TPS650244IRHBRQ1 [TI]

具有 3 个降压转换器和 3 个 LDO 的汽车类 1.5V 至 6.5V 电源管理 IC | RHB | 32 | -40 to 125;
TPS650244IRHBRQ1
型号: TPS650244IRHBRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 3 个降压转换器和 3 个 LDO 的汽车类 1.5V 至 6.5V 电源管理 IC | RHB | 32 | -40 to 125

转换器
文件: 总34页 (文件大小:1408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
POWER MANAGEMENT ICs FOR Li-ION POWERED SYSTEMS  
Check for Samples: TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
1
FEATURES  
APPLICATIONS  
PDA  
Qualified for Automotive Applications  
Cellular/Smart Phone  
GPS  
Digital Still Camera  
Split Supply DSP and Microprocessor  
Solutions: Samsung ARM-Based Processors,  
etc.  
1.6-A, 1.0-A or 0.8-A, 97% Efficient Step-Down  
Converter for System Voltage (VDCDC1)  
3.3-V or 2.80-V or Adjustable  
1.6-A, 1.0-A or 0.8-A, up to 95% Efficient  
Step-Down Converter for Memory Voltage  
(VDCDC2)  
1.8 V or 2.5 V or Adjustable  
DESCRIPTION  
0.8-A 90% Efficient Step-Down Converter for  
Processor Core (VDCDC3)  
The TPS65024x are integrated Power Management  
ICs for applications powered by one Li-Ion or  
Li-Polymer cell, which require multiple power rails.  
The TPS65024x provide three highly efficient,  
step-down converters targeted at providing the core  
voltage, peripheral, I/O and memory rails in a  
processor based system. All three step-down  
converters enter a low power mode at light load for  
maximum efficiency across the widest possible range  
of load currents. The converters can be forced into  
fixed frequency PWM mode by pulling the MODE pin  
high. The TPS65024x also integrate two general  
purpose 200-mA LDO voltage regulators, which are  
enabled with an external input pin. Each LDO  
operates with an input voltage range between 1.5 V  
and 6.5 V, allowing them to be supplied from one of  
the step-down converters or directly from the battery.  
The output voltage of the LDOs can be set with an  
external resistor divider for maximum flexibility.  
Additionally there is a 30-mA LDO typically used to  
provide power in a processor based system to a  
voltage rail that is always on. TPS65024x provide  
voltage scaling on DCDC3 using the DEFDCDC3 pin.  
This pin either needs to be connected to a logic HIGH  
or logic LOW level to set the output voltage of  
DCDC3. TPS65024x come in a small 5-mm x 5-mm  
32-pin QFN package (RHB).  
Three Selectable Voltages for VDCDC3  
TPS650241  
DEFDCDC3 = LOW: VO = 0.9 V  
DEFDCDC3 = HIGH: VO = 1.375 V  
TPS650243  
DEFDCDC3 = LOW: VO = 1.0 V  
DEFDCDC3 = HIGH: VO = 1.2 V  
TPS650244  
DEFDCDC3 = LOW: VO = 1.55 V  
DEFDCDC3 = HIGH: VO = 1.6 V  
30-mA LDO for Vdd_alive  
Two 200-mA General Purpose LDOs (LDO1  
and LDO2)  
Dynamic Voltage Management for Processor  
Core  
LDO1 and LDO2 Voltage Externally Adjustable  
Separate Enable Pins for Inductive Converters  
2.25-MHz Switching Frequency  
85-μA Quiescent Current  
Thermal Shutdown Protection  
ORDERING INFORMATION(1)  
TA  
PACKAGE(2)  
ORDERABLE PART NUMBER  
TOP-SIDE MARKING  
TPS650241Q  
TPS650241QRHBRQ1  
TPS650243QRHBRQ1  
TPS650244IRHBRQ1  
40°C to 125°C  
40°C to 85°C  
QFN RHB  
Reel of 3000  
TPS650243Q  
TPS650244Q  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 20092011, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
UNIT  
Input voltage range on all pins except A/PGND, VLDO1 and VLDO2 pins with respect to  
AGND  
0.3 to 7  
V
Voltage range on pins VLDO1 and VLDO2 with respect to AGND  
Current at VINDCDC1, L1, PGND1, VINDCDC2, L2, PGND2, VINDCDC3, L3, PGND3  
Peak current at all other pins  
0.3 to 3.6  
V
2000  
mA  
mA  
1000  
See Dissipation Rating Table  
40 to 125  
Continuous total power dissipation  
TJ  
Operating junction temperature  
°C  
°C  
°C  
Tst Storage temperature  
65 to 150  
Lead temperature 1,6 mm (1/16-inch) from case for 10 seconds  
260  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATINGS  
T
J 25°C  
DERATING FACTOR  
ABOVE TJ = 25°C  
TJ = 70°C  
POWER RATING  
TJ = 85°C  
POWER RATING  
PACKAGE(1)  
RθJA  
POWER RATING  
RHB  
35°C/W  
2.85 W  
28 mW/°C  
1.57 W  
1.14 W  
(1) The thermal resistance junction to ambient of the RHB package is measured on a high K board. The thermal resistance junction to  
power pad is 1.5°C/W.  
2
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
RECOMMENDED OPERATING CONDITIONS  
MI NOM  
N
MAX UNIT  
VINDCDC1  
VINDCDC2  
,
,
2.5  
6.0  
V
Input voltage range step-down converters  
VINDCDC3, VCC  
VDCDC1  
Output voltage range for VDCDC1 step-down converter(1)  
Output voltage range for mem step-down converter(1)  
Output voltage range for core step-down converter  
Input voltage range for LDOs  
0.6  
0.6  
0.9  
1.5  
VINDCDC1  
VINDCDC2  
1.5  
V
V
V
V
VDCDC2  
VDCDC3  
VINLDO1  
,
6.5  
VINLDO2  
VLDO1-2  
Output voltage range for LDOs  
Output current at L1  
Inductor at L1(2)  
1.0  
3.3  
V
IOUTDCDC1  
L1  
1600 mA  
1.5  
10  
10  
2.2  
22  
μH  
(2)  
CINDCDC1  
COUTDCDC1  
IOUTDCDC2  
L2  
Input capacitor at VINDCDC1  
μF  
(2)  
Output capacitor at VDCDC1  
μF  
1600 mA  
μH  
Output current at L2  
Inductor at L2(2)  
1.5  
10  
10  
2.2  
22  
(2)  
CINDCDC2  
COUTDCDC2  
IOUTDCDC3  
L3  
Input capacitor at VINDCDC2  
μF  
(2)  
Output capacitor at VDCDC2  
μF  
Output current at L3  
Inductor at L3(2)  
800 mA  
μH  
1.5  
10  
10  
1
2.2  
22  
(2)  
CINDCDC3  
COUTDCDC3  
CVCC  
Input capacitor at VINDCDC3  
μF  
(2)  
Output capacitor at VDCDC3  
μF  
Input capacitor at VCC(2)  
μF  
Cin1-2  
Input capacitor at VINLDO(2)  
Output capacitor at VLDO1, VLDO2(2)  
Output current at VLDO1, VLDO2  
Output capacitor at Vdd_alive(2)  
Output current at Vdd_alive  
1
μF  
COUT1-2  
ILDO1,2  
2.2  
μF  
200 mA  
μF  
CVRTC  
2.2  
IVdd_alive  
TA  
30 mA  
125 °C  
85  
Operating ambient temperature  
TPS65024XQRHBRQ1  
TPS650244IRHBRQ1  
40  
40  
40  
TJ  
Operating junction temperature  
125 °C  
RCC  
Resistor from VINDCDC3,VINDCDC2, VINDCDC1 to Vcc used for filtering(3)  
1
10  
(1) When using an external resistor divider at DEFDCDC2, DEFDCDC1.  
(2) See applications section for more information, for Vout > 2.85 V choose 3.3-μH inductor.  
(3) Up to 2.5 mA can flow into Vcc when all three converters are running in PWM; this resistor causes the UVLO threshold to be shifted  
accordingly.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, TJ = 40°C to 125°C, typical values are at TA = 25°C  
(unless otherwise noted)  
CONTROL SIGNALS: EN_DCDC1, EN_DCDC2, EN_DCDC3, EN_LDO, MODE, EN_VDD_ALIVE  
PARAMETER  
High level input  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
VIL  
IH  
1.45  
VCC  
V
voltage  
Low level input  
voltage  
0
0.4  
0.1  
V
Input bias current  
0.01  
μA  
SUPPLY PINS: VCC, VINDCDC1, VINDCDC2, VINDCDC3  
I(qPFM)  
Operating quiescent PFM All three dc-dc converters enabled, zero load Vcc = 3.6 V  
135  
75  
170  
100  
μA  
current  
and no switching, LDOs enabled  
PFM All three dc-dc converters enabled, zero load  
and no switching, LDO1, LDO2 = OFF,  
Vdd_alive = ON  
PFM DCDC1 and DCDC2 converters enabled,  
zero load and no switching, LDO1, LDO2 = OFF,  
Vdd_alive = ON  
55  
80  
60  
PFM DCDC1 converter enabled, zero load and no  
switching, LDO1, LDO2 = OFF, Vdd_alive = ON  
40  
2
IVCC(PWM)  
Current into Vcc,  
PWM  
All three dc-dc converters enabled and running in  
PWM, LDOs off  
Vcc = 3.6 V  
mA  
PWM DCDC1 and DCDC2 converters enabled and  
running in PWM, LDOs off  
1.5  
0.85  
16  
2.5  
2.0  
PWM DCDC1 converter enabled and running in  
PWM, LDOs off  
Iq  
Quiescent current  
All converters disabled, LDO1, LDO2 = OFF,  
Vdd_alive = OFF  
Vcc = 3.6 V  
μA  
All converters disabled, LDO1, LDO2 = OFF,  
Vdd_alive = ON  
26  
4
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
ELECTRICAL CHARACTERISTICS  
VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6V, TJ = 40°C to 125°C, typical values are at TA = 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDCDC1 STEP-DOWN CONVERTER  
VVINDCDC1  
IO  
Input voltage range  
2.5  
1600  
800  
6.0  
V
Maximum output current for TPS65024X VO = 3.3 V  
Maximum output current for TPS650244 VO = 3.3 V  
mA  
IO  
ISD  
Shutdown supply current in VINDCDC1 EN_DCDC1 = GND  
0.1  
1
261  
2
μA  
mΩ  
μA  
mΩ  
μA  
A
RDS(ON)  
ILP  
RDS(ON)  
ILN  
P-channel MOSFET on-resistance  
P-channel leakage current  
VINDCDC1 = VGS = 3.6 V  
125  
VINDCDC1 = 6.0 V  
VINDCDC1 = VGS = 3.6 V  
VDS = 6.0 V  
N-channel MOSFET on-resistance  
N-channel leakage current  
130  
7
260  
10  
ILIMF  
Forward current limit (P- and N-channel) 2.5V < VINMAIN < 6.0 V  
1.7  
1.97  
2.2  
for TPS65024X  
ILIMF  
Forward current limit (P- and N-channel) 2.5V < VINMAIN < 6.0 V  
for TPS650244  
0.88  
1.10  
2.25  
1.28  
fS  
Oscillator frequency  
1.95  
2%  
2%  
1%  
1%  
2%  
2.55  
2%  
2%  
1%  
1%  
2%  
MHz  
VDCDC1  
Fixed output voltage  
MODE = 0 (PWM/PFM)  
2.80 V  
3.3 V  
VINDCDC1 = 3.3 V to 6.0 V;  
0 mA IO 1.6A  
Fixed output voltage  
MODE = 1 (PWM)  
2.80 V  
3.3 V  
VINDCDC1 = 3.7 V to 6.0 V;  
0 mA IO 1.6 A  
Adjustable output voltage with resistor  
divider at DEFDCDC1 MODE = 0  
(PWM/PFM)  
VINDCDC1 = VDCDC1 + 0.4 V (min 2.5 V)  
to 6.0 V; 0 mA IO 1.6 A  
Adjustable output voltage with resistor  
divider at DEFDCDC1; MODE = 1  
(PWM)  
VINDCDC1 = VDCDC1 + 0.4 V (min 2.5 V)  
to 6.0 V; 0 mA IO 1.6 A  
1%  
1%  
Line regulation  
VINDCDC1 = VDCDC1 + 0.3 V (min 2.5 V)  
to 6.0 V; IO = 10 mA  
0.0  
%/V  
Load regulation  
IO = 10 mA to 1.6 A  
0.25  
750  
%/A  
tSS  
Soft start ramp time  
VDCDC1 ramping from 5% to 95% of  
target value  
μs  
R(L1)  
Internal resistance from L1 to GND  
1
MΩ  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, TJ = 40°C to 125°C, typical values are at TA = 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VDCDC2 STEP-DOWN CONVERTER  
VVINDCDC2  
IO  
Input voltage range  
2.5  
1000  
1600  
6.0  
V
Maximum output current for TPS65024X VO = 2.5 V  
Maximum output current for TPS650244 VO = 2.5 V  
mA  
IO  
ISD  
Shutdown supply current in VINDCDC2 EN_DCDC2 = GND  
0.1  
1
300  
2
μA  
mΩ  
μA  
mΩ  
μA  
A
RDS(ON)  
ILP  
RDS(ON)  
ILN  
P-channel MOSFET on-resistance  
P-channel leakage current  
VINDCDC2 = VGS = 3.6 V  
VINDCDC2 = 6.0 V  
VINDCDC2 = VGS = 3.6 V  
VDS = 6.0 V  
140  
N-channel MOSFET on-resistance  
N-channel leakage current  
150  
7
297  
10  
ILIMF  
Forward current limit (P- and N-channel) 2.5 V < VINDCDC2 < 6.0 V  
for TPS65024X  
1.22  
1.50  
1.35  
1.50  
ILIMF  
Forward current limit (P- and N-channel) 2.5 V < VINDCDC2 < 6.0 V  
for TPS650244  
1.97  
2.25  
2.35  
fS  
Oscillator frequency  
1.95  
2.55  
2%  
MHz  
VDCDC2  
Fixed output voltage  
MODE = 0 (PWM/PFM)  
1.8V  
2.5V  
1.8V  
2.5V  
VINDCDC2 = 2.5 V to 6.0 V;  
0 mA IO 1.6 A  
2%  
VINDCDC2 = 3.0 V to 6.0 V;  
0 mA IO 1.6 A  
2%  
2%  
1%  
2%  
2%  
2%  
1%  
2%  
Fixed output voltage  
MODE = 1 (PWM)  
VINDCDC2 = 2.5 V to 6.0 V;  
0 mA IO 1.6 A  
VINDCDC2 = 3.0 V to 6.0 V;  
0 mA IO 1.6 A  
Adjustable output voltage with resistor  
divider at DEFDCDC2 MODE = 0  
(PWM)  
VINDCDC2 = VDCDC2 + 0.5 V (min 2.5 V)  
to 6.0 V; 0 mA IO 1.6 A  
Adjustable output voltage with resistor  
divider at DEFDCDC2; MODE = 1  
(PWM)  
VINDCDC2 = VDCDC2 + 0.5 V (min 2.5 V)  
to 6.0 V; 0 mA IO 1.6 A  
1%  
1%  
Line regulation  
VINDCDC2 = VDCDC2 + 0.3 V (min 2.5 V)  
to 6.0 V; IO = 10 mA  
0.0  
%/V  
Load regulation  
IO = 10 mA to 1.6 A  
0.25  
750  
%/A  
tSS  
Soft start ramp time  
VDCDC2 ramping from 5% to 95% of  
target value  
μs  
R(L2)  
Internal resistance from L2 to GND  
1
MΩ  
6
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
ELECTRICAL CHARACTERISTICS  
VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, TJ = 40°C to 125°C, typical values are at TA = 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
6.0  
1
UNIT  
VDCDC3 STEP-DOWN CONVERTER  
VVINDCDC3  
Input voltage range  
2.5  
V
IO  
Maximum output current  
VO = 1.6 V  
800  
mA  
μA  
ISD  
Shutdown supply current in  
VINDCDC3  
EN_DCDC3 = GND  
0.1  
RDS(ON)  
ILP  
RDS(ON)  
ILN  
P-channel MOSFET on-resistance  
P-channel leakage current  
VINDCDC3 = VGS = 3.6 V  
VINDCDC3 = 6.0V  
VINDCDC3 = VGS = 3.6 V  
VDS = 6.0 V  
310  
0.1  
220  
7
698  
2
mΩ  
μA  
mΩ  
μA  
A
N-channel MOSFET on-resistance  
N-channel leakage current  
503  
10  
ILIMF  
Forward current limit (P- and  
N-channel)  
2.5 V < VINDCDC3 < 6.0 V  
1.00  
1.20  
1.40  
fS  
Oscillator frequency  
1.95  
2.25  
2.55  
2%  
MHz  
VDCDC3  
Fixed output voltage VO = 0.9V to VINDCDC3 = 2.5 V to 6.0 V;  
2%  
MODE = 0  
1.6V  
0 mA IO 800 mA  
(PWM/PFM)  
Fixed output voltage  
MODE = 1 (PWM)  
1%  
1%  
Line regulation  
VINDCDC3 = VDCDC3 + 0.3 V (min. 2.5 V) to  
6.0 V; IO = 10 mA  
0.0  
%/V  
Load regulation  
IO = 10 mA to 600 mA  
0.25  
750  
%/A  
tSS  
Soft start ramp time  
VDCDC3 ramping from 5% to 95% of target  
value  
μs  
R(L3)  
Internal resistance from L3 to GND  
1
MΩ  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
VINDCDC1 = VINDCDC2 = VINDCDC3 = VCC = VINLDO = 3.6 V, TJ = 40°C to 125°C, typical values are at TA = 25°C  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VLDO1 and VLDO2 Low Dropout Regulators  
I(q)  
I(SD)  
VINLDO  
VFB  
IO  
Operating quiescent current  
Current per LDO into VINLDO  
16  
30  
2
μA  
μA  
V
Shutdown current  
Total current into VINLDO, VLDO = 0 V  
0.6  
Input voltage range for LDO1, LDO2  
LDO1 and LDO2 feedback voltage  
Maximum output current for LDO1, LDO2  
Maximum output current for LDO1, LDO2  
LDO1 & LDO2 short circuit current limit  
Minimum voltage drop at LDO1, LDO2  
Minimum voltage drop at LDO1, LDO2  
Minimum voltage drop at LDO1, LDO2  
Output voltage accuracy for LDO1, LDO2  
Line regulation for LDO1, LDO2  
1.5  
6.5  
(1)  
See  
1.0  
V
Vin = 1.8 V, Vo = 1.3 V  
Vin = 1.5 V; Vo = 1.3 V  
VLDO1 = GND, VLDO2 = GND  
IO = 50 mA, VINLDO = 1.8 V  
IO = 50 mA, VINLDO = 1.5 V  
IO = 200 mA, VINLDO = 1.8 V  
IO = 10 mA  
200  
mA  
mA  
mA  
mV  
mV  
mV  
IO  
120  
ISC  
400  
120  
150  
300  
1%  
65  
2%  
1%  
VINLDO1,2 = VLDO1,2 + 0.5 V (min 2.5 V) to 6.5 V,  
IO = 10 mA  
1%  
Load regulation for LDO1, LDO2  
Regulation time for LDO1, LDO2  
IO = 0 mA to 200 mA  
1%  
1%  
Load change from 10% to 90%  
10  
μs  
Vdd_alive Low Dropout Regulator  
Vdd_alive  
Vdd_alive LDO output voltage  
IO = 0 mA  
1.2  
V
IO  
Output current for Vdd_alive  
30  
100  
1 %  
1 %  
mA  
mA  
ISC  
Vdd_alive short circuit current limit  
Output voltage accuracy for Vdd_alive  
Line regulation for Vdd_alive  
Vdd_alive = GND  
IO = 0mA  
1%  
1%  
VCC = Vdd_alive + 0.5 V to 6.5 V, IO = 0 mA  
Load change from 10% to 90%  
Regulation time for Vdd_alive  
10  
μs  
AnaLogic Signals DEFDCDC1, DEFDCDC2, DEFDCDC3  
VIH  
VIL  
IH  
High level input voltage  
Low level input voltage  
Input bias current  
1.3  
0
VCC  
0.1  
V
V
0.001  
0.05  
μA  
THERMAL SHUTDOWN  
TSD Thermal shutdown  
Thermal shutdown hysteresis  
INTERNAL UNDER VOLTAGE LOCK OUT  
Increasing junction temperature  
Decreasing junction temperature  
160  
20  
°C  
°C  
UVLO  
Internal UVLO  
VCC falling  
3%  
2.35  
120  
3%  
V
VUVLO_HYST  
Internal UVLO comparator hysteresis  
mV  
VOLTAGE DETECTOR COMPARATOR  
PWRFAIL_SNS Comparator threshold  
Hysteresis  
Falling threshold  
2%  
1.0  
50  
2%  
60  
V
mV  
μs  
V
40  
Propagation delay  
25-mV overdrive  
IOL = 5 mA  
10  
VOL  
Power fail output low voltage  
0.3  
(1) If the feedback voltage is forced higher than 1.2 V, a leakage current into the feedback pin may occur.  
8
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
DEVICE INFORMATION  
PIN ASSIGNMENTS  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
VDCDC3  
PGND3  
L3  
EN_Vdd_alive  
MODE  
1
2
3
4
5
6
7
8
DEFDCDC2  
PWRFAIL  
VINDCDC3  
VINDCDC1  
L1  
20  
19  
EN_DCDC1  
EN_DCDC2  
EN_DCDC3  
EN_LDO  
18  
17  
PGND1  
VDCDC1  
9 10 11 12 13 14 15 16  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
SWITCHING REGULATOR SECTION  
AGND1  
31  
13  
Analog ground connection. All analog ground pins are connected internally on the chip.  
Analog ground connection. All analog ground pins are connected internally on the chip.  
Connect the power pad to analog ground.  
AGND2  
PowerPad  
VINDCDC1  
5
I
Input voltage for VDCDC1 step-down converter. This must be connected to the same voltage supply as  
VINDCDC2, VINDCDC3 and VCC.  
L1  
6
8
Switch pin of VDCDC1 converter. The VDCDC1 inductor is connected here.  
VDCDC1 feedback voltage sense input, connect directly to VDCDC1  
Power ground for VDCDC1 converter  
VDCDC1  
PGND1  
VINDCDC2  
I
I
7
28  
Input voltage for VDCDC2 step-down converter. This must be connected to the same voltage supply as  
VINDCDC1, VINDCDC3 and VCC.  
L2  
27  
25  
26  
4
Switch pin of VDCDC2 converter. The VDCDC2 inductor is connected here.  
VDCDC2 feedback voltage sense input, connect directly to VDCDC2  
Power ground for VDCDC2 converter  
VDCDC2  
PGND2  
VINDCDC3  
I
I
Input voltage for VDCDC3 step-down converter. This must be connected to the same voltage supply as  
VINDCDC1, VINDCDC2 and VCC.  
L3  
3
1
Switch pin of VDCDC3 converter. The VDCDC3 inductor is connected here.  
VDCDC3 feedback voltage sense input, connect directly to VDCDC3  
Power ground for VDCDC3 converter  
VDCDC3  
PGND3  
Vcc  
I
2
29  
I
I
Power supply for digital and analog circuitry of DCDC1, DCDC2 and DCDC3 DC-DC converters. This must be  
connected to the same voltage supply as VINDCDC3, VINDCDC1 and VINDCDC2.  
DEFDCDC1  
DEFDCDC2  
9
Input signal indicating default VDCDC1 voltage, 0 = 2.80 V, 1 = 3.3 V  
This pin can also be connected to a resistor divider between VDCDC1 and GND. In this case the output  
voltage of the DCDC1 converter can be set in a range from 0.6 V to VINDCDC1.  
22  
I
Input signal indicating default VDCDC2 voltage, 0 = 1.8 V, 1 = 2.5 V  
This pin can also be connected to a resistor divider between VDCDC2 and GND. In this case the output  
voltage of the DCDC2 converter can be set in a range from 0.6 V to VINDCDC2.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
DEFDCDC3  
32  
I
Input signal indicating VDCDC3 voltage.  
TPS650241: 0 = 0.9 V, 1 = 1.375 V  
TPS650243: 0 = 1.0 V, 1 = 1.2 V  
TPS650244: 0 = 1.55 V, 1 = 1.6 V  
EN_DCDC1  
EN_DCDC2  
EN_DCDC3  
20  
19  
18  
I
I
I
VDCDC1 enable pin. A logic high enables the regulator, a logic low disables the regulator.  
VDCDC2 enable pin. A logic high enables the regulator, a logic low disables the regulator.  
VDCDC3 enable pin. A logic high enables the regulator, a logic low disables the regulator.  
LDO REGULATOR SECTION  
VINLDO  
15  
16  
14  
17  
24  
12  
11  
10  
I
O
O
I
Input voltage for LDO1 and LDO2  
VLDO1  
Output voltage of LDO1  
VLDO2  
Output voltage of LDO2  
EN_LDO  
EN_Vdd_alive  
Vdd_alive  
FB_LDO1  
FB_LDO2  
Enable input for LDO1 and LDO2. Logic high enables the LDOs, logic low disables the LDOs  
Enable input for Vdd_alive LDO. Logic high enables the LDO, logic low disables the LDO  
Output voltage for Vdd_alive  
I
O
I
Feedback pin for LDO1  
I
Feedback pin for LDO2  
CONTROL AND I2C SECTION  
MODE  
23  
I
Select between Power Safe Mode and forced PWM Mode for DCDC1, DCDC2 and DCDC3. In Power Safe  
Mode PFM is used at light loads, PWM for higher loads. If PIN is set to high level, forced PWM Mode is  
selected. If Pin has low level, then Device operates in Power Safe Mode.  
PWRFAIL  
21  
30  
O
I
Open drain output. Active low when PWRFAIL comparator indicates low VBAT condition.  
Input for the comparator driving the /PWRFAIL output  
PWRFAIL_SNS  
10  
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
FUNCTIONAL BLOCK DIAGRAM  
TPS650240  
1R  
VCC  
Vbat  
Vbat  
1mF  
VINDCDC1  
L1  
3.3V or 2.8V  
DCDC1 (I/O)  
2.2mH  
10mF  
VDCDC1  
R1  
22 mF  
STEP-DOWN  
CONVERTER  
1000 mA  
DEFDCDC1  
PGND1  
EN_DCDC1  
VINDCDC2  
ENABLE  
R2  
2.5V or 1.8V  
L2  
Vbat  
DCDC2  
(memory)  
2.2mH  
10mF  
R3  
VDCDC2  
DEFDCDC2  
PGND2  
22 mF  
STEP-DOWN  
CONVERTER  
800 mA  
EN_DCDC2  
VINDCDC3  
ENABLE  
R4  
1.0V or 1.3V  
22mF  
L3  
Vbat  
DCDC3 (core)  
2.2uH  
10mF  
VDCDC3  
STEP-DOWN  
CONVERTER  
800 mA  
DEFDCDC3  
EN_DCDC3  
1.0V / 1.3V  
ENABLE  
PGND3  
MODE  
PWM / PFM  
VIN_LDO  
EN_LDO  
VIN  
VLDO1  
VLDO1  
R5  
R6  
2.2mF  
200 mA LDO  
ENABLE  
VLDO2  
VLDO2  
2.2mF  
R7  
R8  
200 mA LDO  
EN_Vdd_aliv  
e
ENABLE  
Vdd_alive  
1.2 V  
VLDO3  
30 mA LDO  
VCC  
Vbat  
2.2mF  
R9  
I/O voltage  
R19  
PWRFAIL _SNS  
-
PWRFAIL  
R10  
+
Vref = 1 V  
AGND1  
AGND2  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
TYPICAL CHARACTERISTICS  
Parameter Measurement Information  
Graphs were taken using the EVM with the following inductor/output capacitor combinations:  
CONVERTER  
DCDC1  
INDUCTOR  
VLCF4020-3R3  
VLCF4020-2R2  
LPS3010-222  
OUTPUT CAPACITOR  
C2012X5R0J226M  
C2012X5R0J226M  
C2012X5R0J226M  
OUTPUT CAPACITOR VALUE  
22 μF  
22 μF  
22 μF  
DCDC2  
DCDC3  
Table of Graphs  
FIGURE  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
η
η
η
η
η
η
Efficiency VDCDC1  
Efficiency VDCDC1  
Efficiency VDCDC2  
Efficiency VDCDC2  
Efficiency VDCDC3  
Efficiency VDCDC3  
vs Load current PWM/PFM; VO = 3.3 V  
vs Load current PWM; VO = 3.3 V  
vs Load current PWM/PFM; VO = 1.8 V  
vs Load current PWM; VO = 1.8 V  
vs Load current PWM/PFM; VO = 1.3 V  
vs Load current PWM; VO = 1.3 V  
Line transient response VDCDC1  
Line transient response VDCDC2  
Line transient response VDCDC3  
Load transient response VDCDC1  
Load transient response VDCDC2  
Load transient response VDCDC3  
Output voltage ripple DCDC2; PFM mode  
Output voltage ripple DCDC2; PWM mode  
Load regulation for Vdd_alive  
Start-up VDCDC1 to VDCDC3  
Start-up LDO1 and LDO2  
12  
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
DCDC1: EFFICIENCY  
vs  
DCDC1: EFFICIENCY  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
100  
90  
T
= 25°C,  
A
90  
80  
70  
60  
50  
V
= 3.3 V,  
O
PWM Mode  
V = 3.8 V  
I
V = 4.2 V  
I
80  
70  
60  
50  
V = 5 V  
I
V = 3.8 V  
I
V = 4.2 V  
I
40  
30  
40  
30  
20  
V = 5 V  
I
T
= 25°C,  
20  
A
V
= 3.3 V,  
O
PFM/PWM Mode  
10  
0
10  
0
0.1  
1
10 100  
- Output Current - mA  
1k  
10k  
0.1  
1
10 100  
- Output Current - mA  
1k  
10k  
I
I
O
O
Figure 1.  
Figure 2.  
DCDC2: EFFICIENCY  
vs  
DCDC2: EFFICIENCY  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
V = 2.5 V  
I
V = 3.8 V  
I
V = 3.8 V  
I
V = 4.2 V  
I
V = 2.5 V  
V = 4.2 V  
I
I
V = 5 V  
I
V = 5 V  
I
= 25oC  
= 1.8 V  
T
= 25oC  
= 1.8 V  
T
A
A
V
V
O
PWM Mode  
O
PWM / PFM Mode  
0.01  
0.1  
1
10  
100  
1 k  
10 k  
0.01  
0.1  
1
10  
100  
1 k  
10 k  
I
- Output Current - mA  
I
- Output Current - mA  
O
O
Figure 3.  
Figure 4.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
DCDC3: EFFICIENCY  
vs  
DCDC3: EFFICIENCY  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
90  
100  
T
= 25°C,  
A
T
= 25°C,  
A
V
= 1.5 V,  
90  
80  
70  
60  
50  
40  
30  
20  
O
PWM/PFM Mode  
V
= 1.5 V,  
O
PWM Mode  
80  
70  
60  
50  
40  
30  
20  
V = 2.5 V  
I
V = 3 V  
I
V = 2.5 V  
I
V = 3.8 V  
I
V = 3 V  
I
V = 4.2 V  
I
V = 3.8 V  
I
V = 5 V  
I
V = 4.2 V  
I
V = 5 V  
I
10  
0
10  
0
0.01  
1 10  
- Output Current - mA  
100  
1k  
0.1  
0.1  
0.01  
1
10  
- Output Current - mA  
100  
1k  
I
O
I
O
Figure 5.  
Figure 6.  
VDCDC1 LINE TRANSIENT RESPONSE  
VDCDC2 LINE TRANSIENT RESPONSE  
Ch1 = V  
I
Ch1 = V  
I
Ch2 = V  
O
Ch2 = V  
O
I
= 100 mA  
O
I
= 100 mA  
O
V = 3 V to 4 V  
I
V = 3.8 V to 4.5 V  
I
V
= 1.8 V  
O
V
= 3.3 V  
O
PWM Mode  
Figure 7.  
Figure 8.  
14  
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
VDCDC3 LINE TRANSIENT RESPONSE  
VDCDC1 LOAD TRANSIENT RESPONSE  
Ch1 = V  
I
Ch1 = V  
I
Ch2 = V  
O
Ch2 = V  
O
I
= 160 mA to 14000 mA  
I
= 100 mA  
O
O
V = 3.3 V  
V = 3 V to 4 V  
I
I
V
= 1.375 V  
V
= 4.2 V  
O
O
Figure 9.  
Figure 10.  
VDCDC2 LOAD TRANSIENT RESPONSE  
VDCDC3 LOAD TRANSIENT RESPONSE  
Ch4 = I  
O
Ch4 = I  
O
Ch2 = V  
O
Ch2 = V  
O
I
= 80 mA to 720 mA  
= 1.375 V  
O
V
I
= 100 mA to 900 mA  
= 1.8 V  
O
O
V
O
Figure 11.  
Figure 12.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
VDCDC2 OUTPUT VOLTAGE RIPPLE  
VDCDC2 OUTPUT VOLTAGE RIPPLE  
I
= 1 mA  
T
= 25oC  
A
V = 3.8 V  
O
V = 3.8 V  
I
I
V
I
= 1.8 V  
V
= 1.8 V  
O
O
PFM Mode  
= 1 mA  
= 25oC  
O
T
A
PWM Mode  
Figure 13.  
Figure 14.  
VDD_ALIVE OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
STARTUP VDCDC1, VDCDC2, VDCDC3  
1.26  
1.24  
1.22  
ENABLE  
V
= 3.6 V  
CC  
VDCDC1  
1.2  
VDCDC2  
VDCDC3  
1.18  
1.16  
1.14  
0
5
10  
15  
20  
25  
30 35  
40  
45  
I
- Output Current - mA  
O
Figure 15.  
Figure 16.  
16  
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
STARTUP LDO1 AND LDO2  
ENABLE  
LDO1  
LDO2  
Figure 17.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
DETAILED DESCRIPTION  
STEP-DOWN CONVERTERS, VDCDC1, VDCDC2 AND VDCDC3  
The TPS65024x incorporate three synchronous step-down converters operating typically at 2.25MHz fixed  
frequency PWM (Pulse Width Modulation) at moderate to heavy load currents. At light load currents the  
converters automatically enter Power Save Mode and operate with PFM (Pulse Frequency Modulation).  
VDCDC1 delivers up to 1.6A, VDCDC2 is capable of delivering up to 1.0A of output current while the VDCDC3  
converter is capable of delivering up to 800mA.  
The converter output voltages can be programmed via the DEFDCDC1, DEFDCDC2 and DEFDCDC3 pins. The  
pins can either be connected to GND, VCC or to a resistor divider between the output voltage and GND. The  
VDCDC1 converter defaults to 2.80V or 3.3V depending on the DEFDCDC1 configuration pin, if DEFDCDC1 is  
tied to ground the default is 2.80V, if it is tied to VCC the default is 3.3V. When the DEFDCDC1 pin is connected  
to a resistor divider, the output voltage can be set in the range of 0.6V to VINDCDC1 V. Reference the section  
on Output Voltage Selection for details on setting the output voltage range.  
The VDCDC2 converter defaults to 1.8V or 2.5V depending on the DEFDCDC2 configuration pin, if DEFDCDC2  
is tied to ground the default is 1.8V, if it is tied to VCC the default is 2.5V. When the DEFDCDC2 pin is  
connected to a resistor divider, the output voltage can be set in the range of 0.6V to VINDCDC2 V.  
The VDCDC3 converter defaults to 1.0V or 1.3V for the TPS650240 depending on the DEFDCDC3 configuration  
pin, if DEFDCDC3 is tied to ground the default is 1.0V, if it is tied to VCC the default is 1.3V. The DEFDCDC3  
pin cannot be connected to a resistor divider. In opposition to DEFDCDC1 and DEFDCDC2, the DEFDCDC3 pin  
can be used to change the core voltage during operation by changing its logic level from HIGH to LOW or vice  
versa. TPS65024x allow different voltages for the VDCDC3 converter. See Table 4 for the default voltage  
options.  
During PWM operation the converters use a unique fast response voltage mode controller scheme with input  
voltage feed-forward to achieve good line and load regulation allowing the use of small ceramic input and output  
capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch is  
turned on and the inductor current ramps up until the comparator trips and the control logic turns off the switch.  
The current limit comparator also turns off the switch in case the current limit of the P-channel switch is  
exceeded. After the adaptive dead time used to prevent shoot through current, the N-channel MOSFET rectifier  
is turned on and the inductor current ramps down. The next cycle is initiated by the clock signal again turning off  
the N-channel rectifier and turning on the P-channel switch.  
The three DC/DC converters operate synchronized to each other, with the VDCDC1 converter as the master. A  
180° phase shift between the VDCDC1 switch turn on and the VDCDC2 and a further 90° shift to the VDCDC3  
switch turn on decreases the input RMS current and smaller input capacitors can be used. This is optimized for a  
typical application where the VDCDC1 converter regulates a Li-Ion battery voltage of 3.7V to 3.3V, the VDCDC2  
converter from 3.7V to 2.5V and the VDCDC3 converter from 3.7V to 1.5V.  
POWER SAVE MODE OPERATION  
As the load current decreases, the converters enter Power Save Mode operation. During Power Save Mode the  
converters operate in a burst mode (PFM mode) with a frequency between 1.125MHz and 2.25MHz for one burst  
cycle. However, the frequency between different burst cycles depends on the actual load current and is typically  
far less than the switching frequency, with a minimum quiescent current to maintain high efficiency.  
In order to optimize the converter efficiency at light load the average current is monitored and if in PWM mode  
the inductor current remains below a certain threshold, then Power Save Mode is entered. The typical threshold  
to enter Power Save Mode can be calculated as follows:  
VINDCDC 1  
I
+
PFMDCDC1enter  
24 W  
VINDCDC 2  
I
+
PFMDCDC2enter  
26 W  
VINDCDC 3  
+
I
PFMDCDC3leave  
39 W  
(1)  
18  
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
During Power Save Mode the output voltage is monitored with a comparator and by maximum skip burst width.  
As the output voltage falls below the threshold, set to the nominal VO, the P-channel switch turns on and the  
converter effectively delivers a constant current as defined below.  
VINDCDC 1  
I
+
+
+
PFMDCDC1leave  
18 W  
VINDCDC 2  
I
PFMDCDC2leave  
20 W  
VINDCDC 3  
I
PFMDCDC3enter  
29 W  
(2)  
If the load is below the delivered current then the output voltage rises until the same threshold is crossed in the  
other direction. All switching activity ceases, reducing the quiescent current to a minimum until the output voltage  
has again dropped below the threshold. The power save mode is exited, and the converter returns to PWM mode  
if either of the following conditions are met:  
1. The output voltage drops 2% below the nominal VO due to increased load current  
2. The PFM burst time exceeds 16 × 1/fs (7.1μs typical)  
These control methods reduce the quiescent current to typically 14μA per converter and the switching activity to  
a minimum thus achieving the highest converter efficiency. Setting the comparator thresholds at the nominal  
output voltage at light load current results in a very low output voltage ripple. The ripple depends on the  
comparator delay and the size of the output capacitor; increasing capacitor values makes the output ripple tend  
to zero. Power Save Mode can be disabled by pulling the MODE pin high. This forces all DC/DC converters into  
fixed frequency PWM mode.  
SOFT START  
Each of the three converters has an internal soft start circuit that limits the inrush current during start-up. The soft  
start is realized by using a very low current to initially charge the internal compensation capacitor. The soft start  
time is typically 750μs if the output voltage ramps from 5% to 95% of the final target value. If the output is  
already pre-charged to some voltage when the converter is enabled, then this time is reduced proportionally.  
There is a short delay of typically 170μs between the converter being enabled and switching activity actually  
starting. This is to allow the converter to bias itself properly, to recognize if the output is pre-charged, and if so, to  
prevent discharging of the output while the internal soft start ramp catches up with the output voltage.  
100% DUTY CYCLE LOW DROPOUT OPERATION  
The TPS65024x converters offer a low input to output voltage difference while still maintaining operation with the  
use of the 100% duty cycle mode. In this mode the P-channel switch is constantly turned on. This is particularly  
useful in battery-powered applications to achieve the longest operation time by taking full advantage of the whole  
battery voltage range. The minimum input voltage required to maintain DC regulation depends on the load  
current and output voltage and can be calculated as:  
  ǒRDSon  
LǓ  
Vin  
+ Vout  
) Iout  
) R  
max  
max  
min  
min  
(3)  
With:  
Ioutmax = Maximum load current (note: ripple current in the inductor is zero under these conditions)  
RDSonmax = Maximum P-channel switch RDSon  
RL = DC resistance of the inductor  
Voutmin = Nominal output voltage minus 2% tolerance limit  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
LOW DROPOUT VOLTAGE REGULATORS  
The low dropout voltage regulators are designed to operate well with low value ceramic input and output  
capacitors. They operate with input voltages down to 1.5V. The LDOs offer a maximum dropout voltage of  
300mV at the rated output current. Each LDO sports a current limit feature. Both LDOs are enabled by the  
EN_LDO pin. The LDOs also have reverse conduction prevention. This allows the possibility to connect external  
regulators in parallel in systems with a backup battery. The TPS65024x step-down and LDO voltage regulators  
automatically power down when the Vcc voltage drops below the UVLO threshold or when the junction  
temperature rises above 160°C.  
UNDERVOLTAGE LOCKOUT  
The undervoltage lockout circuit for the five regulators on the TPS65024x prevents the device from  
malfunctioning at low input voltages and from excessive discharge of the battery. It disables the converters and  
LDOs. The UVLO circuit monitors the Vcc pin; the threshold is set internally to 2.35V with 5% (120mV)  
hysteresis. Note that when any of the DC/DC converters are running there is an input current at the Vcc pin,  
which can be up to 3mA when all three converters are running in PWM mode. This current needs to be taken  
into consideration if an external RC filter is used at the Vcc pin to remove switching noise from the TPS65024x  
internal analog circuitry supply. See the Vcc-Filter section for details on the external RC filter.  
POWER-UP SEQUENCING  
The TPS65024x power-up sequencing is designed to be entirely flexible and customer driven; this is achieved  
simply by providing separate enable pins for each switch-mode converter and a common enable signal for LDO1  
and LDO2. The relevant control pins are described in Table 1.  
Table 1. Control Pins for DCDC Converters  
INPUT/  
OUTPUT  
PIN NAME  
FUNCTION  
DEFDCDC3  
DEFDCDC2  
I
I
Defines the default voltage of the VDCDC3 switching converter. See Table 4 for details.  
Defines the default voltage of the VDCDC2 switching converter. DEFDCDC2 = 0 defaults VDCDC2 to 1.8V,  
DEFDCDC2 = VCC defaults VDCDC2 to 2.5V.  
DEFDCDC1  
I
Defines the default voltage of the VDCDC1 switching converter. DEFDCDC1 = 0 defaults VDCDC1 to 2.80V,  
DEFDCDC1 = VCC defaults VDCDC1 to 3.3V.  
EN_DCDC3  
EN_DCDC2  
EN_DCDC1  
I
I
I
Set EN_DCDC3 = 0 to disable or EN_DCDC3 = 1 to enable the VDCDC3 converter  
Set EN_DCDC2 = 0 to disable or EN_DCDC2 = 1 to enable the VDCDC2 converter  
Set EN_DCDC1 = 0 to disable or EN_DCDC1 = 1 to enable the VDCDC1 converter  
PWRFAIL  
The PWRFAIL signal is generated by a voltage detector at the PWRFAIL_SNS input. The input signal is  
compared to a 1V threshold (falling edge) with 5% (50mV) hysteresis. PWRFAIL is an open drain output which is  
actively low when the input voltage at PWRFAIL_SNS is below the threshold.  
DESIGN PROCEDURE  
Inductor Selection for the dcdc Converters  
The three converters operate with 2.2µH output inductors. Larger or smaller inductor values can be used to  
optimize performance of the device for specific conditions. The selected inductor has to be rated for its dc  
resistance and saturation current. The dc resistance of the inductor influences directly the efficiency of the  
converter. Therefore, an inductor with the lowest dc resistance should be selected for the highest efficiency.  
For a fast transient response, a 2.2μH inductor in combination with a 22μF output capacitor is recommended. For  
an output voltage above 2.8V, an inductor value of 3.3μH minimum is required. Lower values result in an  
increased output voltage ripple in PFM mode. The minimum inductor value is 1.5μH, but an output capacitor of  
22μF minimum is needed in this case.  
Equation 4 calculates the maximum inductor current under static load conditions. The saturation current of the  
inductor should be rated higher than the maximum inductor current as calculated with Equation 4. This is  
recommended because during heavy load transient the inductor current rises above the calculated value.  
20  
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
 
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
Vout  
Vin  
L   ƒ  
1 *  
DI  
L
DI + Vout   
I
+ I  
)
outmax  
L
Lmax  
2
(4)  
With:  
f = Switching frequency (2.25MHz typical)  
L = Inductor value  
ΔIL = Peak-to-peak inductor ripple current  
ILmax = Maximum inductor current  
The highest inductor current occurs at maximum Vin.  
Open core inductors have a soft saturation characteristic and they can usually handle higher inductor currents  
versus a comparable shielded inductor.  
A more conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. Consideration must be given to the difference in the core material from inductor to  
inductor which has an impact on efficiency especially at high switching frequencies. See Table 2 and the typical  
applications for possible inductors.  
Table 2. Tested Inductors  
INDUCTOR  
VALUE  
COMPONENT  
SUPPLIER  
DEVICE  
TYPE  
3.3μH  
2.2μH  
3.3μH  
2.2μH  
2.2μH  
2.2μH  
2.2μH  
LPS3015-332 (output current up to 1A)  
LPS3015-222 (output current up to 1A)  
VLCF4020T-3R3N1R5  
VLCF4020T-2R2N1R7  
LPS3010-222  
Coilcraft  
Coilcraft  
TDK  
TDK  
Coilcraft  
Coilcraft  
TDK  
DCDC3 converter  
LPS3015-222  
VLCF4020-2R2  
Output Capacitor Selection  
The advanced Fast Response voltage mode control scheme of the inductive converters implemented in the  
TPS65024x allows the use of small ceramic capacitors with a typical value of 10uF for each converter, without  
having large output voltage under and overshoots during heavy load transients. Ceramic capacitors having low  
ESR values have the lowest output voltage ripple and are recommended. Refer to Table 3 for recommended  
components.  
If ceramic output capacitors are used, the capacitor RMS ripple current rating will always meet the application  
requirements. For completeness, the RMS ripple current is calculated as:  
Vout  
1 *  
Vin  
1
I
+ Vout   
 
RMSCout  
Ǹ
L   ƒ  
2   3  
(5)  
At nominal load current the inductive converters operate in PWM mode and the overall output voltage ripple is  
the sum of the voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and  
discharging the output capacitor:  
Vout  
1 *  
Vin  
1
ǒ
) ESRǓ  
DVout + Vout   
 
L   ƒ  
8   Cout   ƒ  
(6)  
Where the highest output voltage ripple occurs at the highest input voltage, Vin.  
At light load currents the converters operate in Power Save Mode and output voltage ripple is dependent on the  
output capacitor value. The output voltage ripple is set by the internal comparator delay and the external  
capacitor. Typical output voltage ripple is less than 1% of the nominal output voltage.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
 
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
Input Capacitor Selection  
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is  
required for best input voltage filtering and minimizing interference with other circuits caused by high input  
voltage spikes. Each dcdc converter requires a 10uF ceramic input capacitor on its input pin VINDCDCx. The  
input capacitor can be increased without any limit for better input voltage filtering. The Vcc pin should be  
separated from the input for the DC/DC converters. A filter resistor of up to 10and a 1μF capacitor should be  
used for decoupling the Vcc pin from switching noise. Note that the filter resistor may affect the UVLO threshold  
since up to 3mA can flow via this resistor into the Vcc pin when all converters are running in PWM mode.  
Table 3. Possible Capacitors  
CAPACITOR  
CASE SIZE  
COMPONENT SUPPLIER  
COMMENTS  
VALUE  
22μF  
22μF  
22μF  
22μF  
10μF  
10μF  
1206  
1206  
0805  
0805  
0805  
0805  
TDK  
C3216X5R0J226M  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Taiyo Yuden JMK316BJ226ML  
TDK C2012X5R0J226MT  
Taiyo Yuden JMK212BJ226MG  
Taiyo Yuden JMK212BJ106M  
TDK  
C2012X5R0J106M  
Output Voltage Selection  
The DEFDCDC1, DEFDCDC2, and DEFDCDC3 pins are used to set the output voltage for each step-down  
converter. See Table 4 for the default voltages if the pins are pulled to GND or to Vcc.  
Table 4. Voltage Options  
PIN  
LEVEL  
VCC  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
VCC  
GND  
DEFAULT OUTPUT VOLTAGE  
DEFDCDC1  
DEFDCDC2  
DEFDCDC3  
All versions  
All versions  
TPS650241  
TPS650243  
TPS650244  
3.3V  
2.80V  
2.5V  
1.8V  
1.375V  
0.9V  
1.2V  
1.0V  
1.55V  
1.6V  
If a different voltage is needed, an external resistor divider can be added to the DEFDCDC1 or DEFDCDC2 pin  
as shown below:  
10 R  
V
V
bat  
CC  
1 mF  
VDCDC1  
L1  
V
VINDCDC1  
OUT  
L
C
IN  
C
OUT  
R1  
R2  
EN_DCDC1  
AGND  
DEFDCDC1  
PGND  
When a resistor divider is connected to DEFDCDC1 or DEFDCDC2, the output voltage can be set from 0.6V up  
to the input voltage Vbat. The total resistance (R1+R2) of the voltage divider should be kept in the 1Mrange in  
order to maintain a high efficiency at light load. VDEFDCDCx = 0.6V  
22  
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
 
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
V
R1 ) R2  
OUT  
V
+ V  
 
DEFDCDCx  
ǒ Ǔ* R2  
R1 + R2   
OUT  
R2  
V
DEFDCDCx  
Voltage Change on VDCDC3  
The output voltage of VDCDC3 can be changed during operation from, for example, 0.9V to 1.375V  
(TPS650241) and back. While the output voltage at VDCDC1 and VDCDC2 is fixed after the device exits  
undervoltage lockout (UVLO), the status of the DEFDCDC3 pin is sensed during operation and the voltage is  
changed as soon as the logic level on this pin changes from low to high or vice versa. Therefore it is not possible  
to connect a resistor divider to DEFDCDC3 and set a voltage different from the predefined voltages.  
Vdd_alive Output  
The Vdd_alive LDO is typically connected to the Vdd_alive input of the Samsung application processor. It  
provides an output voltage of 1.2V at 30mA. For the TPS650245, the output voltage is 1.1V. It is recommended  
to add a capacitor of 2.2μF minimum to the Vdd_alive pin. The LDO can be disabled by pulling the  
EN_Vdd_alive pin to GND.  
LDO1 and LDO2  
The LDOs in the TPS65024x are general purpose LDOs which are stable using ceramics capacitors. The  
minimum output capacitor required is 2.2μF. The LDOs output voltage can be changed to different voltages  
between 1.0V and Vin using an external resistor divider. Therefore they can also be used as general purpose  
LDOs in the application. The supply voltage for the LDOs needs to be connected to the VINLDO pin, giving the  
flexibility to connect the lowest voltage available in the system and therefore providing the highest efficiency.  
The total resistance (R5+R6) of the voltage divider should be kept in the 1Mrange in order to maintain high  
efficiency at light load. VFBLDOx= 1.0V.  
V
R5 ) R6  
OUT  
V
+ V  
 
FBLDOx  
ǒ Ǔ* R6  
R5 + R6   
OUT  
R6  
V
FBLDOx  
Vcc-Filter  
An RC filter connected at the Vcc input is used to keep noise from the internal supply for the bandgap and other  
analog circuitry. A typical value of 1and 1μF is used to filter the switching spikes, generated by the DC/DC  
converters. A larger resistor than 10should not be used because the current into Vcc of up to 2.5mA causes a  
voltage drop at the resistor causing the undervoltage lockout circuitry connected at Vcc internally to switch off too  
early.  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
www.ti.com  
APPLICATION INFORMATION  
TYPICAL CONFIGURATION FOR THE TITAN 2 PROCESSOR  
The core voltage is generated using DCDC2 with the output voltage set to 1.2V using a resistor divider at  
DEFDCDC2 as only DCDC2 can support an output current of up to 1.6A. DCDC3 is used for the memory voltage  
of 1.8V. As DCDC3 does not support an external resistor divider, the output voltage is programmed to 1.6V by  
setting DEFDCDC3 = HIGH. In addition, there is a resistor at the input of the internal voltage divider at pin  
VDCDC3 which adds another 200mV. The internal resistance at VDCDC3 when programmed to 1.6V is 480k,  
so the external resistance needed to increase the output voltage from 1.6V to 1.8V is 60k(62k). The typical  
configuration for the Titan 2 processor is shown in Figure 18.  
Vcc  
VIN  
1mF  
Titan  
TPS650244  
VINDCDC1  
VIN  
10mF  
3.3mH  
LPS3015  
L1  
(3.3V)  
VDDIO  
VINDCDC2  
DCDC1  
800mA  
VIN  
VIN  
10mF  
10mF  
VDCDC1  
2.2mH  
VINDCDC3  
LPS3015  
L3  
(1.8V)  
VDD _MEM  
10mF  
DCDC3  
800mA  
62kW  
22mF  
VDCDC3  
DEFDCDC1  
VIN  
VIN  
DEFDCDC3  
(set to1.8V)  
VLCF4020  
2.2mH  
L2  
core (1.2V)  
DCDC2  
1600mA  
VDCDC2  
VDCDC2  
LDO2  
22mF  
220kW  
220kW  
DEFDCDC2  
(3.3V)  
RTC I /O  
LDO2  
300kW  
FB_LDO2  
2.2mF  
200mA  
EN_DCDC1  
130kW  
EN_DCDC2  
EN_DCDC3  
LDO1  
RTC core  
(1.2V)  
LDO1  
100kW  
2.2mF  
200mA  
FB_LDO1  
510kW  
VINLDO1/2  
VIN  
mF  
1
Vdd_alive 1.2V  
VIO  
(not used)  
open  
EN_LDO1/2  
EN_VDDalive  
1MW  
POWERFAIL  
PWRFAIL_SNS  
Input Voltage  
TBD  
-
+
Figure 18. Titan Processor Configuration  
24  
Submit Documentation Feedback  
Copyright © 20092011, Texas Instruments Incorporated  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
 
TPS650241-Q1, TPS650243-Q1, TPS650244-Q1  
www.ti.com  
SLVS994A SEPTEMBER 2009REVISED MARCH 2011  
TYPICAL CONFIGURATION FOR THE SAMSUNG PROCESSOR S3C6400-533MHz  
The typical configuration for the Samsung processor S3C6400-533MHz is shown in Figure 19.  
S3C6400-  
Vcc  
533MHz  
VIN  
TPS650245  
1mF  
VDDEXT (3.3V)  
VDDMMC (3.3V)  
VDDHI (3.3V)  
3.3mH  
L1  
VINDCDC1  
VIN  
VIN  
DCDC1  
10mF  
10mF  
10mF  
VDDLCD (3.3V)  
VDDPCM (3.3V)  
1000mA  
VDCDC1  
VINDCDC2  
VDDSYS (3.3V)  
2.2mH  
L2  
10mF  
VDD_MEM0 (1.8V)  
VDD_MEM1 (1.8V)  
DCDC2  
800mA  
VINDCDC3  
VDCDC2  
VIN  
10mF  
2.2mH  
L3  
VDDARM (0.9V/1.1V)  
DCDC3  
800mA  
DEFDCDC1  
DEFDCDC2  
VIN  
VDCDC3  
LDO2  
10mF  
VDDADC (3.3V)  
VDDDAC (3.3V)  
300kW  
LDO2  
2.2mF  
200mA  
FB_LDO2  
VDDOTG (3.3V)  
VDDUH (3.3V)  
DEFDCDC3  
EN_DCDC1  
130kW  
0.9V/1.1V  
LDO1  
VDDOTGI (1.1V)  
LDO1  
EN_DCDC2  
EN_DCDC3  
33kW  
2.2mF  
200mA  
FB_LDO1  
330kW  
VINLDO1/2  
VIN  
1
mF  
Vdd_alive 1.1V  
VDDALIVE  
EN_LDO1/2  
EN_VDDalive  
1mF  
VIO  
VIN VIN  
1MW  
R2  
PWRFAIL  
PWRFAIL_SNS  
-
R3  
+
1V  
APLL (1.0V)  
EPLL (1.0V)  
MPLL (1.0V)  
VDDINT (1.0V)  
GND  
AGND , PowerPAD  
2.2mH  
VIN  
VIN  
SW  
EN  
100kW  
150kW  
10mF  
10mF  
TPS62260  
EN  
22pF  
FB  
MODE  
GND  
Figure 19. Samsung Processor Configuration  
Copyright © 20092011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TPS650241-Q1 TPS650243-Q1 TPS650244-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS650241QRHBRQ1  
TPS650243QRHBRQ1  
TPS650244IRHBRQ1  
ACTIVE  
VQFN  
VQFN  
VQFN  
RHB  
32  
32  
32  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
TPS  
650241Q  
ACTIVE  
ACTIVE  
RHB  
NIPDAU  
NIPDAU  
TPS  
650243Q  
RHB  
TPS  
650244Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS650241-Q1, TPS650243-Q1, TPS650244-Q1 :  
Catalog: TPS650241, TPS650243, TPS650244  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS650241QRHBRQ1  
TPS650243QRHBRQ1  
TPS650244IRHBRQ1  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
32  
32  
32  
3000  
3000  
3000  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
5.3  
5.3  
1.5  
1.5  
1.5  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS650241QRHBRQ1  
TPS650243QRHBRQ1  
TPS650244IRHBRQ1  
VQFN  
VQFN  
VQFN  
RHB  
RHB  
RHB  
32  
32  
32  
3000  
3000  
3000  
356.0  
356.0  
356.0  
356.0  
356.0  
356.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

TPS650244RHB

Power Management ICs for Li-Ion Powered Systems
TI

TPS650244RHBR

Power Management ICs for Li-Ion Powered Systems
TI

TPS650244RHBRG4

Power Management ICs for Li-Ion Powered Systems
TI

TPS650244RHBT

Power Management ICs for Li-Ion Powered Systems
TI

TPS650244RHBTG4

Power Management ICs for Li-Ion Powered Systems
TI

TPS650245

Power Management ICs for Li-Ion Powered Systems
TI

TPS650245RHB

Power Management ICs for Li-Ion Powered Systems
TI

TPS650245RHBR

Power Management ICs for Li-Ion Powered Systems
TI

TPS650245RHBRG4

Power Management ICs for Li-Ion Powered Systems
TI

TPS650245RHBT

Power Management ICs for Li-Ion Powered Systems
TI

TPS650245RHBTG4

Power Management ICs for Li-Ion Powered Systems
TI

TPS650250

Power Management IC for Li-Ion Powered Systems
TI