TPS65132S [TI]

适用于双极小型/中型显示屏的单电感器 - 双路输出电源;
TPS65132S
型号: TPS65132S
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于双极小型/中型显示屏的单电感器 - 双路输出电源

电感器
文件: 总70页 (文件大小:2784K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
TPS65132 单电感器 - 双输出电源  
1 特性  
2 应用范围  
1
输入电压范围:2.5V 5.5V  
POS 升压转换器:  
4V 转换为 6V(步长为 0.1V)  
NEG 反相降压-升压转换器:  
小型、中型双极液晶显示屏 (LCD)  
V
智能手机、平板电脑  
摄像头、全球定位系统 (GPS)  
家庭自动化、销售点  
V
-6V 转换为 -4V(步长为 0.1V)  
可穿戴设备(智能手表、活动追踪器)  
最大输出电流:  
80mA 150mA  
通用分离轨电源  
差分音频、耳机放大器  
出色的综合效率  
仪表、运算放大器、比较器  
数模转换器/模数转换器 (DAC/ADC)  
> 85%IOUT > 10mA)  
> 90%IOUT > 40 mA)  
性能优异  
3 说明  
出色的瞬态响应  
TPS65132 系列设计用于支持正/负驱动 应用。该器件  
的两路输出均采用单电感方案,为用户提供尺寸最小的  
解决方案,在简化物料清单的同时保持高效。该器件可  
在低噪声条件下提供最佳线路和负载调节能力。凭借  
2.5V 5.5V 的输入电压范围,该器件针对由单节电  
池(锂离子电池、锂镍电池和锂聚合物电池)供电的产  
品以及固定电压为 3.3V 5V 的电源轨进行了优化。  
TPS656132 系列器件提供 80mA 150mA 输出电流  
选项,可通过编程设定为 40mA。提供 CSP QFN  
两种封装选项。  
在整个温度范围内保持 1% 的输出电压精度  
I2C 接口  
可编程上电/掉电  
序列选项  
灵活的输出电压编程  
可编程有源输出放电  
> 1000x 的可编程非易失性存储器  
欠压锁定和过热保护  
两种封装选项  
15 焊球芯片尺寸封装 (CSP)  
器件信息 (1)  
20 引脚四方扁平无引线 (QFN) 封装  
器件型号  
封装  
封装尺寸(标称值)  
2.11mm × 1.51mm  
4.00mm × 3.00mm  
TPS65132  
-B-L-T-S  
DSBGA (15)  
WQFN (20)  
TPS65132W  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
空白  
空白  
典型应用  
效率与输出电流间的关系  
L
4.7 µH  
100  
95  
90  
85  
80  
75  
70  
VIN  
VIN  
SW  
C1  
4.7 µF  
VPOS  
2.5V to 5.5 V  
OUTP  
REG  
5.4 V/40 mA  
C3  
ENP  
ENN  
4.7 µF  
C2  
4.7 µF  
VNEG  
SCL  
SDA  
OUTN  
–5.4 V/40 mA  
65  
VIN = 4.5V  
C5  
4.7 µF  
60  
PGND  
AGND  
CFLY1  
CFLY2  
C4  
VIN = 3.7V  
2.2 µF  
55  
VIN = 2.8V  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
C003  
IOUT (mA)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION  
DATA.  
English Data Sheet: SLVSBM1  
 
 
 
 
 
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 16  
8.5 Programming........................................................... 17  
8.6 Register Maps......................................................... 19  
Application and Implementation ........................ 26  
9.1 Application Information............................................ 26  
9.2 Typical Applications ................................................ 26  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings.............................................................. 8  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Electrical Characteristics........................................... 9  
9
10 Power Supply Recommendations ..................... 53  
11 Layout................................................................... 54  
11.1 Layout Guidelines ................................................. 54  
11.2 Layout Example .................................................... 54  
12 器件和文档支持 ..................................................... 55  
12.1 器件支持 ............................................................... 55  
12.2 接收文档更新通知 ................................................. 55  
12.3 社区资源................................................................ 55  
12.4 ....................................................................... 55  
12.5 静电放电警告......................................................... 55  
12.6 Glossary................................................................ 55  
13 机械、封装和可订购信息....................................... 56  
13.1 CSP 封装概要 ...................................................... 56  
7.6 I2C Interface Timing Requirements / Characteristics  
................................................................................. 10  
7.7 Typical Characteristics............................................ 11  
Detailed Description ............................................ 12  
8.1 Overview ................................................................. 12  
8.2 Functional Block Diagram ....................................... 12  
8.3 Feature Description................................................. 12  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision G (August 2015) to Revision H  
Page  
已删除 TPS65132S 中的产品预.......................................................................................................................................... 1  
Changed Device Comparison Table ...................................................................................................................................... 4  
Added description of clock stretching .................................................................................................................................. 17  
Deleted detailed I2C interface description ........................................................................................................................... 17  
Added that the DLYx Register is only valid for TPS65132Sx versions. .............................................................................. 22  
Changed Table 6 ................................................................................................................................................................. 23  
Changes from Revision F (June 2015) to Revision G  
Page  
Changed scope figures for Boost Converter switching. ...................................................................................................... 13  
Changes from Revision E (November 2014) to Revision F  
Page  
Added TPS65132L1 device to Device Comparison table ..................................................................................................... 4  
Added TPS65132T6 device to the Device Comparison Table. ............................................................................................. 4  
Separated LOGIC SCL, SDA spec MIN/MAX from LOGIC EN, ENN, ENP, SYNC spec MIN/MAX ..................................... 9  
Changed DAC Registers section for clarity ......................................................................................................................... 19  
Added High-current Applications (150 mA) section........................................................................................................... 44  
Changes from Revision D (October 2014) to Revision E  
Page  
Added TPS65132L0 device to Device Comparison table ..................................................................................................... 4  
2
版权 © 2013–2016, Texas Instruments Incorporated  
 
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
Changes from Revision C (July 2014) to Revision D  
Page  
已将器件信息表中的封装类型更改为符合行业标准的标识符 .................................................................................................. 1  
Changes from Revision B (May 2014) to Revision C  
Page  
Added note to Device Comparison Table .............................................................................................................................. 4  
Added reference to Power-Down And Discharge (LDO) and Power-Down And Discharge (CPN) .................................... 12  
Added Table 1 and various references to it ......................................................................................................................... 14  
Added "Power-Down And Discharge (CPN) shows the VNEG discharge behavior of each device variant".......................... 16  
Added Table 2 and various references to it ........................................................................................................................ 16  
Added note to Figure 18 ...................................................................................................................................................... 23  
Changes from Revision A (August 2013) to Revision B  
Page  
已将格式更改为全新的数据表标.......................................................................................................................................... 1  
已添加 新封装选项 (QFN) 至器件信息表 ................................................................................................................................ 1  
Added new package option (QFN) to Pin Configurations section ......................................................................................... 7  
Added the ESD Ratings table ................................................................................................................................................ 8  
Changes from Original (June 2013) to Revision A  
Page  
Added TPS65132Bx devices to the Device Comparison table .............................................................................................. 4  
Copyright © 2013–2016, Texas Instruments Incorporated  
3
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
5
Device Comparison Table  
PRE-  
PROGRAMMED  
OUTPUT  
VOLTAGES  
PRE-  
STARTUP  
TIME  
PRE-  
PROGRAMMED  
IOUT  
PROGRAMMED  
ACTIVE  
PART NUMBER(1)  
IOUT_MAX  
ISD  
PACKAGE  
VPOS / VNEG  
DISCHARGE(2)  
(3)  
VPOS = 5.4 V  
TPS65132A  
VNEG = –5.4 V  
80 mA  
40 mA  
40 mA  
VPOS / VNEG  
FAST  
FAST  
30 µA  
CSP  
VPOS = 5.0 V  
TPS65132A0  
VNEG = –5.0 V  
VPOS = 5.4 V  
TPS65132B  
VNEG = –5.4V  
VPOS = 5.0 V  
TPS65132B0  
80 mA  
80 mA  
VPOS / VNEG  
130 nA  
130 nA  
CSP  
CSP  
VNEG = –5.0 V  
VPOS = 5.5 V  
TPS65132B5  
VNEG = –5.5 V  
VPOS = 5.2 V  
TPS65132B2  
VNEG = –5.2 V  
VPOS = 5.4 V  
TPS65132L  
40 mA  
VPOS / VNEG  
SLOW  
VNEG = –5.4 V  
VPOS = 5.0 V  
TPS65132L0  
VNEG = –5.0 V  
VPOS = 5.1 V  
(4)  
TPS65132L1  
VNEG = –5.1 V  
80 mA  
80 mA  
150 mA  
80 mA  
40 mA  
80 mA  
80 mA  
80 mA  
VPOS / VNEG  
VPOS / VNEG  
VPOS / VNEG  
VPOS / VNEG  
SLOW  
SLOW  
SLOW  
SLOW  
130 nA  
130 nA  
130 nA  
130 nA  
CSP  
CSP  
CSP  
QFN  
VPOS = 5.6 V  
TPS65132T6  
VNEG = –5.6 V  
VPOS = 5.4 V  
TPS65132S  
VNEG = –5.4 V  
VPOS = 5.4 V  
TPS65132W  
VNEG = –5.4 V  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com  
(2) See Power-Down And Discharge (LDO) and Power-Down And Discharge (CPN) for a detailed description of how each device variant  
implements the active discharge function.  
(3) Please refer to Power-Up And Soft-Start (LDO) and Power-Up And Soft-Start (CPN) for more details.  
(4) Product preview.  
4
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
6 Pin Configuration and Functions  
YFF Package  
15 Bumps  
(top view)  
TPS65132Ax / Bx / Lx / Tx  
(bottom view)  
TPS65132Ax / Bx / Lx / Tx  
PGND  
OUTP  
REG  
REG  
AGND  
SDA  
PGND  
REG  
AGND  
SDA  
OUTP  
REG  
E
D
C
B
A
E
D
C
B
A
SW  
SW  
VIN  
CFLY1  
PGND  
VIN  
CFLY1  
PGND  
SCL  
ENP  
SCL  
ENP  
OUTN  
OUTN  
CFLY2  
ENN  
CFLY2  
ENN  
3
2
1
1
2
3
(top view)  
TPS65132Sx  
(bottom view)  
TPS65132Sx  
PGND  
OUTP  
REG  
REG  
AGND  
SDA  
PGND  
REG  
AGND  
SDA  
OUTP  
REG  
E
D
C
B
A
E
D
C
B
A
SW  
SW  
VIN  
CFLY1  
PGND  
VIN  
CFLY1  
PGND  
SCL  
EN  
SCL  
EN  
OUTN  
OUTN  
CFLY2  
SYNC  
CFLY2  
SYNC  
3
2
1
1
2
3
Copyright © 2013–2016, Texas Instruments Incorporated  
5
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AGND  
CFLY1  
CFLY2  
EN  
Ax, Bx, Lx, Tx  
Sx  
D2  
C3  
A3  
B1  
D2  
C3  
A3  
I/O  
I/O  
Analog ground  
Negative charge pump flying capacitor pin  
Negative charge pump flying capacitor pin  
Enable pin (sequence programmed)  
Enable pin for VNEG rail  
ENN  
A1  
B1  
E3  
A2  
B3  
E1  
D3  
E2  
B2  
C2  
D1  
I
ENP  
B1  
E3  
A2  
B3  
E1  
D3  
E2  
B2  
C2  
D1  
A1  
C1  
I
Enable pin for VPOS rail  
OUTP  
OUTN  
O
O
Output pin of the LDO (VPOS)  
Output pin of the negative charge pump (VNEG  
)
PGND  
REG  
Power ground  
I/O  
Boost converter output pin  
SCL  
SDA  
SW  
I/O  
I/O  
I/O  
I
I²C interface clock signal pin  
I²C interface data signal pin  
Switch pin of the boost converter  
SYNC  
VIN  
Synchronization pin. 150 mA current enabled if this pin is pulled HIGH.  
Input voltage supply pin  
C1  
I
6
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
QFN Package  
20 Pins  
RVC package  
(top view)  
RVC package  
(bottom view)  
19  
18  
17  
20  
17  
18  
19  
20  
16  
15  
14  
13  
12  
11  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
PGND  
OUTP  
OUTP  
REG  
PGND  
PGND  
AGND  
VIN  
OUTP  
1
2
3
4
5
6
OUTP  
REG  
PGND  
AGND  
VIN  
PowerPAD  
PowerPAD  
CFLY1  
PGND  
PGND  
CFLY1  
PGND  
PGND  
ENP  
ENP  
ENN  
ENN  
7
8
9
10  
10  
9
8
7
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
Wx  
3
AGND  
Analog ground  
17  
13  
10  
6
CFLY1  
CFLY2  
ENN  
I/O  
Negative charge pump flying capacitor pin  
Negative charge pump flying capacitor pin  
Enable pin for VNEG rail  
I/O  
I
I
ENP  
5
Enable pin for VPOS rail  
16  
15  
9
OUTP  
OUTN  
O
O
Output pin of the LDO (VPOS)  
Output pin of the negative charge pump (VNEG  
)
1
2
PGND  
Power ground  
11  
12  
14  
18  
8
REG  
I/O  
Boost converter output pin  
SCL  
SDA  
I/O  
I/O  
I²C interface clock signal pin  
I²C interface data signal pin  
7
19  
20  
4
SW  
VIN  
I/O  
I
Switch pin of the boost converter  
Input voltage supply pin  
Copyright © 2013–2016, Texas Instruments Incorporated  
7
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
7 Specifications  
(1)(2)  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
VALUE  
UNIT  
MIN  
–0.3  
–7  
MAX  
7
CFLY1, EN, ENN, ENP, OUTP, REG, SCL, SDA, SW, SYNC,  
VIN  
V
V
Voltage range  
CFLY2, OUTN  
0.3  
Continuous total power dissipation  
Operating junction temperature, TJ  
Operating ambient temperature, TA  
Storage temperature, Tstg  
See Thermal Information  
–40  
–40  
–65  
150  
85  
°C  
°C  
°C  
150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to ground.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
V
VESD  
Charged device model (CDM) per JEDEC specification JESD22-  
C101, all pins(2)  
±500  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
MIN  
2.5  
2.2  
4.7  
2.2  
4.7  
–40  
–40  
TYP  
MAX  
5.5  
UNIT  
V
VIN  
Input voltage range  
Inductor(1)  
Input capacitor(1)(2)  
Flying capacitor(1)(2)  
Output capacitors(1)(2)  
Operating ambient temperature  
Operating junction temperature  
L
4.7  
µH  
µF  
µF  
µF  
°C  
CIN  
CFLY  
COUTP, COUTN, CREG  
TA  
TJ  
85  
125  
°C  
(1) Please see Detailed Description section for further information.  
(2) X7R (or better dielectric material) is recommended.  
7.4 Thermal Information  
TPS65132  
YFF  
TPS65132  
(1)  
THERMAL METRIC  
RVC  
(20) PINS  
39.0  
UNIT  
(15) BALLS  
76.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJCtop  
RθJB  
0.2  
42.7  
44  
13.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.6  
0.6  
ψJB  
43.4  
13.6  
RθJCbot  
N/A  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
8
Copyright © 2013–2016, Texas Instruments Incorporated  
 
 
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
7.5 Electrical Characteristics  
VIN = 3.7 V, EN = ENN = ENP = VIN, VPOS = 5.4 V, VNEG = –5.4 V, TA = –40°C to 85°C; typical values are at TA = 25°C  
(unless otherwise noted).  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN  
Input voltage range  
2.5  
2.3  
2.1  
5.5  
2.5  
2.3  
V
V
VIN rising  
VIN falling  
VUVLO  
IQ  
Undervoltage lockout threshold  
Quiescent current  
0.54  
140  
5
mA  
°C  
Thermal shutdown  
Thermal shutdown hysteresis  
°C  
LOGIC EN, ENN, ENP, SYNC  
VIH  
VIL  
High level input voltage  
Low level input voltage  
Pulldown resistors  
1.1  
1.1  
VIN = 2.5 V to 5.5 V  
VIN = 2.5 V to 5.5 V  
V
0.4  
REN  
200  
kΩ  
LOGIC SCL, SDA  
VIH  
VIL  
High level input voltage  
Low level input voltage  
V
0.54  
BOOST CONVERTER  
ILIM Boost converter valley current limit  
fSW Boost converter switching frequency  
LDO OUTPUT VPOS  
0.9  
1.2  
1.5  
A
1.35  
1.80  
2.25  
MHz  
VPOS  
VPOS_acc  
IPOS  
Positive output voltage range  
4.0  
–1 %  
200  
6.0  
V
Positive output voltage accuracy  
Positive output current capability  
Dropout voltage  
+1 %  
mA  
mV  
mV  
%/A  
Ω
VDO  
VREG = VPOS(NOM) = 5.4V, IOUT = 150 mA  
VIN = 2.5 V to 5.5 V, IOUT = 40 mA  
ΔIOUT = 80 mA  
160  
2.7  
3.4  
70  
Line regulation  
Load regulation  
RD  
Discharge resistor  
NEGATIVE CHARGE PUMP OUTPUT VNEG  
VNEG  
Negative output voltage range  
–6.0  
–1 %  
40  
–4.0  
V
VNEG_acc  
Negative output voltage accuracy  
+1 %  
40mA MODE  
INEG  
Negative output current capability  
Negative output current capability  
mA  
80mA MODE  
80  
INEG  
fOSC  
TPS65132Sx, SYNC = HIGH  
150  
mA  
Negative charge pump switching  
frequency  
0.8  
1.0  
1.2  
MHz  
Line regulation  
Load regulation  
Discharge resistor  
VIN = 2.5 V to 5.5 V, IOUT = 40 mA  
3.3  
6.1  
20  
mV  
%/A  
Ω
ΔIOUT = 80 mA  
RD  
Copyright © 2013–2016, Texas Instruments Incorporated  
9
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
MAX UNIT  
7.6 I2C Interface Timing Requirements / Characteristics  
(1)  
PARAMETER  
TEST CONDITIONS  
Standard mode  
Fast mode  
MIN  
TYP  
100  
400  
kHz  
kHz  
µs  
µs  
µs  
ns  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
fSCL  
SCL clock frequency  
Standard mode  
Fast mode  
4.7  
1.3  
tLOW  
tHIGH  
tBUF  
LOW period of the SCL clock  
Standard mode  
Fast mode  
4.0  
HIGH period of the SCL clock  
600  
4.7  
Standard mode  
Fast mode  
Bus free time between a STOP and START condition  
1.3  
Standard mode  
Fast mode  
4.0  
thd;STA Hold time for a repeated START condition  
tsu;STA Setup time for a repeated START condition  
tsu;DAT Data setup time  
600  
4.7  
Standard mode  
Fast mode  
600  
250  
100  
0.05  
0.05  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
3.45  
0.9  
thd;DAT Data hold time  
Standard mode  
20 +  
1000  
0.1CB  
Rise time of SCL signal after a repeated START condition  
and after an acknowledge bit  
tRCL1  
Fast mode  
20 +  
1000  
1000  
300  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.1CB  
Standard mode  
Fast mode  
20 +  
0.1CB  
tRCL  
tFCL  
tRDA  
tFDA  
Rise time of SCL signal  
Fall time of SCL signal  
Rise time of SDA signal  
Fall time of SDA signal  
20 +  
0.1CB  
Standard mode  
Fast mode  
20 +  
0.1CB  
300  
20 +  
0.1CB  
300  
Standard mode  
Fast mode  
20 +  
0.1CB  
1000  
300  
20 +  
0.1CB  
Standard mode  
Fast mode  
20 +  
0.1CB  
300  
20 +  
300  
0.1CB  
Standard mode  
Fast mode  
4.0  
µs  
ns  
nF  
tsu;STO Setup time for STOP condition  
CB Capacitive load for SDA and SCL  
600  
0.4  
(1) Industry standard I2C timing characteristics according to I2C-Bus Specification, Version 2.1, January 2000. Not tested in production.  
SDA  
t
t
f
BUF  
t
f
t
t
t
LOW  
t
r
su;DAT  
t
t
r
hd;STA  
SCL  
t
t
su;STO  
hd;STA  
su;STA  
t
hd;DAT  
HIGH  
S
Sr  
P
S
Figure 1. Serial Interface Timing For F/S-Mode  
10  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
7.7 Typical Characteristics  
VIN= 3.7 V, VPOS= 5.4 V, VNEG= –5.4 V, unless otherwise noted  
3
0.6  
0.58  
0.56  
0.54  
0.52  
0.5  
VIN = 2.9 V  
VIN = 2.9 V  
VIN = 3.7 V  
VIN = 4.5 V  
VIN = 3.7 V  
VIN = 4.5 V  
2.5  
2
1.5  
1
0.48  
0.46  
0.44  
0.42  
0.4  
0.5  
0
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
C04  
Ta (°C)  
C04  
Ta (°C)  
Figure 2. Shutdown Current (all versions but Ax)  
Figure 3. Quiescent Current  
1.2  
1.15  
1.1  
2.5  
2.45  
2.4  
VIN = 2.9 V  
VIN = 3.7 V  
VIN = 4.5 V  
UVLO_rising  
UVLO_falling  
1.05  
1
2.35  
2.3  
0.95  
0.9  
2.25  
2.2  
0.85  
0.8  
-40  
10  
60  
-40  
-20  
0
20  
40  
60  
80  
C03  
C03  
Ta (°C)  
Ta (°C)  
Figure 4. Main Oscillator Frequency  
Figure 5. UVLO  
Copyright © 2013–2016, Texas Instruments Incorporated  
11  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TPS65132, supporting input voltage range from 2.5 V to 5.5 V, operates with a single inductor scheme to  
provide a high efficiency with a small solution size. The synchronous boost converter generates a positive  
voltage that is regulated down by an integrated LDO, providing the positive supply rail (VPOS). The negative  
supply rail (VNEG) is generated by an integrated negative charge pump (or CPN) driven from the boost converter  
output pin, REG. The operating mode can be selected between 40mA and 80mA in order to select the necessary  
output current capability and to get the best efficiency possible based on the application. The device topology  
allows a 100% asymmetry of the output currents.  
8.2 Functional Block Diagram  
SW  
REG  
VPOS  
OUTP  
VIN  
SYNC  
BOOST  
VIN  
LDO  
CPN  
5.4 V/40 mA  
(battery voltage)  
VNEG  
OUTN  
AGND  
ENP  
ENN  
–5.4 V/40 mA  
SCL  
SDA  
8.3 Feature Description  
8.3.1 Undervoltage Lockout (UVLO)  
The TPS65132 integrates an undervoltage lockout block (UVLO) that enables the device once the voltage on the  
VIN pin exceeds the UVLO threshold (2.5 V maximum). No output voltage will be generated as long as the  
enable signals are not pulled HIGH. The device, as well as all converters (boost converter, LDO, CPN), will be  
disabled as soon as the VIN voltage falls below the UVLO threshold. The UVLO threshold is designed in a way  
that the TPS65132 will continue operating as long as VIN stays above 2.3 V. This guarantees a proper operation  
even in the event of extensive line transients when the battery gets suddenly heavily loaded.  
For TPS65132Ax, a 40 ms delay is starting as soon as the UVLO threshold is reached. This delay prevents the  
device to be disabled and enabled by an unwanted VIN voltage spike. Once this delay has passed, the output  
rails can be enabled and disabled as desired with the enable signals without any delay.  
8.3.2 Active Discharge  
An active discharge of the positive rail and/or the negative rail can be programmed (DISP and DISN bits  
respectively - refer to Registers). If programmed to be active, the discharge will occur at power down, when the  
enable signals go LOW (Figure 37 and Figure 38 for TPS65132Ax, Bx, Lx, Tx, Wx — Figure 105 and Figure 104  
for TPS65132Sx). See Power-Down And Discharge (LDO) and Power-Down And Discharge (CPN) for a detailed  
description of how each device variant implements the active discharge function.  
12  
Copyright © 2013–2016, Texas Instruments Incorporated  
 
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
Feature Description (continued)  
8.3.3 Boost Converter  
8.3.3.1 Boost Converter Operation  
The synchronous boost converter uses a current mode topology and operates at a quasi-fixed frequency of  
typically 1.8 MHz, allowing chip inductors such as 2.2 µH or 4.7 µH to be used. The converter is internally  
compensated and provides a regulated output voltage automatically adjusted depending on the programmed  
VPOS and VNEG voltages. The boost converter operates either in continuous conduction mode (CCM) or Pulse  
Frequency Modulation mode (PFM), depending on the load current in order to provide the highest efficiency  
possible. The switch node waveforms for CCM and DCM operation are shown in Figure 6 and Figure 7.  
8.3.3.2 Power-Up And Soft-Start (Boost Converter)  
The boost converter starts switching as soon as one enable signal is pulled HIGH and the voltage on VIN pin is  
above the UVLO threshold. For TPS65132Ax, in the case where one enable signal is already HIGH when VIN  
reaches the UVLO threshold, the boost converter will only start switching after a 40 ms delay has passed (see  
Undervoltage Lockout (UVLO)).  
The boost converter starts up with an integrated soft-start to avoid drawing excessive inrush current from the  
supply. The output voltage VREG is slowly ramped up to its target value. Typical startup waveforms for low-current  
applications are shown in Figure 33 and Figure 35.  
8.3.3.3 Power-Down (Boost Converter)  
The boost converter stops switching when VIN is below the UVLO threshold or when both output rails are  
disabled. For example, due to a special sequencing, the LDO might still be operating while the CPN is already  
disabled, in which case, the boost will continue operating until the LDO has been disabled. Typical power-down  
waveforms for low-current applications are shown in Figure 34 and Figure 36.  
8.3.3.4 Isolation (Boost Converter)  
The boost converter output (REG) is isolated from the input supply VIN, providing a true shutdown.  
8.3.3.5 Output Voltage (Boost Converter)  
The output voltage of the boost converter is automatically adjusted depending on the programmed VPOS and  
VNEG voltages.  
8.3.3.6 Advanced Power-Save Mode For Light-Load Efficiency And PFM  
The TPS65132 device integrates a power save mode to improve efficiency at light load. In power save mode the  
converter stops switching when the inductor current reaches 0 A. The device resumes its switching activity with  
one or more pulses once the VREG voltage falls below its regulation level, and goes again into power save mode  
once the inductor current reaches 0 A. The pulse duration remains constant, but the frequency of these pulses  
varies according to the output load. This operating mode is also known as Pulse Frequency Modulation or PFM.  
Figure 6 provides plots of the inductor current and the switch node in PFM mode.  
Copyright © 2013–2016, Texas Instruments Incorporated  
13  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
Feature Description (continued)  
TPS65132B - Low-Current Application  
TPS65132B - Low-Current Application  
2
2
VREG_AC  
VREG_AC  
VSW  
VSW  
3
3
IL  
IL  
4
4
Ch4 100 mA/div  
Ch2 50.0 mV/div  
Ch3 2.00 V/div  
Ch4 100 mA/div  
Ch2 50.0 mV/div  
Ch3 2.00 V/div  
1 µs/div  
1 µs/div  
Figure 7. Boost Converter — Heavy Load (40 mA)  
Figure 6. Boost Converter - Light Load (1 mA)  
8.3.4 LDO Regulator  
8.3.4.1 LDO Operation  
The Low Dropout regulator (or LDO) generates the positive voltage rail, VPOS, by regulating down the output  
voltage of the boost converter (VREG). Its inherent power supply rejection helps filtering the output ripple of the  
boost converter in order to provide on OUTP pin a clean voltage, e.g. to supply the source driver IC of the  
display.  
8.3.4.2 Power-Up And Soft-Start (LDO)  
The LDO starts operating as soon as the ENP signal is pulled HIGH, VIN voltage is above the UVLO threshold  
and the boost converter has reached its Power Good threshold.  
In the case where the enable signal is already HIGH when VIN exceeds the UVLO threshold, the boost converter  
will start first and the LDO will only start after the boost converter has reached its target voltage. For  
TPS65132Ax, the boost will start after the 40 ms delay has passed (see Undervoltage Lockout (UVLO)).  
For TPS65132Sx the LDO startup is defined by the setting of the DLYx register and the SEQU bits, see  
Registers for more details.  
The LDO integrates a soft-start that slowly ramps up its output voltage VPOS regardless of the output capacitor  
and the target voltage, as long as the LDO current limit is not reached. For TPS65132Ax and TPS65132Bx  
(except TPS65132B2), the typical startup time is 140 µs. For TPS65132B2, TPS65132Lx, TPS65132Sx,  
TPS65132Tx and TPS65132Wx, the typical ramp-up time is 500 µs and the inrush current is also reduced by a  
factor of 3. Typical startup waveforms for the low-current application are shown in Figure 33 to Figure 35.  
8.3.4.3 Power-Down And Discharge (LDO)  
The LDO stops operating when VIN is below the UVLO threshold or when ENP is pulled LOW. Or for  
TPS65132Sx when EN is pulled LOW, and the internal sequencing has passed.  
The positive rail can be actively discharged to GND during power-down if required. A discharge selection bit is  
available to enable or disable this function. See Registers for more details, as well as waveforms in Figure 37  
and Figure 38. Table 1 shows the VPOS active discharge behavior of each device variant.  
Table 1. VPOS Active Discharge Behavior  
PART NUMBER  
VIN  
ENP (or EN)  
Don't Care  
Low  
ENN (or SYNC)  
Don't Care  
Low  
VPOS DISCHARGE  
< VUVLO  
On  
Determined by DISP bit  
TPS65132Ax  
Low  
High  
Determined by DISP bit  
> VUVLO  
High  
Low  
Off  
Off  
High  
High  
14  
Copyright © 2013–2016, Texas Instruments Incorporated  
 
 
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
Feature Description (continued)  
Table 1. VPOS Active Discharge Behavior (continued)  
PART NUMBER  
VIN  
ENP (or EN)  
Don't Care  
Low  
ENN (or SYNC)  
Don't Care  
Low  
VPOS DISCHARGE  
< VUVLO  
On  
TPS65132Bx  
TPS65132Lx  
TPS65132Sx  
TPS65132Tx  
TPS65132Wx  
On  
Low  
High  
Determined by DISP bit  
> VUVLO  
High  
Low  
Off  
Off  
High  
High  
8.3.4.4 Isolation (LDO)  
The LDO is isolating the VPOS rail from VREG (boost converter output) as long as the rail is not enabled in order to  
ensure flexible startup like VNEG before VPOS  
.
8.3.4.5 Setting The Output Voltage (LDO)  
The output voltage of the LDO is programmable via a I2C compatible interface, from –6.0 V to –4.0 V in 100 mV  
steps. For more details, please refer to the VPOS Register – Address: 0x00  
8.3.5 Negative Charge Pump  
8.3.5.1 Operation  
The negative charge pump (CPN) generates the negative voltage rail, VNEG, by inverting and regulating the  
output voltage of the boost converter (VREG). The charge pump uses 4 switches and an external flying capacitor  
to generate the negative rail. Two of the switches are turned on in the first phase to charge the flying capacitor  
up to VREG, and in the second phase they are turned-off and the two others turn on to pump the energy  
negatively out of the OUTN capacitor.  
8.3.5.2 Power-Up And Soft-Start (CPN)  
The CPN starts operating as soon as the ENN signal is pulled HIGH, VIN voltage is above the UVLO threshold  
and the boost converter has reached its Power Good threshold.  
In the case where the enable signal is already HIGH when VIN reaches the UVLO threshold, the boost converter  
will start first and the CPN will only start after the boost converter has reached its target voltage. For  
TPS65132Ax, the boost will start after the 40 ms delay has passed (see Undervoltage Lockout (UVLO)).  
For TPS65132Sx the CPN startup is defined by the setting of the DLYx register and the SEQU bits, see  
Registers for more details.  
The CPN integrates a soft-start that slowly ramps up its output voltage VNEG within a time defined by the selected  
mode (40mA or 80mA), the output voltage and the output capacitor value. For TPS65132Ax and TPS65132Bx  
(except TPS65132B2), the startup current charging the output capacitor in 40mA mode is 50 mA, and 100 mA  
typically in 80mA mode. For TPS65132B2, TPS65132Lx, TPS65132Tx, and TPS65132Wx, the typical ramp-up  
times are slowed down by a factor of 4 (i.e 12.5 mA and 25 mA typical output current for 40mA and 80mA modes  
respectively) and the inrush current is also reduced by a factor of about 4. Typical startup waveforms for the low-  
current application are shown in Figure 39 to Figure 42.  
For TPS65132Sx, the negative rail starts-up in 40mA or 80mA mode, thus the startup current is set by the mode  
the device is programmed to, and not related to the SYNC pin state. The full current of 150 mA minimum is only  
released once both rails (VPOS and VNEG) have reached their Power Good levels.  
COUT ´ VNEG  
tSTARTUP  
=
ISTARTUP  
The estimated startup time can be calculated using the following formula:  
Where:  
tSTARTUP = startup time of the VNEG rail  
COUT = output capacitance of the VNEG rail  
VNEG = target output voltage  
Copyright © 2013–2016, Texas Instruments Incorporated  
15  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
ISTARTUP = output current of the VNEG rail charging up the output capacitor at startup (12.5 mA, 25 mA, 50 mA  
or 100 mA as described above)  
8.3.5.3 Power-Down And Discharge (CPN)  
The CPN stops operating when VIN is below the UVLO threshold or when ENN is pulled LOW.  
Or when EN is pulled LOW in the TPS65132Sx, and the internal sequencing has passed.  
The negative rail can be actively discharged to GND during power-down if required. A discharge selection bit is  
available to enable or disable this function. See for more details, as well as waveforms Figure 37 and Figure 38.  
Table 2 shows the VNEG discharge behavior of each device variant.  
Table 2. VNEG Active Discharge Behavior  
PART NUMBER  
VIN  
ENP (or EN)  
Don't Care  
Low  
ENN (or SYNC)  
Don't Care  
Low  
VNEG DISCHARGE  
< VUVLO  
On  
Determined by DISN bit  
TPS65132Ax  
Low  
High  
Off  
> VUVLO  
< VUVLO  
> VUVLO  
< VUVLO  
> VUVLO  
High  
Low  
Determined by DISN bit  
High  
High  
Off  
Don't Care  
Low  
Don't Care  
Low  
On  
TPS65132Bx  
TPS65132Lx  
TPS65132Tx  
TPS65132Wx  
On  
Low  
High  
Off  
High  
Low  
Determined by DISN bit  
High  
High  
Off  
Don't Care  
Low  
Don't Care  
Low  
On  
On  
TPS65132Sx  
Low  
High  
Determined by DISN bit  
High  
Low  
Off  
Off  
High  
High  
8.3.5.4 Isolation (CPN)  
The CPN isolates the VNEG rail from VREG (boost converter output) as long as the rail is not enabled in order to  
ensure flexible startup like VPOS before VNEG  
.
8.3.5.5 Setting The Output Voltage (CPN)  
The output voltage of the CPN is programmable via a I2C compatible interface, from –4.0 V to –6.0 V in 100 mV  
steps. For more details, please refer to the VNEG Register – Address 0x01.  
8.4 Device Functional Modes  
8.4.1 Enabling and Disabling the Device  
At startup (VIN goes above UVLO and at least one of the enable pins (ENP, ENN, or EN) goes HIGH), the  
EEPROM content is loaded into the DAC registers and the IC starts with these default values. The TPS65132 is  
enabled as long as the VIN voltage is above the UVLO and one of the enable pins (ENP, ENN, or EN) is HIGH.  
Pulling ENP or ENN LOW disables either rail (VPOS or VNEG respectively); and, pulling both pins LOW disables  
the device entirely (the internal oscillator of the TPS65132Ax continues running to allow access to the I²C  
interface).  
For TPS65132Sx, pulling EN LOW disables the device.  
16  
Copyright © 2013–2016, Texas Instruments Incorporated  
 
 
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
8.5 Programming  
8.5.1 I2C Serial Interface Description  
The TPS65132 communicates through an industry standard I2C compatible interface, to receive data in slave  
mode. I2C is a 2-wire serial interface developed by Philips Semiconductor (see I2C-Bus Specification, Version  
2.1, January 2000).  
The TPS65132 integrates a non-volatile memory (EEPROM) that allows the storage of the register values with a  
capability of up to 1000 programming cycles. At startup the TPS65132 loads first the EEPROM content into the  
registers and uses these voltages to start.  
It is recommended to stop I2C communication with the TPS65132 for 50 ms after the command "Write EEPROM  
data" was sent. If the device is accessed via I2C during EEPROM programming, the device will pull down the  
SCL line (clock stretch) after it recognized its I2C address. The SCL line will be released after EEPROM  
programming is finished.  
The TPS65132 works as a slave and supports the following data transfer modes, as defined in the I2C-Bus  
specification: standard mode (100 kbps) and fast mode (400 kbps). The data transfer protocol for standard and  
fast modes is exactly the same, therefore they are referred to as F/S-mode in this document. The TPS65132  
supports 7-bit addressing. The device 7-bit address is 3E (see Figure 8), and the LSB enables the write or read  
function.  
Figure 8. TPS65132 Slave Address Byte  
MSB  
0
TPS65132  
1
Address  
1
LSB  
R/W  
1
1
1
0
R/W = R/(W)  
NOTE  
With TPS65132Ax, the I2C interface is accessible as long as the input voltage is above  
the undervoltage lockout threshold. In all other versions, the I2C interface is accessible  
only as soon as one of the enable pins is pulled HIGH while the input voltage is above the  
undervoltage lockout.  
8.5.2 I2C Interface Protocol  
7
8
8
1
1
1
1
1
1
S
Slave Address  
R/  
W
A
Data Register  
A
P
A
Register Address  
“0” Write  
A
A
S
= Acknowledge (SDA LOW)  
= Not Acknowledge (SDA HIGH)  
= START condition  
From Master to Slave  
From Slave to Master  
Sr = REPEATED START condition  
= STOP condition  
P
Figure 9. “Write" Data To DAC – Transfer Format In F/S-Mode  
Copyright © 2013–2016, Texas Instruments Incorporated  
17  
 
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
7
8
8
8
1
1
1
1
1
1
A
Register Address (n)  
A
Data nth Register  
A
Data (n+1)th Register  
S
Slave Address  
R/  
W
A
“0” Write  
8
1
A
1
P
Data (Last) Register  
A
A
S
= Acknowledge (SDA LOW)  
= Not Acknowledge (SDA HIGH)  
= START condition  
From Master to Slave  
From Slave to Master  
Sr = REPEATED START condition  
= STOP condition  
P
Figure 10. "Write" Data To DAC – Transfer Format In F/S-Mode  
Featuring Register Address Auto-Increment  
7
8
8
1
1
1
1
1
1
S
Slave Address  
R/  
W
A
A
P
CR Data (1xxxxxxx)  
A
CR Address  
“1” Write all DAC data to EEPROM  
“0” Write  
A
A
S
= Acknowledge (SDA LOW)  
= Not Acknowledge (SDA HIGH)  
= START condition  
From Master to Slave  
From Slave to Master  
Sr = REPEATED START condition  
= STOP condition  
P
Figure 11. “Write” Data To EEPROM – Transfer Format In F/S-Mode  
7
8
8
1
1
1
1
1
1
S
Slave Address  
R/  
W
A
CR data (0xxxxxx0)  
A
P
A
CR Address  
“0” Read from DAC Register  
“1” Read from EEPROM Register  
“0” Write  
7
8
7
Slave Address  
8
1
1
1
R/  
1
1
1
1
1
A
1
S
Slave Address  
W
Register Address  
A
Sr  
R/W  
A
Data  
P
A
“0” Write  
“1” Read  
A
A
S
= Acknowledge (SDA LOW)  
= Not Acknowledge (SDA HIGH)  
= START condition  
From Master to Slave  
Sr = REPEATED START condition  
= STOP condition  
From Slave to Master  
P
Figure 12. “Read” Data From DAC/EEPROM – Transfer Format In F/S-Mode  
18  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
7
8
8
1
1
1
1
1
1
S
Slave Address  
R/  
W
A
CR data (0xxxxxx0)  
A
P
A
CR Address  
“0” Read from DAC Register  
“1” Read from EEPROM Register  
“0” Write  
7
8
7
Slave Address  
8
1
1
1
R/  
1
1
1
1
1
A
Data nth Register  
S
Slave Address  
W
Register Address  
A
Sr  
R/W  
A
A
“0” Write  
“1” Read  
8
8
1
A
1
A
1
Data (n+1)th Register  
Data (Last) Register  
P
A
A
S
= Acknowledge (SDA LOW)  
= Not Acknowledge (SDA HIGH)  
= START condition  
From Master to Slave  
From Slave to Master  
Sr = REPEATED START condition  
= STOP condition  
P
Figure 13. “Read” Data From DAC/EEPROM – Transfer Format In F/S-Mode  
Featuring Register Address Auto-Increment  
8.6 Register Maps  
The TPS65132 has a non-volatile memory (EEPROM) which contains the initial values and one volatile memory  
(Registers) which contains the actual settings. The EEPROM and the Registers are accessed with the same  
address.  
Startup option: At power-up, the values contained in the EEPROM are loaded into the Registers to the last  
stored setting within less than 20 µs. The programmed factory value of the EEPROM of each address is  
described in section Factory Default Register Value.  
Write description: The user has to program all Registers first (0×00 to 0×03), then set the WED (Write  
EEPROM Data) bit to 1. A dead time of 50 ms is then initiated during which the register content or all registers  
(0×00 ~ 0×03) are stored into the non-volatile EEPROM cells. During that time, there should be no data flowing  
through the I2C because the I2C interface is momentarily not responding.  
After the 50 ms have passed, the WED bit is automatically reset to 0, and the user is able to read the values or  
program again.  
Slave address: 0x3E  
X = R/W  
R/W = 1 read mode  
R/W = 0 write mode  
8.6.1 Registers  
Attempting to read data from register addresses not listed in the following section will result in 0x00 being read  
out.  
8.6.1.1 VPOS Register – Address: 0x00  
Figure 14. VPOS Register  
7
RSVD  
0
6
RSVD  
0
5
RSVD  
0
4
3
2
VPOS[4:0]  
1
1
1
0
0
0
1
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2013–2016, Texas Instruments Incorporated  
19  
 
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
Table 3. VPOS Register Field Descriptions  
Bit  
Field  
Description  
7:5  
RSVD[2:0]  
Reserved, always set to 0  
VPOS output voltage adjustment  
VPOS[4:0] Value  
(binary)  
VPOS Output Voltage  
VPOS[4:0] Value  
(binary)  
VPOS Output Voltage  
(V)  
4.0  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
6.0  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
4:0  
VPOS[4:0]  
20  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
8.6.1.2 VNEG Register – Address 0x01  
Figure 15. VNEG Register  
7
RSVD  
0
6
RSVD  
0
5
RSVD  
0
4
3
2
VNEG[4:0]  
1
1
1
0
0
0
1
R
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4. VNEG Register Field Descriptions  
Bit  
Field  
Description  
7:5  
RSVD[2:0]  
Reserved, always set to 0  
VNEG output voltage adjustment  
VNEG[4:0] Value  
(binary)  
VNEG Output Voltage  
(V)  
VNEG[4:0] Value  
(binary)  
VNEG Output Voltage  
(V)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
–4.0  
–4.1  
–4.2  
–4.3  
–4.4  
–4.5  
–4.6  
–4.7  
–4.8  
–4.9  
–5.0  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
–5.1  
–5.2  
–5.3  
–5.4  
–5.5  
–5.6  
–5.7  
–5.8  
–5.9  
–6.0  
4:0  
VNEG[4:0]  
Copyright © 2013–2016, Texas Instruments Incorporated  
21  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
8.6.1.3 DLYx Register – Address 0x02 (Only valid for TPS65132Sx)  
Figure 16. DLYx Register  
7
DLYP2  
0
6
DLYP2  
0
5
DLYN2  
0
4
DLYN2  
0
3
DLYP1  
0
2
DLYP1  
0
1
DLYN1  
0
0
DLYN1  
1
R/W  
Table 5. DLYx Register Field Descriptions  
Bit  
Field  
Description  
7:6  
5:4  
3:2  
1:0  
DLYP2[1:0]  
DLYN2[1:0]  
DLYP1[1:0]  
DLYN1[1:0]  
Delay in milliseconds  
DLYx Value (binary)  
DLYx Delay (ms)  
00  
01  
10  
11  
0
DLYx[1:0]  
1
5
10  
22  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
8.6.1.4 APPS - SEQU - SEQD - DISP - DISN Register – Address 0x03  
Figure 17. APPS - SEQU - SEQD - DISP - DISN Register  
7
RSVD  
0
6
APPS  
0
5
SEQU  
0
4
SEQU  
0
3
SEQD  
0
2
SEQD  
0
1
DISP  
1
0
DISN  
0
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. APPS - SEQU - SEQD - DISP - DISN Field Descriptions  
Value  
(binary)  
Bit  
Field  
Description  
Action  
7
RSVD  
Reserved, always set to 0  
0
1
40mA  
80mA  
APPS  
Application  
6
APPS  
Value  
00  
01  
10  
11  
00  
01  
10  
11  
0
VPOS and VNEG simultaneously (DLYP1 after EN goes HIGH)  
VPOS (DLYP1 after EN goes HIGH) and then VNEG (DLYN1 after VPOS  
)
Sequencing at  
Startup  
SEQU  
Value  
5:4  
SEQU(1)  
VNEG (DLYN1 after EN goes HIGH) and then VPOS (DLYP1 after VNEG  
)
VPOS only  
VPOS and VNEG simultaneously (DLYP2 after EN goes LOW)  
VPOS (DLYP2 after EN goes LOW) and then VNEG (DLYN2 after VPOS  
)
Sequencing at  
Shutdown  
SEQD  
Value  
3:2  
SEQD(1)  
VNEG (DLYN2 after EN goes LOW) and then VPOS (DLYP2 after VNEG  
)
Ignored  
No discharge  
1
0
DISP(2)  
DISN(2)  
Discharge VPOS DISP Value  
Discharge VNEG DISN Value  
1
VPOS actively discharged  
No discharge  
0
1
VNEG actively discharged  
(1) SEQU and SEQD bits are just valid for TPS65132Sx  
(2) See Power-Down And Discharge (LDO) and Power-Down And Discharge (CPN) for a detailed description of how each device variant  
implements the active discharge function.  
Copyright © 2013–2016, Texas Instruments Incorporated  
23  
 
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
8.6.1.5 Control Register – Address 0xFF  
Figure 18. Control Register  
7
6
5
4
3
2
1
0
WED  
RSVD[6:1]  
EE/(DR)  
The Reserved bits are ignored when written and return either 0 or 1 when read.  
Table 7. Control Register Field Descriptions  
Value  
(binary)  
Bit  
Field  
Description  
0
No action  
7
6:1  
0
WED  
1
Write EEPROM Data  
RSVD[6:1]  
EE/(DR)  
Reserved  
0
1
Read from Registers  
Read from EEPROM  
24  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
8.6.2 Factory Default Register Value  
Register address  
Part number  
0x00  
0x0E  
0x0A  
0x0E  
0x0A  
0x0C  
0x0F  
0x0E  
0x0A  
0x0B  
0x0E  
0x10h  
0x0E  
0x01  
0x0E  
0x0A  
0x0E  
0x0A  
0x0C  
0x0F  
0x0E  
0x0A  
0x0B  
0x0E  
0x10h  
0x0E  
0x02  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x03  
0x43  
0x43  
0x43  
TPS65132A  
TPS65132A0  
TPS65132B  
TPS65132B0  
TPS65132B2  
TPS65132B5  
TPS65132L  
TPS65132L0  
(1)  
TPS65132L1  
TPS65132S  
TPS65132T6  
TPS65132W  
0x00  
(1) Product preview.  
Copyright © 2013–2016, Texas Instruments Incorporated  
25  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TPS65132xx devices, primarily intended to supplying TFT LCD displays, can be used for any application  
that requires positive and negative supplies, ranging from ±4 V to ±6 V and current up to 80 mA (150 mA for the  
TPS65132Sx version). Both output voltages can be set independently and their sequencing is also independent.  
The following section presents the different operating modes that the device can support as well as the different  
features that the user can select.  
9.2 Typical Applications  
9.2.1 Low-current Applications (40 mA)  
The TPS65132 can be programmed to 40mA mode with the APPS bit to support applications that require output  
currents up to 40 mA (refer to Figure 17). The 40mA mode limits the negative charge pump output current to 40  
mA DC in order to provide the highest efficiency possible. The VPOS rail can deliver up to 200 mA DC regardless  
of the mode. Output peak currents are supported by the output capacitors.  
L
4.7 µH  
VIN  
VIN  
SW  
C1  
4.7 µF  
VPOS  
2.5V to 5.5 V  
OUTP  
5.4 V/40 mA  
C3  
REG  
ENP  
ENN  
4.7 µF  
C2  
4.7 µF  
VNEG  
SCL  
SDA  
OUTN  
–5.4 V/40 mA  
C5  
4.7 µF  
PGND  
AGND  
CFLY1  
CFLY2  
C4  
2.2 µF  
Figure 19. Typical Low-current Application Circuit  
9.2.1.1 Design Requirements  
Table 8. Design Parameters  
PARAMETERS  
Input Voltage Range  
EXAMPLE VALUES  
2.5 V to 5.5 V  
4.0 V to 6.0 V, –4.0 V to –6.0 V  
40 mA  
Output Voltages  
Output Current Rating  
Boost Converter Switching Frequency  
1.8 MHz  
Negative Charge Pump Switching Frequency  
1.0 MHz  
26  
Copyright © 2013–2016, Texas Instruments Incorporated  
 
 
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Sequencing  
Each output rail (VPOS and VNEG) is enabled and disabled using an external enable signal. If not explicitly  
specified, the enable signal in the rest of the document refers to ENN or ENP: ENP for the positive rail VPOS and  
ENN for the negative rail VNEG. Figure 33 to Figure 36 show the typical sequencing waveforms.  
NOTE  
In the case where VIN falls below the UVLO threshold while one of the enable signals is  
still high, all converters will be shut down instantaneously and both VPOS and VNEG output  
rails will be actively discharged to GND.  
9.2.1.2.2 Boost Converter Design Procedure  
The first step in the design procedure is to verify whether the maximum possible output current of the boost  
converter supports the specific application requirements. A simple approach is to estimate the converter  
efficiency, by taking the efficiency number from the provided efficiency curves at the application's maximum load  
or to use a worst case assumption for the expected efficiency, e.g., 85%.  
V
´ η  
IN_min  
D = 1 -  
1. Duty Cycle:  
V
REG  
V
´ D  
IN_min  
ΔI =  
L
2. Inductor ripple current:  
3. Maximum output current:  
fSW ´ L  
DIL  
æ
ç
ö
I
= ILIM_min  
è
+
´ 1-D  
(
)
OUT_max  
÷
2
ø
IOUT  
DIL  
4. Peak switch current of the application:  
ISWPEAK  
=
+
1-D  
2
η = Estimated boost converter efficiency (use the number from the efficiency plots or 85% as an estimation)  
ƒSW = Boost converter switching frequency (1.8 MHz)  
L = Selected inductor value for the boost converter (see the Inductor Selection section)  
ISWPEAK = Boost converter switch current at the desired output current (must be < [ ILIM_min + ΔIL])  
ΔIL = Inductor peak-to-peak ripple current  
VREG = max (VPOS, |VNEG|) + 200 mV (in 40mA mode — + 300 mV in 80mA mode — + 500 mV with  
TPS65132Sx with SYNC = HIGH)  
IOUT = IOUT_VPOS + | IOUT_VNEG| (IOUT_max being the maximum current delivered on each rail)  
The peak switch current is the current that the integrated switch and the inductor have to handle. The calculation  
must be done for the minimum input voltage where the peak switch current is highest.  
9.2.1.2.2.1 Inductor Selection (Boost Converter)  
Saturation current: the inductor must handle the maximum peak current (IL_SAT > ISWPEAK, or IL_SAT > [ ILIM_min  
ΔIL] as conservative approach)  
+
DC Resistance: the lower the DCR, the lower the losses  
Inductor value: in order to keep the ratio IOUT/ΔIL low enough for proper sensing operation purpose, it is  
recommended to use a 4.7 µH inductor for 40mA mode (a 2.2 µH might however be used, but the efficiency  
might be lower than with 4.7 µH at light loads depending on the inductor characteristics).  
Copyright © 2013–2016, Texas Instruments Incorporated  
27  
 
 
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
Table 9. Inductor Selection Boost(1)  
L
DCR TYP  
(mΩ)  
ISAT  
(A)  
SUPPLIER(1)  
COMPONENT CODE  
EIA SIZE  
(µH)  
2.2  
2.2  
2.2  
4.7  
4.7  
4.7  
Toko  
Murata  
Murata  
Toko  
1269AS-H-2R2N=P2  
LQM2HPN2R2MG0  
LQM21PN2R2NGC  
1269AS-H-4R7N=P2  
LQM21PN4R7MGR  
MIPS2520D4R7  
1008  
1008  
0805  
1008  
0805  
1008  
130  
80  
2.4  
1.3  
0.8  
1.6  
0.8  
0.7  
250  
250  
230  
280  
Murata  
FDK  
(1) See Third-Party Products Disclaimer  
9.2.1.2.2.2 Input Capacitor Selection (Boost Converter)  
For best input voltage filtering low ESR ceramic capacitors are recommended. TPS65132 has an analog input  
pin VIN. A 4.7 µF minimum bypass capacitor is required as close as possible from VIN to GND. This capacitor is  
also used as the boost converter input capacitor.  
For better input voltage filtering, this value can be increased or two capacitors can be used: one 4.7 µF input  
capacitor for the boost converter as well as a 1 µF bypass capacitor close to the VIN pin. Refer to the  
Recommended Operating Conditions, Table 10 and Figure 19 for input capacitor recommendations.  
9.2.1.2.2.3 Output Capacitor Selection (Boost Converter)  
For the best output voltage filtering, low-ESR ceramic capacitors are recommended. A minimum of 4.7 µF  
ceramic output capacitor is required. Higher capacitor values can be used to improve the load transient  
response. Refer to the Recommended Operating Conditions, Table 10 and Figure 19 for output capacitor  
recommendations.  
Table 10. Input And Output Capacitor Selection(1)  
CAPACITOR  
(µF)  
EIA SIZE (Thickness  
max.)  
VOLTAGE RATING  
(V)  
SUPPLIER  
Murata  
COMPONENT CODE  
GRM188R61C225KAAD  
GRM188R61C475KAAJ  
GRM219R61C106KA73  
COMMENTS  
2.2  
4.7  
10  
0603 (0.9 mm)  
0603 (0.95 mm)  
0603 (0.95 mm)  
16  
16  
16  
CFLY  
CIN, CNEG, CPOS  
,
Murata  
CREG  
Murata  
CNEG, CREG  
(1) See Third-Party Products Disclaimer  
9.2.1.2.3 Input Capacitor Selection (LDO)  
The LDO input capacitor is also the boost converter output capacitor. Refer to the Recommended Operating  
Conditions, Table 10 and Figure 19.  
9.2.1.2.4 Output Capacitor Selection (LDO)  
The LDO is designed to operate with a 4.7 µF minimum ceramic output capacitor. Refer to the Recommended  
Operating Conditions, Table 10 and Figure 19.  
9.2.1.2.5 Input Capacitor Selection (CPN)  
The CPN input capacitor is also the boost converter output capacitor. Refer to the Recommended Operating  
Conditions, Table 10 and Figure 19.  
9.2.1.2.6 Output Capacitor Selection (CPN)  
The CPN is designed to operate with a 4.7 µF minimum ceramic output capacitor. Refer to the Recommended  
Operating Conditions, Table 10 and Figure 19.  
28  
Copyright © 2013–2016, Texas Instruments Incorporated  
 
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
9.2.1.2.7 Flying Capacitor Selection (CPN)  
The CPN needs an external flying capacitor. The minimum value is 2.2 µF. Special care must be taken while  
choosing the flying capacitor as it will directly impact the output voltage accuracy and load regulation  
performance. Therefore, a minimum capacitance of 1 µF must be achieved by the capacitor at a DC bias voltage  
of VNEG+ 300 mV. For proper operation, the flying capacitor value must be lower than the output capacitor of  
the boost converter on REG pin.  
9.2.1.3 Application Curves  
VIN = 3.7 V, VPOS = 5.4 V, VNEG = –5.4 V, unless otherwise noted  
Table 11. Component List Used For The Application Curves  
REFERENCE  
DESCRIPTION  
2.2 µF, 16 V, 0603, X5R, ceramic  
4.7 µF, 16 V, 0603, X5R, ceramic  
10 μF, 16 V, 0603, X5R, ceramic  
MANUFACTURER AND PART NUMBER(1)  
Murata - GRM188R61C225KAAD  
Murata - GRM188R61C475KAAJ  
C
Murata - GRM188R61E106MA73  
Toko - DFE252010C (1269AS-H-2R2N=P2)  
Toko - DFE252010C (1269AS-H-4R7N=P2)  
Texas Instruments  
2.2 µH, 2.4 A, 130 mΩ, 2.5 mm × 2.0 mm × 1.0 mm  
4.7 µH, 1.6 A, 250 mΩ, 2.5 mm × 2.0 mm × 1.0 mm  
TPS65132AYFF  
L
U1  
(1) See Third-Party Products Disclaimer  
Table 12. Table Of Graphs  
PARAMETER  
EFFICIENCY  
CONDITIONS  
Figure  
Efficiency vs. Output  
Current  
± 5.0 V — 40mA Mode — L = 4.7 µH  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Efficiency vs. Output  
Current  
± 5.4 V — 40mA Mode — L = 4.7 µH  
± 5.0 V — 40mA Mode — L = 2.2 µH  
± 5.4 V — 40mA Mode — L = 2.2 µH  
Efficiency vs. Output  
Current  
Efficiency vs. Output  
Current  
CONVERTERS WAVEFORMS  
VNEG Output Ripple  
VNEG Output Ripple  
VPOS Output Ripple  
LOAD TRANSIENT  
Load Transient  
INEG = 2 mA / 20 mA / 40 mA — 40mA Mode — COUT = 4.7 µF  
INEG = 2 mA / 20 mA / 40 mA — 40mA Mode — COUT = 2 × 4.7 µF  
Any load  
Figure 24  
Figure 25  
Figure 26  
VIN = 2.9 V — IPOS = –INEG = 5 mA 35 mA 5 mA — 40mA Mode — L = 4.7 µH  
VIN = 3.7 V — IPOS = –INEG = 5 mA 35 mA 5 mA — 40mA Mode — L = 4.7 µH  
VIN = 4.5 V — IPOS = –INEG = 5 mA 35 mA 5 mA — 40mA Mode — L = 4.7 µH  
Figure 27  
Figure 28  
Figure 29  
Load Transient  
Load Transient  
LINE TRANSIENT  
Line Transient  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 0 mA — 40mA Mode — L = 4.7 µH  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 5 mA — 40mA Mode — L = 4.7 µH  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 35 mA — 40mA Mode — L = 4.7 µH  
Figure 30  
Figure 31  
Figure 32  
Line Transient  
Line Transient  
Copyright © 2013–2016, Texas Instruments Incorporated  
29  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
Figure  
Table 12. Table Of Graphs (continued)  
PARAMETER  
CONDITIONS  
POWER SEQUENCING  
Power-up Sequencing  
Power-down Sequencing  
Power-up Sequencing  
Power-down Sequencing  
Simultaneous — no load  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Simultaneous — no load with Active Discharge  
Sequential — no load  
Sequential — no load with Active Discharge  
Power-up/down  
Sequencing  
Simultaneous — no load with Active Discharge  
Simultaneous — no load without Active Discharge  
Figure 37  
Figure 38  
Power-up/down  
Sequencing  
INRUSH CURRENT  
Inrush Current  
Simultaneous — no load — 40mA Mode  
Figure 39  
Figure 40  
Figure 41  
Figure 42  
Inrush Current  
Sequential — no load — 40mA Mode  
Inrush Current  
Simultaneous — no load — 40mA Mode — TPS65132B2, –Lx, –Sx, –Tx, –Wx  
Sequential — no load — 40mA Mode — TPS65132B2, –Lx, –Sx, –Tx, –Wx  
Inrush Current  
LOAD REGULATION  
VPOS vs Output Current  
VPOS vs Output Current  
VNEG vs Output Current  
VNEG vs Output Current  
LINE REGULATION  
VPOS = 5.0 V — 40mA Mode — IPOS = 0 mA to 40 mA — L = 4.7 µH and 2.2 µH  
VPOS = 5.4 V — 40mA Mode — IPOS = 0 mA to 40 mA — L = 4.7 µH and 2.2 µH  
VNEG = –5.0 V — 40mA Mode — INEG = 0 mA to 40 mA — L = 4.7 µH and 2.2 µH  
VNEG = –5.4 V — 40mA Mode — INEG = 0 mA to 40 mA — L = 4.7 µH and 2.2 µH  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
VIN = 2.5 V to 5.5 V — VPOS = 5.0 V — 40mA Mode — IPOS = 20 mA — L = 4.7 µH and 2.2  
µH  
VPOS vs Output Voltage  
VPOS vs Output Voltage  
VNEG vs Output Voltage  
VNEG vs Output Voltage  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
VIN = 2.5 V to 5.5 V — VPOS = 5.4 V — 40mA Mode — IPOS = 20 mA — L = 4.7 µH and 2.2  
µH  
VIN = 2.5 V to 5.5 V — VNEG = –5.0 V — 40mA Mode — INEG = 20 mA — L = 4.7 µH and 2.2  
µH  
VIN = 2.5 V to 5.5 V — VNEG = –5.4 V — 40mA Mode — INEG = 20 mA — L = 4.7 µH and 2.2  
µH  
spacer  
NOTE  
In this section, IOUT means that the outputs are loaded with IPOS = –INEG simultaneously.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
VIN = 4.5V  
VIN = 4.5V  
VIN = 3.7V  
VIN = 2.8V  
60  
VIN = 3.7V  
55  
VIN = 2.8V  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
C005  
C006  
IOUT (mA)  
L = 4.7 µH  
IOUT (mA)  
L = 4.7 µH  
± 5.0 V  
± 5.4 V  
Figure 20. Combined Efficiency — 40mA Mode  
Figure 21. Combined Efficiency — 40mA Mode  
30  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 4.5V  
VIN = 3.7V  
VIN = 2.8V  
35  
VIN = 4.5V  
VIN = 3.7V  
VIN = 2.8V  
50  
0
5
10  
15  
20  
25  
30  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
C003  
C004  
IOUT (mA)  
L = 2.2 µH  
IOUT (mA)  
L = 2.2 µH  
± 5.0 V  
± 5.4 V  
Figure 22. Combined Efficiency — 40mA Mode  
Figure 23. Combined Efficiency — 40mA Mode  
VNEG_AC [INEG = 2mA]  
VNEG_AC [INEG = 2mA]  
1
R2  
R1  
1
VNEG_AC [INEG = 20mA]  
VNEG_AC [INEG = 20mA]  
R1  
R2  
VNEG_AC [INEG = 40mA]  
VNEG_AC [INEG = 40mA]  
20.0mV AC BW  
20.0mV AC BW  
R1  
R2  
20.0mV AC BW  
20.0mV AC BW  
R1  
R2  
L = 4.7 µH  
COUT = 2 × 4.7 µF  
L = 4.7 µH  
COUT = 4.7 µF  
Figure 25. VNEG Output Voltage Ripple — 40mA Mode  
Figure 24. VNEG Output Voltage Ripple — 40mA Mode  
VPOS_AC  
1
Figure 26. VPOS Output Voltage Ripple  
Copyright © 2013–2016, Texas Instruments Incorporated  
31  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
IPOS = - INEG  
IPOS = - INEG  
4
4
VIN = 2.9 V  
ΔIOUT = 30 mA  
VIN = 3.7 V  
ΔIOUT = 30 mA  
Figure 27. Load Transient — 40mA Mode  
Figure 28. Load Transient — 40mA Mode  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
IPOS = - INEG  
4
3
VIN  
VIN = 4.5 V  
ΔIOUT = 30 mA  
IOUT = 0 mA  
ΔVIN = 1.7 V  
Figure 29. Load Transient — 40mA Mode  
Figure 30. Line Transient — 40mA Mode  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
3
3
VIN  
VIN  
IOUT = 5 mA  
ΔVIN = 1.7 V  
IOUT = 35 mA  
ΔVIN = 1.7 V  
Figure 31. Line Transient — 40mA Mode  
Figure 32. Line Transient — 40mA Mode  
32  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
ENP  
ENP  
ENN  
1
1
ENN  
VREG  
R2  
R2  
VSW  
2
2
VPOS  
VNEG  
VPOS  
VNEG  
3
4
3
4
R2  
5.0V  
R2  
5.0V  
Figure 33. Power-Up Sequencing — Simultaneous  
Figure 34. Power-Down Sequencing — Simultaneous  
(with Active Discharge)  
ENP  
ENN  
ENP  
1
1
ENN  
R2  
R2  
VREG  
VSW  
2
2
VPOS  
VNEG  
VPOS  
VNEG  
3
4
3
4
5.0V  
R2  
5.0V  
R2  
Figure 35. Power-Up Sequencing — Sequential  
Figure 36. Power-Down Sequencing — Sequential  
(with Active Discharge)  
ENP  
ENN  
ENP  
ENN  
1
1
R2  
R2  
VSW  
VSW  
2
2
VPOS  
VNEG  
VPOS  
VNEG  
3
4
3
4
R2  
5.0V  
R2  
5.0V  
Figure 38. Power-Up/Down Without Active Discharge  
(TPS65132Ax only)  
Figure 37. Power-Up/Down With Active Discharge  
Copyright © 2013–2016, Texas Instruments Incorporated  
33  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
VREG  
VREG  
1
1
VPOS  
VPOS  
VNEG  
2
3
2
3
VNEG  
IIN  
IIN  
4
4
Figure 39. Inrush Current — Simultaneous  
Figure 40. Inrush Current — Sequential  
VREG  
VREG  
1
1
VPOS  
VNEG  
VPOS  
VNEG  
2
3
2
3
IIN  
IIN  
4
4
Figure 41. Inrush Current — Simultaneous  
(TPS65132B2, –Lx, –Sx, –Tx, –Wx)  
Figure 42. Inrush Current — Sequential  
(TPS65132B2, –Lx, –Sx, –Tx, –Wx)  
5.45  
5.44  
5.43  
5.42  
5.41  
5.40  
5.39  
5.38  
5.37  
5.36  
5.35  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
40mA Mode ; 4.7 µH  
40mA Mode ; 2.2 µH  
40mA Mode ; 4.7 µH  
40mA Mode ; 2.2 µH  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
C009  
IOUT (mA)  
C008  
IOUT (mA)  
VPOS = 5.4 V  
VPOS = 5 V  
Figure 44. Load Regulation  
Figure 43. Load Regulation  
34  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
-4.95  
-4.96  
-4.97  
-4.98  
-4.99  
-5.00  
-5.01  
-5.02  
-5.03  
-5.04  
-5.35  
-5.36  
-5.37  
-5.38  
-5.39  
-5.40  
-5.41  
-5.42  
-5.43  
-5.44  
-5.45  
40mA Mode ; 4.7 µH  
40mA Mode ; 2.2 µH  
40mA Mode ; 4.7 µH  
40mA Mode ; 2.2 µH  
-5.05  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
C01  
C01  
IOUT (mA)  
IOUT (mA)  
VNEG = –5 V  
VNEG = –5.4 V  
Figure 45. Load Regulation  
Figure 46. Load Regulation  
5.02  
5.42  
5.41  
5.40  
5.39  
5.38  
5.37  
40mA Mode ; 4.7 µH  
40mA Mode ; 2.2 µH  
40mA Mode ; 4.7 µH  
40mA Mode ; 2.2 µH  
5.01  
5.00  
4.99  
4.98  
4.97  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
C01  
C01  
VIN (V)  
VIN (V)  
VPOS = 5 V  
VPOS = 5.4 V  
Figure 47. Line Regulation  
Figure 48. Line Regulation  
-4.96  
-4.97  
-4.98  
-4.99  
-5.00  
-5.01  
-5.36  
40mA Mode ; 4.7 µH  
40mA Mode ; 4.7 µH  
40mA Mode ; 2.2 µH  
40mA Mode ; 2.2 µH  
-5.37  
-5.38  
-5.39  
-5.40  
-5.41  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
C01  
C01  
VIN (V)  
VIN (V)  
VNEG = –5 V  
VNEG = –5.4 V  
Figure 49. Line Regulation  
Figure 50. Line Regulation  
Copyright © 2013–2016, Texas Instruments Incorporated  
35  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
9.2.2 Mid-current Applications (80 mA)  
The TPS65132 can be programmed to 80mA mode with the APPS bit to support applications that require output  
currents up to 80 mA (refer to Figure 17). The 80mA mode is limiting the negative charge pump (CPN) output  
current to 80 mA DC in order to provide the highest efficiency possible where the V(POS) rail can deliver up to 200  
mA DC regardless of the mode. Output peak currents are supported by the output capacitors.  
L
2.2 µH  
VIN  
VIN  
SW  
C1  
4.7 µF  
VPOS  
2.5V to 5.5 V  
OUTP  
5.4 V/80 mA  
C3  
REG  
ENP  
ENN  
10 µF  
C2  
10 µF  
VNEG  
SCL  
SDA  
OUTN  
–5.4 V/80 mA  
C5  
10 µF  
PGND  
AGND  
CFLY1  
CFLY2  
C4  
4.7 µF  
Figure 51. Typical Mid-current Application Circuit  
9.2.2.1 Design Requirements  
Table 13. Design Parameters  
PARAMETERS  
Input Voltage Range  
EXAMPLE VALUES  
2.5 V to 5.5 V  
4.0 V to 6.0 V, –4.0 V to –6.0 V  
80 mA  
Output Voltages  
Output Current Rating  
Boost Converter Switching Frequency  
1.8 MHz  
Negative Charge Pump Switching Frequency  
1.0 MHz  
9.2.2.2 Detailed Design Procedure  
The design procedure for the mid-current applications (80mA mode) is identical to the one for the low-current  
applications (40mA mode), except for the BOM (bill of materials). Refer to the Detailed Design Procedure for  
details about the sequencing and the general component selection.  
9.2.2.2.1 Boost Converter Design Procedure  
9.2.2.2.1.1 Inductor Selection (Boost Converter)  
In order to keep the ratio IOUT/ΔIL low enough for proper sensing operation purpose, it is recommended to use a  
2.2 µH inductor for 80mA mode. For details, see Inductor Selection (Boost Converter).  
9.2.2.2.1.2 Input Capacitor Selection (Boost Converter)  
A 4.7 µF minimum bypass capacitor is required as close as possible from VIN to GND. This capacitor is also  
used as the boost converter input capacitor.  
For better input voltage filtering, this value can be increased or two capacitors can be used: one 4.7 µF input  
capacitor for the boost converter as well as a 1 µF bypass capacitor close to the VIN pin. Refer to the  
Recommended Operating Conditions, Table 10 and Figure 51 for input capacitor recommendations.  
36  
Copyright © 2013–2016, Texas Instruments Incorporated  
 
 
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
9.2.2.2.1.3 Output Capacitor Selection (Boost Converter)  
For best output voltage filtering low ESR ceramic capacitors are recommended. A minimum of 10 µF ceramic  
output capacitor is required. Higher capacitor values can be used to improve the load transient response. Refer  
to the Recommended Operating Conditions, Table 10 and Figure 51 for output capacitor recommendations.  
9.2.2.2.2 Input Capacitor Selection (LDO)  
The LDO input capacitor is also the boost converter output capacitor. Refer to the Recommended Operating  
Conditions, Table 10 and Figure 51.  
9.2.2.2.3 Output Capacitor Selection (LDO)  
The LDO is designed to operate with a 4.7 µF minimum ceramic output capacitor. Refer to the Recommended  
Operating Conditions, Table 10 and Figure 51.  
9.2.2.2.4 Input Capacitor Selection (CPN)  
The CPN input capacitor is also the boost converter output capacitor. Refer to the Recommended Operating  
Conditions, Table 10 and Figure 51.  
9.2.2.2.5 Output Capacitor Selection (CPN)  
The CPN is designed to operate with a 10 µF minimum ceramic output capacitor. Refer to the Recommended  
Operating Conditions, Table 10 and Figure 51.  
9.2.2.2.6 Flying Capacitor Selection (CPN)  
The CPN needs an external flying capacitor. The minimum value is 4.7 µF. Special care must be taken while  
choosing the flying capacitor as it will directly impact the output voltage accuracy and load regulation  
performance. Therefore, a minimum capacitance of 2.2 µF must be achieved by the capacitor at a DC bias  
voltage of VNEG+ 300 mV. For proper operation, the flying capacitor value must be lower than the output  
capacitor of the boost converter on REG pin.  
9.2.2.3 Application Curves  
VIN = 3.7 V, VPOS = 5.4 V, VNEG = –5.4 V, unless otherwise noted  
Table 14. Component List For Typical Characteristics Circuits  
REFERENCE  
DESCRIPTION  
2.2 µF, 16 V, 0603, X5R, ceramic  
4.7 µF, 16 V, 0603, X5R, ceramic  
10 μF, 16 V, 0603, X5R, ceramic  
2.2 µH, 2.4 A, 130 mΩ, 2.5 mm × 2.0 mm × 1.0 mm  
TPS65132AYFF  
MANUFACTURER AND PART NUMBER(1)  
Murata - GRM188R61C225KAAD  
Murata - GRM188R61C475KAAJ  
Murata - GRM188R61E106MA73  
Toko - DFE252010C (1269AS-H-2R2N=P2)  
Texas Instruments  
C
L
U1  
(1) See Third-Party Products Disclaimer  
Copyright © 2013–2016, Texas Instruments Incorporated  
37  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
Figure  
Table 15. Table Of Graphs  
PARAMETER  
EFFICIENCY  
CONDITIONS  
Efficiency vs. Output  
Current  
± 5.0 V — 80mA Mode — L = 2.2 µH  
± 5.4 V — 80mA Mode — L = 2.2 µH  
Figure 52  
Figure 53  
Efficiency vs. Output  
Current  
CONVERTERS WAVEFORMS  
VNEG Output Ripple  
VNEG Output Ripple  
VPOS Output Ripple  
LOAD TRANSIENT  
Load Transient  
INEG = 4 mA / 40 mA / 80 mA — 80mA Mode — COUT = 10 µF  
INEG = 4 mA / 40 mA / 80 mA — 80mA Mode — COUT = 2 × 10 µF  
IPOS = 150 mA — 80mA Mode  
Figure 54  
Figure 55  
Figure 56  
VIN = 2.9 V — IPOS = –INEG = 10 mA 70 mA 10 mA — 80mA Mode — L = 2.2 µH  
VIN = 3.7 V — IPOS = –INEG = 10 mA 70 mA 10 mA — 80mA Mode — L = 2.2 µH  
VIN = 4.5 V — IPOS = –INEG = 10 mA 70 mA 10 mA — 80mA Mode — L = 2.2 µH  
Figure 57  
Figure 58  
Figure 59  
Load Transient  
Load Transient  
LINE TRANSIENT  
Line Transient  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 0 mA — 80mA Mode — L = 2.2 µH  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 40 mA — 80mA Mode — L = 2.2 µH  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 70 mA — 80mA Mode — L = 2.2 µH  
Figure 60  
Figure 61  
Figure 62  
Line Transient  
Line Transient  
POWER SEQUENCING  
Power-up Sequencing  
Power-down Sequencing  
Power-up Sequencing  
Power-down Sequencing  
Simultaneous — no load  
Figure 63  
Figure 64  
Figure 65  
Figure 66  
Simultaneous — no load with Active Discharge  
Sequential — no load  
Sequential — no load with Active Discharge  
Power-up/down  
Sequencing  
Simultaneous — no load with Active Discharge  
Simultaneous — no load without Active Discharge  
Figure 67  
Figure 68  
Power-up/down  
Sequencing  
INRUSH CURRENT  
Inrush Current  
Simultaneous — no load — 80mA Mode  
Figure 69  
Figure 70  
Figure 71  
Figure 72  
Inrush Current  
Sequential — no load — 80mA Mode  
Inrush Current  
Simultaneous — no load — 80mA Mode — TPS65132B2, –Lx, –Sx, –Tx, –Wx  
Sequential — no load — 80mA Mode — TPS65132B2, –Lx, –Sx, –Tx, –Wx  
Inrush Current  
LOAD REGULATION  
VPOS vs Output Current  
VPOS vs Output Current  
VNEG vs Output Current  
VNEG vs Output Current  
LINE REGULATION  
VPOS vs Output Voltage  
VPOS vs Output Voltage  
VNEG vs Output Voltage  
VNEG vs Output Voltage  
VPOS = 5.0 V — 80mA Mode — IPOS = 0 mA to 80 mA — L = 2.2 µH  
VPOS = 5.4 V — 80mA Mode — IPOS = 0 mA to 80 mA — L = 2.2 µH  
VNEG = –5.0 V — 80mA Mode — INEG = 0 mA to 80 mA — L = 2.2 µH  
VNEG = –5.4 V — 80mA Mode — INEG = 0 mA to 80 mA — L = 2.2 µH  
Figure 73  
Figure 74  
Figure 75  
Figure 76  
VIN = 2.5 V to 5.5 V — VPOS = 5.0 V — 80mA Mode — IPOS = 60 mA — L = 2.2 µH  
VIN = 2.5 V to 5.5 V — VPOS = 5.4 V — 80mA Mode — IPOS = 60 mA — L = 2.2 µH  
VIN = 2.5 V to 5.5 V — VNEG = –5.0 V — 80mA Mode — INEG = 60 mA — L = 2.2 µH  
VIN = 2.5 V to 5.5 V — VNEG = –5.4 V — 80mA Mode — INEG = 60 mA — L = 2.2 µH  
Figure 77  
Figure 78  
Figure 79  
Figure 80  
spacer  
NOTE  
In this section, IOUT means that the outputs are loaded with IPOS = –INEG simultaneously.  
38  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 4.5V  
VIN = 3.7V  
VIN = 2.8V  
VIN = 4.5V  
VIN = 3.7V  
VIN = 2.8V  
50  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
C001  
C002  
IOUT (mA)  
IOUT (mA)  
± 5 V  
L = 2.2 µH  
± 5.4 V  
L = 2.2 µH  
Figure 52. Combined Efficiency — 80mA Mode  
Figure 53. Combined Efficiency — 80mA Mode  
VNEG_AC [INEG = 4mA]  
VNEG_AC [INEG = 4mA]  
1
R2  
R1  
1
VNEG_AC [INEG = 40mA]  
VNEG_AC [INEG = 40mA]  
R1  
VNEG_AC [INEG = 80mA]  
R2  
VNEG_AC [INEG = 80mA]  
20.0mV AC BW  
20.0mV AC BW  
R1  
R2  
20.0mV AC BW  
20.0mV AC BW  
R1  
R2  
L = 2.2 µH  
COUT = 2 × 10 µF  
L = 2.2 µH  
COUT = 10 µF  
Figure 55. VNEG Output Voltage Ripple — 80mA Mode  
Figure 54. VNEG Output Voltage Ripple — 80mA Mode  
VPOS_AC  
1
Figure 56. VPOS Output Voltage Ripple  
Copyright © 2013–2016, Texas Instruments Incorporated  
39  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
4
4
IPOS = - INEG  
IPOS = - INEG  
VIN = 2.9 V  
ΔIOUT = 60 mA  
VIN = 3.7 V  
ΔIOUT = 60 mA  
Figure 57. Load Transient — 80mA Mode  
Figure 58. Load Transient — 80mA Mode  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
4
3
VIN  
IPOS = - INEG  
VIN = 4.5 V  
ΔIOUT = 60 mA  
IOUT = 0 mA  
ΔVIN = 1.7 V  
Figure 59. Load Transient — 80mA Mode  
Figure 60. Line Transient — 80mA Mode  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
3
3
VIN  
VIN  
IOUT = 40 mA  
ΔVIN = 1.7 V  
IOUT = 70 mA  
ΔVIN = 1.7 V  
Figure 61. Line Transient — 80mA Mode  
Figure 62. Line Transient — 80mA Mode  
40  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
ENP  
ENP  
ENN  
1
1
ENN  
VREG  
R2  
R2  
VSW  
2
2
VPOS  
VNEG  
VPOS  
VNEG  
3
4
3
4
R2  
5.0V  
R2  
5.0V  
Figure 63. Power-Up Sequencing — Simultaneous  
Figure 64. Power-Down Sequencing — Simultaneous  
(with Active Discharge)  
ENP  
ENN  
ENP  
1
1
ENN  
R2  
R2  
VREG  
VSW  
2
2
VPOS  
VNEG  
VPOS  
VNEG  
3
4
3
4
5.0V  
R2  
5.0V  
R2  
Figure 65. Power-Up Sequencing — Sequential  
Figure 66. Power-Down Sequencing — Sequential  
(with Active Discharge)  
ENP  
ENN  
ENP  
ENN  
1
1
R2  
R2  
VSW  
VSW  
2
2
VPOS  
VNEG  
VPOS  
VNEG  
3
4
3
4
R2  
5.0V  
R2  
5.0V  
Figure 68. Power-Up/Down Without Active Discharge  
(TPS65132Ax only)  
Figure 67. Power-Up/Down With Active Discharge  
Copyright © 2013–2016, Texas Instruments Incorporated  
41  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
VREG  
VREG  
1
1
VPOS  
VPOS  
VNEG  
2
3
2
3
VNEG  
IIN  
IIN  
4
4
Figure 69. Inrush Current — Simultaneous  
Figure 70. Inrush Current — Sequential  
VREG  
VREG  
1
1
VPOS  
VNEG  
VPOS  
VNEG  
2
3
2
3
IIN  
IIN  
4
4
Figure 71. Inrush Current — Simultaneous  
(TPS65132B2, –Lx, –Sx, –Wx)  
Figure 72. Inrush Current — Sequential  
(TPS65132B2, –Lx, –Sx, –Wx)  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
5.45  
5.44  
5.43  
5.42  
5.41  
5.40  
5.39  
5.38  
5.37  
5.36  
5.35  
80mA Mode ; 2.2 µH  
80mA Mode ; 2.2 µH  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
C016  
C017  
IOUT (mA)  
IOUT (mA)  
VPOS = 5 V  
VPOS = 5.4 V  
Figure 73. Load Regulation  
Figure 74. Load Regulation  
42  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
-4.95  
-4.96  
-4.97  
-4.98  
-4.99  
-5.00  
-5.01  
-5.02  
-5.03  
-5.04  
-5.35  
-5.36  
-5.37  
-5.38  
-5.39  
-5.40  
-5.41  
-5.42  
-5.43  
-5.44  
-5.45  
80mA Mode ; 2.2 µH  
80mA Mode ; 2.2 µH  
-5.05  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80  
C01  
C01  
IOUT (mA)  
IOUT (mA)  
VNEG = –5 V  
VNEG = –5.4 V  
Figure 75. Load Regulation  
Figure 76. Load Regulation  
5.01  
5.41  
5.40  
5.39  
5.38  
5.37  
5.36  
80mA Mode ; 2.2 µH  
80mA Mode ; 2.2 µH  
5.00  
4.99  
4.98  
4.97  
4.96  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
C02  
C02  
VIN (V)  
VIN (V)  
VPOS = 5 V  
VPOS = 5.4 V  
Figure 77. Line Regulation  
Figure 78. Line Regulation  
-4.97  
-4.98  
-4.99  
-5.00  
-5.01  
-5.02  
-5.37  
80mA Mode ; 2.2 µH  
80mA Mode ; 2.2 µH  
-5.38  
-5.39  
-5.40  
-5.41  
-5.42  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
C02  
C02  
VIN (V)  
VIN (V)  
VNEG = –5 V  
VNEG = –5.4 V  
Figure 79. Line Regulation  
Figure 80. Line Regulation  
Copyright © 2013–2016, Texas Instruments Incorporated  
43  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
9.2.3 High-current Applications (150 mA)  
The TPS65132Sx version allows output current up to 150 mA on both VPOS and VNEG when the SYNC pin is  
pulled HIGH. If the SYNC pin is pulled LOW, the TPS65132Sx can be programmed to 40mA or 80mA mode with  
the APPS bit to lower the output current capability of the VNEG rail if needed (in the case the efficiency is an  
important parameter). See Low-current Applications (40 mA) and Mid-current Applications (80 mA) for more  
details about the 40mA and 80mA modes.  
L
2.2 µH  
VIN  
VIN  
SW  
C1  
4.7 µF  
VPOS  
2.5V to 5.5 V  
OUTP  
5.4 V/150 mA  
C3  
REG  
EN  
10 µF  
C2  
SYNC  
10 µF  
VNEG  
SCL  
SDA  
OUTN  
–5.4 V/150 mA  
C5  
10 µF  
PGND  
AGND  
CFLY1  
CFLY2  
C4  
4.7 µF  
Figure 81. Typical Application Circuit For High Current  
9.2.3.1 Design Requirements  
Table 16. Design Parameters  
PARAMETERS  
Input Voltage Range  
EXAMPLE VALUES  
2.5 V to 5.5 V  
4.0 V to 6.0 V, –4.0 V to –6.0 V  
150 mA  
Output Voltages  
Output Current Rating  
Boost Converter Switching Frequency  
1.8 MHz  
Negative Charge Pump Switching Frequency  
1.0 MHz  
9.2.3.2 Detailed Design Procedure  
The design procedure and BOM list of the TPS65132Sx is identical to the 80mA mode. Please refer to the Mid-  
current Applications (80 mA) for more details about the general component selection.  
44  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
9.2.3.2.1 Sequencing  
The output rails (VPOS and VNEG) are enabled and disabled using an external logic signal on the EN pin. The  
power-up and power-down sequencing events are programmable. Please refer to Programmable Sequencing  
Scenarios for the different sequencing as well as Registers for the programming options. Figure 98 to Figure 103  
show the typical sequencing waveforms.  
VPOS  
VNEG  
VNEG  
VPOS  
Simultaneous  
VIN  
EN  
VIN  
EN  
VIN  
EN  
DLYP1  
DLYP1  
DLYP1  
VPOS  
VNEG  
VPOS  
VNEG  
VPOS  
VNEG  
DLYN1  
DLYN1  
VIN  
VIN  
VIN  
EN  
EN  
EN  
VPOS  
VPOS  
VPOS  
DLYP2  
DLYP2  
DLYP2  
VNEG  
VNEG  
VNEG  
DLYN2  
DLYN2  
Figure 82. Programmable Sequencing Scenarios  
NOTE  
In the case where the UVLO falling threshold is triggered while the enable signal is still  
HIGH (EN), all converters will be shut down instantaneously and both VPOS and VNEG  
output rails will be actively discharged to GND.  
The power-up and power-down sequencing must be finalized (all delays have passed)  
before re-toggling the EN pin.  
9.2.3.2.2 SYNC = HIGH  
When the SYNC pin is pulled HIGH, the boost converter voltage increases instantaneously to allow enough  
headroom to deliver the 150 mA. See Figure 88 to Figure 91 for detailed waveforms.  
When SYNC pin is pulled LOW, the boost converter keeps its offset for 300 µs typically, and during this time, the  
device is still capable if supplying 150 mA on both output rail. After these 300 µs have passed, current limit  
settles at 40 mA or 80 mA maximum, depending on the application mode it is programmed to (40mA or 80mA —  
see Low-current Applications (40 mA) and Mid-current Applications (80 mA) for more details ) and the boost  
output voltage regulates down to its nominal value.  
9.2.3.2.3 Startup  
The TPS65132Sx can startup with SYNC = HIGH, however, the boost offset as well as the 150 mA output  
current capability will only be available as soon as the last rail to start is in regulation.  
Copyright © 2013–2016, Texas Instruments Incorporated  
45  
 
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
9.2.3.3 Application Curves  
VIN= 3.7 V, VPOS= 5.4 V, VNEG= –5.4 V, unless otherwise noted  
Table 17. Component List For Typical Characteristics Circuits  
REFERENCE  
DESCRIPTION  
2.2 µF, 16 V, 0603, X5R, ceramic  
MANUFACTURER AND PART NUMBER  
Murata - GRM188R61C225KAAD  
C
4.7 µF, 16 V, 0603, X5R, ceramic  
10 μF, 16 V, 0603, X5R, ceramic  
2.2 µH, 2.4 A, 130 mΩ, 2.5 mm × 2.0 mm × 1.0 mm  
TPS65132SYFF  
Murata - GRM188R61C475KAAJ  
Murata - GRM188R61E106MA73  
Toko - DFE252010C (1269AS-H-2R2N=P2)  
Texas Instruments  
L
U1  
Table 18. Table Of Graphs  
PARAMETER  
CONDITIONS  
Figure  
EFFICIENCY  
Efficiency vs.  
Output Current  
± 5.0 V — SYNC = HIGH — L = 2.2 µH  
± 5.4 V — SYNC = HIGH — L = 2.2 µH  
Figure 83  
Figure 84  
Efficiency vs.  
Output Current  
CONVERTERS WAVEFORMS  
VPOS Output  
Ripple  
IPOS = 150 mA — SYNC = HIGH  
Figure 85  
Figure 86  
Figure 87  
VNEG Output  
Ripple  
INEG = 10mA / 80 mA / 150 mA — SYNC = HIGH — COUT = 10 µF  
INEG = 4 mA / 40 mA / 80 mA — SYNC = HIGH — COUT = 2 × 10 µF  
VNEG Output  
Ripple  
SYNC = HIGH Signal  
SYNC = HIGH  
SYNC = HIGH  
IPOS = –INEG = 10 mA  
Figure 88  
Figure 89  
IPOS = –INEG = 150 mA  
SYNC = HIGH  
Zoom  
IPOS = –INEG = 10 mA  
Figure 90  
Figure 91  
SYNC = LOW  
Zoom  
IPOS = –INEG = 10 mA  
LOAD TRANSIENT  
Load Transient  
Load Transient  
Load Transient  
LINE TRANSIENT  
Line Transient  
VIN = 2.9 V — IPOS = –INEG = 10 mA 150 mA 10 mA — SYNC = HIGH — L = 2.2 µH  
VIN = 3.7 V — IPOS = –INEG = 10 mA 150 mA 10 mA — SYNC = HIGH — L = 2.2 µH  
VIN = 4.5 V — IPOS = –INEG = 10 mA 150 mA 10mA — SYNC = HIGH — L = 2.2 µH  
Figure 92  
Figure 93  
Figure 94  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 10 mA — SYNC = HIGH — L = 2.2 µH  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 100 mA — SYNC = HIGH — L = 2.2 µH  
VIN = 2.8 V 4.5 V 2.8 V — IPOS = –INEG = 150 mA — SYNC = HIGH — L = 2.2 µH  
Figure 95  
Figure 96  
Figure 97  
Line Transient  
Line Transient  
POWER SEQUENCING  
Power-up  
Sequencing  
Simultaneous — no load  
Figure 98  
Figure 99  
Figure 100  
Figure 101  
Figure 102  
Figure 103  
Power-down  
Sequencing  
Simultaneous — no load with Active Discharge  
Sequential (VPOS VNEG) — no load  
Power-up  
Sequencing  
Power-down  
Sequencing  
Sequential (VNEG VPOS) — no load with Active Discharge  
Sequential (VNEG VPOS) — no load  
Power-up  
Sequencing  
Power-down  
Sequencing  
Sequential (VPOS VNEG) — no load with Active Discharge  
46  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
PARAMETER  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
Table 18. Table Of Graphs (continued)  
CONDITIONS  
Figure  
Power-up/down  
Sequencing  
Simultaneous — no load without Active Discharge  
Figure 104  
Power-up/down  
Sequencing  
Simultaneous — no load with Active Discharge  
Figure 105  
INRUSH CURRENT  
Inrush Current  
Simultaneous — no load — SYNC = HIGH — L = 2.2 µH  
Sequential — no load — SYNC = HIGH — L = 2.2 µH  
Figure 106  
Figure 107  
Inrush Current  
LOAD REGULATION  
VPOS vs Output  
Current  
VPOS = 5.0 V — SYNC = HIGH — IPOS = 0 mA to 150 mA — L = 2.2 µH  
Figure 108  
Figure 109  
Figure 110  
Figure 111  
VPOS vs Output  
Current  
VPOS = 5.4 V — SYNC = HIGH — IPOS = 0 mA to 150 mA — L = 2.2 µH  
VNEG = –5.0 V — SYNC = HIGH — INEG = 0 mA to 150 mA — L = 2.2 µH  
VNEG = –5.4 V — SYNC = HIGH — INEG = 0 mA to 150 mA — L = 2.2 µH  
VNEG vs Output  
Current  
VNEG vs Output  
Current  
LINE REGULATION  
VPOS vs Output  
Voltage  
VIN = 2.5 V to 5.5 V — VPOS = 5.0 V — SYNC = HIGH — IPOS = 120 mA — L = 2.2 µH  
VIN = 2.5 V to 5.5 V — VPOS = 5.4 V — SYNC = HIGH — IPOS = 120 mA — L = 2.2 µH  
VIN = 2.5 V to 5.5 V — VNEG = –5.0 V — SYNC = HIGH — INEG = 120 mA — L = 2.2 µH  
VIN = 2.5 V to 5.5 V — VNEG = –5.4 V — SYNC = HIGH — INEG = 120 mA — L = 2.2 µH  
Figure 112  
Figure 113  
Figure 114  
Figure 115  
VPOS vs Output  
Voltage  
VNEG vs Output  
Voltage  
VNEG vs Output  
Voltage  
spacer  
NOTE  
In this section, IOUT means that the outputs are loaded with IPOS = –INEG simultaneously.  
Copyright © 2013–2016, Texas Instruments Incorporated  
47  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 4.5V  
VIN = 3.7V  
VIN = 2.8V  
VIN = 4.5V  
VIN = 3.7V  
VIN = 2.8V  
0
10 20 30 40 50 60 70 80 90 100110120130140150  
0
10 20 30 40 50 60 70 80 90 100110120130140150  
C02  
C02  
IOUT (mA)  
IOUT (mA)  
Figure 83. Combined Efficiency — ± 5.0 V — SYNC = HIGH  
L = 2.2 µH  
Figure 84. Combined Efficiency — ± 5.4 V — SYNC = HIGH  
L = 2.2 µH  
VNEG_AC [INEG = 10mA]  
1
VNEG_AC [INEG = 80mA]  
VPOS_AC  
R2  
1
VNEG_AC [INEG = 150mA]  
R1  
50.0mVACBW  
50.0mV AC BW  
R1  
R2  
Figure 85. VPOS Output Voltage Ripple — SYNC = HIGH  
Figure 86. VNEG Output Voltage Ripple — SYNC = HIGH —  
L = 2.2 µH — COUT = 10 µF  
VNEG_AC [INEG = 10mA]  
1
VNEG_AC [INEG = 80mA]  
R2  
VNEG_AC [INEG = 150mA]  
R1  
50.0mV AC BW  
50.0mV AC BW  
R1  
R2  
Figure 87. VNEG Output Voltage Ripple — SYNC = HIGH —  
L = 2.2 µH — COUT = 2 × 10 µF  
48  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
SYNC  
SYNC  
VREG_AC  
1
1
VREG_AC  
2
2
VPOS  
VPOS  
3
3
VNEG  
VNEG  
4
4
Figure 88. SYNC Signal — IOUT = 10 mA  
Figure 89. SYNC Signal — IOUT = 150 mA  
SYNC  
SYNC  
VREG  
1
1
2
2
VREG  
VPOS  
VPOS  
3
3
VNEG  
VNEG  
4
4
Figure 90. SYNC = HIGH (zoom)  
Figure 91. SYNC = LOW (zoom) with Delay  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
IPOS = - INEG  
IPOS = - INEG  
4
4
Figure 92. Load Transient — VIN = 2.9 V  
Figure 93. Load Transient — VIN = 3.7 V  
SYNC = HIGH — ΔIOUT = 140 mA  
SYNC = HIGH — ΔIOUT = 140 mA  
Copyright © 2013–2016, Texas Instruments Incorporated  
49  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
IPOS = - INEG  
3
4
VIN  
Figure 94. Load Transient — VIN = 4.5 V  
Figure 95. Line Transient — IOUT = 10 mA  
SYNC = HIGH — ΔVIN = 1.7 V  
SYNC = HIGH — ΔIOUT = 140 mA  
VPOS_AC  
VPOS_AC  
1
1
VNEG_AC  
VNEG_AC  
2
2
3
3
VIN  
VIN  
Figure 96. Line Transient — IOUT = 100 mA  
Figure 97. Line Transient — IOUT = 150 mA  
SYNC = HIGH — ΔVIN = 1.7 V  
SYNC = HIGH — ΔVIN = 1.7 V  
EN  
1
EN  
1
VSW  
2
VREG  
2
VPOS  
VNEG  
3
VPOS  
3
4
VNEG  
4
Figure 98. Power-Up Sequencing — Simultaneous  
SYNC = HIGH  
Figure 99. Power-Down Sequencing — Simultaneous  
SYNC = HIGH  
50  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
EN  
VSW  
1
EN  
1
2
3
VREG  
2
VPOS  
VPOS  
VNEG  
3
4
VNEG  
4
Figure 100. Power-Up Sequencing — Sequential  
Figure 101. Power-Down Sequencing — Sequential  
VPOS VNEG — SYNC = HIGH  
VNEG VPOS— SYNC = HIGH  
EN  
VSW  
1
EN  
1
2
3
VREG  
2
VPOS  
VPOS  
VNEG  
3
4
VNEG  
4
Figure 102. Power-Up Sequencing — Sequential  
Figure 103. Power-Down Sequencing — Sequential  
VNEG VPOS — SYNC = HIGH  
VPOS VNEG — SYNC = HIGH  
EN  
VSW  
EN  
VSW  
1
1
2
3
2
3
VPOS  
VPOS  
VNEG  
VNEG  
4
4
Figure 104. Power-Up/Down Without Active Discharge —  
SYNC = HIGH  
Figure 105. Power-Up/Down With Active Discharge —  
SYNC = HIGH  
Copyright © 2013–2016, Texas Instruments Incorporated  
51  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
VREG  
VREG  
1
1
VPOS  
VPOS  
VNEG  
2
3
2
3
VNEG  
IIN  
IIN  
4
4
Figure 106. Inrush Current — Simultaneous —  
SYNC = HIGH  
Figure 107. Inrush Current — Sequential  
SYNC = HIGH  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
5.45  
5.44  
5.43  
5.42  
5.41  
5.40  
5.39  
5.38  
5.37  
5.36  
5.35  
SYNC = HIGH_2.2µH  
SYNC = HIGH_2.2µH  
0
10 20 30 40 50 60 70 80 90 100110120130140150  
0
10 20 30 40 50 60 70 80 90 100110120130140150  
C02  
C02  
IOUT (mA)  
IOUT (mA)  
Figure 108. Load Regulation VPOS = 5.0 V — SYNC = HIGH  
Figure 109. Load Regulation VPOS = 5.4 V — SYNC = HIGH  
-4.95  
-5.35  
SYNC = HIGH_2.2µH  
-4.96  
SYNC = HIGH_2.2µH  
-5.36  
-4.97  
-4.98  
-4.99  
-5.00  
-5.01  
-5.02  
-5.03  
-5.04  
-5.05  
-5.37  
-5.38  
-5.39  
-5.40  
-5.41  
-5.42  
-5.43  
-5.44  
-5.45  
0
10 20 30 40 50 60 70 80 90 100110120130140150  
0
10 20 30 40 50 60 70 80 90 100110120130140150  
C02  
C02  
IOUT (mA)  
IOUT (mA)  
Figure 110. Load Regulation VNEG = –5.0 V — SYNC =  
HIGH  
Figure 111. Load Regulation VNEG = –5.4 V — SYNC =  
HIGH  
52  
Copyright © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
5.03  
-4.97  
-4.98  
-4.99  
-5.00  
-5.01  
-5.02  
-5.03  
SYNC = HIGH_2.2 µH  
SYNC = HIGH_2.2 µH  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
C03  
C03  
VIN (V)  
VIN (V)  
Figure 112. Line Regulation VPOS = 5.0 V — SYNC = HIGH  
Figure 113. Line Regulation VPOS = 5.4 V — SYNC = HIGH  
-5.37  
-4.97  
80mA Mode ; 2.2 µH  
SYNC = HIGH_2.2 µH  
-5.38  
-5.39  
-5.40  
-5.41  
-4.98  
-4.99  
-5.00  
-5.01  
-5.42  
-5.02  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
C03  
VIN (V)  
C02  
VIN (V)  
Figure 115. Line Regulation VNEG = –5.4 V — SYNC = HIGH  
Figure 114. Line Regulation VNEG = –5.0 V — SYNC = HIGH  
10 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input  
supply must be well regulated. A ceramic input capacitor with a value of 4.7 μF is a typical choice.  
Copyright © 2013–2016, Texas Instruments Incorporated  
53  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
PCB layout is an important task in the power supply design. Good PCB layout minimizes EMI and allows very  
good output voltage regulation. For the TPS65132 the following PCB layout guidelines are recommended.  
Keep the power ground plane on the top layer (all capacitor grounds and PGND pins must be  
connected together with one uninterrupted ground plane).  
AGND and PGND must be connected together on the same ground plane.  
Place the flying capacitor as close as possible to the IC.  
Always avoid vias when possible. They have high inductance and resistance. If vias are necessary, always  
use more than one in parallel to decrease parasitics especially for power lines.  
Connect REG pins together.  
For high dv/dt signals (switch pin traces): keep copper area to a minimum to prevent making unintentional  
parallel plate capacitors with other traces or to a ground plane. Best to route signal and return on same layer.  
For high di/dt signals: keep traces short, wide and closely spaced. This will reduce stray inductance and  
decrease the current loop area to help prevent EMI.  
Keep input capacitor close to the IC with low inductance traces.  
Keep trace from switching node pin to inductor short if possible: it reduces EMI emissions and noise that  
may couple into other portions of the converter.  
Isolate analog signal paths from power paths.  
11.2 Layout Example  
C5  
C2  
L1  
ENN  
OUTN  
CFLY2  
PGND  
CFLY1  
REG  
ENP  
C4  
C1  
SCL  
SDA  
19  
18  
17  
20  
VIN  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
PGND  
OUTP  
OUTP  
REG  
SW  
AGND  
REG  
L1  
PGND  
AGND  
C3  
PGND  
OUTP  
C3  
C1  
PowerPAD  
C2  
VIN  
ENP  
ENN  
CFLY1  
PGND  
C4  
Via to signal layer on internal or bottom layer.  
PGND  
7
8
9
10  
C5  
Via to signal layer on internal or bottom layer.  
Figure 117. PCB Layout Example for QFN Package  
Figure 116. PCB Layout Example for CSP Package  
54  
版权 © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
12 器件和文档支持  
12.1 器件支持  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类  
产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2013–2016, Texas Instruments Incorporated  
55  
TPS65132  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
13.1 CSP 封装概要  
CHIP SCALE PACKAGE  
(top view)  
CHIP SCALE PACKAGE  
(bottom view)  
E
E2  
D2  
C2  
B2  
A2  
E3  
D3  
C3  
B3  
A3  
E1  
D1  
C1  
B1  
A1  
D
Ball A1  
Code:  
Ÿ
Ÿ
Ÿ
Ÿ
Ÿ
TI -- TI letters  
YM -- Year-Month date code  
LLLL -- Lot trace code  
S -- Assembly site code  
xx -- Revision code (contains alpha-numeric characters - can be left  
blank), refer to the Ordering Information section for detailed information)  
13.1.1 芯片级封装尺寸  
TPS65132 器件采用 15 凸点芯片级封装(YFFNanoFree™)。封装尺寸如下:  
• D = 2108μm ±30μm  
• D = 1514μm ±30μm  
56  
版权 © 2013–2016, Texas Instruments Incorporated  
TPS65132  
www.ti.com.cn  
ZHCSCH4H JUNE 2013REVISED NOVEMBER 2016  
CSP 封装概要 (接下页)  
13.1.2 RVC 封装概要  
QFN PACKAGE  
(top view)  
QFN PACKAGE  
(bottom view)  
11  
13  
15  
16  
12  
14  
10  
17  
18  
19  
20  
65132xx  
TI YMS  
LLLL  
PowerPAD  
8
7
5
4
3
2
1
Pin 1  
Code:  
Ÿ
Ÿ
Ÿ
Ÿ
Ÿ
TI -- TI letters  
YM -- Year-Month date code  
LLLL -- Lot trace code  
S -- Assembly site code  
xx -- Revision code (contains alpha-numeric characters - can be left  
blank), refer to the Ordering Information section for detailed information)  
版权 © 2013–2016, Texas Instruments Incorporated  
57  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65132A0YFFR  
TPS65132AYFFR  
TPS65132B0YFFR  
TPS65132B2YFFR  
TPS65132B5YFFR  
TPS65132BYFFR  
TPS65132L0YFFR  
TPS65132L0YFFT  
TPS65132LYFFR  
TPS65132SYFFR  
TPS65132T6YFFR  
TPS65132T6YFFT  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TPS  
65132A0  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
TPS  
65132A  
TPS  
65132B0  
TPS  
65132B2  
TPS  
65132B5  
TPS  
65132B  
TPS  
65132L0  
250  
RoHS & Green  
TPS  
65132L0  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
TPS  
65132L  
TPS  
65132S  
TPS  
65132T6  
250  
3000 RoHS & Green  
250 RoHS & Green  
RoHS & Green  
TPS  
65132T6  
TPS65132WRVCR  
TPS65132WRVCT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RVC  
RVC  
20  
20  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
65132YA  
65132YA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65132AYFFR  
TPS65132B0YFFR  
TPS65132B0YFFR  
TPS65132B2YFFR  
TPS65132B5YFFR  
TPS65132BYFFR  
TPS65132BYFFR  
TPS65132L0YFFR  
TPS65132L0YFFT  
TPS65132LYFFR  
TPS65132T6YFFR  
TPS65132T6YFFT  
TPS65132WRVCR  
TPS65132WRVCT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WQFN  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
RVC  
RVC  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
20  
20  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
250  
180.0  
180.0  
178.0  
180.0  
180.0  
178.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
330.0  
180.0  
8.4  
8.4  
9.2  
8.4  
8.4  
9.2  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
12.4  
12.4  
1.61  
1.61  
1.61  
1.61  
1.61  
1.61  
1.61  
1.61  
1.61  
1.61  
1.61  
1.61  
3.3  
2.21  
2.21  
2.21  
2.21  
2.21  
2.21  
2.21  
2.21  
2.21  
2.21  
2.21  
2.21  
4.3  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.1  
1.1  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
3000  
250  
3000  
250  
WQFN  
3.3  
4.3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65132AYFFR  
TPS65132B0YFFR  
TPS65132B0YFFR  
TPS65132B2YFFR  
TPS65132B5YFFR  
TPS65132BYFFR  
TPS65132BYFFR  
TPS65132L0YFFR  
TPS65132L0YFFT  
TPS65132LYFFR  
TPS65132T6YFFR  
TPS65132T6YFFT  
TPS65132WRVCR  
TPS65132WRVCT  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
WQFN  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
YFF  
RVC  
RVC  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
20  
20  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
250  
182.0  
182.0  
220.0  
182.0  
182.0  
220.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
552.0  
552.0  
182.0  
182.0  
220.0  
182.0  
182.0  
220.0  
182.0  
182.0  
182.0  
182.0  
182.0  
182.0  
346.0  
185.0  
20.0  
20.0  
35.0  
20.0  
20.0  
35.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
36.0  
36.0  
3000  
3000  
250  
3000  
250  
WQFN  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS65132WRVCR  
TPS65132WRVCT  
RVC  
RVC  
WQFN  
WQFN  
20  
20  
3000  
250  
381  
381  
4.83  
4.83  
2286  
2286  
0
0
Pack Materials-Page 3  
PACKAGE OUTLINE  
YFF0015  
DSBGA - 0.625 mm max height  
S
C
A
L
E
6
.
0
0
0
DIE SIZE BALL GRID ARRAY  
B
E
A
BALL A1  
CORNER  
D
C
0.625 MAX  
SEATING PLANE  
0.05 C  
0.30  
0.12  
BALL TYP  
0.8 TYP  
SYMM  
E
D
C
1.6  
D: Max = 2.138 mm, Min =2.078 mm  
E: Max = 1.544 mm, Min =1.484 mm  
TYP  
SYMM  
B
A
0.4 TYP  
0.3  
3
1
2
15X  
0.2  
0.015  
C A B  
0.4  
TYP  
4219378/B 05/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YFF0015  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
15X ( 0.23)  
(0.4) TYP  
2
3
1
A
B
C
SYMM  
D
E
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:40X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
(
0.23)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4219378/B 05/2020  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For more information, see Texas Instruments literature number SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YFF0015  
DSBGA - 0.625 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
(R0.05) TYP  
3
15X ( 0.25)  
1
2
A
B
(0.4) TYP  
METAL  
TYP  
SYMM  
C
D
E
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:40X  
4219378/B 05/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
PACKAGE OUTLINE  
RVC0020A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
0.45  
0.35  
4.1  
3.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
2X 1.5  
SYMM  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
7
10  
16X 0.5  
11  
6
2X  
SYMM  
21  
2.5  
2.6 0.1  
SEE TERMINAL  
DETAIL  
1
16  
0.25  
20X  
0.15  
20  
17  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
1.6 0.1  
0.05  
0.45  
0.35  
20X  
4219150/B 03/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RVC0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.6)  
SYMM  
(R0.05)  
TYP  
17  
20  
20X (0.6)  
1
16  
20X (0.2)  
(1)  
TYP  
21  
(3.8)  
(2.6)  
SYMM  
16X (0.5)  
11  
6
(
0.2) TYP  
VIA  
7
10  
(1 TYP)  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219150/B 03/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RVC0020A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (1.47)  
20  
17  
20X (0.6)  
1
21  
16  
20X (0.2)  
(R0.05) TYP  
SYMM  
2X  
(1.15)  
(3.8)  
(0.675)  
TYP  
16X (0.5)  
11  
6
METAL  
TYP  
7
10  
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD X  
81% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219150/B 03/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65132SYFFR

适用于双极小型/中型显示屏的单电感器 - 双路输出电源 | YFF | 15 | -40 to 85
TI

TPS65132T6YFFR

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132T6YFFT

双电源,单电感器、双路输出转换器、具有正负输出 | YFF | 15 | -40 to 85
TI

TPS65132WRVCR

双电源,单电感器、双路输出转换器、具有正负输出 | RVC | 20 | -40 to 85
TI

TPS65132WRVCT

双电源,单电感器、双路输出转换器、具有正负输出 | RVC | 20 | -40 to 85
TI

TPS65133

5 V, 250 mA Dual Output Power Supply
TI

TPS65133DPDR

5 V, 250 mA Dual Output Power Supply
TI

TPS65135

Single-Inductor, Multiple-Output (SIMO) Regulator
TI

TPS65135RTE

IC 1.9 A SWITCHING REGULATOR, 1000 kHz SWITCHING FREQ-MAX, PQCC16, 3 X 3 MM, PLASTIC, WQFN-16, Switching Regulator or Controller
TI

TPS65135RTER

Single-Inductor, Multiple-Output (SIMO) Regulator
TI

TPS65136

Single-Inductor, Multiple-Output (SIMO) Regulator for AMOLED
TI

TPS65136RTE

Single-Inductor, Multiple-Output (SIMO) Regulator for AMOLED
TI