TPS650941A0RSKT [TI]

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85;
TPS650941A0RSKT
型号: TPS650941A0RSKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85

集成电源管理电路
文件: 总96页 (文件大小:1631K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
适用于 Intel™ Apollo Lake 平台的 TPS65094 PMIC  
1 器件概述  
1.1 特性  
1
(V1P24A),输出电流为 2A  
• 5.6V 21V 的宽输入电压范围  
三个具有可调输出电压的 LDO 稳压器  
三个可变输出电压同步  
降压控制器 D-CAP2™拓扑  
– LDOA1I2C 可选输出电压为 1.35V 3.3V,输  
出电流高达 200mA  
对于 BUCK1 (VNN),电流为 5A;对于 BUCK6  
(VDDQ),电流为 7A,对于典型应用中使用外部  
FET BUCK2 (VCCGI),电流为 21A  
– LDOA2 LDOA3I2C 可选输出电压为 0.7V 至  
1.5V,输出电流高达 600mA  
针对 BUCK1 BUCK2  
对于 BUCK6 (VDDQ),提供 OTP 可编程默认输  
出电压  
适用于 DDR 存储器终端的 VTT LDO  
三个具有压摆率控制功能的负载开关  
输出电流高达 400mA,压降小于标称输入电压的  
三个可变输出电压同步  
1.5%  
降压转换器,采用 DCS-Control 拓扑技术并支持  
输入电压为 1.8V 时,RDSON < 96mΩ  
• I2C 接口(器件地址 0x5E)支持:  
标准模式 (100kHz)  
I2C DVS 功能  
输入电压范围为 4.5V 5.5V  
对于 BUCK3 (VCCRAM),输出电流为 3A  
对于典型应用中的 BUCK4 (V1P8A) BUCK5  
快速模式 (400kHz)  
快速模式+ (1MHz)  
1.2 应用  
2 节、3 节或 4 节锂离子电池供电产品(NVDC 或  
NVDC)  
平板电脑、 超极本和笔记本电脑  
移动 PC 和移动互联网设备  
壁式供电设计,特别是 12V 电源  
1.3 说明  
TPS65094 器件是一款单芯片解决方案电源管理集成芯片 (PMIC),专为最新的 Intel™处理器进行设计,这  
些处理器以通过 2 节、3 节或 4 节锂离子电池组(NVDC 或非 NVDC 电源架构)供电的平板电脑、超极  
本、笔记本、工业计算机和物联网 (IOT) 应用 以及壁式供电的 应用为目标。  
TPS65094 器件用于合并低电压轨的必需系统,以获得最小的尺寸和成本最低的系统电源解决方案。  
TPS65094 器件可提供基于 Intel 参考设计的完整电源解决方案。由上电序列逻辑控制六个高效降压稳压器  
(VR)、一个灌/LDO (VTT)、以及一个负载开关,以提供正确的电源轨、定序和保护 包括 DDR3 和  
DDR4 存储器电源。两个稳压器(BUCK1 BUCK2)支持动态电压调节 (DVS),可最大限度地提高效率  
(包括支持联网待机功能)。高频 VR 采用小型电感和电容来减小解决方案体积。凭借 I2C 接口,可通过嵌  
入式控制器 (EC) 或片上系统 (SoC) 轻松实现控制功能。  
PMIC 采用带散热焊盘的 8mm × 8mm 单行 VQFN 封装,因此散热性能良好,电路板布线简单。  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
TPS65094  
VQFN (64)  
8.00mm x 8.00mm  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品附录。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SWCS133  
 
 
 
 
 
 
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
1.4 功能方框图  
Optional(a)  
Required(b)  
LDO5V  
VSYS  
BOOT1  
DRVH1  
EC  
LDOA1  
1.35 V to 3.3 V  
1.8 V(b)  
PMICEN  
SLP_S3B  
SLP_S4B  
BUCK1  
Default: 1V  
SW1  
200 mA  
VNN  
VSET  
Typical  
Application  
Usage:  
0.5 V to 1.45 V  
(DVS)  
DRVL1  
EN  
EN  
SLP_S0B  
Control  
FBVOUT1  
LDOLS_EN(a)  
Inputs  
PGNDSNS1  
SWA1_EN(b)  
5 A  
ILIM1  
THERMTRIPB  
V1P8A  
VSYS  
BOOT2  
DRVH2  
CLK  
I2C CTRL  
BUCK2  
Default: 0V  
SW2  
SoC  
DATA  
VCCGI  
VSET  
EN  
V1P8A  
DRVL2  
Typical  
Application  
Usage:  
Control  
Outputs  
FBVOUT2  
0.5 V to 1.45 V  
(DVS)  
PGNDSNS2  
IRQB  
21 A  
PCH_PWROK  
RSMRSTB  
PROCHOT  
GPO  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
BUCK5V  
PVIN3  
LX3  
TEST CTRL  
OTP  
VSET  
EN  
BUCK3  
Default: 1.05 V  
3 A  
VCCRAM  
FB3  
REGISTERS  
<PGND_BUCK3>  
BUCK5V  
BUCK5V  
PVIN4  
LX4  
VSYS  
VSYS  
BUCK4  
Default: 1.8 V  
2 A  
Digital Core  
VSET  
EN  
V1P8A  
V5ANA  
LDO5  
BUCK5V  
FB4  
<PGND_BUCK4>  
LDO5V  
nPUC  
LDO3P3  
VREF  
REFSYS  
PVIN5  
LX5  
VSET  
EN  
BUCK5  
Default: 1.24 V  
2 A  
V1P24A  
FB5  
<PGND_BUCK5>  
AGND  
VSYS  
Thermal  
monitoring  
BOOT6  
DRVH6  
Thermal shutdown  
SW6  
BUCK6  
Default: OTP  
Dependent  
7 A  
VDDQ  
VSET  
EN  
DRVL6  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVINVTT  
VTT  
VTT_LDO  
½ × VDDQ  
ILIM set by OTP  
VTT  
EN  
VTTFB  
LDOA2  
0.7 V to 1.5 V  
600 mA  
LDOA3  
0.7 V to 1.5 V  
600 mA  
LOAD SWA1  
300 mA  
LOAD SWB1  
400 mA  
LOAD SWB2  
400 mA  
V1P8A(1)  
0.5 V to 3.3 V(2)  
0.5 V to 3.3 V  
Dashed connections optional.  
Refer to Pin Attributes for  
connection if unused.  
(1) LPDDR3 and LPDDR4  
(2) DDR3L  
(a) LDOA1 Not —Always On“  
(b) LDOA1 —Always On“  
Copyright © 2016, Texas Instruments Incorporated  
1-1. PMIC 功能框图  
2
器件概述  
版权 © 2015–2019, Texas Instruments Incorporated  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
内容  
1
器件概.................................................... 1  
5.15 Switching Characteristics ........................... 26  
5.16 Typical Characteristics .............................. 27  
Detailed Description ................................... 28  
6.1 Overview ............................................ 28  
6.2 Functional Block Diagram........................... 29  
6.3 Feature Description ................................. 31  
6.4 Device Functional Modes ........................... 48  
6.5 Programming ........................................ 48  
6.6 Register Maps....................................... 52  
Application and Implementation .................... 71  
7.1 Application Information.............................. 71  
7.2 Typical Application .................................. 71  
7.3 Specific Application for TPS650944 ................ 80  
7.4 Do's and Don'ts ..................................... 81  
Power Supply Recommendations .................. 81  
Layout .................................................... 82  
9.1 Layout Guidelines ................................... 82  
9.2 Layout Example ..................................... 82  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 功能方框图............................................ 2  
修订历史记录............................................... 3  
Device Options ........................................... 5  
3.1 OTP Comparison ..................................... 5  
Pin Configuration and Functions..................... 6  
Specifications ........................................... 10  
5.1 Absolute Maximum Ratings......................... 10  
5.2 ESD Ratings ........................................ 10  
5.3 Recommended Operating Conditions............... 11  
5.4 Thermal Information................................. 11  
6
2
3
4
5
7
5.5  
Electrical Characteristics: Total Current  
8
9
Consumption ........................................ 11  
Electrical Characteristics: Reference and Monitoring  
System .............................................. 12  
5.6  
5.7  
5.8  
Electrical Characteristics: Buck Controllers......... 13  
10 器件和文档支持 .......................................... 83  
10.1 器件支持 ............................................ 83  
10.2 文档支............................................. 83  
10.3 接收文档更新通知 ................................... 83  
10.4 社区资............................................. 83  
10.5 商标.................................................. 83  
10.6 静电放电警告 ........................................ 83  
10.7 Glossary ............................................. 83  
11 机械、封装和可订购信息 ............................... 83  
11.1 Package Option Addendum ......................... 84  
Electrical Characteristics: Synchronous Buck  
Converters........................................... 17  
5.9 Electrical Characteristics: LDOs .................... 20  
5.10 Electrical Characteristics: Load Switches........... 24  
5.11 Digital Signals: I2C Interface ........................ 25  
5.12 Digital Input Signals (LDOLS_EN, SWA1_EN,  
THERMTRIPB, PMICEN, SLP_S3B, SLP_S4B,  
SLP_S0B) ........................................... 25  
5.13 Digital Output Signals (IRQB, RSMRSTB,  
PCH_PWROK, PROCHOT)......................... 25  
5.14 Timing Requirements ............................... 25  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision B (February 2017) to Revision C  
Page  
已更改 在标题中将 TPS65094x 更改为 TPS65094............................................................................... 1  
已删除 删除了每页顶部的型号 ...................................................................................................... 1  
Added "BUCK3-5 Mode" row and "TPS650945" column to Summary of TPS65094x OTP Differences table ........... 5  
Changed the description of the VTTFB pin in the Pin Functions table ........................................................ 8  
Changed VSYS to PVIN in the efficiency graphs for BUCK3, BUCK4, and BUCK5 in the Typical Characteristics  
section ................................................................................................................................ 27  
Added to the description of the deassertion condition that causes an emergency shutdown in the Emergency  
Shutdown section ................................................................................................................... 47  
Added TPS650945 settings to Section 6.6 ...................................................................................... 52  
Changed OCP event to power fault event in the OCP bit description in the OFFONSRC Register Field  
Descriptions table ................................................................................................................... 54  
Changed second reference of TPS650940 to TPS650944 for the bit reset values in the LDOA2VID Register  
Field Descriptions and LDOA3VID Register Field Descriptions tables....................................................... 61  
Changed the bit values of the LDOA3_SLPVID[0] and LDOA3_VID[0] bits in the LDOA3VID Register figure......... 61  
版权 © 2015–2019, Texas Instruments Incorporated  
修订历史记录  
3
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Changes from Revision A (June 2016) to Revision B  
Page  
Updated the PROCHOT pin description in the Pin Functions table............................................................ 9  
Changed the values for LX3, LX4, LX5 from –1 V and 7 V to –2 V and 8 V in the Absolute Maximum Ratings table 10  
Changed the reset value of the LDOA2 VID register (LDOA2VID) to OTP dependent.................................... 61  
已添加 接收文档更新通知 部分 .................................................................................................... 83  
已更改 静电放电注意事项 声明 .................................................................................................... 83  
Changes from September 11, 2015 to June 2, 2016 (from * Revision (September 2015) to A Revision)  
Page  
将完整版产品说明书发布为 SWCS133A 版本(以前为 SWCS130B 版本).................................................. 1  
已更改 将器件状态更改为 PROD_DATA .......................................................................................... 1  
已更改 更改了建议最低输入电压.................................................................................................... 1  
已更改 特性 完善 转换器的 说明 .................................................................................................... 1  
已更改 特性 达到 400mA 的负载开关输出电流 ................................................................................... 1  
已更改 功能框图以包含 TPS65094x 系列 ......................................................................................... 2  
已更改 更改了 功能框图以在 PROCHOT 引脚上包含一个逆变器 .............................................................. 2  
Changed PROCHOTB to PROCHOT throughout the document ............................................................... 6  
Changed minimum absolute-maximum-rating value for SW1, SW2, and SW6 in Section 5.1............................ 10  
Changed VSYS in Section 5.3, Recommended Operating Conditions ...................................................... 11  
Deleted nominal value from PVINVTT in Section 5.3, Recommended Operating Conditions ........................... 11  
Deleted (nu = symbol for efficiency) ............................................................................................. 13  
Changed BUCK1 DC output voltage step size to show full range and be consistent in Section 5.7 .................... 13  
Changed typo to match correct default of 1 V for ΔVOUT_TR in Section 5.7 ................................................. 13  
Changed BUCK2 DC output voltage to show full range and be consistent in Section 5.7 ................................ 14  
Changed set condition for BUCK6 for VOUT range in Section 5.7 to match BUCK1 and BUCK2 ........................ 15  
Updated formatting and added new OTP information for BUCK6 in Section 5.7........................................... 15  
Updated formatting for BUCK3 DC output voltage in Section 5.8 ............................................................ 17  
Changed DC output voltage formatting for BUCK4 in Section 5.8 ........................................................... 18  
Changed maximum IOUT value for BUCK4 in Section 5.8 to match device capabilities ................................... 18  
Changed IOUT and ΔVOUT/ΔIOUT for VTT LDO in Section 5.9 for new OTPs ................................................. 23  
Changed test conditions for VTT LDO overcurrent protection in Section 5.9 ............................................... 23  
Changed Section 5.10 to show SWB1_2 RDSON is specified per output .................................................... 24  
Changed fSW values in Section 5.15 to provide more values ................................................................. 26  
Changed current to 1.9 A to match SoC requirements in Table 6-1 ......................................................... 28  
Changed BUCK6, LDOA2, LDOA3 typical output voltage range to: OTP Dependent in Table 6-1...................... 28  
Changed table note to include additional DDR types in Table 6-1 ........................................................... 28  
Changed PMIC Functional Block Diagram to match specifications table ................................................... 30  
Changed PROCHOTB to PROCHOT in the Apollo Lake Power Map ....................................................... 30  
Changed current ratings in Apollo Lake Power Map ........................................................................... 30  
Deleted SWBx PG from PG of PCH_PWROK in Table 6-2 ................................................................... 31  
Changed BUCK1–2 to all BUCKs and LDOAs in Section 6.3.3.3 ............................................................ 36  
Added Table 6-5 and Table 6-6 to Section 6.3.4.2 ............................................................................. 38  
Added more DDR values to the table note in Table 6-7 ....................................................................... 39  
Changed Section 6.3.5 to include LDOA1 and reset information............................................................. 40  
Changed Section 6.6 to include multiple DDRs ................................................................................. 40  
Changed Figure 6-7 and Figure 6-8 to include alternate SWB1_2 Timing .................................................. 42  
Changed SWB1_2 from: V3P3A to: V1P8U in Table 6-10 .................................................................... 42  
Changed VDDQ voltage to OTP Dependent and SWBx to SWB1_2 in Table 6-11 ....................................... 44  
Updated Figure 6-10 to include alternate SWB1_2 Timing.................................................................... 45  
Changed Section 6.3.5.5 to include alternate SWB1_2 Timing............................................................... 46  
Changed Section 6.3.5.6 to include THERMTRIPB ........................................................................... 47  
Added the TPS65094x family OTP values to Section 6.6 ..................................................................... 52  
Replaced VID values with link to full VID table in Table 6-18 and Table 6-19 .............................................. 55  
Updated naming of bits in the TEMPHOT register.............................................................................. 70  
4
修订历史记录  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
3 Device Options  
3.1 OTP Comparison  
Table 3-1 summarizes the differences between the various TPS65094x family OTPs.  
Table 3-1. Summary of TPS65094x OTP Differences  
TPS650940  
LPDDR4  
1.1 V  
TPS650941  
LPDDR3  
1.2 V  
TPS650942  
DDR3L  
1.35 V  
No  
TPS650944  
LPDDR4  
1.1 V  
TPS650945  
LPDDR4  
1.1 V  
DDR  
BUCK6 Voltage  
VTT Disabled  
VTT IOCP (minimum)  
Yes  
No  
Yes  
Yes  
0.95 A  
0.95 A  
1.8 A  
1.8 A  
0.95 A  
SWB1_2 controlled by SLP_S4B  
(V1P8U)  
Yes  
Yes  
No  
Yes  
Yes  
SWB1_2 controlled by SLP_S3B  
Pin 14 Usage  
No  
LDOLS_EN  
No  
No  
LDOLS_EN  
No  
Yes  
LDOLS_EN  
No  
No  
SWA1_EN  
Yes  
No  
LDOLS_EN  
No  
LDOA1 Always On  
LDOA1 Default Voltage  
LDOA2 Default Voltage  
LDOA3 Default Voltage  
PMICEN Low Forces Reset  
DEVICEID Register  
3.3 V  
1.2 V  
1.25 V  
Yes  
3.3 V  
1.2 V  
1.25 V  
Yes  
3.3 V  
1.2 V  
1.25 V  
Yes  
1.8 V  
0.7 V  
0.7 V  
No  
3.3 V  
1.2 V  
1.25 V  
Yes  
8h  
29h  
1Ah  
0Bh  
8h  
BUCK3-5 Mode  
Auto  
Auto  
Auto  
Auto  
Forced PWM  
Copyright © 2015–2019, Texas Instruments Incorporated  
Device Options  
5
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
4 Pin Configuration and Functions  
RSK Package  
64-Pin VQFN With Thermal Pad  
Top View  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
FBGND2  
FBVOUT2  
DRVH2  
1
2
3
4
5
6
7
8
9
48 VTTFB  
47 VTT  
46 PVINVTT  
45 ILIM6  
SW2  
BOOT2  
44 FBVOUT6  
43 DRVH6  
42 SW6  
PGNDSNS2  
DRVL2  
DRV5V_2_A1  
LDOA1  
41 BOOT6  
40 PGNDSNS6  
39 DRVL6  
38 DRV5V_1_6  
37 DRVL1  
36 PGNDSNS1  
35 BOOT1  
34 SW1  
TOP VIEW  
PGND/Thermal Pad  
LX3 10  
PVIN3 11  
FB3 12  
PMICEN 13  
LDOLS_EN or  
SWA1_EN  
14  
IRQB 15  
RSMRSTB 16  
33 DRVH1  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
NOTE: The thermal pad must be connected to the system power ground plane.  
6
Pin Configuration and Functions  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Pin Functions  
PIN  
NAME  
SMPS REGULATORS  
SUPPLY, OP  
VOLTAGE  
LEVEL  
I/O  
DESCRIPTION  
NO.  
Remote negative feedback sense for BUCK2 controller. Connect to VCCGI VSS  
SENSE sent from the SoC to the PMIC.  
1
2
FBGND2  
I
I
Remote positive feedback sense for BUCK2 controller. Connect to VCCGI VCC  
SENSE sent from the SoC to the PMIC.  
FBVOUT2  
3
4
DRVH2  
SW2  
O
I
VSYS + 5 V High-side gate driver output for BUCK2 controller  
Switch node connection for BUCK2 controller  
Bootstrap pin for BUCK2 controller. Connect a 100-nF ceramic capacitor between  
this pin and SW2 pin.  
5
BOOT2  
I
VSYS + 5 V  
Power GND connection for BUCK2. Connect to ground terminal of external low-  
side FET.  
6
7
8
PGNDSNS2  
DRVL2  
I
O
I
5 V  
5 V  
Low-side gate driver output for BUCK2 controller  
5-V supply to BUCK2 gate driver and LDOA1. Bypass to ground with a 2.2-µF  
(typical) ceramic capacitor. Shorted on board to LDO5P0 pin.  
DRV5V_2_A1  
Switch node connection for BUCK3 converter. Connect to a 0.47-µH (typical)  
inductor with less than 50-mΩ DCR.  
10  
11  
12  
20  
21  
22  
23  
24  
25  
29  
30  
LX3  
PVIN3  
FB3  
O
I
Power input to BUCK3 converter. Bypass to ground with a 10-µF (typical) ceramic  
capacitor.  
5 V  
5 V  
5 V  
Remote feedback sense for BUCK3 converter. Connect to positive terminal of  
output capacitor.  
I
Switch node connection for BUCK5 converter. Connect to a 0.47-µH (typical)  
inductor with less than 50-mΩ DCR.  
LX5  
O
I
Power input to BUCK5 converter. Bypass to ground with a 10-µF (typical) ceramic  
capacitor.  
PVIN5  
FB5  
Remote feedback sense for BUCK5 converter. Connect to positive terminal of  
output capacitor.  
I
Remote feedback sense for BUCK4 converter. Connect to positive terminal of  
output capacitor.  
FB4  
I
Power input to BUCK4 converter. Bypass to ground with a 10-µF (typical) ceramic  
capacitor.  
PVIN4  
LX4  
I
Switch node connection for BUCK4 converter. Connect to a 0.47-µH (typical)  
inductor with less than 50-mΩ DCR.  
O
I
Remote feedback sense for BUCK1 controller. Connect to VNN VCC SENSE sent  
from the SoC to the PMIC.  
FBVOUT1  
ILIM1  
Current limit set pin for BUCK1 controller. Fit a resistor from this pin to ground to  
set current limit of external low-side FET.  
I
33  
34  
DRVH1  
SW1  
O
I
VSYS + 5 V High-side gate driver output for BUCK1 controller  
Switch node connection for BUCK1 controller  
Bootstrap pin for BUCK1 controller. Connect a 100-nF ceramic capacitor between  
this pin and SW1 pin.  
35  
BOOT1  
I
VSYS + 5 V  
Power GND connection for BUCK1. Connect to ground terminal of external low-  
side FET.  
36  
37  
38  
39  
40  
PGNDSNS1  
DRVL1  
I
O
I
5 V  
5 V  
5 V  
Low-side gate driver output for BUCK1 controller  
5-V supply to BUCK1 and BUCK6 gate drivers. Bypass to ground with a 2.2-µF  
(typical) ceramic capacitor. Shorted on board to LDO5P0 pin.  
DRV5V_1_6  
DRVL6  
O
I
Low-side gate driver output for BUCK6 controller  
Power GND connection for BUCK6. Connect to ground terminal of external low-  
side FET.  
PGNDSNS6  
Bootstrap pin for BUCK6 controller. Connect a 100-nF ceramic capacitor between  
this pin and SW6 pin.  
41  
BOOT6  
I
VSYS + 5 V  
42  
43  
SW6  
I
Switch node connection for BUCK6 controller  
DRVH6  
O
VSYS + 5 V High-side gate driver output for BUCK6 controller  
Copyright © 2015–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
SUPPLY, OP  
VOLTAGE  
LEVEL  
I/O  
DESCRIPTION  
NO.  
Remote feedback sense for BUCK6 controller. Connect to positive terminal of  
output capacitor.  
44  
FBVOUT6  
ILIM6  
I
I
I
Current limit set pin for BUCK6 controller. Fit a resistor from this pin to ground to  
set current limit of external low-side FET.  
45  
64  
Current limit set pin for BUCK2 controller. Fit a resistor from this pin to ground to  
set current limit of external low-side FET.  
ILIM2  
LDO and LOAD SWITCHES  
LDOA1 output. Bypass to ground with a 4.7-µF (typical) ceramic capacitor. Leave  
floating when not in use.  
9
LDOA1  
O
O
1.35–3.3 V  
0.5–3.3 V  
(1.8-V  
Typical)  
Output of load switch B1. Bypass to ground with a 0.1-µF (typical) ceramic  
capacitor. Short with SWB2.  
17  
SWB1  
0.5–3.3 V  
(1.8-V  
Typical)  
Power supply to load switch B1 and B2. Bypass to ground with a 1-µF (typical)  
ceramic capacitor to improve transient performance. Connect to ground when not  
in use.  
18  
19  
PVINSWB1_B2  
SWB2  
I
0.5–3.3 V  
(1.8-V  
Typical)  
Output of load switch B2. Bypass to ground with a 0.1-µF (typical) ceramic  
capacitor. Short with SWB1. Leave floating when not in use.  
O
Output of load switch A1. Bypass to ground with a 0.1-µF (typical) ceramic  
capacitor. Leave floating when not in use.  
31  
32  
46  
47  
48  
49  
50  
51  
54  
56  
SWA1  
PVINSWA1  
PVINVTT  
VTT  
O
I
0.5–3.3 V  
0.5–3.3 V  
VDDQ  
Power supply to load switch A1. Bypass to ground with a 1-µF (typical) ceramic  
capacitor to improve transient performance. Connect to ground when not in use.  
Power supply to VTT LDO. Bypass to ground with a 10-µF (minimum) ceramic  
capacitor. Connect to ground when not in use.  
I
Output of load VTT LDO. Bypass to ground with 2× 22-µF (minimum) ceramic  
capacitors. Leave floating when not in use.  
O
I
VDDQ / 2  
VDDQ / 2  
0.7–1.5 V  
1.8 V  
Remote feedback sense for VTT LDO. Connect to positive terminal of output  
capacitor. Short to GND when not in use.  
VTTFB  
Output of LDOA3. Bypass to ground with a 4.7-µF (typical) ceramic capacitor.  
Leave floating when not in use.  
LDOA3  
O
I
Power supply to LDOA2 and LDOA3. Bypass to ground with a 4.7-µF (typical)  
ceramic capacitor. Connect to ground when not in use.  
PVINLDOA2_A3  
LDOA2  
Output of LDOA2. Bypass to ground with a 4.7-µF (typical) ceramic capacitor.  
Leave floating when not in use.  
O
O
O
0.7–1.5 V  
3.3 V  
Output of 3.3-V internal LDO. Bypass to ground with a 4.7-µF (typical) ceramic  
capacitor.  
LDO3P3  
LDO5P0  
Output of 5-V internal LDO or an internal switch that connects this pin to V5ANA.  
Bypass to ground with a 4.7-µF (typical) ceramic capacitor.  
5 V  
External 5-V supply input to internal load switch that connects this pin to LDO5P0  
pin. Bypass this pin with an optional ceramic capacitor to improve transient  
performance.  
57  
V5ANA  
I
5 V  
8
Pin Configuration and Functions  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
SUPPLY, OP  
VOLTAGE  
LEVEL  
I/O  
DESCRIPTION  
NO.  
NAME  
INTERFACE  
PMIC cold-boot pin. At assertion rising edge of the signal of this pin power state  
transitions from G3 to S4/S5. Driving the pin to L shuts down all VRs.  
13  
14  
PMICEN  
I
I
Enable pin for LDOA2, LDOA3, and SWA1 when OTP is configured to  
LDOLS_EN. Enable pin for just SWA1 when OTP is configured to SWA1_EN.  
Resources turn on at assertion (H) and turn off at deassertion (L) of the pin.  
Optionally, when the pin is pulled low, the host can write to enable bits in Reg  
0xA0–Reg 0xA1 to control the rails.  
LDOLS_EN or  
SWA1_EN  
Open-drain output interrupt pin. Refer to Section 6.6.3, IRQ: PMIC Interrupt  
Register, for definitions.  
15  
16  
IRQB  
O
O
Open-drain output Always-ON-rail Power Good. It reflects a valid state whenever  
VSYS is available.  
RSMRSTB  
Open-drain output controlled by an I2C register bit defined in Section 6.6.26,  
GPO_CTRL: GPO Control Register, by the user, which then can be used as an  
enable signal to an external VR.  
26  
27  
28  
GPO  
O
O
O
Open-drain output global Power Good. It reflects a valid state whenever VSYS is  
available.  
PCH_PWROK  
PROCHOT  
Optional open-drain output for indicating PMIC thermal event. Invert before  
connecting to SoC if used, otherwise leave floating. This pin is triggered when any  
of the PMIC die temperature sensors detects the THOT temperature.  
58  
59  
60  
CLK  
DATA  
I
I/O  
I
I2C clock  
I2C data  
THERMTRIPB  
Thermal shutdown signal from SoC  
Power state pin. PMIC goes into Connected Standby at falling edge and exits from  
Connected Standby at rising edge.  
61  
62  
63  
SLP_S0B  
SLP_S3B  
SLP_S4B  
I
I
I
Power state pin. PMIC goes into S3 at falling edge and exits from S3, transitions  
into S0 at rising edge.  
Power state pin. PMIC goes into S4 at falling edge and exits from S4, transitions  
into S3 at rising edge.  
REFERENCE  
Band-gap reference output. Stabilize it by connecting a 100-nF (typical) ceramic  
capacitor between this pin and quiet ground.  
53  
VREF  
AGND  
VSYS  
O
I
1.25 V  
Analog ground. Do not connect to the thermal pad ground on top layer. Connect to  
ground of VREF capacitor.  
52  
System voltage detection and input to internal LDOs (3.3 V and 5 V). Bypass to  
ground with a 1-µF (typical) ceramic capacitor.  
55  
THERMAL PAD  
Connect to PCB ground plane using multiple vias for good thermal and electrical  
performance.  
Thermal pad  
Copyright © 2015–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5 Specifications  
5.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
ANALOG  
VSYS  
Input voltage from battery  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
5(2)  
2(3)  
–0.3  
28  
7
V
V
V
V
V
V
V
V
PVIN3, PVIN4, PVIN5, LDO5P0, DRV5V_1_6, DRV5V_2_A1, DRVL1, DRVL2, DRVL6  
V5ANA  
6
PGNDSNS1, PGNDSNS2, PGNDSNS6, AGND, FBGND2  
DRVH1, DRVH2, DRVH6, BOOT1, BOOT2, BOOT6  
SW1, SW2, SW6  
0.3  
34  
28  
8
LX3, LX4, LX5  
BOOTx to SWx  
Differential voltage  
5.5  
VREF, LDO3P3, FBVOUT1, FBVOUT2, FBVOUT6, FB3, FB4, FB5, ILIM1, ILIM2, ILIM6, PVINVTT,  
VTT, VTTFB, PVINSWA1, SWA1, PVINSWB1_B2, SWB1, SWB2, LDOA1  
–0.3  
–0.3  
3.6  
3.3  
V
V
PVINLDOA2_A3, LDOA2, LDOA3  
DIGITAL IOs  
DATA, CLK, PCH_PWROK, RSMRSTB, GPO  
–0.3  
–0.3  
–40  
3.6  
7
V
V
PMICEN, SLP_S4B, SLP_S3B, SLP_S0B, LDOLS_EN, SWA1_EN, THERMTRIPB, IRQB, PROCHOT  
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Transient for less than 5 ns.  
(3) Transient for less than 20 ns.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged Device Model (CDM), per JESD22-C101(2)  
Electrostatic  
discharge  
VESD  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
10  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
5.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
13  
MAX UNIT  
ANALOG  
VSYS  
5.6  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–1  
21  
1.3  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VREF  
PVIN3, PVIN4, PVIN5, LDO5P0, V5ANA, DRV5V_1_6, DRV5V_2_A1  
PGNDSNS1, PGNDSNS2, PGNDSNS6, AGND, FBGND2  
DRVH1, DRVH2, DRVH6, BOOT1, BOOT2, BOOT6  
DRVL1, DRVL2, DRVL6  
5
5.5  
0.3  
26.5  
5.5  
SW1, SW2, SW6  
21  
LX3, LX4, LX5  
–1  
5.5  
FBVOUT1, FBVOUT2, FBVOUT6, FB3, FB4, FB5  
LDO3P3, ILIM1, ILIM2, ILIM6, LDOA1  
PVINVTT  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
3.6  
3.3  
VDDQ  
VDDQ / 2  
3.6  
VTT, VTTFB  
PVINSWA1, SWA1  
3.3  
PVINSWB1_B2, PVINLDOA2_A3, SWB1, SWB2  
LDOA2, LDOA3  
1.8  
1.5  
DIGITAL IOs  
DATA, CLK, PMICEN, SLP_S4B, SLP_S3B, LDOLS_EN, SWA1_EN,  
SLP_S0B, THERMTRIPB, PROCHOT, IRQB, RSMRSTB, PCH_PWROK,  
GPO  
–0.3  
3.3  
V
CHIP  
TA  
TJ  
Operating ambient temperature  
Operating junction temperature  
–40  
–40  
27  
27  
85  
°C  
°C  
125  
5.4 Thermal Information  
TPS65094x  
THERMAL METRIC(1)  
RSK (VQFN)  
64 PINS  
25.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
11.3  
4.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
4.4  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
5.5 Electrical Characteristics: Total Current Consumption  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PMIC shutdown current that includes IQ for  
references, LDO5, LDO3P3, and digital core  
VSYS = 13 V, all functional output rails  
are disabled  
ISD  
65  
µA  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5.6 Electrical Characteristics: Reference and Monitoring System  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
REFERENCE  
Band-gap reference voltage  
Accuracy  
1.25  
V
VREF  
–0.5%  
0.047  
5.24  
0.5%  
0.22  
5.56  
CVREF  
Band-gap output capacitor  
VSYS UVLO threshold for LDO5  
0.1  
5.4  
µF  
V
VSYS_UVLO_5V  
VSYS falling  
VSYS UVLO threshold hysteresis for VSYS rising above  
VSYS_UVLO_5V_HYS  
VSYS_UVLO_3V  
200  
3.6  
mV  
V
LDO5  
VSYS_UVLO_5V  
VSYS UVLO threshold for LDO3P3  
VSYS falling  
3.45  
3.75  
VSYS UVLO threshold hysteresis for VSYS rising above  
VSYS_UVLO_3V_HYS  
150  
mV  
LDO3P3  
VSYS_UVLO_3V  
TCRIT  
Critical threshold of die temperature  
Hysteresis of TCRIT  
TJ rising  
130  
110  
145  
10  
160  
120  
°C  
°C  
°C  
°C  
TCRIT_HYS  
THOT  
TJ falling  
TJ rising  
Hot threshold of die temperature  
Hysteresis of THOT  
115  
10  
THOT_HYS  
LDO5  
VIN  
TJ falling  
Input voltage at VSYS pin  
DC output voltage  
13  
5
21  
5.1  
V
V
VOUT  
IOUT = 10 mA  
4.9  
IOUT  
DC output current  
100  
180  
mA  
Measured with output shorted to  
ground  
IOCP  
Overcurrent protection  
200  
mA  
Power Good assertion threshold in  
percentage of target VOUT  
VTH_PG  
VOUT rising  
94%  
VTH_PG_HYS  
IQ  
Power Good deassertion hysteresis  
Quiescent current  
VOUT rising or falling  
VIN = 13 V, IOUT = 0 A  
4%  
20  
µA  
µF  
COUT  
External output capacitance  
2.7  
4.7  
10  
1
V5ANA-to-LDO5P0 LOAD SWITCH  
VIN = 5 V, measured from  
V5ANA pin  
to LDO5P0 pin at IOUT = 200  
mA  
RDSON  
On resistance  
Ω
Power Good threshold for external  
5-V supply  
VTH_PG  
VTH_HYS_PG  
ILKG  
VV5ANA rising  
VV5ANA falling  
4.7  
V
Power Good threshold hysteresis for  
external 5-V supply  
100  
mV  
µA  
Switch disabled,  
VV5ANA = 5 V, VLDO5 = 0 V  
Leakage current  
10  
21  
LDO3P3  
VIN  
Input voltage at VSYS pin  
DC output voltage  
13  
V
V
IOUT = 10 mA  
3.3  
VOUT  
VIN = 13 V,  
IOUT = 10 mA  
Accuracy  
–3%  
70  
3%  
40  
IOUT  
IOCP  
DC output current  
Overcurrent protection  
mA  
mA  
Measured with output shorted to  
ground  
Power Good assertion threshold in  
percentage of target VOUT  
VTH_PG  
VTH_PG_HYS  
IQ  
VOUT rising  
VOUT falling  
92%  
3%  
20  
Power Good deassertion hysteresis  
VIN = 13 V,  
IOUT = 0 A  
Quiescent current  
µA  
µF  
COUT  
External output capacitance  
2.2  
4.7  
10  
12  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
5.7 Electrical Characteristics: Buck Controllers  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK1  
Power input voltage for  
external HSD FET  
VIN  
5.6  
13  
21  
V
Step size  
10  
0
mV  
BUCK1_VID[6:0] = 0000000  
BUCK1_VID[6:0] = 0000001  
BUCK1_VID[6:0] = 0000010  
0.5  
0.51  
DC output voltage  
V
BUCK1_VID[6:0] = 0110011 (default)  
1.00  
VOUT  
BUCK1_VID[6:0] = 1110101  
BUCK1_VID[6:0] = 1110110–1111111  
1.66  
1.67  
V
OUT 1 V, IOUT = 100 mA to 5 A  
VOUT = 0.75 V, IOUT = 100 mA to 2.1 A  
OUT 0.6 V, IOUT = 10 mA  
–2%  
–2.5%  
–3.5%  
–20  
2%  
2.5%  
3.5%  
40  
DC output voltage  
accuracy  
V
Total output voltage  
accuracy (DC + ripple) in  
DCM  
IOUT = 10 mA, VOUT 0.785 V, VSYS = 13 V  
IOUT = 10 mA, VOUT 0.785 V, VSYS = 21 V  
mV  
–20  
2.5  
55  
SR(VOUT  
)
Output DVS slew rate  
3.125  
mV/µs  
Low-side output valley  
current limit accuracy  
(programmed by external  
ILIM_LSD  
See Section 6.3.3.4, Current Limit, for details.  
–15%  
15%  
resistor RLIM  
)
Low-side current zero  
crossing detection  
threshold  
VTH_ZC  
–11  
45  
11  
55  
mV  
Source current out of  
ILIM1 pin  
ILIMREF  
VLIM  
T = 25°C  
50  
µA  
V
Voltage at ILIM1 pin  
Line regulation  
VLIM = RLIM × ILIMREF  
0.2  
2.25  
ΔVOUT/ΔVIN  
VOUT 1 V, IOUT = 5 A  
–0.5%  
0.5%  
VIN = 13 V, VOUT 1 V,  
IOUT = 0 A to 5 A,  
referenced to VOUT at IOUT = 5 A  
ΔVOUT/ΔIOUT  
Load regulation  
0%  
1%  
50  
DC + AC at sense point, VIN = 13 V,  
VOUT = 1.00 V,  
IOUT = 1.5 A to 5 A and 5 A to 1.5 A with 1 µs of  
tr and tf  
(1)  
ΔVOUT_TR  
Load transient regulation  
–50  
mV  
DC + AC at sense point, VIN = 13 V,  
VOUT = 0.75 V,  
IOUT = 0.3 A to 1.5 A and 1.5 A to 0.3 A with 1 µs  
of tr and tf  
Power Good deassertion VOUT rising  
threshold in percentage  
of target VOUT  
108%  
92%  
VTH_PG  
VOUT falling  
Power Good reassertion  
VTH_HYS_PG  
hysteresis entering back VOUT rising or falling  
into VTH_PG  
3%  
External output  
capacitance  
Recommended amount to meet transient  
specification  
COUT  
LSW  
180  
220  
µF  
µH  
External output  
inductance  
0.376  
0.47  
0.564  
(1) Frequency of transient load current ranges from 0 to 1 MHz with duty cycle of 50%. For cases where duty cycle and frequency are  
limited by tr and tf, the highest frequency is set by 1 / (tr + tf), where tr is rise time (0% to 100%) and tf is fall time (100% to 0%).  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: Buck Controllers (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Source, IDRVH = –50 mA  
MIN  
TYP  
3
MAX UNIT  
RDSON_DRVH  
Driver DRVH resistance  
Ω
Sink, IDRVH = 50 mA  
Source, IDRVL = –50 mA  
Sink, IDRVL = 50 mA  
BUCK1_DIS[1:0] = 01  
BUCK1_DIS[1:0] = 10  
BUCK1_DIS[1:0] = 11  
2
3
RDSON_DRVL  
Driver DRVL resistance  
Ω
0.4  
100  
200  
500  
100  
Output auto-discharge  
resistance  
RDIS  
Ω
CBOOT  
RON_BOOT  
BUCK2  
VIN  
Bootstrap capacitance  
nF  
Bootstrap switch ON  
resistance  
20  
21  
Ω
Power input voltage for  
external HSD FET  
5.6  
13  
V
Step size  
10  
0
mV  
BUCK2_VID[6:0] = 0000000 (default)  
BUCK2_VID[6:0] = 0000001  
BUCK2_VID[6:0] = 0000010  
0.5  
0.51  
DC output voltage  
V
BUCK2_VID[6:0] = 1110101  
BUCK2_VID[6:0] = 1110110–1111111  
1.66  
1.67  
VOUT  
V
OUT 1 V, IOUT = 100 mA to 21 A  
VOUT = 0.75 V, IOUT = 100 mA to 6.3 A  
OUT 0.6 V, IOUT = 10 mA  
–2%  
–2.5%  
–3.5%  
2%  
2.5%  
3.5%  
DC output voltage  
accuracy  
V
Total output voltage  
accuracy (DC + ripple) in IOUT = 10 mA, VOUT 0.765 V  
DCM  
–20  
2.5  
40  
mV  
SR(VOUT  
)
Output DVS slew rate  
3.125  
mV/µs  
Low-side output valley  
current limit accuracy  
ILIM_LSD  
See Section 6.3.3.4, Current Limit, for details.  
–15%  
15%  
(programmed by external  
resistor RLIM  
)
Low-side current zero  
crossing detection  
threshold  
VTH_ZC  
–11  
45  
11  
55  
mV  
Source current out of  
ILIM2 pin  
ILIMREF  
VLIM  
T = 25°C  
50  
µA  
V
Voltage at ILIM2 pin  
Line regulation  
VLIM = RLIM × ILIMREF  
0.2  
2.25  
ΔVOUT/ΔVIN  
VOUT 1 V, IOUT = 21 A  
–0.5%  
0.5%  
VIN = 13 V, 1 V VOUT 1.3 V,  
IOUT = 0 A to 21 A,  
referenced to VOUT at IOUT = 21 A  
ΔVOUT/ΔIOUT  
Load regulation  
0%  
–160  
–50  
1%  
30(2)  
50(2)  
DC + AC at sense point, VIN = 13 V, VOUT = 1 V,  
IOUT = 1 A to 21 A and 21 A to 1 A with 1 µs of tr  
and tf  
(1)  
ΔVOUT_TR  
Load transient regulation  
mV  
DC + AC at sense point, VIN = 13 V,  
VOUT = 0.75 V, IOUT = 1 A to 3.3 A and 3.3 A to  
1 A with 1 µs of tr and tf  
Power Good deassertion VOUT rising  
threshold in percentage  
of target VOUT  
108%  
92%  
VTH_PG  
VOUT falling  
(2) Additional overshoot of up to 100 mV is allowed as long as it lasts less than 50 µs.  
14 Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Electrical Characteristics: Buck Controllers (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Power Good reassertion  
VTH_HYS_PG  
hysteresis entering back VOUT rising or falling  
into VTH_PG  
3%  
External output  
inductance  
LSW  
0.176  
440  
0.22  
550  
0.264  
µH  
µF  
External output  
capacitance  
Recommended amount to meet transient  
specification  
COUT  
Source, IDRVH = –50 mA  
Sink, IDRVH = 50 mA  
Source, IDRVL = –50 mA  
Sink, IDRVL = 50 mA  
BUCK2_DIS[1:0] = 01  
BUCK2_DIS[1:0] = 10  
BUCK2_DIS[1:0] = 11  
3
2
RDSON_DRVH  
Driver DRVH resistance  
Driver DRVL resistance  
Ω
Ω
3
RDSON_DRVL  
0.4  
100  
200  
500  
100  
Output auto-discharge  
resistance  
RDIS  
Ω
CBOOT  
RON_BOOT  
BUCK6  
VIN  
Bootstrap capacitance  
nF  
Bootstrap switch ON  
resistance  
20  
21  
Ω
Power input voltage for  
external HSD FET  
5.6  
13  
V
Step size  
10  
0
mV  
BUCK6_VID[6:0] = 0000000  
BUCK6_VID[6:0] = 0000001  
BUCK6_VID[6:0] = 0000010  
0.5  
0.51  
BUCK6_VID[6:0] = 0111101 (TPS650940 and  
TPS650944 default)  
1.1  
DC output voltage  
1.2  
V
VOUT  
BUCK6_VID[6:0] = 1000111 (TPS650941 default)  
BUCK6_VID[6:0] = 1010110 (TPS650942 default)  
1.35  
BUCK6_VID[6:0] = 1110101  
BUCK6_VID[6:0] = 1110110–1111111  
1.66  
1.67  
DC output voltage  
accuracy  
VOUT 1 V, IOUT = 100 mA to 7 A  
–2%  
2%  
Low-side output valley  
current limit accuracy  
(programmed by external  
ILIM_LSD  
See Section 6.3.3.4, Current Limit, for details.  
–15%  
15%  
resistor RLIM  
)
Low-side current zero  
crossing detection  
threshold  
VTH_ZC  
–11  
45  
11  
55  
mV  
Source current out of  
ILIM6 pin  
ILIMREF  
T = 25°C  
50  
µA  
V
VLIM  
Voltage at ILIM6 pin  
Line regulation  
VLIM = RLIM × ILIMREF  
0.2  
2.25  
ΔVOUT/ΔVIN  
VOUT 1 V, IOUT = 7 A  
–0.5%  
0.5%  
VIN = 13 V, VOUT 1 V, IOUT = 0 A to 7 A,  
referenced to VOUT at IOUT = 7 A  
ΔVOUT/ΔIOUT  
Load regulation  
0%  
1%  
DC + AC at sense point, VIN = 13 V,  
ΔVOUT_TR  
Load transient regulation VOUT = 1.35 V, IOUT = 2.1 A to 7 A and 7 A to  
2.1 A with 1.96 µs of tr and tf (2.5 A/µs)  
–5%  
5%  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: Buck Controllers (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Power Good deassertion VOUT rising  
threshold in percentage  
of target VOUT  
108%  
VTH_PG  
VOUT falling  
92%  
Power Good reassertion  
VTH_HYS_PG  
hysteresis entering back VOUT rising or falling  
into VTH_PG  
3%  
External output  
inductance  
LSW  
0.376  
150  
0.47  
220  
0.564  
µH  
µF  
External output  
capacitance  
Recommended amount to meet transient  
specification  
COUT  
Source, IDRVH = –50 mA  
Sink, IDRVH = 50 mA  
Source, IDRVL = –50 mA  
Sink, IDRVL = 50 mA  
BUCK6_DIS[1:0] = 01  
BUCK6_DIS[1:0] = 10  
BUCK6_DIS[1:0] = 11  
3
2
RDSON_DRVH  
Driver DRVH resistance  
Driver DRVL resistance  
Ω
Ω
3
RDSON_DRVL  
0.4  
100  
200  
500  
100  
Output auto-discharge  
resistance  
RDIS  
Ω
CBOOT  
Bootstrap capacitance  
nF  
Bootstrap switch ON  
resistance  
RON_BOOT  
20  
Ω
16  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
5.8 Electrical Characteristics: Synchronous Buck Converters  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK3  
VIN  
Power input voltage  
4.5  
5
25  
5.5  
V
Step size  
mV  
BUCK3_VID[6:0] = 0000000  
BUCK3_VID[6:0] = 0000001  
BUCK3_VID[6:0] = 0000010  
0
0.65  
0.675  
DC output voltage  
V
VOUT  
BUCK3_VID[6:0] = 0010001 (default)  
1.05  
BUCK3_VID[6:0] = 1110101  
BUCK3_VID[6:0] = 1110110–1111111  
VOUT = 1.05 V, IOUT = 1.5 A  
VOUT = 1.05 V, IOUT = 100 mA  
3.55  
3.575  
–2%  
–2.5%  
2.5  
2%  
DC output voltage  
accuracy  
2.5%  
SR(VOUT  
)
Output DVS slew rate  
3.125  
35  
mV/µs  
A
Continuous DC output  
current  
IOUT  
3
7
IIND_LIM  
IQ  
HSD FET current limit  
Quiescent current  
Line regulation  
4.3  
A
VIN = 5 V, VOUT = 1 V  
µA  
ΔVOUT/ΔVIN  
VOUT = 1.05 V, IOUT = 1.5 A  
–0.5%  
–0.2%  
0.5%  
2%  
VIN = 5 V, VOUT = 1.05 V, IOUT = 0 A to 3 A,  
referenced to VOUT at IOUT = 1.5 A  
ΔVOUT/ΔIOUT  
Load regulation  
DC + AC at sense point,  
VIN = 5 V, VOUT = 1.05 V, IOUT = 0.9 A to 3 A and 3 A  
to 0.9 A with slew rate of 2.5 A/µs  
Load transient  
regulation  
(1)  
ΔVOUT_TR  
–5%  
7%  
Power Good  
VOUT rising  
108%  
92%  
deassertion threshold  
in percentage of  
target VOUT  
VTH_PG  
VOUT falling  
Power Good  
reassertion hysteresis  
entering back into  
VTH_PG  
VTH_HYS_PG  
VOUT rising or falling  
3%  
LSW  
CIN  
Output inductance  
0.376  
2.5  
0.47  
10  
0.564  
12  
µH  
µF  
Input bypass  
capacitance  
Output filtering  
capacitance  
COUT  
61.6  
88  
110  
µF  
BUCK3_DIS[1:0] = 01  
BUCK3_DIS[1:0] = 10  
BUCK3_DIS[1:0] = 11  
100  
200  
500  
Output auto-discharge  
resistance  
RDIS  
Ω
(1) Frequency of transient load current ranges from 0 to 1 MHz with duty cycle of 50%. For cases where duty cycle and frequency are  
limited by tr and tf, the highest frequency is set by 1 / (tr + tf), where tr is rise time (0% to 100%) and tf is fall time (100% to 0%).  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
17  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: Synchronous Buck Converters (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK4  
VIN  
Power input voltage  
4.5  
5
25  
5.5  
V
Step size  
mV  
BUCK4_VID[6:0] = 0000000  
BUCK4_VID[6:0] = 0000001  
BUCK4_VID[6:0] = 0000010  
0
0.65  
0.675  
DC output voltage  
V
VOUT  
BUCK4_VID[6:0] = 0101111 (default)  
1.8  
BUCK4_VID[6:0] = 1110101  
BUCK4_VID[6:0] = 1110110–1111111  
VOUT = 1.8 V, IOUT = 1.5 A  
VOUT = 1.8 V, IOUT = 100 mA  
3.55  
3.575  
–2%  
2%  
DC output voltage  
accuracy  
–2.5%  
2.5%  
Continuous DC output  
current  
IOUT  
3
7
A
IIND_LIM  
IQ  
HSD FET current limit  
Quiescent current  
Line regulation  
4.3  
A
VIN = 5 V, VOUT = 1.8 V  
35  
µA  
ΔVOUT/ΔVIN  
VOUT = 1.8 V, IOUT = 1.5 A  
–0.5%  
–0.2%  
0.5%  
VIN = 5 V, VOUT = 1.8 V, IOUT = 0 A to 1.5 A,  
referenced to VOUT at IOUT = 0.75 A  
ΔVOUT/ΔIOUT  
Load regulation  
0.65%  
DC + AC at sense point, VIN = 5 V, VOUT = 1.8 V,  
IOUT = 0.45 A to 1.5 A and 1.5 A to 0.45 A with slew  
rate of 2.5 A/µs  
Load transient  
regulation  
(1)  
ΔVOUT_TR  
–5%  
5%  
Power Good  
VOUT rising  
108%  
92%  
deassertion threshold  
in percentage of  
target VOUT  
VTH_PG  
VOUT falling  
Power Good  
reassertion hysteresis  
entering back into  
VTH_PG  
VTH_HYS_PG  
VOUT rising or falling  
3%  
LSW  
CIN  
Output inductance  
0.376  
2.5  
0.47  
10  
0.564  
12  
µH  
µF  
Input bypass  
capacitance  
Output filtering  
capacitance  
COUT  
46  
66  
110  
µF  
BUCK4_DIS[1:0] = 01  
BUCK4_DIS[1:0] = 10  
BUCK4_DIS[1:0] = 11  
100  
200  
500  
Output auto-discharge  
resistance  
RDIS  
Ω
18  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Electrical Characteristics: Synchronous Buck Converters (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK5  
VIN  
Power input voltage  
4.5  
5
10  
5.5  
V
Step size  
mV  
BUCK5_VID[6:0] = 0000000  
BUCK5_VID[6:0] = 0000001  
BUCK5_VID[6:0] = 0000010  
0
0.5  
0.51  
DC output voltage  
V
VOUT  
BUCK5_VID[6:0] = 1001011 (default)  
1.24  
BUCK5_VID[6:0] = 1110101  
BUCK4_VID[6:0] = 1110110–1111111  
VOUT = 1.24 V, IOUT = 1.5 A  
VOUT = 1.24 V, IOUT = 100 mA  
1.66  
1.67  
–2%  
2%  
DC output voltage  
accuracy  
–2.5%  
2.5%  
Continuous DC output  
current  
IOUT  
3.2  
7
A
IIND_LIM  
IQ  
HSD FET current limit  
Quiescent current  
Line regulation  
4.3  
A
VIN = 5 V, VOUT = 1.24 V  
35  
µA  
ΔVOUT/ΔVIN  
VOUT = 1.24 V, IOUT = 1.5 A  
–0.5%  
–0.2%  
0.5%  
1%  
VIN = 5 V, VOUT = 1.24 V, IOUT = 0 A to 1.5 A,  
referenced to VOUT at IOUT = 0.75 A  
ΔVOUT/ΔIOUT  
Load regulation  
DC + AC at sense point, VIN = 5 V,  
VOUT = 1.24 V, IOUT = 0.45 A to 1.5 A and 1.5 A to  
0.45 A with slew rate of 2.5 A/µs  
Load transient  
regulation  
(1)  
ΔVOUT_TR  
–5%  
5%  
Power Good  
VOUT rising  
108%  
92%  
deassertion threshold  
in percentage of  
target VOUT  
VTH_PG  
VOUT falling  
Power Good  
reassertion hysteresis  
entering back into  
VTH_PG  
VTH_HYS_PG  
VOUT rising or falling  
3
LSW  
CIN  
Output inductance  
0.376  
2.5  
0.47  
10  
0.564  
12  
µH  
µF  
Input bypass  
capacitance  
Output filtering  
capacitance  
COUT  
31  
44  
110  
µF  
BUCK5_DIS[1:0] = 01  
BUCK5_DIS[1:0] = 10  
BUCK5_DIS[1:0] = 11  
100  
200  
500  
Output auto-discharge  
resistance  
RDIS  
Ω
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5.9 Electrical Characteristics: LDOs  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LDOA1  
VIN  
Input voltage  
4.5  
5
1.35  
1.5  
1.6  
1.7  
1.8  
1.9  
2
5.5  
V
IOUT = 10 mA, LDOA1_SEL[3:0] = 0000  
LDOA1_SEL[3:0] = 0001  
LDOA1_SEL[3:0] = 0010  
LDOA1_SEL[3:0] = 0011  
LDOA1_SEL[3:0] = 0100 (TPS650944 default)  
LDOA1_SEL[3:0] = 0101  
LDOA1_SEL[3:0] = 0110  
LDOA1_SEL[3:0] = 0111  
2.1  
2.3  
2.4  
2.5  
2.7  
2.85  
3
VOUT  
DC output voltage  
V
LDOA1_SEL[3:0] = 1000  
LDOA1_SEL[3:0] = 1001  
LDOA1_SEL[3:0] = 1010  
LDOA1_SEL[3:0] = 1011  
LDOA1_SEL[3:0] = 1100  
LDOA1_SEL[3:0] = 1101  
LDOA1_SEL[3:0] = 1110 (TPS650940,  
TPS650941, and TPS650942 default)  
3.3  
VOUT  
Accuracy  
IOUT = 0 to 200 mA  
–2%  
2%  
200  
IOUT  
DC output current  
Line regulation  
mA  
mA  
ΔVOUT/ΔVIN  
IOUT = 40 mA  
–0.5%  
–2%  
0.5%  
2%  
ΔVOUT/ΔIOUT Load regulation  
IOUT = 10 mA to 200 mA  
VIN = 5 V, Measured with output shorted to  
ground  
IOCP  
Overcurrent protection  
500  
Power Good deassertion  
threshold in percentage of target  
VOUT  
VOUT rising  
VOUT falling  
108%  
92%  
VTH_PG  
Power Good reassertion  
hysteresis entering back into  
VTH_PG  
VTH_HYS_PG  
VOUT rising or falling  
IOUT = 0 A  
3%  
IQ  
Quiescent current  
External output capacitance  
ESR  
23  
µA  
µF  
2.7  
4.7  
10  
COUT  
100 mΩ  
LDOA1_DIS[1:0] = 01  
100  
190  
450  
RDIS  
Output auto-discharge resistance LDOA1_DIS[1:0] = 10  
LDOA1_DIS[1:0] = 11  
Ω
20  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Electrical Characteristics: LDOs (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LDOA2  
VOUT  
VDROP  
+
VIN  
Power input voltage  
1.8  
1.98  
V
(1)  
LDOA2_VID[3:0] = 0000 (TPS650944 default)  
LDOA2_VID[3:0] = 0001  
LDOA2_VID[3:0] = 0010  
LDOA2_VID[3:0] = 0011  
LDOA2_VID[3:0] = 0100  
LDOA2_VID[3:0] = 0101  
LDOA2_VID[3:0] = 0110  
LDOA2_VID[3:0] = 0111  
LDOA2_VID[3:0] = 1000  
LDOA2_VID[3:0] = 1001  
0.7  
0.75  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
DC output voltage in normal  
operating mode  
VOUT  
V
1.15  
LDOA2_VID[3:0] = 1010 (TPS650940,  
TPS650941, and TPS650942 default)  
1.2  
LDOA2_VID[3:0] = 1011  
LDOA2_VID[3:0] = 1100  
LDOA2_VID[3:0] = 1101  
LDOA2_VID[3:0] = 1110  
LDOA2_VID[3:0] = 1111  
IOUT = 0 to 600 mA  
1.25  
1.3  
1.35  
1.4  
1.5  
VOUT  
IOUT  
DC output voltage accuracy  
DC output current  
–2%  
3%  
600  
mA  
mV  
VOUT = 0.99 × VOUT_NOM  
IOUT = 600 mA  
,
VDROP  
Dropout voltage  
350  
ΔVOUT/ΔVIN  
Line regulation  
IOUT = 300 mA  
–0.5%  
–2%  
0.5%  
2%  
ΔVOUT/ΔIOUT Load regulation  
IOUT = 10 mA to 600 mA  
IOCP  
Overcurrent protection  
Measured with output shorted to ground  
VOUT rising  
0.65  
1.25  
108%  
92%  
A
Power Good assertion threshold  
in percentage of target VOUT  
VTH_PG  
VOUT falling  
Power Good deassertion  
hysteresis  
VTH_HYS_PG  
IQ  
VOUT falling  
IOUT = 0 A  
3%  
20  
Quiescent current  
µA  
dB  
f = 1 kHz, VIN = 1.8 V, VOUT = 1.2 V,  
IOUT = 300 mA,  
48  
COUT = 2.2 µF to 4.7 µF  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VIN = 1.8 V, VOUT = 1.2 V,  
IOUT = 300 mA,  
30  
dB  
µF  
COUT = 2.2 µF to 4.7 µF  
External output capacitance  
ESR  
2.2  
4.7  
10  
COUT  
100 mΩ  
LDOA2_DIS[1:0] = 01  
80  
180  
475  
RDIS  
Output auto-discharge resistance LDOA2_DIS[1:0] = 10  
LDOA2_DIS[1:0] = 11  
Ω
(1) The minimum value must be equal to or greater than 1.62 V.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: LDOs (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LDOA3  
VOUT  
VDROP  
+
VIN  
Power input voltage  
1.8  
1.98  
V
(1)  
LDOA3_VID[3:0] = 0000 (TPS650944 default)  
LDOA3_VID[3:0] = 0001  
LDOA3_VID[3:0] = 0010  
LDOA3_VID[3:0] = 0011  
LDOA3_VID[3:0] = 0100  
LDOA3_VID[3:0] = 0101  
LDOA3_VID[3:0] = 0110  
LDOA3_VID[3:0] = 0111  
LDOA3_VID[3:0] = 1000  
LDOA3_VID[3:0] = 1001  
LDOA3_VID[3:0] = 1010  
0.7  
0.75  
0.8  
0.85  
0.9  
0.95  
1
1.05  
1.1  
DC output voltage in normal  
operating mode  
VOUT  
V
1.15  
1.2  
LDOA3_VID[3:0] = 1011 (TPS650940,  
TPS650941, and TPS650942 default)  
1.25  
LDOA3_VID[3:0] = 1100  
LDOA3_VID[3:0] = 1101  
LDOA3_VID[1:0] = 1110  
LDOA3_VID[1:0] = 1111  
IOUT = 0 to 600 mA  
1.3  
1.35  
1.4  
1.5  
VOUT  
IOUT  
IOCP  
DC output voltage accuracy  
DC output current  
–2%  
0.65  
3%  
600  
mA  
A
Overcurrent protection  
Measured with output shorted to ground  
1.25  
VOUT = 0.99 × VOUT_NOM  
IOUT = 600 mA  
,
VDROP  
Dropout voltage  
Line regulation  
350  
mV  
ΔVOUT/ΔVIN  
IOUT = 300 mA  
IOUT = 10 mA to 600 mA  
VOUT rising  
–0.5%  
–2%  
0.5%  
2%  
ΔVOUT/ΔIOUT Load regulation  
108%  
92%  
Power Good assertion threshold  
in percentage of target VOUT  
VTH_PG  
VOUT falling  
Power Good deassertion  
hysteresis  
VTH_HYS_PG  
IQ  
VOUT falling  
IOUT = 0 A  
3%  
20  
Quiescent current  
µA  
dB  
µF  
f = 1 kHz, VIN = 1.8 V,  
VOUT = 1.2 V,  
IOUT = 300 mA,  
48  
COUT = 2.2 µF to 4.7 µF  
PSRR  
Power supply rejection ratio  
f = 10 kHz, VIN = 1.8 V,  
VOUT = 1.2 V,  
IOUT = 300 mA,  
30  
COUT = 2.2 µF to 4.7 µF  
External output capacitance  
ESR  
2.2  
4.7  
10  
COUT  
100 mΩ  
LDOA3_DIS[1:0] = 01  
80  
180  
475  
RDIS  
Output auto-discharge resistance LDOA3_DIS[1:0] = 10  
LDOA3_DIS[1:0] = 11  
Ω
22  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Electrical Characteristics: LDOs (continued)  
over recommended input voltage range, TA = –40°C to +85°C and TA = 25°C for typical values (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VTT LDO  
VIN  
Power input voltage  
DC output voltage  
VDDQ  
VIN / 2  
3.3  
V
V
Measured at VTTFB pin  
VOUT  
Relative to VIN / 2, IOUT = 100 mA,  
1.1 V VIN 1.5 V  
DC output voltage accuracy  
–10  
–500  
–500  
–1800  
–10  
10  
500  
500  
1800  
10  
mV  
mA  
DC Output Current (RMS Value  
Over Operation)  
1.1 V VIN 1.5 V  
0
source(+) and sink(–): LPDDR3 and LPDDR4  
OTPs, 1.1 V VIN 1.5 V  
IOUT  
Pulsed Current (Duty Cycle  
Limited to Remain Below DC  
RMS Specification)  
mA  
source(+) and sink(–): DDR3L OTPs, 1.1 V ≤  
VIN 1.5 V  
Relative to VIN / 2, IOUT 10 mA,  
1.1 V VIN 1.5 V  
Relative to VIN / 2, IOUT 500 mA,  
1.1 V VIN 1.5 V  
–20  
20  
ΔVOUT/ΔIOUT Load regulation  
mV  
Relative to VIN / 2, IOUT 1200 mA,  
1.1 V VIN 1.5 V  
–30  
30  
Relative to VIN / 2, IOUT 1800 mA,  
1.1 V VIN 1.5 V  
–40  
40  
DC + AC at sense point, 1.1 V VIN 1.5 V,  
(IOUT = 0 to 350 mA and 350 mA to 0) AND  
(0 to –350 mA and –350 mA to 0) with 1 µs of  
rise and fall time  
ΔVOUT_TR  
Load transient regulation  
–5%  
5%  
COUT = 40 µF  
Measured with output shorted to ground: OTPs  
with VTT ILIM = 0.95 A  
0.95  
1.8  
IOCP  
Overcurrent protection  
A
Measured with output shorted to ground: OTPs  
with VTT ILIM = 1.8 A  
Power Good deassertion  
threshold in percentage of target  
VOUT  
VOUT rising  
VOUT falling  
110%  
95%  
VTH_PG  
Power Good reassertion  
hysteresis entering back into  
VTH_PG  
VTH_HYS_PG  
VOUT rising or falling  
5%  
IQ  
Total ground current  
VIN = 1.2 V, IOUT = 0 A  
VIN = 1.2 V, disabled  
240  
1
µA  
µA  
µF  
µF  
ILKG  
CIN  
COUT  
OFF leakage current  
External input capacitance  
External output capacitance  
10  
35  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
MAX UNIT  
5.10 Electrical Characteristics: Load Switches  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
SWA1  
VIN  
Input voltage range  
DC output current  
0.5  
1.8  
3.3  
V
IOUT  
300  
mA  
VIN = 1.8 V, measured from PVINSWA1 pin  
to SWA1 pin at IOUT = IOUT(MAX)  
60  
93  
RDSON  
ON resistance  
mΩ  
VIN = 3.3 V, measured from PVINSWA1 pin  
to SWA1 pin at IOUT = IOUT(MAX)  
100  
165  
VOUT rising  
VOUT falling  
108%  
92%  
Power Good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
VTH_HYS_PG  
IINRUSH  
Power Good reassertion hysteresis  
entering back into VTH_PG  
VOUT rising or falling  
2%  
Inrush current upon turnon  
VIN = 3.3 V, COUT = 0.1 µF  
VIN = 3.3 V, IOUT = 0 A  
10  
mA  
µA  
10.5  
9
IQ  
Quiescent current  
VIN = 1.8 V, IOUT = 0 A  
Switch disabled, VIN = 1.8 V  
Switch disabled, VIN = 3.3 V  
7
370  
900  
ILKG  
Leakage current  
nA  
µF  
10  
COUT  
External output capacitance  
0.1  
100  
200  
500  
SWA1_DIS[1:0] = 01  
SWA1_DIS[1:0] = 10  
SWA1_DIS[1:0] = 11  
RDIS  
Output auto-discharge resistance  
Ω
SWB1_2  
VIN  
Input voltage range  
0.5  
1.8  
3.3  
V
IOUT  
DC current per output  
400  
mA  
VIN = 1.8 V, measured from PVINSWB1_B2  
pin to SWB1 or SWB2 pin at IOUT  
IOUT(MAX)  
=
68  
75  
92  
RDSON  
ON resistance per output  
mΩ  
VIN = 3.3 V, measured from PVINSWB1_B2  
pin to SWB1 or SWB2 pin at IOUT  
IOUT(MAX)  
=
125  
VOUT rising  
VOUT falling  
108%  
92%  
Power Good deassertion threshold in  
percentage of target VOUT  
VTH_PG  
VTH_HYS_PG  
IINRUSH  
Power Good reassertion hysteresis  
entering back into VTH_PG  
VOUT rising or falling  
2%  
Inrush current upon turning on  
VIN = 3.3 V, COUT = 0.1 µF  
VIN = 3.3 V, IOUT = 0 A  
10  
mA  
µA  
10.5  
9
IQ  
Quiescent current  
VIN = 1.8 V, IOUT = 0 A  
Switch disabled, VIN = 1.8 V  
Switch disabled, VIN = 3.3 V  
7
460  
ILKG  
Leakage current  
nA  
µF  
10  
1150  
COUT  
External output capacitance  
0.1  
100  
200  
500  
SWBx_DIS[1:0] = 01  
SWBx_DIS[1:0] = 10  
SWBx_DIS[1:0] = 11  
RDIS  
Output auto-discharge resistance  
Ω
24  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
5.11 Digital Signals: I2C Interface  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
Low-level output voltage  
High-level input voltage  
Low-level input voltage  
Leakage current  
TEST CONDITIONS  
VPULL_UP = 1.8 V  
MIN  
TYP  
MAX UNIT  
VOL  
VIH  
VIL  
0.4  
V
V
1.2  
0.4  
0.3  
8.5  
2.5  
1
V
ILKG  
VPULL_UP = 1.8 V  
Standard mode  
Fast mode  
0.01  
µA  
RPULL-UP Pullup resistance  
kΩ  
Fast mode plus  
COUT  
Total load capacitance per pin  
50  
pF  
5.12 Digital Input Signals (LDOLS_EN, SWA1_EN, THERMTRIPB, PMICEN, SLP_S3B,  
SLP_S4B, SLP_S0B)  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
High-level input voltage  
Low-level input voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
VIL  
0.85  
V
0.4  
V
5.13 Digital Output Signals (IRQB, RSMRSTB, PCH_PWROK, PROCHOT)  
Over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
Low-level output voltage  
Leakage current  
TEST CONDITIONS  
IOL < 2 mA  
VPULL_UP = 1.8 V  
MIN  
TYP  
MAX UNIT  
VOL  
ILKG  
0.4  
V
0.35  
µA  
5.14 Timing Requirements  
over recommended free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
kHz  
ns  
I2C INTERFACE  
Clock frequency (standard mode)  
100  
400  
fCLK  
Clock frequency (fast mode)  
Clock frequency (fast mode plus)  
Rise time (standard mode)  
Rise time (fast mode)  
1000  
1000  
300  
tr  
Rise time (fast mode plus)  
Rise time (standard mode)  
Rise time (fast mode)  
120  
300  
tf  
300  
ns  
Rise time (fast mode plus)  
120  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
5.15 Switching Characteristics  
over operating free-air temperature range and over recommended input voltage range (typical values are at TA = 25°C)  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
BUCK CONTROLLERS  
Measured from enable going high to when output reaches 90% of  
target value.  
tPG  
Total turnon time  
550  
50  
850  
µs  
ns  
Minimum ON time  
of DRVH  
TON,MIN  
DRVH off to DRVL on  
DRVL off to DRVH on  
15  
30  
TDEAD  
fSW  
Driver dead-time  
ns  
Switching  
frequency  
Continuous-conduction mode,  
VIN = 13 V, VOUT 1 V  
1000  
kHz  
BUCK CONVERTERS  
Measured from enable going high to when output reaches 90% of  
tPG  
Total turnon time  
target value.  
250  
1000  
µs  
VOUT = 1 V, COUT = 88 µF  
Continuous-conduction mode, BUCK3 VOUT = 1 V, IOUT = 1 A  
Continuous-conduction mode, BUCK3 VOUT = 1.05 V, IOUT = 1 A  
Continuous-conduction mode, BUCK4 VOUT = 1.8 V, IOUT = 1 A  
Continuous-conduction mode, BUCK5 VOUT = 1.24 V, IOUT = 1 A  
Continuous-conduction mode, BUCK5 VOUT = 1.35 V, IOUT = 1 A  
1.6  
1.7  
2.5  
2.4  
2.5  
Switching  
frequency  
fSW  
MHz  
LDOAx  
Measured from enable going high to when output reaches 95% of  
tSTARTUP Start-up time  
final value,  
VOUT = 1.2 V, COUT = 4.7 µF  
180  
22  
µs  
µs  
VTT LDO  
Measured from enable going high to PG assertion,  
VOUT = 0.675 V, COUT = 40 µF  
tSTARTUP Start-up time  
SWA1  
Measured from enable going high to reach 95% of final value,  
VIN = 3.3 V, COUT = 0.1 µF  
0.85  
0.63  
tTURN-ON Turnon time  
SWB1_2  
ms  
ms  
Measured from enable going high to reach 95% of final value,  
VIN = 1.8 V, COUT = 0.1 µF  
Measured from enable going high to reach 95% of final value,  
VIN = 3.3 V, COUT = 0.1 µF  
1.1  
tTURN-ON Turnon time  
Measured from enable going high to reach 95% of final value,  
VIN = 1.8 V, COUT = 0.1 µF  
0.82  
26  
Specifications  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
5.16 Typical Characteristics  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
68%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
74%  
72%  
70%  
VSYS = 5.4 V  
VSYS = 13 V  
VSYS = 18 V  
VSYS = 5.4 V  
VSYS = 13 V  
VSYS = 18 V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
3
6
9
12  
15  
18  
21  
Output Load (A)  
Output Load (A)  
D001  
D002  
Figure 5-1. BUCK1 (VNN) Efficiency at VOUT = 1 V  
Figure 5-2. BUCK2 (VCCGI) Efficiency at VOUT = 1 V  
92%  
91%  
VSYS = 5.4 V  
VSYS = 13 V  
VSYS = 18 V  
PVIN = 4.5 V  
PVIN = 5 V  
PVIN = 5.5 V  
89%  
87%  
85%  
83%  
81%  
79%  
77%  
75%  
73%  
71%  
69%  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
0
1
2
3
4
5
6
7
0
0.5  
1
1.5  
2
2.5  
3
Output Load (A)  
Output Load (A)  
D011  
D003  
Figure 5-3. BUCK6 (VDDQ) Efficiency at VOUT = 1.2 V  
Figure 5-4. BUCK3 (VCCRAM) Efficiency at VOUT = 1.05 V  
92%  
90%  
PVIN = 4.5 V  
PVIN = 5 V  
PVIN = 5.5 V  
PVIN = 4.5 V  
PVIN = 5 V  
PVIN = 5.5 V  
89%  
91%  
90%  
89%  
88%  
87%  
86%  
85%  
84%  
83%  
88%  
87%  
86%  
85%  
84%  
83%  
82%  
81%  
80%  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
0
0.25  
0.5  
0.75  
1
1.25  
1.5  
Output Load (A)  
Output Load (A)  
D004  
D005  
Figure 5-5. BUCK4 (V1P8A) Efficiency at VOUT = 1.8 V  
Figure 5-6. BUCK5 (V1P24A) Efficiency at VOUT = 1.24 V  
Copyright © 2015–2019, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6 Detailed Description  
6.1 Overview  
The TPS65094x device provides all the necessary power supplies for the Intel Reference Designs. For an  
overview of the different OTP configurations, consult Table 3-1. The following VRs are integrated: three  
step-down controllers (BUCK1, BUCK2, and BUCK6), three step-down converters (BUCK3, BUCK4, and  
BUCK5), a sink and source LDO (VTT LDO), three low-voltage VIN LDOs (LDOA1–LDOA3), and three  
load switches that are managed by power-up sequence logic to provide the proper power rails,  
sequencing, and protection. All VRs have a built-in discharge resistor, and the value can be changed by  
the DISCHCNT1–DISCHCNT3 and LDOA1_CTRL registers. When enabling a VR, the PMIC automatically  
disconnects the discharge resistor for that rail without any I2C command. Table 6-1 summarizes the key  
characteristics of the voltage rails.  
Table 6-1. Summary of Voltage Regulators  
INPUT VOLTAGE  
(V)  
OUTPUT VOLTAGE RANGE  
(V)  
TYPICAL  
APPLICATION  
CURRENT  
(mA)  
RAIL  
TYPE  
MIN  
MAX  
MIN  
TYP  
MAX  
BUCK1 (VNN)  
Step-down controller  
4.5  
4.5  
21  
21  
0.5  
0.5  
1.05  
1
1.67  
1.67  
5000  
BUCK2 (VCCGI) Step-down controller  
21000  
BUCK3  
Step-down converter  
(VCCRAM)  
4.5  
5.5  
0.65  
1.05  
3.575  
3000  
BUCK4 (V1P8A) Step-down converter  
BUCK5 (V1P24A) Step-down converter  
4.5  
4.5  
5.5  
5.5  
21  
0.65  
0.5  
1.8  
3.575  
1.67  
1.67  
3.3  
1500  
1900  
1.24  
BUCK6 (VDDQ)  
LDOA1  
Step-down controller  
LDO  
4.5  
0.5  
OTP dependent  
OTP dependent  
OTP dependent  
OTP dependent  
7000  
200(1)  
4.5  
5.5  
1.98  
1.98  
3.3  
3.3  
1.35  
0.7  
LDOA2  
LDO  
1.62  
1.62  
0.5  
1.5  
600  
LDOA3  
LDO  
0.7  
1.5  
600  
SWA1  
SWB1_2(2)  
Load switch  
Load switch  
300  
0.5  
800 (combined)  
Sink and source  
LDO  
VTT  
BUCK6 output  
VBUCK6 / 2  
OTP dependent  
(1) When powered from a 5-V supply through the DRV5V_2_A1 pin. Otherwise, maximum current is limited by maximum IOUT of LDO5.  
(2) For LPDDR3 and LPDDR4 memory, SWB1_2 is configured to V1P8U and controlled by SLP_S4B. For DDR3L memory, SWB1_2 is  
configured to either V3P3S or V1P8S and controlled by SLP_S3B.  
28  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.2 Functional Block Diagram  
Figure 6-1 shows a functional block diagram of the PMIC.  
Optional(a)  
Required(b)  
LDO5V  
VSYS  
BOOT1  
DRVH1  
EC  
LDOA1  
PMICEN  
BUCK1  
Default: 1V  
1.35 V to 3.3 V  
1.8 V(b)  
SW1  
SLP_S3B  
SLP_S4B  
200 mA  
VNN  
VSET  
EN  
Typical  
Application  
Usage:  
0.5 V to 1.45 V  
(DVS)  
DRVL1  
EN  
SLP_S0B  
Control  
FBVOUT1  
LDOLS_EN(a)  
Inputs  
PGNDSNS1  
SWA1_EN(b)  
5 A  
ILIM1  
THERMTRIPB  
V1P8A  
VSYS  
BOOT2  
DRVH2  
CLK  
I2C CTRL  
BUCK2  
Default: 0V  
SW2  
SoC  
DATA  
VCCGI  
VSET  
EN  
V1P8A  
DRVL2  
Typical  
Application  
Usage:  
Control  
Outputs  
FBVOUT2  
0.5 V to 1.45 V  
(DVS)  
PGNDSNS2  
IRQB  
21 A  
PCH_PWROK  
RSMRSTB  
PROCHOT  
GPO  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
BUCK5V  
PVIN3  
LX3  
TEST CTRL  
OTP  
VSET  
EN  
BUCK3  
Default: 1.05 V  
3 A  
VCCRAM  
FB3  
REGISTERS  
<PGND_BUCK3>  
BUCK5V  
BUCK5V  
PVIN4  
LX4  
VSYS  
VSYS  
BUCK4  
Default: 1.8 V  
2 A  
Digital Core  
VSET  
EN  
V1P8A  
V5ANA  
LDO5  
BUCK5V  
FB4  
<PGND_BUCK4>  
LDO5V  
nPUC  
LDO3P3  
VREF  
REFSYS  
PVIN5  
LX5  
VSET  
EN  
BUCK5  
Default: 1.24 V  
2 A  
V1P24A  
FB5  
<PGND_BUCK5>  
AGND  
VSYS  
Thermal  
monitoring  
BOOT6  
DRVH6  
Thermal shutdown  
SW6  
BUCK6  
Default: OTP  
Dependent  
7 A  
VDDQ  
VSET  
EN  
DRVL6  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVINVTT  
VTT  
VTT_LDO  
½ × VDDQ  
ILIM set by OTP  
VTT  
EN  
VTTFB  
LDOA2  
0.7 V to 1.5 V  
600 mA  
LDOA3  
0.7 V to 1.5 V  
600 mA  
LOAD SWA1  
300 mA  
LOAD SWB1  
400 mA  
LOAD SWB2  
400 mA  
V1P8A(1)  
0.5 V to 3.3 V(2)  
0.5 V to 3.3 V  
Dashed connections optional.  
Refer to Pin Attributes for  
connection if unused.  
(1) LPDDR3 and LPDDR4  
(2) DDR3L  
(a) LDOA1 Not —Always On“  
(b) LDOA1 —Always On“  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-1. PMIC Functional Block Diagram  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
29  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
PMIC  
SoC  
PLATFORM  
VSYS  
LDO5P0  
BUCK1 5 A  
BUCK2 21 A  
BUCK3 3 A  
EXT FET  
VSYS  
VNN  
EXT FET  
VCCGI  
VCCRAM  
V1P8A  
VSYS  
BUCK  
5 V  
BUCK4 2 A  
BUCK  
3.3 V  
BUCK5 2 A  
V1P24A  
VDDQ  
VSYS  
VDDQ  
BUCK6 7 A  
EXT FET  
VTT LDO 1.5 A  
LDOA2 0.6 A  
LDOA3 0.6 A  
SWA1 0.3 A  
SWB1 0.4 A  
SWB2 0.4 A  
LDOA1 0.2 A  
LDO5 0.18 A  
VTT  
V1P8A  
0.7 V to 1.5 V  
0.7 V to 1.5 V  
0.5 V to 3.3 V  
0.5 V to 3.3 V  
V1P8A(1)  
V1P8U(1)  
800 mA  
0.5 V to 3.3 V(2)  
0.5 V to 3.3 V(2)  
1.35 V to 3.3 V(a)  
1.8 V(b)  
LDO5P0  
VSYS  
+
REF  
PG_5V  
LDO3P3 0.04 A  
IRQB  
SLP_S4B  
SLP_S3B  
SLP_S0B  
RSMRSTB  
PCH_PWROK  
THERMTRIPB  
PROCHOT  
DATA  
PMICEN  
LDOLS_EN(a)  
SWA1_EN(b)  
(1) LPDDR3 and LPDDR4  
(2) DDR3L  
(a) LDOA1 Not —Always On“  
(b) LDOA1 —Always On“  
SCLK  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-2. Apollo Lake Power Map  
30  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.3 Feature Description  
6.3.1 Power Good (PGOOD)  
The TPS65094x device provides information on status of VRs through two Power Good signals or pins.  
Table 6-2 defines which signals are required to assert the PGOOD signals.  
Table 6-2. Power Good Summary  
QUALIFYING SIGNALS (LOGICAL AND)  
POWER GOOD(1)  
RSMRSTB  
PCH_PWROK  
(1) All Power Good signals must immediately deassert at the loss of any of the qualifying signals, or at the occurrence of a fault condition.  
6.3.2 Register Reset Conditions  
All registers are reset if any of the following conditions are met:  
VSYS pin voltage drops below 5.4 V  
Falling edge of PMICEN for OTPs where LDOA1 is not "Always On"  
Falling edge of THERMTRIPB while RSMRSTB = 1  
Power fault of any regulator where xx_FLTMSK = 0 (see Section 6.6.27, PWR_FAULT_MASK1  
Register, and Section 6.6.28, PWR_FAULT_MASK2 Register)  
PMIC critical temperature shutdown  
Software shutdown (writing 1 to the SDWN bit in the FORCESHUTDN register, see Figure 6-35)  
Additionally, BUCK1 and BUCK2 VID registers are reset on the falling edge of SLP_S0IXB and SLP_S3B.  
6.3.3 SMPS Voltage Regulators  
The buck controllers integrate gate drivers for external power stages with programmable current limit (set  
by an external resistor at ILIMx pin), which allows for optimal selection of external passive components  
based on the desired system load. The buck converters include integrated power stage and require a  
minimum number of pins for power input, inductor, and output voltage feedback input. Combined with  
high-frequency switching, all these features allow use of inductors in small form factor, thus reducing the  
total cost and size of the system.  
BUCK3–BUCK6 have selectable auto- and forced-PWM mode through the BUCKx_MODE bit in the  
BUCKxCTRL register. In default auto mode, the VR automatically switches between PWM and PFM  
depending on the output load to maximize efficiency. The host cannot select Forced PWM mode for other  
SMPS VRs as they stay in auto mode at all times.  
See Table 6-3 and Table 6-4 for the full voltage tables for all SMPS regulators.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
31  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 6-3. 10-mV Step-Size VOUT Range (BUCK1, BUCK2, BUCK5, BUCK6)  
VID Bits  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
VOUT  
0
VID Bits  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
VOUT  
0.92  
0.93  
0.94  
0.95  
0.96  
0.97  
0.98  
0.99  
1.00  
1.01  
1.02  
1.03  
1.04  
1.05  
1.06  
1.07  
1.08  
1.09  
1.10  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.20  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.30  
1.31  
1.32  
1.33  
1.34  
VID Bits  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
VOUT  
1.35  
1.36  
1.37  
1.38  
1.39  
1.40  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.50  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.60  
1.61  
1.62  
1.63  
1.64  
1.65  
1.66  
1.67  
1.67  
1.67  
1.67  
1.67  
1.67  
1.67  
1.67  
1.67  
1.67  
0.50  
0.51  
0.52  
0.53  
0.54  
0.55  
0.56  
0.57  
0.58  
0.59  
0.60  
0.61  
0.62  
0.63  
0.64  
0.65  
0.66  
0.67  
0.68  
0.69  
0.70  
0.71  
0.72  
0.73  
0.74  
0.75  
0.76  
0.77  
0.78  
0.79  
0.80  
0.81  
0.82  
0.83  
0.84  
0.85  
0.86  
0.87  
0.88  
0.89  
0.90  
0.91  
32  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Table 6-4. 25-mV Step-Size VOUT Range (BUCK3, BUCK4)  
VID Bits  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
VOUT  
0
VID Bits  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
VOUT  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
1.900  
1.925  
1.950  
1.975  
2.000  
2.025  
2.050  
2.075  
2.100  
2.125  
2.150  
2.175  
2.200  
2.225  
2.250  
2.275  
2.300  
2.325  
2.350  
2.375  
2.400  
2.425  
2.450  
2.475  
2.500  
2.525  
2.550  
2.575  
2.600  
2.625  
2.650  
2.675  
2.700  
2.725  
2.750  
VID Bits  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
VOUT  
2.775  
2.800  
2.825  
2.850  
2.875  
2.900  
2.925  
2.950  
2.975  
3.000  
3.025  
3.050  
3.075  
3.100  
3.125  
3.150  
3.175  
3.200  
3.225  
3.250  
3.275  
3.300  
3.325  
3.350  
3.375  
3.400  
3.425  
3.450  
3.475  
3.500  
3.525  
3.550  
3.575  
3.575  
3.575  
3.575  
3.575  
3.575  
3.575  
3.575  
3.575  
3.575  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
33  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.3.3.1 Controller Overview  
The controllers are fast-reacting, high-frequency, scalable output power controllers capable of driving two  
external N-MOSFETs. They use a D-CAP2 control scheme that optimizes transient responses at high load  
currents for such applications as CORE and DDR supplies. The output voltage is compared with internal  
reference voltage after divider resistors. The PWM comparator determines the timing to turn on the high-  
side MOSFET. The PWM comparator response maintains a very small PWM output ripple voltage.  
Because the device does not have a dedicated oscillator for control loop on board, switching cycle is  
controlled by the adaptive ON time circuit. The ON time is controlled to meet the target switching  
frequency by feed-forwarding the input and output voltage into the ON time one-shot timer.  
The D-CAP2 control scheme has an injected ripple from the SW node that is added to the reference  
voltage to simulate output ripple, which eliminates the need for ESR-induced output ripple from D-CAP™  
mode control. Thus, low-ESR output capacitors (such as low-cost ceramic MLCC capacitors) can be used  
with the controllers.  
VDD  
VREF œ VTH_PG  
+
UV  
PGOOD  
FAULT  
EN  
œ
PGOOD  
+
DCHG  
VFB  
OV  
VREF + VTH_PG  
œ
+
+
Control Logic  
œ
+
+
PWM  
Ramp Generator  
REF  
BOOTx  
DRVHx  
SWx  
SS Ramp Comp  
HS  
VSYS  
XCON  
œ
OC  
DRV5V_x_x  
œ
50 µA  
+
+
ILIM  
LS  
DRVLx  
œ
NOC  
+
PGNDSNSx  
One-Shot  
GND  
+
ZC  
œ
PMIC Internal Signals  
External Inputs/Outputs  
Copyright © 2017, Texas Instruments Incorporated  
Figure 6-3. Controller Block Diagram  
34  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.3.3.2 Converter Overview  
The PMIC synchronous step-down DC-DC converters include a unique hysteretic PWM control scheme  
which enables a high switching frequency converter, excellent transient and AC load regulation, as well as  
operation with cost-competitive external components. The controller topology supports forced PWM mode  
as well as power-save mode operation. Power-save mode operation, or PFM mode, reduces the quiescent  
current consumption and ensures high conversion efficiency at light loads by skipping switch pulses. In  
forced PWM mode, the device operates on a quasi-fixed frequency, avoids pulse skipping, and allows  
filtering of the switch noise by external filter components. The PMIC device offers fixed output voltage  
options featuring smallest solution size by using only three external components per converter.  
A significant advantage of PMIC compared to other hysteretic PWM controller topologies is the excellent  
capability of the AC load transient regulation. When the output voltage falls below the threshold of the  
error comparator, a switch pulse is initiated, and the high-side switch is turned on. The high-side switch  
remains turned on until a minimum ON-time of tONmin expires and the output voltage trips the threshold of  
the error comparator or the inductor current reaches the high-side switch current limit. When the high-side  
switch turns off, the low-side switch rectifier is turned on and the inductor current ramps down until the  
high-side switch turns on again or the inductor current reaches zero. In forced PWM mode operation,  
negative inductor current is allowed to enable continuous conduction mode even at no load condition.  
PVINx  
VREF  
0.40 V  
Current  
Limit Comparator  
Bandgap  
Limit  
High Side  
MODE / EN  
Softstart  
MODE  
NMOS  
NMOS  
VIN  
FB  
Gate Driver  
Anti  
Shoot-Through  
Min. ON Time  
Control  
Logic  
LXx  
EN  
Min. OFF Time  
VREF  
Limit  
Low Side  
FBx  
Integrated  
Feed Back  
Network  
Error  
Comparator  
Zero/Negative  
Current Limit Comparator  
PGND/Thermal Pad  
PMIC Internal Signals  
External Inputs/Outputs  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-4. Converter Block Diagram  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.3.3.3 DVS  
BUCK1–BUCK6 and LDOA1–3 support dynamic voltage scaling (DVS) for maximum system efficiency.  
The VR outputs can slew up and down in either 10-mV or 25-mV steps using the 7-bit voltage ID (VID)  
defined in Section 5.7, Electrical Characteristics: Buck Controllers, and Section 5.8, Electrical  
Characteristics: Synchronous Buck Converters. DVS slew rate is minimum 2.5 mV/µs. To meet the  
minimum slew rate, VID progresses to the next code at 3-µs (nom) interval per 10-mV step. When DVS is  
active, the VR is forced into PWM mode to ensure the output keeps track of VID code with minimal delay.  
Additionally, PGOOD is masked when DVS is in progress. Figure 6-5 shows an example of slew down  
and up from one VID to another.  
VID  
Number of Steps × 3 µs  
VOUT  
Figure 6-5. DVS Timing Diagram I  
As shown in Figure 6-6, if a BUCKx_VID[6:0] is set to 7b000 0000, the output voltage slews down to 0.5 V  
first, and then drifts down to 0 V as the SMPS stops switching. Subsequently, if a BUCKx_VID[6:0] is set  
to a value (neither 7b000 0000 nor 7b000 0001) when the output voltage is less than 0.5 V, the VR ramps  
up to 0.5 V first with soft-start kicking in, then it slews up to the target voltage in the aforementioned slew  
rate.  
NOTE  
A fixed 200 µs of soft-start time is reserved for VOUT to reach 0.5 V. In this case, however,  
the SMPS is not forced into PWM mode because it otherwise could cause VOUT to droop  
momentarily if VOUT is drifting above 0.5 V for any reason.  
VID  
Number of  
Steps × 3 µs  
VOUT  
Load and Time  
Dependent  
200 µs  
Figure 6-6. DVS Timing Diagram II  
36  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.3.3.4 Current Limit  
The buck controllers (BUCK1, BUCK2, and BUCK6) have inductor-valley current-limit architecture and the  
current limit is programmable by an external resistor at the ILIMx pin. Equation 1 shows the calculation for  
a desired resistor value, depending on specific application conditions. ILIMREF is the current source out of  
the ILIMx pin that is typically 50 µA, and RDSON is the maximum channel resistance of the low-side FET.  
The scaling factor is 1.3 to take into account all errors and temperature variations of RDSON, ILIMREF, and  
RILIM. Finally, 8 is another scaling factor associated with ILIMREF  
.
Iripple(min)  
÷
RDSON ì 8 ì 1.3 ì I  
-
LIM  
2
«
RILIM  
=
ILIMREF  
where  
ILIM is the target current limit. An appropriate margin must be allowed when determining ILIM from  
maximum output DC load current.  
Iripple(min) is the minimum peak-to-peak inductor ripple current for a given VOUT  
.
(1)  
VOUT (V  
- VOUT )  
IN(MIN)  
Iripple(min)  
=
Lmax ì V  
ì fsw(max)  
IN(MIN)  
where  
Lmax is maximum inductance  
fsw(max) is maximum switching frequency  
VIN(MIN) minimum input voltage to the external power stage  
(2)  
The buck converter limit inductor peak current cycle-by-cycle to IIND_LIM is specified in Section 5.8,  
Electrical Characteristics: Synchronous Buck Converters.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.3.4 LDOs and Load Switches  
6.3.4.1 VTT LDO  
Powered from the BUCK6 output (VDDQ), the VTT LDO tracks VDDQ and regulates to half of the VDDQ  
voltage for proper DDR termination. The LDO current limit is OTP dependent, and it is designed  
specifically to power DDR memory. The VTT LDO is enabled by assertion (L H) of the SLP_S0B pin  
and is disabled by deassertion (H L) of the same pin. The LDO core is a transconductance amplifier  
with large gain, and it drives a current output stage that either sources or sinks current depending on the  
deviation of VTTFB pin voltage from the target regulation voltage.  
6.3.4.2 LDOA1–LDOA3  
The TPS65094x device integrates three optional general-purpose LDOs. LDOA1 is powered from a 5-V  
supply through the DRV5V_2_A1 pin and it can be factory configured to be an Always-On rail as long as a  
valid power supply is available at VSYS. See Table 6-5 for LDOA1 output voltage options. LDOA2 and  
LDOA3 share a power input pin (PVINLDOA2_A3). The output regulation voltages are set by writing to  
LDOAx_VID[3:0] bits (Reg 0x9A, 0x9B, and 0xAE). See Table 6-6 for LDOA2 and LDOA3 output voltage  
options. LDOA1 is controlled by LDOA1CTRL register. LDOA2 and LDOA3 can be controlled either by the  
LDOLS_EN pin or by writing to the LDOA2_EN bit (Reg 0xA0) and the LDOA3_EN bit (Reg 0xA1) as long  
as LDOLS_EN is low.  
Table 6-5. LDOA1 Output Voltage Options  
VID Bits  
0000  
VOUT  
1.35  
1.5  
VID Bits  
0100  
VOUT  
1.8  
VID Bits  
1000  
VOUT  
2.3  
VID Bits  
1100  
VOUT  
2.85  
0001  
0101  
1.9  
1001  
2.4  
1101  
3.0  
0010  
1.6  
0110  
2.0  
1010  
2.5  
1110  
3.3  
0011  
1.7  
0111  
2.1  
1011  
2.7  
1111  
Not Used  
Table 6-6. LDOA2 and LDOA3 Output Voltage Options  
VID Bits  
0000  
VOUT  
0.70  
0.75  
0.80  
0.85  
VID Bits  
0100  
VOUT  
0.90  
0.95  
1.00  
1.05  
VID Bits  
1000  
VOUT  
1.10  
1.15  
1.20  
1.25  
VID Bits  
1100  
VOUT  
1.30  
1.35  
1.40  
1.50  
0001  
0101  
1001  
1101  
0010  
0110  
1010  
1110  
0011  
0111  
1011  
1111  
38  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.3.4.3 Load Switches  
The PMIC features three general-purpose load switches. SWA1 has a power input pin (PVINSWA1), while  
SWB1 and SWB2 share a power input pin (PVINSWB1_B2). All switches have built-in slew rate control  
during start-up to limit the inrush current.  
Table 6-7 lists the control signals for enabling and disabling each LDO and load switch.  
Table 6-7. Summary of LDO and Load Switch Control  
CONTROL SIGNAL  
SLP_S4B or SLP_S3B(1)  
LDOLS_EN(2)  
RAIL  
SWB1_2  
LDOA2, LDOA3, SWA1  
SWA1  
SWA1_EN(3)  
SLP_S0B(4)  
VTT LDO  
(1) For LPDDR3 and LPDDR4 memory, SWB1_2 is configured to  
V1P8U and controlled by SLP_S4B. For DDR3L memory, SWB1_2  
is configured to either V3P3S or V1P8S and controlled by SLP_S3B.  
(2) When LDOLS_EN = 0, the user can write to enable bits in Reg  
0xA0–Reg 0xA1 to enable or disable the rails. Alternatively, all of  
them could be factory configured to be part of sequence along with  
other voltage rails. Pin name changed to SWA1_EN when LDOA1 is  
factory programmed to always on.  
(3) When SWA1_EN = 0, the user can write to enable bits in Reg  
0xA0–Reg 0xA1 to enable or disable the rails. Alternatively, all of  
them could be factory configured to be part of sequence along with  
other voltage rails. Pin name changed to LDOLS_EN when LDOA1  
is not factory programmed to always on.  
(4) BUCK6_PG should be asserted as well.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.3.5 Power Sequencing and VR Control  
When a valid power source is available at VSYS (VSYS 5.6 V), internal analog blocks including LDO5  
and LDO3P3 are enabled. For part numbers with LDOA1 set as an always on rail, the PMIC leaves reset  
and I2C communication is available as soon as LDO3P3 and LDO5 power goods are confirmed. For part  
numbers with LDOA1 set as a general-purpose LDO, the PMIC remains in reset until PMICEN is set high.  
Five input pins of the TPS65094x device are driven by a host or by external-controller (EC) defined power  
states that transition from one to another in sequence.  
Table 6-8 shows various system-level power states. Also, Table 6-9 summarizes a list of active rails in  
each power state. The sequencing for the transitions between these states is described in the following  
sections.  
If a rail is either disabled by I2C or OTP programming, then it is not enabled by the following sequences.  
For example, VTT LDO is not enabled for LPDDR4 OTPs.  
Table 6-8. Power State and Corresponding I/O Status  
SIGNALS TO PMIC  
SIGNALS FROM PMIC  
POWER  
STATE  
PMICEN  
SLP_S4B(1)  
SLP_S3B(1)  
SLP_S0B(2)  
THERMTRIPB(3)  
RSMRSTB PCH_PWROK  
G3  
0
1
1
1
1
0
0
1
1
1
0
0
0
1
1
0
1
1
0
1
0
1
1
1
1
0
1
1
1
1
0
0
0
1
1
S4/S5  
S3  
S0iX  
S0  
(1) When PMIC is first enabled, SLP_S4B and SLP_S3B are to be treated as if they are low (actual state of signal ignored) until the  
deassertion of RSMRSTB (L H).  
(2) When PMIC is first enabled, SLP_S0B are to be treated as if they are high (actual state of signal ignored) until the assertion of  
PCH_PWROK (L H).  
(3) THERMTRIPB is to be treated as if it is high (actual state of signal ignored) until the deassertion of RSMRSTB (L H).  
Table 6-9. Active Rails in Each Power State  
POWER STATE  
S4/S5  
ACTIVE RAILS  
BUCK1 (VNN), BUCK4 (V1P8A), BUCK5 (V1P24A)  
S3  
Rails in S4/S5 + SWB1_2 (V1P8U)(1), BUCK6 (VDDQ)  
S0  
Rails in S3 + SWB1_2(2), VTT, BUCK2 (VCCGI), BUCK3 (VCCRAM)  
S0iX  
Rails in S0 – BUCK1 (VNN), BUCK2 (VCCGI), BUCK3 (VCCRAM), VTT  
(1) For LPDDR3 and LPDDR4  
(2) For DDR3L  
40  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
 
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.3.5.1 Cold Boot  
G3  
S5  
S5/S4  
S3  
S0  
VSYS  
5.6 V  
LDO5V/3.3V  
LDOA1(b)  
Ext. 5V/3.3V VR  
PMICEN  
T0  
BUCK1 (VNN)  
BUCK4 (V1P8A)  
BUCK5 (V1P24A)  
RSMRSTB  
T1  
T2  
T3  
10ms  
THERMTRIPB  
SLP_S4B  
T4  
SWB1_2 (V1P8U)(1)  
BUCK6 (VDDQ)  
SLP_S3B  
T5  
SLP_S0B  
SWB1_2(2)  
T6 100us  
VTT  
T7  
BUCK3 (VCCRAM)  
PCH_PWROK  
BUCK2 (VCCGI)  
T8 = PWROKDELAY  
SET VID by Host  
(1) LPDDR3 and LPDDR4  
(2) DDR3L  
(a) LDOA1 Not —Always On“  
(b) LDOA1 —Always On“  
Figure 6-7. Cold Boot Sequence  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
As VSYS crosses above VSYS_UVLO_5V + VSYS_UVLO+5V_HYS, the cold-boot sequence is initiated by pulling the  
PMICEN pin high followed by driving the remaining control pins high in order. SLP_S3B and SLP_S4B  
may go high at the same time. SLP_S0B is not defined until the first transition to S0 after RSMRSTB  
deassertion. SLP_S0B is defined for all Sx power-state transitions after the first transition to S0.  
Table 6-10 lists definitions of the timing delays. These timing delays also apply to the subsequent  
sequences. T0 to T10 are factory programmable to 0 ms, 2 ms, 4 ms, 8 ms, 16 ms, 24 ms, 32 ms, or  
64 ms.  
Table 6-10. Definition of Delays During Cold Boot Sequence  
DELAY  
T0  
DESCRIPTION  
TYP VALUE  
UNIT  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
PMICEN to BUCK1 (VNN) enable  
PMICEN to BUCK4 (V1P8A) enable  
0
4
T1  
T2  
BUCK4 PG to BUCK5 (V1P24A) enable  
0
T3  
BUCK5 PG to RSMRSTB deassertion  
10  
0
T4  
SLP_S4B deassertion to SWB1_2 (V1P8U) enable  
SLP_S4B deassertion to BUCK6 (VDDQ) enable  
Logical AND of BUCK6 PG, SLP_S0B, SLP_S3B, and SLP_S4B to VTT enable  
SLP_S0B deassertion to BUCK3 (VCCRAM) enable  
T5  
4
T6  
0
T7  
2
Logical AND of all PGs (except BUCK2) to PCH_PWROK assertion. User selectable  
from POK_DELAY register.  
T8  
100  
ms  
42  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.3.5.2 Cold OFF  
S0  
S3  
S4/S5  
G3  
SLP_S0B  
SLP_S3B  
SLP_S4B  
PMICEN  
VTT  
BUCK1 (VNN)  
BUCK3 (VCCRAM)  
BUCK2 (VCCGI)  
PCH_PWROK  
SWB1_2(2)  
SWB1_2 (V1P8U)(1)  
BUCK6 (VDDQ)  
30ms to 60 ms  
BUCK4 (V1P8A)  
BUCK5 (V1P24A)  
RSMRSTB  
(1) LPDDR3 and LPDDR4  
(2) DDR3L  
Figure 6-8. Cold OFF Sequence  
Cold OFF sequence is initiated by pulling the SLP_S3B pin low in the S0 state, followed by SLP_S4B,  
SLP_S0B, and PMICEN.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.3.5.3 Connected Standby Entry and Exit  
S0  
S0iX  
S0  
SLP_S0B  
1.8 V  
SLP_S3B  
SLP_S4B  
3.3 V  
PCH_PWROK  
VTT  
100 µs  
1.05 V  
VID  
BUCK1 (VNN)  
Host sets VR to 0 V through I2C  
0 V  
0 V  
0 V  
5 ms  
BUCK3 (VCCRAM)  
SET VID by Host  
VID  
VID  
Host sets VR to 0 V through I2C  
BUCK2 (VCCGI)  
Figure 6-9. Connected Standby Entry and Exit Sequence  
S0 to S0iX (Connected Standby) entry and exit occurs when SLP_S0B is pulled low and high,  
respectively. In Connected Standby state, VTT LDO is turned off, but all PGOODs remain asserted.  
BUCK1–BUCK3 are not disabled, but instead stop switching while BUCK4–BUCK6 remain in regulation.  
SWB1_2 also stays enabled. On entry, BUCK2 and BUCK3 decay to 0 V with their VID registers retaining  
the last programmed values to which the BUCKs ramp back up on exit. The host can write to  
BUCK2CTRL and BUCK3CTRL registers regardless of the state of the SLP_S0B pin while SLP_S3B and  
SLP_S4B are high, which means that BUCK2 and BUCK3 can be changed to ramp to a different voltage  
upon exiting S0iX than they had when entering S0iX state. BUCK1 ramps back up to the default value  
(1.05 V).  
Table 6-11 summarizes status of each VR in Connected Standby state.  
Table 6-11. Summary of Rails on Connected Standby Entry and Exit  
VR  
S0 S0IX  
S0IX S0  
BUCK1 (VNN)  
BUCK2 (VCCGI)  
0 V  
0 V  
1.05 V  
0 V  
BUCK3 (VCCRAM) 0 V  
1.05 V  
BUCK4 (V1P8A)  
BUCK5 (V1P24A)  
BUCK6 (VDDQ)  
VTT LDO (VTT)  
SWB1_2  
VID value  
VID value  
VID value  
VID value  
OTP dependent  
OTP dependent  
VDDQ / 2  
ON  
OFF  
ON  
44  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.3.5.4 S0 to S3 Entry and Exit  
Assertion of SLP_S3B (H L) triggers S3 entry. Deassertion of SLP_S3B causes S3 exit and S0 entry as  
depicted in Figure 6-10. On S3 exit, BUCK1–BUCK3 behave exactly the same way as they do on S0iX  
exit, which is explained in Section 6.3.5.3, Connected Standby Entry and Exit.  
S0  
S3  
S0  
1.8 V  
SLP_S4B  
SLP_S0B  
SLP_S3B  
T8  
PCH_PWROK  
VTT  
100 µs  
VID  
1.05 V  
BUCK1 (VNN)  
BUCK3 (VCCRAM)  
BUCK2 (VCCGI)  
0 V  
5 ms  
SET VID by Host  
0 V  
0 V  
SWB1_2(2)  
SWB1_2 (V1P8U)(1)  
(1) LPDDR3 and LPDDR4  
(2) DDR3L  
Figure 6-10. S3 Entry and Exit Sequence  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.3.5.5 S0 to S4/5 Entry and Exit  
Assertion of the SLP_S4B (H L) after the S3 entry pushes the sequence further down to S4/5 where  
SWB1_2 (for LPDDR3 or LPDDR4) and BUCK6 are disabled. Any rails not shown are essentially the  
same as the S0 to S3 entry and exit case described in Figure 6-11.  
S0  
S3  
S5/S4  
S3  
S0  
1.8 V  
SLP_S0B  
SLP_S3B  
SLP_S4B  
PCH_PWROK  
BUCK6 (VDDQ)  
VTT  
T8  
T5  
100 µs  
SWB1_2(2)  
SWB1_2 (V1P8U)(1)  
BUCK1 (VNN)  
2 ms  
30 ms to 60 ms  
VID  
1.05 V  
0 V  
BUCK3 (VCCRAM)  
BUCK2 (VCCGI)  
5 ms  
SET VID by Host  
0 V  
0 V  
(1) LPDDR3 and LPDDR4  
(2) DDR3L  
Figure 6-11. S4/5 Entry and Exit Sequence  
46  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.3.5.6 Emergency Shutdown  
When VSYS crosses below VSYS_UVLO_5V, all Power Good pins are deasserted; after 444 ns (nominal) of  
delay, all VRs shut down (see Figure 6-12). Upon shutdown, all internal discharge resistors are set to 100  
Ω to ensure timely decay of all VR outputs. VSYS crossing above VSYS_UVLO_5V + VSYS_UVLO_5V_HYS and  
assertion of PMICEN is required to re-enable the VRs.  
Other conditions that cause emergency shutdown are the following:  
The die temperature rising above the critical temperature threshold (TCRIT  
)
Falling edge of THERMTRIPB  
Deassertion of Power Good of any rail or failure to reach power good within 10 ms of enable  
(configurable)  
5.4 V  
VSYS  
RSMRSTB  
PCH_PWROK  
444 ns (nominal with ±1% variation)  
BUCKx  
LDOAx  
SWx  
VTT  
Figure 6-12. Emergency Shutdown Sequence  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.4 Device Functional Modes  
6.4.1 Off Mode  
When power supply at the VSYS pin is less than VSYS_UVLO_5V (5.4-V nominal) + VSYS_UVLO_5V_HYS (0.2-V  
nominal), the device is in off mode, where all output rails are disabled. If the supply voltage is greater than  
VSYS_UVLO_3V (3.6-V nominal) + VSYS_UVLO_3V_HYS (0.15-V nominal) while it is still less than VSYS_UVLO_5V  
+
VSYS_UVLO_5V_HYS, then the internal band-gap reference (VREF pin) along with LDO3P3 are enabled and  
regulated at target values.  
6.4.2 Standby Mode  
When power supply at the VSYS pin rises above VSYS_UVLO_5V + VSYS_UVLO_5V_HYS, the device enters  
standby mode, where all internal reference and regulators (LDO3P3 and LDO5) are running, and I2C  
interface and PMICEN pin are ready to respond. All default registers defined in Section 6.6, Register  
Maps, should now have been loaded from one-time programmable (OTP) memory. Quiescent current  
consumption in standby mode is specified in Section 5.5, Electrical Characteristics: Total Current  
Consumption.  
6.4.3 Active Mode  
The device proceeds to active mode when any output rail is enabled either through an input pin as  
discussed in Section 6.3.5, Power Sequencing and VR Control, or by writing to the EN bits through I2C.  
Output regulation voltage can also be changed by writing to the VID bits defined in Section 6.6, Register  
Maps.  
6.5 Programming  
6.5.1 I2C Interface  
The I2C interface is a 2-wire serial interface developed by NXP™ (formerly Philips Semiconductor) (see  
the I2C-Bus Specification and user manual, Rev 4, 13 February 2012). The bus consists of a data line  
(SDA) and a clock line (SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are  
pulled high. All the I2C compatible devices connect to the I2C bus through open-drain I/O pins, DATA and  
CLK. A master device, usually a microcontroller or a digital signal processor, controls the bus. The master  
is responsible for generating the SCL signal and device addresses. The master also generates specific  
conditions that indicate the start and stop of data transfer. A slave device receives and/or transmits data  
on the bus under control of the master device.  
The TPS65094x device works as a slave and supports the following data transfer modes, as defined in the  
I2C-Bus Specification: standard mode (100 kbps), fast mode (400 kbps), and high-speed mode  
(1 Mbps). The interface adds flexibility to the power supply solution, enabling programming of most  
functions to new values depending on the instantaneous application requirements. Register contents are  
loaded when VSYS higher than VSYS_UVLO_5V is applied to the TPS65094x device. The I2C interface is  
running from an internal oscillator that is automatically enabled when there is an access to the interface.  
The data transfer protocol for standard and fast modes are exactly the same, therefore, they are referred  
to as F/S-mode in this document. The protocol for high-speed mode is different from F/S-mode, and it is  
referred to as H/S-mode.  
The TPS65094x device supports 7-bit addressing; however, 10-bit addressing and general call address  
are not supported. The default device address is 0x5E.  
48  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.5.1.1 F/S-Mode Protocol  
The master initiates data transfer by generating a START condition. The START condition exists when a  
high-to-low transition occurs on the SDA line while SCL is high (see Figure 6-13). All I2C-compatible  
devices should recognize a START condition.  
The master then generates the SCL pulses and transmits the 7-bit address and the read/write direction bit  
R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse (see  
Figure 6-14). All devices recognize the address sent by the master and compare it to their internal fixed  
addresses. Only the slave device with a matching address generates an acknowledge (see Figure 6-15),  
by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this  
acknowledge, the master identifies that the communication link with a slave has been established.  
The master generates further SCL cycles to either transmit data to the slave (R/W bit = 0) or receive data  
from the slave (R/W bit = 1). In either case, the receiver must acknowledge the data sent by the  
transmitter. An acknowledge signal can either be generated by the master or by the slave, depending on  
which one is the receiver. Any 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge  
can continue as long as necessary.  
To signal the end of the data transfer, the master generates a STOP condition by pulling the SDA line  
from low to high while the SCL line is high (see Figure 6-13). This STOP condition releases the bus and  
stops the communication link with the addressed slave. All I2C-compatible devices must recognize the  
STOP condition. Upon the receipt of a STOP condition, all devices detect that the bus is released, and  
they wait for a START condition followed by a matching address.  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
Figure 6-13. START and STOP Conditions  
SDA  
SCL  
Data Valid  
Change of Data Allowed  
Figure 6-14. Bit Transfer on the I2C Bus  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Data Output at  
Transmitter  
Not ACK  
Data Output at  
Receiver  
ACK  
SCL from Master  
1
2
8
9
S
START  
Clock pulse for ACK  
Condition  
Figure 6-15. Acknowledge on the I2C Bus  
Generate ACK Signal  
SDA  
MSB  
ACK Signal From Slave  
Address  
R/W  
7
SCL  
1
2
8
9
1
2
3-8  
9
ACK  
ACK  
Byte Complete, Interrupt  
Within Slave  
Clock Line Held Low While  
Interrupts Are Serviced  
S or Sr  
P or Sr  
START or  
STOP or  
Repeated START Condition  
Repeated START Condition  
Figure 6-16. I2C Bus Protocol  
50  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
SCL  
SDA  
A6  
A5  
A4  
A0 R /W ACK  
R7  
R6  
R5  
R0 ACK  
0
D7  
D6  
D5  
D0 ACK  
0
0
0
START  
Slave Address  
Register Address  
Data  
STOP  
Figure 6-17. I2C Interface WRITE to TPS65094x in F/S Mode  
SCL  
SDA  
W
R/  
A6  
A0  
ACK  
0
R7  
R0 ACK  
0
A6  
A0  
ACK D7  
0
D0 ACK  
W
R/  
0
1
0
Master  
Drives ACK  
and Stop  
Slave Drives  
the Data  
Slave Address  
START  
Slave Address  
Register Address  
STOP  
Repeated  
START  
Figure 6-18. I2C Interface READ from TPS65094x in F/S Mode  
(Only Repeated START is Supported)  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6 Register Maps  
Default value of RESERVED R/W bits must not be written to the opposite value.  
6.6.1 VENDORID: PMIC Vendor ID Register (offset = 00h) [reset = 0010 0010]  
Figure 6-19. VENDORID Register (offset = 00h) [reset = 0010 0010]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
VENDORID[7]  
VENDORID[6]  
VENDORID[5]  
VENDORID[4]  
VENDORID[3]  
VENDORID[2]  
VENDORID[1]  
VENDORID[0]  
0
0
1
0
0
0
1
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-12. VENDORID Register Field Descriptions  
Bit  
Field  
Type Reset  
00100010  
Description  
7–0 VENDORID[7:0]  
R
Vendor identification register  
6.6.2 DEVICEID: PMIC Device and Revision ID Register (offset = 01h) [reset = OTP Dependent]  
Figure 6-20. DEVICEID Register (offset = 01h) [reset = OTP Dependent]  
Bit  
7
6
5
4
3
2
1
0
OTP_  
VERSION[1]  
OTP_  
VERSION[0]  
PART_  
NUMBER[3]  
PART_  
NUMBER[2]  
PART_  
NUMBER[1]  
PART_  
NUMBER[0]  
Bit Name  
REVID[1]  
REVID[0]  
TPS650940  
TPS650941  
TPS650942  
TPS650944  
TPS650945  
Access  
0
0
0
0
0
R
0
0
0
0
0
R
0
1
0
0
0
R
0
0
1
0
0
R
1
1
1
1
1
R
0
0
0
1
1
R
0
0
1
0
0
R
0
1
0
0
1
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-13. DEVICEID Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
7–6 REVID[1:0]  
R
OTP  
Silicon revision ID  
OTP variation ID  
00: A  
5–4 OTP_VERSION[1:0]  
R
OTP  
01: B  
10: C  
11: D  
Device part number ID  
1000: TPS650940  
1001: TPS650941  
1010: TPS650942  
1011: TPS650943  
1100: TPS650944  
1101: TPS650945  
1110: TPS650946  
1111: TPS650947  
0000: TPS650948  
3–0 PART_NUMBER[3:0]  
R
OTP  
52  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.6.3 IRQ: PMIC Interrupt Register (offset = 02h) [reset = 0000 0000]  
Figure 6-21. IRQ Register (offset = 02h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
VENDOR_  
IRQ  
Bit Name  
RESERVED  
RESERVED  
RESERVED  
ONOFFSRC  
RESERVED  
RESERVED  
DIETEMP  
TPS65094x  
Access  
0
0
0
0
0
0
0
0
R/W  
R
R
R
R/W  
R
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-14. IRQ Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Vendor-specific interrupt, indicating fault event occurrence. Asserted when  
either one of following conditions occurs:  
A. Deassertion of Power Good of any VR  
B. Overcurrent detection from BUCK1, BUCK2, BUCK6, or VTT LDO  
C. Die temperature crosses over the hot temperature threshold (THOT  
7
VENDOR_IRQ  
R/W  
0
)
D. Die temperature crosses over the critical temperature threshold (TCRIT  
)
0: Not asserted  
1: Asserted. Host to write 1 to clear.  
Asserted when PMIC shuts down.  
0: Not asserted.  
1: Asserted. Host to write 1 to clear.  
3
0
ONOFFSRC  
DIETEMP  
R/W  
R/W  
0
0
Die Temp interrupt. Asserted when PMIC die temperature crosses above the  
hot temperature threshold (THOT).  
0: Not asserted.  
1: Asserted. Host to write 1 to clear.  
6.6.4 IRQ_MASK: PMIC Interrupt Mask Register (offset = 03h) [reset = 1111 1111]  
Figure 6-22. IRQ_MASK Register (offset = 03h) [reset = 1111 1111]  
Bit  
7
6
5
4
3
2
1
0
MDIETEMP  
1
Bit Name  
TPS65094x  
Access  
MVENDOR_IRQ  
RESERVED  
RESERVED  
RESERVED  
MONOFFSRC  
RESERVED  
RESERVED  
1
1
1
1
1
1
1
R/W  
R
R
R
R/W  
R
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-15. IRQ_MASK Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Vendor-specific fault interrupt mask.  
0: Not masked  
1: Masked  
7
MVENDOR_IRQ  
R/W  
R/W  
R/W  
1
1
1
PMIC shutdown event interrupt mask  
0: Not masked  
1: Masked  
3
0
MONOFFSRC  
MDIETEMP  
Die temp interrupt mask.  
0: Not masked  
1: Masked  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6.5 PMICSTAT: PMIC Status Register (offset = 04h) [reset = 0000 0000]  
Figure 6-23. PMICSTAT Register (offset = 04h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SDIETEMP  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-16. PMICSTAT Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
PMIC die temperature status.  
0
SDIETEMP  
R
0
0: PMIC die temperature is below THOT.  
1: PMIC die temperature is above THOT  
.
6.6.6 OFFONSRC: PMIC Power Transition Event Register (offset = 05h) [reset = 0000 0000]  
Figure 6-24. OFFONSRC Register (offset = 05h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
COLDOFF  
0
2
UVLO  
0
1
0
CRITTEMP  
0
Bit Name  
TPS65094x  
Access  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
OCP  
0
0
0
0
0
R
R
R
R
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-17. OFFONSRC Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Set by PMIC cleared by host. Host writes 1 to this bit to clear it.  
0 = Cleared  
1 = PMIC was shut down by host through PMIC_EN pin.  
3
COLDOFF  
R/W  
R/W  
0
0
Set by PMIC cleared by host. Host writes 1 to this bit to clear it.  
0 = Cleared  
1 = PMIC was shut down due to a UVLO event (VSYS less 5.4 V). The setting  
of this bit sets the ONOFFSRC bit in the PMIC_IRQ register.  
2
1
UVLO  
OCP  
Set by PMIC cleared by host. Host writes 1 to this bit to clear it.  
0 = Cleared  
1 = PMIC shut down due to a power fault event. The setting of this bit sets the  
ONOFFSRC bit in the PMIC_IRQ register.  
R/W  
R/W  
0
0
Set by PMIC cleared by host. Host writes 1 to this bit to clear it.  
0 = Cleared  
1 = PMIC shut down due to the rise of PMIC die temperature above critical  
temperature threshold (TCRIT). The setting of this bit sets the ONOFFSRC bit in  
the PMIC_IRQ register.  
0
CRITTEMP  
54  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.6.7 BUCK1CTRL: BUCK1 Control Register (offset = 20h) [reset = 0011 1000]  
Figure 6-25. BUCK1CTRL Register (offset = 20h) [reset = 0011 1000]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
BUCK1_VID[6] BUCK1_VID[5] BUCK1_VID[4] BUCK1_VID[3] BUCK1_VID[2] BUCK1_VID[1] BUCK1_VID[0]  
0
0
1
1
1
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-18. BUCK1CTRL Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This field sets the BUCK1 regulator output regulation voltage in normal mode.  
Default = 1.05 V. Note that 0 V is a valid setting and all Power Goods stay high  
when VID is set to 0x00 and (or) SLP_S0B goes low. See Table 6-3 for full  
details.  
0111000  
(1.05 V)  
6–0 BUCK1_VID[6:0]  
R/W  
6.6.8 BUCK2CTRL: BUCK2 Control Register (offset = 21h) [reset = 0000 0000]  
Figure 6-26. BUCK2CTRL Register (offset = 21h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
BUCK2_VID[6] BUCK2_VID[5] BUCK2_VID[4] BUCK2_VID[3] BUCK2_VID[2] BUCK2_VID[1] BUCK2_VID[0]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-19. BUCK2CTRL Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This field sets the BUCK2 regulator output regulation voltage in normal mode.  
Default = 0 V. Note that 0 V is a valid setting and all Power Goods must stay  
high when VID is set to 0x00 and (or) SLP_S0B goes low. See Table 6-3 for full  
details.  
0000000  
(0 V)  
6–0 BUCK2_VID[6:0]  
R/W  
6.6.9 BUCK3CTRL: BUCK3 Control Register (offset = 23h) [reset = 0001 0001]  
Figure 6-27. BUCK3CTRL Register (offset = 23h) [reset = 0001 0001]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
BUCK3_VID[6] BUCK3_VID[5] BUCK3_VID[4] BUCK3_VID[3] BUCK3_VID[2] BUCK3_VID[1] BUCK3_VID[0]  
0
0
0
1
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-20. BUCK3CTRL Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This field sets the BUCK3 regulator output regulation voltage in normal mode.  
Default = 1.05 V. Note that 0 V is a valid setting and all Power Goods must stay  
high when VID is set to 0x00 and (or) SLP_S0B goes low. See Table 6-4 for full  
details.  
0010001  
(1.05 V)  
6–0 BUCK3_VID[6:0]  
R/W  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6.10 BUCK4CTRL: BUCK4 Control Register (offset = 25h) [reset = 0011 1101]  
Figure 6-28. BUCK4CTRL Register (offset = 25h) [reset = 0011 1101]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
RESERVED  
0
RESERVED  
0
RESERVED  
1
RESERVED  
1
RESERVED  
1
RESERVED  
1
BUCK4_MODE  
0
RESERVED  
1
TPS650940,  
TPS650941,  
TPS65942, and  
TPS650944  
TPS650945  
Access  
0
0
1
1
1
1
1
1
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-21. BUCK4CTRL Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This field sets the BUCK4 regulator operating mode.  
0 = Automatic mode  
1
BUCK4_MODE  
R/W  
0
1 = Forced PWM mode  
6.6.11 BUCK5CTRL: BUCK5 Control Register (offset = 26h) [reset = 0011 1101]  
Figure 6-29. BUCK5CTRL Register (offset = 26h) [reset = 0011 1101]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
RESERVED  
0
RESERVED  
0
RESERVED  
1
RESERVED  
1
RESERVED  
1
RESERVED  
1
BUCK5_MODE  
0
RESERVED  
1
TPS650940,  
TPS650941,  
TPS65942, and  
TPS650944  
TPS650945  
Access  
0
0
1
1
1
1
1
1
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-22. BUCK5CTRL Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This field sets the BUCK5 regulator operating mode.  
0 = Automatic mode  
1
BUCK5_MODE  
R/W  
0
1 = Forced PWM mode  
6.6.12 BUCK6CTRL: BUCK6 Control Register (offset = 27h) [reset = 0011 1101]  
Figure 6-30. BUCK6CTRL Register (offset = 27h) [reset = 0011 1101]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BUCK6_MODE  
RESERVED  
0
0
1
1
1
1
0
1
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-23. BUCK6CTRL Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This field sets the BUCK6 regulator operating mode.  
0 = Automatic mode  
1
BUCK6_MODE  
R/W  
0
1 = Forced PWM mode  
56  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.6.13 DISCHCNT1: Discharge Control1 Register (offset = 40h) [reset = 0101 0101]  
All xx_DIS[1:0] bits automatically set to 00 when the corresponding VR is enabled. Discharge resistance  
values listed here are approximate.  
Figure 6-31. DISCHCNT1 Register (offset = 40h) [reset = 0101 0101]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
BUCK4_DIS[1] BUCK4_DIS[0] BUCK3_DIS[1] BUCK3_DIS[0] BUCK2_DIS[1] BUCK2_DIS[0] BUCK1_DIS[1] BUCK1_DIS[0]  
0
1
0
1
0
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-24. DISCHCNT1 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
BUCK4 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
7–6 BUCK4_DIS[1:0]  
5–4 BUCK3_DIS[1:0]  
3–2 BUCK2_DIS[1:0]  
1–0 BUCK1_DIS[1:0]  
R/W 01  
BUCK3 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
R/W 01  
R/W 01  
R/W 01  
BUCK2 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK1 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6.14 DISCHCNT2: Discharge Control2 Register (offset = 41h) [reset = 0101 0101]  
All xx_DIS[1:0] bits automatically set to 00 when the corresponding VR is enabled. Discharge resistance  
values listed here are approximate.  
Figure 6-32. DISCHCNT2 Register (offset = 41h) [reset = 0101 0101]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
LDOA2_DIS[1] LDOA2_DIS[0]  
SWA1_DIS[1]  
SWA1_DIS[0]  
BUCK6_DIS[1] BUCK6_DIS[0] BUCK5_DIS[1] BUCK5_DIS[0]  
0
1
0
1
0
1
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-25. DISCHCNT2 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
LDOA2 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
7–6 LDOA2_DIS[1:0]  
5–4 SWA1_DIS[1:0]  
3–2 BUCK6_DIS[1:0]  
1–0 BUCK5_DIS[1:0]  
R/W 01  
SWA1 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
R/W 01  
R/W 01  
R/W 01  
BUCK6 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
BUCK5 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
6.6.15 DISCHCNT3: Discharge Control3 Register (offset = 42h) [reset = 0000 0101]  
All xx_DIS[1:0] bits automatically set to 00 when the corresponding VR is enabled. Discharge resistance  
values listed here are approximate.  
Figure 6-33. DISCHCNT3 Register (offset = 42h) [reset = 0000 0101]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SWB1_DIS[1]  
SWB1_DIS[0]  
LDOA3_DIS[1] LDOA3_DIS[0]  
0
0
0
0
0
1
0
1
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-26. DISCHCNT3 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
SWB1 discharge resistance  
00: No discharge  
01: 100 Ω  
10: 200 Ω  
11: 500 Ω  
3–2 SWB1_DIS[1:0]  
1–0 LDOA3_DIS[1:0]  
R/W 01  
LDOA3 discharge resistance  
00: No discharge  
01: 100 Ω  
R/W 01  
10: 200 Ω  
11: 500 Ω  
58  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.6.16 POK_DELAY: PCH_PWROK Delay Register (offset = 43h) [reset = 0000 0111]  
Programmable Power Good delay for PCH_PWROK pin, measured from the moment when all VRs reach  
the regulation range to Power Good assertion.  
Figure 6-34. POK_DELAY Register (Offset = 43h) [reset = 0000 0111]  
Bit  
7
6
5
4
3
2
1
0
PWROKDELAY PWROKDELAY PWROKDELAY  
Bit Name  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
[2]  
[1]  
[0]  
TPS65094x  
Access  
0
0
0
0
0
1
1
1
R
R
R
R
R
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-27. POK_DELAY Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Programmable delay measured from the moment all rails have reached  
regulation voltage to assertion of PCH_PWROK. All values have ±10%  
variation.  
000 = 2.5 ms  
001 = 5.0 ms  
010 = 10 ms  
011 = 15 ms  
100 = 20 ms  
101 = 50 ms  
110 = 75 ms  
111 = 100 ms (default)  
2–0 PWROKDELAY[2:0]  
R/W 111  
6.6.17 FORCESHUTDN: Force Emergency Shutdown Control Register (offset = 91h) [reset  
= 0000 0000]  
Figure 6-35. FORCESHUTDN Register (offset = 91h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
SDWN  
0
Bit Name  
TPS65094x  
Access  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-28. FORCESHUTDN Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Forces reset of the PMIC. The bit is self-clearing.  
0 = No action  
0
SDWN  
R/W  
0
1 = PMIC is forced to shut down.  
6.6.18 BUCK4VID: BUCK4 VID Register (offset = 94h) [reset = 0010 1111]  
Figure 6-36. BUCK4VID Register (offset = 94h) [reset = 0010 1111]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
BUCK4_VID[6] BUCK4_VID[5] BUCK4_VID[4] BUCK4_VID[3] BUCK4_VID[2] BUCK4_VID[1] BUCK4_VID[0]  
0
0
1
0
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-29. BUCK4VID Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This field sets the BUCK4 regulator output regulation voltage in normal mode.  
Default = 1.80 V. Note that 0 V is a valid setting and all Power Goods must stay  
high when VID is set to 0x00. See Table 6-4 for full details.  
0101111  
(1.80 V)  
6–0 BUCK4_VID[6:0]  
R/W  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6.19 BUCK5VID: BUCK5 VID Register (offset = 96h) [reset = 0100 1011]  
Figure 6-37. BUCK5VID Register (Offset = 96h) [reset = 0100 1011]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
BUCK5_VID[6] BUCK5_VID[5] BUCK5_VID[4] BUCK5_VID[3] BUCK5_VID[2] BUCK5_VID[1] BUCK5_VID[0]  
0
1
0
0
1
0
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-30. BUCK5VID Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This field sets the BUCK5 regulator output regulation voltage in normal mode.  
Default = 1.24 V. Note that 0 V is a valid setting and all Power Goods stay high  
when VID is set to 0x00. See Table 6-3 for full details.  
1001011  
(1.24 V)  
6–0 BUCK5_VID[6:0]  
R/W  
6.6.20 BUCK6VID: BUCK6 VID Register (offset = 98h) [reset = OTP Dependent]  
Figure 6-38. BUCK6VID Register (Offset = 98h) [reset = OTP Dependent]  
Bit  
7
6
5
4
3
2
1
0
Bit Name  
RESERVED  
0
BUCK6_VID[6] BUCK6_VID[5] BUCK6_VID[4] BUCK6_VID[3] BUCK6_VID[2] BUCK6_VID[1] BUCK6_VID[0]  
TPS650940,  
TPS650944 and  
TPS650945  
0
1
1
1
1
0
1
TPS650941  
TPS650942  
Access  
0
0
1
1
0
0
0
1
0
0
1
1
1
1
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-31. BUCK6VID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
TPS650940,  
TPS650944, and  
TPS650945: 0111101  
(1.1 V)  
TPS650941: 1000111  
(1.20 V)  
This field sets the BUCK6 regulator output regulation voltage in  
normal mode. Default = OTP Dependent. Note that 0 V is a valid  
setting and all Power Goods stay high when VID is set to 0x00.  
See Table 6-3 for full details.  
6–0 BUCK6_VID[6:0]  
R/W  
TPS650942: 1010110  
(1.35 V)  
60  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.6.21 LDOA2VID: LDOA2 VID Register (offset = 9Ah) [reset = OTP Dependent]  
LDOA2_SLPVID is used when SLP_S0B is low. Keep LDOA2_SLPVID equal to LDOA2_VID if sleep  
functionality is not desired.  
Figure 6-39. LDOA2VID Register (offset = 9Ah) [reset = OTP Dependent]  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
SLPVID[1]  
LDOA2_  
SLPVID[2]  
LDOA2_  
SLPVID[1]  
LDOA2_  
SLPVID[0]  
Bit Name  
LDOA2_VID[3] LDOA2_VID[2] LDOA2_VID[1] LDOA2_VID[0]  
TPS650940,  
TPS650941,  
TPS650942, and  
TPS650945  
1
0
1
0
1
0
1
0
TPS650944  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-32. LDOA2VID Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
TPS650940,  
TPS650941,  
TPS650942, and  
R/W TPS650945: 1010  
(1.2 V)  
This field sets the LDOA2 regulator output regulation voltage in sleep  
mode. Default = OTP Dependent. See Table 6-6 for full details.  
7–4 LDOA2_SLPVID[3:0]  
TPS650944: 0000  
(0.7 V)  
TPS650940,  
TPS650941,  
TPS650942, and  
R/W TPS650945: 1010  
(1.2 V)  
This field sets the LDOA2 regulator output regulation voltage in normal  
mode. Default = OTP Dependent. See Table 6-6 for full details.  
3–0 LDOA2_VID[3:0]  
TPS650944: 0000  
(0.7 V)  
6.6.22 LDOA3VID: LDOA3 VID Register (offset = 9Bh) [reset = OTP Dependent]  
LDOA3_SLPVID is used when SLP_S0B is low. Keep LDOA3_SLPVID equal to LDOA3_VID if sleep  
functionality is not desired.  
Figure 6-40. LDOA3VID Register (offset = 9Bh) [reset = OTP Dependent]  
Bit  
7
6
5
4
3
2
1
0
LDOA3_  
SLPVID[3]  
LDOA3_  
SLPVID[2]  
LDOA3_  
SLPVID[1]  
LDOA3_  
SLPVID[0]  
Bit Name  
LDOA3_VID[3] LDOA3_VID[2] LDOA3_VID[1] LDOA3_VID[0]  
TPS650940,  
TPS650941,  
TPS650942, and  
TPS650945  
1
0
1
1
1
0
1
1
TPS650944  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-33. LDOA3VID Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
TPS650940, TPS650941,  
TPS650942, and  
TPS650945: 1011 (1.25 V)  
TPS650944: 0000 (0.7 V)  
This field sets the LDOA3 regulator output regulation voltage  
in sleep mode. Default = OTP Dependent. See Table 6-6 for  
full details.  
7–4 LDOA3_SLPVID[3:0]  
3–0 LDOA3_VID[3:0]  
R/W  
R/W  
TPS650940, TPS650941,  
TPS650942, and  
TPS650945: 1011 (1.25 V)  
TPS650944: 0000 (0.7 V)  
This field sets the LDOA3 regulator output regulation voltage  
in normal mode. Default = OTP Dependent. See Table 6-6 for  
full details.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6.23 VR_CTRL1: BUCK1-3 Control Register (offset = 9Ch) [reset = 0000 0111]  
Figure 6-41. VR_CTRL1 Register (offset = 9Ch) [reset = 0000 0111]  
Bit  
7
6
5
4
3
2
1
0
BUCK3_  
DISABLEB  
BUCK2_  
DISABLEB  
BUCK1_  
DISABLEB  
Bit Name  
RESERVED  
0
RESERVED  
0
BUCK3_MODE BUCK2_MODE BUCK1_MODE  
TPS650940,  
TPS650941,  
TPS650942, and  
TPS650944  
0
0
0
1
1
1
TPS650945  
Access  
0
0
1
0
0
1
1
1
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-34. VR_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
This field sets the BUCK3 regulator operating mode.  
0 = Automatic mode  
5
BUCK3_MODE  
R/W  
0
1 = Forced PWM mode  
This field sets the BUCK2 regulator operating mode.  
0 = Automatic mode  
1 = Forced PWM mode  
4
3
BUCK2_MODE  
BUCK1_MODE  
R/W  
R/W  
0
0
This field sets the BUCK1 regulator operating mode.  
0 = Automatic mode  
1 = Forced PWM mode  
BUCK3 Active Low Disable bit. Writing 0 to this bit forces BUCK3 to turn off  
regardless of status of enable pins (PMICEN, SLP_Sx). Has priority over  
2
1
0
BUCK3_DISABLEB  
BUCK2_DISABLEB  
BUCK1_DISABLEB  
R/W  
R/W  
R/W  
1
1
1
BUCK3_EN.  
0: Disabled  
1: BUCK3 operates normally.  
BUCK2 Active Low Disable bit. Writing 0 to this bit forces BUCK2 to turn off  
regardless of status of enable pins (PMICEN, SLP_Sx). Has priority over  
BUCK2_EN.  
0: Disabled  
1: BUCK2 operates normally.  
BUCK1 Active Low DISABLE bit. Writing 0 to this bit forces BUCK1 to turn off  
regardless of status of enable pins (PMICEN, SLP_Sx). Has priority over  
BUCK1_EN.  
0: Disabled  
1: BUCK1 operates normally.  
6.6.24 VR_CTRL2: VR Enable Register (offset = 9Eh) [reset = 0000 0000]  
Figure 6-42. VR_CTRL2 Register (offset = 9Eh) [reset = 0000 0000]  
Bit  
7
LDOA2_EN  
0
6
SWA1_EN  
0
5
BUCK6_EN  
0
4
BUCK5_EN  
0
3
BUCK4_EN  
0
2
BUCK3_EN  
0
1
BUCK2_EN  
0
0
BUCK1_EN  
0
Bit Name  
TPS65094x  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-35. VR_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
LDOA2 Enable bit.  
7
LDOA2_EN  
R/W  
0
0: Enabled if LDOLS_EN = 1  
1: Enabled regardless of LDOLS_EN state  
SWA1 Enable bit.  
6
SWA1_EN  
R/W  
0
0: Enabled if LDOLS_EN pin or SWA1_EN pin = 1  
1: Enabled regardless of LDOLS_EN or SWA1_EN state  
62  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Table 6-35. VR_CTRL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
BUCK6 Enable bit.  
5
BUCK6_EN  
R/W  
0
0: BUCK6 operates normally.  
1: Enabled regardless of power sequencing  
BUCK5 Enable bit.  
4
3
2
1
0
BUCK5_EN  
BUCK4_EN  
BUCK3_EN  
BUCK2_EN  
BUCK1_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0: BUCK5 operates normally.  
1: Enabled regardless of power sequencing  
BUCK4 Enable bit.  
0: BUCK4 operates normally.  
1: Enabled regardless of power sequencing  
BUCK3 Enable bit. BUCK3_DISABLEB has priority over BUCK3_EN.  
0: BUCK3 operates normally.  
1: Enabled regardless of power sequencing, unless BUCK3_DISABLEB = 0  
BUCK2 Enable bit. BUCK2_DISABLEB has priority over BUCK2_EN.  
0: BUCK2 operates normally.  
1: Enabled regardless of power sequencing, unless BUCK2_DISABLEB = 0  
BUCK1 Enable bit. BUCK1_DISABLEB has priority over BUCK1_EN.  
0: BUCK1 operates normally.  
1: Enabled regardless of power sequencing, unless BUCK1_DISABLEB = 0  
6.6.25 VR_CTRL3: VR Enable/Disable Register (offset = 9Fh) [reset = 0111 0000]  
Figure 6-43. VR_CTRL3 Register (Offset = 9Fh) [reset = 0111 0000]  
Bit  
7
6
5
4
3
2
1
0
SWB1_2_  
DISABLEB  
SWA1_  
DISABLEB  
VTT_  
DISABLEB  
Bit Name  
RESERVED  
VTT_EN  
RESERVED  
SWB1_2_EN  
LDOA3_EN  
TPS650940,  
TPS650944, and  
TPS650945  
0
1
1
0
1
0
0
0
TPS650941 and  
TPS650942  
0
1
1
1
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 6-36. VR_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
SWB1_2 Active Low Disable Bit. Writing 0 to this bit forces  
SWB1_2 to turn off regardless of status of enable pins (PMICEN,  
SLP_Sx). Has priority over SWB1_2_EN.  
0: Disabled  
6
SWB1_2_DISABLEB  
R/W  
1
1: SWB1_2 operates normally.  
SWA1 Active Low Disable Bit. Writing 0 to this bit forces SWA1 to  
turn off regardless of status of enable pins (PMICEN, SLP_Sx).  
Has priority over SWA1_EN.  
0: Disabled  
1: SWA1 operates normally.  
5
4
3
SWA1_DISABLEB  
VTT_DISABLEB  
VTT_EN  
R/W  
R/W  
R/W  
1
TPS650940,  
VTT_LDO Active Low Disable Bit. Writing 0 to this bit forces  
VTT_LDO to turn off regardless of status of enable pins  
(PMICEN, SLP_Sx). Has priority over VTT_EN.  
0: Disabled  
TPS650944, and  
TPS650945: 0  
TPS650941 and  
TPS650942: 1  
1: VTT_LDO operates normally.  
TPS650940,  
VTT_LDO Enable bit. VTT_DISABLEB has priority over VTT_EN.  
0: VTT_LDO operates normally.  
1: Enabled regardless of power sequencing, unless  
VTT_DISABLEB = 0  
TPS650944 and  
TPS650945: 1  
TPS650941 and  
TPS650942: 0  
SWB1_2_Enable bit. SWB1_2_DISABLEB has priority over  
SWB1_2_EN.  
1
0
SWB1_2_EN  
LDOA3_EN  
R/W  
R/W  
0
0
0: SWB1_2 operates normally.  
1: Enabled regardless of power sequencing, unless  
SWB1_2_DISABLEB = 0  
LDOA3 Enable bit.  
0: Enabled if LDOLS_EN = 1  
1: Enabled regardless of LDOLS_EN state  
6.6.26 GPO_CTRL: GPO Control Register (offset = A1h) [reset = 0010 0000]  
Figure 6-44. GPO_CTRL Register (offset = A1h) [reset = 0010 0000]  
Bit  
7
6
5
GPO_LVL  
1
4
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-37. GPO_CTRL Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Open-drain GPO output level bit.  
0: The pin is driven to logic low.  
1: The pin is high impedance.  
5
GPO_LVL  
R/W  
1
64  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.6.27 PWR_FAULT_MASK1: VR Power Fault Mask1 Register (offset = A2h) [reset = 1100 0000]  
Figure 6-45. PWR_FAULT_MASK1 Register (offset = A2h) [reset = 1100 0000]  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
FLTMSK  
SWA1_  
FLTMSK  
BUCK6_  
FLTMSK  
BUCK5_  
FLTMSK  
BUCK4_  
FLTMSK  
BUCK3_  
FLTMSK  
BUCK2_  
FLTMSK  
BUCK1_  
FLTMSK  
Bit Name  
TPS65094x  
Access  
1
1
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-38. PWR_FAULT_MASK1 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
LDOA2 Power Fault Mask. When masked, power fault from LDOA2 does not  
cause PMIC shutdown.  
0: Not masked  
1: Masked  
7
LDOA2_FLTMSK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
0
0
0
0
0
0
SWA1 Power Fault Mask. When masked, power fault from SWA1 does not  
cause PMIC shutdown.  
0: Not masked  
6
5
4
3
2
1
0
SWA1_FLTMSK  
BUCK6_FLTMSK  
BUCK5_FLTMSK  
BUCK4_FLTMSK  
BUCK3_FLTMSK  
BUCK2_FLTMSK  
BUCK1_FLTMSK  
1: Masked  
BUCK6 Power Fault Mask. When masked, power fault from BUCK6 does not  
cause PMIC shutdown.  
0: Not masked  
1: Masked  
BUCK5 Power Fault Mask. When masked, power fault from BUCK5 does not  
cause PMIC shutdown.  
0: Not masked  
1: Masked  
BUCK4 Power Fault Mask. When masked, power fault from BUCK4 does not  
cause PMIC shutdown.  
0: Not masked  
1: Masked  
BUCK3 Power Fault Mask. When masked, power fault from BUCK3 does not  
cause PMIC shutdown.  
0: Not masked  
1: Masked  
BUCK2 Power Fault Mask. When masked, power fault from BUCK2 does not  
cause PMIC shutdown.  
0: Not masked  
1: Masked  
BUCK1 Power Fault Mask. When masked, power fault from BUCK1 does not  
cause PMIC shutdown.  
0: Not masked  
1: Masked  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
65  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6.28 PWR_FAULT_MASK2: VR Power Fault Mask2 Register (offset = A3h) [reset = 0011 0111]  
Figure 6-46. PWR_FAULT_MASK2 Register (offset = A3h) [reset = 0011 0111]  
Bit  
7
6
5
4
3
2
1
0
V5ANA_  
FLTMSK  
LDOA1_  
FLTMSK  
VTT_  
FLTMSK  
SWB1_2_  
FLTMSK[1]  
SWB1_2_  
FLTMSK[0]  
LDOA3_  
FLTMSK  
Bit Name  
RESERVED  
RESERVED  
TPS65094x  
Access  
0
0
1
1
0
1
1
1
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-39. PWR_FAULT_MASK2 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
V5ANA Power Fault Mask. When masked, power fault from V5ANA does not  
cause PMIC shutdown.  
0: Not masked  
1: Masked  
5
V5ANA_FLTMSK  
R/W  
R/W  
R/W  
1
1
0
LDOA1 Power Fault Mask. When masked, power fault from LDOA1 does not  
cause PMIC shutdown.  
0: Not masked  
4
3
LDOA1_FLTMSK  
VTT_FLTMSK  
1: Masked  
VTT LDO Power Fault Mask. When masked, power fault from VTT LDO does  
not cause PMIC shutdown.  
0: Not Masked  
1: Masked  
SWB1_2 Power Fault Mask. When masked, power fault from SWB1_2 does not  
cause PMIC shutdown.  
00: Not masked  
2–1 SWB1_2_FLTMSK  
R/W 11  
11: Masked  
01-10 = RESERVED  
LDOA3 Power Fault Mask. When masked, power fault from LDOA3 does not  
cause PMIC shutdown.  
0: Not masked  
0
LDOA3_FLTMSK  
R/W  
1
1: Masked  
6.6.29 DISCHCNT4: Discharge Control4 Register (offset = ADh) [reset = 0110 0001]  
Figure 6-47. DISCHCNT4 Register (offset = ADh) [reset = 0110 0001]  
Bit  
7
6
5
4
VTT_DIS  
0
3
2
1
0
Bit Name  
TPS65094x  
Access  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
1
1
0
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-40. DISCHNT4 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
VTT_LDO discharge resistance  
0 = No discharge  
4
VTT_DIS  
R/W  
0
1 = 100 Ω  
66  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
6.6.30 LDOA1CTRL: LDOA1 Control Register (offset = AEh) [reset = OTP Dependent]  
Figure 6-48. LDOA1CTRL Register (offset = AEh) [reset = OTP Dependent]  
Bit  
7
6
5
4
3
2
1
0
LDOA1_SDWN_  
CONFIG  
Bit Name  
LDOA1_DIS[1] LDOA1_DIS[0]  
LDOA1_VID[3] LDOA1_VID[2] LDOA1_VID[1] LDOA1_VID[0]  
LDOA1_EN  
0
TPS650940,  
TPS650941,  
TPS650942, and  
TPS650945  
0
1
1
1
1
1
0
TPS650944  
Access  
0
1
1
0
1
0
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-41. LDOA1CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
LDOA1 discharge resistance  
00: No discharge  
01: 100 Ω  
7–6 LDOA1_DIS[1:0]  
R/W  
01  
10: 200 Ω  
11: 500 Ω  
Control for Disabling LDOA1 during Emergency Shutdown  
0: LDOA1 will turn off during Emergency Shutdown.  
1: LDOA1 will not turn off during Emergency Shutdown as long as  
LDOA1_EN = 1.  
5
LDOA1_SDWN_CONFIG  
R/W  
R/W  
1
TPS650940,  
TPS650941,  
TPS650942,  
and  
TPS650945:  
1110 (3.3 V)  
TPS650944:  
0100 (1.8V)  
This field sets the LDOA3 regulator output regulation voltage in normal  
mode. Default = OTP Dependent. See Table 6-5 for full details.  
4–1 LDOA1_VID[3:0]  
TPS650940,  
TPS650941,  
TPS650942,  
and  
TPS650945: 0  
TPS650944: 1  
LDOA1 Enable Bit.  
0: Disable  
1: Enable  
0
LDOA1_EN  
R/W  
6.6.31 PG_STATUS1: Power Good Status1 Register (offset = B0h) [reset = 0000 0000]  
Figure 6-49. PG_STATUS1 Register (offset = B0h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
PGOOD  
BUCK6_  
PGOOD  
BUCK5_  
PGOOD  
BUCK4_  
PGOOD  
BUCK3_  
PGOOD  
BUCK2  
_PGOOD  
BUCK1_  
PGOOD  
Bit Name  
RESERVED  
TPS65094x  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-42. PG_STATUS1 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
LDOA2 Power Good status.  
7
LDOA2_PGOOD  
R
R
0
0
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK6 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
5
BUCK6_PGOOD  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
67  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 6-42. PG_STATUS1 Register Field Descriptions (continued)  
Bit  
Field  
Type Reset  
Description  
BUCK5 Power Good status.  
4
BUCK5_PGOOD  
R
R
R
R
R
0
0
0
0
0
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK4 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
3
2
1
0
BUCK4_PGOOD  
BUCK3_PGOOD  
BUCK2_PGOOD  
BUCK1_PGOOD  
BUCK3 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK2 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
BUCK1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
6.6.32 PG_STATUS2: Power Good Status2 Register (offset = B1h) [reset = 0000 0000]  
Figure 6-50. PG_STATUS2 Register (offset = B1h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
LDO5_  
PGOOD  
LDOA1_  
PGOOD  
VTT_  
PGOOD  
LDOA3_  
PGOOD  
Bit Name  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TPS65094x  
Access  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-43. PG_STATUS2 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
LDO5 Power Good status.  
5
LDO5_PGOOD  
R
R
R
R
0
0
0
0
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
LDOA1 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
4
3
0
LDOA1_PGOOD  
VTT_PGOOD  
VTT LDO Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
LDOA3 Power Good status.  
0: The output is not in target regulation range.  
1: The output is in target regulation range.  
LDOA3_PGOOD  
6.6.32.1 PWR_FAULT_STATUS1: Power Fault Status1 Register (offset = B2h) [reset = 0000 0000]  
Figure 6-51. PWR_FAULT_STATUS1 Register (offset = B2h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
LDOA2_  
PWRFLT  
BUCK6_  
PWRFLT  
BUCK5_  
PWRFLT  
BUCK4_  
PWRFLT  
BUCK3_  
PWRFLT  
BUCK2_  
PWRFLT  
BUCK1_  
PWRFLT  
Bit Name  
RESERVED  
TPS65094x  
Access  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
68  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
Table 6-44. PWR_FAULT_STATUS1 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This fields indicates that LDOA2 has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
7
LDOA2_PWRFLT  
R
R
R
R
R
R
R
0
0
0
0
0
0
0
This fields indicates that BUCK6 has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
5
4
3
2
1
0
BUCK6_PWRFLT  
BUCK5_PWRFLT  
BUCK4_PWRFLT  
BUCK3_PWRFLT  
BUCK2_PWRFLT  
BUCK1_PWRFLT  
This fields indicates that BUCK5 has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK4 has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK3 has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK2 has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
This fields indicates that BUCK1 has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
6.6.32.2 PWR_FAULT_STATUS2: Power Fault Status2 Register (offset = B3h) [reset = 0000 0000]  
Figure 6-52. PWR_FAULT_STATUS2 Register (offset = B3h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
LDOA1_  
PWRFLT  
VTT_  
PWRFLT  
LDOA3_  
PWRFLT  
Bit Name  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
TPS65094x  
Access  
0
0
0
0
0
0
0
0
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-45. PWR_FAULT_STATUS2 Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
This fields indicates that LDOA1 has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
4
LDOA1_PWRFLT  
R/W  
R/W  
R/W  
0
0
0
This fields indicates that VTT LDO has lost regulation.  
0: No Fault.  
1: Power fault has occurred. The host to write 1 to clear.  
3
0
VTT_PWRFLT  
This fields indicates that LDOA3 has lost regulation.  
0: No Fault.  
LDOA3_PWRFLT  
1: Power fault has occurred. The host to write 1 to clear.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Detailed Description  
69  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
6.6.33 TEMPHOT: Temperature Hot Status Register (offset = B5h) [reset = 0000 0000]  
Asserted when an internal temperature sensor detects rise of die temperature above the HOT temperature  
threshold (THOT). There are five temperature sensors across the die.  
Figure 6-53. TEMPHOT Register (offset = B5h) [reset = 0000 0000]  
Bit  
7
6
5
4
3
2
1
0
TOP-RIGHT  
_HOT  
TOP-LEFT  
_HOT  
BOTTOM-  
RIGHT_HOT  
Bit Name  
RESERVED  
RESERVED  
RESERVED  
DIE_HOT  
VTT_HOT  
TPS65094x  
Access  
0
0
0
0
0
0
0
0
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6-46. TEMPHOT Register Field Descriptions  
Bit  
Field  
Type Reset  
Description  
Temperature of rest of die has exceeded THOT  
.
4
DIE_HOT  
R/W  
R/W  
0
0
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
Temperature of VTT LDO has exceeded THOT  
0: Not asserted.  
1: Asserted. The host to write 1 to clear.  
.
3
2
VTT_HOT  
Temperature of die top-right has exceeded THOT. Top-right corner of die from  
top view given pin 1 is in top-left corner.  
0: Not asserted.  
TOP-RIGHT_HOT  
R/W  
R/W  
R/W  
0
0
0
1: Asserted. The host to write 1 to clear.  
Temperature of die top-left has exceeded THOT. Top-left corner of die from top  
view given pin 1 is in top-left corner.  
0: Not asserted.  
1
0
TOP-LEFT_HOT  
1: Asserted. The host to write 1 to clear.  
Temperature of die bottom-right has exceeded THOT. Bottom-right corner of die  
from top view given pin 1 is in top-left corner.  
0: Not asserted.  
BOTTOM-RIGHT_HOT  
1: Asserted. The host to write 1 to clear.  
70  
Detailed Description  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
7 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
7.1 Application Information  
7.2 Typical Application  
For a detailed description about application usage, refer to the TPS65094x Design Guide and to the  
TPS65094x Schematic Checklist, Layout Checklist, and ILIM Calculator Tool. The TPS65094x can be  
used in several different applications from computing, industrial interfacing, and much more. This section  
describes the general application information and provides a more detailed description on the TPS65094x  
device that powers the Intel Apollo Lake system. The functional block diagram for the device is shown in  
Figure 7-1, which outlines the typical external components necessary for proper device functionality.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Application and Implementation  
71  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
Optional(a)  
Required(b)  
LDO5V  
VSYS  
BOOT1  
DRVH1  
EC  
LDOA1  
1.35 V to 3.3 V  
1.8 V(b)  
PMICEN  
SLP_S3B  
SLP_S4B  
BUCK1  
Default: 1V  
SW1  
200 mA  
VNN  
VSET  
Typical  
Application  
Usage:  
0.5 V to 1.45 V  
(DVS)  
DRVL1  
EN  
EN  
SLP_S0B  
Control  
FBVOUT1  
LDOLS_EN(a)  
Inputs  
PGNDSNS1  
SWA1_EN(b)  
5 A  
ILIM1  
THERMTRIPB  
V1P8A  
VSYS  
BOOT2  
DRVH2  
CLK  
I2C CTRL  
BUCK2  
Default: 0V  
SW2  
SoC  
DATA  
VCCGI  
VSET  
EN  
V1P8A  
DRVL2  
Typical  
Application  
Usage:  
Control  
Outputs  
FBVOUT2  
0.5 V to 1.45 V  
(DVS)  
PGNDSNS2  
IRQB  
21 A  
PCH_PWROK  
RSMRSTB  
PROCHOT  
GPO  
FBGND2  
ILIM2  
Internal  
Interrupt  
Events  
BUCK5V  
PVIN3  
LX3  
TEST CTRL  
OTP  
VSET  
EN  
BUCK3  
Default: 1.05 V  
3 A  
VCCRAM  
FB3  
REGISTERS  
<PGND_BUCK3>  
BUCK5V  
BUCK5V  
PVIN4  
LX4  
VSYS  
VSYS  
BUCK4  
Default: 1.8 V  
2 A  
Digital Core  
VSET  
EN  
V1P8A  
V5ANA  
LDO5  
BUCK5V  
FB4  
<PGND_BUCK4>  
LDO5V  
nPUC  
LDO3P3  
VREF  
REFSYS  
PVIN5  
LX5  
VSET  
EN  
BUCK5  
Default: 1.24 V  
2 A  
V1P24A  
FB5  
<PGND_BUCK5>  
AGND  
VSYS  
Thermal  
monitoring  
BOOT6  
DRVH6  
Thermal shutdown  
SW6  
BUCK6  
Default: OTP  
Dependent  
7 A  
VDDQ  
VSET  
EN  
DRVL6  
FBVOUT6  
PGNDSNS6  
ILIM6  
PVINVTT  
VTT  
VTT_LDO  
½ × VDDQ  
ILIM set by OTP  
VTT  
EN  
VTTFB  
LDOA2  
0.7 V to 1.5 V  
600 mA  
LDOA3  
0.7 V to 1.5 V  
600 mA  
LOAD SWA1  
300 mA  
LOAD SWB1  
400 mA  
LOAD SWB2  
400 mA  
V1P8A(1)  
0.5 V to 3.3 V(2)  
0.5 V to 3.3 V  
Dashed connections optional.  
Refer to Pin Attributes for  
connection if unused.  
(1) LPDDR3 and LPDDR4  
(2) DDR3L  
(a) LDOA1 Not —Always On“  
(b) LDOA1 —Always On“  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7-1. Functional Block Diagram  
72  
Application and Implementation  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
7.2.1 Design Requirements  
The TPS65094x device requires decoupling capacitors on the supply pins. Follow the values for  
recommended capacitance on these supplies given in the Specifications section. The controllers,  
converter, LDOs, and some other features can be adjusted to meet specific application requirements.  
Section 7.2.2, Detailed Design Procedure, describes how to design and adjust the external components to  
achieve desired performance.  
7.2.2 Detailed Design Procedure  
7.2.2.1 Controller Design Procedure  
Designing the controller can be divided into the following steps:  
1. Design the output filter.  
2. Select the FETs.  
3. Select the bootstrap capacitor.  
4. Select the input capacitors.  
5. Set the current limits.  
Figure 7-2 shows a diagram of the controller. Controllers BUCK1, BUCK2, and BUCK6 require a 5-V  
supply and capacitors at their corresponding DRV5V_x_x pins. For most applications, the DRV5V_x_x  
input must come from the LDO5P0 pin to ensure uninterrupted supply voltage; a 2.2-µF, X5R, 20%, 10-V,  
or similar capacitor must be used for decoupling.  
VSYS  
DRVHx  
BOOT1  
LDO5V  
DRV5V_x_x  
VOUT  
LOUT  
SWx  
COUT  
Controller  
DRVLx  
PGNDSNSx  
Control  
from SOC  
FBVOUTx  
RILIM  
ILIMx  
<FBGND2>(1)  
PowerPADTM  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-2. Controller Diagram  
Copyright © 2015–2019, Texas Instruments Incorporated  
Application and Implementation  
73  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
7.2.2.1.1 Selecting the Output Capacitors  
TI recommends using ceramic capacitors with low ESR values to provide the lowest output voltage ripple.  
The output capacitor requires either an X7R or an X5R dielectric. Capacitors with Y5V or Z5U dielectrics  
display a wide variation in capacitance over temperature and become resistive at high frequencies.  
At light load currents, the controller operates in PFM mode, and the output voltage ripple is dependent on  
the output-capacitor value and the PFM peak inductor current. Higher output-capacitor values minimize  
the voltage ripple in PFM mode. To achieve specified regulation performance and low output voltage  
ripple, the DC-bias characteristic of ceramic capacitors must be considered. The effective capacitance of  
ceramic capacitors drops with increasing DC bias voltage.  
For the output capacitors of the BUCK controllers, TI recommends placing small ceramic capacitors  
between the inductor and load with many vias to the PGND plane. This solution typically provides the  
smallest and lowest cost solution available for DCAP2 controllers.  
To meet the transient specifications, the output capacitance must equal or exceed the minimum  
capacitance listed in the electrical characteristics table for BUCK1, BUCK2, and BUCK6 (assuming quality  
layout techniques are followed). See Section 5.7, Electrical Characteristics: Buck Controllers.  
7.2.2.1.2 Selecting the Inductor  
An inductor must be placed between the external FETs and the output capacitors. Together, the inductor  
and output capacitors make the double-pole that contributes to stability. In addition, the inductor is  
responsible for the output ripple, efficiency, and transient performance. When the inductance increases,  
the ripple current decreases, which typically results in an increased efficiency. However, with an increase  
in inductance, the transient performance decreases. Finally, the inductor selected must be rated for  
appropriate saturation current, core losses, and DC resistance (DCR).  
Equation 3 shows the calculation for the recommended inductance for the controller.  
VOUT ì (V - VOUT  
IN ì fsw ì IOUT(MAX) ì KIND  
)
IN  
L =  
V
where  
VOUT is the typical output voltage.  
VIN is the typical input voltage.  
fSW is the typical switching frequency.  
IOUT(MAX) is the maximum load current.  
KIND is the ratio of ILripple to the IOUT(MAX). For this application, TI recommends that KIND is set to a value  
from 0.2 to 0.4.  
(3)  
With the chosen inductance value and the peak current for the inductor in steady state operation, IL(max)  
can be calculated using Equation 4. The rated saturation current of the inductor must be higher than the  
IL(MAX) current.  
(V -VOUT ) ì VOUT  
2 ì VIN ì fsw ì L  
IN  
IL(MAX) = IOUT(MAX)  
+
(4)  
Following the previous equations, Table 7-1 lists the preferred inductor selected for the controllers..  
Table 7-1. Recommended Inductors  
MANUFACTURER  
Cyntec  
PART NUMBER  
PIMB061H  
VALUE  
0.47 µH  
0.22 µH  
SIZE  
HEIGHT  
1.8 mm  
2.4 mm  
6.8 mm × 7.3 mm  
6.8 mm × 7.3 mm  
Cyntec  
PIMB062D  
74  
Application and Implementation  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
 
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
7.2.2.1.3 Selecting the FETs  
This controller is designed to drive two NMOS FETs. Typically, lower RDSON values are better for  
improving the overall efficiency of the controller. However, higher gate-charge thresholds result in lower  
efficiency, so the two must be balanced for optimal performance. As the RDSON for the low-side FET  
decreases, the minimum current limit increases; therefore, ensure selection of the appropriate values for  
the FETs, inductor, output capacitors, and current-limit resistor. TI's CSD87331Q3D, CSD87381P, and  
CSD87588N devices are recommended for the controllers, depending on the required maximum current.  
7.2.2.1.4 Bootstrap Capacitor  
To ensure the internal high-side gate drivers are supplied with a stable low-noise supply voltage, a  
capacitor must be connected between the SWx pins and the respective BOOTx pins. TI recommends  
placing ceramic capacitors with the value of 0.1 µF for the controllers. During testing, a 0.1-µF, size 0402,  
10-V capacitor is used for the controllers.  
TI recommends reserving a small resistor in series with the bootstrap capacitor in case the turnon and  
turnoff of the FETs must be slowed to reduce voltage ringing on the switch node, which is a common  
practice for controller design.  
7.2.2.1.5 Selecting the Input Capacitors  
Due to the nature of the switching controller with a pulsating input current, a low-ESR input capacitor is  
required for best input-voltage filtering and also for minimizing the interference with other circuits caused  
by high input-voltage spikes. For the controller, a typical 2.2-µF capacitor can be used for the DRV5V_x_x  
pin to handle the transients on the driver. For the FET input, 10 µF of input capacitance (after derating) is  
recommended for most applications. To achieve the low-ESR requirement, a ceramic capacitor is  
recommended. However, the voltage rating and DC-bias characteristic of ceramic capacitors must be  
considered. For better input-voltage filtering, the input capacitor can be increased without any limit.  
7.2.2.1.5.1 Setting the Current Limit  
The current-limiting resistor value must be chosen based on Equation 1.  
NOTE  
Use the correct value for the ceramic capacitor capacitance after derating to achieve the  
recommended input capacitance.  
TI recommends placing a ceramic capacitor as close as possible to the FET across the respective VSYS  
and PGND pins of the FETs. The preferred capacitors for the controllers are two Murata  
GRM21BR61E226ME44: 22 µF, 0805, 25 V, ±20%, or similar capacitors.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Application and Implementation  
75  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
7.2.2.2 Converter Design Procedure  
Designing the converter has only the following two steps:  
1. Design the output filter.  
2. Select the input capacitors.  
The converter must be supplied by a 5-V source. Figure 7-3 shows a diagram of the converter.  
LOUT  
VOUT  
PVINx  
LXx  
VIN_BUCK345_ANA  
CIN  
FBx  
Converter  
Control from SOC  
Copyright © 2017, Texas Instruments Incorporated  
Figure 7-3. Converter Diagram  
76  
Application and Implementation  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
7.2.2.2.1 Selecting the Inductor  
An inductor must be placed between the external FETs and the output capacitors. Together, the inductor  
and output capacitors form a double-pole in the control loop that contributes to stability. In addition, the  
inductor is responsible for the output ripple, efficiency, and transient performance. When the inductance  
increases, the ripple current decreases, which typically results in an increase in efficiency. However, with  
an increase in inductance, the transient performance decreases. Finally, the inductor selected must be  
rated for appropriate saturation current, core losses, and DCR.  
NOTE  
Internal parameters for the converters are optimized for a 0.47-µH inductor; however, it is  
possible to use other inductor values as long as they are chosen carefully and thoroughly  
tested.  
Equation 5 shows the calculation for the recommended inductance for the converter.  
VOUT ì (V - VOUT  
IN ì fsw ì IOUT(MAX) ì KIND  
)
IN  
L =  
V
where  
VOUT is the typical output voltage.  
VIN is the typical input voltage.  
fSW is the typical switching frequency.  
IOUT(MAX) is the maximum load current.  
KIND is the ratio of ILripple to the IOUT(MAX). For this application, TI recommends that KIND is set to a value  
from 0.2 to 0.4.  
(5)  
With the chosen inductance value and the peak current for the inductor in steady state operation, IL(MAX)  
can be calculated using Equation 6. The rated saturation current of the inductor must be higher than the  
IL(MAX) current.  
(V -VOUT ) ì VOUT  
2 ì VIN ì fsw ì L  
IN  
IL(MAX) = IOUT(MAX)  
+
(6)  
Following these equations, Table 7-2 lists the preferred inductor selected for the converters.  
Table 7-2. Recommended Inductors  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE  
HEIGHT  
Cyntec  
PIFE32251B-R47MS  
0.47 µH  
3.2 mm × 2.5 mm  
1.2 mm  
Copyright © 2015–2019, Texas Instruments Incorporated  
Application and Implementation  
77  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
 
 
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
7.2.2.2.2 Selecting the Output Capacitors  
TI recommends using ceramic capacitors with low-ESR values are recommended to provide the lowest  
output voltage ripple. The output capacitor requires either an X7R or an X5R rating. Y5V and Z5U  
capacitors, aside from the wide variation in capacitance overtemperature, become resistive at high  
frequencies.  
At light load currents, the converter operates in PFM mode and the output voltage ripple is dependent on  
the output-capacitor value and the PFM peak inductor current. Higher output-capacitor values minimize  
the voltage ripple in PFM mode. To achieve specified regulation performance and low output voltage  
ripple, the DC-bias characteristic of ceramic capacitors must be considered. The effective capacitance of  
ceramic capacitors drops with increasing DC-bias voltage.  
For the output capacitors of the BUCK converters, TI recommends placing small ceramic capacitors  
between the inductor and load with many vias to the PGND plane. This solution typically provides the  
smallest and lowest-cost solution available for DCAP2 controllers.  
To meet the transient specifications, the output capacitance must equal or exceed the minimum  
capacitance listed for BUCK3, BUCK4, and BUCK5 (assuming quality layout techniques are followed).  
7.2.2.2.3 Selecting the Input Capacitors  
Due to the nature of the switching converter with a pulsating input current, a low-ESR input capacitor is  
required for best input-voltage filtering and for minimizing the interference with other circuits caused by  
high input-voltage spikes. For the PVINx pin, 2.5 µF of input capacitance (after derating) is required for  
most applications. A ceramic capacitor is recommended to achieve the low-ESR requirement. However,  
the voltage rating and DC-bias characteristic of ceramic capacitors must be considered. For better input-  
voltage filtering, the input capacitor can be increased without any limit.  
NOTE  
Use the correct value for the ceramic capacitor capacitance after derating to achieve the  
recommended input capacitance.  
The preferred capacitor for the converters is one Samsung CL05A106MP5NUNC: 10 µF, 0402, 10 V,  
±20%, or similar capacitor.  
7.2.2.3 LDO Design Procedure  
The VTT LDO must handle the fast load transients from the DDR memory for termination. Therefore, TI  
recommends using ceramic capacitors to maintain a high amount of capacitance with low ESR on the VTT  
LDO outputs and inputs. The preferred output capacitors for the VTT LDO are the GRM188R60J226MEA0  
from Murata (22 µF, 0603, 6.3 V, ±20%, or similar capacitors). The preferred input capacitor for the VTT  
LDO is the CL05A106MP5NUNC from Samsung (10 µF, 0402, 10 V, ±20%, or similar capacitor).  
The remaining LDOs must have input and output capacitors chosen based on the values in Section 5.9,  
Electrical Characteristics: LDOs.  
78  
Application and Implementation  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
7.2.3 Application Curves  
Figure 7-4. BUCK2 Controller Load Transient  
Figure 7-5. BUCK3 Converter Load Transient  
Figure 7-7. BUCK3 Converter Start-Up  
Figure 7-6. BUCK2 Controller Start-Up  
Copyright © 2015–2019, Texas Instruments Incorporated  
Application and Implementation  
79  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
7.3 Specific Application for TPS650944  
For the TPS650944 device, if register reset is desired when the PMICEN pin is pulled low, an alternate  
reset condition can be used. There are two simple options. The first option is to write 1 to the SDWN bit in  
the FORCESHUTDN register (see Section 6.6.17, FORCESHUTDN: Force Emergency Shutdown Control  
Register) to force power rails to turn off and reset all registers. The second option is to use the falling  
edge detection of the THERMTRIPB pin to trigger the device reset. In this case, when the PMICEN pin is  
pulled low, the THERMTRIPB pin on PMIC should be pulled low simultaneously, which can be done in  
several ways. One approach is to connect a low-voltage Schottky diode between the PMICEN and  
THERMTRIPB pins. Because the THERMTRIPB SoC pin is push-pull configured, a second diode is  
needed to prevent shorting the SoC pin to GND. An example can be seen in Figure 7-8. Both diodes must  
have a forward voltage below PMIC VIL (0.4 V) at the appropriate current. Another approach is to route the  
THERMTRIPB signal from SoC through the EC and tie PMICEN and THERMTRIPB together at the PMIC.  
PMICEN  
EC  
LDOA1  
PMIC  
10 k  
THERMTRIPB  
SoC  
NOTE: Not applicable if LDOA1 is not configured to "Always On"  
Figure 7-8. PMICEN and THERMTRIPB Connection Option for LDOA1 "Always On" Spins  
For the TPS650944 device, if both the PVINSWA1 and PVINSWB1_B2 pins are tied to 2.5 V, LDOA2 and  
LDOA3 will turn on if all VRs and load switches are enabled and have released their Power Good signals.  
To avoid LDOA2 and LDOA3 turning on unexpectedly, TI recommends using voltages other than 2.5 V on  
both SWA1 and SWB1_2.  
80  
Application and Implementation  
Copyright © 2015–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
 
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
7.4 Do's and Don'ts  
Connect the LDO5V output to the DRV5V_x_x inputs for situations where an external 5-V supply is not  
initially available or is not available the entire time PMIC is on. If the external 5-V supply is always  
present, then DRV5V_x_x can be directly connected to remove the V5ANA-to-LDO5P0 load switch  
RDSON  
.
Ensure that none of the control pins are potentially floating.  
Include 0-Ω resistors on the DRVH and BOOT pins of controllers on prototype boards, which allows for  
slowing the controllers if the system is unable to handle the noise generated by the large switching or if  
switching voltage is too large due to layout.  
Do not connect the V5ANA power input to a different source other than PVINx. A mismatch here  
causes reference circuits to regulate incorrectly.  
Do not supply the V5ANA power input before the VSYS. Reference biasing of the internal FETs may  
turn on the HS FET and pass the input to the output until VSYS is biased.  
8 Power Supply Recommendations  
This device is designed to work with several different input voltages. The minimum voltage on the VSYS  
pin is 5.6 V for the device to start up; however, this is a low-power rail. The input to the FETs must be  
from 5.4 V to 21 V as long as the proper BOM choices are made. Input to the converters must be  
5 V. For the device to output maximum power, the input power must be sufficient. For the controllers, VIN  
must be able to supply up to 5 A (typically), though less is acceptable with higher voltages or less usage.  
For the converters, PVINx must be able to supply 2 A (typically).  
A best practice here is to determine power usage by the system and back-calculate the necessary power  
input based on expected efficiency values.  
Copyright © 2015–2019, Texas Instruments Incorporated  
Power Supply Recommendations  
81  
Submit Documentation Feedback  
Product Folder Links: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
9 Layout  
9.1 Layout Guidelines  
For a detailed description regarding layout recommendations, refer to the TPS65094x Design Guide and  
to the TPS65094x Schematic Checklist, Layout Checklist, and ILIM Calculator Tool. For all switching  
power supplies, the layout is an important step in the design, especially at high peak currents and high  
switching frequencies. If the layout is not carefully done, the regulator can have stability problems and EMI  
issues. Therefore, use wide and short traces for the main current path and for the power ground tracks.  
The input capacitors, output capacitors, and inductors must be placed as close as possible to the device.  
Use a common-ground node for power ground and use a different, isolated node for control ground to  
minimize the effects of ground noise. Connect these ground nodes close to the AGND pin by one or two  
vias. Use of the design guide is highly encouraged in addition to the following list of other basic  
requirements:  
Do not allow the AGND, PGNDSNSx, or FBGND2 to connect to the thermal pad on the top layer.  
To ensure proper sensing based on FET RDSON, PGNDSNSx must not connect to PGND until very  
close to the PGND pin of the FET.  
All inductors, input/output capacitors, and FETs for the converters and controller must be on the same  
board layer as the device.  
To achieve the best regulation performance, place feedback connection points near the output  
capacitors and minimize the control feedback loop as much as possible.  
Bootstrap capacitors must be placed close to the device.  
The input and output capacitors of the internal reference regulators must be placed close to the device  
pins.  
Route DRVHx and SWx as a differential pair. Ensure that there is a PGND path routed in parallel with  
DRVLx, which provides optimal driver loops.  
9.2 Layout Example  
BUCK2  
VREF Capacitor  
VTT  
BUCK6  
BUCK3  
BUCK5  
BUCK4  
BUCK1  
Figure 9-1. EVM Layout Example With All Components on the Top Layer  
82  
Layout  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
10 器件和文档支持  
10.1 器件支持  
10.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构  
成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
10.1.2 开发支持  
相关开发支持,请参见以下文档:  
TPS65094x 原理图检查清单、布局检查清单和 ILIM 计算器工具  
10.2 文档支持  
10.2.1 相关文档  
请参阅如下相关文档:  
TPS65094x 设计指南  
TPS65094x 评估模块  
10.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周  
接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信  
息。  
10.5 商标  
D-CAP2, D-CAP, E2E are trademarks of Texas Instruments.  
超极本, Intel are trademarks of Intel Corporation.  
NXP is a trademark of NXP Semiconductors.  
All other trademarks are the property of their respective owners.  
10.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
10.7 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2015–2019, Texas Instruments Incorporated  
机械、封装和可订购信息  
83  
提交文档反馈意见  
产品主页链接: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
11.1 Package Option Addendum  
11.1.1 Packaging Information  
Package  
Package  
Drawing  
Package  
Qty  
Lead/Ball  
Finish(3)  
(1)  
(2)  
(4)  
(6)  
Orderable Device  
TPS650945RSKR  
TPS650945RSKT  
Status  
Pins  
64  
Eco Plan  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking(5)  
T650945  
Type  
Green (RoHS  
& no Sb/Br)  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RSK  
2000  
250  
CU NIPDAU  
CU NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
PG1.0  
Green (RoHS  
& no Sb/Br)  
T650945  
PG1.0  
RSK  
64  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
space  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest  
availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the  
requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified  
lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used  
between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by  
weight in homogeneous material)  
space  
(3) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the  
finish value exceeds the maximum column width.  
space  
(4) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
space  
(5) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device  
space  
(6) Multiple Device markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a  
continuation of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief  
on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third  
parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
84  
机械、封装和可订购信息  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65094  
TPS65094  
www.ti.com.cn  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
11.1.2 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPS650945RSKR  
TPS650945RSKT  
VQFN  
VQFN  
RSK  
RSK  
64  
64  
2000  
250  
330.0  
180.0  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
版权 © 2015–2019, Texas Instruments Incorporated  
机械、封装和可订购信息  
85  
提交文档反馈意见  
产品主页链接: TPS65094  
TPS65094  
ZHCSFJ2C SEPTEMBER 2015REVISED FEBRUARY 2019  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
VQFN  
Package Drawing Pins  
SPQ  
2000  
250.0  
Length (mm) Width (mm)  
Height (mm)  
38.0  
TPS650945RSKR  
TPS650945RSKT  
RSK  
RSK  
64  
64  
367.0  
210.0  
367.0  
185.0  
VQFN  
35.0  
86  
机械、封装和可订购信息  
版权 © 2015–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65094  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS650940A0RSKR  
TPS650940A0RSKT  
TPS650941A0RSKR  
TPS650941A0RSKT  
TPS650942A0RSKR  
TPS650942A0RSKT  
TPS650944A0RSKR  
TPS650944A0RSKT  
TPS650945A0RSKR  
TPS650945A0RSKT  
TPS650947A0RSKR  
TPS650947A0RSKT  
ACTIVE  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
T650940A0  
PG1.0  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
T650940A0  
PG1.0  
T650941A0  
PG1.0  
T650941A0  
PG1.0  
T650942A0  
PG1.0  
T650942A0  
PG1.0  
T650944A0  
PG1.0  
T650944A0  
PG1.0  
T650945A0  
PG1.0  
T650945A0  
PG1.0  
T650947A0  
PG1.0  
T650947A0  
PG1.0  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS650940A0RSKR  
TPS650940A0RSKR  
TPS650940A0RSKT  
TPS650940A0RSKT  
TPS650941A0RSKR  
TPS650941A0RSKR  
TPS650941A0RSKT  
TPS650941A0RSKT  
TPS650942A0RSKR  
TPS650942A0RSKT  
TPS650944A0RSKR  
TPS650944A0RSKR  
TPS650944A0RSKT  
TPS650944A0RSKT  
TPS650945A0RSKR  
TPS650945A0RSKT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
2000  
250  
330.0  
330.0  
180.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
180.0  
330.0  
330.0  
180.0  
180.0  
330.0  
180.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
250  
2000  
2000  
250  
250  
2000  
250  
2000  
2000  
250  
250  
2000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS650947A0RSKR  
TPS650947A0RSKT  
TPS650947A0RSKT  
VQFN  
VQFN  
VQFN  
RSK  
RSK  
RSK  
64  
64  
64  
2000  
250  
330.0  
180.0  
180.0  
16.4  
16.4  
16.4  
8.3  
8.3  
8.3  
8.3  
8.3  
8.3  
1.1  
1.1  
1.1  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
Q2  
Q2  
Q2  
250  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS650940A0RSKR  
TPS650940A0RSKR  
TPS650940A0RSKT  
TPS650940A0RSKT  
TPS650941A0RSKR  
TPS650941A0RSKR  
TPS650941A0RSKT  
TPS650941A0RSKT  
TPS650942A0RSKR  
TPS650942A0RSKT  
TPS650944A0RSKR  
TPS650944A0RSKR  
TPS650944A0RSKT  
TPS650944A0RSKT  
TPS650945A0RSKR  
TPS650945A0RSKT  
TPS650947A0RSKR  
TPS650947A0RSKT  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
VQFN  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
RSK  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
2000  
2000  
250  
367.0  
367.0  
210.0  
210.0  
367.0  
367.0  
210.0  
210.0  
367.0  
210.0  
367.0  
367.0  
210.0  
210.0  
367.0  
210.0  
367.0  
210.0  
367.0  
367.0  
185.0  
185.0  
367.0  
367.0  
185.0  
185.0  
367.0  
185.0  
367.0  
367.0  
185.0  
185.0  
367.0  
185.0  
367.0  
185.0  
35.0  
38.0  
35.0  
35.0  
35.0  
38.0  
35.0  
35.0  
38.0  
35.0  
35.0  
38.0  
35.0  
35.0  
38.0  
35.0  
38.0  
35.0  
250  
2000  
2000  
250  
250  
2000  
250  
2000  
2000  
250  
250  
2000  
250  
2000  
250  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-May-2023  
Device  
TPS650947A0RSKT  
Package Type Package Drawing Pins  
VQFN RSK 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
250  
Pack Materials-Page 4  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS650942A0RSKR

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650942A0RSKT

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650944A0RSKR

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650944A0RSKT

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650945A0RSKR

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650945A0RSKT

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650947A0RSKR

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS650947A0RSKT

适用于 Apollo Lake 处理器的可编程中等输入电压范围电源管理 IC (PMIC) | RSK | 64 | -40 to 85
TI

TPS65100

TRIPLE OUTPUT LCD SUPPLY WITH LINEAR REGULATOR AND VCOM BUFFER
TI

TPS65100-Q1

TRIPLE-OUTPUT LCD SUPPLY WITH LINEAR REGULATOR AND VCOM BUFFER
TI

TPS65100-Q1_16

Triple-Output LCD Supply With Linear Regulator
TI

TPS65100PWP

TRIPLE OUTPUT LCD SUPPLY WITH LINEAR REGULATOR AND VCOM BUFFER
TI