN_MAX  
Not Available  
High  
High  
0.65 × IIN_MAX  
IIN_MAX  
The ILIM0, ILIM1 pins can be changed during operation.  
Given the curves provided in Figure 1 through Figure 2, calculating the output current in the different condition in  
boost mode is possible using Equation 1 and Equation 2 and in buck mode using Equation 3 and Equation 4.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
IOUT = 0 x IIN (1-D)  
(1)  
Output Current Boost  
where  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.9 as an assumption)  
IIN = Minimum average input current (Figure 2 to Figure 2)  
(2)  
(3)  
V
OUT  
V
Duty Cycle Buck  
D =  
IN  
IOUT = ( 0 x IIN ) / D  
Output Current Buck  
where  
For η, use the number from the efficiency curves or 0.9 as an assumption.  
(4)  
8.4.4 Device Enable  
The device starts operation when the EN pin is set high. The device enters shutdown mode when the EN pin is  
set low. In shutdown mode, the regulator stops switching, all internal control circuitry is switched off, and the load  
is disconnected from the input.  
14  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
 
 
 
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers must  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS6305x is a high efficiency, low quiescent current buck-boost converter suitable for applications where  
the input voltage is higher or lower than the output voltage. Continuous output current can go as high as 500 mA  
in boost mode and as high as 1 A in buck mode. The maximum average current in the switches is limited to a  
typical value of 1 A.  
The efficiency measurements  
9.2 Typical Application  
L1  
1.5 µH  
TPS63051  
L1  
L2  
2.5 V to  
VIN  
5.5 V  
3.3 V/ 500mA  
VIN  
EN  
VOUT  
FB  
R2  
VOUT  
C1  
10µF  
C2  
C3  
1MΩ  
10µF  
10µF  
ILIM0  
PG  
VIH or VIL  
PFM/  
PWM  
ILIM1  
SS  
VIH or VIL  
GND  
C4  
1nF  
Figure 8. Parameter Measurement Circuit (WCSP)  
L1  
1.5 µH  
TPS63050  
L1  
L2  
2.5 V to  
5.5 V  
3.3 V/ 500mA  
VIN  
EN  
VOUT  
R1  
560kΩ  
VOUT  
VIN  
C1  
10µF  
C2  
C3  
R3  
10µF  
10µF  
FB  
ILIM0  
R2  
180kΩ  
C5  
10pF  
1MΩ  
VIH or VIL  
PFM/  
PWM  
PG  
SS  
GND  
C4  
1nF  
Figure 9. Parameter Measurement Circuit (HotRod)  
9.2.1 Design Requirements  
The design guidelines provide a component selection to operate the device within the recommended operating  
conditions.  
Copyright © 2013–2019, Texas Instruments Incorporated  
15  
 
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
9.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the TPS63050 device with the WEBENCH® Power Designer.  
Click here to create a custom design using the TPS63051 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
The first step is the selection of the output filter components, listed in Table 3. To simplify this process, Table 4  
outlines possible inductor and capacitor value combinations.  
Table 3. Components for Application Characteristic Curves  
REFERENCE  
DESCRIPTION  
MANUFACTURER  
TPS6305x  
Texas Instruments  
L1  
1.5 µH, 2.1 A, 108 mΩ  
10 μF, 6.3 V, 0603, X5R ceramic  
CSS  
1269AS-H-1R5M, TOKO  
GRM188R60J106ME84D, Murata  
C1, C2, C3  
C4  
C5  
R1  
R2  
R3  
10pF, only needed for the HotRod package version to filter ground noise when using external resistor divider  
Depending on the output voltage of TPS6305x, 0 Ω with TPS63051  
Depending on the output voltage of TPS6305x, not used withTPS63051  
1 MΩ  
9.2.2.2 Output Filter Design  
Table 4. Matrix of Output Capacitor and Inductor Combinations  
NOMINAL  
INDUCTOR  
NOMINAL OUTPUT CAPACITOR VALUE [µF](2)  
VALUE [µH](1)  
10  
20  
44  
66  
100  
1
+
+
+
+
+
+
+
+
+
(3)  
1.5  
2.2  
+
+
(1) Inductor tolerance and current de-rating is anticipated. The effective inductance can vary by 20% and –30%.  
(2) Capacitance tolerance and bias voltage de-rating is anticipated. The effective capacitance can vary by 20% and –50%.  
(3) Typical application. Other check mark indicates recommended filter combinations  
16  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
 
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
9.2.2.3 Inductor Selection  
The inductor selection is affected by several parameter like inductor ripple current, output voltage ripple,  
transition point into power save mode, and efficiency. See Table 5 for typical inductors.  
Table 5. List of Recommended Inductors  
INDUCTOR VALUE  
1 µH  
COMPONENT SUPPLIER(1)  
TOKO 1286AS-H-1R0M  
TOKO, 1286AS-H-1R5M  
TOKO, 1269AS-H-1R5M  
TOKO 1286AS-H-2R2M  
SIZE (L × W × H mm)  
2 × 1.6 × 1.2  
Isat / DCR  
2.1 A / 68 mΩ  
2.5 A / 95 mΩ  
2.1 A / 90 mΩ  
2 A / 160 mΩ  
1.5 µH  
2 × 1.6 × 1.2  
1.5 µH  
2.5 × 2 × 1  
2.2 µH  
2 × 1.6 × 1.2  
(1) See the Third Party Product Disclaimer section.  
For high efficiencies, the inductor must have a low dc resistance to minimize conduction losses. Especially at  
high-switching frequencies, the core material has a high impact on efficiency. When using small chip inductors,  
the efficiency is reduced mainly due to higher inductor core losses. This needs to be considered when selecting  
the appropriate inductor. The inductor value determines the inductor ripple current. The larger the inductor value,  
the smaller the inductor ripple current and the lower the conduction losses of the converter. Conversely, larger  
inductor values cause a slower load transient response. To avoid saturation of the inductor, the peak current for  
the inductor in steady state operation is calculated using Equation 6. Only the equation which defines the switch  
current in boost mode is shown, because this provides the highest value of current and represents the critical  
current value for selecting inductor.  
V
- V  
OUT  
V
IN  
Duty Cycle Boost  
D =  
OUT  
where  
D = Duty Cycle in Boost mode  
(5)  
(6)  
Iout  
Vin ´ D  
IPEAK  
=
+
η ´ (1 - D)  
2 ´ f ´ L  
where  
η = Estimated converter efficiency (use the number from the efficiency curves or 0.80 as an assumption)  
f = Converter switching frequency (typical 2.5MHz)  
L = Inductor value  
NOTE  
The calculation must be done for the minimum input voltage that is possible to have in  
boost mode.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It's recommended to choose an inductor with a saturation current 20% higher  
than the value calculated using Equation 6. Possible inductors are listed in Table 5.  
9.2.2.4 Capacitor selection  
9.2.2.4.1 Input Capacitor  
At least a 10-μF input capacitor is recommended to improve line transient behavior of the regulator and EMI  
behavior of the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the  
VIN and GND pins of the IC is recommended. This capacitance can be increased without limit.  
9.2.2.4.2 Output Capacitor  
Use of small ceramic capacitors placed as close as possible to the VOUT and PGND pins of the IC, is  
recommended for the output capacitor. The recommended nominal output capacitance value is 10 µF with a  
variance as outlined in Table 4.  
There is also no upper limit for the output capacitance value. Larger capacitors causes lower output voltage  
ripple as well as lower output voltage drop during load transients.  
Copyright © 2013–2019, Texas Instruments Incorporated  
17  
 
 
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
9.2.2.5 Setting the Output Voltage  
When the adjustable output voltage version TPS63050 is used, the output voltage is set by the external resistor  
divider. The resistor divider must be connected between VOUT, FB and GND. When the output voltage is  
regulated properly, the typical value of the voltage at the FB pin is 800 mV. The current through the resistive  
divider must be 100 times greater than the current into the FB pin. The typical current into the FB pin is 0.1 μA,  
and the voltage across the resistor between FB and GND, R2, is typically 800 mV. Based on these two values,  
the recommended value for R2 must be lower than 200 k, in order to set the divider current at 3 μA or higher. It  
is recommended to keep the value for this resistor in the range of 200 k. The value of the resistor connected  
between VOUT and FB, R1, depending on the needed output voltage (VOUT), can be calculated using  
Equation 7:  
æ
ç
è
ö
VOUT  
VFB  
R1 = R2 ×  
- 1  
÷
ø
(7)  
When using the HotRod package version of the TPS63050, it is recommended to add capacitor C5, as shown in  
Figure 9. The capacitor on the feedback node is required to help filtering ground noise and matching the  
efficiency result shown in the Application Curves paragraph.  
18  
Copyright © 2013–2019, Texas Instruments Incorporated  
 
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
9.2.3 Application Curves  
VIN = 2.8V, VOUT = 3.3V  
V
VIN = 2.8V, VOUT = 3.3V  
V
IN = 3.6V, VOUT = 3.3V  
IN = 3.6V, VOUT = 3.3V  
TPS63051  
TPS63051  
Output Current (mA)  
Output Current (mA)  
PFM/PWM = Low  
VOUT = 3.3 V  
PFM/PWM = High  
VOUT = 3.3 V  
Figure 10. Efficiency vs Output Current  
Figure 11. Efficiency vs Output Current  
VIN = 2.5V, VOUT = 2.5V  
VIN = 2.5V, VOUT = 2.5V  
V
IN = 4.8V, VOUT = 2.5V  
VIN = 2.5V, VOUT = 4.5V  
V
IN = 4.8V, VOUT = 2.5V  
VIN = 2.5V, VOUT = 4.5V  
V
IN = 4.8V, VOUT = 4.5V  
V
IN = 4.8V, VOUT = 4.5V  
TPS63050  
TPS63050  
Output Current (mA)  
Output Current (mA)  
PFM/PWM = Low  
VOUT = 2.5 V, 4.5 V  
PFM/PWM = High  
VOUT = 2.5 V, 4.5 V  
Figure 12. Efficiency vs Output Current  
Figure 13. Efficiency vs Output Current  
IOUT = 10mA  
IOUT = 10mA  
= 500mA  
IOUT  
IOUT = 620mA  
= 500mA  
IOUT  
IOUT = 620mA  
TPS63051  
TPS63051  
Input Voltage (V)  
Input Voltage (V)  
PFM/PWM = High  
VOUT= 3.3 V  
PFM/PWM = Low  
VOUT= 3.3 V  
Figure 15. Efficiency vs Input Voltage  
Figure 14. Efficiency vs Input Voltage  
Copyright © 2013–2019, Texas Instruments Incorporated  
19  
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
IOUT = 10mA  
= 500mA  
IOUT = 10mA  
= 500mA  
IOUT  
IOUT = 620mA  
IOUT  
IOUT = 620mA  
TPS63050  
TPS63050  
Input Voltage (V)  
Input Voltage (V)  
PFM/PWM = High  
VOUT = 2.5 V  
PFM/PWM = Low  
VOUT = 2.5 V  
Figure 17. Efficiency vs Input Voltage  
Figure 16. Efficiency vs Input Voltage  
IOUT = 10mA  
IOUT = 10mA  
= 500mA  
IOUT  
IOUT = 620mA  
= 500mA  
IOUT  
IOUT = 620mA  
TPS63050  
TPS63050  
Input Voltage (V)  
Input Voltage (V)  
PFM/PWM = Low  
VOUT = 4.5 V  
PFM/PWM =High  
VOUT= 4.5 V  
Figure 18. Efficiency vs Input Voltage  
Figure 19. Efficiency vs Input Voltage  
Power Save enabled  
Power Save disabled  
Power Save enabled  
Power Save disabled  
TPS63051  
TPS63050  
Output Current (A)  
Output Current (A)  
VIN = 2.5 V  
VIN = 3.3 V  
Figure 20. Output Voltage vs Output Current  
Figure 21. Output Voltage vs Output Current  
20  
Copyright © 2013–2019, Texas Instruments Incorporated  
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
Power Save enabled  
Power Save disabled  
L2  
L1  
V
OUT_Ripple  
50mV/div  
TPS63050  
Output Current (A)  
TPS63051  
Time 2µs/div  
VIN = 4.5 V  
VIN = 3.3 V  
IOUT = 145 mA  
Figure 22. Output Voltage vs Output Current  
Figure 23. Output Voltage ripple in Buck-Boost mode and  
PFM to PWM transition  
L2  
L1  
L2  
L1  
V
50mV/div  
OUT_Ripple  
V
50mV/div  
TPS63051  
OUT_Ripple  
Time 2µs/div  
TPS63051  
Time 2µs/div  
VIN = 2.8 V  
IOUT = 16 mA  
VIN = 4.2 V  
IOUT = 16 mA  
Figure 24. Output Voltage Ripple in Boost Mode and PFM  
to PWM Transition  
Figure 25. Output Voltage Ripple in Buck Mode and PFM  
to PWM Transition  
L2 2V/div  
L2 2V/div  
L1 2V/div  
L1 2V/div  
V
20mV/div  
OUT  
V
20mV/div  
OUT  
Iinductor 500mA/div  
Iinductor 500mA/div  
TPS63051  
TPS63051  
Time 400ns/div  
Time 400ns/div  
VIN = 2.5 V  
IOUT = 300 mA  
VIN = 4.5 V  
IOUT = 300 mA  
Figure 26. Switching Waveform in Boost Mode and PWM  
Figure 27. Switching Waveform in Buck Mode and PWM  
Copyright © 2013–2019, Texas Instruments Incorporated  
21  
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
L2 2V/div  
Output Current  
200 mA/div, DC  
Output Voltage  
50 mV/div, AC  
L1 2V/div  
V
20mV/div  
OUT  
Iinductor 500mA/div  
TPS63051  
TPS63051  
Time 1 ms/div  
Time 400ns/div  
VIN = 3.4 V  
IOUT = 300 mA  
VIN = 2.8 V  
Load change from 0 mA to 300 mA  
Figure 28. Switching Waveform in Buck-Boost Mode and  
PWM  
Figure 29. Load Transient Response  
Output Current  
200 mA/div, DC  
Input Voltage  
200 mV/div,  
Offset 3V  
Output Voltage  
50 mV/div, AC  
Output Voltage  
20 mV/div  
TPS63051  
Time 1 ms/div  
Time 1 ms/div  
TPS63051  
VIN = 3.6 V  
Load change from 0 mA to 300 mA  
VOUT = 3.3 V  
IOUT = 500 mA  
Figure 30. Load Transient Response  
Figure 31. Line Transient Response  
Enable  
5 V/div, DC  
Enable  
5 V/div, DC  
Output Voltage  
2V/div, DC  
Output Voltage  
2V/div, DC  
Inductor Current  
500 mA/div, DC  
Inductor Current  
500 mA/div, DC  
TPS63051  
Time 400 ms/div  
TPS63051  
Time 400 ms/div  
VOUT = 3.3 V  
VIN = 2.5 V  
IOUT = 0 mA  
VOUT = 3.3 V  
VIN = 4.2 V  
IOUT = 0 mA  
Figure 32. Start Up After Enable  
Figure 33. Start Up After Enable  
22  
Copyright © 2013–2019, Texas Instruments Incorporated  
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
10 Power Supply Recommendations  
The TPS6305x device family has no special requirements for its input power supply. The input power supply  
output current needs to be rated according to the supply voltage, output voltage and output current of the  
TPS6305x devices.  
11 Layout  
11.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the TPS6305x devices.  
Place input and output capacitors as close as possible to the IC. Traces need to be kept short. Routing wide  
and direct traces to the input and output capacitor results in low-trace resistance and low parasitic inductance.  
Use a common-power GND.  
The sense trace connected to FB is signal trace. Keep these traces away from L1 and L2 nodes.  
For the HotRod package option it is important to add a capacitor between FB node and ground to filter ground  
noise and to match efficiency results documented in these datasheet.  
11.2 Layout Example (WCSP)  
C4  
R1  
R2  
VIN  
VOUT  
C2  
C1  
C3  
GND  
L1  
Figure 34. TPS6305x Layout (WCSP)  
11.3 Layout Example (HotRod)  
AGND  
PAC802  
C4  
PA
R2  
R1  
P
VOUT  
COR1  
P
COU1  
VIN  
C3  
PAC401  
PAC402  
PAC101  
PAC202  
C1  
C2  
COC2  
COGC4ND  
GND  
PAL101  
PAL102  
L1  
Figure 35. TPS6305x Layout (HotRod)  
Copyright © 2013–2019, Texas Instruments Incorporated  
23  
TPS63050, TPS63051  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
www.ti.com.cn  
11.4 Thermal Considerations  
Implementation of integrated circuits in low-profile and fine-pitch surface-mount packages typically requires  
special attention to power dissipation. Many system-dependent issues such as thermal coupling, airflow, added  
heat sinks and convection surfaces, and the presence of other heat-generating components affect the  
powerdissipation limits of a given component.  
Two basic approaches for enhancing thermal performance are listed below:  
Improving the power dissipation capability of the PCB design  
Introducing airflow in the system  
For more details on how to use the thermal parameters, see the application notes: Thermal Characteristics  
(SZZA017), and Semiconductor and IC Package Thermal Metrics (SPRA953)  
12 器件和文档支持  
12.1 使用 WEBENCH® 工具创建定制设计  
单击此处,使用 TPS63050 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
单击此处,使用 TPS63051 器件并借助 WEBENCH® 电源设计器创建定制设计方案。  
1. 首先输入输入电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化该设计的关键参数,如效率、尺寸和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他可行的解决方案进行比较。  
WEBENCH 电源设计器可提供定制原理图以及罗列实时价格和组件供货情况的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案以常用 CAD 格式导出  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com.cn/WEBENCH。  
12.2 器件支持  
12.2.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
6. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
TPS63050  
TPS63051  
24  
版权 © 2013–2019, Texas Instruments Incorporated  
TPS63050, TPS63051  
www.ti.com.cn  
ZHCSBD3D JULY 2013REVISED AUGUST 2019  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.5 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.6 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2013–2019, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS63050RMWR  
TPS63050RMWT  
TPS63050YFFR  
TPS63050YFFT  
TPS63051RMWR  
TPS63051RMWT  
TPS63051YFFR  
TPS63051YFFT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
DSBGA  
RMW  
RMW  
YFF  
12  
12  
12  
12  
12  
12  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
F630  
NIPDAU  
SNAGCU  
SNAGCU  
NIPDAU  
NIPDAU  
SNAGCU  
SNAGCU  
F630  
63050  
63050  
F631  
DSBGA  
YFF  
VQFN-HR  
VQFN-HR  
DSBGA  
RMW  
RMW  
YFF  
F631  
63051  
63051  
DSBGA  
YFF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Aug-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS63050RMWR  
TPS63050RMWT  
VQFN-  
HR  
RMW  
RMW  
12  
12  
3000  
250  
180.0  
8.4  
2.8  
2.8  
1.0  
4.0  
8.0  
Q2  
VQFN-  
HR  
180.0  
8.4  
2.8  
2.8  
1.0  
4.0  
8.0  
Q2  
TPS63050YFFR  
TPS63050YFFT  
TPS63051RMWR  
DSBGA  
DSBGA  
YFF  
YFF  
12  
12  
12  
3000  
250  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
1.39  
1.39  
2.8  
1.79  
1.79  
2.8  
0.7  
0.7  
1.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q2  
VQFN-  
HR  
RMW  
3000  
TPS63051RMWT  
VQFN-  
HR  
RMW  
12  
250  
180.0  
8.4  
2.8  
2.8  
1.0  
4.0  
8.0  
Q2  
TPS63051YFFR  
TPS63051YFFT  
DSBGA  
DSBGA  
YFF  
YFF  
12  
12  
3000  
250  
180.0  
180.0  
8.4  
8.4  
1.39  
1.39  
1.79  
1.79  
0.7  
0.7  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Aug-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS63050RMWR  
TPS63050RMWT  
TPS63050YFFR  
TPS63050YFFT  
TPS63051RMWR  
TPS63051RMWT  
TPS63051YFFR  
TPS63051YFFT  
VQFN-HR  
VQFN-HR  
DSBGA  
RMW  
RMW  
YFF  
12  
12  
12  
12  
12  
12  
12  
12  
3000  
250  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
DSBGA  
YFF  
VQFN-HR  
VQFN-HR  
DSBGA  
RMW  
RMW  
YFF  
3000  
250  
3000  
250  
DSBGA  
YFF  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YFF0012  
DSBGA - 0.625 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.625 MAX  
C
SEATING PLANE  
0.05 C  
BALL TYP  
0.30  
0.12  
0.8 TYP  
0.4 TYP  
D
C
B
SYMM  
1.2  
TYP  
D: Max = 1.716 mm, Min =1.656 mm  
E: Max = 1.316 mm, Min =1.256 mm  
A
0.4 TYP  
1
2
3
0.3  
12X  
0.015  
0.2  
SYMM  
C A  
B
4222191/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0012  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
12X ( 0.23)  
(0.4) TYP  
1
2
A
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
SCALE:30X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4222191/A 07/2015  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. For more information,  
see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0012  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
12X ( 0.25)  
1
2
3
A
(0.4) TYP  
B
SYMM  
METAL  
TYP  
C
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:30X  
4222191/A 07/2015  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
RMW0012A  
VQFN - 1 mm max height  
SCALE 4.500  
PLASTIC QUAD FLAT PACK - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
2.6  
2.4  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.2)  
TYP  
2X 0.5  
5
6
7
4
6X 0.5  
SYMM  
2X  
1.5  
1
10  
0.3  
0.2  
12X  
12  
SYMM  
11  
0.1  
0.05  
C B  
C
A
0.5  
0.3  
0.5  
0.3  
11X  
4221400/A 07/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RMW0012A  
VQFN - 1 mm max height  
PLASTIC QUAD FLAT PACK - NO LEAD  
SYMM  
12  
11  
12X (0.6)  
12X (0.25)  
1
10  
SYMM  
(2.3)  
8X (0.5)  
4
7
5
6
(2.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221400/A 07/2014  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RMW0012A  
VQFN - 1 mm max height  
PLASTIC QUAD FLAT PACK - NO LEAD  
SYMM  
12  
11  
12X (0.6)  
12X (0.25)  
1
10  
SYMM  
(2.3)  
8X (0.5)  
4
7
5
6
(2.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:20X  
4221400/A 07/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS63050YFFR

具有 1A 开关电流和可调节软启动功能的 TPS6305x 单电感器降压/升压转换器 | YFF | 12 | -40 to 125
TI

TPS63050YFFT

具有 1A 开关电流和可调节软启动功能的 TPS6305x 单电感器降压/升压转换器 | YFF | 12 | -40 to 125
TI

TPS63051

微型单电感器降压升压转换器
TI

TPS63051RMWR

微型单电感器降压升压转换器 | RMW | 12 | -40 to 125
TI

TPS63051RMWT

微型单电感器降压升压转换器 | RMW | 12 | -40 to 125
TI

TPS63051YFFR

微型单电感器降压升压转换器 | YFF | 12 | -40 to 125
TI

TPS63051YFFT

微型单电感器降压升压转换器 | YFF | 12 | -40 to 125
TI

TPS63060

TPS63060DSCR
TI

TPS63060-EP

具有 2A 开关电流的高输入电压降压/升压转换器
TI

TPS63060DSC

HIGH INPUT VOLTAGE BUCK-BOOST CONVERTER WITH 2A SWITCH CURRENT
TI

TPS63060DSCR

HIGH INPUT VOLTAGE BUCK-BOOST CONVERTER WITH 2A SWITCH CURRENT
TI

TPS63060DSCT

HIGH INPUT VOLTAGE BUCK-BOOST CONVERTER WITH 2A SWITCH CURRENT
TI