TPS65000TRTERQ1 [TI]

采用 2.25MHz 降压转换器且具有双路 LDO 和 SVS 的电源管理 IC (PMIC) | RTE | 16 | -40 to 105;
TPS65000TRTERQ1
型号: TPS65000TRTERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 2.25MHz 降压转换器且具有双路 LDO 和 SVS 的电源管理 IC (PMIC) | RTE | 16 | -40 to 105

开关 集成电源管理电路 转换器
文件: 总29页 (文件大小:3203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
具有双路 LDO TPS65000-Q1 2.25 MHz 降压转换器  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
TPS65000-Q1 器件是一款应用于汽车的单片 电源管理  
集成电路 (IC)。这个器件包含一个带有两个低压降稳压  
器的单个降压转换器。为了在最大可能的负载电流范围  
内实现最大效率,这个降压转换器在轻负载时进入低功  
耗模式。对于低噪声 应用,该器件可通过 MODE 引脚  
强制进入固定频率 PWM。此降压转换器允许使用小型  
电感器和电容器,因此可实现较小的解决方案尺寸。电  
源正常状态输出可用于排序。LDO 可提供 300mA 的  
电流,且可在 1.6V 6V 的输入电压范围内工作,因  
此可从降压转换器提供。该降压转换器和 LDO 具有单  
独的电压输入和使能端,从而实现了设计和排序的灵活  
性。  
器件温度 2 级:  
环境工作温度范围为 –40°C +105°C  
器件人体放电模式 (HBM) 静电防护 (ESD) 分类  
等级 H2  
器件组件充电模式 (CDM) ESD 分类等级 C4B  
降压转换器:  
VIN 范围从 2.3V 6V  
用于降低电磁干扰 (EMI) 的展频时钟 (SSC) 系  
列产品  
2.25MHz 固定频率运行  
600mA 输出电流  
TPS65000-Q1 采用 16 引脚无引线封装 (3mm x 3mm  
WQFN)。  
LDO:  
VIN 范围从 1.6V 6V  
器件信息(1)  
可调输出电压  
高达 300mA 输出电流  
独立电源输入和使能  
器件型号  
封装  
封装尺寸(标称值)  
TPS65000-Q1  
WQFN (16)  
3.00mm x 3.00mm  
3 mm × 3 mm 16 引脚 WQFN  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
2 应用  
汽车摄像头模块  
汽车信息娱乐系统  
汽车仪表盘  
汽车传感器融合  
典型应用电路原理图  
TPS65000-Q1  
Oscillator  
SSCG  
EN_DCDC  
VINDCDC  
2.2mH  
SW  
VDCDC  
3.3V  
Step-Down  
600mA  
V
680W  
FB_DCDC  
IN  
10mF  
10mF  
V
P
A
IN  
MODE  
P
150kW  
A
22pF  
470kW  
PG  
PG  
VLDO1  
VLDO1  
1.8V  
470kW  
10mF  
FB_LDO1  
EN_LDO1  
VINLDO1  
P
LDO1  
300mA  
180kW  
A
VLDO2  
VLDO2  
2.8V  
EN_LDO2  
VINLDO2  
AGND  
820kW  
FB_LDO2  
10mF  
LDO2  
300mA  
P
VDCDC  
180kW  
PGND  
P
A
A
Bandgap Reference  
TPS65000-Q1 Function/Pin  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSC45  
 
 
 
 
 
 
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
8.1 Application Information............................................ 16  
8.2 Typical Application .................................................. 16  
Power Supply Recommendations...................... 20  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 7  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 20  
10.1 Layout Guidelines ................................................. 20  
10.2 Layout Examples................................................... 20  
11 器件和文档支持 ..................................................... 21  
11.1 器件支持................................................................ 21  
11.2 文档支持................................................................ 21  
11.3 接收文档更新通知 ................................................. 21  
11.4 社区资源................................................................ 21  
11.5 ....................................................................... 21  
11.6 静电放电警告......................................................... 21  
11.7 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (September 2015) to Revision C  
Page  
已删除 文档标题中的 SVS ...................................................................................................................................................... 1  
已更改 应用列表 .................................................................................................................................................................... 1  
Changed the CDM values in the ESD Ratings table.............................................................................................................. 4  
Changed the temperature range in the Overview section from –40°C to +85°C to –40°C to +105°C................................. 10  
Changed the PWM description of the MODE pin in the Device Functional Modes section................................................. 15  
Deleted extra devices from the Design Parameters table.................................................................................................... 16  
Deleted the tables with recommended inductors and capacitors......................................................................................... 17  
已添加 接收文档更新通知 ............................................................................................................................................. 21  
已更改 静电放电注意事项.............................................................................................................................................. 21  
Changes from Revision A (October 2013) to Revision B  
Page  
已添加 引脚配置和功能部分,ESD 额定值表,特性 说明 部分、器件功能模式应用和实施部分、电源相关建议部  
分、布局部分、器件和文档支持部分以及机械、封装和可订购信息部分 ................................................................................ 1  
Changes from Original (August 2012) to Revision A  
Page  
Changed description for MODE pin in Pin Functions table.................................................................................................... 3  
Deleted power dissipationrow of Absolute Maximum Ratings table....................................................................................... 4  
Changed DCDC to VDCDC in CO row of Recommended Operating Conditions................................................................... 4  
Changed DCDC to VDCDC in STEP-DOWN CONVERTER OUTPUT VOLTAGE sectiion of Electrical Characteristics ..... 6  
Deleted SUPPLY VOLTAGE SUPERVISOR section of Electrical Characteristics table ....................................................... 6  
2
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
5 Pin Configuration and Functions  
RTE Package  
16-Pin WQFN With Exposed Thermal Pad  
Top View  
16  
15  
14  
13  
EN_LDO1  
EN_LDO2  
PG  
1
2
3
4
12  
11  
10  
9
VLDO1  
FB_LDO1  
AGND  
Exposed Thermal Pad  
PGND  
FB_DCDC  
5
6
7
8
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
10  
8
AGND  
I
Analog ground – Star back to PGND as close to the IC as possible  
Enable DC-DC converter  
EN_DCDC  
EN_LDO1  
EN_LDO2  
FB_DCDC  
FB_LDO1  
FB_LDO2  
MODE  
1
I
Enable LDO1  
2
I
Enable LDO2  
9
I
Voltage to DC-DC error amplifier  
Voltage to LDO1 error amplifier  
Voltage to LDO2 error amplifier  
Selects forced-PWM or PWM-to-PFM automatic-transition mode  
Open-drain active-low power-good output  
Power ground – connected to the thermal pad  
Switch pin – connect inductor here  
Input voltage to DC-DC converter and all other control blocks  
Input voltage to LDO1  
11  
14  
7
I
I
I
PG  
3
O
O
I
PGND  
4
SW  
5
VINDCDC  
VINLDO1  
VINLDO2  
VLDO1  
VLDO2  
EP  
6
13  
16  
12  
15  
I
I
Input voltage to LDO2  
O
O
LDO1 output voltage  
LDO2 output voltage  
Exposed thermal pad  
Copyright © 2013–2017, Texas Instruments Incorporated  
3
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
On all pins except AGND, PGND, EN_DCDC, VLDO1, VLDO2,  
FB_LDO1, FB_LDO2, FB_DCDC pins with respect to AGND  
–0.3  
7
Input voltage  
V
On EN_DCDC with respect to AGND  
–0.3  
–0.3  
VIN + 0.3, 7  
Output voltage On VLDO1, VLDO2, FB_LDO1, FB_LDO2, FB_DCDC  
VINDCDC, SW, PGND,  
3.6  
1800  
800  
1
V
mA  
mA  
mA  
°C  
Current  
VINLDO1, VINLDO2, VLDO1, VLDO1, AGND  
At all other pins  
Operating free-air temperature, TA  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
105  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2500  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Electrostatic  
discharge  
V(ESD)  
Corner pins (1, 4, 5, 8, 9, 12, 13, and 16)  
Other pins  
V
Charged device model (CDM), per AEC  
Q100-011  
±500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
1.5  
10  
NOM  
MAX  
UNIT  
L1  
CI  
SW pin inductor  
2.2  
3.3  
μH  
μF  
Input capacitor at VINDCDC  
Input capacitor at VINLDO1, VINLDO2  
Output capacitor for VDCDC  
Output capacitor for LDO1, LDO2  
DC-DC converter output current  
LDO1 output current  
2.2  
10  
μF  
22  
μF  
CO  
2.2  
μF  
600  
300  
300  
105  
mA  
mA  
mA  
°C  
IO  
LDO2 output current  
TA  
Operating ambient temperature  
–40  
4
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
6.4 Thermal Information  
TPS65000-Q1  
THERMAL METRIC(1)  
RTE (WQFN)  
16 PINS  
46.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
56.1  
19.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.1  
ψJB  
19.1  
RθJC(bot)  
5.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Over full operating ambient temperature range, typical values are at TA = 25° C. Unless otherwise noted, specifications apply  
for condition VIN = EN_LDOx = EN_DCDC = 3.6 V. External components L = 2.2 μH, COUT = 10 μF, CIN = 4.7 μF.  
PARAMETER  
OPERATING VOLTAGE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input voltage for VINDCDC of DC-  
DC converter  
2.3  
6
V
VIN  
(1)  
(1)  
Input voltage for LDO1 (VINLDO1) See  
Input voltage for LDO2 (VINLDO2) See  
Internal undervoltage (UVLO)  
1.6  
1.6  
6
6
V
V
VCC falling  
1.72  
1.77  
160  
1.82  
V
lockout threshold  
Internal undervoltage (UVLO)  
lockout hysteresis  
mV  
SUPPLY CURRENT  
MODE low, EN_DCDC high,  
EN_LDO1, EN_LDO2 low,  
IOUT = 0 mA and no switching  
23  
50  
32  
57  
μA  
MODE low, EN_DCDC low,  
EN_LDO1, EN_LDO2 high, IOUT = 0 mA  
IOUT = 0 mA and no switching  
IQ  
Operating quiescent current  
EN_DCDC high, MODE high,  
EN_LDO1, EN_LDO2 low, IOUT = 0 mA  
4
mA  
ISD  
Shutdown Current  
EN_DCDC low EN_LDO1 and EN_LDO2 low  
0.16  
2.2  
μA  
DIGITAL PINS (EN_DCDC, EN_LDO1, EN_LDO2, MODE, PG  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
1.2  
V
V
V
0.4  
0.4  
VOL  
PG pins only, IO = –100 μA  
MODE, EN_DCDC, EN_LDO1, EN_LDO2 tied to  
GND or VINDCDC  
Ilkg  
Input leakage current  
0.01  
0.1  
μA  
OSCILLATOR  
SSCG enabled, SSC modulation ratio = 16%  
SSCG disabled, SSC modulation ratio disabled  
1.722  
2.01  
2.25 2.847  
fSW  
Oscillator frequency  
MHz  
2.25  
2.41  
STEP-DOWN CONVERTER POWER SWITCH  
High-side MOSFET ON-resistance VINDCDC = VGS = 3.6 V  
Low-side MOSFET ON-resistance VINDCDC = VGS = 3.6 V  
240  
185  
480  
380  
300  
600  
mΩ  
mΩ  
rDS(on)  
2.3 V VINDCDC 2.5 V  
2.5 V VINDCDC 6 V  
IO  
DC output current  
mA  
(1) The design principle allows only VINDCDC to be the highest supply in the system. If separate input voltage supplies are used for the  
DC-DC converter and LDOs, then choose VINDCDC VINLDO1 and VINDCDC VINLDO2.  
Copyright © 2013–2017, Texas Instruments Incorporated  
5
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
Electrical Characteristics (continued)  
Over full operating ambient temperature range, typical values are at TA = 25° C. Unless otherwise noted, specifications apply  
for condition VIN = EN_LDOx = EN_DCDC = 3.6 V. External components L = 2.2 μH, COUT = 10 μF, CIN = 4.7 μF.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Forward current limit, PMOS and  
NMOS  
ILIMF  
2.3 V VINDCDC 6 V  
800  
1000  
1400  
mA  
STEP-DOWN CONVERTER POWER SWITCH (continued)  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
30  
°C  
°C  
TSD  
Thermal shutdown hysteresis  
STEP-DOWN CONVERTER OUTPUT VOLTAGE  
Adjustable output voltage range,  
VIND  
CDC  
VDCDC  
VDCDC  
0.6  
V
FB_DCDC pin current  
0.1  
μA  
Vref  
Internal reference voltage  
0.594  
0.6 0.606  
V
Output-voltage accuracy (PWM  
mode)(2)  
MODE = high,  
2.3 VINDCDC 6 V  
–1.5%  
0%  
1.5%  
VDCDC  
Output-voltage accuracy (PFM  
MODE low  
+1% voltage positioning active  
1%  
0.5  
(3)  
mode)  
Load regulation (PWM mode)  
MODE high  
%/A  
Internal discharge resistance at  
SW  
RDIS  
EN_DCDC low  
450  
LOW-DROPOUT REGULATORS  
VI  
Input voltage for LDOx (VINLDOx)  
1.6  
6
V
V
VINLD  
Ox –  
VDO  
Adjustable output voltage, LDOx  
(VLDOx)(4)  
VO  
0.73  
IO  
Continuous-pass FET current  
Short-circuit current limit  
300  
700  
700  
0.1  
mA  
mA  
2.3 V VINLDOx  
340  
210  
ISC  
VINLDOx < 2.3 V  
FB_LDOx pin current  
FB_LDOx voltage  
μA  
V
Adjustable VOUT mode only  
0.5  
VINLDOx 2.3 V, IOUT = 250 mA  
VINLDOx < 2.3 V, IOUT = 175 mA  
370  
370  
mV  
mV  
(5)  
VDO  
Dropout voltage  
IO = 1 mA to 300 mA, VINLDOx = 2.3 V–6 V,  
VLDOx = 1.2 V  
–3.5%  
–3.5%  
–1.5%  
–0.5%  
3.5%  
3.5%  
1.5%  
0.5%  
(6)  
Output voltage accuracy  
IO = 1 mA to 175 mA, VINLDOx = 1.6 V–6 V,  
VLDOx = 1.2 V  
IO = 1 mA to 300 mA, VINLDOx = 3.6 V  
VLDOx = 1.2 V  
Load regulation  
VINLDOx = 1.6 V–6 V, VLDOx = 1.2 V at  
IO = 1 mA  
Line regulation  
f
NOISE 10 kHz, COUT 2.2 μF, VIN = 2.3 V,  
PSRR  
Power-supply rejection ratio  
40  
dB  
VOUT = 1.3 V, IOUT = 10 mA  
Internal discharge resistance at  
VLDOx  
RDIS  
TSD  
EN_LDOx low  
450  
Thermal shutdown  
Increasing temperature  
Decreasing temperature  
150  
30  
°C  
°C  
Thermal shutdown hysteresis  
(2) For VINDCDC = VDCDC + 1 V  
(3) In PFM mode, the internal reference voltage is typically 1.01 × VREF  
.
(4) Maximum output voltage VLDOx = 3.6 V.  
(5) VDO = VINLDOx – VLDOx, where VINLDOx = VLDOx(nom) – 100 mV  
(6) Output voltage specification does not include tolerance of external programming resistors.  
6
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
STEP-DOWN CONVERTER OUTPUT VOLTAGE  
EN_DCDC to start of switching  
(10%)  
tStart  
Start-up time  
250  
250  
µs  
µs  
tRamp  
VDCDC ramp-up time  
VDCDC ramp from 10% to 90%  
LOW-DROPOUT REGULATORS  
tRAMP VLDOx ramp time  
VLDOx ramp from 10% to 90%  
200  
µs  
6.7 Typical Characteristics  
100  
100  
90  
80  
70  
60  
50  
40  
30  
V
T
= 1.2V  
OUT  
= 25oC  
V
T
= 1.2V  
OUT  
= 25oC  
90  
80  
70  
60  
50  
40  
30  
4.2V  
A
A
3.6V  
3.3V  
6V  
2.8V  
3.3V  
5.5V  
6V  
5V  
4.5V  
2.3V  
2.8V  
5.5V  
4.2V  
3.6V  
2.3V  
5V  
20  
10  
0
20  
10  
0
4.5V  
0.00001 0.0001  
0.001  
0.01  
0.1  
1
0.00001 0.0001  
0.001  
- Output Current - A  
O
0.01  
0.1  
1
I
- Output Current - A  
I
O
Figure 1. Efficiency (DC-DC 600-mA PFM Mode)  
vs Output Current  
Figure 2. Efficiency (DC-DC 600-mA PWM Mode)  
vs Output Current  
Load Current = 60mA  
EN_DCDC = high  
EN_LDO1 = low  
VINDCDC = 3.6 V  
= 25oC  
Load DCDC = 400mA  
EN_DCDC = high  
EN_LDO1 = low  
VINDCDC = 3.6 V  
= 25oC  
T
T
A
A
VDCDC = 1.2 V  
VDCDC = 1.2 V  
EN_LDO2 = low  
EN_LDO2 = low  
t - Time - 2ms/div  
t - Time - 200ns/div  
Figure 4. Output Voltage Ripple (DC-DC PWM Mode)  
Figure 3. Output Voltage Ripple (DC-DC PFM Mode)  
Copyright © 2013–2017, Texas Instruments Incorporated  
7
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
VINDCDC = 3.6 V  
VINLDOx = 2.3V  
T
= 25oC  
A
VLDOx = 1.2 V  
VINDCDC = 3.6 V  
= 25oC  
T
A
VDCDC = 1.2 V  
Load LDOx = 100mA  
EN_LDOx = 0V to 2.3V  
EN_DCDC = low  
Load DCDC = 100mA  
EN_DCDC = 0V to 3.6V  
EN_LDO1 = low  
EN_LDO2 = low  
t - Time - 100ns/div  
t - Time - 100ns/div  
Figure 5. Start-Up Timing (DC-DC)  
Figure 6. Start-Up Timing (LDOx)  
VINDCDC = 3.6 V to 4.2V to 3.6V  
= 25oC  
VINDCDC = 3.6 V to 4.2V to 3.6V  
= 25oC  
T
A
T
A
VDCDC = 1.8V  
VDCDC = 1.8V  
DCDC Load Current = 50mA  
Mode = VINDCDC  
DCDC Load Current = 50mA  
Mode = GND  
t - Time - 100ms/div  
t - Time - 100ms/div  
Figure 7. Line Transient Response (DC-DC PFM Mode)  
Figure 8. Line Transient Response (DC-DC PWM Mode)  
VINDCDC = 3.6V  
= 25oC  
VINDCDC = 6V  
VINLDOx = 1.6 V to 2.3V to 1.6V  
T
A
T
= 25oC  
VDCDC = 1.8V  
A
DCDC Load Current = 60mA to 540 mA  
Mode = GND  
VLDOx = 1.007V  
LDOx Load Current = 1mA  
EN_DCDC = GND  
t - Time - 100ms/div  
t - Time - 100ms/div  
Figure 9. Line Transient Response (LDOx)  
Figure 10. Load Transient Response (DC-DC PFM Mode)  
8
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
Typical Characteristics (continued)  
VINDCDC = 3.6V  
= 25oC  
T
A
VDCDC = 1.8V  
VINDCDC = 3.6V  
VINLDOx = 3.6V  
= 25oC  
T
A
LDOx Load Current = 15mA to 100mA  
VLDOx = 1.2V  
EN_DCDC = GND  
DCDC Load Current = 60mA to 540 mA  
Mode = VINDCDC  
t - Time - 100ms/div  
t - Time - 200ms/div  
Figure 11. Load Transient Response (DC-DC PWM Mode)  
Figure 12. Load Transient Response (LDOx)  
VINDCDC = 3.6V  
= 25oC  
T
A
DCDC Load Current = 30mA  
VDCDC = 1.8V  
VINDCDC = 3.6V  
= 25oC  
T
A
DCDC Load Current = 30mA  
VDCDC = 1.8V  
t - Time - 4ms/div  
t - Time - 4ms/div  
Figure 13. PFM to PWM Transition (DC-DC)  
Figure 14. PWM to PFM Transition (DC-DC)  
100  
V
= 2.3V  
IN  
VLDOx = 1.3V  
CI = 2.2mF  
90  
C
= 10mF  
O
80  
70  
60  
50  
I
= 10mA  
O
40  
30  
20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
f - Frequency - MHz  
Figure 15. Power-Supply Rejection Ratio (LDOx) vs Frequency  
Copyright © 2013–2017, Texas Instruments Incorporated  
9
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS65000-Q1 device provides one step-down converter, two low dropout regulators and spread spectrum  
clock generation. The device has an input voltage range of  
2.3 V to 6 V. This device is intended for (but not limited to) powering automotive camera modules.  
The output voltage of the step-down converter can be selected through resistor networks on the output. To  
maximize efficiency, there are two modes of operation based on load conditions: PWM or PFM. By pulling the  
MODE pin high, forced PWM can be achieved. Pulling this pin low results in an automatic adjustment between  
PFM and PWM modes.  
The two general-purpose low-dropout regulators each have their own separate enables and voltage inputs. The  
inputs can be tied to the output of the step-down converter or to a separate voltage source. Resistor networks  
are required on the output of the regulator to set the output voltage.  
The switching frequency of the step-down converter is handled by the oscillator, with a typical frequency of  
2.25 MHz. The spread spectrum clock (SSC) modulates this frequency when the device is in PWM mode. This  
additional circuit in the oscillator block reduces power that may cause EMI.  
The TPS65000-Q1 device also provides a power good signal to monitor the condition of the DC-DC and both  
LDOs. The DC-DC and LDOs are only monitored if their enable signal is high. If all enabled resources are in  
regulation, the pin is pulled low. If one or more of the enabled resources are out of regulation, the pin is placed in  
Hi-Z .  
7.2 Functional Block Diagram  
TPS65000-Q1  
3-mm × 3-mm QFN  
Oscillator  
SSCG  
VINDCDC  
EN_DCDC  
MODE  
SW  
Buck Converter  
600 mA  
FB_DCDC  
PG  
VINLDO1  
EN_LDO1  
VLDO1  
LDO1  
FB_LDO1  
300 mA  
PGND  
VINLDO2  
EN_LDO2  
VLDO2  
FB_LDO2  
LDO2  
300 mA  
AGND  
Band-Gap Reference  
10  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
7.3 Feature Description  
7.3.1 Step-Down Converter  
The step-down converter is intended to allow maximum flexibility in the end equipment. The output voltage is  
user-selectable with a resistor network on the output. Figure 16 shows the necessary connections.  
L
VINDCDC  
SW  
CF  
DISCHG  
RDC1  
EN_DCDC  
MODE  
P
Switch Control  
FB_DCDC  
CO  
ZLOAD  
Oscillator  
RDC2  
P
-
P
θJA Diode  
VREF(DCDC)  
A
AGND  
PGND  
A
P
Figure 16. DC-DC Converter Block Diagram and Output Voltage Setting  
The output voltage of the DC-DC converter is set by Equation 1:  
+ RDC2  
R
(
)
DC1  
VDCDC = VFB_DCDC  
x
RDC2  
R
(
+ RDC2  
)
DC1  
VDCDC = 0.6V x  
RDC2  
(1)  
The combined resistance of RDC1 and RDC2 should be less than 1 M.  
Fixed output voltages and additional current-limit options are also possible. Contact TI for further information.  
The step-down converter has two modes of operation to maximize efficiency at different load conditions. At  
moderate to heavy load currents, the device operates in a fixed-frequency pulse-width modulation (PWM) mode  
that results in small output ripple and high efficiency. Pulling the MODE pin to a DC-high level results in PWM  
mode over the entire load range.  
At light load currents, the device operates in a pulsed frequency-modulation (PFM) mode to improve efficiency.  
The transition to this mode occurs when the inductor current through the low-side FET becomes zero, indicating  
discontinuous conduction. PFM mode also results in the output voltage increasing by 1% from its nominally set  
value. This voltage positioning is intended to minimize both the voltage undershoot of a load step from light to  
heavy loads, as when a processor moves from sleep to active modes, and the voltage overshoot at load  
removal. Figure 17 shows the voltage positioning behavior for a light-to-heavy load step.  
Copyright © 2013–2017, Texas Instruments Incorporated  
11  
 
 
 
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
Output voltage  
VOUT(nom) + 1%  
Light load  
PFM Mode  
VOUT(nom)  
moderate to heavy load  
PWM Mode  
Time  
Figure 17. PFM Voltage Positioning  
Pulling the MODE pin to DC ground results in an automatic transition between PFM and PWM modes to  
maximize efficiency.  
The DC-DC converter output automatically discharges to ground through an internal 450-Ω load when EN_DCDC  
goes low or when the UVLO condition is met.  
7.3.2 Soft Start  
The step-down converter has an internal soft-start circuit that limits the inrush current during start-up. During soft  
start, the output voltage ramp-up is controlled as shown in Figure 18.  
EN  
90%  
10%  
VOUT  
tRAMP  
tStart  
Figure 18. Soft Start  
7.3.3 Linear Regulators  
The two linear dropout regulators (LDOs) in the TPS65000-Q1 are designed to provide flexibility in system  
design. Each LDO has a separate voltage input and enable signal. The input can be tied to the output of the  
step-down converter or the output of another voltage source. Each LDO output discharges to ground  
automatically when EN_LDOx goes low.  
A resistor network is needed to set the output voltage of the LDOs. Fixed-voltage output versions are also  
available; contact a TI sales representative for more information.  
The LDOs are general-purpose devices that can handle inputs from 6 V down to 1.6 V. Figure 19 shows the  
necessary connections for LDO1. The same architecture applies to LDO2.  
12  
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
Feature Description (continued)  
VLDO1  
VINLDO1  
RLDO1_1  
θJA Diode  
DISCHG  
CO(LD01)  
EN_LDO1  
-
FB_LDO1  
RLOD1_2  
ZLOAD  
VREF(LD01)  
AGND  
PGND  
P
P
A
A
Figure 19. LDO Block Diagram and Output Voltage Setting  
The output voltages of the LDOs are set by Equation 2:  
+ RLDO1_2  
R
(
)
LDO1_1  
VLDO1 = VFB_LDO1  
x
RLDO1_2  
R
(
+ RLDO1_2  
)
LDO1_1  
VLDO1 = 0.5V x  
RLDO1_2  
(2)  
The combined resistance of RLDO1_1 and RLDO1_2 should be less than 1 M.  
7.3.4 Oscillator and Spread-Spectrum Clock Generation  
The TPS65000-Q1 contains an internal oscillator running at a typical frequency of 2.25 MHz. This frequency is  
the fundamental switching frequency of the step-down converter when it is running in PWM mode. An additional  
circuit in the oscillator block implements spread-spectrum clocking, which modulates the main switching  
frequency when the device is in PWM mode. This spread-spectrum oscillation reduces the power that may cause  
EMI. When viewed in the frequency domain, the SSC spreads out the frequency that may introduce interference  
while simultaneously reducing the power. Because the frequency is continually shifting, the amount of time the  
switcher spends at any single frequency is reduced. This reduction in time means that the receiver that may see  
the interference has less time to integrate the interference.  
Different spin versions of SSC settings are also possible; contact a TI sales representative for more information.  
Figure 20 and Figure 21 show the advantage of SSC with the frequency spectrum centering on the nominal  
frequency 2.25 MHz. The blue spectrum is the result of the spread change. As shown in the figures, the  
harmonic spectrum is attenuated to 10 dB, compared to the same device without SSC.  
Copyright © 2013–2017, Texas Instruments Incorporated  
13  
 
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
Feature Description (continued)  
70  
70  
60  
RBW = 10 kHz  
RBW = 10 kHz  
60  
50  
40  
50  
40  
SSC  
ON  
30  
20  
10  
30  
20  
10  
0
-10  
-20  
0
-10  
-20  
-30  
SSC  
OFF  
-30  
Start 1.5 MHz  
Stop 150 MHz  
Start 1.5 MHz  
Stop 3.5 MHz  
Figure 20. SSC On and Off Comparison from 1.5 MHz to  
150 MHz  
Figure 21. Zoom In of SSC On and Off Comparison from  
1.5 MHz to 3.5 MHz  
7.3.5 Power Good  
The open-drain PG output is used to indicate the condition of the step-down converter and each LDO. This is a  
combined output, with the outputs being compared when the appropriate enable signal is high. The pin is pulled  
low when all enabled outputs are greater than 90% of the target voltage, and it is pulled into Hi-Z when an  
enabled output is less than 90% of its intended value or when all the enable signals are pulled low.  
EN_DCDC  
EN_LDO1  
EN_LDO2  
VDCDC  
VDCDC  
PG  
+
-
VDCDC  
Target  
A
VLDO1  
+
-
VLDO1  
Target  
VLDO2  
+
-
VLDO2  
Target  
Figure 22. Power-Good Functionality  
14  
Copyright © 2013–2017, Texas Instruments Incorporated  
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
7.4 Device Functional Modes  
The step-down converter has two modes of operation to maximize efficiency:  
1. PFM  
For light loads  
For automatic transition to between this mode and PWM mode automatically when MODE pin is pulled  
low over all load ranges  
To increase in output voltage setting by 1%  
For better accuracy  
2. PWM  
For moderate to heavy loads  
For a small output ripple  
For maintaining the specified switching frequency variation by pulling the MODE pin high which places  
the device in a forced PWM mode over the entire load range.  
Copyright © 2013–2017, Texas Instruments Incorporated  
15  
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS65000-Q1 can be used in an automotive-camera sensor module to generate the AVDD, DVDD, and  
IOVDD voltage rails. For noise immunity, one of the LDOs should be used to generate the AVDD voltage rail. To  
minimize power dissipation, the DC-DC converter should be used to power the DVDD rail because the DVDD rail  
normally has a lower operating voltage and higher current consumption.  
8.2 Typical Application  
TPS65000-Q1  
2.2mH  
EN_DCDC  
VINDCDC  
MODE  
VDCDC  
SW  
680kW  
3.3V  
VIN  
10mF  
FB_DCDC  
10mF  
P
A
P
150kW  
A
22pF  
470kW  
VIN  
PG  
VLDO1  
1.8V  
VLDO1  
470kW  
FB_LDO1  
10mF  
P
180kW  
EN_LDO1  
EN_LDO2  
VINLDO1  
VINLDO2  
A
VDCDC  
VLDO2  
2.8V  
VLDO2  
820kW  
FB_LDO2  
10mF  
P
180kW  
A
PGND  
AGND  
P
A
Figure 23. Typical TPS65000-Q1 Application Schematic  
8.2.1 Design Requirements  
For this design example, use the parameters listed in Table 1.  
Table 1. Design Parameters  
RESOURCES  
SW  
VOLTAGE  
3.3 V  
VLDO1  
1.8 V  
VLDO2  
2.8 V  
16  
Copyright © 2013–2017, Texas Instruments Incorporated  
 
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Filter Design (Inductor and Output Capacitor)  
8.2.2.1.1 Inductor Selection  
The typical value for the converter inductor is 2.2-μH output inductor. Larger or smaller inductor values in the  
range of 1.5 μH to 3.3 μH can optimize the performance of the device for specific operation conditions. The  
selected inductor must be rated for its DC resistance and saturation current. The DC resistance of the inductance  
influences the efficiency of the converter directly. An inductor with lowest DC resistance must be selected for  
highest efficiency. For more information on inductor selection, refer to Choosing Inductors and Capacitors for  
DC/DC Converters.  
Equation 3 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current as calculated with Equation 4. TI  
recommends this because during heavy load transient, the inductor current rises above the calculated value.  
VOUT  
1 -  
V
IN  
DIL = VOUT  
x
L x f  
where  
f = Switching Frequency (2.25-MHz typical)  
L = Inductor Value  
ΔIL = Peak-to-peak Inductor Ripple Current  
DIL  
(3)  
(4)  
ILmax = IOUTmax  
+
2
where  
ILmax = Maximum Inductor Current  
The highest inductor current occurs at maximum VIN.  
Open-core inductors have a soft saturation characteristic and can usually handle higher inductor currents versus  
a comparable shielded inductor.  
A more conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. Consider that the core material from inductor to inductor differs and impacts the  
efficiency especially at high-switching frequencies.  
The step down converter has internal loop compensation. TI designed the internal loop compensation to work  
with a certain output filter corner frequency calculated as in Equation 5:  
1
fC  
=
with L = 2.2mH, COUT = 10mF  
2p L x COUT  
(5)  
The selection of external L-C filter must be coped with Equation 5. The product of L × COUT must be constant  
while selecting smaller inductor or increasing output capacitor value.  
Copyright © 2013–2017, Texas Instruments Incorporated  
17  
 
 
 
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
8.2.2.1.2 Output Capacitor Selection  
The advanced fast response voltage mode control scheme of the converter allows the use of small ceramic  
capacitors with a typical value of 22 μF, without having large output voltage under and overshoots during heavy  
load transients. TI recommends ceramic capacitors with low ESR values because they result in lowest output  
voltage ripple. See for the TI-recommended components.  
If ceramic output capacitors are used, the capacitor RMS ripple current rating always meets the application  
requirements. The RMS ripple current is calculated as in Equation 6:  
VOUT  
1 -  
V
1
IN  
IRMSCout = VOUT  
x
x
L x f  
2 x  
3
(6)  
At nominal load current, the device operates in PWM mode and the overall output voltage ripple is the sum of the  
voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and discharging the  
output capacitor as calculated in Equation 7:  
VOUT  
1 -  
æ
ç
ç
ö
V
1
÷
÷
÷
÷
ø
IN  
DVOUT = VOUT  
x
x
+ ESR  
ç
ç
è
L x f  
8 x C  
x f  
OUT  
(7)  
Where the highest output voltage ripple occurs at the highest input voltage VIN.  
At light load currents, the converter operates in power save mode and the output voltage ripple is dependent on  
the output capacitor value. The output voltage ripple is set by the internal comparator delay and the external  
capacitor. The typical output voltage ripple is less than 1% of the nominal output voltage.  
The adjustable output voltage of the DC-DC converter is calculated by Equation 1 in the Step-Down Converter.  
To keep the external resistor divider network robust against noise, an external feed forward capacitor is required  
for optimum load transient response. The value of feed forward capacitor must be in the range between 22 pF  
and 33 pF provided the equivalent resistance of RDC1 || RDC2 in Equation 1 is approximately 300 k. Scale  
change on RDC1||RDC2 would apply a scale change to the feed forward capacitor to keep the RC product a  
constant.  
8.2.2.1.3 Input Capacitor Selection  
Due to the DC-DC converter having a pulsating input current, a low-ESR input capacitor is required for best input  
voltage filtering, and minimizing the interference with other circuits caused by high-input voltage spikes . Place  
the input capacitor as close as possible to the VINDCDC pin with the clean GND connection. Do the same for  
the output capacitor and the inductor. The converters require a ceramic input capacitor of 10 μF. The input  
capacitor can increase without any limit for better input voltage filtering.  
18  
Copyright © 2013–2017, Texas Instruments Incorporated  
 
 
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
8.2.3 Application Curves  
VINDCDC = 3.6 V to 4.2V to 3.6V  
= 25oC  
VINDCDC = 3.6 V to 4.2V to 3.6V  
= 25oC  
T
A
T
A
VDCDC = 1.8V  
VDCDC = 1.8V  
DCDC Load Current = 50mA  
Mode = GND  
DCDC Load Current = 50mA  
Mode = VINDCDC  
t - Time - 100ms/div  
t - Time - 100ms/div  
Figure 24. Line Transient Response (DC-DC PFM Mode)  
Figure 25. Line Transient Response (DC-DC PWM Mode)  
VINDCDC = 3.6V  
= 25oC  
VINDCDC = 6V  
VINLDOx = 1.6 V to 2.3V to 1.6V  
T
A
T
= 25oC  
VDCDC = 1.8V  
A
DCDC Load Current = 60mA to 540 mA  
Mode = GND  
VLDOx = 1.007V  
LDOx Load Current = 1mA  
EN_DCDC = GND  
t - Time - 100ms/div  
t - Time - 100ms/div  
Figure 26. Line Transient Response (LDOx)  
Figure 27. Load Transient Response (DC-DC PFM Mode)  
VINDCDC = 3.6V  
= 25oC  
T
A
VDCDC = 1.8V  
VINDCDC = 3.6V  
VINLDOx = 3.6V  
T
= 25oC  
A
LDOx Load Current = 15mA to 100mA  
VLDOx = 1.2V  
EN_DCDC = GND  
DCDC Load Current = 60mA to 540 mA  
Mode = VINDCDC  
t - Time - 100ms/div  
t - Time - 200ms/div  
Figure 28. Load Transient Response (DC-DC PWM Mode)  
Figure 29. Load Transient Response (LDOx)  
Copyright © 2013–2017, Texas Instruments Incorporated  
19  
TPS65000-Q1  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
www.ti.com.cn  
9 Power Supply Recommendations  
The device is designed to operate with an input voltage supply range from 1.6 V to 6 V. This input supply can be  
from a DC supply, or other externally regulated supply. If the input supply is located more than a few inches from  
the TPS65000-Q1, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An  
electrolytic capacitor with a value of 10 µF is a typical choice.  
10 Layout  
10.1 Layout Guidelines  
The VINDCDC and VINLDOx pins must be bypassed to ground with a low-ESR ceramic bypass capacitor. TI  
recommends the typical bypass capacitance is 10 μF and 2.2 μF with a X5R dielectric.  
The optimum placement is closest to the VINDCDCx and VINLDOx pins of the device. Minimize the loop area  
formed by the bypass capacitor connection, the VINDCDC and VINLDO pins, and the thermal pad of the  
device.  
The thermal pad must be tied to the PCB ground plane with multiple vias.  
The traces of the VLDOx and VDCDCx pins (feedback pins) must be routed away from any potential noise  
source to avoid coupling.  
VODC output capacitance must be placed immediately at the VODC pin. Excessive distance between the  
capacitance and DCDCx pin may cause poor converter performance.  
AGND star back to PGND as close to the device as possible.  
DGND connect to the thermal pad  
10.2 Layout Examples  
Çhermal pad  
ëias to Db5  
plane  
Figure 30. Layout Recommendation  
.ypass capacitors to Db5 for ëLb pins  
ëias to  
Db5  
Figure 31. Bypass Capacitor and Via Placement Recommendation  
20  
版权 © 2013–2017, Texas Instruments Incorporated  
TPS65000-Q1  
www.ti.com.cn  
ZHCSBR7C AUGUST 2013REVISED JUNE 2017  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
为直流/直流转换器选择电感器和电容器  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
版权 © 2013–2017, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65000TRTERQ1  
ACTIVE  
WQFN  
RTE  
16  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
-40 to 105  
SJO  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-May-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65000TRTERQ1  
WQFN  
RTE  
16  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
31-May-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RTE 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TPS65000TRTERQ1  
3000  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RTE 16  
3 x 3, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225944/A  
www.ti.com  
PACKAGE OUTLINE  
RTE0016C  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
6
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
SIDE WALL  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
1.68 0.07  
(DIM A) TYP  
5
8
EXPOSED  
THERMAL PAD  
12X 0.5  
4
9
4X  
SYMM  
17  
1.5  
1
12  
0.30  
16X  
0.18  
PIN 1 ID  
(OPTIONAL)  
13  
16  
0.1  
C A B  
SYMM  
0.05  
0.5  
0.3  
16X  
4219117/B 04/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.68)  
SYMM  
13  
16  
16X (0.6)  
1
12  
16X (0.24)  
SYMM  
(2.8)  
17  
(0.58)  
TYP  
12X (0.5)  
9
4
(
0.2) TYP  
VIA  
5
8
(R0.05)  
ALL PAD CORNERS  
(0.58) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219117/B 04/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTE0016C  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.55)  
16  
13  
16X (0.6)  
1
12  
16X (0.24)  
17  
SYMM  
(2.8)  
12X (0.5)  
9
4
METAL  
ALL AROUND  
5
8
SYMM  
(2.8)  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 17:  
85% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4219117/B 04/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65000_15

Step-Down Converter
TI

TPS65001

Power for C5504/05
TI

TPS65001RUK

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS65001RUKR

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS65001RUKT

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS650061

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS650061RUKR

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS650061RUKT

2.25 MHz Step Down Converter with Dual LDOs and SVS
TI

TPS65010

POWER AND BATTERY MANAGEMENT IC FOR Li-ION POWERED SYSTEMS
TI

TPS65010RGZ

POWER AND BATTERY MANAGEMENT IC FOR Li-ION POWERED SYSTEMS
TI

TPS65010RGZR

采用 QFN-48 封装的多通道 1 节锂离子电池 PMIC:USB/AC 充电器、2 个 DC/DC、2 个 LDO 以及 I2C 接口 | RGZ | 48 | -40 to 85
TI

TPS65010RGZT

暂无描述
TI