TPS65235-1RUKT [TI]

采用 FCCM 模式且具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85;
TPS65235-1RUKT
型号: TPS65235-1RUKT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 FCCM 模式且具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85

稳压器
文件: 总42页 (文件大小:2186K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
TPS65235-1 LNB 稳压器,具I2C 接口  
1 特性  
3 说明  
• 用LNB I2C 接口的完整集成解决方案  
• 兼DiSEqC 2.x DiSEqC 1.x  
• 支5V12V 15V 电源轨  
TPS65235-1 专为模拟和数字卫星接收器而设计是一  
款具I2C 接口的单片稳压器。该器件专用于向碟形天  
线中的 LNB 降压转换器或多开关箱提供 13V 18V  
电源以及 22kHz 音调信号。该器件将极少的组件数、  
低功率耗散、简单设计I2C 标准接口相结合能够提  
供一套完整的解决方案。  
• 高1000mA 的外部电阻器可调精确输出电流限制  
• 升压开关峰值电流限制LDO 电流限制成正比  
• 具140mΩRds(on) 内部电源开关的升压转换器  
• 可选1MHz 500kHz 升压开关频率  
• 在强PWM 模式下能避免可闻噪声  
• 适用于I2C 应用的专用使能引脚  
• 具有推挽式输出级的低压(LDO) 稳压器用于提  
VLNB 输出  
• 内置精确22kHz 音调发生器并支持外部音调输入  
• 支44kHz 22kHz 外部音调输入  
• 可调节软启动13V 18V 电压转换时间  
650mV 750mV 22kHz 音调振幅选择  
• 通过EN 为低电平时进行访问I2C 寄存器  
• 短路动态保护  
TPS65235-1 具有高功效。该升压转换器集成了一个在  
1MHz 500kHz 可选开关频率下运行140mΩ率  
MOSFET。线性稳压器中的压降为 0.8V能够更大限  
度地降低功率损耗。TPS65235-1 提供多种方式来生成  
22kHz 信号。具有推挽式输出级的集成线性稳压器可  
生成 22kHz 音调信号在输出端叠加),即使在零负  
载条件下也是如此。可由外部电阻器以 ±10% 的精度  
来设定线性稳压器的电流限值。通I2C 读取的全范围  
诊断可用于系统监控。  
TPS65235-1 FCCM 模式下具有特殊设计以避免  
可闻噪声尤其是VIN 高于或接VLNB 输出时。  
• 输出电压电平、DiSEqC 音调输入和输出、电流电  
平以及电缆连接诊断  
• 具有过热保护功能  
TPS65235-1 支持面向 22kHz 音调检测电路和输出接  
口的高DiSEqC 2.x 标准。  
20 WQFN 3mm x 3mm (RUK) 封装  
封装信息(1)  
2 应用  
封装尺寸标称值)  
器件型号  
TPS65235-1  
封装  
机顶盒卫星接收器  
电视卫星接收器  
PC 卡卫星接收器  
卫星电视  
RUKWQFN203.00mm × 3.00mm  
(1) 有关所有的可用封装请参阅数据表末尾的可订购产品附录。  
TPS65235-1  
100 nF  
VOUT  
VLNB  
VCP  
0.1 mF  
ISET  
TCAP  
AGND  
BOOST  
PGND  
2 ×  
22 mF  
110 k  
22 nF  
10 mH  
VIN  
LX  
VCC  
VIN  
10 mF  
1 mF  
1 mF  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSDP1  
 
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.5 Programming............................................................ 20  
7.6 Register Maps...........................................................22  
8 Application and Implementation..................................25  
8.1 Application Information............................................. 25  
8.2 Typical Application.................................................... 25  
8.3 Power Supply Recommendations.............................31  
8.4 Layout....................................................................... 31  
9 Device and Documentation Support............................33  
9.1 Device Support......................................................... 33  
9.2 Documentation Support............................................ 33  
9.3 接收文档更新通知..................................................... 33  
9.4 支持资源....................................................................33  
9.5 Trademarks...............................................................33  
9.6 静电放电警告............................................................ 33  
9.7 术语表....................................................................... 33  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements..................................................8  
6.7 Typical Characteristics................................................9  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................10  
7.4 Device Functional Modes..........................................19  
Information.................................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision E (May 2021) to Revision F (May 2023)  
Page  
• 通篇更新了公式格式........................................................................................................................................... 1  
Updated the ADDR pin voltage range for I2C address 0x11 in 7-4 ............................................................. 20  
Changed all instances of legacy terminology to controller and target where I2C is mentioned........................ 20  
Changes from Revision D (July 2019) to Revision E (May 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式。..................................................................................... 1  
Changed V(drop) min and max values..................................................................................................................6  
Changed I(rev_dis) min and max values................................................................................................................6  
Changes from Revision C (July 2018) to Revision D (July 2019)  
Page  
Changed V(drop) at TONEAMP = 0b From: MIN = 0.44 TYP = 0.7 MAX = 1 To: MIN = 0.49 TYP = 0.8 MAX =  
1.1 in the Electrical Characteristics ....................................................................................................................6  
Changed V(drop) at TONEAMP = 1b From: MIN = 0.55 TYP = 0.8 MAX = 1.12 To: MIN = 0.65 TYP = 0.9 MAX  
= 1.2 in the Electrical Characteristics .................................................................................................................6  
Changes from Revision B (June 2018) to Revision C (July 2018)  
Page  
Changed the GDR TONE_TRANS = 1b value From: MAX = 24.03V To: MAX = 24.33V in the  
Electrical Characteristics ................................................................................................................................... 6  
Changes from Revision A (January 2017) to Revision B (December 2017) Page  
Changed bit 4 (T125) in 7-8 From: 0b = Die temperature > 125°C To: 0b = Die temperature > 125°C and  
From: 1b = Die temperature < 125°C To: 1b = Die temperature > 125°C.........................................................24  
Changes from Revision * (January 2017) to Revision A (December 2017)  
Page  
Changed the VCP values From: VLNB to 7 V To: 0.3 V to 7 V in the Absolute Maximum Ratings ............... 5  
Changed the GDR values From: VLNB to VCP To: 0.3 V to 7 Vin the Absolute Maximum Ratings ..............5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
2
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
Changed the A(tone) TONEAMP = 0b values From: MIN = 667 TYP = 700 MAX = 746 To: MIN = 617 TYP =  
650 MAX = 696 in the Electrical Characteristics ................................................................................................6  
Changed the A(tone) TONEAMP = 1b values From: MIN = 753 TYP = 800 MAX = 853 To: MIN = 703 TYP =  
750 MAX = 803 in the Electrical Characteristics ................................................................................................6  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
VLNB  
VCP  
16  
10  
9
VCTRL  
ADDR  
FAULT  
EN  
17  
18  
19  
20  
Thermal  
Pad  
BOOST  
GDR  
8
7
PGND  
6
ISET  
Not to scale  
5-1. RUK Package 20-Pin WQFN With Exposed Thermal Pad Top View  
5-1. Pin Functions  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
1
LX  
I
Switching node of the boost converter  
Input of internal linear regulator  
2
VIN  
S
Internal 6.3-V power supply. Connect a 1-μF ceramic capacitor from this pin to ground. When VIN is 5 V,  
connect the VCC pin to the VIN pin.  
3
VCC  
O
4
5
6
AGND  
TCAP  
ISET  
S
O
O
Analog ground. Connect all ground pins and power pad together.  
Connect a capacitor to this pin to set the rise time of the LNB output.  
Connect a resistor to this pin to set the LNB output current limit.  
Enable this pin to enable the VLNB output. pull this pin to ground to disable the output. The output is then  
pulled to ground, and, when the EN pin is low, the I2C interface can be accessed.  
7
EN  
I
8
FAULT  
ADDR  
VCTRL  
SDA  
O
Open drain output pin, it goes low if any fault flag is set.  
Connect a different resistor to this pin to set different I2C addresses (see the 7-4 table).  
Voltage level at this pin to set the output voltage (see the 7-3).  
I2C compatible bidirectional data  
9
I
I
10  
11  
12  
I/O  
I
SCL  
I2C compatible clock input  
External modulation logic input pin that activates the 22-kHz tone output. The feeding signal can be 22-  
kHz tone or logic high or low.  
13  
EXTM  
I
14  
15  
16  
DOUT  
DIN  
O
I
Tone detection output  
Tone detection input  
VLNB  
O
Output of the power supply connected to satellite receiver or switch  
Gate drive supply voltage and output of charge pump. Connect a capacitor between this pin and the VLNB  
pin.  
17  
VCP  
O
18  
19  
20  
BOOST  
GDR  
O
O
S
Output of the boost regulator and Input voltage of the internal linear regulator  
Control the gate of the external MOSFET for DiSEqc 2.x support  
Power ground for the boost converter  
PGND  
The thermal pad must be soldered to the printed circuit board (PCB) for optimal thermal performance. Use  
thermal vias on the PCB to enhance power dissipation.  
Thermal Pad  
(1) I = input, O = output, I/O = input and output, S = power supply  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
4
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
1
MAX  
30  
UNIT  
VIN, LX, BOOST, VLNB  
VCP, GDR (referenced to VLNB pin)  
7
0.3  
VCC, EN, ADDR, FAULT, SCL, SDA, VCTRL, EXTM, DOUT, DIN,  
TCAP  
7
Voltage  
0.3  
V
ISET  
3.6  
0.3  
0.3  
0.3  
40  
55  
PGND  
Operating junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4.5  
NOM  
MAX  
20  
UNIT  
V
VIN  
TA  
Input operating voltage  
Operating junction temperature  
125  
°C  
40  
6.4 Thermal Information  
TPS65235-1  
RUK (WQFN)  
20 PINS  
44.8  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
47.3  
16.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJT  
16.4  
ψJB  
RθJC(bot)  
3.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
 
 
 
 
 
 
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
40°C TJ 125°C, VIN = 12 V, fSW = 1 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY  
VIN  
Input voltage range  
4.5  
90  
12  
120  
5
20  
150  
8.5  
V
IDD(SDN)  
ILDO(Q)  
Shutdown supply current  
LDO quiescent current  
EN = 0b  
µA  
mA  
V
EN = 1b, IO = 0 A, VVLNB = 18.2 V  
VIN rising  
1.5  
4.15  
280  
4.3  
480  
4.45  
550  
UVLO  
VIN undervoltage lockout  
Hysteresis  
mV  
OUTPUT VOLTAGE  
V(ctrl) = 1, IO = 500 mA  
V(ctrl) = 0, IO = 500 mA  
18  
18.2  
13.4  
18.4  
V
V
13.25  
13.55  
SCL = 1b, V(ctrl) = 1, IO = 500 mA (Non  
I2C)  
VOUT  
Regulated output voltage  
19.18  
14.44  
19.4  
14.6  
19.62  
14.76  
V
V
SCL = 1b, V(ctrl) = 0, IO = 500 mA (Non  
I2C)  
580  
629  
977  
650  
650  
720  
688  
mA  
mA  
kHz  
R(SET) = 200 kΩ, Full temperature  
TJ = 25°C  
I(OCP)  
Output short circuit current limit  
fSW  
Boost switching frequency  
Switching current limit  
f = 1 MHz  
1060  
1134  
VIN = 12 V, VOUT = 18.2 V, R(SET) = 200  
kΩ  
(1)  
I(limitsw)  
3
A
Rds(on)_LS  
V(drop)  
On resistance of low side FET  
VIN = 12 V  
90  
0.44  
0.55  
0.9  
140  
0.8  
0.9  
5
210  
1.15  
1.2  
8.8  
65  
mΩ  
V
IO = 500 mA, TONEAMP = 0b  
IO = 500 mA, TONEAMP = 1b  
VIN = 12 V, VOUT = 13.4 V or 18.2 V  
EN = 1b, VVLNB = 21 V  
Linear regulator voltage dropout  
V
I(cable)  
I(rev)  
Cable good detection current threshold  
Reverse bias current  
mA  
mA  
mA  
49  
58  
I(rev_dis)  
Disabled reverse bias current  
EN = 0b, VVLNB = 21 V  
2.9  
4.6  
6.3  
LOGIC SIGNALS  
Enable threshold (V(EN)), high  
1.6  
V
V
Enable threshold (V(EN)), low  
0.8  
7
V(EN) = 1.5 V  
V(EN) = 1 V  
5
2
6
3
µA  
µA  
I(EN)  
Enable internal pullup current  
4
VCTRL logic threshold level for high-level  
input voltage  
V(VCTRL_H)  
V(VCTRL_L)  
V(EXTM_H)  
V(EXTM_L)  
2
V
V
V
VCTRL logic threshold level for low-level  
input voltage  
0.8  
EXTM logic threshold level for high-level  
input voltage  
2
EXTM logic threshold level for low-level  
input voltage  
0.8  
0.4  
V
V
VOL(FAULT)  
TONE  
FAULT output low voltage  
FAULT open drain, IOL = 1 mA  
22-kHz tone output  
f(tone)  
Tone frequency  
20  
22  
24  
kHz  
mV  
0 mA IO 500 mA, CO = 100 nF,  
TONEAMP = 0b  
617  
650  
696  
A(tone)  
Tone amplitude  
0 mA IO 500 mA, CO = 100 nF,  
TONEAMP = 1b  
703  
750  
803  
mV  
D(tone)  
f(EXTM)  
Tone duty cycle  
45%  
17.6  
35.2  
50%  
22  
55%  
26.4  
52.8  
22-kHz tone output  
44-kHz tone output  
kHz  
kHz  
External tone input frequency range  
44  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
6
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
40°C TJ 125°C, VIN = 12 V, fSW = 1 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TONE DETECTION  
f(DIN)  
Tone detector frequency capture range  
Tone detector input amplitude  
DOUT output voltage  
0.4-VPP sine wave  
17.6  
0.3  
22  
26.4  
1.5  
kHz  
V
V(DIN)  
V(DOUT)  
Sine wave, 22 kHz  
Tone present, Iload = 2 mA  
0.4  
V
TONE_TRANS = 1b, V(LNB) = 18.2 V  
TONE_TRANS = 0b, V(LNB) = 18.2 V  
23.11  
18.17  
23.5  
18.2  
24.33  
18.23  
V
GDR  
Bypass FET gate voltage, LNB  
V
THERMAL SHUT-DOWN (JUNCTION TEMPERATURE)  
T(TRIP)  
Thermal protection trip point  
Thermal protection hysteresis  
Temperature rising  
160  
20  
°C  
°C  
T(HYST)  
I2C READ BACK FAULT STATUS  
Feedback voltage UVP low  
Feedback voltage UVP high  
Feedback voltage OVP high  
Feedback voltage OVP low  
94%  
93%  
96%  
94.5%  
106.6%  
104.6%  
125  
97.1%  
95.5%  
108%  
106%  
V(PGOOD)  
PGOOD trip levels  
104%  
102%  
T(warn)  
Temperature warning threshold  
°C  
I2C INTERFACE  
VIH  
VIL  
II  
SDA,SCL input high voltage  
2
10  
400  
V
V
SDA,SCL input low voltage  
Input current  
0.8  
10  
µA  
V
SDA, SCL, 0.4 V VI 4.5 V  
VOL  
f(SCL)  
SDA output low voltage  
Maximum SCL clock frequency  
SDA open drain, IOL = 2 mA  
0.4  
kHz  
(1) Specified by design  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
OUTPUT VOLTAGE  
tr, tf  
13-V to 18-V transition rising falling time  
Minimum on time for the Low side FET  
C(TCAP) = 22 nF  
2
ms  
ns  
tON(min)  
TONE  
75  
102  
130  
Tone rise time  
Tone fall time  
0 mA IO 500 mA, CO = 100 nF,  
Control Reg1[0] = 0b  
11  
5.5  
µs  
µs  
µs  
µs  
tr(tone)  
0 mA IO 500 mA, CO = 100 nF,  
Control Reg1[0] = 1b, and EXTM has  
44-kHz input  
0 mA IO 500 mA, CO = 100 nF,  
Control Reg1[0] = 0b  
10.8  
5.4  
tf(tone)  
0 mA IO 500 mA, CO = 100 nF,  
Control Reg1[0] = 1b, and EXTM has  
44 kHz input  
OVERCURRENT PROTECTION  
tON  
Overcurrent protection ON time  
Overcurrent protection OFF time  
TIMER = 0b  
TIMER = 0b  
2.3  
3.75  
118  
5.52  
ms  
ms  
tOFF  
98.5  
133.5  
I2C INTERFACE  
Bus free time between a STOP and START  
condition  
tBUF  
1.3  
µs  
tHD_STA  
tSU_STO  
tLOW  
Hold time (repeated) START condition  
Setup time for STOP condition  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data setup time  
0.6  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
0.6  
1
tHIGH  
0.6  
tSU_STA  
tSU_DAT  
tHD_DAT  
tRCL  
0.6  
0.1  
0
Data hold time  
0.9  
Rise time of SCL signal  
Capacitance of one bus line (pF)  
20 + 0.1 CB  
300  
Rise time of SCL Signal after a Repeated START Capacitance of one bus line (pF)  
condition and after an acknowledge BIT  
tRCL1  
20 + 0.1 CB  
300  
ns  
tFCL  
tRDA  
tFDA  
CB  
Fall time of SCL signal  
Capacitance of one bus line (pF)  
Capacitance of one bus line (pF)  
Capacitance of one bus line (pF)  
20 + 0.1 CB  
20 + 0.1 CB  
20 + 0.1 CB  
300  
300  
300  
400  
ns  
ns  
ns  
pF  
Rise time of SDA signal  
Fall time of SDA signal  
Capacitance of one bus line(SCL and SDA)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
8
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
TA = 25°C, VIN = 12 V, fSW = 1 MHz, CBoost = (2 × 22 µF / 35 V) (unless otherwise noted)  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
13.45  
13.44  
13.43  
13.42  
13.41  
13.4  
13.39  
13.38  
13.37  
13.36  
13.35  
V(LNB) = 13.4 V  
V(LNB) = 18.2 V  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
D002  
D001  
VVLNB = 13.4 V  
L = 4.7 µH  
6-2. Load Regulation  
6-1. Power Efficiency  
18.3  
18.28  
18.26  
18.24  
18.22  
18.2  
7
6.5  
6
5.5  
5
18.18  
18.16  
18.14  
18.12  
18.1  
4.5  
4
3.5  
3
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Output Current (A)  
1
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
D003  
Junction Temperature (èC)  
D004  
VVLNB =18.2 V  
6-4. Input Supply Quiescent Current vs Junction  
6-3. Load Regulation  
Temperature  
135  
130  
125  
120  
115  
110  
105  
680  
670  
660  
650  
640  
630  
620  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Junction Temperature (èC)  
Junction Temperature (èC)  
D005  
D006  
ILOAD = 650 mA  
6-5. Shutdown Current vs Junction Temperature  
6-6. LNB Current Limit vs Junction Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS65235-1 device is the power management IC (PMIC) that integrates a boost converter, an LDO  
regulator, and a 22-kHz tone generator to serve as a LNB power supply. This solution compiles the DiSEqC 2.x  
standard with or without I2C interface. An external resistor allows for precise programming of the output current  
limit. The 22-kHz tone signal can be generated in one of two ways, either with or without I2C. The integrated  
boost features low Rds(on) MOSFET and internal compensation. A selectable switching frequency of 1 MHz or  
500 kHz is designed to reduce the size of passive components and be flexible for design.  
The TPS65235-1 device can support the 44-kHz tone output. When the EXTM pin has a 44-kHz tone input, and  
the EXTM TONE bit in the Control Register 1 is set to 1b, the LNB tone output is 44 kHz. By default, the  
TPS65235-1 device has a typical 22-kHz tone output.  
7.2 Functional Block Diagram  
EN  
REF_Boost  
Internal Regulator  
VCC  
PWM Controller  
PGND  
REF_Boost  
TCAP  
BOOST  
VCP  
REF  
VCTRL  
Charge Pump  
VLNB  
REF_LDO  
SDA  
SCL  
I2C Interface  
I2C EN  
ADDR  
EN  
Tone  
Generator  
VLNB  
OCP  
OTP  
Tone_Auto  
Tone_Trans  
EXTM  
Fault Diagnose  
PGOOD  
GDR  
DIN  
Logic  
Tone  
Det  
7.3 Feature Description  
7.3.1 Boost Converter  
The TPS65235-1 device has an internal compensated boost converter and low-dropout (LDO) linear regulator.  
The boost converter tracks the LNB output voltage within 800 mV even at loading 1000 mA, which minimizes  
power loss.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
10  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
The boost converter operates at 1 MHz by default. The TPS65235-1 device has internal cycle-by-cycle peak  
current limit in the boost converter and DC current limit in the LNB output to help protect the device from short  
circuits and over loading. When the LNB output is shorted to ground, the LNB output current is clamped at the  
LDO current limit. The LDO current limit is set by the external resistor at the ISET pin. The current limit of the  
boost switch is proportional to the LDO current limit. If an overcurrent condition occurs for more than 4 ms, the  
boost converter enters hiccup mode and retries startup in 128 ms. This hiccup mode ON time and OFF time are  
selectable through the I2C control register (address 0x01) to be either 4 ms and 128 ms or 8 ms and 256 ms,  
respectively. At extremely light loads, the boost converter automatically operates in a pulse-skipping mode.  
The boost converter is stable with either ceramic capacitor or electrolytic capacitor.  
If two or more set-top box LNB outputs are connected together, one output voltage can be set higher than  
others. The output with the lower set voltage is then effectively turned off. When the voltage drops to the set  
level, the LNB output with the lower set output voltage returns to normal conditions.  
7.3.2 Linear Regulator and Current Limit  
The linear regulator is used to generate the 22-kHz tone signal by changing the LDO reference voltage. The  
linear regulator features low-dropout voltage to minimize power loss while maintaining enough head room for the  
22-kHz tone with 650-mV amplitude. The linear regulator also implements a tight current limit for overcurrent  
protection. The current limit is set by an external resistor connected to ISET pin. 7-1 shows the relationship  
between the current limit threshold and the resistor value.  
550  
y = 117.08x-1.267  
500  
450  
400  
350  
300  
250  
200  
150  
100  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.1  
1.2  
ISET (A)  
D007  
7-1. Linear Regulator Current Limit Vs Resistor  
1.267  
R
kΩ = 117.08 × I  
A
(1)  
SET  
SET  
A 200-kΩresistor sets the current to 0.65 A, and 110-kΩresistor sets the current to approximately 1 A.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.3.3 Boost Converter Current Limit  
The boost converter has the cycle-by-cycle peak current limit on the internal Power MOSFET switch to serve as  
the secondary protection when LNB output is hard short. With ISW bit default setting 0b on I2C control register  
0x01, the switch current limit ISW is proportional as LDO current limit I(OCP) set by ISET pin resistor, and the  
relationship can be expressed as:  
I
= 3 × I  
+ 0.8 A  
OCP  
(2)  
SW  
For the 5 V VIN, if LNB current load is up to 1 A, the ISW bit must be written as 1b, the switch current limit ISW for  
the internal Power MOSFET is:  
I
= 5 × I  
+ 0.8 A  
OCP  
(3)  
SW  
While due to the high power loss at 5 V, VIN, it has a chance to trigger the thermal shutdown before the loading is  
up to 1 A, especially the VLNB output is high.  
7.3.4 Charge Pump  
The charge pump circuitry generates a voltage to drive the NMOS of the linear regulator. The voltage across the  
charge pump capacitor between VLNB and VCP is about 5.4 V, so the absolute value of the VCP voltage will be  
VLNB + 5.4 V.  
7.3.5 Slew Rate Control  
When LNB output voltage transits from 13.4 V to 18.2 V or 18.2 V to 13.4 V , the cap at pin TCAP controls the  
transition time. This transition time makes sure the boost converter output to follow LNB output change. Usually  
boost converter has low bandwidth and cant response fast. The voltage at TCAP acts as the reference voltage  
of the linear regulator. The boost converters reference is also based on TCAP with additional fixed voltage to  
generate a 0.8 V above the LNB output.  
The charging and discharging current is 10 µA, thus the transition time can be estimated as:  
C
I
nF  
μA  
SS  
t
ms = 0.8 ×  
(4)  
TCAP  
SS  
A 22-nF capacitor generates about 2 ms transition time.  
In light load conditions, when LNB output voltage is set from 18.2 V to 13.4 V, the voltage drops very slow, which  
causes wrong VOUT_GOOD (Bit 0 at status register 0x02) logic for LNB output voltage detection. TPS65235-1  
has integrated a pull down circuit to pull down the output during the transition. This ensures the voltage change  
can follow the voltage at TCAP. When the 22-kHz tone signal is superimposing on the LNB output voltage, the  
pull down current can also provide square wave instead of a distorted waveforms.  
7.3.6 Short-Circuit Protection, Hiccup, and Overtemperature Protection  
The LNB output current limit can be set by an external resistor. When short circuit conditions occur or current  
limit is triggered, the output current is clamped at the current limit for 4 ms with LDO on. If the condition retains,  
the converter will shut down for 128 ms and then restart. This hiccup behavior prevents IC from being overheat.  
The hiccup ON/OFF time can be set by I2C register. Refer to Control Register 1 for detail.  
The low side MOSFET of the boost converter has a peak current limit threshold which serves as the secondary  
protection. If boost converters peak current limit is triggered, the peak current will be clamped as high as 3.8 A  
when setting ISW default and LNB current limit up to 1 A. If loading current continues to increase, output voltage  
starts to drop and output power drops.  
Thermal shutdown prevents the chip from operating at exceedingly high temperatures. When the junction  
temperature exceeds 160°C, the output shuts down. When the die temperature drops below its lower threshold  
typically 140°C, the output is enabled.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
12  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
When the chip is in overcurrent protection or thermal shutdown, the I2C interface and logic are still active. The  
FAULT pin is pulled down to signal the processor. The FAULT pin signal remains low unless the following action  
is taken:  
1. If I2C interface is not used to control, EN pin must be recycled to pull the FAULT pin back to high.  
2. If I2C interface is used, the I2C controller must read the status Control Register 2, then the FAULT pin is back  
to high.  
7.3.7 Tone Generation  
A 22-kHz tone signal is implemented at the LNB output voltage as a carrier for DiSEqC command. This tone  
signal can be generated by feeding an external 22-kHz clock at the EXTM pin, and it can also be generated with  
its internal tone generator controlled by EXTM pin. If EXTM pin is toggled to high, the internal tone signal will be  
superimposed at the LNB output, if EXTM pin is low, there will be no tone superimposed at the output stage of  
the regulator facilitates a push-pull circuit, so even at zero loading; the 22-kHz tone at the output is still clean  
without distortion.  
There are two ways to generate the 22-kHz tone signal at the output.  
For option1, if the EXTM has 44-kHz tone input, and the bit EXTM TONE of the Control Register 1 is set to 1b,  
the LNB tone output is 44 kHz.  
EXTM  
TONE  
VLNB(V)  
Option 1. Use external tone, gated by EXTM logic pulse  
EXTM  
TONE  
VLNB(V)  
Option 2. Use internal tone, gated by EXTM logic envelop  
7-2. Two Ways to Generate 22-kHz tone  
7.3.8 Tone Detection  
A 22-kHz tone detector is implemented in the TPS65235-1 solution. The detector extracts the AC-coupled tone  
signal from the DIN input and provides it as an open-drain signal on the DOUT pin. When the DOUTMODE bit in  
the Control Register 2 is set to the default setting, if a tone is present, the DOUT output is logic low. If a tone is  
not present, the internal output FET is off. If a pullup resistor is connected to the DOUT pin, the output is logic  
high. The maximum tone out delay with respect to the input is one and a half of the tone cycle.  
The DOUTMODE bit in the Control Register 2 is reserved and must not be used.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.3.9 Audio Noise Rejection  
When the TPS65235-1 operates in PSM mode, locating the switching frequency at the range of audio frequency  
is possible. Which causes audible noise, especially when the VLNB voltage is lower or closer to the VIN voltage,  
and the current load is light.  
When audible noise occurs, TI recommends setting the TPS65235-1 device to operate in force PWM mode. In  
force PWM mode, a special design is implemented to avoid the audible noise.  
7.3.10 Disable and Enable  
The TPS65235-1 device has a dedicated EN pin to disable and enable the LNB output. In a non-I2C application,  
when the EN pin is pulled high, the LNB output is enabled. When the EN pin is pulled low, the LNB output is  
disabled. In an I2C application, when the EN pin is either low or high, the I2C registers can be accessed, which  
allows users to change the default LNB output at system power-up. When the I2C_CON bit in the Control  
Register 1 is set to 1b, the LNB output enable or disable is controlled by the EN bit in the Control Register 2. By  
default, the I2C_CON bit of the control register is set to 0b, which makes the LNB output is controlled by the EN  
pin. 7-3 and 7-4 shows the detailed control behavior.  
V(EN) = 0 V  
I2C_CON = 1b  
I2C_CON = 0b  
7-3. VLNB Output Controlled by bit EN of  
7-4. VLNB Output Controlled by EN Pin  
Control Register 2  
7.3.11 Component Selection  
7.3.11.1 Boost Inductor  
TI recommends the TPS65235-1 device to operate with a boost inductor value of 4.7 µH or 10 µH. The boost  
inductor must be able to support the peak current requirement to maintain the maximum LNB output current  
without saturation. Use 方程5 to estimate the peak current of the boost inductor (Ipeak).  
I
V
× D  
OUT  
1
2
IN  
L × f  
I
=
+
×
(5)  
peak  
1 D  
S
where  
V
IN  
D = 1-  
VLNB + 0.8  
With a different inductance, the system has different gain and phase margins. 7-5 shows a Bode plot of boost  
loop with 2 × 10 µF / 35 V of boost capacitor and 4.7 µH, 5.6 µH, 6.8 µH, 8.2 µH, and 10 µH of boost inductance.  
As the boost inductance increases, the 0-dB crossover frequency keeps relatively constant while reducing the  
phase and gain margins. With a 4.7-µH boost inductance, the phase margin is 66.96° and with a 10-µH  
inductance, the phase margin is 39.63°.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
14  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
4.7 mH  
5.6 mH  
6.8 mH  
8.2 mH  
10 mH  
4.7 mH, 66.96 deg  
10 mH, 39.63 deg  
4.7 mH  
5.6 mH  
6.8 mH  
8.2 mH  
10 mH  
7-5. Gain and Phase Margin of the Boost Loop with Different Inductance (VIN = 12 V, VOUT = 18.2 V,  
ILOAD = 1 A, fSW = 1 MHz, 5 µF, Typical Bode Plot)  
7.3.11.2 Capacitor Selection  
The TPS65235-1 device has a 1-MHz nonsynchronous boost converter integrated and the boost converter  
features the internal compensation network. The TPS65235-1 device works well with both ceramic capacitor and  
electrolytic capacitor.  
The recommended ceramic capacitors for the TPS65235-1 application are, at the minimum, rated as X7R/X5R,  
with a 35-V rating, and a 1206 size for the achieving lower LNB output ripple. 7-1 lists the recommended  
ceramic capacitors list for both 4.7-µH and 10-µH boost inductors.  
If more cost-effictive design is needed, use a 100-µF electrolytic (low ESR) and a 10-µF or 35-V ceramic  
capacitor.  
7-1. Boost Inductor and Capacitor Selections  
BOOST INDUCTOR  
CAPACITORS  
2 × 22 µF  
2 × 10 µF  
2 × 22 µF  
2 × 10 µF  
22 µF  
TOLERANCE (%)  
RATING (V)  
SIZE  
1206  
1206  
1206  
1206  
1206  
±10  
±10  
±10  
±10  
±10  
35  
35  
35  
35  
35  
10 µH  
4.7 µH  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7-6 and 7-7 show a bode plot of boost loop with 4.7-µH and 10-µH inductance and 4 µF, 5 µF, 7.5 µF, 10  
µF, 15 µF, and 20 µF of boost capacitance after degrading. As the boost capacitance increases, the phase  
margin increases.  
4 mF  
4 mF  
5 mF  
7.5 mF  
10 mF  
20 mF  
15 mF  
20 mF  
4 mF, 57.45 deg  
20 mF, 84.49 deg  
4 mF  
5 mF  
7.5 mF  
10 mF  
15 mF  
20 mF  
7-6. Gain and Phase Margin of the Boost Loop With Different Boost Capacitance (VIN = 12 V, VOUT  
=
18.2 V, ILOAD = 1 A, fSW = 1 MHz, 4.7 µH, Typical Bode Plot)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
16  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
5 mF  
7.5 mF  
10 mF  
15 mF  
20 mF  
5 mF  
20 mF  
5 mF, 37.23 deg  
20 mF, 78.74 deg  
5 mF  
7.5 mF  
10 mF  
15 mF  
20 mF  
7-7. Gain and Phase Margin of the Boost Loop With Different Boost Capacitance (VIN = 12 V, VOUT  
=
18.2 V, ILOAD = 1 A, fSW = 1 MHz, 10 µH, Typical Bode Plot)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.3.11.3 Surge Components  
If a surge test is required for the application, the D0 and D2 diodes must be added as the external protection  
components. If no surge test is required, remove the D0 and D2 diodes.7-2 lists the recommended surge  
components.  
7-2. Surge Components  
DESIGNATOR  
DESCRIPTION  
PART NUMBER  
MANUFACTURER (1)  
Fairchild Semiconductor  
Diodes Inc.  
D0  
D2  
Diode, TVS, Uni, 28 V, 1500 W, SMC  
Diode, Schottky, 40 V, 2 A, SMA  
SMCJ28A  
B240A-13-F  
(1) See Third-party Products Disclaimer  
100 nF 0.1 µF  
16 VLNB  
VOUT  
D3  
D0  
D2  
17  
VCP  
BOOST  
18  
19  
20  
GDR  
2x22 µF  
TPS65235-1  
D1  
PGND  
1
2
10 µH  
VIN  
10 µF  
1 µF  
7-8. Surge Components Selection  
7.3.11.4 Consideration for Boost Filtering and LNB Noise  
Smaller capacitance on the BOOST pin reduces the cost of the system. However, when the inductor in system is  
the same, the smaller capacitance on the boost and the larger ripple on the LNB output.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
18  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
7-3 is the logic table for the device.  
7-3. Logic table  
EN  
H
I2C_CON(1) (2) (3)  
SCL  
VCTRL  
VLNB(4)  
19.4 V  
14.6 V  
18.2 V  
13.4 V  
0
0
0
0
H
H
L
H
H
H
L
H
L
H
L
Controlled by VSET[3:0]  
bits at 0x01 register(5)  
X
L
1
0
X
X
X
X
0 V  
(1) I2C_CON is the bit7 of the I2C control register 0x01, which is used to set the VLNB output controlled by the I2C register or not.  
(2) When I2C interface is used in design, all the I2C registers are accessible even if the I2C_CON bit is 0b.  
(3) When I2C_CON is 1b, the VLNB output is controlled by the I2C control register even if the EN pin is low.  
(4) When I2C interface is used in design, TI recommends to set the I2C_CON with 1b, if not, the LNB output will be variable because the  
SCL is toggled by the I2C register access as the clock signal.  
(5) Bit EN of the control register2 is used to disable or enable the LNB output, by default , the bit EN is 1b which enable the LNB output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
 
 
 
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.5 Programming  
7.5.1 Serial Interface Description  
I2C is a 2-wire serial interface developed by Philips Semiconductor (see I2C-Bus Specification, Version 2.1,  
January 2000). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the  
bus is idle, both SDA and SCL lines are pulled high external. All the I2C compatible devices connect to the I2C  
bus through open drain I/O pins, SDA and SCL. A controller device, usually a microcontroller (MCU) or a digital  
signal processor (DSP), controls the bus. The controller device is responsible for generating the SCL signal and  
device addresses. The controller device also generates specific conditions that indicate the START and STOP of  
data transfer. A target device receives, transmits data, or both on the bus under control of the controller device.  
The TPS65235-1 device works as a target and supports the following data transfer modes, as defined in the  
I2CBus Specification: standard mode (100 kbps), and fast mode (400 kbps). The interface adds flexibility to the  
power supply solution, enabling most functions to be programmed to new values depending on the  
instantaneous application requirements. Register contents remain intact as long as supply voltage remains  
above 4.5 V (typical).  
The data transfer protocol for standard and fast modes is exactly the same; therefore, they are referred to as  
F/S-mode in this document. The TPS65235-1 device supports 7-bit addressing; 10-bit addressing and general  
call address are not supported.  
The TPS65235-1 device has a 7-bit address set by ADDR pin. 7-4 shows how to set the I2C address.  
7-4. I2C Address Selection  
ADDR PIN  
I2C ADDRESS  
ADDRESS FORMAT (A6 A0)  
Connect to VCC  
Floating  
0x08  
000 1000b  
0x09  
000 1001b  
Connected to GND  
0x10  
001 0000b  
Resistor divider to make ADDR pin voltage in 3.7 V - 5.9 V  
0x11  
001 0001b  
SDA  
tSU, STA  
tHD, STA  
tBUF  
tSU, STO  
tSU, DAT  
tHD, DAT  
tLOW  
SCL  
tHD, STA  
tHIGH  
tSP  
Start  
Condition  
Repeated Start  
Condition  
Stop Start  
Condition Condition  
tr  
tf  
7-9. I2C Interface Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
20  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.5.2 TPS65235-1 I2C Update Sequence  
The TPS65235-1 requires a start condition, a valid I2C address, a register address byte, and a data byte for a  
single update. After the receipt of each byte, TPS65235-1 device acknowledges by pulling the SDA line low  
during the high period of a single clock pulse. TPS65235-1 performs an update on the falling edge of the LSB  
byte.  
When the TPS65235-1 is disabled (EN pin tied to ground) the device cannot be updated via the I2C interface.  
7-Bit Target Address  
S
0
A
A
A
P
Register Address  
Data Byte  
A6.A0  
7-10. I2C Write Data Format  
7-Bit Target Address  
S
0
A
A
Sr  
1
A
Register1 Address  
7-Bit Target Address  
A6.A0  
N
P
Data Byte  
A: Acknowledge  
N: Not Acknowledge  
S: Start  
System Host  
Chip  
P: Stop  
Sr: Repeated Start  
7-11. I2C Read Data Format  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.6 Register Maps  
7.6.1 Control Register 1 (address = 0x00) [reset = 0x08]  
7-12. Control Register 1  
7
6
5
4
3
2
1
0
I2C_CON  
R/W-0b  
PWM/PSM  
R/W-0b  
RESERVED  
R/W-0b  
VSET[3:0]  
EXTM TONE  
R/W-0b  
R/W-0100b  
7-5. Control Register 1  
Bit  
Field  
I2C_CON  
Type  
Reset  
Description  
0b = I2C control disabled  
1b = I2C control enabled  
7
R/W  
0b  
0b = PSM at light load  
1b = Forced PWM  
6
PWM/PSM  
R/W  
R/W  
0b  
0b  
5
RESERVED  
VSET[3:0]  
Reserved  
4-1  
LNB output voltage selection  
0000b = 11 V  
0001b = 11.6 V  
0010b = 12.2 V  
0011b = 12.8 V  
0100b = 13.4 V  
0101b = 14 V  
0110b = 14.6 V  
0111b = 15.2 V  
1000b = 15.8 V  
1001b = 16.4 V  
1010b = 17 V  
R/W  
0100b  
1011b = 17.6 V  
1100b = 18.2 V  
1101b = 18.8 V  
1110b = 19.4 V  
1111b = 20 V  
0b = EXTM 44-kHz tone input not support, with only 22-kHz tone  
output at VLNB  
0
EXTM TONE  
R/W  
0b  
1b = EXTM 44-kHz tone input support, with 44-kHz tone output  
at VLNB  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.6.2 Control Register 2 (address = 0x01) [reset = 0x09]  
7-13. Control Register 2  
7
6
5
4
3
2
1
0
TONEAMP  
R/W-0b  
TIMER  
R/W-0b  
ISW  
FSET  
R/W-0b  
EN  
DOUTMODE  
R/W-0b  
TONE_AUTO TONE_TRANS  
R/W-0b R/W-1b  
R/W-0b  
R/W-1b  
7-6. Control Register 2  
Bit  
Field  
TONEAMP  
Type  
Reset  
Description  
0b = 22-kHz tone amplitude is 650 mV (typ)  
1b = 22-kHz tone amplitude is 750 mV (typ)  
7
R/W  
0b  
0b = Hiccup ON time set to 4 ms and OFF time set to 128 ms  
1b = Hiccup ON time set to 8 ms and OFF time set to 256 ms  
6
5
TIMER  
ISW  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
1b  
0b  
0b = Boost switch peak current limit set to 3 × IOCP + 0.8 A  
1b = Boost switch peak current limit set to 5 × IOCP + 0.8 A  
4
3
2
1
FSET  
0b = 1-MHz switching frequency  
1b = 500-kHz switching frequency  
EN  
0b = LNB output disabled  
1b = LNB output voltage Enabled  
DOUTMODE  
TONE_AUTO  
0b = DOUT is kept to low when DIN has the tone input  
1b = Reserved, cannot set to 1b  
0b = GDR (External bypass FET control) is controlled by  
TONE_TRANS  
R/W  
R/W  
0b  
1b  
1b = GDR (External bypass FET control) is automatically  
controlled by 22-kHz tones transmit  
0b = GDR output with VLNB voltage for tone receive. Bypass  
FET is OFF for tone receiving from satellite  
0
TONE_TRANS  
1b = GDR output with VCP voltage. Bypass FET is ON for tone  
transmit from TPS65235-1  
7-7. 22-kHz Tone Receive Mode Selection  
TONE_AUTO  
TONE_TRANS  
BYPASS FET  
OFF  
0b  
0b  
1b  
0b  
1b  
x
ON  
Auto Detect  
The TPS65235-1 has full range of diagnostic flags for operation and debug. Processor can read the status  
register to check the error conditions. After the error happens, the flags are changed, once the errors are gone,  
the flags are set back without I2C access.  
If the TSD and OCP flags are triggered, FAULT pin will be pulled low, so FAULT pin can be the interrupt signal to  
processor. After TSD and OCP are set to 1b, the FAULT pin logic is latched to low, processor must read this  
status register to release the fault conditions.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
7.6.3 Status Register (address = 0x02) [reset = 0x29]  
7-14. Status Register  
7
6
0
5
4
3
2
1
0
Reserved  
R-0b  
LDO_ON  
R-0b  
T125  
R-0b  
TSD  
R-1b  
OCP  
R-0b  
CABLE_GOOD VOUT_GOOD  
R-0b R-1b  
R-0b  
7-8. Status Register  
Bit  
Field  
Reserved  
Type  
Reset  
Description  
7
R
0b  
Reserved  
0b = 22-kHz tone detected on DIN pin is out of range  
1b = 22-kHz tone detected on DIN pin is in range  
6
5
TDETGOOD  
LDO_ON  
R
R
R
0b  
1b  
0b  
0b = Internal LDO is turned off but boost converter is on  
1b = Internal LDO is turned on and boost converter is on  
4
3
T125  
TSD  
0b = Die temperature < 125°C  
1b = Die temperature > 125°C  
0b = No thermal shutdown triggered  
1b = Thermal shutdown triggered. The FAULT pin logic is  
latched to low, processor must read this register to release the  
fault conditions  
R
R
1b  
0b  
2
OCP  
0b = Overcurrent protection conditions released  
1b = Overcurrent protection triggered. The FAULT pin logic is  
latched to low, processor must read this register to release the  
fault conditions  
1
0
CABLE_GOOD  
VOUT_GOOD  
0b = Cable not connected  
1b = Cable connection good  
R
R
0b  
1b  
0b = LNB output voltage out of range  
1b = LNB output voltage in range  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers must validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS65235 supports both DisEqc1.x and DisEqc2.x application. When the input voltage VIN is greater than  
the expected output voltage VLNB, the linear regulator drops the voltage difference between VIN and VLNB,  
which causes the lower efficiency and the higher power loss on the internal linear regulator if the current loading  
is high. For care must be taken to ensure that the safe operating temperature range of the TPS65235-1 is not  
exceeded. TI recommends operating the device in force PWM mode when VIN > VOUT to reduce output ripple.  
8.2 Typical Application  
8.2.1 DiSEqc1.x Support  
TPS65235-1 can operate in I2C and non-I2C interface mode. 8-1 shows the application with the device in I2C  
interface mode to support DiSEqC 1.x application. In non-I2C mode, the SCL, SDA, and ADDR pins can be  
floating.  
15  
14  
13  
11  
12  
0.1 mF  
100 nF  
VOUT  
16 VLNB  
10  
9
VCTRL  
D0  
17  
VCP  
ADDR  
10 k  
FAULT  
8
TPS65235-1  
BOOST  
18  
19  
20  
2 ×  
22 mF  
EN  
7
GDR  
ISET  
6
PGND  
110 kꢀ  
1
2
3
4
5
10 mH  
VIN  
1 mF  
22 nF  
10 mF  
1 mF  
1 mF  
8-1. Application for DiSEqc1.x Support  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
 
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
8.2.1.1 Design Requirements  
For this design example, use the parameters in 8-1.  
8-1. Design Parameters  
PARAMETER  
VALUE  
Input voltage range, VIN  
Output voltage range VLNB  
Output current range  
4.5 V to 20 V  
11 V to 20 V  
0 A to 1 A  
8.2.1.2 Detailed Design Procedure  
To begin the design process, the following component values must be selected:  
Inductor  
Choose the appropriate value of the inductor based on application cost requirements, ripple requirements,  
and 7.3.11.  
BOOST capacitor  
Choose the appropriate BOOST capacitor value based on application cost requirements, ripple  
requirements, and 7.3.11.  
Diodes  
The D0 and D2 diodes are used to help meet the surge-protection requirement of the application. If the  
application does not require surge protection, remove these diodes. For diode component selection, refer  
to 7.3.11.3.  
The D1 diode is used for the boost loop. TI recommends a Schottky diode for D1. The application  
requirements, which include input power range, output power range, and the current requirement,  
determine the current and voltage capability of the D1 diode.  
The D3 diode is to help with the output protection for the VLNB voltage. TI recommends a Schottky diode  
for D3. The application requirements determine the current and voltage capability of the D3 diode.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
26  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
8.2.1.3 Application Curves  
TA = 25°C, VIN = 12 V, fSW = 1 MHz, CBoost = (2 × 22 µF / 35 V) (unless otherwise noted)  
VVLNB = 13.4 V  
VVLNB = 13.4 V  
8-2. Soft Start, Delay from EN High to LNB  
8-3. Disabled, Delay from EN Low to LNB Output  
Output High  
Low  
VVLNB = 18.2 V  
VVLNB = 18.2 V  
8-5. Disabled, Delay From EN Low to LNB  
8-4. Soft-Start, Delay from EN High to LNB  
Output Low  
Output High  
EN = 0b  
VVLNB =13.4 V  
EN = 0b  
VVLNB = 13.4 V  
8-6. Soft Start, Delay From I2C Enable (I2C_CON 8-7. Delay From I2C Disable (I2C_CON = 0b) to  
= 1b) to LNB Output High LNB Output Low  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
VVLNB = 13.4 V  
VVLNB = 13.4 V  
8-8. No Load, 22-kHz Tone Output  
8-9. 950-mA Load, 22-kHz Tone Output  
VVLNB = 18.2 V  
VVLNB = 18.2 V  
8-10. No Load, 22-kHz Tone Output  
8-11. 950-mA Load, 22-kHz Tone Output  
8-13. No load, 22-kHz Tone Delay from EXTM 22-  
8-12. No load, 22-kHz Tone Delay from EXTM 22-  
kHz Input Turns Low to Output Tone Off  
kHz Input Turns High to Output Tone On  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
8-15. No Load, 22-kHz Tone Delay from EXTM  
8-14. No Load, 22-kHz Tone Delay from EXTM  
Tone Envelop Input Turns Low to Output Tone Off  
Tone Envelop Input Turns High to Output Tone On  
8-16. No Load, 44-kHz Tone Delay from EXTM  
8-17. No Load, 44-kHz Tone Delay from EXTM  
22-kHz Input Turns High to Output Tone On  
22-kHz Input Turns Low to Output Tone Off  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
8.2.2 DiSEqc2.x Support  
The TPS65235-1 can support both DiSEqC 1.x application and DiSEqC 2.x application. 8-18 shows the  
application for supporting DiSEqC 2.x application.  
10 k  
10 nF  
10 kꢀ  
15  
14  
13  
11  
12  
220 mH  
0.1 mF  
VOUT  
16 VLNB  
10  
9
VCTRL  
100 nF  
D2  
22 nF  
D3  
17  
VCP  
ADDR  
10 kꢀ  
15 ꢀ  
FAULT  
8
TPS65235-1  
BOOST  
18  
19  
20  
2 ×  
22mF  
EN  
7
GDR  
D1  
ISET  
6
PGND  
110 kꢀ  
1
2
3
4
5
10 mH  
VIN  
10 mF  
1 mF  
22 nF  
1 mF  
8-18. Application Schematic for DiSEqc2.x Support  
8.2.2.1 Design Requirements  
Refer to the 8.2.1 section for design requirements.  
8.2.2.2 Detailed Design Procedure  
Refer to the 8.2.1 section for detailed design procedures.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
30  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
8.2.2.3 Application Curve  
Refer to the 8.2.1 section for typical application curves. 8-19 is the unique tone-detection curve for the  
DiSEqC 2.x application.  
8-19. DOUT Tone Detection Output  
8.3 Power Supply Recommendations  
The device is designed to operate from an input supply ranging from 4.5 V to 20 V. The input supply must be  
well regulated. If the input supply is located more than a few inches from the converter, an additional bulk  
capacitance, typically with a value 100 µF, can be required in addition to the ceramic bypass capacitors.  
8.4 Layout  
8.4.1 Layout Guidelines  
The TPS65235-1 is designed to layout in 2layer PCB. To ensure reliability of the device, TI recommends  
following common printed-circuit board layout guidelines.  
Make sure the ground of input capacitor, output capacitor, and the boost converter are connected at one point  
at same layer.  
The PGND and AGND pins are located in different regions. Connect these grounds to the thermal pad. Other  
components are connected the AGND pin.  
Put the BOOST capacitors as close as possible.  
The loop from the VIN inductor to the LX pin must be as short as possible.  
The loop from the VIN inductor to D1 Schottky diode to the BOOST must be as short as possible.  
The loop for boost capacitors to the PGND pin must be within the loop from the LX pin to D1 Schottky diode  
to the BOOST pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
8.4.2 Layout Example  
Polygonal Copper Pour  
VIA to GND Plane (Inner Layer)  
15 14 13  
11  
12  
D3  
100nF  
VOUT  
VLNB  
16  
17  
VCTRL  
10  
9
0.1uF  
D2  
VCP  
ADDR  
10k  
FAULT  
8
7
6
BOOST  
18  
19  
20  
EN  
GDR  
2x22uF  
ISET  
PGND  
110k  
D1  
1
2
3
4
5
1uF  
1uF  
VIN  
10uH  
22nF  
10uF  
8-20. Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
32  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Evaluation Module for the TPS65235-1 LNB Voltage Regulator With I2C Interface for  
DiSEqC2.x Application user's guide  
Texas Instruments, Evaluation Module for the TPS65235-1 LNB Voltage Regulator With I2C Interface for  
DiSEqC1.x Application user's guide  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS65235-1  
English Data Sheet: SLVSDP1  
 
 
 
 
 
 
 
 
 
TPS65235-1  
ZHCSG04F JANUARY 2017 REVISED MAY 2023  
www.ti.com.cn  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLVSDP1  
34  
Submit Document Feedback  
Product Folder Links: TPS65235-1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65235-1RUKR  
TPS65235-1RUKT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
652351  
652351  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Mar-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65235-1RUKR  
TPS65235-1RUKT  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.3  
3.3  
3.3  
3.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65235-1RUKR  
TPS65235-1RUKT  
WQFN  
WQFN  
RUK  
RUK  
20  
20  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RUK0020B  
WQFN - 0.8 mm max height  
S
C
A
L
E
4
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.1  
2.9  
B
A
0.5  
0.3  
PIN 1 INDEX AREA  
3.1  
2.9  
0.25  
0.15  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
DIMENSION A  
OPTION 01  
OPTION 02  
(0.1)  
(0.2)  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(DIM A) TYP  
OPT 02 SHOWN  
1.7 0.05  
6
10  
EXPOSED  
THERMAL PAD  
16X 0.4  
5
11  
21  
SYMM  
4X  
1.6  
1
15  
SEE TERMINAL  
DETAIL  
0.25  
20X  
0.15  
0.1  
C A  
B
20  
16  
PIN 1 ID  
SYMM  
0.05  
(OPTIONAL)  
0.5  
0.3  
20X  
4222676/A 02/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUK0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
1.7)  
SYMM  
20  
16  
20X (0.6)  
1
15  
20X (0.2)  
(0.6)  
TYP  
21  
SYMM  
(2.8)  
16X (0.4)  
5
11  
(R0.05)  
TYP  
(
0.2) TYP  
VIA  
6
10  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222676/A 02/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUK0020B  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.47) TYP  
16  
(R0.05) TYP  
20  
20X (0.6)  
1
15  
21  
20X (0.2)  
(0.47)  
TYP  
SYMM  
(2.8)  
16X (0.4)  
11  
5
METAL  
TYP  
6
10  
4X ( 0.75)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 21:  
78% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4222676/A 02/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65235-3RUKR

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 125
TI

TPS652353

具有 I2C 接口的 LNB 稳压器
TI

TPS65235RUKR

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85
TI

TPS65235RUKT

具有 I2C 接口的 LNB 稳压器 | RUK | 20 | -40 to 85
TI

TPS65250

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK CONVERTER WITH INTEGRATED FET AND DYING GASP STORAGE AND RELEASE CIRCUIT
TI

TPS65250RHAR

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK CONVERTER WITH INTEGRATED FET AND DYING GASP STORAGE AND RELEASE CIRCUIT
TI

TPS65250RHAT

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK CONVERTER WITH INTEGRATED FET AND DYING GASP STORAGE AND RELEASE CIRCUIT
TI

TPS65250_1

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK CONVERTER WITH INTEGRATED FET AND DYING GASP STORAGE AND RELEASE CIRCUIT
TI

TPS65251

4.5-V TO 18-V INPUT, HIGH CURRENT, SYNCHRONOUS STEP DOWN THREE BUCK SWITCHER WITH INTEGRATED FET
TI

TPS65251-1

TPS65251-x 4.5-V to 18-V Input, High Current, Synchronous Step Down Three Buck Switchers With Integrated FET
TI

TPS65251-1RHAR

TPS65251-x 4.5-V to 18-V Input, High Current, Synchronous Step Down Three Buck Switchers With Integrated FET
TI

TPS65251-1RHAT

TPS65251-x 4.5-V to 18-V Input, High Current, Synchronous Step Down Three Buck Switchers With Integrated FET
TI