TPS65052QRSMRQ1 [TI]

IC POWER SUPPLY SUPPORT CKT, Power Management Circuit;
TPS65052QRSMRQ1
型号: TPS65052QRSMRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IC POWER SUPPLY SUPPORT CKT, Power Management Circuit

文件: 总39页 (文件大小:1398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS  
AND 4 LOW-INPUT-VOLTAGE LDOs  
, TPS65051-Q1  
1
FEATURES  
Two General-Purpose 200-mA, High-PSRR  
LDOs  
2
Qualified for Automotive Applications  
VI Range for LDOs from 1.5 V to 6.5 V  
Digital Voltage Selection for the LDOs  
AEC-Q100 Qualified With the Following  
Results:  
Available in a 4-mm × 4-mm 32-Pin QFN  
Package  
Device Temperature Grade 1: –40°C to  
125°C Ambient Operating Temperature  
Range  
APPLICATIONS  
Device HBM ESD Classification Level H2  
Device CDM ESD Classification Level C3B  
Automotive  
Up To 95% Efficiency  
DESCRIPTION  
Output Current for DC-DC Converters:  
The TPS6505x-Q1 devices are integrated power-  
management ICs for applications powered by one Li-  
Ion or Li-Polymer cell, which require multiple power  
rails. The TPS6505x-Q1 provides two efficient, 2.25-  
MHz step-down converters targeted at providing the  
core voltage and I/O voltage in a processor-based  
system. Both step-down converters enter a low-power  
mode at light load for maximum efficiency across the  
widest possible range of load currents.  
TPS65050-Q1: 2 × 0.6 A  
TPS65051-Q1: DCDC1 = 1 A; DCDC2 = 0.6 A  
TPS65052-Q1: DCDC1 = 1 A; DCDC2 = 0.6 A  
TPS65054-Q1: 2 × 0.6 A  
TPS65056-Q1: DCDC1 = 1 A; DCDC2 = 0.6 A  
Output Voltages for DC-DC Converters:  
TPS65050-Q1: Externally Adjustable  
TPS65051-Q1: Externally Adjustable  
For low-noise applications, the user can force the  
devices into fixed-frequency PWM mode by pulling  
the MODE pin high. Operating in the shutdown mode  
reduces the current consumption to less than 1 μA.  
The devices allow the use of small inductors and  
capacitors to achieve a small solution size. The  
TPS6505x-Q1 provides an output current of up to 1 A  
on each dc-dc converter. The TPS6505x-Q1 also  
integrates two 400-mA LDO and two 200-mA LDO  
voltage regulators, which one can turn on or off using  
separate enable pins on each LDO. Each LDO  
operates with an input voltage range between 1.5 V  
and 6.5 V, allowing their supply to be from one of the  
step-down converters or directly from the main  
battery.  
TPS65052-Q1: DCDC1 = Fixed at 3.3 V;  
DCDC2 = 1 V or 1.3 V for Samsung  
Application Processors  
TPS65054-Q1: DCDC1 = Externally  
Adjustable; DCDC2 = 1.3 V or 1.05 V for  
OMAP™1710 Processor  
TPS65056-Q1: DCDC1 = Fixed at 3.3 V;  
DCDC2 = 1 V or 1.3 V for Samsung  
Application Processors  
VI Range for DC-DC Converters  
From 2.5 V to 6 V  
2.25-MHz Fixed-Frequency Operation  
Power-Save Mode at Light Load Current  
180° Out-of-Phase Operation  
Four digital input pins set the output voltage of the  
LDOs from a set of 16 different combinations for  
LDO1 to LDO4 on TPS65050-Q1 and TPS65052-Q1.  
In TPS65051-Q1, TPS65054-Q1, and TPS65056-Q1,  
the LDO voltages are adjustable using external  
resistor dividers.  
Output-Voltage Accuracy in PWM Mode ±1%  
Low-Ripple PFM Mode  
Total Typical 32-μA Quiescent Current for Both  
DC-DC Converters  
The TPS6505x-Q1 devices come in a small 32-pin  
leadless package (4-mm × 4-mm QFN) with a 0.4-  
mm pitch.  
100% Duty Cycle for Lowest Dropout  
Two General-Purpose 400-mA, High-PSRR  
LDOs  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
OMAP is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2012, Texas Instruments Incorporated  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
OUTPUT CURRENT  
FOR DC-DC  
CONVERTERS  
PART  
NUMBER  
QFN(1)  
PACKAGE  
MARKING  
TA  
OPTION  
PACKAGE(2)  
TPS65050QRSMRQ1  
TPS65050-Q1  
LDO voltages according to Table 1  
DC-DC converters externally adjustable  
2 x 600 mA  
On demand  
TPS65051Q  
On demand  
TPS65051QRSMRQ1  
TPS65051-Q1  
LDO voltages externally adjustable  
DC-DC converters externally adjustable  
DCDC1 = 1 A  
DCDC2 = 600 mA  
TPS65052QRSMRQ1  
TPS65052-Q1  
LDO voltages according to Table 1  
DCDC1 = 3.3 V; DCDC2 = 1 V or 1.3 V  
DCDC1 = 1 A  
DCDC2 = 600 mA  
–40°C to 125°C  
RSM  
LDO voltages externally adjustable  
DCDC1 = externally adjustable  
DCDC2 = 1.3 V or 1.05 V  
TPS65054QRSMRQ1  
TPS65054-Q1  
2 x 600 mA  
On demand  
On demand  
LDO voltages externally adjustable  
DCDC1 = 3.3 V  
TPS65056QRSMRQ1  
TPS65056-Q1  
DCDC1 = 1A  
DCDC2 = 600 mA  
DCDC2 = 1 V or 1.3 V  
(1) The RSM package is available in tape and reel. Add the R suffix (TPS65050RSMR) to order quantities of 3000 parts per reel. Add the T  
suffix (TPS65050RSMT) to order quantities of 250 parts per reel.  
(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
UNITS  
Input voltage range on all pins except AGND, PGND, and EN_LDO1 pins with respect  
–0.3 V to 7 V  
to AGND  
VI  
Input voltage range on EN_LDO1 pins with respect to AGND  
Current at VINDCDC1/2, L1, PGND1, L2, PGND2  
Current at all other pins  
–0.3 V to VCC + 0.5 V  
1800 mA  
II  
1000 mA  
VO  
Output voltage range for LDO1, LDO2, LDO3, and LDO4  
Continuous total power dissipation  
–0.3 V to 4.0 V  
See the Thermal Table  
2 kV  
ESD rating Human-body model (HBM) AEC-Q100 Classification Level H2  
Charged-device model (CDM) AEC-Q100 Classification Level C3B  
750 V  
TA  
Operating free-air temperature  
Storage temperature range  
–40°C to 125°C  
–65°C to 150°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
THERMAL INFORMATION  
TPS6505x-Q1  
THERMAL METRIC(1)  
RSM  
32 PINS  
37.2  
30.1  
7.8  
UNIT  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
°C / W  
°C / W  
°C / W  
°C / W  
°C / W  
°C / W  
θJCtop  
θJB  
ψJT  
0.4  
ψJB  
7.6  
θJCbot  
2.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
spacer  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0.6  
0.6  
1.5  
1
NOM  
MAX UNIT  
VI  
Input voltage range for step-down converters, VINDCDC1/2  
Output voltage range for step-down converter, VDCDC1  
Output voltage range for step-down converter, VDCDC2  
Input voltage range for LDOs, VINLDO1, VINLDO2, VINLDO3/4  
Output voltage range for LDO1 and LDO2  
Output voltage range for LDO3 and LDO4  
Output current at L1 (DCDC1) for TPS65051-Q1, TPS65052-Q1  
Output current at L1 (DCDC1) for TPS65050-Q1, TPS65054-Q1  
Output current at L1 (DCDC2)  
6
V
V
VINDCDC1/2  
VO  
VI  
VINDCDC1/2  
V
6.5  
3.6  
V
V
VO  
1
3.6  
V
1000  
600  
600  
400  
200  
mA  
mA  
mA  
mA  
mA  
μH  
μF  
μF  
μF  
μF  
μF  
°C  
IO  
Output current at VLDO1, VLDO2  
Output current at VLDO3, VLDO4  
Inductor at L1, L2(1)  
1.5  
10  
2.2  
22  
Output capacitor at VDCDC1, VDCDC2(1)  
Output capacitor at VLDO1, VLDO2, VLDO3, VLDO4(1)  
Input capacitor at VCC(1)  
Input capacitor at VINLDO1, VINLDO2(1)  
Input capacitor at VINLDO3/4(1)  
CO  
2.2  
1
CI  
2.2  
2.2  
–40  
TA  
Operating ambient temperature range  
Resistor from battery voltage to VCC used for filtering(2)  
125  
10  
1
(1) See the Application Information section of this data sheet for more details.  
(2) Up to 2 mA can flow into VCC; when both converters are running in PWM, this resistor causes the UVLO threshold to shift accordingly.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 μH, CO = 10 μF, TA = –40°C to 125°C, typical values are at  
TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SUPPLY CURRENT  
VI  
Input voltage range at VINDCDC1/2  
2.5  
6
V
One converter, IO = 0 mA.  
PFM mode enabled (Mode = GND) device not switching,  
EN_DCDC1 = VI OR EN_DCDC2 = VI;  
EN_LDO1= EN_LDO2 = EN_LDO3 = EN_LDO = GND  
20  
32  
30  
μA  
Two converters, IO = 0 mA  
Operating quiescent current  
PFM mode enabled (Mode = 0) device not switching,  
EN_DCDC1 = VI AND EN_DCDC2 = VI;  
EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = GND  
IQ  
Total current into VCC, VINDCDC1/2,  
VINLDO1, VINLDO2, VINLDO3/4  
40  
μA  
μA  
One converter, IO = 0 mA.  
PFM mode enabled (Mode = GND) device not switching,  
EN_DCDC1 = VI OR EN_DCDC2 = VI;  
180  
0.85  
1.25  
250  
EN_LDO1 = EN_LDO2 = EN_LDO3 = EN_LDO4 = VI  
One converter, IO = 0 mA.  
Switching with no load (Mode = VI), PWM operation EN_DCDC1 = VI  
OR EN_DCDC2 = VI; EN_LDO1 = EN_LDO2 = EN_LDO3 =  
EN_LDO = GND  
mA  
mA  
IQ  
Operating quiescent current into VCC  
Two converters, IO = 0 mA  
Switching with no load (Mode = VI), PWM operation EN_DCDC1 = VI  
AND EN_DCDC2 = VI; EN_LDO1 = EN_LDO2 = EN_LDO3 =  
EN_LDO = GND  
EN_DCDC1 = EN_DCDC2 = GND EN_LDO1 = EN_LDO2 =  
EN_LDO3 = EN_LDO4 = GND  
I(SD)  
Shutdown current  
9
12  
2
μA  
Undervoltage lockout threshold for  
DCDC converters and LDOs  
V(UVLO)  
Voltage at VCC  
1.8  
V
EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1, DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4  
MODE, EN_DCDC1, EN_DCDC2, DEFDCDC2, DEFLDO1,  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3,  
EN_LDO4  
1.2  
0
VCC  
0.4  
V
V
MODE, EN_DCDC1, EN_DCDC2, DEFLDO1, DEFLDO2,  
DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2, EN_LDO3, EN_LDO4,  
DEFDCDC2  
MODE = GND or VI MODE, EN_DCDC1, EN_DCDC2, DEFDCDC2,  
DEFLDO1, DEFLDO2, DEFLDO3, DEFLDO4, EN_LDO1, EN_LDO2,  
EN_LDO3, EN_LDO4  
0.01  
1
μA  
IlB  
Input bias current  
TPS65051-Q1 and TPS65052-Q1 only V_FB_LDOx = 1 V  
FB_LDO1, FB_LDO2, FB_LDO3, FB_LDO4  
100  
nA  
POWER SWITCH  
VINDCDC1/2 = 3.6 V  
280  
400  
280  
400  
630  
630  
DCDC1  
VINDCDC1/2 = 2.5 V  
rDS(on)  
P-channel MOSFET on-resistance  
mΩ  
μA  
mΩ  
μA  
A
VINDCDC1/2 = 3.6 V  
DCDC2  
VINDCDC1/2 = 2.5 V  
Ilkg  
P-channel leakage current  
VDCDCx = V(DS) = 6 V  
1
VINDCDC1/2 = 3.6 V  
220  
320  
220  
320  
7
450  
DCDC1  
VINDCDC1/2 = 2.5 V  
rDS(on)  
N-channel MOSFET on-resistance  
N-channel leakage current  
VINDCDC1/2 = 3.6 V  
450  
DCDC2  
VINDCDC1/2 = 2.5 V  
Ilkg  
VDCDCx = V(DS) = 6 V  
10  
TPS65050-Q1,  
TPS65054-Q1  
0.85  
1.19  
0.85  
1
1.4  
1
1.15  
DCDC1:  
2.5 V VINDCDC1/2 6 V  
Forward current limit  
TPS65051-Q1,  
TPS65052-Q1,  
TPS65056-Q1  
I(LIMF)  
PMOS (high side) and  
NMOS (low side)  
1.65  
1.15  
TPS65050-  
DCDC2:  
2.5 V VINDCDC1/2 6 V  
Q1–TPS65056-Q1  
A
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
150  
20  
°C  
°C  
Thermal shutdown hysteresis  
4
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
ELECTRICAL CHARACTERISTICS (continued)  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 μH, CO = 10 μF, TA = –40°C to 125°C, typical values are at  
TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OSCILLATOR  
fSW  
Oscillator frequency  
2.025  
2.25  
2.475  
MHz  
OUTPUT  
Output-voltage range for DCDC1,  
DCDC2  
VO  
Externally adjustable versions  
0.6  
VINDCDC1/2  
600  
V
Vref  
Reference voltage  
Externally adjustable versions  
mV  
VINDCDC1/2 = 2.5 V to 6 V, 0 mA < IO = < IO(maximum)  
MODE = GND, PFM operation  
–2%  
–1%  
0
0
2%  
1%  
DC output-voltage  
accuracy  
DCDC1,  
VO  
DCDC2(1)  
VINDCDC1/2 = 2.5 V to 6 V, 0 mA < IO = < IO(maximum)  
MODE = VI, PWM operation  
ΔVO  
tStart  
tRamp  
Power-save-mode ripple voltage(2)  
Start-up time  
IO = 1 mA, MODE = GND, VO = 1.3 V, bandwith = 20 MHz  
Time from active EN to start switching  
25  
170  
750  
100  
32  
mVPP  
μs  
VOUT ramp-up time  
Time to ramp from 5% to 95% of VO  
μs  
RESET delay time  
Input voltage at threshold pin rising  
80  
26  
120  
38  
ms  
ms  
V
PB-ONOFF debounce time  
RESET, PB_OUT output low voltage  
RESET, PB_OUT sink current  
VOL  
IOL  
IOL = 1 mA, Vhysteresis < 1 V, Vthreshold < 1 V  
0.2  
1
10  
1
mA  
After PB_IN has been pulled high once; Vthreshold > 1 V and  
Vhysteresis > 1 V, VOH = 6 V  
RESET, PB_OUT output leakage current  
Vthreshold, Vhysteresis threshold  
nA  
V
Vth  
0.98  
1.5  
1.02  
6.5  
VLDO1, VLDO2, VLDO3 and VLDO4 Low-Dropout Regulators  
Input-voltage range for LDO1, LDO2,  
LDO3, LDO4  
VI  
V
V
LDO1 output-voltage range  
LDO2 output-voltage range  
LDO3 output-voltage range  
LDO4 output-voltage range  
TPS65050-Q1, TPS65052-Q1 only  
1.2  
1.8  
1.1  
1.2  
3.3  
3.3  
TPS65050-Q1, TPS65052-Q1 only  
TPS65050-Q1, TPS65052-Q1 only  
TPS65050-Q1, TPS65052-Q1 only  
VO  
3.3  
2.85  
Feedback voltage for FB_LDO1,  
FB_LDO2, FB_LDO3, and FB_LDO4  
V(FB)  
TPS65051-Q1, TPS65054-Q1, and TPS65056-Q1 only  
1
V
Maximum output current for LDO1,  
LDO2  
400  
200  
IO  
mA  
Maximum output current for LDO3,  
LDO4  
LDO1 short-circuit current limit  
LDO2 short-circuit current limit  
VLDO1 = GND  
VLDO2 = GND  
750  
850  
I(SC)  
mA  
LDO3 and LDO4 short-circuit current  
limit  
VLDO3 = GND, VLDO4 = GND  
420  
Dropout voltage at LDO1  
Dropout voltage at LDO2  
Dropout voltage at LDO3, LDO4  
IO = 400 mA, VINLDO = 3.4 V  
IO = 400 mA, VINLDO = 1.8 V  
IO = 200 mA, VINLDO = 1.8 V  
400  
280  
280  
mV  
Leakage current from VinLDOx to  
VLDOx  
Ilkg  
VO  
LDO enabled, VINLDO = 6.5 V, VO = 1 V at TA = 140°C  
IO = 10 mA  
3
μA  
Output voltage accuracy for LDO1,  
LDO2, LDO3, LDO4  
–2%  
–1%  
–1%  
1%  
1%  
1%  
VINLDO1,2 = VLDO1,2 + 0.5 V (minimum 2.5 V) to 6.5 V,  
VINLDO3,4 = VLDO3,4 + 0.5 V (minimum 2.5 V) to 6.5 V,  
IO = 10 mA  
Line regulation for LDO1, LDO2, LDO3,  
LDO4  
Load regulation for LDO1, LDO2, LDO3, IO = 0 mA to 400 mA for LDO1, LDO2  
LDO4  
IO = 0 mA to 200 mA for LDO3, LDO4  
Regulation time for LDO1, LDO2, LDO3,  
LDO4  
Load change from 10% to 90%  
10  
70  
μs  
PSRR  
Power-supply rejection ratio  
f = 10 kHz; IO = 50 mA; VI = VO + 1 V  
dB  
(1) Output voltage specification does not include tolerance of external voltage-programming resistors.  
(2) In power-save mode, device typically enters operation at IPSM = VI / 32 .  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS (continued)  
VCC = VINDCDC1/2 = 3.6 V, EN = VCC, MODE = GND, L = 2.2 μH, CO = 10 μF, TA = –40°C to 125°C, typical values are at  
TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
Active when LDO is disabled  
MIN  
TYP  
MAX UNIT  
Internal discharge resistor at VLDO1,  
VLDO2, VLDO3, VLDO4  
R(DIS)  
350  
R
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
140  
20  
°C  
°C  
Thermal shutdown hysteresis  
6
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
PIN ASSIGNMENTS  
RSM PACKAGE  
(TOP VIEW)  
EN_DCDC1  
EN_LDO4  
EN_LDO3  
RESET  
FB4  
EN_DCDC1  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
VINLDO1  
EN_LDO4  
EN_LDO3  
PB_OUT  
DEFLDO4  
VLDO4  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
VINLDO1  
TPS65051-Q1  
TPS65054-Q1  
TPS65056-Q1  
TPS65050-Q1  
VLDO4  
VLDO1  
FB1  
VINLDO3/4  
VLDO3  
FB3  
VLDO1  
DEFLDO1  
MODE  
VINLDO3/4  
VLDO3  
MODE  
DEFLDO3  
EN_DCDC1  
EN_LDO4  
EN_LDO3  
RESET  
EN_DCDC2  
EN_LDO1  
EN_LDO2  
VINLDO1  
DEFLDO4  
VLDO4  
TPS65052-Q1  
VLDO1  
DEFLDO1  
MODE  
VINLDO3/4  
VLDO3  
DEFLDO3  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
TPS65050 TPS65051 TPS65052 TPS65054 TPS65056-  
NAME  
-Q1  
-Q1  
-Q1  
-Q1  
Q1  
AGND  
BP  
2
2
2
2
2
I
I
Analog GND, connect to PGND and thermal pad  
Input for bypass capacitor for internal reference  
1
1
1
1
1
TPS65050-Q1 and TPS65051-Q1: Feedback pin for converter 2.  
Connect DEFDCDC2 to the center of the external resistor divider.  
TPS65052-Q1 and TPS65056-Q1: Select pin of converter 2 output  
voltage.  
DEFDCDC2  
17  
17  
17  
17  
17  
I
High = 1.3 V, Low = 1 V  
TPS65054-Q1: Select pin of converter 2 output voltage.  
High = 1.05 V, Low = 1.3 V  
Digital input, used to set the default output voltage of LDO1 to  
LDO4; LSB  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
31  
6
--  
--  
--  
--  
31  
6
--  
--  
--  
--  
--  
--  
--  
--  
I
I
I
I
Digital input, used to set the default output voltage of LDO1 to  
LDO4  
Digital input, used to set the default output voltage of LDO1 to  
LDO4  
9
9
Digital input, used to set the default output voltage of LDO1 to  
LDO4; MSB  
13  
13  
EN_DCDC1  
EN_DCDC2  
25  
26  
25  
26  
25  
26  
25  
26  
25  
26  
I
I
Enable input for converter 1, active-high  
Enable input for converter 2, active-high  
Enable input for LDO1. Logic high enables the LDO, logic low  
disables the LDO.  
EN_LDO1  
EN_LDO2  
EN_LDO3  
EN_LDO4  
27  
28  
15  
16  
27  
28  
15  
16  
27  
28  
15  
16  
27  
28  
15  
16  
27  
28  
15  
16  
I
I
I
I
Enable input for LDO2. Logic high enables the LDO, logic low  
disables the LDO.  
Enable input for LDO3. Logic high enables the LDO, logic low  
disables the LDO.  
Enable input for LDO4. Logic high enables the LDO, logic low  
disables the LDO.  
FB1  
FB2  
FB3  
FB4  
--  
--  
--  
--  
31  
6
--  
--  
--  
--  
31  
6
31  
6
I
I
I
I
Feedback input for the external voltage divider  
Feedback input for the external voltage divider  
Feedback input for the external voltage divider  
Feedback input for the external voltage divider  
9
9
9
13  
13  
13  
Input to adjust output voltage of converter 1 between 0.6 V and VI.  
Connect an external resistor divider between VOUT1, this pin, and  
GND.  
FB_DCDC1  
24  
24  
24  
24  
24  
I
GND  
8
--  
8
--  
8
--  
8
--  
8
-
I
Connect to GND  
HYSTERESIS  
--  
Input for hysteresis on reset threshold  
Switch pin of converter 1. Connected to inductor  
Switch pin of converter 2. Connected to inductor  
L1  
L2  
22  
20  
22  
20  
22  
20  
22  
20  
22  
20  
O
O
Select between power-safe mode and forced-PWM mode for  
DCDC1 and DCDC2. In power-safe mode, the device uses PFM at  
light loads, PWM for higher loads. Setting this pin to high level  
selects forced-PWM mode. If this pin has low level, then the device  
operates in power-safe mode.  
MODE  
32  
32  
32  
32  
32  
I
PB_IN  
7
--  
--  
--  
--  
--  
--  
--  
--  
I
Input for the pushbutton ON-OFF function  
Open-drain output. Active-low after the supply voltage (VCC  
exceeds the undervoltage-lockout threshold. Toggle the pin by  
pulling PB_IN high.  
)
PB_OUT  
14  
O
PGND1  
23  
19  
--  
23  
19  
14  
7
23  
19  
14  
7
23  
19  
14  
7
23  
19  
14  
7
I
I
GND for converter 1  
PGND2  
GND for converter 2  
RESET  
O
I
Open-drain active-low reset output, 100-ms reset-delay time  
Reset input  
THRESHOLD  
--  
Power supply for digital and analog circuitry of DCDC1, DCDC2  
and LDOs. Connect this pin to the same voltage supply as  
VINDCDC1/2.  
VCC  
3
3
3
3
3
I
I
Feedback voltage-sense input, connect directly to the output of  
converter 2.  
VDCDC2  
18  
18  
18  
18  
18  
Input voltage for VDCDC1 and VDCDC2 step-down converters.  
VINDCDC1/2  
VINLDO1  
21  
29  
21  
29  
21  
29  
21  
29  
21  
29  
I
I
Connect this pin to the same voltage supply as VCC  
.
Input voltage for LDO1  
8
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O  
DESCRIPTION  
TPS65050 TPS65051 TPS65052 TPS65054 TPS65056-  
NAME  
-Q1  
-Q1  
-Q1  
-Q1  
Q1  
VINLDO2  
VINLDO3/4  
VLDO1  
4
4
4
4
4
I
Input voltage for LDO2  
11  
30  
5
11  
30  
5
11  
30  
5
11  
30  
5
11  
30  
5
I
Input voltage for LDO3 and LDO4  
Output voltage of LDO1  
Output voltage of LDO2  
Output voltage of LDO3  
Output voltage of LDO4  
Connect to GND.  
O
O
O
O
VLDO2  
VLDO3  
10  
12  
--  
10  
12  
--  
10  
12  
--  
10  
12  
--  
10  
12  
--  
VLDO4  
Thermal pad  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
FUNCTIONAL BLOCK DIAGRAM  
TPS65050-Q1  
VINDCDC1/2  
1 W  
Vbat  
VCC  
10 mF  
1 mF  
2.2 mH  
L1  
DCDC1 (I/O)  
Cff  
EN_DCDC1  
R1  
R2  
ENABLE  
MODE  
FB_DCDC1  
PGND1  
STEP-DOWN  
CONVERTER  
600 mA  
10 mF  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
Interface  
L2  
2.2 mH  
DCDC2 (core)  
R3  
R4  
VDCDC2  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
PGND2  
ENABLE  
VLDO1  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
4.7 mF  
2.2 mF  
2.2 mF  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
VIN  
VLDO2  
ENABLE  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
VLDO3  
BP  
200-mA LDO  
ENABLE  
0.1 mF  
EN_LDO4  
VLDO4  
VLDO4  
ENABLE  
Vbat  
200-mA LDO  
I/Ovoltage  
R19  
PB_OUT  
default  
turned on  
Flipflop with  
32-ms debounce  
PB_IN  
AGND  
10  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
TPS65051-Q1  
VINDCDC1/2  
1 W  
Vbat  
VCC  
22 mF  
1 mF  
2.2 mH  
L1  
DCDC1 (I/O)  
STEP-DOWN  
CONVERTER  
1 A  
Cff  
EN_DCDC1  
R1  
R2  
ENABLE  
FB_DCDC1  
PGND1  
10 mF  
MODE  
L2  
2.2 mH  
DCDC2 (core)  
VDCDC2  
R3  
R4  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
PGND2  
ENABLE  
VLDO1  
FB1  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
4.7 mF  
2.2 mF  
R5  
R6  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
FB2  
VIN  
VLDO2  
ENABLE  
R7  
R8  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
FB3  
VLDO3  
R9  
200-mA LDO  
ENABLE  
BP  
R10  
0.1 mF  
EN_LDO4  
VLDO4  
ENABLE  
VLDO4  
FB4  
200-mA LDO  
2.2 mF  
R11  
R12  
I/Ovoltage  
R19  
THRESHOLD  
HYSTERESIS  
RESET  
RESET  
AGND  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
TPS65052-Q1  
VINDCDC1/2  
1 W  
Vbat  
VCC  
10 mF  
1 mF  
3.3 mH  
L1  
DCDC1 (I/O)  
EN_DCDC1  
FB_DCDC1  
PGND1  
ENABLE  
MODE  
STEP-DOWN  
CONVERTER  
1 A  
10 mF  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
Interface  
L2  
DCDC2 (core)  
2.2 mH  
VDCDC2  
PGND2  
VLDO1  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
ENABLE  
1 V/1.3 V  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
VIN  
VLDO2  
ENABLE  
4.7 mF  
2.2 mF  
2.2 mF  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
BP  
VLDO3  
200-mA LDO  
ENABLE  
0.1 mF  
EN_LDO4  
VLDO4  
RESET  
VLDO4  
ENABLE  
200-mA LDO  
I/Ovoltage  
R19  
THRESHOLD  
HYSTERESIS  
RESET  
AGND  
12  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
TPS65054-Q1  
VINDCDC1/2  
1 W  
Vbat  
VCC  
22 mF  
1 mF  
2.2 mH  
L1  
DCDC1 (I/O)  
STEP-DOWN  
CONVERTER  
600 mA  
Cff  
EN_DCDC1  
R1  
R2  
ENABLE  
FB_DCDC1  
PGND1  
10 mF  
MODE  
L2  
DCDC2 (core)  
2.2 mH  
VDCDC2  
PGND2  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
ENABLE  
1.3 V/1.05 V  
VLDO1  
FB1  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
4.7 mF  
2.2 mF  
R5  
R6  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
FB2  
VIN  
VLDO2  
ENABLE  
R7  
R8  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
VLDO3  
R9  
FB3  
BP  
200-mA LDO  
ENABLE  
R10  
0.1 mF  
EN_LDO4  
VLDO4  
ENABLE  
VLDO4  
FB4  
200-mA LDO  
2.2 mF  
R11  
R12  
I/Ovoltage  
R19  
THRESHOLD  
HYSTERESIS  
RESET  
RESET  
AGND  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
TPS65056-Q1  
VINDCDC1/2  
1 W  
Vbat  
VCC  
22 mF  
1 mF  
3.3 mH  
L1  
DCDC1 (I/O)  
EN_DCDC1  
ENABLE  
FB_DCDC1  
PGND1  
STEP-DOWN  
CONVERTER  
1 A  
10 mF  
MODE  
L2  
2.2 mH  
DCDC2 (core)  
VDCDC2  
PGND2  
10 mF  
STEP-DOWN  
CONVERTER  
600 mA  
EN_DCDC2  
DEFDCDC2  
ENABLE  
1 V / 1.3 V  
VLDO1  
FB1  
VIN_LDO1  
EN_LDO1  
VLDO1  
VIN  
4.7 mF  
4.7 mF  
2.2 mF  
R5  
R6  
400-mA LDO  
ENABLE  
VIN_LDO2  
EN_LDO2  
VLDO2  
FB2  
VIN  
VLDO2  
ENABLE  
R7  
R8  
400-mA LDO  
VIN_LDO3/4  
EN_LDO3  
VIN  
VLDO3  
VLDO3  
R9  
FB3  
BP  
200-mA LDO  
ENABLE  
R10  
0.1 mF  
EN_LDO4  
VLDO4  
ENABLE  
VLDO4  
FB4  
200-mA LDO  
2.2 mF  
R11  
R12  
I/Ovoltage  
R19  
THRESHOLD  
HYSTERESIS  
RESET  
RESET  
AGND  
14  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
TYPICAL CHARACTERISTICS  
Table of Graphs  
FIGURE  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Efficiency converter 1  
versus Output current  
versus Output current  
versus Output current  
versus Output current  
PWM or PFM mode = low  
PWM mode = high  
Efficiency converter 2  
Efficiency converter 1  
Efficiency converter 2  
Output voltage ripple  
Output voltage ripple  
DCDC1 startup timing  
LDO1 to LDO4 startup timing  
DCDC1 load transient response  
DCDC1 load transient response  
DCDC2 load transient response  
DCDC2 load transient response  
DCDC1 line transient response  
DCDC2 line transient response  
LDO1 load transient response  
LDO4 load transient response  
LDO1 line transient response  
Power supply rejection ratio  
PWM mode = high  
PFM mode = low  
PWM mode = high  
PFM mode = low  
vesus Frequency  
EFFICIENCY  
versus  
EFFICIENCY  
versus  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
3.8 V  
5 V  
3.8 V  
5 V  
4.2 V  
3.4 V  
3.4 V  
4.2 V  
V
T
= 3.3 V  
= 25oC  
V
O
= 3.3 V  
= 25oC  
O
T
A
PWM/PFM Mode  
A
10  
0
10  
PWM Mode  
0
0.0001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
I
0.01  
0.1  
1
10  
I
− Output Current − A  
− Output Current − A  
O
O
Figure 1.  
Figure 2.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
TPS65051-Q1  
 
 
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
EFFICIENCY  
versus  
EFFICIENCY  
versus  
OUTPUT CURRENT  
OUTPUT CURRENT  
100  
90  
100  
90  
3.3 V  
V
T
= 1.3 V  
= 25oC  
O
A
PWM Mode  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
3.8 V  
3.8 V  
4.2 V  
5 V  
3.3 V  
5 V  
4.2 V  
V
O
= 1.3 V  
= 25oC  
T
A
PFM Mode  
10  
0
10  
0
0.0001  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
I
− Output Current − A  
I
− Output Current − A  
O
O
Figure 3.  
Figure 4.  
OUTPUT VOLTAGE RIPPLE  
PWM or PFM MODE = LOW  
OUTPUT VOLTAGE RIPPLE  
PWM MODE = HIGH  
V
= 4.2 V,  
T
= 25oC  
CH1 (VDCDC1 = 3.3 V)  
= 25oC  
A
I
A
V
= 4.2 V,  
T
CH1 (VDCDC1 = 3.3 V)  
I
CH1 (VDCDC2 = 1.5 V)  
CH2 (VDCDC2 = 1.5 V)  
CH3 (I DCDC2 = 600 mA)  
L
CH3 (I DCDC2 = 80 mA)  
L
CH4 (I DCDC1 = 600 mA)  
L
CH4 (I DCDC1 = 80 mA)  
L
t − Time = 500 ns/div  
t − Time = 2 ms/div  
Figure 5.  
Figure 6.  
16  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
DCDC1 STARTUP TIMING  
LDO1 TO LDO4 STARTUP TIMING  
CH1 (EN)  
CH4 (VLDO1)  
EN  
CH1 (VLDO1)  
CH2 (VLDO2)  
V
T
= 3.6 V  
= 25oC  
I
A
Mode = Low  
CH3 (VLDO3)  
CH4 (VLDO4)  
CH3  
(VDCDC2 = 1.5 V)  
V
T
= 3.6 V  
= 25oC  
I
A
CH2  
(VDCDC1 = 3.3 V)  
Load DCDC1 = 600 mA  
Load DCDC2 = 600 mA  
ILDO1/2/3/4 = 100 mA  
Mode = Low  
t − Time = 200 ms/div  
Figure 7.  
t − Time = 20 ms/div  
Figure 8.  
DCDC1 LOAD TRANSIENT RESPONSE  
DCDC1 LOAD TRANSIENT RESPONSE  
CH1 (VDCDC1)  
CH1 (VDCDC1)  
V
T
= 4.2 V  
= 25oC  
I
V
T
= 4.2 V  
= 25oC  
I
A
A
Mode = Low  
Mode = High  
CH2  
I(DCDC1)  
CH2  
I(DCDC1)  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
Load Current = 60 mA to 540 mA  
Load Current = 60 mA to 540 mA  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 9.  
Figure 10.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
DCDC2 LOAD TRANSIENT RESPONSE  
DCDC2 LOAD TRANSIENT RESPONSE  
CH1 (VDCDC2)  
CH1 (VDCDC2)  
V
T
= 3.6 V  
= 25oC  
I
V
T
= 3.6 V  
= 25oC  
I
A
A
Mode = High  
Mode = Low  
CH2  
I(DCDC2)  
CH2  
I(DCDC2)  
VDCDC2 = 1.5 V  
ENDCDC1 = Low  
ENDCDC2 = High  
VDCDC2 = 1.5 V  
ENDCDC1 = Low  
ENDCDC2 = High  
Load Current = 60 mA to 540 mA  
Load Current = 60 mA to 540 mA  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 11.  
Figure 12.  
DCDC1 LINE TRANSIENT RESPONSE  
DCDC2 LINE TRANSIENT RESPONSE  
CH1  
VIN (VDCDC1)  
CH1  
VIN (VDCDC2)  
V
T
= 3.6 V to 4.5 V to 3.6 V  
= 25oC  
I
A
Mode = High  
VDCDC1 = 3.3 V  
ENDCDC1 = High  
ENDCDC2 = Low  
Load Current = 600 mA  
CH2 (VDCDC2)  
CH2 (VDCDC1)  
VDCDC2 = 1.5 V  
ENDCDC1 = Low  
ENDCDC2 = High  
V
T
= 3.4 V to 4.4 V to 3.4 V  
= 25oC  
I
A
Mode = High  
Load Current = 600 mA  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 13.  
Figure 14.  
18  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
LDO1 LOAD TRANSIENT RESPONSE  
LDO4 LOAD TRANSIENT RESPONSE  
CH1 (VLDO4)  
CH1 (VLDO1)  
V
= 3.6 V  
I
VLDO4 = 1.3 V  
V
T
= 3.6 V  
= 25oC  
I
A
VLDO4 = 20 mA to 180 mA  
= 25oC  
VLDO1 = 3.3 V  
VLDO1 = 40 mA to 360 mA  
T
A
CH2  
I(LDO4)  
CH2  
I(LDO1)  
t − Time = 100 ms/div  
t − Time = 100 ms/div  
Figure 15.  
Figure 16.  
POWER-SUPPLY REJECTION RATIO  
versus  
LDO1 LINE TRANSIENT RESPONSE  
FREQUENCY  
100  
90  
CH1  
VIN (LDO1)  
80  
70  
60  
50  
40  
30  
20  
CH2 (VLDO1)  
V
T
= 3.6 V to 4.2 V to 3.6 V  
= 25oC  
I
A
VLDO1 = 3.3 V  
VLDO1 = 100 mA  
Mode = High  
10  
0
t − Time = 100 ms/div  
10  
100  
1k  
10k  
100k  
1M  
10M  
f − Frequency − Hz  
Figure 17.  
Figure 18.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
DETAILED DESCRIPTION  
Operation  
The TPS6505x-Q1 devices each include two synchronous step-down converters. The converters operate with  
2.25-MHz (typical) fixed-frequency pulse-width modulation (PWM) at moderate to heavy load currents. At light  
load currents, the converters automatically enter power-save mode and operate with PFM (pulse-frequency  
modulation).  
During PWM operation, the converters use a unique fast-response voltage-mode controller scheme with input  
voltage feed-forward to achieve good line and load regulation, allowing the use of small ceramic input and output  
capacitors. At the beginning of each clock cycle initiated by the clock signal, the P-channel MOSFET switch turns  
on, the inductor current ramps up until the current comparator trips, and the control logic turns off the switch. The  
current-limit comparator turns off the switch if the current exceeds the limit of the P-channel switch. After the  
adaptive dead time, which prevents shoot-through current, the N-channel MOSFET rectifier turns on, and the  
inductor current ramps down. The clock signal turning off the N-channel rectifier and turning on the on the P-  
channel switch initiates the next cycle.  
The two dc-dc converters operate synchronized to each other, with converter 1 as the master. A 180° phase shift  
between converter 1 and converter 2 decreases the input rms current, allowing the use of smaller input  
capacitors.  
DCDC1 Converter  
An external resistor divider connected to FB_DCDC1 pin for TPS65050-Q1, TPS65051-Q1, and TPS65054-Q1  
sets the converter 1 output voltage. For TPS65052-Q1, with its output voltage fixed to 3.3 V, connect this pin  
directly to the output. See the Application Information section for more details. The maximum output current on  
DCDC1 is 600 mA for TPS65050-Q1 and TPS65054-Q1. For TPS65051-Q1, TPS65052-Q1, and TPS65056-Q1,  
the maximum output current is 1 A.  
DCDC2 Converter  
Connect he VDCDC2 pin directly to the DCDC2 converter output voltage. The DEFDCDC2 pin selects the  
DCDC2 converter output voltage.  
TPS65050-Q1 and TPS65051-Q1: An external resistor divider sets the output voltage. Connect the DEFDCDC2  
pin to the external resistor divider.  
TPS65052-Q1, TPS65054-Q1, and TPS65056-Q1: Connect the DEFDCDC2 pin either to GND, or to VCC. The  
converter 2 output voltage defaults to:  
Device  
DEFDCDC2 = Low  
DEFDCDC2 = High  
1.3 V  
TPS65052-Q1 , TPS65056-Q1  
TPS65054-Q1  
1 V  
1.3 V  
1.05 V  
20  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
Power-Save Mode  
Setting the MODE pin to 0 enables the power-save mode. If the load current decreases, the converters enter the  
power-save mode of operation automatically. During power-save mode, the converters operate with reduced  
switching frequency in PFM mode, and with a minimum quiescent current to maintain high efficiency. The  
converters position the output voltage 1% above the nominal output voltage. This voltage-positioning feature  
minimizes voltage drops caused by a sudden load step.  
To optimize the converter efficiency at light load, the TPS6505x-Q1 monitors average current. If in PWM mode,  
the inductor current remains below a certain threshold, then the device enters power-save mode. Use Equation 1  
to calculate the typical threshold:  
VINDCDC  
I(PFM_enter)  
=
32 W  
A. Average output current threshold to enter PFM mode.  
(1)  
VINDCDC  
I(PSMDCDC_leave)  
=
24 W  
B. Average output current threshold to leave PFM mode.  
(2)  
During power-save mode, a comparator monitors the output voltage. As the output voltage falls below the skip-  
comparator (skip comp) threshold, the P-channel switch turns on, and the converter effectively delivers a  
constant current. If the load is below the delivered current, the output voltage rises until it crosses the skip comp  
threshold again; then all switching activity ceases, reducing the quiescent current to a minimum until the output  
voltage has dropped below the threshold. If the load current is greater than the delivered current, the output  
voltage falls until it crosses the skip-comparator-low (skip comp low) threshold set to 1% below nominal VO; then  
the device exits power-save mode, and the converter returns to the PWM mode.  
These control methods reduce the quiescent current to 12 μA per converter and the switching frequency to a  
minimum, achieving the highest converter efficiency. The PFM mode operates with low output-voltage ripple. The  
ripple depends on the comparator delay and the size of the output capacitor; increasing capacitor value  
decreases the output ripple voltage.  
Disable the power-save mode by driving the MODE pin high. In forced-PWM mode, both converters operate with  
fixed-frequency PWM mode regardless of the load.  
Dynamic Voltage Positioning  
This feature reduces the voltage under- and overshoots at load steps from light to heavy load and vice versa. It  
is activated In the power-save mode of operation, running the converter in PFM mode activates dynamic voltage  
positioning. Dynamic voltage positioning provides more headroom for both the voltage drop at a load step and  
the voltage increase at a load throw-off, thereby improving load-transient behavior.  
At light loads, in which the converters operate in PFM mode, the typical output-voltage regulation is 1% higher  
than the nominal value. In the event of a load transient from light load to heavy load, the output voltage drops  
until it reaches the skip-comparator-low threshold, set to 1% below the nominal value, and enters PWM mode.  
During a release from heavy load to light load, active regulation turning on the N-channel switch minimizes the  
voltage overshoot.  
Smooth  
Increased Load  
Fast Load Transient  
+1%  
OUT_NOM  
-1%  
PFM Mode  
Light Load  
PFM Mode  
Light Load  
V
PFM Mode  
Medium/Heavy Load  
PFM Mode  
Medium/Heavy Load  
COMP_LOW Threshold  
Figure 19. Dynamic Voltage Positioning  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
TPS65051-Q1  
 
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
Soft Start  
The two converters have an internal soft-start circuit that limits the inrush current during start-up. During soft  
start, control of the output-voltage ramp-up is as shown in Figure 20.  
EN  
95%  
5%  
V
OUT  
t
t
RAMP  
Start  
Figure 20. Soft Start  
100% Duty-Cycle Low-Dropout Operation  
The converters offer a low input-to-output voltage difference while still maintaining operation with the use of the  
100% duty-cycle mode. In this mode, the P-channel switch is constantly on. This operational mode is useful in  
battery-powered applications to achieve longest operation time by taking full advantage of the whole battery  
voltage range, (that is, the minimum input voltage to maintain regulation depends on the load current and output  
voltage) and can be calculated as:  
VI (min) = VO (max) + IO (max) x (rDS(on) (max) + RL)  
(3)  
with:  
IO max = maximum output current plus inductor ripple current  
rDS(on) max = maximum P-channel switch rDS(on)  
RL = dc resistance of the inductor  
VO (max) = nominal output voltage plus maximum output-voltage tolerance  
Undervoltage Lockout  
The undervoltage-lockout circuit prevents the device from malfunctioning at low input voltages and from  
excessive discharge of the battery, and disables all internal circuitry. The undervoltage-lockout threshold, sensed  
at the VCC pin, is typically 1.8 V, maximum 2 V.  
Mode Selection  
The MODE pin allows mode selection between forced PWM mode and power-save mode for both converters.  
Connecting this pin to GND enables the automatic PWM and power-save mode of operation. The converters  
operate in fixed-frequency PWM mode at moderate-to-heavy loads and in the PFM mode during light loads,  
maintaining high efficiency over a wide load-current range.  
22  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
 
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
Pulling the MODE pin high forces both converters to operate constantly in the PWM mode even at light load  
currents. The advantage is the converters operate with a fixed frequency that allows simple filtering of the  
switching frequency for noise-sensitive applications. In this mode, the efficiency is lower compared to the power-  
save mode during light loads. For additional flexibility, it is possible to switch from power-save mode to forced-  
PWM mode during operation. This allows efficient power management by adjusting the operation of the  
converters to the specific system requirements.  
Enable  
To start up each converter independently, the device has a separate enable pin for each dc-dc converter and for  
each LDO. If EN_DCDC1, EN_DCDC2, EN_LDO1, EN_LDO2, EN_LDO3, or EN_LDO4 is set to high, the  
corresponding converter starts up with soft start as previously described.  
Pulling the enable pin low forces the device into shutdown, with a shutdown quiescent current as defined in the  
electrical characteristics. In this mode, the P- and N-Channel MOSFETs turn off, and the entire internal control  
circuitry switches off. If disabled, internal 350-resistors pull the outputs of the LDOs low, actively discharging  
the output capacitor. Proper operation requires termination of the enable pins. Do not leave them unconnected.  
RESET  
The TPS65051-Q1, TPS65052-Q1, TPS65054-Q1, and TPS65056-Q1 contain circuitry that can generate a reset  
pulse for a processor with a 100-ms delay time. The device senses the input voltage for a comparator at the  
THRESHOLD pin. When the voltage exceeds the threshold, the output goes high with a 100-ms delay time. An  
external resistor connected to the HYSTERESIS input defines the hysteresis. This circuitry is functional as soon  
as the supply voltage at VCC exceeds the undervoltage-lockout threshold. The TPS6505x-Q1 has a shutdown  
current (all dc-dc converters and LDOs are off) of 9 μA.  
Vbat  
HYSTERESIS  
RESET  
THRESHOLD  
+
100 ms  
Delay  
-
V
= 1 V  
ref  
Vbat  
THRESHOLD  
THRESHOLD - HYSTERESIS  
Comparator  
Output (Internal)  
t
NRESET  
RESET  
Figure 21. RESET Pulse Circuit  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
Push-Button ON-OFF (PB-ON-OFF)  
The TPS65050-Q1 provides a PB-ON-OFF functionality instead of supervising a voltage with the threshold and  
hysteresis inputs. The device holds the output at PB_OUT low after application of voltage at VCC. Only after  
pulling the input at PB_IN high once, the output driver at PB_OUT goes to its inactive state, driven high with its  
external pullup resistor. Further low-high pulses at PB_IN toggle the status of the PB_OUT output. Connecting  
the PB_OUT output to the enable input of the converters allows shutdown and start-up of the converters with a  
single push on a button.  
Vbat  
PB_OUT  
JK-  
PB_IN  
Debounce  
32 ms  
Flipflop  
Default  
Low  
Min Pulse  
Width 32 ms  
PB_IN  
PB_OUT  
32 ms  
Figure 22. Push-Button Circuit  
Short-Circuit Protection  
All outputs are short-circuit protected with a maximum output current as defined in the Electrical Characteristics.  
Thermal Shutdown  
As soon as the junction temperature, TJ, exceeds 150°C (typically) for the dc-dc converters, the device goes into  
thermal shutdown. In this mode, the P- and N-channel MOSFETs turn off. The device continues its operation  
when the junction temperature falls below the thermal shutdown hysteresis again. A thermal shutdown for one of  
the dc-dc converters disables both converters simultaneously.  
The thermal shutdown temperature for the LDOs is typically 140°C. Therefore, an LDO used to power an  
external voltage never heats up the chip high enough to turn off the dc-dc converters. If one LDO exceeds the  
thermal shutdown temperature, all LDOs turn off simultaneously.  
24  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
Low Dropout Voltage Regulators  
The design of the low-dropout voltage regulators allows them to operate well with small ceramic input and output  
capacitors. They operate with input voltages down to 1.5 V. The LDOs offer a maximum dropout voltage of  
280 mV at rated output current. Each LDO supports a current-limit feature. The EN_LDO1, ENLDO2, EN_LDO3,  
and EN_LDO4 pins enable the LDOs. In TPS65050-Q1 and TPS65052-Q1, the the use of four pins sets the  
output voltage of the LDOs. Connect the DEFLDO1 to DEFLDO4 pins either to GND or Vbat (VCC) to define a set  
of output voltages for LDO1 to LDO4 according to Table 1. Connecting the DEFLDOx pins to a voltage different  
from GND or VCC causes increased leakage current into VCC. In TPS65051-Q1 and TPS65054-Q1, the use of  
external resistor dividers sets the output voltage of the LDOs .  
TPS65050-Q1 and TPS65052-Q1 default voltage options are adjustable with DEFLDO4…DEFLDO1 according to  
Table 1.  
Table 1. Default Options  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
VLDO1  
VLDO2  
VLDO3  
VLDO4  
400-mA LDO  
400-mA LDO  
200-mA LDO  
200-mA LDO  
1.8 V–5.5 V Input  
1.8 V–5.5 V Input  
1.5 V–5.5 V Input  
1.5 V–5.5 V Input  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
2.85 V  
2.7 V  
2.5 V  
2.5 V  
1.85 V  
1.8 V  
1.2 V  
3.3 V  
3.3 V  
1.85 V  
1.5 V  
1.85 V  
1.5 V  
2.7 V  
2.5 V  
1.85 V  
1.85 V  
1.5 V  
1.3 V  
1.3 V  
1.85 V  
1.2 V  
1.5 V  
1.3 V  
1.35 V  
2.85 V  
1.3 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
2.85 V  
3.3 V  
2.85 V  
2.85 V  
2.85 V  
1.85 V  
1.5 V  
1.5 V  
1.1 V  
1.85 V  
1.2 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
1.85 V  
2.5 V  
1.35 V  
3.3 V  
1.8 V  
1.1 V  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
TPS65051-Q1  
 
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
APPLICATION INFORMATION  
Output-Voltage Setting  
Converter 1 (DCDC1)  
An external resistor network can set the output voltage of converter 1. Calculate the output voltage using  
Equation 4,  
R1  
VO = Vref  
x
1 +  
(
)
R2  
(4)  
with an internal reference voltage Vref, 0.6 V.  
TI recommends setting the total resistance of R1 + R2 to less than 1 M. The resistor network connects to the  
input of the feedback amplifier, therefore requiring a small feed-forward capacitor in parallel with R1. A typical  
value of 47 pF is sufficient.  
Converter 2 (DCDC2)  
Select the output voltage of converter 2 as follows:  
Adjustable output voltage defined with external resistor network on pin DEFDCDC2. This option is available  
for TPS65050-Q1 and TPS65051-Q1.  
Two default fixed output voltages selectable by pin DEFDCDC2, see Table 2. This option is available for  
TPS65052-Q1, TPS65054-Q1, and TPS65056-Q1.  
Table 2. Default Fixed Output Voltages  
Converter 2  
TPS65050-Q1  
TPS65051-Q1  
TPS65052-Q1  
TPS65054-Q1  
TPS65056-Q1  
DEFDCDC2 = Low  
DEFDCDC2 = High  
1 V  
1.3 V  
1 V  
1.3 V  
1.05 V  
1.3 V  
Calculation of the adjustable output voltage is similar to that for the DCDC1 converter. TI recommends setting the  
total resistance of R3 + R4 to less than 1 M. Route the DEFDCDC2 line separate from noise sources, such as  
the inductor or the L2 line. Connect the VDCDC2 line directly to the output capacitor. As VDCDC2 is the sense  
pin for the output of L2, there is no need for a feedforward capacitor in conjunction with R3.  
Using an external resistor divider at DEFDCDC2:  
1 W  
V
Vbat  
CC  
1 mF  
VDCDC2  
L2  
V
O
VINDCDC1/2  
ENDCDC2  
L
C
I
C
O
R3  
R4  
DEFDCDC2  
AGND PGND  
Figure 23. External Resistor Divider  
26  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
 
 
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
V(DEFDCDC2) = 0.6 V  
VO  
R3 + R4  
R4  
VO = V(DEFDCDC2)  
x
R3 = R4 x  
- R4  
(
)
V(DEFDCDC2)  
(5)  
See Table 3 for typical resistor values:  
Table 3. Typical Resistor Values  
OUTPUT VOLTAGE  
R3  
R4  
NOMINAL VOLTAGE  
Typical CFF  
47 pF  
3.3 V  
3 V  
680 kΩ  
510 kΩ  
560 kΩ  
510 kΩ  
300 kΩ  
200 kΩ  
300 kΩ  
330 kΩ  
150 kΩ  
130 kΩ  
150 kΩ  
160 kΩ  
150 kΩ  
120 kΩ  
200 kΩ  
330 kΩ  
3.32 V  
2.95 V  
2.84 V  
2.51 V  
1.8 v  
47 pF  
2.85 V  
2.5 V  
1.8 V  
1.6 V  
1.5 V  
1.2 V  
47 pF  
47 pF  
47 pF  
1.6 V  
47 pF  
1.5 V  
47 pF  
1.2 V  
47 pF  
Output Filter Design (Inductor and Output Capacitor)  
Inductor Selection  
The two converters operate with a 2.2-μH output inductor. A designer can use larger or smaller inductor values to  
optimize the performance of the device for specific operation conditions. The selected inductor must be rated for  
its dc resistance and saturation current. The dc resistance of the inductance directly influences the efficiency of  
the converters. Therefore, select an inductor with lowest dc resistance for highest efficiency. The minimum  
inductor value is 1.5 μH, but the circuit requires an output capacitor of 22 μF minimum in this case. For an output  
voltage above 2.8 V, TI recommends an inductor value of 3.3 μH minimum. Lower values result in an increased  
output-voltage ripple in PFM mode.  
Equation 6 calculates the maximum inductor current under static load conditions. The saturation-current rating of  
the inductor should be higher than the maximum inductor current as calculated with Equation 6. This  
recommendation is because during heavy load transient the inductor current rises above the calculated value.  
VO  
1 -  
VI  
DIL  
DIL = VO  
x
IL(max) = IO (max) +  
2
L x ¦  
(6)  
with:  
f = Switching frequency (2.25-MHz typical)  
L = Inductor value  
Δ IL= Peak-to-peak inductor ripple current  
ILmax = Maximum inductor current  
The highest inductor current occurs at maximum VI. Open-core inductors have a soft saturation characteristic,  
and they can normally handle higher inductor currents versus a comparable shielded inductor.  
A more-conservative approach is to select the inductor current rating just for the maximum switch current of the  
corresponding converter. Give consideration to the difference in the core material from inductor to inductor, which  
has an impact on the efficiency, especially at high switching frequencies. See Table 4 and the typical applications  
for possible inductors.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
TPS65051-Q1  
 
 
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
Table 4. Tested Inductors  
Inductor Type  
LPS3010  
Inductor Value  
2.2 μH  
Supplier  
Coilcraft  
Coilcraft  
Coilcraft  
TDK  
LPS3015  
3.3 μH  
LPS4012  
2.2 μH  
VLF4012  
2.2 μH  
Output-Capacitor Selection  
The advanced fast-response voltage-mode control scheme of the two converters allows the use of small ceramic  
capacitors with a value of 22-μF (typical), without having large output-voltage undershoots and overshoots during  
heavy load transients. TI recommends ceramic capacitors having low ESR values, which result in the lowest  
output-voltage ripple.  
If ceramic output capacitors are used, the capacitor RMS ripple current rating always meets the application  
requirements. For completeness, the RMS ripple current is calculated as:  
VO  
1 -  
VI  
1
x
I(RMSCout) = VO  
x
2 x Ö3  
L x ¦  
(7)  
At nominal load current, the inductive converters operate in PWM mode, and the overall output voltage ripple is  
the sum of the voltage spike caused by the output-capacitor ESR plus the voltage ripple caused by charging and  
discharging the output capacitor:  
VO  
1 -  
VI  
1
8 x CO x ¦  
x
+ ESR  
DVO = VO  
x
(
)
L x ¦  
(8)  
where the highest output voltage ripple occurs at the highest input voltage VI.  
At light load currents, the converters operate in power-save mode and the output-voltage ripple depends on the  
output-capacitor value. The internal comparator delay and the external capacitor set the output-voltage ripple.  
The typical output-voltage ripple is less than 1% of the nominal output voltage.  
Input-Capacitor Selection  
The nature of the buck converters having a pulsating input current requires a low-ESR input capacitor for best  
input-voltage filtering and minimizing the interference with other circuits caused by high input-voltage spikes. The  
converters require a ceramic input capacitor of 10 μF. Increase the input capacitor as desired for better input-  
voltage filtering, without any limit.  
Table 5. Possible Capacitors  
Capacitor Value  
2.2 μF  
Size  
0805  
0805  
0805  
0805  
0603  
Supplier  
Type  
TDK C2012X5R0J226MT  
Taiyo Yuden JMK212BJ226MG  
Taiyo Yuden JMK212BJ106M  
TDK C2012X5R0J106M  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
2.2 μF  
10 μF  
10 μF  
10 μF  
Taiyo Yuden JMK107BJ106MA  
28  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
Low-Dropout Voltage Regulators (LDOs)  
An external resistor network sets the output voltage of all four LDOs in TPS65051-Q1, TPS65054-Q1, and  
TPS65056-Q1. Calculate the output voltage using Equation 9:  
R5  
VO = Vref  
x
1 +  
(
)
R6  
(9)  
with an internal reference voltage, Vref, of 1 V (typical).  
TI recommends setting the total resistance of R5 + R6 to less than 1 M. Typically, there is no feedforward  
capacitor needed at the voltage dividers for the LDOs.  
VO  
R5 + R6  
VO = V(FB_LDOs)  
x
R5 = R6 x  
- R6  
(
)
V(FB_LDOs)  
R6  
(10)  
Typical resistor values:  
Table 6. Typical Resistor Values  
OUTPUT VOLTAGE  
R5  
R6  
NOMINAL VOLTAGE  
3.3 V  
3 V  
300 kΩ  
300 kΩ  
240 kΩ  
360 kΩ  
300 kΩ  
240 kΩ  
150 kΩ  
36 kΩ  
130 kΩ  
150 kΩ  
130 kΩ  
200 kΩ  
200 kΩ  
300 kΩ  
300 kΩ  
120 kΩ  
510 kΩ  
330 kΩ  
3.31 V  
3 V  
2.85 V  
2.8 V  
2.5 V  
1.8 V  
1.5 V  
1.3 V  
1.2 V  
1.1 V  
2.85 V  
2.8 V  
2.5 V  
1.8 v  
1.5 V  
1.3 V  
1.19 V  
1.1 V  
100 kΩ  
33 kΩ  
LAYOUT CONSIDERATIONS  
Application Circuits  
PB_IN and Sequencing  
One can use the PB_OUT pin to enable one or several converters. After power up, the PB_OUT pin is low, and  
pulls down the enable pins connected to PB_OUT; EN_DCDC1, and EN_LDO1 in Figure 24. Pulling PB_IN to  
VCC for longer than 32 ms turns off the PB_OUT pin. Hence, a pullup resistor to VCC pulls the enable pins high,  
enabling the DCDC1 converter and LDO1. The enable signal for DCDC2 and LDO2 to LDO4 is the output  
voltage of DCDC1 (VOUT1). The battery (V(bat)) directly powers LDO1 with its output voltage of 3.3 V and LDO2  
for an output voltage of 2.5 V. To save power, the input voltage for the lower voltage rails at LDO3 and LDO4  
derives from the output of the step-down converters, keeping the voltage drop at the LDOs low to increase  
efficiency. Because the output of DCDC1 powers LDO3 and LDO4, the total output current on VOUT1, LDO3, and  
LDO4 must not exceed the maximum rating of DCDC1.  
Figure 25 shows the power up timing for this application.  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
TPS65051-Q1  
 
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
1 W  
VINDCDC1/2  
Vbat  
V
Vbat  
CC  
10 mF  
1 mF  
2.2 mH  
L1  
Vout1 = 2.85 V  
Cff  
FB_DCDC1  
MODE  
R1  
R2  
GND  
10 mF  
DEFLDO1  
DEFLDO2  
DEFLDO3  
DEFLDO4  
GND  
GND  
Vbat  
Vbat  
PGND1  
2.2 mH  
L2  
Vbat Vbat  
Vout2 = 1.575 V  
VDCDC2  
DEFDCDC2  
PGND2  
PB_IN  
R3  
R4  
10 mF  
TPS65050-Q1  
PB_OUT  
VLDO1  
VLDO1 = 3.3 V  
4.7 mF  
EN_DCDC1  
EN_LDO1  
VLDO2  
VLDO3  
VLDO4  
VLDO2 = 2.5 V  
4.7 mF  
VDCDC1  
EN_DCDC2  
EN_LDO2  
EN_LDO3  
EN_LDO4  
VLDO3 = 1.5 V  
2.2 mF  
VIN_LDO1  
VIN_LDO2  
Vbat  
Vbat  
VLDO4 = 1.3 V  
2.2 mF  
VIN_LDO3/4  
Vout1  
BP  
AGND  
0.1 mF  
Figure 24. PB_OUT Circuit  
30  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
www.ti.com  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
Vbat  
PB_IN  
32 ms  
EN_DCDC1  
EN_LDO1  
32 ms  
Vout1  
1.2V  
170 ms  
VLDO1  
EN_DCDC2  
EN_LDO3  
EN_LDO4  
EN_LDO2  
Vout2  
VLDO2  
VLDO3  
170 ms  
VLDO4  
Figure 25. Power-Up Timing  
RESET  
TPS65051-Q1, TPS65052-Q1, TPS65054-Q1, and TPS65056-Q1 contain a comparator for supervising a voltage  
connected to an external voltage divider, and generating a reset signal if the voltage is lower than the threshold.  
The rising-edge delay is 100 ms at the open-drain RESET output. Calculate the values for the external resistors  
R3 to R5 as follows:  
VL = lower voltage threshold  
VH = higher voltage threshold  
VREF = reference voltage (1 V)  
Example:  
VL = 3.3 V  
VH = 3.4 V  
Set R5 = 100 kΩ  
R3 + R4 = 240 kΩ  
R4 = 3.03 kΩ  
R3 = 237 kΩ  
Copyright © 2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
TPS65051-Q1  
TPS65050-Q1, TPS65051-Q1, TPS65052-Q1  
TPS65054-Q1, TPS65056-Q1  
SLVSBJ1A SEPTEMBER 2012REVISED NOVEMBER 2012  
www.ti.com  
VH  
R3 + R4 = R5  
x
- 1  
(
)
Vref  
VH - VL  
VL  
R4 = R5  
x
(11)  
VINDCDC1/2  
1 W  
V
CC  
Vbat  
2.2 mH  
2.2 mH  
1 mF  
L1  
Cff  
Vout1 = 2.85 V  
R1  
FB_DCDC1  
10 mF  
R2  
PGND1  
L2  
2.2 mH  
Vout2 = 1.575 V  
R3  
VDCDC2  
Vbat  
Vout1  
DEFDCDC2  
PGND2  
10 mF  
R3  
R4  
R5  
HYSTERESIS  
THRESHOLD  
R4  
VLDO1  
FB1  
VLDO1 = 3.3 V  
R5  
R6  
1 MW  
4.7 mF  
TPS65051-Q1  
RESET  
Vbat  
VLDO2  
FB2  
EN_DCDC1  
EN_DCDC2  
VLDO2 = 1.8 V  
R7  
R8  
4.7 mF  
EN_LDO1  
EN_LDO2  
EN_LDO3  
EN_LDO4  
VLDO3  
VLDO3 = 1.2 V  
R9  
FB3  
BP  
2.2 mF  
R10  
VIN_LDO1  
VIN_LDO2  
Vbat  
0.1 mF  
Vbat  
VIN_LDO3/4  
Vout1  
VLDO4  
FB4  
VLDO4 = 1.3 V  
MODE  
R11  
R12  
Vbat  
2.2 mF  
AGND  
Figure 26. RESET Circuit  
32  
Submit Documentation Feedback  
Copyright © 2012, Texas Instruments Incorporated  
TPS65051-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Nov-2012  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package Qty  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Samples  
Drawing  
(1)  
(2)  
(3)  
(Requires Login)  
TPS65051QRSMRQ1  
ACTIVE  
VQFN  
RSM  
32  
3000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS65051-Q1 :  
Catalog: TPS65051  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Nov-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65051QRSMRQ1  
VQFN  
RSM  
32  
3000  
330.0  
12.4  
4.25  
4.25  
1.15  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Nov-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RSM 32  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
TPS65051QRSMRQ1  
3000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

TPS65052QRSMTQ1

IC POWER SUPPLY SUPPORT CKT, Power Management Circuit
TI

TPS65052RSMR

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs
TI

TPS65052RSMRG4

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs
TI

TPS65052RSMT

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs
TI

TPS65052RSMTG4

6-CHANNEL POWER MGMT IC WITH TWO STEP-DOWN CONVERTERS AND 4 LOW-INPUT VOLTAGE LDOs
TI

TPS65053

5-CHANNEL POWER MGMT IC WITH TWO STEP DOWN CONVERTERS AND 3 LOW-INPUT VOLTAGE LDOs
TI

TPS65053-Q1

5-CHANNEL POWER MGMT IC WITH TWO STEP DOWN CONVERTERS AND 3 LOW-INPUT VOLTAGE LDOs
TI

TPS650531

5-CHANNEL POWER MGMT IC WITH TWO STEP DOWN CONVERTERS
TI

TPS650531RGE

IC POWER SUPPLY SUPPORT CKT, Power Management Circuit
TI

TPS650531RGER

5-CHANNEL POWER MGMT IC WITH TWO STEP DOWN CONVERTERS
TI

TPS650531RGET

5-CHANNEL POWER MGMT IC WITH TWO STEP DOWN CONVERTERS
TI

TPS650532

5-CHANNEL POWER MGMT IC WITH TWO STEP DOWN CONVERTERS
TI