TPS631010YBGR [TI]

3A 峰值电流超小解决方案尺寸高效降压/升压转换器 | YBG | 8 | -40 to 125;
TPS631010YBGR
型号: TPS631010YBGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3A 峰值电流超小解决方案尺寸高效降压/升压转换器 | YBG | 8 | -40 to 125

升压转换器
文件: 总26页 (文件大小:3964K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS631010  
ZHCSPG6 DECEMBER 2022  
TPS631010 TPS631011 采用小Wafer Chip Scale Package 并具1.5A 输出电  
流的降压/升压转换器  
1 特性  
2 应用  
1.6V 5.5V 输入电压范围  
TWS  
• 系统预稳压器智能手机平板电脑、终端、远程  
– 器件启动时输入电压大1.65V  
1.2V 5.5V 输出电压范围可调节)  
• 高输出电流能力3A 峰值开关电流  
VIN 3VVOUT = 3.3V 输出电流2A  
VIN 2.7VVOUT = 3.3V 输出电流1.5A  
• 有源输出放电TPS631011)  
• 在整个负载范围内具有高效率  
信息处理)  
• 负载点调节有线传感器、端口/电缆适配器加密  
)  
• 指纹、摄像头传感器电子智能锁IP 网络摄像  
)  
• 稳压器数据通信、光学模块、制冷/加热)  
8µA 静态电流典型值)  
– 可配置的自动节电模式和强PWM 模式  
3 说明  
TPS631010 TPS631011 是采用微型 Wafer Chip  
Scale Package 的恒定频率峰值电流模式控制降压/升  
压转换器。这两款器件具有 3A 的典型峰值电流限制和  
1.6V 5.5V 的输入电压范围可提供适用于系统前置  
稳压器和电压稳定器的电源解决方案。  
• 峰值电流降压/升压模式架构  
– 无缝模式转换  
– 正向和反向电流运行  
– 启动至预偏置输出  
– 固定频率运行2MHz 开关频率  
• 安全、可靠运行的特性  
根据输入电压的不同当输入电压近似等于输出电压  
TPS631010 TPS631011 会自动以升压、降压  
3 周期降压/升压模式运行。以定义的占空比进行模  
式切换避免不必要的模式内切换以减少输出电压纹  
波。静态电流为 8μA电源处于省电模式可在轻载  
甚至空载条件下实现出色效率。  
– 过流保护和短路保护  
– 采用有源斜坡的集成软启动  
– 过热保护和过压保护  
– 带负载断开功能的真正关断功能  
– 正向和反向电流限制  
• 小解决方案尺寸  
这些器件采WCSP 封装具有超小解决方案尺寸。  
– 小1µH 电感器  
1.803mm × 0.905mm WCSP 封装  
• 使TPS631010 TPS631011 并借助  
WEBENCH® Power Designer 创建定制设计方案  
封装信息  
封装(1)  
封装尺寸标称值)  
器件型号  
TPS631010  
TPS631011(2)  
WCSP  
1.803 mm × 0.905 mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 预发布信息非量产数据。  
L1  
100  
95  
LX1  
VIN  
LX2  
VI  
VOUT  
VO  
90  
CI  
CO  
85  
VEXT  
80  
VIN=1.6 V  
VIN=2.8 V  
VIN=3.3 V  
VIN=4.2 V  
Vin=5.5V  
75  
FB  
MODE  
EN  
To/From  
System  
70  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 455  
GND  
Output Current (A)  
效率目标与输出电流间的关(VOUT = 3.3V)  
典型应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSGO6  
 
 
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation.................................. 11  
9.1 Application Information..............................................11  
9.2 Typical Application.................................................... 11  
9.3 Power Supply Recommendations.............................18  
9.4 Layout....................................................................... 18  
10 Device and Documentation Support..........................20  
10.1 Device Support ...................................................... 20  
10.2 接收文档更新通知................................................... 20  
10.3 支持资源..................................................................20  
10.4 Trademarks.............................................................20  
10.5 Electrostatic Discharge Caution..............................20  
10.6 术语表..................................................................... 20  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Rating................................................................. 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics ............................................6  
8 Detailed Description........................................................7  
8.1 Overview.....................................................................7  
8.2 Functional Block Diagram...........................................7  
8.3 Feature Description ....................................................7  
Information.................................................................... 21  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
December 2022  
*
Advance Information  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS631010  
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
5 Device Comparison Table  
PART NUMBER  
Output Discharge  
TPS631010  
No  
TPS631011(1)  
YES  
(1) Product Preview. Contact TI factory for more information.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS631010  
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
VIN  
EN  
MODE  
GND  
FB  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
LX1  
LX2  
VOUT  
6-1. 8-Pin YBG WCSP Package (Top View)  
6-1. Pin Functions  
PIN  
I/O(1)  
DESCRIPTION  
NAME  
NO.  
VIN  
A1  
PWR  
I
Supply input voltage  
EN  
A2  
B1  
Device enable. Set High to enable and Low to disable. It must not be left floating.  
Inductor switching node of the buck stage  
LX1  
PWR  
PFM/PWM selection. Set Low for power save mode, set High for forced PWM. It must not be  
left floating.  
MODE  
B2  
I
LX2  
GND  
VOUT  
FB  
C1  
C2  
D1  
D2  
PWR  
PWR  
PWR  
I
Inductor switching node of the boost stage  
Power ground  
Power stage output  
Voltage feedback. Sensing pin  
(1) PWR = power, I = input  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS631010  
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating junction temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
40  
65  
MAX  
6.0  
7
UNIT  
V
Input voltage (VIN, LX1, LX2, VOUT, EN, FB, MODE)(2)  
VI  
Input voltage for less than 10 ns (LX1, LX2)(2)  
V
TJ  
Operating junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values are with respect to network ground terminal, unless otherwise noted.  
7.2 ESD Rating  
VALUE  
±1000  
± 500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating junction temperature (unless otherwise noted)  
MIN  
1.6  
NOM  
MAX  
5.5  
UNIT  
V
VI  
Supply voltage  
VO  
CI  
Output voltage  
1.2  
5.5  
V
Effective Input capacitance  
VI = 1.6 V to 5.5 V  
4.2  
µF  
µF  
µF  
µH  
10.4  
7.95  
0.7  
16.9  
10.6  
1
330  
330  
1.3  
1.2 V VO 3.6 V, nominal value at VO = 3.3 V  
3.6 V < VO 5.5 V, nominal value at VO = 5 V  
CO  
Effective Output capacitance  
Effective Inductance  
L
Operating junction  
temperature range  
TJ  
125  
°C  
40  
7.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
TPS631010 TPS631011  
THERMAL METRIC  
YBG(WCSP)  
UNIT  
8
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
84  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
0.7  
43.9  
2.9  
43.7  
N/A  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
ΨJB  
RΘJC(bot)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS631010  
 
 
 
 
 
 
 
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
7.5 Electrical Characteristics  
Over operating junction temperature range and recommended supply voltage range (unless otherwise noted). Typical values  
are at VI = 3.8 V , VO = 3.3 V and TJ = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY  
ISD  
Shutdown current into VIN  
VI = 3.8 V, V(EN) = 0 V  
TJ = 25°C  
0.5  
0.15  
8
0.9  
6.1  
μA  
μA  
μA  
V
IQ  
Quiescent current into VIN  
VI = 2.2 V, VO = 3.3 V, V(EN) = 2.2 V, no switching  
VI = 2.2 V, VO = 3.3 V, V(EN) = 2.2 V, no switching  
IQ  
Quiescent current into VOUT  
VIT+  
Positive-going UVLO threshold voltage  
Negative-going UVLO threshold voltage  
UVLO threshold voltage hysteresis  
Positive-going POR threshold voltage  
Negative-going POR threshold voltage  
1.5  
1.4  
1.55  
1.45  
1.599  
1.499  
VIT–  
During start-up  
V
Vhys  
99  
mV  
V
VI(POR)T+  
VI(POR)T-  
I/O SIGNALS  
maximum of VI or VO  
1.25  
1.22  
1.45  
1.43  
1.65  
1.6  
V
Positive-going threshold  
EN, MODE  
VT+  
0.77  
0.5  
0.98  
1.2  
V
voltage  
Negative-going threshold  
EN, MODE  
VT-  
Vhys  
IIH  
0.66  
300  
0.76  
V
voltage  
Hysteresis voltage  
EN, MODE  
mV  
µA  
V(EN) = V(MODE) = 1.5 V,  
no pullup resistor  
High-level input current  
(EN, MODE)  
±0.01  
±0.25  
V(EN) = V(MODE) = 0 V,  
IIL  
Low-level input current  
Input bias current  
(EN, MODE)  
±0.01  
±0.01  
±0.1  
±0.3  
µA  
µA  
(EN, MODE) V(EN) = 5.5 V  
POWER SWITCH  
Q1  
Q2  
45  
50  
50  
85  
m  
mΩ  
mΩ  
mΩ  
VI = 3.8 V, VO = 3.3 V,  
test current = 0.2 A  
rDS(on)  
On-state resistance  
Q3  
Q4  
CURRENT LIMIT  
Output sourcing current  
2.6  
3
3.35  
A
A
IL(PEAK)  
Switch peak current limit (1) Q1  
VO = 3.3 V  
IO falling  
Output sinking current, VI =  
3.3 V  
0.7  
0.55 0.45  
PFM mode entry threshold (peak) current  
145  
mA  
(1)  
OUTPUT  
IDIS  
TPS631011 Output discharge current  
EN = LOW, VI = 2.2V VO = 3.3V  
mA  
mV  
67  
CONTROL[FEEDBACK PIN]  
VFB  
Reference voltage on feedback pin  
495  
500  
505  
PROTECTION FEATURES  
Positive-going OVP threshold  
voltage  
VT+(OVP)  
VT+(IVP)  
5.55  
5.55  
5.75  
5.75  
5.95  
5.95  
V
V
Positive-going IVP threshold  
voltage  
TIMING PARAMETERS  
Delay between a rising edge on the EN pin  
and the start of the output voltage ramp  
td(EN)  
0.87  
1.5  
ms  
td(ramp)  
fSW  
Soft-start ramp time  
6.42  
1.8  
7.55  
2
8.68  
2.2  
ms  
Switching frequency  
MHz  
(1) Current limit production test are performed under DC conditions. The current limit in operation is somewhat higher and depending on  
propagation delay and the applied external components  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS631010  
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS631010 and TPS631011 are a constant frequency peak current mode control buck-boost converters.  
The converters use a fixed-frequency topology with approximately 2-MHz switching frequency. The modulation  
scheme has three clearly defined operation modes where the converters enter with defined thresholds over the  
full operation range of VIN and VOUT. The maximum output current is determined by the Q1 peak current limit,  
which is typically 3 A.  
8.2 Functional Block Diagram  
L
L1  
L2  
VOUT  
VIN  
CIN  
COUT  
Current  
Sensor  
Gate  
Driver  
Gate  
Driver  
Device  
Control  
Device  
Control  
VOUT  
VIN  
VMAX Switch  
EN  
+
Device Control  
Power Safe Mode  
Protection  
FB  
+
VIN  
Ref  
500 mV  
Gate  
Driver  
MODE  
GND  
Current Limit  
VOUT  
Buck/Boost Control  
Soft-Start  
L1, L2  
8.3 Feature Description  
8.3.1 Undervoltage Lockout (UVLO)  
The input voltage of the VIN pin is continuously monitored if the device is not in shutdown mode. UVLO only  
stops or starts the converter operation. The UVLO does not impact the core logic of the device. UVLO avoids a  
brownout of the device during device operation. In case the supply voltage on the VIN pin is lower that the  
negative-going threshold of UVLO, the converter stops its operation. To avoid a false disturbance of the power  
conversion, the UVLO falling threshold logic signal is digitally de-glitched.  
If the supply voltage on the VIN pin recovers to be higher than the UVLO rising threshold, the converter returns  
to operation. In this case, the soft-start procedure restarts faster than under start-up without a pre-biased output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS631010  
 
 
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
8.3.2 Enable and Soft Start  
EN  
A
B
IL(lim_SS)  
IL  
VT+(UVP)  
VO  
td(RAMP)  
td(EN)  
8-1. Typical Soft-Start Behavior  
When the input voltage is above the UVLO rising threshold and the EN pin is pulled to a voltage above 1.2 V, the  
TPS631010 and TPS631011 are enabled and starts up after a short delay time, td(EN)  
.
The devices have an inductor peak current clamp to limit the inrush current during start-up. When the minimum  
current clamp (IL(lim_SS)) is lower than the current that is necessary to follow the voltage ramp, the current  
automatically increases to follow the voltage ramp. The minimum current limit ensures as fast as possible soft  
start if the capacitance is chosen lower than what the ramp time td(RAMP) was selected for.  
In a typical start-up case as shown in 8-1 (low output load, typical output capacitance), the minimum current  
clamp limits the inrush current and charges the output capacitor. The output voltage then rises faster than the  
reference voltage ramp (see phase A in 8-1). To avoid an output overshoot, the current clamp is deactivated  
when the output is close to the target voltage and follows the reference voltage ramp slew value given by the  
voltage ramp, which is finishing the start up (see phase B in 8-1). The transition from the minimum current  
clamp operation is sensed by using the threshold VT+(UVP). After phase B, the output voltage is well regulated to  
the nominal target voltage. The current waveform depends on the output load and operation mode.  
8.3.3 Adjustable Output Voltage  
The output voltage is set by an external resistor divider. The resistor divider must be connected between VOUT,  
FB, and GND. The feedback voltage is given by VFB. The low-side resistor R2 (between FB and GND) must not  
exceed 100 k. The high-side resistor R1 (between FB and VOUT) is calculated by 方程1.  
R1 = R2 × (VOUT / VFB - 1)  
(1)  
The typical VFB voltage is 0.5 V.  
8.3.4 Mode Selection (PFM/FPWM)  
The mode pin is a digital input to enable PFM/FPWM.  
When the MODE pin is connected to logic low, the device works in auto PFM mode. The device features a power  
save mode to maintain the highest efficiency over the full operating output current range. PFM automatically  
changes the converter operation from CCM to pulse frequency modulation.  
When the MODE pin is connected to logic high, the device works in forced PWM mode, regardless of the output  
current, to achieve minimum output ripple.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS631010  
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
8.3.5 Output Discharge  
TPS631011 provides an active pull down current(67mA typ) to quickly discharge output when the EN is logic low.  
With this function, the VOUT is connected to ground through internal circuitry, preventing the output from  
floatingor entering into an undetermined state. The output discharge function makes the power on and off  
sequencing smooth. Pay attention to the output discharge function if use this device in applications such as  
power multiplexing, because the output discharge circuitry creates a constant current path between the  
multiplexer output and the ground.  
.
8.3.6 Reverse Current Operation  
The device can support reverse current operation (the current flows from VOUT pin to VIN pin). If the output  
feedback voltage on the FB pin is higher than the reference voltage, the converter regulation forces a current  
into the input capacitor. The reverse current operation is independent of the VIN voltage or VOUT voltage ratio,  
hence it is possible on all device operation modes boost, buck, or buck-boost.  
8.3.7 Protection Features  
The following sections describe the protection features of the device.  
8.3.7.1 Input Overvoltage Protection  
The TPS631010 and TPS631011 have input overvoltage protection which avoids any damage to the device in  
case the current flows from the output to the input and the input source cannot sink current (for example, a diode  
in the supply path).  
If forced PWM mode is active, the current can go negative until it reaches the sink current limit. Once the input  
voltage threshold, VT+(IVP), is reached on the VIN pin, the protection disables forced PWM mode and only allows  
current to flow from VIN to VOUT. After the input voltage drops under the input voltage protection threshold,  
forced PWM mode can be activated again.  
8.3.7.2 Output Overvoltage Protection  
The devices have the output overvoltage protection which avoids any damage to the device in case the external  
feedback pin is not working properly.  
If the output voltage threshold VT+(OVP) is reach on the VOUT pin, the protection disables converter power stage  
and enter a high impedance at the switch nodes.  
8.3.7.3 Short Circuit Protection  
The device features peak current limit performance at short circuit protection. 8-2 shows a typical device  
behavior of an short/overload event of the short circuit protection.  
VO  
IL(PEAK)  
IL  
8-2. Typical Device Behavior During Short Circuit Protection  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS631010  
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
8.3.7.4 Thermal Shutdown  
To avoid thermal damage of the device, the temperature of the die is monitored. The device stops operation  
once the sensed temperature rises over the thermal threshold. After the temperature drops below the thermal  
shutdown hysteresis, the converter returns to normal operation.  
8.4 Device Functional Modes  
The device has two functional modes: off and on. The device enters the on mode when the voltage on the VIN  
pin is higher than the UVLO threshold and a high logic level is applied to the EN pin. The device enters the off  
mode when the voltage on the VIN pin is lower than the UVLO threshold or a low logic level is applied to the EN  
pin.  
on  
VI > VIT+ &&  
EN pin = high  
VI < VITœ ||  
EN pin = low  
off  
8-3. Device Functional Modes  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS631010  
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS631010 and TPS631011 are a high-efficiency, low-quiescent current, buck-boost converters. The device  
is suitable for applications needing a regulated output voltage from an input supply that can be higher or lower  
than the output voltage.  
9.2 Typical Application  
L1  
1 µH  
LX1  
VIN  
LX2  
VI = 1.6 œ 5.5 V  
VO = 3.3 V  
VOUT  
CI  
CO  
47 µF  
22 µF  
R1  
511 k  
FB  
MODE  
EN  
To/From  
System  
R2  
91 kꢀ  
GND  
9-1. 3.3-VOUT Typical Application  
9.2.1 Design Requirements  
The design parameters are listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
Input voltage  
VALUES  
2.7 V to 4.3 V  
3.3 V  
Output voltage  
Output current  
1.5 A  
9.2.2 Detailed Design Procedure  
The first step is the selection of the output filter components. To simplify this process, Recommended Operating  
Conditions outlines minimum and maximum values for inductance and capacitance. Pay attention to the  
tolerance and derating when selecting nominal inductance and capacitance.  
9.2.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the TPS631010 and TPS631011 with the WEBENCH® Power  
Designer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS631010  
 
 
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint or cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you can:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
9.2.2.2 Inductor Selection  
The inductor selection is affected by several parameters such as the following:  
Inductor ripple current  
Output voltage ripple  
Transition point into power save mode  
Efficiency  
See 9-2 for typical inductors.  
For high efficiencies, the inductor with a low DC resistance is needed to minimize conduction losses. Especially  
at high-switching frequencies, the core material has a high impact on efficiency. When using small chip  
inductors, the efficiency is reduced mainly due to higher inductor core losses. Core losses need to be considered  
when selecting the appropriate inductor. The inductor value determines the inductor ripple current. The larger the  
inductor value, the smaller the inductor ripple current and the lower the conduction losses of the converter.  
Conversely, larger inductor values cause a slower load transient response. To avoid saturation of the inductor,  
the peak current for the inductor in steady state operation is calculated using 方程式 3. Only the equation that  
defines the switch current in boost mode is shown because this provides the highest value of current and  
represents the critical current value for selecting the right inductor.  
V
- V  
IN  
OUT  
V
Duty Cycle Boost  
D =  
OUT  
(2)  
(3)  
Iout  
η ´ (1 - D)  
Vin ´ D  
IPEAK  
=
+
2 ´ f ´ L  
where:  
D = duty cycle in boost mode  
f = converter switching frequency (typical 2 MHz)  
L = inductor value  
η= estimated converter efficiency (use the number from the efficiency curves or 0.9 as an assumption)  
备注  
The calculation must be done for the minimum input voltage in boost mode.  
Calculating the maximum inductor current using the actual operating conditions gives the minimum saturation  
current of the inductor needed. It is recommended to choose an inductor with a saturation current 20% higher  
than the value calculated using 方程3. Possible inductors are listed in 9-2.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS631010  
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
9-2. List of Recommended Inductors  
DCR  
[mΩ]  
INDUCTOR  
VALUE [µH]  
SATURATION  
CURRENT [A]  
SIZE  
(L × W × H mm)  
PART NUMBER  
MANUFACTURER(1)  
1
1
1
1
4.3  
4.2  
2.2  
2.0  
42  
DFE252012P-1R0M=P2  
HTEK20161T-1R0MSR  
MAKK2016T1R0M (2)  
DFE18SAN1R0ME0 (2)  
MuRata  
Cyntec  
2.5 × 2.0 × 1.2  
2.0 × 1.6 × 1.0  
2.0 × 1.6 × 1.0  
1.6 × 0.8 × 0.8  
43  
75  
Taiyo Yuden  
Murata  
144  
(1) See the Third-Party Products Disclaimer.  
(2) This inductor does not support full output current range.  
9.2.2.3 Output Capacitor Selection  
For the output capacitor, use small ceramic capacitors placed as close as possible to the VOUT and PGND pins  
of the IC. The recommended nominal output capacitor value is a single 47 µF. If, for any reason, the application  
requires the use of large capacitors that cannot be placed close to the IC, use a smaller ceramic capacitor in  
parallel to the large capacitor, and place the small capacitor as close as possible to the VOUT and PGND pins of  
the IC.  
It is important that the effective capacitance is given according to the recommended value in Recommended  
Operating Conditions. In general, consider DC bias effects resulting in less effective capacitance. The choice of  
the output capacitance is mainly a tradeoff between size and transient behavior as higher capacitance reduces  
transient response over/undershoot and increases transient response time. Possible output capacitors are listed  
in 9-3.  
There is no upper limit for the output capacitance value.  
9-3. List of Recommended Capacitors  
CAPACITOR  
VALUE [µF]  
SIZE  
(METRIC)  
VOLTAGE RATING [V]  
PART NUMBER  
MANUFACTURER(1)  
ESR [mΩ]  
47  
47  
6.3  
10  
10  
40  
GRM219R60J476ME44  
CL10A476MQ8QRN  
Murata  
Semco  
0805 (2012)  
0603 (1608)  
(1) See the Third-Party Products Disclaimer.  
9.2.2.4 Input Capacitor Selection  
A 22-µF input capacitor is recommended to improve line transient behavior of the regulator and EMI behavior of  
the total power supply circuit. An X5R or X7R ceramic capacitor placed as close as possible to the VIN and  
PGND pins of the IC is recommended. This capacitance can be increased without limit. If the input supply is  
located more than a few inches from the converter, additional bulk capacitance can be required in addition to the  
ceramic bypass capacitors. An electrolytic or tantalum capacitor with a value of 47 µF is a typical choice.  
9-4. List of Recommended Capacitors  
CAPACITOR  
VALUE [µF]  
SIZE  
(METRIC)  
VOLTAGE RATING [V]  
PART NUMBER  
MANUFACTURER(1)  
ESR [mΩ]  
22  
10  
6.3  
10  
43  
40  
GRM187R61A226ME15  
GRM188R61A106ME69  
Murata  
Murata  
0603 (1608)  
0603 (1608)  
(1) See the Third-Party Products Disclaimer.  
9.2.2.5 Setting the Output Voltage  
The output voltage is set by an external resistor divider. The resistor divider must be connected between VOUT,  
FB, and GND. The feedback voltage is 500 mV nominal.  
Keep the low-side resistor R2 (between FB and GND) below 100 k. The high-side resistor (between FB and  
VOUT) R1 is calculated with 方程4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS631010  
 
 
 
 
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
æ
ç
è
ö
VOUT  
VFB  
R1 = R2 ×  
- 1  
÷
ø
(4)  
where  
VFB = 500 mV  
9-5. Resistor Selection For Typical Output Voltages  
VOUT  
R1  
R2  
2.5 V  
3.3 V  
3.6 V  
5 V  
365K  
511K  
562K  
806K  
91K  
91K  
91K  
91K  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS631010  
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
9.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
VIN=1.6 V  
VIN=2.8 V  
VIN=3.3 V  
VIN=4.2 V  
Vin=5.5V  
VIN=1.6V  
VIN=2.8V  
VIN=3.3V  
VIN=4.2V  
VIN=5.5V  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 455  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 455  
Output Current (A)  
Output Current (A)  
VOUT = 3.3 V  
MODE = High  
VOUT = 3.3 V  
MODE = High  
9-2. Efficiency vs Output Current (FPWM)  
9-3. Load Regulation (FPWM)  
100  
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
95  
90  
85  
80  
VIN=1.6 V  
VIN=2.8 V  
VIN=3.3 V  
VIN=4.2 V  
Vin=5.5V  
VIN=1.6V  
VIN=2.8V  
VIN=3.3V  
VIN=4.2V  
VIN=5.5V  
75  
70  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 455  
0.0001  
0.001  
0.01  
0.05  
0.2 0.5  
1
2 3 455  
Output Current (A)  
Output Current (A)  
VOUT = 3.3 V  
MODE = Low  
VO = 3.3 V  
MODE = High  
9-4. Efficiency vs Input Voltage (PFM)  
9-5. Load Regulation (PFM)  
3.3  
Vout (3.3V o set)  
20mV/div  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
LX1  
2V/div  
LX2  
2V/div  
Inductor Current  
500mA/div  
Time Scale: 200ns/div  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VIN = 2.7 V, VOUT = 3.3 V IOUT = 1 A, MODE = Low  
Input Voltage (V)  
VOUT = 3.3 V  
9-7. Switching Waveforms, Boost Operation  
with 1-A Load  
9-6. Typical Output Current Capability vs Input  
Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS631010  
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
Vout (3.3V o set)  
20mV/div  
Vout (3.3V o set)  
20mV/div  
LX1  
2V/div  
LX1  
2V/div  
LX2  
2V/div  
LX2  
2V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 200ns/div  
Time Scale: 200ns/div  
VIN = 3.3 V, VOUT = 3.3 V IOUT = 1 A, MODE = Low  
VIN = 3.6 V, VOUT = 3.3 V IOUT = 1 A, MODE = Low  
9-8. Switching Waveforms with 1-A Load  
9-9. Switching Waveforms with 1-A Load  
Vout (3.3V o set)  
20mV/div  
Vout (3.3V o set)  
20mV/div  
LX1  
LX1  
2V/div  
2V/div  
LX2  
2V/div  
LX2  
2V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 5ms/div  
Time Scale: 200ns/div  
VIN = 4.3 V, VOUT = 3.3 V  
IOUT = 1 A, MODE = Low  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 1 mA, MODE = Low  
9-10. Switching Waveforms, Buck Operation  
9-11. Switching Waveforms at 1-mA Load  
with 1-A Load  
EN  
2V/div  
EN  
2V/div  
Vout  
2V/div  
Vout  
2V/div  
LX2  
2V/div  
LX2  
2V/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 5ms/div  
Time Scale: 500 s/div  
VIN = 3.6 V, VOUT = 3.3 V  
VIN = 3.6 V, VOUT = 3.3 V  
Rload = 4 Ω, MODE = Low  
Rload = 4 Ω, MODE = Low  
9-12. Start-Up by EN  
9-13. Shutdown by EN  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS631010  
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
Vout (3.3V o set)  
50mV/div  
Vout (3.3V o set)  
200mV/div  
LX1  
5V/div  
LX1  
5V/div  
LX2  
5V/div  
LX2  
5V/div  
Output Current  
1A/div  
Output Current  
1A/div  
Time Scale: 100 s/div  
VIN = 2.7 V, VOUT = 3.3 V IOUT = 100 mA to 1 A with 20-  
µs slew rate  
Time Scale: 5ms/div  
VIN = 2.7 V, VOUT = 3.3 V  
IOUT = 100 mA to 1-A sweep  
9-15. Load Sweep at 2.7-V Input Voltage  
9-14. Load Transient at 2.7-V Input Voltage  
Vout (3.3V o set)  
50mV/div  
Vout (3.3V o set)  
200mV/div  
LX1  
LX1  
5V/div  
5V/div  
LX2  
LX2  
5V/div  
5V/div  
Output Current  
1A/div  
Output Current  
1A/div  
Time Scale: 100 s/div  
Time Scale: 5ms/div  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 100 mA to 1 A with 20-  
µs slew rate  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 100 mA to 1-A sweep  
9-17. Load Sweep at 3.6-V Input Voltage  
9-16. Load Transient at 3.6-V Input Voltage  
Vout (3.3V o set)  
50mV/div  
Vout (3.3V o set)  
200mV/div  
LX1  
LX1  
5V/div  
5V/div  
LX2  
LX2  
5V/div  
5V/div  
Output Current  
1A/div  
Output Current  
1A/div  
Time Scale: 100 s/div  
Time Scale: 5ms/div  
VIN = 4.3 V, VOUT = 3.3 V  
IOUT = 100 mA to 1 A with 20-  
µs slew rate  
VIN = 4.3 V, VOUT = 3.3 V  
IOUT = 100 mA to 1-A sweep  
9-19. Load Sweep at 4.3-V Input Voltage  
9-18. Load Transient at 4.3-V Input Voltage  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS631010  
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
VIN  
1V/div  
VIN  
1V/div  
Vout (3.3V o set)  
50mV/div  
Vout (3.3V o set)  
50mV/div  
Inductor Current  
500mA/div  
Inductor Current  
500mA/div  
Time Scale: 500 s/div  
Time Scale: 10ms/div  
VIN = 2.7 V to 4.3 V with 20-µs  
slew rate, VOUT = 3.3 V  
IOUT = 1 A  
VIN = 2.7-V to 4.3-V sweep,  
VOUT = 3.3 V  
IOUT = 1 A  
9-20. Line Transient at 1-A Load Current  
9-21. Line Sweep at 1-A Load Current  
Vout  
Vout  
2V/div  
2V/div  
LX1  
2V/div  
LX1  
2V/div  
LX2  
2V/div  
LX2  
2V/div  
Inductor Current  
1A/div  
Inductor Current  
1A/div  
Time Scale: 10 s/div  
Time Scale: 50 s/div  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 1 A, FPWM  
VIN = 3.6 V, VOUT = 3.3 V  
IOUT = 1 A, FPWM  
9-23. Output Short Protection (Recover)  
9-22. Output Short Protection (Entry)  
9-6. Components for Application Characteristic Curves for VOUT = 3.3 V  
REFERENCE  
DESCRIPTION(2)  
PART NUMBER  
TPS631010 or TPS631011  
DFE252012P-1R0M=P2  
GRM187R61A226ME15  
GRM219R60J476ME44  
Standard  
MANUFACTURER(1)  
Texas Instruments  
MuRata  
U1  
L1  
High Power Density 1.5 A Buck-Boost Converter  
1.0 μH, 2.5 mm x 2.0 mm, 4.3 A, 42 mΩ  
22 µF, 0603, Ceramic Capacitor, ±20%, 6.3 V  
47 µF, 0805, Ceramic Capacitor, ±20%, 6.3 V  
511 k, 0603 Resistor, 1%, 100 mW  
C1  
C2  
R1  
R2  
Murata  
Murata  
Standard  
Standard  
Standard  
91 k, 0603 Resistor, 1%, 100 mW  
(1) See the Third-Party Products Disclaimer.  
(2) For other output voltages, refer to 9-5 for resistor values.  
9.3 Power Supply Recommendations  
The TPS631010 and TPS631011 have no special requirements for its input power supply. The input power  
supply output current needs to be rated according to the supply voltage, output voltage, and output current.  
9.4 Layout  
9.4.1 Layout Guidelines  
The PCB layout is an important step to maintain the high performance of the device.  
Place input and output capacitors as close as possible to the IC. Traces need to be kept short. Route wide  
and direct traces to the input and output capacitors results in low trace resistance and low parasitic  
inductance.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS631010  
 
 
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
The sense trace connected to FB is signal trace. Keep these traces away from L1 and L2 nodes.  
9.4.2 Layout Example  
GND  
VIN  
VOUT  
GND  
GND  
9-24. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS631010  
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
10.1.2 Development Support  
10.1.2.1 Custom Design with WEBENCH Tools  
Click here to create a custom design using the TPS631010 and TPS631011 with the WEBENCH® Power  
Designer.  
1. Start by entering your VIN, VOUT and IOUT requirements.  
2. Optimize your design for key parameters like efficiency, footprint or cost using the optimizer dial and  
compare this design with other possible solutions from Texas Instruments.  
3. WEBENCH Power Designer provides you with a customized schematic along with a list of materials with real  
time pricing and component availability.  
4. In most cases, you can:  
Run electrical simulations to see important waveforms and circuit performance,  
Run thermal simulations to understand the thermal performance of your board,  
Export your customized schematic and layout into popular CAD formats,  
Print PDF reports for the design, and share your design with colleagues.  
5. Get more information about WEBENCH tools at www.ti.com/webench.  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS631010  
 
 
 
 
 
 
 
 
TPS631010  
ZHCSPG6 DECEMBER 2022  
www.ti.com.cn  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS631010  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
21-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS631010YBGR  
ACTIVE  
DSBGA  
YBG  
8
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
-40 to 125  
1NS  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
YBG0008  
DSBGA - 0.5 mm max height  
SCALE 10.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
0.05 C  
0.20  
0.14  
BALL TYP  
0.4  
TYP  
D
C
1.2  
TYP  
SYMM  
D: Max = 1.793 mm, Min =1.733 mm  
E: Max = 0.895 mm, Min =0.835 mm  
B
A
0.4 TYP  
2
1
0.27  
0.23  
8X  
SYMM  
0.015  
C A B  
4224718/A 12/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBG0008  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
8X ( 0.23)  
1
2
A
(0.4) TYP  
B
C
SYMM  
D
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 50X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224718/A 12/2018  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBG0008  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
8X ( 0.25)  
2
1
A
B
(0.4) TYP  
SYMM  
METAL  
TYP  
C
D
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 50X  
4224718/A 12/2018  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS634G1

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G10

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G11

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G12

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G14

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G2

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G20

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G4

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G5

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G7

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS634G9

PHOTOVOLTAIC CELL FOR THERMOPILE DETECTION
ETC

TPS63700

DC-DC INVERTER
TI