TPS65154RSLR [TI]

集成 WLED 驱动器的 LCD 偏置 IC | RSL | 48 | -40 to 85;
TPS65154RSLR
型号: TPS65154RSLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

集成 WLED 驱动器的 LCD 偏置 IC | RSL | 48 | -40 to 85

驱动 CD 接口集成电路 驱动器
文件: 总88页 (文件大小:3165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
TPS65154 集成 WLED 驱动器的 LCD 偏置 IC  
1 器件概述  
1.1 特性  
1
• 2.0V 5.5V 输入电压范围  
同步升压转换器 (AVDD  
非同步升压转换器 (VGH  
低压降线性稳压器 (VCC  
面板复位信号 (XAO)  
• T-CON 复位信号 (RST)  
具有写保护的片上 EEPROM  
• I2C 接口  
)
)
)
集成缓冲器放大器的可编程 VCOM 校准器  
热关断  
• 6 通道 WLED 驱动器,支持直接调光和相移调光模  
• 48 引脚、6mm × 6mm0.4mm 间距 VQFN  
栅极电压整形  
1.2 应用范围  
笔记本电脑  
平板电脑  
1.3 说明  
TPS65154 是一款紧凑型 LCD 偏置解决方案,此解决方案主要用于笔记本电脑和平板电脑。此器件配有两  
个能够为 LCD 面板的源极驱动器和栅极驱动器供电的升压转换器、一个提供系统逻辑电压的线性稳压器、  
一个带有高速放大器的可编程 VCOM 以及一个 6 通道 WLED 驱动器,并且具备栅极电压整形功能。  
间距  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
TPS65154  
VQFN (48)  
6.00mm × 6.00mm  
(1) 要了解所有可用封装,请见数据手册末尾的可订购产品附录。  
1.4 简化系统图  
VIN (2.0V to 5.5V)  
AVDD (6.5V to 9.6V)  
VGH (18V to 25.5V)  
VGHM  
Boost Converter 1  
Boost Converter 2  
AVDD  
VGH  
Gate Voltage  
Shaping  
VCC (1.0V to 2.5V)  
VGL (–5V to –8V)  
VCOM  
VIN  
Linear Regulator  
Negative Charge Pump  
AVDD  
Programmable  
VCOM Buffer  
RST  
XAO  
I2C  
Miscellaneous  
Boost Converter 3  
WLED Driver  
VLED (4.5V to 24V)  
<38 V  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLVSBG2  
 
 
 
 
 
 
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
内容  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用范围 .............................................. 1  
1.3 说明 ................................................... 1  
1.4 简化系统图............................................ 1  
修订历史记录............................................... 2  
Pin Configuration and Functions..................... 3  
Specifications ............................................ 5  
4.1 Absolute Maximum Ratings .......................... 5  
4.2 ESD Ratings.......................................... 5  
4.3 Recommended Operating Conditions ................ 5  
4.4 Thermal Information .................................. 6  
4.5 Electrical Characteristics ............................. 7  
4.6 Timing Requirements................................. 9  
Detailed Description ................................... 12  
5.1 Overview ............................................ 12  
5.2 Functional Block Diagram........................... 12  
5.3 Feature Description ................................. 14  
5.4 Device Functional Modes ........................... 22  
5.5 Programming ........................................ 26  
5.6 Register Map ........................................ 38  
Application and Implementation .................... 63  
6.1 Application Information.............................. 63  
6.2 Typical Application .................................. 63  
Power Supply Recommendations .................. 75  
Layout .................................................... 76  
8.1 Layout Guidelines ................................... 76  
8.2 Layout Example ..................................... 76  
器件和文档支持 .......................................... 78  
9.1 器件支............................................. 78  
9.2 接收文档更新通知 ................................... 78  
9.3 社区资............................................. 78  
9.4 商标.................................................. 78  
9.5 静电放电警告 ........................................ 78  
9.6 Glossary ............................................. 78  
6
2
3
4
7
8
9
5
10 机械、封装和可订购信息 ............................... 79  
10.1 封装信............................................. 79  
2 修订历史记录  
Changes from Original (September 2013) to Revision A  
Page  
已更改 数据表为数据手册格式 ...................................................................................................... 1  
已添加 器件信息表,ESD 额定值表,特性 描述部分,器件功能模式应用和实施部分,电源相关建议部分,布局  
部分,器件和文档支持部分以及机械、封装和可订购信息部分。............................................................... 1  
2
修订历史记录  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
 
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
3 Pin Configuration and Functions  
NC  
BSUP  
AVDD  
AVDD  
SW1  
1
2
3
4
5
6
7
8
9
36 NC  
35 OVP  
34 SW3  
33 PGND  
32 IFB1  
31 IFB2  
30 IFB3  
29 IFB4  
28 IFB5  
27 IFB6  
26 AGND  
25 NC  
PGND  
VIN  
Thermal Pad  
VCC  
PGND  
SW2 10  
VGH 11  
NC 12  
Figure 3-1. RSL Package, 48-Pin VQFN (Top View)  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NC  
NO.  
1
N/A  
P
No internal connection.  
BSUP  
AVDD  
AVDD  
SW1  
PGND  
VIN  
2
Positive supply for the VCOM buffer.  
Boost converter 1 output voltage sense.  
Boost converter 1 rectifier output.  
Boost converter 1 switch pin.  
3
P
4
P
5
P
6
P
Ground.  
7
P
Positive supply.  
VCC  
PGND  
SW2  
VGH  
NC  
8
P
Linear regulator output.  
9
P
Ground.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
P
Boost converter 2 switch pin.  
P
VGH regulation point and positive supply for gate voltage shaping function.  
No internal connection.  
N/A  
N/A  
P
NC  
No internal connection.  
VGHM  
RE  
Gate voltage shaping output.  
I/O  
I/O  
I/O  
P
Gate votlage shaping discharge resistor connection.  
Gate votlage shaping flicker clock input.  
Internal linear regulator compensation network connection.  
Negative charge pump output and VGL regulation point.  
Negative charge pump flying capacitor connection.  
Negative charge pump flying ccapacitor connection.  
FLK  
COMP2  
VGL  
C1A  
P
C1B  
P
Copyright © 2013–2016, Texas Instruments Incorporated  
Pin Configuration and Functions  
3
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
Pin Functions (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
RST  
NO.  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Pad  
I/O  
I/O  
I/O  
N/A  
N/A  
P
Reset generator output.  
Panel discharge generator output.  
XAO  
ISET  
NC  
WLED driver current-setting resistor connection.  
No internal connection.  
NC  
No internal connection.  
AGND  
IFB6  
IFB5  
IFB4  
IFB3  
IFB2  
IFB1  
PGND  
SW3  
OVP  
NC  
Ground.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
WLED driver channel 6 output.  
WLED driver channel 5 output.  
WLED driver channel 4 output.  
WLED driver channel 3 output.  
WLED driver channel 2 output.  
WLED driver channel 1 output.  
Ground.  
P
WLED driver boost converter switch pin.  
WLED driver boost converter output voltage sensing pin.  
No internal connection.  
I/O  
N/A  
N/A  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
NC  
No internal connection.  
PWM  
EN  
WLED driver PWM input.  
WLED driver enable input.  
WLED driver boost converter compensation network connection.  
EEPROM write protect input.  
I2C data.  
COMP3  
WP  
SDA  
SCL  
I2C clock.  
NEG  
VCOM  
COMP1  
BGND  
NC  
VCOM buffer inverting input.  
VCOM buffer output.  
Boost converter 1 compensation network connection.  
Ground.  
N/A  
P
No internal connection.  
GND  
Ground.  
4
Pin Configuration and Functions  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
4 Specifications  
4.1 Absolute Maximum Ratings(1)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–10  
MAX  
7
UNIT  
V
VIN, VCC, SCL, SDA, FLK, WP, XAO, COMP1  
AVDD, SW1, VCOM, NEG, BSUP, RST  
EN, PWM  
12  
V
20  
V
COMP2, COMP3, ISET  
3.6  
12  
V
Pin voltage  
C1A, C1B  
V
VGL  
–10  
0.3  
40  
V
SW3, OVP  
–0.3  
–0.3  
V
IFB1, IFB2, IFB3, IFB4, IFB5, IFB6, VGH, VGHM, RE, SW2  
30  
V
Pin current  
SW2  
TBD  
85  
A
Ambient temperature, TA  
Junction temperature, TJ  
Storage temperature, TSTG  
–40  
–40  
–65  
°C  
°C  
°C  
150  
150  
(1) Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating  
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
4.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
2000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
700  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4.3 Recommended Operating Conditions  
MIN NOM MAX UNIT  
Normal operation  
2.0  
2.6  
5.5  
5.5  
11  
VIN  
Input voltage range  
V
EEPROM programming  
dVIN/dt  
VBSUP  
VBAT  
VIN rise time  
0.45  
6.5  
ms  
V
Input voltage range  
Input voltage range  
9.6  
24  
4.5  
V
dVBAT/dt VBAT rise time  
0.45  
11  
ms  
LINEAR REGULATOR (VCC  
)
VCC  
IICC  
Output voltage  
Output current  
1.0  
4.7  
6.5  
2.5  
300  
22  
V
mA  
µF  
COUT  
Output capacitance  
10  
BOOST CONVERTER 1 (AVDD  
)
AVDD  
IAVDD  
L
Boost converter 1 output voltage range  
Boost converter 1 output current at VIN = 3.7 V  
Inductance  
9.6  
400  
15  
V
mA  
µH  
µF  
4.7  
4.7  
10  
10  
COUT  
Boost converter 1 output capacitance  
22  
BOOST CONVERTER 2 (VGH  
)
AVDD  
VGH  
IGH  
Input voltage range  
6.5  
18  
9.6  
25.5  
25  
V
V
Output voltage range  
Output current  
mA  
Copyright © 2013–2016, Texas Instruments Incorporated  
Specifications  
5
Submit Documentation Feedback  
Product Folder Links: TPS65154  
 
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
Recommended Operating Conditions (continued)  
MIN NOM MAX UNIT  
L
Inductance  
4.7  
1
10  
15  
10  
µH  
µF  
COUT  
Output capacitance  
4.7  
NEGATIVE CHARGE PUMP (VGL  
)
VGL  
Output voltage  
–5  
–8  
25  
V
IGL  
Output current  
mA  
µF  
µF  
CFLY  
COUT  
Flying capacitance  
Output capacitance  
0.5  
0.5  
5
BOOST CONVERTER 3 (WLED)  
VOUT  
IOUT  
L
Output voltage  
Output current  
Inductance  
38  
250  
15  
V
mA  
µH  
µF  
4.7  
2.2  
10  
COUT  
Output capacitance  
4.7  
10  
INTERNAL REGULATOR  
COUT Capacitance connected to the TCOMP pin  
1
µF  
4.4 Thermal Information  
TPS65154  
RSL (VQFN)  
48 PIN  
29.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
15.8  
Junction-to-board thermal resistance  
5.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJB  
5.1  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics application report.  
6
Specifications  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
4.5 Electrical Characteristics  
VIN = 3.3 V, VLED = 12 V, VCC = 2.5 V, AVDD = 8 V, VGL = –6.8 V, VGH = 20 V, TA = 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
POWER SUPPLY  
IIN  
Supply current into VIN pin  
Supply current into AVDD pins  
Supply current into BSUP pin  
Supply current into VGH pin  
Converters not switching  
0.1  
0.75  
2.5  
1
2.5  
5
mA  
mA  
mA  
mA  
IAVDD  
IBSUP  
IGH  
Pins 2 and 3 connected together  
No load on VGHM  
0.1  
1
UNDERVOLTAGE LOCKOUT  
VIN falling  
VIN rising  
1.75  
90  
Undervoltage lockout threshold  
V
VUVLO  
2.2  
Hysteresis  
LINEAR REGULATOR (VCC  
mV  
)
Linear regulator output voltage range  
Tolerance  
1.0  
–3%  
60%  
25%  
300  
250  
10  
2.5  
+3%  
75%  
40%  
V
VCC  
ICC = 10 mA  
VCC falling  
VCC falling  
VUVP  
VSCP  
Undervoltage protection threshold  
Short circuit protection threshold  
70%  
30%  
TJ = 25°C to 125°C  
TJ = –40°C  
ILIM  
Current limit  
VCC = 5% below value at 10 mA.  
mA  
rDS(ON)  
Active pull-down resistance  
21  
35  
Ω
BOOST CONVERTER 1 (AVDD  
)
Output voltage range  
Tolerance  
6.5  
–2%  
60%  
25%  
9.6  
+2%  
75%  
35%  
0.25  
3.6  
V
AVDD  
VUVP  
VSCP  
rDS(ON)  
ILIM  
Undervoltage protection threshold  
Short-circuit protection threshold  
Switch ON resistance  
Switch current limit  
70%  
30%  
0.1  
ISW = 1 A  
ISW = 1 A  
Ω
A
2.4  
3.0  
rDS(ON)  
Rectifier ON resistance  
Switching frequency  
Tolerance  
0.25  
0.4  
Ω
400  
1000  
+20%  
kHz  
fSW  
–20%  
NEGATIVE CHARGE PUMP (VGL  
)
Output voltage range  
VGL  
–5  
–3%  
65%  
25%  
50  
–8  
3.5%  
75%  
35%  
150  
160  
1.0  
V
Output voltage tolerance  
VUVP  
VSCP  
Undervoltage protection threshold  
Short-circuit protection threshold  
VGL rising  
70%  
30%  
VGL rising  
C1B sinking  
C1B sourcing  
IDRVN  
Maximum drive current  
mA  
60  
VDO  
Dropout voltage  
fSW = 500 kHz, CFLY = 0.5 µF, IGL = 10 mA  
0.6  
500  
3
V
fSW  
Switching frequency  
Discharge ON resistance  
400  
2.1  
600  
3.9  
kHz  
kΩ  
rDS(ON)  
IMEAS = 2 mA  
BOOST CONVERTER 2 (VGH  
)
Output voltage range  
Tolerance  
18  
–3%  
65%  
25%  
25.5  
3%  
75%  
35%  
1.0  
V
VGH  
VUVP  
Undervoltage protection threshold  
Short-circuit protection threshold  
Switch ON resistance  
Maximum tON time  
VGH falling  
VGH falling  
ISW = 1 A  
70%  
30%  
0.3  
2
VSCP  
rDS(ON)  
tON(MAX)  
tOFF  
Ω
1
2
2.5  
µs  
µs  
tOFF time  
2.7  
4
BOOST CONVERTER 3  
VOUT Output voltage range  
ILIM  
VLED+2  
2.0  
38  
3.7  
V
A
Ω
Switch current limit  
2.7  
0.2  
rDS(ON)  
Switch ON resistance  
ISW = 1 A  
0.35  
Copyright © 2013–2016, Texas Instruments Incorporated  
Specifications  
7
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
Electrical Characteristics (continued)  
VIN = 3.3 V, VLED = 12 V, VCC = 2.5 V, AVDD = 8 V, VGL = –6.8 V, VGH = 20 V, TA = 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
30  
TYP MAX  
UNIT  
OVP range  
39  
+5%  
0.6  
V
VOVP  
Tolerance  
-5%  
VIL  
EN low input voltage  
EN high input voltage  
EN input hysteresis  
EN falling  
EN rising  
V
V
V
VIH  
1.5  
VIH – VIL  
0.09  
0.16  
0.27  
RPULL-  
EN pull-down resistance  
450  
750 1250  
kΩ  
DOWN  
WLED DIMMING  
Maximum current  
40  
mA  
bits  
IFB  
Channel-to-channel current matching  
Output dimming resolution  
–3%  
+3%  
10  
DMIN  
DHYS  
Minimum output duty cycle  
1%  
–0.048  
%
0.048  
%
Input PWM jitter hysteresis  
VSET  
KSET  
VIL  
ISET regulation voltage  
ISET multiplication constant  
PWM low input voltage  
–3%  
1.0  
+3%  
V
1260 1296 1332  
PWM falling  
PWM rising  
0.6  
V
V
V
VIH  
PWM high input voltage  
PWM input voltage hysteresis  
1.2  
VIH – VIL  
0.09  
450  
0.16  
0.27  
RPULL-  
PWM pull-down resistance  
750 1250  
kΩ  
DOWN  
RESET (RST)  
VOL  
IOH  
Output voltage  
Leakage current  
IRST = 1 mA (sinking)  
VRST = 1.8 V  
0.2  
0.5  
1
V
µA  
PROGRAMMABLE VCOM  
VCOM DAC set zero-scale error  
VMIN = 07h, VMAX = 07h  
VMIN = 07h, VMAX = 07h  
7  
–1  
–1  
7  
–1  
1  
7
1
1
7
1
1
1
1
1
SETZSE  
SETFSE  
DNL  
VMAX DAC set zero-scale error  
VMIN DAC set zero-scale error  
VCOM set full-scale error  
VMAX set full-scale error  
LSB  
LSB  
LSB  
VMIN set full-scale error  
VCOM  
VMAX  
VMIN  
Differential nonlinearity  
Closed-loop; AV = –1; RF = 1 kΩ, RIN = 1 kΩ, VCM = 4 V; VSIGNAL  
= 63 mVpp; RL = ∞  
BW  
Small-signal bandwidth  
Peak output current  
21  
MHz  
mA  
Open-loop; VPOS = 4 V, VNEG = 3 V  
Open-loop; VPOS = 4 V, VNEG = –5 V  
Open-loop; VPOS = 4 V, VNEG = 5 V  
Open-loop; VPOS = 4 V, VNEG = 3 V  
Closed-loop; AV = +1; RF = 1 MΩ; VPOS = 4 V  
VNEG = 3 V  
400  
330  
36  
IOUT  
SR  
Slew rate  
V/µs  
μA  
V
33  
IIB–  
Input bias current (inverting input)  
Output voltage drop  
1  
1
0.1  
0.1  
0.06  
0.03  
Open-loop; VPOS = 4 V; IMEAS  
10 mA  
=
VDROP  
VNEG = 5 V  
GATE VOLTAGE SHAPING  
rDS(ON)H VGH to VGHM ON resistance  
VGH = 20 V, IGHM = 10 mA, VFLK = 1.8 V  
VGHM = 20 V, IGHM = 10 mA, VFLK = 0 V  
VGHM = 6 V, IGHM = 10 mA, VFLK = 0 V  
VFLK falling  
13  
26  
26  
25  
50  
50  
Ω
Ω
rDS(ON)L  
VGHM to RE ON resistance  
VIL  
FLK low input voltage threshold  
FLK high input voltage threshold  
FLK input hysteresis  
0.6  
V
V
V
VIH  
VFLK rising  
1.2  
VIH – VIL  
0.09  
0.15  
0.27  
8
Specifications  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
Electrical Characteristics (continued)  
VIN = 3.3 V, VLED = 12 V, VCC = 2.5 V, AVDD = 8 V, VGL = –6.8 V, VGH = 20 V, TA = 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
PARAMETER  
FLK low input current  
FLK high input current  
TEST CONDITIONS  
MIN  
–100  
–100  
TYP MAX  
100  
UNIT  
nA  
IIL  
VFLK = 0 V  
IIH  
VFLK = 1.8 V  
100  
nA  
PANEL RESET (XAO)  
VOL(XAO) Output voltage  
ILK(XAO)  
IXAO = 1 mA (sinking)  
VXAO = 1.8 V  
0.16  
0.5  
1
V
µA  
V
Leakage current  
XAO Threshold voltage range  
Tolerance  
VUVLO  
–3%  
0.05  
3.0  
+3%  
0.3  
VIN falling  
VIN rising  
VDET  
Hysteresis  
V
I2C INTERFACE  
Configuration parameters slave address  
74h  
28h  
ADDR  
Programmable VCOM slave address  
Low level input voltage  
High level input voltage  
Input hysteresis  
VIL  
SCL or SDA falling, standard and fast modes  
SCL or SDA rising, standard and fast modes  
0.6  
V
V
VIH  
1.0  
VIH – VIL  
VOL  
0.05  
V
Low level output voltage  
Input capacitance  
Sinking 3 mA  
0.36  
10  
V
CI  
pF  
Standard mode  
Fast mode  
400  
400  
CB  
Capacitive load on SDA and SCL  
pF  
EEPROM  
VIL  
WP low input voltage threshold  
WP high input voltage threshold  
WP input voltage hysteresis  
WP internal pull-up resistor  
Number of write cycles  
VWP falling  
VWP rising  
0.8  
V
V
VIH  
1.2  
0.1  
VIH – VIL  
RPULL-UP  
NWRITE  
0.03  
20  
0.05  
60  
V
100  
kΩ  
1000  
100  
Data retention  
Storage temperature = 150 °C  
1000 hrs  
°C  
THERMAL SHUTDOWN  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
150  
10  
TSD  
4.6 Timing Requirements  
VIN = 3.3 V, VLED = 12 V, VCC = 2.5 V, AVDD = 8 V, VGL = –6.8 V, VGH = 20 V, TA = 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
MIN  
TYP  
MAX  
UNIT  
LINEAR REGULATOR (VCC  
)
Linear regulator start-up delay time  
Tolerance  
0
75  
ms  
tDLY1  
–20%  
30%  
BOOST CONVERTER 1 (AVDD  
)
Boost converter 1 soft-start duration range  
Tolerance  
0.5  
–20%  
0
75  
30%  
75  
ms  
ms  
tSS2  
Boost converter 1 start-up delay range  
Tolerance  
tDLY2  
–20%  
30%  
NEGATIVE CHARGE PUMP (VGL  
)
Negative charge pump soft-start duration  
Tolerance  
0
–20%  
0
35  
30%  
35  
ms  
ms  
tSS3  
Negative charge pump start-up delay  
Tolerance  
tDLY3  
–20%  
30%  
BOOST CONVERTER 2 (VGH  
)
Copyright © 2013–2016, Texas Instruments Incorporated  
Specifications  
9
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
Timing Requirements (continued)  
VIN = 3.3 V, VLED = 12 V, VCC = 2.5 V, AVDD = 8 V, VGL = –6.8 V, VGH = 20 V, TA = 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
MIN  
0
TYP  
MAX  
35  
UNIT  
Boost converter 2 soft-start duration range  
Tolerance  
ms  
tSS4  
–20%  
30%  
BOOST CONVERTER 3  
Switching frequency range  
Tolerance  
WLED DIMMING  
tPWMIN Input pulse width  
400  
1000  
20%  
kHz  
fSW  
–20%  
500  
0.1  
ns  
Direct dimming  
DPWM dimming  
15  
22  
Output frequency range  
kHz  
fOUT  
15  
Tolerance  
–20%  
0.1  
20%  
15  
fIN  
Input frequency range  
PWM and direct dimming modes  
kHz  
ms  
RESET (RST)  
Reset pulse duration range  
Tolerance  
0
15  
tRST  
Measured from end of VCC's ramp to 50% of  
RST's rising edge with a 10 kΩ pull-up resistor.  
–20%  
20%  
GATE VOLTAGE SHAPING  
tPLH  
VGHM rising, VFLK = 0 V/1.8 V, 50% thresholds,  
CVGHM = 150 pF, RE = 0 Ω  
92  
88  
200  
200  
Propagation delay  
ns  
tPHL  
VGHM falling, VFLK =0 V/1.8 V, 50% thresholds,  
CVGHM = 150 pF, RE = 0 Ω  
tDLY4  
Gate voltage shaping start-up delay range  
Tolerance  
PANEL RESET (XAO)  
Panel reset duration range  
0
35  
ms  
–20%  
30%  
0
35  
ms  
ms  
tDLY6  
Measured from VIN = VDET to 50% of XAO's  
rising edge with a 10-kΩ pull-up resistor.  
Tolerance  
–20%  
30%  
TIMING  
tUVP  
Undervoltage protection timeout  
40  
50  
60  
I2C INTERFACE  
Standard mode  
Fast mode  
100  
400  
fSCL  
Clock frequency  
kHz  
µs  
Standard mode  
Fast mode  
4.7  
1.3  
4.0  
0.6  
4.7  
1.3  
tLOW  
Clock low period  
Clock high period  
Standard mode  
Fast mode  
tHIGH  
µs  
Bus free time between a  
STOP and a START  
condition  
Standard mode  
Fast mode  
tBUF  
µs  
Standard mode  
Fast mode  
4.0  
0.6  
Hold time for a repeated  
START condition  
thd:STA  
tsu:STA  
tsu:DAT  
thd:DAT  
µs  
µs  
ns  
µs  
Standard mode  
Fast mode  
4.0  
Set-up time for a repeated  
START condition  
0.6  
Standard mode  
Fast mode  
250  
100  
0.05  
0.05  
Data set-up time  
Data hold time  
Standard mode  
Fast mode  
3.45  
0.9  
10  
Specifications  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
Timing Requirements (continued)  
VIN = 3.3 V, VLED = 12 V, VCC = 2.5 V, AVDD = 8 V, VGL = –6.8 V, VGH = 20 V, TA = 40°C to 85°C. Typical values are at 25°C  
(unless otherwise noted).  
MIN  
20+0.1CB  
20+0.1CB  
TYP  
MAX  
1000  
1000  
UNIT  
Rise time of SCL after a  
repeated START condition  
and after an ACK bit  
Standard mode  
Fast mode  
tRCL1  
ns  
Standard mode  
Fast mode  
20+0.1CB  
20+0.1CB  
20+0.1CB  
20+0.1CB  
20+0.1CB  
20+0.1CB  
20+0.1CB  
20+0.1CB  
4.0  
1000  
300  
300  
300  
1000  
300  
300  
300  
tRCL  
Rise time of SCL  
Fall time of SCL  
Rise time of SDA  
Fall time of SDA  
ns  
ns  
ns  
ns  
µs  
Standard mode  
Fast mode  
tFCL  
Standard mode  
Fast mode  
tRDA  
Standard mode  
Fast mode  
tFDA  
Standard mode  
Fast mode  
Set-up time for STOP  
condition  
tsu:STO  
0.6  
EEPROM  
tWRITE  
Write time  
100  
ms  
Copyright © 2013–2016, Texas Instruments Incorporated  
Specifications  
11  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5 Detailed Description  
5.1 Overview  
The TPS65154 device integrates the bias and backlight functions needed by an active matrix liquid crystal  
display.  
The LCD bias functions comprise  
A synchronous boost converter to generate AVDD  
A non-synchronous boost converter to generate VGH  
An inverting charge pump to generate VGL  
An low dropout linear regulator to generate VCC  
A gate-voltage shaping function  
A programmable VCOM buffer  
XAO and RST signals  
An I2C programming interface  
The backlight driver functions comprise  
A non-synchronous boost converter  
A six-channel WLED driver with PWM dimming  
The device configuration is stored in an on-chip nonvolatile memory, which can be programmed via an I2C  
interface.  
5.2 Functional Block Diagram  
Figure 5-1 shows a top-level block diagram of the TPS65154.  
12  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
VIN  
7
SW1  
5
VIN  
3
4
AVDD  
AVDD  
COMP2 17  
LDO  
AVDD  
To internal blocks  
œ
PWM  
Control  
DAC  
+
WP 41  
SDA 42  
SCL 43  
I2C  
Interface  
6
PGND  
46 COMP1  
10 SW2  
VCC  
8
LDO  
DAC  
+
PWM  
Control  
œ
9
PGND  
VGH  
RST 21  
XAO 22  
Sequencing  
VIN  
VUVLO  
VDET  
11  
Gate  
Voltage  
Shaping  
Control  
OVP 35  
SW3 34  
14 VGHM  
PWM  
Control  
PGND 33  
15 RE  
+
Vref  
EN 39  
16 FLK  
18 VGL  
œ
COMP3 40  
AVDD  
IFB1 32  
IFB2 31  
IFB3 30  
IFB4 29  
IFB5 28  
IFB6 27  
19 C1A  
20 C1B  
+
œ
œ
DAC  
+
Only one channel  
shown in detail  
DAC  
2
BSUP  
DAC  
+
+
1 V  
45 VCOM  
47 BGND  
44 NEG  
Dimming  
Control  
PWM 37  
œ
œ
DAC  
23  
26  
ISET AGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-1. Top-Level Block Diagram  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
13  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.3 Feature Description  
The following sections describe the features of the TPS65154.  
5.3.1 Linear Regulator (VCC)  
The linear regulator is supplied directly from the VIN pin, and its output voltage can be programmed to  
1.0 V, 1.2 V, 1.89 V, or 2.5 V using the VCC register.  
VCC  
VCC  
VIN  
COUT  
+
VCC  
DAC  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-2. Linear Regulator Block Diagram  
5.3.1.1 Power-Up (Linear Regulator)  
The linear regulator starts tDLY1 milliseconds after the supply voltage exceeds the undervoltage lockout  
threshold (VIN > VUVLO). It does not have a soft-start function, and its output ramps up as fast as the  
supply voltage slew rate and the linear regulator's output capacitance allow.  
5.3.1.2 Power-Down (Linear Regulator)  
The linear regulator is turned off as soon as the supply voltage falls below the undervoltage lockout  
threshold (VIN < VUVLO). VCC is actively discharged during power-down.  
5.3.1.3 Protection (Linear Regulator)  
The linear regulator is protected against short-circuits and undervoltage conditions. An undervoltage  
condition is detected if the linear regulator's output falls below 70% of its programmed voltage for longer  
than 50 ms, in which case the IC is disabled. A short-circuit condition is detected if the linear regulator's  
output falls below 30% of its programmed voltage, in which case the IC is disabled immediately (short-  
circuit detection has no time delay associated with it). To recover normal operation following either an  
undervoltage condition or short-circuit condition, the cause of the error must be removed and a POR  
applied.  
5.3.2 Boost Converter 1 (AVDD)  
Boost converter 1 is synchronous and uses a virtual current mode topology that:  
achieves high efficiencies;  
allows the converter to work in continuous conduction mode under all operating conditions, simplifying  
compensation; and  
provides true input-output isolation when the boost converter is disabled.  
14  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
VIN  
L
AVDD  
VIN  
SW1  
Q1B  
AVDD  
AVDD  
COUT  
PWM  
Control  
+
AVDD  
DAC  
Q1A  
GND  
COMP1  
RCOMP  
CCOMP  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-3. Boost Converter 1 Internal Block Diagram  
Boost converter 1's switching frequency can be programmed to 400 kHz, 600 kHz, 800 kHz, or 1 MHz  
using the FSW1 register. Its output voltage can be programmed from 6.5 V to 9.6 V in 100 mV steps using  
the AVDD register.  
Boost converter 1 uses an external compensation network connected to the COMP1 pin to stabilize its  
feedback loop. A simple series R-C network connected between the COMP1 pin and ground is sufficient  
to achieve good performance, that is, stable and with good transient response. Good starting values,  
which will work for most applications, are 25 kΩ and 3.9 nF.  
In some applications (for example, those using electrolytic output capacitors), it may be necessary to  
include a second compensation capacitor between the COMP1 pin and ground. This has the effect of  
adding an additional pole in the feedback loop's frequency response, which cancels the zero introduced by  
the output capacitor's ESR.  
The synchronous topology of boost converter 1 ensures that AVDD is fully isolated from VIN when the  
converter is disabled.  
5.3.2.1 Power-Up (Boost Converter 1)  
Boost converter 1 starts tDLY2 milliseconds after RST goes high. Delay time tDLY2 can be programmed from  
0 ms to 75 ms using the DLY2 register.  
To minimize inrush current during start-up, boost converter 1 ramps its output voltage in tSS2 milliseconds.  
Start-up time tSS2 can be programmed from 0.5 ms to 75 ms using the SS2 register. Longer soft-start  
times generate lower inrush currents.  
5.3.2.2 Power-Down (Boost Converter 1)  
Boost converter 1 is disabled when VIN<VUVLO. When disabled, boost converter 2 actively discharges  
AVDD by turning on Q2.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
15  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.3.2.3 Protection (Boost Converter 1)  
Boost converter 1 is protected against short-circuits and undervoltage conditions. An undervoltage  
condition is detected if the boost converter's output falls below 70% of its programmed voltage for longer  
than 50 ms, in which case the IC is disabled. A short-circuit condition is detected if the boost converter's  
output falls below 30% of its programmed voltage, in which case the IC is disabled immediately (short-  
circuit detection has no time delay associated with it). To recover normal operation following either an  
undervoltage condition or short-circuit condition, the cause of the error must be removed and a POR  
applied.  
5.3.3 Boost Converter 2 (VGH)  
Boost converter 2 is non-synchronous and uses a constant off-time topology. The converter's switching  
frequency is not constant but adapts itself to VIN and VGH. Boost converter 2 uses peak current control and  
is designed to operate permanently in discontinuous conduction mode (DCM), thereby allowing the  
internal compensation circuit to achieve stable operation over a wide range of output voltages and  
currents. Boost converter 2's output voltage can be programmed from 18 V to 25.5 V using the VGH  
register.  
L
AVDD  
VGH  
COUT  
AVDD  
VGH  
SW2  
PWM  
Control  
+
DAC  
VGH  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-4. Boost Converter 2 Block Diagram  
5.3.3.1 Power-Up (Boost Converter 2)  
Boost converter 2 is enabled as soon as VGL has finished ramping down. To minimize inrush current  
during start-up, boost converter 2 ramps VGH linearly to its programmed value in tSS4 seconds. Soft-start  
time tSS4 can be programmed from 0.256 ms to 35 ms using the SS4 register. Because boost converter 2  
is non-synchronous, its output is already equal to AVDD (minus the voltage drop across its rectifier diode)  
before it starts switching, which means that the time during which VGH is actually ramping during start-up  
is less than the actual programmed soft-start time (see Figure 5-5).  
16  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
VGH  
AVDD  
tSS4  
tDLY3 + tSS3  
Figure 5-5. Boost Converter 2 Soft-Start  
5.3.3.2 Power-Down (Boost Converter 2)  
Boost converter 2 is disabled when VIN<VUVLO. The converter's output is not actively discharged when the  
converter is disabled.  
5.3.3.3 Protection (Boost Converter 2)  
Boost converter 2 is protected against short-circuits and undervoltage conditions. An undervoltage  
condition is detected if the boost converter's output falls below 70% of its programmed voltage for longer  
than 50 ms, in which case the IC is disabled. A short-circuit condition is detected if the boost converter's  
output falls below 30% of its programmed voltage, in which case the IC is disabled immediately (short-  
circuit detection has no time delay associated with it). To recover normal operation following either an  
undervoltage condition or short-circuit condition, the cause of the error must be removed and a POR  
applied.  
5.3.4 Negative Charge Pump (VGL)  
The negative charge pump inverts AVDD and regulates its output to the voltage set by the VGL register.  
VGL can be programmed from –5 V to –8 V in 0.2 V steps using the VGL register, however, since the  
negative charge pump inverts AVDD to generate its output, the most negative voltage that can be  
generated is approximately –AVDD+1 V. Thus, if AVDD = 8.0 V, the usable range of VGL is approximately –5  
V to –7 V. If VGL is programmed to a more negative voltage than this the charge pump may not be able to  
regulate its output. This will not damage the IC, but performance may be impaired.  
The negative charge pump in the TPS65154 is fully integrated and requires only two external capacitors to  
operate (a flying capacitor connected between the C1A and C1B pins, and an output capacitor connected  
between the VGL pin and ground).  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
17  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
AVDD  
C1A  
Osc.  
CFLY  
C1B  
VGL  
DAC  
VGL  
IDRVN  
VGL  
COUT  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-6. Negative Charge Pump Block Diagram  
5.3.4.1 Power-Up (Negative Charge Pump)  
The negative charge pump starts tDLY3 milliseconds after boost converter 1 (AVDD) starts ramping and  
ramps its output linearly from zero to its programmed output voltage in tSS3 ms. Delay time tDLY3 can be  
programmed from 0 ms to 35 ms using the DLY3 register. Soft-start time tSS3 can be programmed from  
0 ms to 35 ms using the SS3 register.  
5.3.4.2 Power-Down (Negative Charge Pump)  
The negative charge pump is disabled when the supply voltage falls below the undervoltage lockout  
threshold (VIN<VUVLO). During power-down the charge pump's output is actively discharge to GND.  
5.3.4.3 Protection (Negative Charge Pump)  
The negative charge pump is protected against short-circuits and undervoltage conditions. An  
undervoltage condition is detected if the charge pump's output falls below 70% of its programmed voltage  
for longer than 50 ms, in which case the IC is disabled. A short-circuit condition is detected if the charge  
pump's output falls below 30% of its programmed voltage, in which case the IC is disabled immediately  
(short-circuit detection has no time delay associated with it). To recover normal operation following either  
an undervoltage condition or short-circuit condition, the cause of the error must be removed and a POR  
applied.  
5.3.5 Gate Voltage Shaping  
The gate voltage shaping function can be used to reduce image sticking in LCD panels by modulating the  
LCD panel's gate ON voltage (VGH). Figure 5-7 shows a block diagram of the gate voltage shaping  
function and Figure 5-8 shows the typical waveforms during operation.  
18  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
VGH  
Q1  
VGHM  
Control  
Logic  
FLK  
Q2  
Q3  
Q4  
RE  
AVDD  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-7. Gate Voltage Shaping Block Diagram  
VPG4  
FLK  
Don’t Care  
VGH  
tDLY4  
VGHM  
AVDD  
GND  
Figure 5-8. Gate Voltage Shaping Waveforms  
Gate voltage shaping is controlled by the FLK input. When FLK is high, Q1 is on, Q2, Q3 and Q4 are off,  
and VGHM is equal to VGH. On the falling edge of FLK, Q1 is turned off, Q2 and Q3 are turned on, and the  
LCD panel load connected to the VGHM pin discharges through the external resistor connected to the RE  
pin.  
During power-up, Q1, Q2 and Q3 are held off and Q4 is turned on, pulling the VGHM pin pulled to GND,  
regardless of the state of the FLK signal, until tDLY4 milliseconds after boost converter 2 (VGH) has finished  
ramping. The value of tDLY4 can be programmed from 0 ms to 35 ms using the DLY4 register.  
During power-down Q1 is held permanently on and Q2, Q3 and Q4 permanently off, regardless of the  
state of the FLK signal.  
5.3.6 Panel Discharge (XAO)  
The TPS65154 provides an output signal via its XAO pin that can be used to drive the outputs of the  
display panel's gate driver IC high during power-down. The XAO pin is pulled low whenever VIN<VDET. The  
VDET threshold voltage can be configured using the VDET register.  
The XAO output is an open-drain type and requires an external pull-up, typically in the range 10 kΩ to  
100 kΩ.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
19  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.3.7 Reset Generator (RST)  
The RST pin generates an active-low reset signal for the rest of the system. During power-up, the reset  
timer starts when VCC has finished ramping. The reset pulse duration tRST can be programmed from 0 ms  
to 15 ms using the RESET register. The RST signal is latched when it goes high and will not be taken low  
again until the device is powered down (even if VCC temporarily falls out of regulation). The active power-  
down threshold (VUVLO or VDET) can be selected using the RMODE bit in the CONFIG register.  
The RST output is an open-drain type that requires an external pull-up resistor. Pull-up resistor values in  
the range 10 kΩ to 100 kΩ are recommended for most applications.  
5.3.8 Programmable VCOM  
The programmable VCOM uses three digital-to-analog converters (DACs) to generate a VCOM voltage that  
is subsequently buffered by a high-speed op-amp. The maximum value of VCOM is set by the 4-bit VMAX  
register, and can be programmed in the range 2.5/8×AVDD to 4/8×AVDD. The minimum value of VCOM is  
set by the 4-bit VMIN register, and can be programmed in the range 2/8 × AVDD to 3.5/8 × AVDD. Note, for  
proper operation, VMAX must be greater than VMIN. By programming the 7-bit VCOM parameter, users  
can adjust the VCOM voltage appearing at the OUT pin between VMIN and VMAX as follows:  
+ (VMAX - VMIN )×VCOM  
127  
VCOM = VMIN  
(1)  
where VCOM is the value stored in the Wiper Register (see Figure 5-9).  
AVDD  
BSUP  
4/8×AVDD  
VMAX  
DAC  
2.5/8×AVDD  
+
VCOM  
NEG  
VCOM  
DAC  
VCOM  
3.5/8×AVDD  
Feedback from  
display panel  
VMIN  
DAC  
2/8×AVDD  
BGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 5-9. Programmable VCOM Block Diagram  
The programmable VCOM function has three registers. The volatile Wiper Register (WR) contains the  
value currently output by the programmable VCOM DAC; this value is lost when power to the device is  
removed. The non-volatile Initial Value Register (IVR) contains the value loaded into the DAC every time  
the device is powered up. The Control Register (CR) determines whether data is written to or read from  
the WR, the IVR, or both. If the CR contains 00h, during write operations data is stored in the WR and the  
IVR, and during read operations data is read from the IVR. If the CR contains 80h, data is written to and  
read from the WR register only. 00h and 80h are the only valid values for the CR. Table 5-1 shows the  
programmable VCOM's register address map.  
20  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
 
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
Table 5-1. Programmable VCOM Register Address Map  
REGISTER ADDRESS  
NON-VOLATILE  
Initial Value Register (IVR)  
Not Used  
VOLATILE  
00h  
02h  
Wiper Register (WR)  
Control Register (CR)  
5.3.8.1 Operational Amplifier Performance  
Like most op-amps, the VCOM op-amp in the TPS65154 is not designed to drive purely capacitive loads, so  
it is not recommended to connect a capacitor directly to its output in an attempt to increase performance;  
however, the op-amp is capable of delivering high peak currents that make such capacitors unnecessary  
in most applications.  
High-speed op amps such as the one in the TPS65154 require care when using them. The most common  
problem is when parasitic capacitance at the inverting input creates a pole with the feedback resistor,  
reducing amplifier stability. Two things can be done to minimize the likelihood of this happening. Both of  
these work by shifting the pole (which can never be completely eliminated) to a frequency outside the op  
amp's bandwidth, where it has no effect.  
Reduce the value of the feedback resistor. In applications where no feedback from the panel is used,  
the feedback resistor can be made zero. In applications where a non-zero feedback resistor has to be  
used, a small capacitor (between 10 pF and 100 pF) across the feedback resistor will minimize ringing.  
Minimize the parasitic capacitance at the op amp's inverting input. This is achieved by using short PCB  
traces between the feedback resistor and the inverting input, and by removing ground planes and other  
copper areas above and below this PCB trace.  
5.3.8.2 Power-Up (Programmable VCOM)  
The programmable VCOM is enabled when AVDD > VUVLO2  
.
5.3.8.3 Power-Down (Programmable VCOM)  
During power-down, the programmable VCOM continues to operate until AVDD < VUVLO2  
.
5.3.9 WLED Driver  
5.3.9.1 WLED Boost Converter  
The WLED boost converter boosts a 4.5 V to 24 V supply VBAT to a higher voltage to supply the LED  
strings connected to the WLED driver. It uses a fixed-frequency, current-mode topology. The converter's  
output voltage is automatically adjusted to maintain the lowest feedback voltage (IFB1 to IFB6) between  
450 mV and 750 mV, thus ensuring sufficient headroom for the output current sinks, but without  
dissipating excessive power in the IC. This approach automatically compensates for changes in the LED  
string voltage, for example, because of temperature effects. The WLED boost converter's switching  
frequency can be programmed to 400 kHz, 600 kHz, 800 kHz, and 1 MHz using the FSW3 register.  
The WLED boost converter features a soft-start circuit to limit inrush current when the converter starts.  
The duration of the soft-start ramp depends on the value of the capacitor connected to the COMP3 pin.  
Note, that because the converter is a non-synchronous type, its output voltage before it starts switching is  
equal to VBAT (minus the voltage drop across its rectifier).  
5.3.9.2 Current Sinks  
The brightness of the LED strings is determined by the average current flowing through each string, which  
is the product of the output duty cycle and the current sink's output current. The output current of all  
current sinks is the same and is set by the external resistor connected between the ISET pin and ground:  
VSET  
IMAX  
=
×KSET  
RSET  
(2)  
21  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
where:  
VSET is the voltage on the ISET pin  
RSET is the resistance between the ISET pin and GND  
KSET is a constant  
When the TPS65154 measures zero current flowing in one of the IFB pins it determines that the string is  
open and automatically disables that output. The WLED boost converter's output voltage is subsequently  
regulated according to the remaining operational strings. If an application uses fewer than six LED strings,  
it is recommended to connected the unused outputs to ground; this ensures the most rapid detection of  
the unused strings. Once open strings have been detected, they remain disabled until a POR occurs or  
EN is toggled.  
5.3.9.3 Protection  
The WLED boost converter and dimming circuits feature a variety of protection schemes to ensure reliable  
operation when subjected to various failure modes. These protection schemes are listed in Table 5-2.  
Table 5-2. WLED Driver Protection  
ERROR  
DETECTION  
ACTION  
RECOVERY  
VOVP exceeds programmed  
threshold  
(30 V, 33 V, 36 V or 39 V)  
WLED boost converter output  
regulated to programmed  
threshold  
WLED boost converter output  
voltage too high  
None required  
WLED boost converter switch  
current too high  
Switch automatically re-enabled  
at start of next switching cycle  
ISW > ILIM  
Switch turned off  
Disable all output channels and  
boost converter  
Output channels re-enabled  
following power cycle  
All LED strings open-circuit  
IIFB = 0 mA and VOUT = VOVP  
IIFB = 0 mA and VOUT = VOVP  
IIFB = 0 mA for longer than 4 ms  
Individual LED string(s) open-  
circuit  
Disable affected output  
channel(s)  
Functional output channels  
continue operating.  
Affected output channel(s) re-  
enabled following power cycle  
Individual LED string(s) shorted-  
circuited to ground  
5.3.9.4 Enable and Start-Up  
The WLED driver is enabled and disabled by EN, however, this signal has no effect until the LCD bias  
functions have completed their start-up sequence. Following a POR, EN has no effect until tDLY4 is  
complete; after that the WLED driver can be enabled and disabled at any time using EN (providing nothing  
happens to cause the LCD bias functions to re-start) and applying a PWM signal. In applications that do  
not generate an EN signal, the EN pin can be tied to VIN, in which case the WLED driver will start  
automatically at the end of tDLY4. Note, that a permanently low PWM signal (0% duty cycle) will prevent  
boost converter 3 from starting-up.  
When the WLED driver is enabled it first checks the status of IFB1 to IFB6 and shuts down any channels  
that it detects are disabled/unused. These channels will be subsequently ignored until a POR occurs or  
EN is toggled.  
5.3.10 Undervoltage Lockout  
An undervoltage lockout function disables the IC when the supply voltage is too low for proper operation.  
5.4 Device Functional Modes  
5.4.1 Dimming Modes  
The TPS65154 support direct dimming and phase-shift dimming modes. The active dimming mode can be  
selected using the DMODE bit in the CONFIG register.  
22  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
 
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.4.1.1 Direct Dimming  
When direct dimming is selected, the output current sinks are controlled directly by the PWM signal. In this  
mode, they are turned on and off together, at the same frequency and duty cycle as the PWM signal (see  
Figure 5-10).  
PWM  
IFB1  
IFB2  
IFB3  
IFB4  
IFB5  
IFB6  
Figure 5-10. Direct Dimming  
5.4.1.2 Phase-Shift Dimming  
When phase-shift dimming mode is selected, the output dimming frequency does not depend on the  
frequency of the PWM signal but can be independently programmed from 15 kHz to 22 kHz using the  
FDIM register. In this mode, the duty cycle information contained in the PWM signal is extracted and re-  
used to generate up to six outputs, at the output frequency set by the FDIM register, and phase-shifted  
with respect to each other by 360°/N, where N is the number of outputs in use (see Figure 5-11). Using  
phase-shifted outputs, the maximum load current step is reduced by the same factor N, resulting in  
reduced voltage ripple on the boost converter's output and consequently lower audible noise.  
PWM  
IFB1  
IFB2  
IFB3  
IFB4  
IFB5  
IFB6  
Figure 5-11. Phase-Shift Dimming  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
23  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
 
 
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.4.2 Power Sequencing  
Figure 5-12 shows the typical power-up/down characteristic of the TPS65154.  
5.4.2.1 Power-Up  
VCC starts ramping tDLY1 seconds after VIN > VUVLO  
.
RST is initially held low. tRST seconds after VCC has finished ramping RST goes high.  
AVDD starts ramping tDLY2 seconds after RST has gone high.  
VGL starts ramping tDLY3 seconds after AVDD starts ramping.  
VGH starts ramping as soon as VGL has finished ramping.  
VGHM is initially held low (connected to RE). tDLY4 seconds after VGH has finished ramping, gate voltage  
shaping is enabled and VGHM follows the state of FLK.  
XAO is initially held low. tDLY6 seconds after VIN>VDET XAO goes high.  
The WLED driver is enabled by the logical AND of AVDD (that is, AVDD has finished ramping) and EN.  
5.4.2.2 Power-Down  
VCC, AVDD, VGH and VGL are disabled when VIN<VUVLO  
.
XAO goes low when VIN falls below the threshold selected for it (VUVLO or VDET).  
RST goes low when VIN falls below the threshold selected for it (VUVLO or VDET).  
The WLED driver is turned off when EN = 0 or VIN < VUVLO  
.
24  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
VIN>VDET  
VIN  
VIN>VDET  
VIN>VUVLO1  
VIN>VUVLO1  
tDLY1  
VCC  
tRST  
RST  
RMODE=0  
RMODE=1  
RST  
AVDD  
tDLY2  
tSS2  
tSS3  
tDLY3  
VGL  
tSS4  
VGH  
tDLY4  
AVDD  
VGHM  
AVDD>VUVLO2  
AVDD<VUVLO2  
VCOM  
tDLY6  
XAO  
If EN goes high before AVDD, WLED  
boost starts when AVDD finishes ramping  
EN  
VLED  
If EN goes high after AVDD, WLED  
boost starts on rising edge of EN  
EN  
VLED  
Figure 5-12. Power Up/Down Sequencing  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
25  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.5 Programming  
5.5.1 Configuration  
The TPS65154 divides the configuration parameters into two categories:  
Configuration parameters  
VCOM  
In typical applications, all configuration parameters except VCOM are programmed by the subcontractor  
during PCB assembly, and VCOM is programmed by the display manufacturer during display calibration.  
5.5.1.1 General  
Configuration parameters can be changed by writing the desired values to the appropriate RAM  
register(s). The RAM registers are volatile and their contents are lost when power is removed from the  
device. By writing to the Control Register, it is possible to store the active configuration in non-volatile  
EEPROM; during power-up, the contents of the EEPROM are copied into the RAM registers and used to  
configure the device.  
5.5.1.1.1 I2C Interface  
The TPS65154 features an industry-standard I2C interface that supports both Standard and Fast modes of  
operation.  
5.5.1.1.2 Slave Addresses  
The configuration parameters are all accessed using slave address 74h and the VCOM is accessed using  
slave address 28h.  
5.5.1.1.3 Write Protect  
An active-high Write Protect pin (WP) prevents the configuration parameters from being changed by  
accident. This pin is internally pulled high and must be actively pulled low to access to the EEPROM or  
RAM registers. Note that the WP pin disables all I2C traffic to the TPS65154, and must also be pulled low  
during read operations. This is to ensure that noise present on the I2C lines does not erroneously  
overwrite the active configuration stored in RAM (which would not be protected by a simple EEPROM  
write-protect scheme). The write protect function can be enabled and disabled using the WPEN bit in the  
CONFIG register. Note that once the write protect function is enabled it is not possible to disable again it  
without pulling the WP pin low. For this reason, it is strongly recommended that applications include some  
way to pull the WP pin low (for example, a test pad), even if it is not normally used.  
26  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.5.2 Programming Examples (Excluding VCOM)  
5.5.2.1 Writing to a Single RAM Register  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65154 acknowledges  
4. Bus master sends address of RAM register (00h)  
5. TPS65154 acknowledges  
6. Bus master sends data to be written  
7. TPS65154 acknowledges  
8. Bus master sends STOP condition  
E8h  
00h  
DATA  
RAM Register Address  
RAM Register Data  
P
S
7-Bit Slave Address  
0
A
A
A
Figure 5-13. Writing to a Single RAM Register  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
27  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.5.2.2 Writing to Multiple RAM Registers  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h).  
3. TPS65154 acknowledges  
4. Bus master sends address of first RAM register to be written to (00h)  
5. TPS65154 acknowledges  
6. Bus master sends data to be written to first RAM register  
7. TPS65154 acknowledges  
8. Bus master sends data to be written to RAM register at next higher address (auto-increment)  
9. TPS65154 acknowledges  
10. Steps (8) and (9) repeated until data for final RAM register has been sent  
11. TPS65154 acknowledges  
12. Bus master sends STOP condition  
E8h  
00h  
DATA  
DATA  
RAM Register Address (n)  
RAM Register Data (n)  
RAM Register Data (n+1)  
7-Bit Slave Address  
S
0
A
A
A
A
DATA  
RAM Register Data (Last)  
P
A
Figure 5-14. Writing to Multiple RAM Registers  
28  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.5.2.3 Saving Contents of all RAM Registers to EEPROM  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65154 acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65154 acknowledges  
6. Bus master sends data to be written to the Control Register (80h)  
7. TPS65154 acknowledges  
8. Bus master sends STOP condition  
E8h  
FFh  
80h  
Control Register Address  
Control Register Data  
7-Bit Slave Address  
P
S
0
A
A
A
Figure 5-15. Saving Contents of all RAM Registers to EEPROM  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
29  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.5.2.4 Reading from a Single RAM Register  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65154 acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65154 acknowledges  
6. Bus master sends data for Control Register (00h)  
7. TPS65154 acknowledges  
8. Bus master sends STOP condition  
9. Bus master sends START condition  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
11. TPS65154 acknowledges  
12. Bus master sends address of RAM register (00h)  
13. TPS65154 acknowledges  
14. Bus master sends REPEATED START condition  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h)  
16. TPS65154 acknowledges  
17. TPS65154 sends RAM register data  
18. Bus master does not acknowledge  
19. Bus master sends STOP condition  
E8h  
FFh  
00h  
Control Register Address  
Control Register Data  
S
7-Bit Slave Address  
0
A
A
A
P
R/W  
0
E8h  
00h  
E9h  
DATA  
RAM Register Address  
RAM Register Data  
7-Bit Slave Address  
7-Bit Slave Address  
S
A
A
Sr  
1
A
A
P
Figure 5-16. Reading from a Single RAM Register  
30  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.5.2.5 Reading from a Single EEPROM Register  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65154 acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65154 acknowledges  
6. Bus master sends data for Control Register (01h)  
7. TPS65154 acknowledges  
8. Bus master sends STOP condition  
9. Bus master sends START condition  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
11. TPS65154 acknowledges  
12. Bus master sends address of EEPROM register (00h)  
13. TPS65154 acknowledges  
14. Bus master sends REPEATED START condition  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h)  
16. TPS65154 acknowledges  
17. TPS65154 sends EEPROM register data  
18. Bus master does not acknowledge  
19. Bus master sends STOP condition  
E8h  
FFh  
01h  
S
7-Bit Slave Address  
0
A
Control Register Address  
A
Control Register Data  
A
P
E8h  
00h  
E9h  
DATA  
S
7-Bit Slave Address  
0
A
EEPROM Register Address  
A
Sr  
7-Bit Slave Address  
1
A
EEPROM Register Data  
P
A
Figure 5-17. Reading from a Single EEPROM Register  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
31  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.5.2.6 Reading from Multiple RAM Registers  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65154 acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65154 acknowledges  
6. Bus master sends data for Control Register (00h)  
7. TPS65154 acknowledges  
8. Bus master sends STOP condition  
9. Bus master sends START condition  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
11. TPS65154 acknowledges  
12. Bus master sends address of first register to be read (00h)  
13. TPS65154 acknowledges  
14. Bus master sends REPEATED START condition  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h)  
16. TPS65154 acknowledges  
17. TPS65154 sends contents of first RAM register to be read  
18. Bus master acknowledges  
19. TPS65154 sends contents of second RAM register to be read  
20. Bus master acknowledges  
21. TPS65154 sends contents of third (last) RAM register to be read  
22. Bus master does not acknowledge  
23. Bus master sends STOP condition  
E8h  
FFh  
00h  
S
7-Bit Slave Address  
0
A
Control Register Address  
A
Control Register Data  
A
P
R/W  
0
E8h  
00h  
E9h  
DATA  
S
7-Bit Slave Address  
A
RAM Register Address (n)  
A
Sr  
7-Bit Slave Address  
1
A
RAM Register Data (n)  
A
DATA  
DATA  
RAM Register Data (n+1)  
A
RAM Register Data (Last)  
P
A
Figure 5-18. Reading from Multiple RAM Registers  
32  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.5.2.7 Reading from Multiple EEPROM Registers  
1. Bus master sends START condition  
2. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
3. TPS65154 acknowledges  
4. Bus master sends address of Control Register (FFh)  
5. TPS65154 acknowledges  
6. Bus master sends data for Control Register (01h)  
7. TPS65154 acknowledges  
8. Bus master sends STOP condition  
9. Bus master sends START condition  
10. Bus master sends 7-bit slave address plus low R/W bit (E8h)  
11. TPS65154 acknowledges  
12. Bus master sends address of first EEPROM register to be read (00h)  
13. TPS65154 acknowledges  
14. Bus master sends REPEATED START condition  
15. Bus master sends 7-bit slave address plus high R/W bit (E9h)  
16. TPS65154 acknowledges  
17. TPS65154 sends contents of first EEPROM register to be read  
18. Bus master acknowledges  
19. TPS65154 sends contents of second EEPROM register to be read  
20. Bus master acknowledges  
21. TPS65154 sends contents of third (last) EEPROM register to be read  
22. Bus master does not acknowledge  
23. Bus master sends STOP condition  
E8h  
FFh  
01h  
S
7-Bit Slave Address  
0
A
Control Register Address  
A
Control Register Data  
A
P
R/W  
0
E8h  
00h  
E9h  
DATA  
S
7-Bit Slave Address  
A
EEPROM Register Addr (n)  
A
Sr  
7-Bit Slave Address  
1
A
EEPROM Register Data (n)  
A
DATA  
DATA  
EEPROM Register Data (n+1)  
A
EEPROM Register Data (Last)  
P
A
Figure 5-19. Reading from Multiple EEPROM Registers  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
33  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.5.3 Programming Examples - VCOM  
5.5.3.1 Writing a VCOM Value of 77h to WR  
1. The bus master sends a START condition.  
2. The bus master sends 7-bit slave address plus low R/W bit.  
3. TPS65154 slave acknowledges.  
4. The bus master sends the CR address of 02h.  
5. The TPS65154 acknowledges.  
6. The bus master sends the CR contents of 80h.  
7. The TPS65154 slave acknowledges.  
8. The bus master sends a STOP condition.  
9. The bus master sends a START condition.  
10. The bus master sends 7-bit slave address plus low R/W bit.  
11. TPS65154 slave acknowledges.  
12. The bus master sends the WR address of 00h.  
13. The TPS65154 acknowledges.  
14. The bus master sends the WR contents of 77h (right-justified).  
15. The TPS65154 slave acknowledges.  
16. The bus master sends a STOP condition.  
50h  
02h  
80h  
S
0
1
0
1
0
0
0
0
A
0
0
0
0
0
1
0
A
1
0
0
0
0
0
0
0
A
P
0
Slave Address  
CR Address  
CR Data  
R/W  
50h  
00h  
77h  
S
0
1
0
1
0
0
0
0
A
0
0
0
0
0
0
0
A
0
1
1
1
0
1
1
1
A
P
0
Slave Address  
WR Address  
WR Data  
R/W  
Figure 5-20. Writing a VCOM Value of 77h to WR  
34  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.5.3.2 Writing a VCOM Value of 77h to IVR and WR  
1. The bus master sends a START condition.  
2. The bus master sends 7-bit slave address plus low R/W bit.  
3. TPS65154 slave acknowledges.  
4. The bus master sends the CR address of 02h.  
5. The TPS65154 acknowledges.  
6. The bus master sends the CR contents of 00h.  
7. The TPS65154 slave acknowledges.  
8. The bus master sends a STOP condition.  
9. The bus master sends a START condition.  
10. The bus master sends 7-bit slave address plus low R/W bit.  
11. TPS65154 slave acknowledges.  
12. The bus master sends the WR address of 00h.  
13. The TPS65154 acknowledges.  
14. The bus master sends the WR contents of 77h (right-justified).  
15. The TPS65154 slave acknowledges.  
16. The bus master sends a STOP condition.  
50h  
02h  
00h  
S
0
1
0
1
0
0
0
0
A
0
0
0
0
0
0
1
0
A
0
0
0
0
0
0
0
0
A
P
Slave Address  
CR Address  
CR Data  
R/W  
50h  
00h  
77h  
S
0
1
0
1
0
0
0
0
A
0
0
0
0
0
0
0
0
A
0
1
1
1
0
1
1
1
A
P
Slave Address  
WR Address  
WR Data  
R/W  
Figure 5-21. Writing a VCOM Value of 77h to IVR and WR  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
35  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.5.3.3 Reading a VCOM Value of 77h from WR  
1. The bus master sends a START condition.  
2. The bus master sends 7-bit slave address plus low R/W bit.  
3. TPS65154 slave acknowledges.  
4. The bus master sends the CR address of 02h.  
5. The TPS65154 acknowledges.  
6. The bus master sends the CR contents of 80h.  
7. The TPS65154 slave acknowledges.  
8. The bus master sends a STOP condition.  
9. The bus master sends a START condition.  
10. The bus master sends 7-bit slave address plus low R/W bit.  
11. TPS65154 slave acknowledges.  
12. The bus master sends the WR address of 00h.  
13. The TPS65154 acknowledges.  
14. The bus master sends a REPEATED START condition.  
15. The bus master sends 7-bit slave address plus high R/W bit.  
16. The TPS65154 sends the WR contents of 77h (right-justified).  
17. The bus master does not acknowledge.  
18. The bus master sends a STOP condition.  
50h  
02h  
80h  
S
0
1
0
1
0
0
0
0
0
0
A
0
0
0
A
0
0
0
0
0
1
0
0
1
A
0
1
1
A
1
0
0
0
0
0
0
0
A
P
0
Slave Address  
CR Address  
CR Data  
R/W  
50h  
00h  
S
0
1
0
1
0
0
0
A
0
0
0
0
Slave Address  
IVR Address  
R/W  
Repeated Start  
00h  
51h  
S
0
1
0
1
0
0
1
1
1
1
A
P
0
Slave Address  
WR Data  
R/W  
Figure 5-22. Reading 77h from WR  
36  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.5.3.4 Reading a VCOM Value of 77h from IVR  
1. The bus master sends a START condition.  
2. The bus master sends 7-bit slave address plus low R/W bit.  
3. TPS65154 slave acknowledges.  
4. The bus master sends the CR address of 02h.  
5. The TPS65154 acknowledges.  
6. The bus master sends the CR contents of 00h.  
7. The TPS65154 slave acknowledges.  
8. The bus master sends a STOP condition.  
9. The bus master sends a START condition.  
10. The bus master sends 7-bit slave address plus low R/W bit.  
11. TPS65154 slave acknowledges.  
12. The bus master sends the WR address of 00h.  
13. The TPS65154 acknowledges.  
14. The bus master sends a REPEATED START condition.  
15. The bus master sends 7-bit slave address plus high R/W bit.  
16. The TPS65154 sends the WR contents of 77h (right-justified).  
17. The bus master does not acknowledge.  
18. The bus master sends a STOP condition.  
50h  
02h  
00h  
S
0
1
0
1
0
0
0
0
0
0
A
0
0
0
A
0
0
0
0
0
1
0
0
1
A
0
1
0
A
1
0
0
0
0
0
0
0
A
P
0
Slave Address  
CR Address  
CR Data  
R/W  
50h  
00h  
S
0
1
0
1
0
0
0
A
0
0
0
0
Slave Address  
IVR Address  
R/W  
Repeated Start  
00h  
51h  
S
0
1
0
1
0
0
1
1
1
1
A
P
0
Slave Address  
IVR Data  
R/W  
Figure 5-23. Reading 77h from IVR  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
37  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6 Register Map  
5.6.1 Configuration Registers (Excluding VCOM)  
Table 5-3 shows the memory map of the configuration parameters.  
Table 5-3. Configuration Memory Map  
REGISTER  
ADDRESS  
REGISTER  
NAME  
FACTORY DEFAULT  
DESCRIPTION  
Sets miscellaneous configuration bits  
00h  
CONFIG  
02h  
KMODE = 0  
WPEN = 0  
DMODE = 1  
RMODE = 0  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
VCC  
DLY1  
AVDD  
FSW1  
SS2  
03h  
02h  
0Fh  
01h  
04h  
02h  
09h  
01h  
01h  
04h  
01h  
01h  
02h  
03h  
2.5 V  
10 ms  
8.0 V  
Sets the output voltage of the linear regulator (VCC  
Sets the start-up delay of the linear regulator (VCC  
Sets the output voltage of boost converter 1 (AVDD  
Sets the switching frequency of boost converter 1 (AVDD  
)
)
)
600 kHz  
20 ms  
10 ms  
–6.8 V  
5 ms  
)
Sets the soft-start time of boost converter 1 (AVDD  
)
)
DLY2  
VGL  
Sets the start-up delay of boost converter 1 (AVDD  
Sets the output voltage of the negative charge pump (VGL  
)
SS3  
Sets the soft-start time of the negative charge pump (VGL  
)
DLY3  
VGH  
SS4  
5 ms  
Sets the start-up delay of the negative charge pump (VGL)  
20.0 V  
5 ms  
Sets the output voltage of boost converter 2 (VGH  
Sets the soft-start time of boost converter 2 (VGH  
Sets the switching frequency of boost converter 3 (WLED)  
)
)
FSW3  
DLY4  
OVP  
600 kHz  
10 ms  
39 V  
Sets the start-up delay of the gate voltage shaping function (VGHM  
)
Sets the over-voltage protection threshold of boost converter 3  
(WLED)  
0Fh  
FDIM  
07h  
22 kHz  
Sets the output dimming frequency of the WLED driver in phase-shift  
dimming mode  
10h  
11h  
12h  
13h  
14h  
15h  
FFh  
RESET  
VDET  
05h  
00h  
02h  
07h  
07h  
00h  
00h  
5 ms  
VDET = VUVLO  
30 ms  
Sets the reset pulse duration  
Sets the threshold of the RST and XAO signals  
Sets the start-up delay of the XAO signal  
Sets the maximum VCOM voltage  
Sets the minimum VCOM voltage  
For customer use  
DLY6  
VMAX  
3.2 V  
VMIN  
2.7 V  
USER1  
CONTROL  
00h  
Controls whether read and write operations access RAM or EEPROM  
registers  
38  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
 
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.1 CONFIG (00h)  
The CONFIG register can be written to and read from.  
Figure 5-24. CONFIG Register Bit Allocation  
7
6
5
4
3
2
1
0
ADIS  
R/W-0  
Reserved  
R/W-0  
KMODE  
R/W-0  
WPEN  
R/W-0  
DMODE  
R/W-1  
RMODE  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-4. CONFIG Register Field Descriptions  
Bit  
Field  
Value  
Description  
7
ADIS  
This bit can be used to disable boost converter 1 (AVDD), boost converter 2 (VGH) and the negative  
charge pump (VGL) during device programming. This bit is volatile and is never stored in EEPROM.  
It is always reset (that is, ADIS = 0) following power-up, that is, the affected converters are always  
enabled following power-up.  
0
1
Boost converter 1 (AVDD), boost converter 2 (VGH), and negative charge pump (VGL) enabled.  
Boost converter 1 (AVDD), boost converter 2 (VGH), and negative charge pump (VGL) disabled.  
These bits are reserved for future use and should be programmed to 0 to ensure proper operation.  
This bit can be used to enable and disable boost converter 1's active discharge function.  
Boost converter 1 (AVDD) active discharge enabled.  
6-4  
3
Reserved  
KMODE  
N/A  
0
1
Boost converter 1 (AVDD) active discharge disabled.  
2
1
0
WPEN  
DMODE  
RMODE  
This bit can be used to enable and disable the write protect function.  
Disabled. WP not used and I2C interface always active.  
Enabled. I2C interface only active when WP pulled low.  
This bit determines which dimming mode is used by the WLED driver.  
Direct dimming.  
0
1
0
1
Phase-shift dimming.  
This bit determines which threshold is used to assert RST during power-down.  
VUVLO threshold used.  
0
1
VDET threshold used.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
39  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.2 VCC (01h)  
The VCC register can be written to and read from.  
Figure 5-25. VCC Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VCC  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-5. VCC Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-2  
Not implemented  
N/A  
These bits are not implemented. During write operations, data for these bits is ignored, and during  
read operations 0 is returned.  
1-0  
VCC  
These bits determine the output voltage of the linear regulator (VCC).  
0h  
1h  
2h  
3h  
1.0 V  
1.2 V  
1.89 V  
2.5 V  
40  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.3 DLY1 (02h)  
The DLY1 register can be written to and read from.  
Figure 5-26. DLY1 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
DLY1  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-6. DLY1 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
write operations 0 is returned.  
3-0  
DLY1  
These bits determine how soon after VIN>VUVLO the linear regulator (VCC) starts.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
0 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
40 ms  
45 ms  
50 ms  
55 ms  
60 ms  
65 ms  
70 ms  
75 ms  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
41  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.4 AVDD (03h)  
The AVDD register can be written to and read from.  
Figure 5-27. AVDD Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
AVDD  
R/W-1  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-7. AVDD Register Field Descriptions  
Bit  
Field  
Value  
Description  
1
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
0
AVDD  
These bits determine the output voltage of boost converter 1 (AVDD).  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
6.5 V  
6.6 V  
6.7 V  
6.8 V  
6.9 V  
7.0 V  
7.1 V  
7.2 V  
7.3 V  
7.4 V  
7.5 V  
7.6 V  
7.7 V  
7.8 V  
7.9 V  
8.0 V  
8.1 V  
8.2 V  
8.3 V  
8.4 V  
8.5 V  
8.6 V  
8.7 V  
8.8 V  
8.9 V  
9.0 V  
9.1 V  
9.2 V  
9.3 V  
9.4 V  
9.5 V  
9.6 V  
42  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.5 FSW1 (04h)  
The FSW1 register can be written to and read from.  
Figure 5-28. FSW1 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
FSW1  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-8. FSW1 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-2  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
1-0  
FSW1  
These bits determine the switching frequency of boost converter 1 (AVDD).  
0h  
1h  
2h  
3h  
400 kHz  
600 kHz  
800 kHz  
1 MHz  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
43  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.6 SS2 (05h)  
The SS2 register can be written to and read from.  
Figure 5-29. SS2 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
SS2  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-9. SS2 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
SS2  
These bits determine the soft-start time of boost converter 1 (AVDD).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
0.5 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
40 ms  
45 ms  
50 ms  
55 ms  
60 ms  
65 ms  
70 ms  
75 ms  
44  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.7 DLY2 (06h)  
The DLY2 register can be written to and read from.  
Figure 5-30. DLY2 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
DLY2  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-10. DLY2 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
DLY2  
These bits determine how soon after RST goes high boost converter 1 (AVDD) starts.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
0 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
40 ms  
45 ms  
50 ms  
55 ms  
60 ms  
65 ms  
70 ms  
75 ms  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
45  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.8 VGL (07h)  
The VGL register can be written to and read from.  
Figure 5-31. VGL Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VGL  
R/W-1  
R/W-0  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-11. VGL Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
VGL  
These bits determine the output voltage of the negative charge pump (VGL).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
–5.0 V  
–5.2 V  
–5.4 V  
–5.6 V  
–5.8 V  
–6.0 V  
–6.2 V  
–6.4 V  
–6.6 V  
–6.8 V  
–7.0 V  
–7.2 V  
–7.4 V  
–7.6 V  
–7.8 V  
–8.0 V  
46  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.9 SS3 (08h)  
The SS3 register can be written to and read from.  
Figure 5-32. SS3 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
SS3  
R/W-0  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-12. SS3 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
SS3  
These bits determine the soft-start time of the negative charge pump (VGL).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0.256 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
47  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.10 DLY3 (09h)  
The DLY3 register can be written to and read from.  
Figure 5-33. DLY3 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
DLY3  
R/W-0  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-13. DLY3 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
DLY3  
These bits determine how soon after boost converter 1 (AVDD) starts the negative charge pump  
(VGL) starts.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
48  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.11 VGH (0Ah)  
The VGH register can be written to and read from.  
Figure 5-34. VGH Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VGH  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-14. VGH Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
VGH  
These bits determine the output voltage of boost converter 2 (VGH).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
18.0 V  
18.5 V  
19.0 V  
19.5 V  
20.0 V  
20.5 V  
21.0 V  
21.5 V  
22 0 V  
22.5 V  
23.0 V  
23.5 V  
24.0 V  
24.5 V  
25.0 V  
25.5 V  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
49  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.12 SS4 (0Bh)  
The SS4 register can be written to and read from.  
Figure 5-35. SS4 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
SS4  
R/W-0  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-15. SS4 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
SS4  
These bits determine the soft-start time of boost converter 2 (VGH).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0.256 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
50  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.13 FSW3 (0Ch)  
The FSW3 register can be written to and read from.  
Figure 5-36. FSW3 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
FSW3  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-16. FSW3 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-2  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
1-0  
FSW3  
These bits determine the switching frequency of boost converter 3 (WLED).  
0h  
1h  
2h  
3h  
400 kHz  
600 kHz  
800 kHz  
1 MHz  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
51  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.14 DLY4 (0Dh)  
The DLY4 register can be written to and read from.  
Figure 5-37. DLY4 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
DLY4  
R/W-1  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-17. DLY4 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
DLY4  
These bits determine the start-up delay of the gate voltage shaping function.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
52  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.15 OVP (0Eh)  
The OVP register can be written to and read from.  
Figure 5-38. OVP Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
OVP  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-18. OVP Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-2  
Not implemented  
N/A  
These bits are not implemented. During write operations, data for these bits is ignored, and during  
read operations 0 is returned.  
1-0  
OVP  
These bits determine the overvoltage threshold of boost converter 3 (WLED).  
0h  
1h  
2h  
3h  
30 V  
33 V  
36 V  
39 V  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
53  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.16 FDIM (OFh)  
The FDIM register can be written to and read from.  
Figure 5-39. FDIM Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
FDIM  
R/W-1  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-19. FDIM Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
FDIM  
These bits determine the WLED driver's output dimming frequency in phase-shift dimming mode.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
15 kHz  
16 kHz  
17 kHz  
18 kHz  
19 kHz  
20 kHz  
21 kHz  
22 kHz  
54  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.17 RESET (10h)  
The RESET register can be written to and read from.  
Figure 5-40. RESET Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
RESET  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-20. RESET Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
RESET  
These bits determine the duration of the reset pulse (RST).  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
0 ms  
1 ms  
2 ms  
3 ms  
4 ms  
5 ms  
6 ms  
7 ms  
8 ms  
9 ms  
10 ms  
11 ms  
12 ms  
13 ms  
14 ms  
15 ms  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.18 VDET (11h)  
The VDET register can be written to and read from.  
Figure 5-41. VDET Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VDET  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-21. VDET Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
VDET  
These bits determine the threshold voltage of the XAO signal.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
VUVLO  
2.0 V  
2.1 V  
2.2 V  
2.3 V  
2.4 V  
2.5 V  
2.6 V  
2.7 V  
2.8 V  
2.9 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
56  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.19 DLY6 (12h)  
The DLY6 register can be written to and read from.  
Figure 5-42. DLY6 Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
DLY6  
R/W-1  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-22. DLY6 Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
DLY6  
These bits determine the start-up delay time of the XAO signal.  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
0 ms  
5 ms  
10 ms  
15 ms  
20 ms  
25 ms  
30 ms  
35 ms  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.20 VMAX (13h)  
The VMAX register can be written to and read from.  
Figure 5-43. VMAX Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VMAX  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-23. VMAX Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
VMAX  
These bits determine the maximum VCOM voltage.  
2.5/8 × AVDD  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
2.6/8 × AVDD  
2.7/8 × AVDD  
2.8/8 × AVDD  
2.9/8 × AVDD  
3.0/8 × AVDD  
3.1/8 × AVDD  
3.2/8 × AVDD  
3.3/8 × AVDD  
3.4/8 × AVDD  
3.5/8 × AVDD  
3.6/8 × AVDD  
3.7/8 × AVDD  
3.8/8 × AVDD  
3.9/8 × AVDD  
4.0/8 × AVDD  
58  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.21 VMIN (14h)  
The VMIN register can be written to and read from.  
Figure 5-44. VMIN Register Bit Allocation  
7
6
5
4
3
2
1
0
Not Implemented  
VMIN  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-24. VMIN Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-4  
Not Implemented  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
3-0  
VMIN  
These bits determine the minimum VCOM voltage.  
2.0/8 × AVDD  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
2.1/8 × AVDD  
2.2/8 × AVDD  
2.3/8 × AVDD  
2.4/8 × AVDD  
2.5/8 × AVDD  
2.6/8 × AVDD  
2.7/8 × AVDD  
2.8/8 × AVDD  
2.9/8 × AVDD  
3.0/8 × AVDD  
3.1/8 × AVDD  
3.2/8 × AVDD  
3.3/8 × AVDD  
3.4/8 × AVDD  
3.5/8 × AVDD  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.1.22 USER (15h)  
The USER register can be written to and read from.  
Figure 5-45. USER Register Bit Allocation  
7
6
5
4
3
2
1
0
USER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-25. USER Register Field Descriptions  
Bit  
Field  
Value  
Description  
7-0  
USER  
N/A  
These bits are free for customer use. Their contents have no effect on device operation.  
60  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
5.6.1.23 CONTROL (FFh)  
Figure 5-46. CONTROL Register Bit Allocation  
7
6
5
4
3
2
1
0
WED  
R/W-0  
Not Implemented  
RED  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-26. CONTROL Register Field Descriptions  
Bit  
Field  
Value  
Description  
7
WED  
This bit determines whether write operations affect the contents of the volatile or non-volatile  
registers.  
0h  
1h  
Not applicable (see below).  
Data is copied from the RAM registers to the EEPROM registers. This bit is automatically reset  
upon completion of this task.  
6-1  
0
Not Implemented  
RED  
N/A  
These bits are not implemented. During write operations data for these bits is ignored, and during  
read operations 0 is returned.  
This bit determines whether read operations return the contents of the volatile or non-volatile  
registers.  
0h  
1h  
Volatile register data is returned.  
Non-volatile register data is returned.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
5.6.2 VCOM Registers  
5.6.2.1 VCOM DATA (Slave Address 28h, Register Address 00h)  
The VCOM DATA register can be written to and read from.  
Figure 5-47. VCOM DATA Register Bit Allocation  
7
6
5
4
3
2
1
0
NI  
VCOM  
R/W-0  
R-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-27. VCOM DATA Register Bit Description  
Bit  
7
Field  
Not implemented  
VCOM  
Value  
Description  
N/A  
This bit is reserved for future use and should be programmed to 0 for proper operation.  
Bits 6 through 0 set the value of the VCOM voltage.  
6-0  
N/A  
VCOM=(VCOM/127) × (VMAX–VMIN) + VMIN  
5.6.2.2 VCOM CONTROL (Slave Address 28h, Register Address 02h)  
The VCOM CONTROL register is write-only.  
Figure 5-48. VCOM CONTROL Register Bit Allocation  
7
6
5
4
3
2
1
0
SEL  
Not Implemented  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
LEGEND: R/W = Read/Write; R = Read only; -n = factory default  
Table 5-28. VCOM CONTROL Register Bit Description  
Bit  
Field  
Value  
Description  
7
SEL  
The SEL bit determines whether read/write operations to the VCOM DATA register access the IVR,  
the WR, or both.  
0
1
Write operations store data in the IVR and WR.  
Read operations return the contents of the IVR.  
Write operations store data in the WR only.  
Read operations return the contents of the WR.  
6-0  
Not implemented  
N/A  
Bits 6 through 0 are reserved for future use. They should be programmed to 0 for proper operation.  
62  
Detailed Description  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
6 Application and Implementation  
NOTE  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI's customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
6.1 Application Information  
The TPS65154 devices is intended primarily for use in notebook PC and tablet applications. It needs  
these two supply voltages  
A regulated 3.3-V or 5-V supply for the LCD bias functions  
A direct connection to the battery for the WLED driver functions  
The device configuration parameters are set by I2C interface and stored in the on-chip nonvolatile  
memory.  
6.2 Typical Application  
Figure 6-1 shows the recommended application circuit for typical applications. The I2C interface is used to  
optimize the circuit's operating parameters for a specific application. If different component values are  
used, make sure that the values are within the recommended operating conditions (see Recommended  
Operating Conditions). If different component values are used, the compensation components may also  
need to be optimized for stability and best performance.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Application and Implementation  
63  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
10μH  
SW1  
AVDD  
AVDD  
AVDD  
VIN  
VIN  
20μF  
20μF  
BOOST  
CONVERTER 1  
PGND  
PGND  
3.9nF 24.9k  
COMP1  
VCC  
AVDD  
LINEAR  
REGULATOR  
VCC  
10μF  
10μH  
VGH  
SW2  
1k  
BAS70W  
AVDD  
10k  
RE  
4.7μF  
BOOST  
CONVERTER 2  
VCC  
VGH  
FLK  
VGHM  
10k  
VGHM  
RST  
XAO  
MISCELLANEOUS  
C1A  
NEGATIVE  
CHARGE PUMP  
VGL  
1μF  
1μF  
VGL  
4.7μF  
C1B  
VCOM  
AVDD  
VCOM  
NEG  
BSUP  
1k  
VCOM  
BUFFER  
100nF  
1k  
VCOM-FB  
BGND  
SCL  
SDA  
WP  
I2C INTERFACE  
VBAT  
EN  
10μH  
VLED  
RB160M  
PWM  
SW3  
OVP  
10μF  
24.9k  
PGND  
WLED  
DRIVER  
ISET  
10μF  
470nF  
IFB1  
IFB2  
IFB3  
IFB4  
IFB5  
IFB6  
COMP2  
COMP3  
AGND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 6-1. Typical Application Circuit  
6.2.1 Design Requirements  
This design example uses the parameters listed in Table 6-1 as the input parameters.  
Table 6-1. Input Parameters  
PARAMETER  
SYMBOL  
VIN  
VALUE  
3.3 V  
Input supply voltage – LCD bias functions  
Input supply voltage – WLED driver  
VBAT  
9 V to 21 V  
64  
Application and Implementation  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
 
 
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
Table 6-1. Input Parameters (continued)  
PARAMETER  
SYMBOL  
AVDD  
VGL  
VALUE  
8 V  
Boost converter 1 output voltage  
Inverting charge pump output voltage  
Boost converter 2 output voltage  
Linear regulator output voltage  
–6.8 V  
20 V  
VGH  
VCC  
2.5 V  
50 mA  
WLED driver output current (per string)  
ISET  
6.2.2 Detailed Design Procedure  
6.2.2.1 External Component Selection  
Care should be applied to the choice of external components since they greatly affect overall  
performance. The TPS65154 was developed with the twin goals of high performance and small/low-profile  
solution size. Since these two goals are often in direct opposition to one another (for example, larger  
inductors tend to achieve higher efficiencies), some trade-off is always necessary.  
Inductors must have adequate current capability so that they do not saturate under worst-case conditions.  
For high efficiency, they should also have low dc resistance (DCR).  
Capacitors must have adequate effective capacitance under the applicable dc bias conditions they  
experience in the application. MLCC capacitors typically exhibit only a fraction of their nominal  
capacitance under real-world conditions and this must be taken into consideration when selecting them.  
This problem is especially acute in low profile capacitors, in which the dielectric field strength is higher  
than in taller components. In general, the capacitance values shown in circuit diagrams in this data sheet  
refer to the effective capacitance after dc bias effects have been taken into consideration. Reputable  
capacitor manufacturers provide capacitance versus dc bias curves that greatly simplify component  
selection.  
The following tables list some components suitable for use with the TPS65154. The list is not exhaustive –  
other components may exist that are equally suitable (or better), however, these components have been  
proven to work well and were used extensively during the development of the TPS65154.  
Table 6-2. Linear Regulator External Component Recommendations  
REF.  
DESCRIPTION  
PART NUMBER  
MANUFACTURER  
MAX. THICKNESS  
COUT  
10 µF, 6.3 V, ±20%, X5R, 0603  
GRM188R60J106ME84  
Murata  
0.95 mm  
Table 6-3. Boost Converter 1 External Components  
REF.  
L
DESCRIPTION  
PART NUMBER  
NRS6012T100MMGG  
GRM319R61C106KE15D  
MANUFACTURER  
MAX. THICKNESS  
1.2 mm  
10 µH, 1.5 A, 0.205 Ω  
Taiyo Yuden  
Murata  
COUT  
10 µF, 16 V, ±10%, X5R, 1206  
0.85 ±0.1 mm  
Table 6-4. Boost Converter 2 External Components  
REF.  
L
DESCRIPTION  
PART NUMBER  
NRH3010T100MN  
MANUFACTURER  
MAX. THICKNESS  
1 mm  
10 µH, 0.6 A  
Taiyo Yuden  
Murata  
COUT  
4.7 µF, 50 V, ±10%, X5R, 1206  
GRM319R61H475KA12  
0.95 mm  
Table 6-5. Boost Converter 3 External Components  
REF.  
L
DESCRIPTION  
PART NUMBER  
MANUFACTURER  
MAX. THICKNESS  
1.2 mm  
10 µH, 1.5 A, 0.205 Ω  
NRS6012T100MMGGJ  
GRM319R61H475KA12  
Taiyo Yuden  
Murata  
COUT  
4.7 µF, 50 V, ±10%, X5R, 1206  
0.95 mm  
Copyright © 2013–2016, Texas Instruments Incorporated  
Application and Implementation  
65  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
6.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
8.10  
8.08  
8.06  
8.04  
8.02  
8.00  
7.98  
7.96  
7.94  
7.92  
7.90  
AVDD=7.0 V  
AVDD=8.0 V  
AVDD=9.0 V  
10  
VIN=3.3 V  
IOUT=100 mA  
2.5 3.0  
AVDD=8.0 V  
5.0 5.5 6.0  
0
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
2.0  
3.5  
4.0  
4.5  
Output Current (A)  
Input Voltage (V)  
G001  
G002  
Figure 6-2. Boost Converter 1 (AVDD) Efficiency  
Figure 6-3. Boost Converter 1 (AVDD) Line Regulation  
8.10  
8.08  
8.06  
8.04  
8.02  
8.00  
7.98  
7.96  
7.94  
7.92  
7.90  
VIN=3.3 V  
AVDD=8.0 V  
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40  
Output Current (A)  
G003  
Figure 6-4. Boost Converter 1 (AVDD) Load Regulation  
Figure 6-5. Boost Converter 1 (AVDD) Line Transient Response  
Figure 6-7. Boost Converter 1 (AVDD) Output Voltage Ripple  
Figure 6-6. Boost Converter 1 (AVDD) Load Transient Response  
66  
Application and Implementation  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VGH=19 V  
VGH=20 V  
VGH=21.5 V  
AVDD=8.0 V  
10 20  
0
30  
40  
50  
60  
70  
80 90 100  
Output Current (mA)  
G008  
Figure 6-9. Boost Converter 2 (VGH) Efficiency  
Figure 6-8. Boost Converter 1 (AVDD) Switching Waveforms  
20.2  
20.1  
20.0  
20.2  
20.1  
20.0  
IOUT=10 mA  
7.0  
VGH=20 V  
9.5 10.0  
AVDD=8 V  
10  
VGH=20 V  
40 45 50  
6.5  
7.5  
8.0  
8.5  
9.0  
0
5
15  
20  
25  
30  
35  
Input Voltage (V)  
Output Current (mA)  
G009  
G010  
Figure 6-10. Boost Converter 2 (VGH) Line Regulation  
Figure 6-11. Boost Converter 2 (VGH) Load Regulation  
Figure 6-12. Boost Converter 2 (VGH) Load Transient Response  
Figure 6-13. Boost Converter 2 (VGH) Output Voltage Ripple  
Copyright © 2013–2016, Texas Instruments Incorporated  
Application and Implementation  
67  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VGH=18.0 V  
VGH=21.0 V  
VGH=25.5 V  
IGH=10 mA  
7.0  
0
6.5  
7.5  
8.0  
8.5  
9.0  
9.5  
10.0  
Input Voltage − AVDD (V)  
G014  
Figure 6-15. Boost Converter 2 (VGH) Switching Frequency  
Figure 6-14. Boost Converter 2 (VGH) Switching Waveforms  
1.90  
1.90  
1.89  
1.88  
1.87  
1.86  
1.89  
IOUT=100 mA  
3.0  
VCC=1.89 V  
5.5 6.0  
VIN=3.3 V  
50  
VCC=1.89 V  
300 350 400  
1.88  
2.5  
1.85  
3.5  
4.0  
4.5  
5.0  
0
100  
150  
200  
250  
Input Voltage (V)  
Output Current (mA)  
G015  
G016  
Figure 6-16. Linear Regulator (VCC) Line Regulation  
Figure 6-17. Linear Regulator (VCC) Load Regulation  
Figure 6-18. Linear Regulator (VCC) Line Transient Response  
Figure 6-19. Linear Regulator (VCC) Load Transient Response  
68  
Application and Implementation  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
−6.5  
−6.6  
−6.7  
−6.8  
−6.9  
−7.0  
−7.1  
−7.2  
−7.3  
−7.4  
−7.5  
VIN=3.3 V  
10  
AVDD=8.0 V  
40 45 50  
0
5
15  
20  
25  
30  
35  
Output Current (mA)  
G019  
Figure 6-20. Negative Charge Pump (VGL) Load Regulation  
Figure 6-21. Negative Charge Pump (VGL) Load Transient  
Response  
Figure 6-22. Negative Charge Pump (VGL) Output Voltage Ripple Figure 6-23. Gate Voltage Shaping (VGHM) Switching Waveforms  
Figure 6-24. VCOM Buffer Large-Signal Response  
Figure 6-25. VCOM Buffer Small-Signal Bandwidth  
Copyright © 2013–2016, Texas Instruments Incorporated  
Application and Implementation  
69  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
Figure 6-26. VCOM Buffer Peak Output Current  
Figure 6-28. LCD Bias Power-Up Sequencing  
Figure 6-30. LCD Bias Power-Up Sequencing  
Figure 6-27. LCD Bias Power-Up Sequencing  
Figure 6-29. LCD Bias Power-Up Sequencing  
Figure 6-31. LCD Bias Power-Down Sequencing  
70  
Application and Implementation  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
Figure 6-32. LCD Bias Power-Down Sequencing  
Figure 6-33. LCD Bias Power-Down Sequencing  
Figure 6-34. LCD Bias Power-Down Sequencing  
Figure 6-35. Boost Converter 3 (VLED) Efficiency  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
VBAT=6 V  
VBAT=6 V  
VBAT=12 V  
VBAT=18 V  
VBAT=24 V  
VBAT=12 V  
VBAT=18 V  
VBAT=24 V  
20  
10  
0
20  
10  
0
VLED=32 V  
fSW=600 kHz  
VLED=36 V  
fSW=600 kHz  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
G035  
G036  
Figure 6-36. Boost Converter 3 (VLED) Efficiency  
Figure 6-37. Boost Converter 3 (VLED) Efficiency  
Copyright © 2013–2016, Texas Instruments Incorporated  
Application and Implementation  
71  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
32.8  
32.7  
32.6  
32.5  
32.4  
32.3  
32.2  
32.1  
32.0  
32.8  
32.7  
32.6  
32.5  
32.4  
32.3  
32.2  
32.1  
32.0  
31.9  
31.8  
31.9  
IOUT=120 mA  
VLED=32 V  
20 24  
VBAT=12 V  
50  
VLED=32 V  
250 300  
31.8  
4
8
12  
16  
0
100  
150  
200  
Input Voltage (V)  
Output Current (mA)  
G037  
G038  
Figure 6-38. Boost Converter 3 (VLED) Line Regulation  
Figure 6-39. Boost Converter 3 (VLED) Load Regulation  
Figure 6-40. Boost Converter 3 (VLED) Line Transient Response Figure 6-41. Boost Converter 3 (VLED) Load Transient Response  
Figure 6-42. Boost Converter 3 (VLED) Output Voltage Ripple  
Figure 6-43. Boost Converter 3 (VLED) Switching Waveforms  
72  
Application and Implementation  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
Figure 6-44. PWM Direct Dimming Waveforms  
Figure 6-45. PWM Phase-Shifted Dimming  
Figure 6-47. WLED Driver Power-Up Sequence  
Figure 6-49. WLED Driver Power-Up Sequence  
Figure 6-46. WLED Driver Power-Up Sequence  
Figure 6-48. WLED Driver Power-Up Sequence  
Copyright © 2013–2016, Texas Instruments Incorporated  
Application and Implementation  
73  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com  
Figure 6-50. WLED Driver Power-Up Sequence  
Figure 6-51. WLED Driver Power-Up Sequence  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
TJ rising  
TJ falling  
0.0  
VIN=3.3 V  
−0.5  
110  
120  
130  
140  
150  
160  
Temperature (°C)  
G051  
Figure 6-52. Thermal Shutdown  
74  
Application and Implementation  
Copyright © 2013–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
www.ti.com  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
7 Power Supply Recommendations  
The TPS65154 device is designed to operate with two input supplies:  
One supply in the range 2 V to 5.5 V powers the LCD bias functions. Typically, this is a regulated 3.3-  
V or 5-V supply generated by a dc-dc converter somewhere else in the system. Note that this supply  
must be higher than 2.5 V if the user wants to program the EEPROM.  
One supply in the range 4.5 V to 24 V powers the WLED driver boost converter. Typically, this is an  
unregulated supply taken from the battery system in a notebook PC or tablet.  
The input supplies must be stable and free of noise to achieve the full performance of the device. If the  
input supplies are located more than a few centimeters away from the TPS65154 device, additional bulk  
capacitance may be required. The input capacitance shown in Figure 6-1 is sufficient for typical  
applications.  
Copyright © 2013–2016, Texas Instruments Incorporated  
Power Supply Recommendations  
75  
Submit Documentation Feedback  
Product Folder Links: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com.cn  
8 Layout  
8.1 Layout Guidelines  
The PCB layout is an important step in a power supply design. An incorrect layout can cause converter  
instability, load regulation problems, noise, and EMI issues. The list of recommendations below highlights  
the most important points to consider when doing the layout for the TPS65154 device. However, all PCB  
layout is a trade-off between theory and practice, and some compromise is always necessary.  
If possible, use a 4-layer PCB. Route high di/dt signals on layer 1 and use the second layer to form a  
solid ground plane. If a 2-layer PCB is used, route high di/dt signals on layer 1 and add a copper pour  
connected to ground on the bottom layer.  
Place a decoupling capacitor close to the VIN pin. Use short, wide traces on layer 1 to connect to it.  
Place at least one of the boost converter 1 output capacitors close to the device. Use short, wide  
traces on layer 1 to connect it between pins 3 and 4, and pin 6.  
Place the boost converter 3 rectifier diode and output capacitor close to the device. Use short, wide  
traces on layer 1 to connect them to pins 9 and 10.  
Place the boost converter 2 rectifier diode and output capacitor close to the device. Use short, wide  
traces on layer 1 to connect them to pins 33 and 34.  
Place the flying capacitor connected to pins 19 and 20 and the output capacitor connected to pin 18  
close to the device. Use short, wide traces on layer 1 to connect to them.  
Place the VCOM buffer decoupling capacitor connected between pin 2 and pin 47 close to the device.  
Use short, wide traces on layer 1 to connect to it.  
Route the signals to the compensation components connected to pin 7, pin 40 and pin 46 away from  
noisy signals.  
Use thermal vias to connect the thermal pad to a large, unbroken copper ground plane (typically, on  
layer 2).  
8.2 Layout Example  
Figure 8-1 shows the main features of the TPS65154 Evaluation Module PCB layout.  
76  
Layout  
版权 © 2013–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65154  
TPS65154  
www.ti.com.cn  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
VCOM_FB  
AVDD  
VCOM  
GND  
AVDD  
VLED  
VIN  
GND  
VBAT  
GND  
VCC  
GND  
VLED  
GND  
ISET  
XAO  
RST  
GND  
VGL  
VGH  
Figure 8-1. Example PCB Layout  
版权 © 2013–2016, Texas Instruments Incorporated  
Layout  
77  
提交文档反馈意见  
产品主页链接: TPS65154  
TPS65154  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
www.ti.com.cn  
9 器件和文档支持  
9.1 器件支持  
9.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES  
NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR  
SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR  
SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
9.2 接收文档更新通知  
如需接收文档更新通知,请访问 ti.com 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可  
每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
9.3 社区资源  
下列链接提供到 TI 社区资源的连接。 链接的内容由各个分销商按照原样提供。 这些内容并不构成 TI 技术  
规范和标准且不一定反映 TI 的观点;请见 TI 使用条款。  
TI E2E™ 在线社区 TI 工程师对工程师 (E2E) 社区。 此社区的创建目的是为了促进工程师之间协作。 在  
e2e.ti.com 中,您可以咨询问题、共享知识、探索思路,在同领域工程师的帮助下解决问题。  
德州仪器 (TI) 嵌入式处理器维基网站 德州仪器 (TI) 嵌入式处理器维基网站。 此网站的建立是为了帮助开发  
人员从德州仪器 (TI) 嵌入式处理器入门并且也为了促进与这些器件相关的硬件和软件的总体  
知识的创新和增长。  
9.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
9.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
9.6 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
78  
器件和文档支持  
版权 © 2013–2016, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS65154  
TPS65154  
www.ti.com.cn  
ZHCSF63A SEPTEMBER 2013REVISED JUNE 2016  
10 机械、封装和可订购信息  
10.1 封装信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知  
且不对本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2013–2016, Texas Instruments Incorporated  
机械、封装和可订购信息  
79  
提交文档反馈意见  
产品主页链接: TPS65154  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65154RSLR  
ACTIVE  
VQFN  
RSL  
48  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
TPS  
65154  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65154RSLR  
VQFN  
RSL  
48  
2500  
330.0  
16.4  
6.3  
6.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RSL 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
552.0 367.0 38.0  
TPS65154RSLR  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
RSL VQFN  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TPS65154RSLR  
48  
2500  
381.5  
7.92  
2286  
0
Pack Materials-Page 3  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
A
6.1  
5.9  
B
PIN 1 INDEX AREA  
6.1  
5.9  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
4.4  
13  
24  
44X 0.4  
12  
23  
SYMM  
49  
4.5  
4.3  
4.4  
1
36  
0.25  
0.15  
48X  
PIN 1 IDENTIFICATION  
(OPTIONAL)  
37  
48  
0.1  
C A B  
C
SYMM  
0.5  
0.3  
0.05  
48X  
4219205/A 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
(5.8)  
(
4.4)  
SYMM  
48  
37  
48X (0.6)  
48X (0.2)  
1
36  
44X (0.4)  
SYMM  
(5.8)  
10X (1.12)  
49  
6X (0.83)  
(R0.05) TYP  
12  
25  
13  
6X (0.83)  
24  
(Ø0.2) VIA  
10X (1.12)  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 12X  
0.05 MAX  
0.05 MIN  
ALL AROUND  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219205/A 02/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RSL0048B  
PLASTIC QUAD FLATPACK- NO LEAD  
(5.8)  
SYMM  
48  
37  
48X (0.6)  
48X (0.2)  
1
49  
36  
44X (0.4)  
16X  
(
0.92)  
SYMM  
8X (0.56)  
(5.8)  
8X (1.12)  
(R0.05) TYP  
12  
25  
13  
8X (1.12)  
24  
METAL TYP  
8X (0.56)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
70% PRINTED COVERAGE BY AREA  
SCALE: 12X  
4219205/A 02/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65155

LCD Bias Solution with Level Shifters for GOA Panels

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65155RKPR

LCD Bias Solution with Level Shifters for GOA Panels

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160A

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160APWP

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160APWPG4

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160APWPR

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160APWPRG4

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160PWP

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160PWPG4

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160PWPR

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65160PWPRG4

BIAS POWER SUPPLY FOR TV AND MONITOR TFT LCD PANELS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI