TPS65266RHBT [TI]

2.7V 至 6.5V 输入电压、3A/2A/2A 输出电流同步降压转换器 | RHB | 32 | -40 to 85;
TPS65266RHBT
型号: TPS65266RHBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2.7V 至 6.5V 输入电压、3A/2A/2A 输出电流同步降压转换器 | RHB | 32 | -40 to 85

转换器
文件: 总42页 (文件大小:2830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
TPS65266 2.7V 6.5V 输入电压,3A/2A/2A 输出电流三路同步降压转换  
1 特性  
其中的 DC/DC 降压转换器集成了功率 MOSFET,用  
于优化功率效率并减少外部使用的元件数量。 峰值电  
流模式简化了补偿并提供快速瞬态响应。 高时钟频率  
允许采用更小的低值电感和电容。 外部补偿可支持优  
化环路补偿并提供快速瞬态响应。 轻载条件下,FCC  
模式的降压转换器可减轻噪声敏感性并减少射频干扰。  
出现短路或过载故障条件时,断续模式周期性限流功能  
可限制 MOSFET 功耗。  
1
工作输入电压范围:2.7V 6.5V  
反馈基准电压 0.6V ± 1%  
最大持续输出电流 3A/2A/2A  
专用使能和软启动  
支持使能引脚放电,可精确控制启动时间  
轻载条件下进入强制持续电流 (FCC) 模式  
断续模式下的周期性限流过载保护  
可调时钟频率范围为 250kHz 2.4MHz  
外部时钟同步  
TPS65266 配有电源正常监控电路,用于监视所有转  
换器输出。 各通道的输出电压稳压并完成排序  
后,PGOOD 引脚将被置为有效。  
电源正常指示器  
过热保护  
如果降压转换器因连续严重过载或短路导致功耗增加,  
内部热保护电路将关断器件,防止器件受损。 器件充  
分冷却后,将自动从热关断状态中恢复。  
2 应用  
打印机和扫描仪  
数字电视  
器件信息(1)  
机顶盒  
器件型号  
TPS65266  
封装  
VQFN (32)  
封装尺寸(标称值)  
家庭网关和接入点网络  
安全监控  
5.00mm x 5.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
3 说明  
TPS65266 整合了 3 路高效同步降压转换器,适用于  
由输入电压低于 6.5V 的适配器或电池供电的应用。  
空白  
简化应用电路原理图  
效率与输出负载之间的关系  
Vout1  
Vin  
VINx  
LX1  
100%  
90%  
80%  
70%  
60%  
50%  
TPS65266  
FB1  
LX2  
VINQ  
Vout2  
Vout3  
PGOOD  
ENx  
FB2  
LX3  
SSx  
VIN 5 V  
40%  
30%  
20%  
10%  
0
ROSC  
AGND  
FB3  
PGND  
VOUT 1.5 V  
VOUT 2.5 V  
0.01 0.02  
0.05  
0.1  
0.2 0.3 0.5 0.7  
1
2
3
Output Load (A)  
D00X  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLVSCT9  
 
 
 
 
 
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 13  
7.4 Device Functional Modes........................................ 22  
Application and Implementation ........................ 23  
8.1 Application Information............................................ 23  
8.2 Typical Application ................................................. 23  
Power Supply Recommendations...................... 31  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 13  
8
9
10 Layout................................................................... 31  
10.1 Layout Guidelines ................................................. 31  
10.2 Layout Example .................................................... 32  
11 器件和文档支持 ..................................................... 33  
11.1 器件支持................................................................ 33  
11.2 ....................................................................... 33  
11.3 静电放电警告......................................................... 33  
11.4 术语表 ................................................................... 33  
12 机械封装和可订购信息 .......................................... 33  
7
4 修订历史记录  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision A (December 2014) to Revision B  
Page  
器件状态更新为生产数据 ........................................................................................................................................................ 1  
Changes from Original (November 2014) to Revision A  
Page  
Added note to Gm_PS1/2/3 ........................................................................................................................................................ 6  
Added a step for type III compensation................................................................................................................................ 26  
2
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
5 Pin Configuration and Functions  
RHB PACKAGE  
Top View  
24 23  
22 21  
20 19  
18 17  
16  
BST3  
BST1 25  
LX3  
15  
LX1  
26  
14  
PGND1  
PGND3  
27  
13  
VIN3  
VIN1  
28  
Thermal Pad  
VIN2  
12  
EN1  
29  
PGND2  
11  
EN2  
30  
LX2  
10  
EN3  
31  
BST2  
9
AGND  
32  
1
2
3
4
5
6
7
8
A. There is no electric signal down bonded to thermal pad inside IC. Exposed thermal pad must be soldered to PCB for  
optimal thermal performance.  
Pin Functions  
PIN  
DESCRIPTION  
NO.  
1
NAME  
AGND  
AGND  
AGND  
Analog ground pin  
Analog ground pin  
Analog ground pin  
2
3
An open-drain output; asserts low if output voltage of bucks beyond regulation range due to thermal shutdown, over-  
current, under-voltage, or ENx low.  
4
PGOOD  
Input voltage of converter controller and reference power supply bias. TI recommends to connect a 1-µF capacitor  
from the pin to analog ground and put the capacitor as near as possible to this pin.  
5
6
7
VINQ  
FB2  
Feedback Kelvin sensing pin for buck2 output voltage. Connect this pin to buck2 feedback resistor divider.  
Error amplifier output and loop compensation pin for buck2. Connect a series resistor and capacitor to compensate  
the control loop of buck converter 2 with peak current PWM mode.  
COMP2  
Soft-start and tracking input for buck2 converter. An internal 5.5-µA pullup current source is connected to this pin.  
The soft-start time of buck2 can be programmed by connecting a capacitor between this pin and ground.  
8
SS2  
Boot strapped supply to the high-side floating gate driver in buck2 converter. Connect a capacitor (47 nF  
recommended) from BST2 pin to LX2 pin.  
9
BST2  
LX2  
Switching node connection to the inductor and bootstrap capacitor for buck2 converter. The voltage swing at this pin  
is from a diode voltage below the ground up to VIN2 voltage.  
10  
11  
12  
Power ground connection of buck2. Connect PGND2 pin as close as practical to the (–) terminal of VIN2 input  
ceramic capacitor.  
PGND2  
VIN2  
Input power supply for buck2. Connect VIN2 pin as close as practical to the (+) terminal of an input ceramic capacitor  
(10 µF suggested).  
Copyright © 2014–2015, Texas Instruments Incorporated  
3
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
DESCRIPTION  
NO.  
NAME  
Input power supply for buck3. Connect VIN3 pin as close as practical to the (+) terminal of an input ceramic capacitor  
(10 µF suggested).  
13  
VIN3  
Power ground connection of buck3. Connect PGND3 pin as close as practical to the (–) terminal of VIN3 input  
ceramic capacitor.  
14  
15  
16  
17  
18  
PGND3  
LX3  
Switching node connection to the inductor and bootstrap capacitor for buck3 converter. The voltage swing at this pin  
is from a diode voltage below the ground up to VIN3 voltage.  
Boot strapped supply to the high-side floating gate driver in buck3 converter. Connect a capacitor (47 nF  
recommended) from BST3 pin to LX3 pin.  
BST3  
SS3  
Soft-start and tracking input for buck3 converter. An internal 5.5-µA pullup current source is connected to this pin.  
The soft-start time of buck3 can be programmed by connecting a capacitor between this pin and ground.  
Error amplifier output and loop compensation pin for buck3. Connect a series resistor and capacitor to compensate  
the control loop of buck converter 3 with peak current PWM mode.  
COMP3  
19  
20  
FB3  
Feedback Kelvin sensing pin for buck3 output voltage. Connect this pin to buck3 feedback resistor divider.  
Oscillator frequency programmable pin. Connect an external resistor to set the switching frequency.  
ROSC  
Analog ground common to buck controllers and other analog circuits. It must be routed separately from high-current  
power grounds to the (–) terminal of bypass capacitor of input voltage VINQ.  
21  
22  
23  
AGND  
FB1  
Feedback Kelvin sensing pin for buck1 output voltage. Connect this pin to buck1 feedback resistor divider.  
Error amplifier output and loop compensation pin for buck1. Connect a series resistor and capacitor to compensate  
the control loop of buck converter 1 with peak current PWM mode.  
COMP1  
Soft-start and tracking input for buck1 converter. An internal 5.5-µA pullup current source is connected to this pin.  
The soft-start time of buck1 can be programmed by connecting a capacitor between this pin and ground.  
24  
25  
26  
27  
28  
29  
30  
SS1  
Boot strapped supply to the high-side floating gate driver in buck1 converter. Connect a capacitor (47 nF  
recommended) from BST1 pin to LX1 pin.  
BST1  
LX1  
Switching node connection to the inductor and bootstrap capacitor for buck1 converter. The voltage swing at this pin  
is from a diode voltage below the ground up to VIN1 voltage.  
Power ground connection of buck1. Connect PGND1 pin as close as practical to the (–) terminal of VIN1 input  
ceramic capacitor.  
PGND1  
VIN1  
EN1  
Input power supply for buck1. Connect VIN1 pin as close as practical to the (+) terminal of an input ceramic capacitor  
(suggest 10 µF).  
Enable for buck1 converter. Float to enable. Can use this pin to adjust the input undervoltage lockup of buck1 with  
resistors divider.  
Enable for buck2 converter. Float to enable. Can use this pin to adjust the input undervoltage lockup of buck2 with  
resistors divider.  
EN2  
Enable for buck3 converter. Float to enable. Can use this pin to adjust the input undervoltage lockup of buck3 with  
resistors divider.  
31  
32  
EN3  
GND  
Ground pin  
Thermal  
PAD  
No electric connection to any signal. Soldered to the ground in PCB for better thermal performance.  
4
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)  
(1)  
MIN  
–0.3  
–1.0  
–0.3  
–0.3  
–0.3  
–0.3  
–40  
MAX  
7
UNIT  
VIN1, VIN2, VIN3, VINQ  
LX1, LX2, LX3 (maximum withstand voltage transient <20 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
EN1, EN2, EN3, PGOOD  
7
7
Voltage at  
V
7
FB1, FB2, FB3, COMP1 , COMP2, COMP3, SS1, SS2, SS3, ROSC  
AGND, PGND1, PGND2, PGND3  
3.6  
0.3  
150  
150  
TJ  
Operating junction temperature  
°C  
°C  
Tstg  
Storage temperature  
–55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX UNIT  
VIN1, VIN2, VIN3, VINQ  
2.7  
–0.8  
–0.1  
–0.1  
–0.1  
–40  
6.5  
6.5  
LX1, LX2, LX3 (maximum withstand voltage transient <20 ns)  
BST1, BST2, BST3 referenced to LX1, LX2, LX3 pins respectively  
EN1, EN2, EN3, PGOOD  
Voltage at  
6.5  
6.5  
3
V
FB1, FB2, FB3, COMP1 , COMP2, COMP3, SS1, SS2, SS3, ROSC  
Operating junction temperature  
TJ  
125  
°C  
6.4 Thermal Information  
TPS65266  
RHB  
32 PINS  
34.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
27.5  
8.3  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
8.3  
RθJC(bot)  
2.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014–2015, Texas Instruments Incorporated  
5
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
6.5 Electrical Characteristics  
TA = 25°C, VIN = 5 V, FSW = 1 MHz (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT SUPPLY VOLTAGE  
VIN  
Input voltage range  
2.7  
2.35  
2.15  
6.5  
2.6  
V
V
VIN rising  
2.45  
2.25  
200  
9
UVLO  
VIN undervoltage lockout  
Shutdown supply current  
VIN falling  
2.35  
V
Hysteresis  
mV  
µA  
IDDSDN  
EN1 = EN2 = EN3 = 0 V  
EN1 = EN2 = EN3 = 5 V,  
FB1 = FB2 = FB3 = 0.8 V  
IDDQ_NSW  
790  
340  
340  
340  
µA  
µA  
µA  
µA  
EN1 = 5 V, EN2 = EN3 = 0 V,  
FB1 = 0.8 V  
IDDQ_NSW1  
IDDQ_NSW2  
IDDQ_NSW3  
Input quiescent current without  
buck1/2/3 switching  
EN2 = 5 V, EN1 = EN3 = 0 V,  
FB2 = 0.8 V  
EN3 = 5 V, EN1 = EN2 = 0 V,  
FB3 = 0.8 V  
BUCK1, BUCK2, BUCK3  
VFB  
Feedback voltage  
VCOMP = 1.2 V  
0.594  
0.6  
1.2  
1.15  
2.1  
5.3  
3.2  
5.5  
80  
0.606  
1.26  
V
VENXH  
VENXL  
IENX1  
IENX2  
IENhys  
ISSX  
EN1/2/3 high-level input voltage  
EN1/2/3 low-level input voltage  
EN1/2/3 pullup current  
V
1.1  
1.8  
V
ENx = 1 V  
2.4  
µA  
µA  
µA  
µA  
ns  
µS  
EN1/2/3 pullup current  
ENx = 1.3 V  
Hysteresis current  
Soft-start charging current  
Minimum on-time  
4.5  
6.5  
tON_MIN  
Gm_EA  
100  
Error amplifier transconductance  
–2 µA < ICOMPX < 2 µA  
ILX = 0.5 A  
290  
COMP1/2/3 voltage to inductor current  
Gm_PS1/2/3  
10  
A/V  
A
(1)  
Gm  
ILIMIT1  
Buck1 peak inductor current limit  
Buck1 low-side sink current limit  
Buck2/3 peak inductor current limit  
Buck2/3 low-side sink current limit  
Buck1 high-side switch resistance  
Buck1 low-side switch resistance  
Buck2 high-side switch resistance  
Buck2 low-side switch resistance  
Buck3 high-side switch resistance  
Buck3 low-side switch resistance  
3.9  
2.5  
4.6  
1.4  
3.1  
1.2  
45  
50  
60  
60  
60  
60  
5.3  
3.7  
ILIMITSINK1  
ILIMIT2/3  
A
ILIMITSINK2/3  
Rdson_HS1  
Rdson_LS1  
Rdson_HS2  
Rdson_LS2  
Rdson_HS3  
Rdson_LS3  
HICCUP TIMING  
tHiccup_wait  
A
VINQ = 5 V  
VINQ = 5 V  
VINQ = 5 V  
VINQ = 5 V  
VINQ = 5 V  
VINQ = 5 V  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
mΩ  
Overcurrent wait time(1)  
Hiccup time before restart(1)  
512  
cycles  
cycles  
tHiccup_re  
16382  
POWER GOOD  
FBx undervoltage falling  
FBx undervoltage rising  
92.5  
95  
%VREF  
%VREF  
cycles  
cycles  
µA  
Vth_PG  
Feedback voltage threshold  
tDEGLITCH(PG)_F  
tRDEGLITCH(PG)_R  
IPG  
PGOOD falling edge deglitch time  
PGOOD rising edge deglitch time  
PGOOD pin leakage  
128  
16350  
1
VLOW_PG  
PGOOD pin low voltage  
ISINK = 1 mA  
0.4  
V
(1) Lab validation result  
6
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
Electrical Characteristics (continued)  
TA = 25°C, VIN = 5 V, FSW = 1 MHz (unless otherwise noted)  
PARAMETER  
OSCILLATOR  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
FSW  
Switching frequency  
ROSC = 51.1 kΩ  
920  
250  
250  
80  
1000  
1080  
2400  
2400  
kHz  
kHz  
kHz  
ns  
FSW_range  
FSYNC  
Switching frequency  
Clock sync frequency range  
Clock sync minimum pulse duration  
Clock sync high threshold  
Clock sync low threshold  
tSYNC_w  
FSYNC_HI  
VSYNC_LO  
2
V
0.4  
V
THERMAL PROTECTION  
(1)  
TTRIP_OTP  
Temperature rising  
Hysteresis  
160  
20  
°C  
°C  
Thermal protection trip point  
(1)  
THYST_OTP  
Copyright © 2014–2015, Texas Instruments Incorporated  
7
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
6.6 Typical Characteristics  
TA = 25°C, VIN = 5 V, VOUT1 = 1.0 V, VOUT2 = 1.5 V, VOUT3 = 1.8 V FSW = 1 MHz (unless otherwise noted)  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
VOUT 1.2 V  
VOUT 1.5 V  
VOUT 2.5 V  
VOUT 1.0 V  
VOUT 1.5 V  
VOUT = 2.5 V  
0.01  
0.02  
0.05  
0.1  
Output Load (A)  
0.2 0.3 0.5 0.7  
1
2
0.01 0.02  
0.05  
0.1  
0.2 0.3 0.5 0.7  
1
2
3
Output Load (A)  
D002  
D001  
Figure 1. Buck1 Efficiency  
Figure 2. Buck2 Efficiency  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0
1.1  
1.05  
1
0.95  
0.9  
VOUT 1.0 V  
VOUT 1.2 V  
VOUT 1.8 V  
0.01  
0.02  
0.05  
0.1  
Output Load (A)  
0.2 0.3 0.5 0.7  
1
2
0
0.5  
1
1.5  
2
2.5  
3
Output Load (A)  
D003  
D004  
Figure 3. Buck3 Efficiency  
Figure 4. Buck1, Load Regulation  
1.6  
1.55  
1.5  
1.9  
1.85  
1.8  
1.45  
1.4  
1.75  
1.7  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Output Load (A)  
Output Load (A)  
D005  
D006  
Figure 5. Buck2, Load Regulation  
Figure 6. Buck3, Load Regulation  
8
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
Typical Characteristics (continued)  
TA = 25°C, VIN = 5 V, VOUT1 = 1.0 V, VOUT2 = 1.5 V, VOUT3 = 1.8 V FSW = 1 MHz (unless otherwise noted)  
1.08  
1.04  
1
1.6  
1.55  
1.5  
IOUT 0.1 A  
IOUT 1.5 A  
IOUT 3 A  
IOUT 0.1A  
IOUT 1.0A  
IOUT 2A  
0.96  
1.45  
0.92  
1.4  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Input Voltage (V)  
Input Voltage (V)  
D007  
D008  
Figure 7. Buck1, Line Regulation  
Figure 8. Buck2, Line Regulation  
1.9  
1.85  
1.8  
0.606  
0.604  
0.602  
0.6  
IOUT 0.1 A  
IOUT 1.0 A  
IOUT 2 A  
0.598  
0.596  
0.594  
1.75  
1.7  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Input Voltage (V)  
Junction Temperature, TJ (°C)  
D009  
D010  
Figure 9. Buck3, Line Regulation  
Figure 10. Voltage Reference vs Temperature  
1040  
1020  
1000  
980  
15  
13  
11  
9
7
960  
5
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Junction Temperature, TJ (°C)  
Junction Temperature, TJ (°C)  
D011  
D012  
ROSC = 51.1 kΩ  
VIN = 5 V  
Figure 11. Oscillator Frequency vs Temperature  
Figure 12. Shutdown Quiescent Current vs Temperature  
Copyright © 2014–2015, Texas Instruments Incorporated  
9
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
TA = 25°C, VIN = 5 V, VOUT1 = 1.0 V, VOUT2 = 1.5 V, VOUT3 = 1.8 V FSW = 1 MHz (unless otherwise noted)  
2.3  
2.2  
2.1  
2
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
1.9  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Junction Temperature, TJ (°C)  
Junction Temperature, TJ (°C)  
D013  
D014  
VIN = 5 V  
EN = 1 V  
VIN = 5 V  
EN = 1.3 V  
Figure 13. EN Pin Pullup Current vs Temperature, EN = 1 V  
Figure 14. EN Pin Pullup Current vs Temperature, EN = 1.3 V  
1.28  
1.23  
1.24  
1.2  
1.19  
1.15  
1.11  
1.07  
1.16  
1.12  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Junction Temperature, TJ (°C)  
Junction Temperature, TJ (°C)  
D015  
D016  
VIN = 5 V  
VIN = 5 V  
Figure 15. EN Pin Threshold Rising vs Temperature  
Figure 16. EN Pin Threshold Falling vs Temperature  
6
5.8  
5.6  
5.4  
5.2  
5
5
4.8  
4.6  
4.4  
4.2  
4
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Junction Temperature, TJ (°C)  
Junction Temperature, TJ (°C)  
D017  
D018  
VIN = 5 V  
VIN = 5 V  
Figure 17. SS Pin Charge Current vs Temperature  
Figure 18. Buck1 High-Side Current Limit vs Temperature  
10  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
Typical Characteristics (continued)  
TA = 25°C, VIN = 5 V, VOUT1 = 1.0 V, VOUT2 = 1.5 V, VOUT3 = 1.8 V FSW = 1 MHz (unless otherwise noted)  
3.5  
3.3  
3.1  
2.9  
2.7  
3.5  
3.3  
3.1  
2.9  
2.7  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Junction Temperature, TJ (°C)  
Junction Temperature, TJ (°C)  
D019  
D020  
VIN = 5 V  
VIN = 5 V  
Figure 19. Buck2 High-Side Current Limit vs Temperature  
Figure 20. Buck3 High-Side Current Limit vs Temperature  
Copyright © 2014–2015, Texas Instruments Incorporated  
11  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS65266 is a triple 3-A/2-A/2-A output current, synchronous step-down (buck) converter for applications  
operating off the adaptor or battery with input voltage lower than 6.5 V. The feedback voltage reference for each  
buck is 0.6 V. Each buck is independent with dedicated enable, soft-start, and loop compensation. The  
TPS65266 implements a constant frequency, peak current mode control that simplifies external loop  
compensation. The switch clock of buck1 is 180° out-of-phase operation from the clock of buck2 and buck3  
channels to reduce input current ripple, input capacitor size and power-supply-induced noise.  
The TPS65266 has been designed for safe monotonic startup into prebiased loads. The default start-up is when  
VIN is typically 2.45 V. The ENx pin has an internal pullup current source that can be used to adjust the input  
voltage undervoltage lockout (UVLO) with two external resistors. In addition, the EN pin can be floating for  
automatically starting up the converters with the internal pullup current.  
The TPS65266 features PGOOD pin to supervise output voltages of buck converter. The TPS65266 has power-  
good comparators with hysteresis, which monitor the output voltages through internal feedback voltages. When  
all bucks are in regulation range and power sequence is done, PGOOD is asserted high.  
The SS (soft-start/tracking) pin is used to minimize inrush currents or provide power-supply sequencing during  
power up. A small-value capacitor or resistor divider should be coupled to the pin for soft start or critical power-  
supply sequencing requirements.  
The TPS65266 is protected from overload and thermal fault conditions.  
12  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
7.2 Functional Block Diagram  
ROSC  
OSC/SYNC  
Phase Shift  
VIN1  
VIN2  
clk  
clk  
VIN  
VIN  
VIN  
BST  
VIN  
ISNS  
ISNS  
en_buck2  
enable  
enable  
en_buck1  
I
BST1  
LX1  
SNSBST  
BST2  
LX2  
LX  
BUCK1  
BUCK2  
LX  
PGND1  
SS1  
PGND2  
PGND  
SS  
PGND  
5.5 µA  
5.5 µA  
Comp  
Comp  
SS2  
FB2  
SS  
FB1  
Vref  
Vref  
COMP1  
VINQ  
COMP2  
PGOOD  
vfb1  
Power  
Good  
VIN3  
clk  
vfb2  
vfb3  
VIN  
BST  
VIN  
ISNS  
en_buck3  
enable  
BST3  
LX3  
2.1 µA  
3.2 µA  
BUCK3  
LX  
EN1  
PGND3  
1.2 V  
PGND  
5.5 µA  
Comp  
SS3  
FB3  
SS  
Discharge during power up  
3.2 µA  
en_buck1  
2.1 µA  
EN2  
en_buck2  
en_buck3  
Vref  
State  
Machine  
1.2 V  
Discharge during power up  
3.2 µA  
COMP3  
AGND  
2.1 µA  
VINQ  
OT  
EN3  
1.2 V  
Over  
Temp  
Discharge during power up  
7.3 Feature Description  
7.3.1 Adjusting the Output Voltage  
The output voltage of each buck is set with a resistor divider from the output of buck to the FB pin. TI  
recommends to use 1% tolerance or better resistors.  
Vout  
R1  
FB  
COMP  
R2  
0.6 V  
Figure 21. Voltage Divider Circuit  
Copyright © 2014–2015, Texas Instruments Incorporated  
13  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Feature Description (continued)  
0.6  
R2   R1 u  
9out ± ꢀꢁꢂ  
(1)  
To improve efficiency at light loads, consider using larger-value resistors. If the values are too high, the regulator  
is more sensitive to noise. Table 1 shows the recommended resistor values.  
Table 1. Output Resistor Divider Selection  
Output Voltage  
(V)  
R1  
(kΩ)  
R2  
(kΩ)  
1
10  
10  
15  
10  
1.2  
1.5  
1.8  
2.5  
3.3  
3.3  
5
15  
10  
20  
10  
31.6  
45.3  
22.6  
73.2  
36.5  
10  
10  
4.99  
10  
5
4.99  
7.3.2 Enable and Adjusting UVLO  
The EN1/2/3 pin provides electrical on and off control of the device. After the EN1/2/3 pin voltage exceeds the  
threshold voltage, the device starts operation. If each ENx pin voltage is pulled below the threshold voltage, the  
regulator stops switching and enters low Iq state.  
The EN pin has an internal pullup current source, allowing the user to float the EN pin for enabling the device. If  
an application requires controlling the EN pin, use open-drain or open-collector output logic to interface with the  
pin.  
The device implements internal UVLO circuitry on the VINQ pin. The device is disabled when the VINQ pin  
voltage falls below the internal VIN UVLO threshold. The internal VIN UVLO threshold has a hysteresis of 200  
mV. If an application requires either a higher UVLO threshold on the VINQ pin or a secondary UVLO on the  
VINx, in split-rail applications, then the ENx pin can be configured as shown in Figure 22, Figure 23, and  
Figure 24. When using the external UVLO function, TI recommends to set the hysteresis to be >200 mV.  
The EN pin has a small pullup current Ip, which sets the default state of the pin to enable when no external  
components are connected. The pullup current is also used to control the voltage hysteresis for the UVLO  
function because it increases by Ih after the EN pin crosses the enable threshold. Calculate the UVLO thresholds  
using Equation 2 and Equation 3.  
V
VSTART  
(
ENFALLING )  VSTOP  
VENRISING  
R1   
R2   
V
IP(1 ENFALLING ) Ih  
VENRISING  
(2)  
R1 u VENFALLING  
VSTOP  VENFALLING  R1(Ih Ip )  
where  
Ih = 3.2 µA  
Ip = 2.1 µA  
VENRISING = 1.2 V  
VENFALLING = 1.15 V  
(3)  
14  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
 
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
VINQ  
i
h
R1  
p
i
EN  
R2  
Figure 22. Adjustable VINQ UVLO  
VIN  
i
h
R1  
p
i
EN  
R2  
Figure 23. Adjustable VIN UVLO, VINQ > 2.7 V  
VINQ  
VIN  
i
h
R1  
p
i
EN  
R2  
Figure 24. Adjustable VIN and VINQ UVLO  
Copyright © 2014–2015, Texas Instruments Incorporated  
15  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
7.3.3 Soft-Start Time  
The voltage on the respective SS pin controls the start-up of buck output. When the voltage on the SS pin is less  
than the internal 0.6-V reference, the TPS65266 regulates the internal feedback voltage to the voltage on the SS  
pin instead of 0.6 V. The SS pin can be used to program an external soft-start function or to allow output of buck  
to track another supply during start-up. The device has an internal pullup current source of 5.5 μA (typical) that  
charges an external soft-start capacitor to provide a linear ramping voltage at SS pin. The TPS65266 regulates  
the internal feedback voltage to the voltage on the SS pin, allowing VOUT to rise smoothly from 0 V to its  
regulated voltage without inrush current. Calculate the approximate soft-start time with Equation 4.  
Css(nF)u Vref (V)  
tss (ms)   
Iss(µA)  
(4)  
Many of the common power-supply sequencing methods can be implemented using the SSx and ENx pins.  
Figure 25 shows the method implementing ratiometric sequencing by connecting the SSx pins of three buck  
channels together. The regulator outputs ramp up and reach regulation at the same time. When calculating the  
soft-start time, the pullup current source must be tripled in Equation 4.  
EN  
29  
EN threshold = 1.2 V  
EN1  
30  
EN2  
31  
EN3  
Vout3 = 1.8 V  
24  
SS1  
Vout2 = 1.5 V  
8
SS2  
Vout1 = 1.0 V  
17  
SS3  
Css  
CSS × 0.6 V  
tSS  
=
16.5 µA  
Figure 25. Ratiometric Power-Up Using SSx Pins  
Simultaneous power-supply sequencing can be implemented by connecting capacitor to SSx pin, shown in  
Figure 26. Using Equation 4 and Equation 5, calculate the capacitors.  
Css1  
Css2  
Css3  
 
 
Vout1 Vout2 Vout3  
(5)  
16  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
 
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
EN  
29  
30  
31  
EN threshold = 1.2 V  
EN1  
EN2  
EN3  
Vout3 = 1.8 V  
Vout2 = 1.5 V  
24  
8
SS1  
SS2  
SS3  
Css1  
Css2  
Css3  
Vout1 = 1.0 V  
17  
CSS3 × 0.6 V  
tSS  
=
5.5µA  
Figure 26. Simultaneous Startup Sequence Using SSx Pins  
7.3.4 Power-Up Sequencing  
The TPS65266 has a dedicated enable pin and soft-start pin for each converter. The converter enable pins are  
biased by a current source that allows for easy sequencing by the addition of an external capacitor. Enable pins  
have a discharge function, which ensures power-up sequencing is effective at quickly powering down and up  
status. Disabling the converter with an active pulldown transistor on the ENs pin allows for a predictable power-  
down timing operation. Figure 27 shows the timing diagram of a typical buck power-up sequence with connecting  
a capacitor at ENx pin.  
When VINQ pin voltage rises to about 1 V, the internal EN turns on and a typical 1.4-µA current is charging ENx  
pin from input supply. If any of the EN pin voltages reaches 0.5 V when powered up, three EN pin discharge  
functions are triggered and keep 2 ms with discharge resistor around 1.2 kΩ to GND, then a 2.1-µA pullup  
current is sourcing ENx. After ENx pin voltage reaches to ENx enabling threshold, 3.2-µA hysteresis current  
sources to the pin to improve noise sensitivity.  
Copyright © 2014–2015, Texas Instruments Incorporated  
17  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
About 1 V  
VINQ  
Internal EN  
EN Threshold  
EN Threshold  
1.2V  
0.5 V  
ENx  
ENx Rise Time  
Dictated by CEN  
t = CENx × 1.2 V / 2.1 µA  
Discharge time 2 ms  
t = CENx × 0.5 V / 1.4 µA  
About 1.7 V  
0.6 V  
SSx  
Pre-Bias Startup  
VOUTx  
Soft Start Rise Time  
Dictated by CSS  
PGOOD Deglitch Time 16350 cycles  
t = CSSx × 0.6 V / 5.5 µA  
PGOOD  
Figure 27. Startup Power Sequence  
7.3.5 Boostrap Voltage and BST-LX UVLO  
Each high-side MOSFET driver is biased from the floating bootstrap capacitor, CB, shown in Figure 28, which is  
normally recharged during each cycle through an internal low-side MOSFET or the body diode of a low-side  
MOSFET when the high-side MOSFET turns off. The boot capacitor is charged when the BST pin voltage is less  
than VIN and BST-LX voltage is below regulation. The recommended value of this ceramic capacitor is 47 nF. TI  
recommends a ceramic capacitor with an X7R- or X5R-grade dielectric with a voltage rating of 10 V or higher  
because of the stable characteristics over temperature and voltage.  
To improve dropout, the device is designed to operate at 100% duty cycle as long as the BST to LX pin voltage  
is greater than the BST-LX UVLO threshold, which is typically 2.1 V. When the voltage between BST and LX  
drops below the BST-LX UVLO threshold, the high-side MOSFET is turned off and the low-side MOSFET is  
turned on allowing the boot capacitor to be recharged.  
18  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
VINQ  
VINx  
LDO  
(VBSTx-VLXx)  
nBootUV  
+2.1 V  
BSTx  
High-side  
MOSFET  
nBootUV  
PWM  
CB  
UVLO  
Bias  
Buck Controller  
Gate Driver  
LXx  
Low-side  
MOSFET  
nBootUV  
PWM  
BootUV  
Protection  
Gate Driver  
Clk  
Figure 28. Bootstrap Voltage and Diagram  
7.3.6 Out of Phase Operation  
To reduce input ripple current, the switch clock of buck1 is 180° out-of-phase from the clock of buck2 and buck3.  
This enables the system by having less input current ripple to reduce input capacitors’ size, cost, and EMI.  
7.3.7 Output Overvoltage Protection (OVP)  
The device incorporates an OVP circuit to minimize output voltage overshoot. When the output is overloaded, the  
error amplifier compares the actual output voltage to the internal reference voltage. If the FB pin voltage is lower  
than the internal reference voltage for a considerable time, the output of the error amplifier demands maximum  
output current. After the condition is removed, the regulator output rises and the error amplifier output transitions  
to the steady-state voltage. In some applications with small output capacitance, the load can respond faster than  
the error amplifier. This leads to the possibility of an output overshoot. Each buck compares the FB pin voltage to  
the OVP threshold. If the FB pin voltage is greater than the OVP threshold, the high-side MOSFET is turned off  
preventing current from flowing to the output and minimizing output overshoot. When the FB voltage drops lower  
than the OVP threshold, the high-side MOSFET turns on at the next clock cycle.  
7.3.8 Slope Compensation  
To prevent the subharmonic oscillations when the device operates at duty cycles greater than 50%, the  
TPS65266 adds built-in slope compensation, which is a compensating ramp to the switch current signal.  
7.3.9 Overcurrent Protection  
The device is protected from overcurrent conditions by cycle-by-cycle current limiting on both the high-side  
MOSFET and low-side MOSFET.  
Copyright © 2014–2015, Texas Instruments Incorporated  
19  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
7.3.9.1 High-Side MOSFET Overcurrent Protection  
The device implements current mode control, which uses the COMP pin voltage to control the turn off of the  
high-side MOSFET and the turn-on of the low-side MOSFET on a cycle-by-cycle basis. Each cycle the switch  
current and the current reference generated by the COMP pin voltage are compared, when the peak switch  
current intersects the current reference, the high-side switch is turned off.  
7.3.9.2 Low-Side MOSFET Overcurrent Protection  
While the low-side MOSFET is turned on, its conduction current is monitored by the internal circuitry. During  
normal operation the low-side MOSFET sources current to the load. At the end of every clock cycle, the low-side  
MOSFET sourcing current is compared to the internally set low-side sourcing current limit. If the low-side  
sourcing current is exceeded, the high-side MOSFET is not turned on and the low-side MOSFET stays on for the  
next cycle. The high-side MOSFET is turned on again when the low-side current is below the low-side sourcing  
current limit at the start of a cycle.  
The low-side MOSFET may also sink current from the load. If the low-side sinking current limit is exceeded, the  
low-side MOSFET is turned off immediately for the rest of that clock cycle. In this scenario, both MOSFETs are  
off until the start of the next cycle.  
Furthermore, if an output overload condition (as measured by the COMP pin voltage) has lasted for more than  
the hiccup wait time, which is programmed for 512 cycles (typical) shown in Figure 29, the device shuts down  
itself and restarts after the hiccup time of 16382 cycles (typical). The hiccup mode helps to reduce the device  
power dissipation under a severe overcurrent condition.  
OCP peak inductor current threshold  
OC limiting (waiting) time  
512 cycles (typical)  
hiccup time  
16382 cycles (typical)  
Soft-start time  
t = Css × 0.6 V / 5.5 µA  
Output over loading  
iL  
Inductor Current  
Soft-start is reset after OC waiting time  
About 1.7 V  
0.6 V  
OC fault removed, soft-start and output recovery  
SS  
SS Pin Voltage  
Output OC circuit  
Vout  
Output Voltage  
Figure 29. Overcurrent Protection  
7.3.10 Power Good  
The PGOOD pin is an open-drain output. After the feedback voltage of each buck is higher than 95% (rising) of  
the internal voltage reference, the PGOOD pin pulldown is deasserted and the pin floats. TI recommends to use  
a pullup resistor between the values of 10 kΩ and 100 kΩ to a voltage source that is 5.0 V or less.  
The PGOOD pin is pulled low when any feedback voltage of a buck is lower than 92.5% (falling) of the nominal  
internal reference voltage. Also, the PGOOD is pulled low if the input voltage is undervoltage locked up, thermal  
shutdown is asserted, the EN pin is pulled low, or the converter is in a soft-start period.  
20  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
7.3.11 Adjustable Switching Frequency  
The ROSC pin can be used to set the switching frequency by connecting a resistor to GND. The switching  
frequency of the device is adjustable from 250 kHz to 2.4 MHz.  
To determine the ROSC resistance for a given switching frequency, use Equation 6 or the curve in Figure 30. To  
reduce the solution size, the user should set the switching frequency as high as possible, but consider the  
tradeoffs of the supply efficiency and minimum controllable on-time.  
¦
osc ꢅN+]ꢆ   ꢇꢄꢄꢈꢃ u 5ꢅN:±ꢀꢁꢂꢃꢄ  
(6)  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0
20 40 60 80 100 120 140 160 180 200 220  
ROSC (kO)  
D021  
Figure 30. ROSC vs Switching Frequency  
When an external clock applies to the ROSC pin, the internal phase locked loop (PLL) has been implemented to  
allow internal clock synchronizing to an external clock between 250 kHz and 2.4 MHz. To implement the clock  
synchronization feature, connect a square wave clock signal to the ROSC pin with a duty cycle between 20% to  
80%. The clock signal amplitude must transition lower than 0.4 V and higher than 2.0 V. The start of the  
switching cycle is synchronized to the falling edge of the ROSC pin.  
In applications where both resistor mode and synchronization mode are needed, the device can be configured as  
shown in Figure 31. Before an external clock is present, the device works in resistor mode and ROSC resistor  
sets the switching frequency. When an external clock is present, the synchronization mode overrides the resistor  
mode. The first time the ROSC pin is pulled above the ROSC high threshold (2.0 V), the device switches from  
the resistor mode to the synchronization mode and the ROSC pin becomes high impedance as the PLL starts to  
lock onto the frequency of the external clock. TI does not recommended to switch from synchronization mode  
back to resistor mode because the internal switching frequency drops to 100 kHz first before returning to the  
switching frequency set by ROSC resistor.  
Mode  
Selection  
IC  
ROSC  
ROSC  
Figure 31. Works With Resistor Mode and Synchronization Mode  
Copyright © 2014–2015, Texas Instruments Incorporated  
21  
 
 
 
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
7.3.12 Thermal Shutdown  
The internal thermal shutdown circuitry forces the device to stop switching if the junction temperature exceeds  
160°C typically. The device reinitiates the power-up sequence when the junction temperature drops below 140°C  
typically.  
7.4 Device Functional Modes  
7.4.1 Operation With VIN < 2.6 V (Minimum VIN)  
The device operates with input voltages above 2.6 V. The maximum UVLO voltage is 2.6 V and will operate at  
input voltages above 2.6 V. The typical UVLO voltage is 2.45 V and the device may operate at input voltages  
above that point. The device also may operate at lower input voltages, the minimum UVLO voltage is 2.35 V  
(rising) and 2.15V (falling). At input voltages below the UVLO minimum voltage, the devices will not operate.  
7.4.2 Operation With EN Control  
The enable rising edge threshold voltage is 1.2 V typical and 1.26 V maximum. With EN held below that voltage  
the device is disabled and switching is inhibited. The IC quiescent current is reduced in this state. When input  
voltage is above the UVLO threshold and the EN voltage is increased above the rising edge threshold, the  
device becomes active. Switching is enabled, and the soft start sequence is initiated. The device will start at the  
soft start time determined by the external soft start capacitor as shown in Figure 34 to Figure 36.  
22  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The device is a triple-synchronous step-down DC/DC converter. It is typically used to convert a higher DC  
voltage to lower DC voltages with a continuously available output current of 3 A/2 A/2 A. The following design  
procedure can be used to select component values for the TPS65266. This section presents a simplified  
discussion of the design process.  
8.2 Typical Application  
R1  
0
C1  
0.047 µF  
U1  
VIN1  
VIN 3.3 V  
VIN  
L1  
28  
12  
13  
25  
26  
VOUT1 1.0 V 3 A  
VOUT1  
BST1  
LX1  
C5  
C7  
22 µF  
C8  
22 µF  
C9  
22 µF  
C2  
22 µF  
C3  
22 µF  
C4  
2.2 µH  
VIN2  
VIN3  
VFB1  
DNI  
R5  
15.0 kΩ  
DNI  
C6  
R3  
R6  
22  
23  
FB1  
VFB1  
VFB2  
VFB3  
GND  
GND  
9.1 kΩ  
10.0 kΩ  
1000 pF  
COMP1  
C10  
0.047 µF  
L2GND  
5
GND  
VOUT2 1.5 V 2 A  
VOUT1  
VINQ  
R7  
9
BST2  
LX2  
C11  
2.2 µF  
C15  
0 Ω  
C12  
22 µF  
C13  
22 µF  
2.2 µH  
VFB2  
10  
DNI  
R11  
10.0 kΩ  
C14  
R12  
GND  
29  
30  
31  
6
7
DNI  
R10  
GND  
GND  
C16  
15.0 kΩ  
EN1  
EN2  
EN3  
EN1  
EN2  
EN3  
FB2  
20 kΩ  
COMP2  
1000 pF  
GND  
GND  
R13  
16  
15  
C17  
BST3  
LX3  
0
L3  
0.047 µF  
VOUT3 1.8 V 2 A  
VOUT1  
C21  
C18  
22 µF  
C19  
22 µF  
24  
8
2.2 µH  
SS1  
SS2  
SS3  
VFB3  
19  
18  
4
FB3  
COMP3  
PGOOD  
DNI  
R16  
10.0 kΩ  
C20  
R15  
R17  
17  
GND  
GND  
20 kΩ  
C25  
20.0 kΩ  
R9  
1000 pF  
VIN  
C22  
0.01 µF  
C23  
0.01 µF  
C24  
0.01 µF  
100 kΩ  
1
2
GND  
AGND  
AGND  
AGND  
AGND  
AGND  
DNI  
20  
3
21  
32  
GND  
ROSC  
SYN  
GND  
27  
11  
PGND1  
PGND2  
PGND3  
PAD  
R18  
51.1 kΩ  
14 GND  
33  
TPS65266RHB  
GND  
GND  
Figure 32. Typical Application Schematic  
Copyright © 2014–2015, Texas Instruments Incorporated  
23  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Typical Application (continued)  
8.2.1 Design Requirements  
This example details the design of a triple-synchronous step-down converter. The designer must know a few  
parameters to start the design process. These parameters are typically determined at the system level. For this  
example, start with the following known parameters in Table 2.  
Table 2. Design Parameters  
Parameter  
Value  
Vout1  
Iout1  
Vout2  
Iout2  
Vout3  
Iout3  
1.0 V  
3 A  
1.5 V  
2 A  
1.8 V  
2 A  
Transient response 1-A load step  
Input voltage  
±5%  
5.0 V normal, 2.7 to 6.5 V  
Output voltage ripple  
Switching frequency  
±1%  
1 MHz  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Inductor Selection  
To calculate the value of the output inductor, use Equation 7. LIR is a coefficient that represents the amount of  
inductor ripple current relative to the maximum output current. The inductor ripple current is filtered by the output  
capacitor. Therefore, choosing high inductor ripple currents impact the selection of the output capacitor because  
the output capacitor must have a ripple current rating equal to or greater than the inductor ripple current. In  
general, the inductor ripple value is at the discretion of the designer; however, LIR is normally from 0.1 to 0.3 for  
the majority of applications.  
V
 Vout  
,o u /,5  
V out  
inmax  
L   
u
9inmax u ¦sw  
(7)  
For the output filter inductor, it is important that the RMS current and saturation current ratings not be exceeded.  
The RMS and peak inductor current can be found from Equation 9 and Equation 10.  
V
 Vout  
/
Vout  
inmax u ¦sw  
 Vout  
inmax  
Iripple  
 
u
9
(8)  
Vout u (V  
)
2
inmax  
(
)
9inmax u / u ¦VZ  
ILrms   IO2  
12  
(9)  
Iripple  
ILpeak   Iout  
2
(10)  
The current flowing through the inductor is the inductor ripple current plus the output current. During power-up,  
faults, or transient load conditions, the inductor current can increase above the calculated peak inductor current  
level calculated previously. In transient conditions, the inductor current can increase up to the switch current limit  
of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current  
rating equal to or greater than the switch current limit rather than the peak inductor current.  
8.2.2.2 Output Capacitor Selection  
The three primary considerations for selecting the value of the output capacitor are: the output capacitor  
determines the modulator pole, the output voltage ripple, and how the regulator responds to a large change in  
load current. The output capacitance must be selected based on the most stringent of these three criteria.  
24  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
 
 
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
The first criterion is the desired response to a large change in the load current. The output capacitor needs to  
supply the load with current when the regulator cannot. This situation would occur if there are desired hold-up  
times for the regulator where the output capacitor must hold the output voltage above a certain level for a  
specified amount of time after the input power is removed. The regulator is also temporarily not able to supply  
sufficient output current if there is a large, fast increase in the current needs of the load such as a transition from  
no load to full load. The regulator usually needs two or more clock cycles for the control loop to see the change  
in load current and output voltage and adjust the duty cycle to react to the change. The output capacitor must be  
sized to supply the extra current to the load until the control loop responds to the load change. The output  
capacitance must be large enough to supply the difference in current for two clock cycles while only allowing a  
tolerable amount of droop in the output voltage. Equation 11 shows the minimum output capacitance necessary  
to accomplish this.  
2u 'Iout  
sw u '9out  
Co   
¦
where  
ΔIout is the change in output current.  
ƒSW is the regulator's switching frequency.  
ΔVout is the allowable change in the output voltage.  
(11)  
Equation 12 calculates the minimum output capacitance needed to meet the output voltage ripple specification.  
1
1
Co !  
u
Voripple  
u ¦sw  
Ioripple  
where  
ƒSW is the switching frequency.  
Vripple is the maximum allowable output voltage ripple.  
Iripple is the inductor ripple current.  
(12)  
Equation 13 calculates the maximum ESR an output capacitor can have to meet the output voltage ripple  
specification.  
Voripple  
RESR  
Ioripple  
(13)  
Additional capacitance deratings for aging, temperature, and DC bias should be factored in, which increase this  
minimum value. Capacitors generally have limits to the amount of ripple current they can handle without failing or  
producing excess heat. An output capacitor that can support the inductor ripple current must be specified. Some  
capacitor data sheets specify the root mean square (RMS) value of the maximum ripple current. Equation 14 can  
be used to calculate the RMS ripple current the output capacitor needs to support.  
Vout u (V  
 Vout )  
inmax  
Icorms  
 
ꢀꢁ u 9inmax u / u ¦sw  
(14)  
8.2.2.3 Input Capacitor Selection  
The TPS65266 requires a high-quality ceramic, type X5R or X7R, input decoupling capacitor of at least 10 μF of  
effective capacitance on the VIN input voltage pins. In some applications, additional bulk capacitance may also  
be required for the VIN input. The effective capacitance includes any DC bias effects. The voltage rating of the  
input capacitor must be greater than the maximum input voltage. The capacitor must also have a ripple current  
rating greater than the maximum input current ripple of the TPS65266. Calculate the input ripple current using  
Equation 15.  
V
 Vout  
Vout  
u
inmin  
I
  Iout  
u
inrms  
V
V
inmin  
inmin  
(15)  
Copyright © 2014–2015, Texas Instruments Incorporated  
25  
 
 
 
 
 
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
The value of a ceramic capacitor varies significantly over temperature and the amount of DC bias applied to the  
capacitor. The capacitance variations due to temperature can be minimized by selecting a dielectric material that  
is stable over temperature. X5R and X7R ceramic dielectrics are usually selected for power regulator capacitors  
because they have a high capacitance-to-volume ratio and are fairly stable over temperature. The output  
capacitor must also be selected with the DC bias taken into account. The capacitance value of a capacitor  
decreases as the DC bias across a capacitor increases. The input capacitance value determines the input ripple  
voltage of the regulator. Calculate the input voltage ripple using Equation 16.  
Ioutmax u 0.25  
&in u ¦sw  
'V   
in  
(16)  
8.2.2.4 Loop Compensation  
The TPS65266 incorporates a peak current mode control scheme. The error amplifier is a transconductance  
amplifier with a gain of 290 µS. A typical type II compensation circuit adequately delivers a phase margin  
between 30° and 90°. Cb adds a high-frequency pole to attenuate high-frequency noise when needed. To  
calculate the external compensation components, follow these steps.  
1. Select switching frequency, ƒSW, that is appropriate for application depending on L and C sizes, output ripple,  
EMI, and so forth. Switching frequency between 500 kHz to 1.5 MHz gives best trade-off between  
performance and cost. To optimize efficiency, lower switching frequency is desired.  
2. Set up crossover frequency, ƒc, which is typically between 1 / 5 and 1 / 20 of ƒSW  
.
3. RC can be determined by:  
S u ¦C u 9O u &O  
GP±($ u Vref u GP±36  
RC  
 
where  
Gm_EA is the error amplifier gain (290 µS).  
Gm_PS is the power stage voltage to current conversion gain (10 A/V).  
(17)  
1
¦p   
CO u RL u 2S  
4. Calculate CC by placing a compensation zero at or before the dominant pole  
RL u CO  
CC  
 
RC  
(18)  
(19)  
5. Optional Cb can be used to cancel the zero from the ESR associated with CO.  
RESR u CO  
Cb   
RC  
6. Type III compensation can be implemented with the addition of one capacitor, C1. This allows for slightly  
higher loop bandwidths and higher phase margins. If used, C1 is calculated from Equation 20.  
1
C1   
S u 51 u ¦c  
(20)  
26  
Copyright © 2014–2015, Texas Instruments Incorporated  
 
 
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
LX  
VOUT  
iL  
RESR  
RL  
Current Sense  
I/V Converter  
Gm_PS   10 A / V  
Co  
C1  
R1  
FB  
Vfb  
EA  
COMP  
V
  0.6 V  
ref  
R2  
Rc  
Cc  
Gm_EA   290 µS  
Cb  
Figure 33. DC/DC Loop Compensation  
8.2.3 Application Curves  
Figure 34. Buck1, Soft-Start, Iout = 3 A  
Figure 35. Buck2, Soft-Start, Iout = 2 A  
Copyright © 2014–2015, Texas Instruments Incorporated  
27  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Figure 37. Buck1, Output Voltage Ripple, Iout = 3 A  
Figure 36. Buck3, Soft-Start, Iout = 2 A  
Figure 38. Buck2, Output Voltage Ripple, Iout = 2 A  
Figure 39. Buck3, Output Voltage Ripple, Iout = 2 A  
SR = 0.25 A/µs  
SR = 0.25 A/µs  
Figure 40. Buck1, Load Transient, 0.75 to 1.5 A  
Figure 41. Buck1, Load Transient, 1.5 to 2.25 A  
28  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
SR = 0.25 A/µs  
SR = 0.25 A/µs  
Figure 42. Buck2, Load Transient, 0.5 to 1.0 A  
Figure 43. Buck2, Load Transient, 1.0 to 1.5 A  
SR = 0.25 A/µs  
SR = 0.25 A/µs  
Figure 44. Buck3, Load Transient, 0.5 to 1.0 A  
Figure 45. Buck3, Load Transient, 1.0 to 1.5 A  
Figure 46. Buck1, Hiccup and Recovery  
Figure 47. Buck2, Hiccup and Recovery  
Copyright © 2014–2015, Texas Instruments Incorporated  
29  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
Figure 49. 180° Out of Phase  
Figure 48. Buck3, Hiccup and Recovery  
30  
Copyright © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
9 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply range between 2.7 and 6.5 V. This input  
power supply should be well regulated. If the input supply is located more than a few inches from the TPS65266  
converter, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An  
electrolytic capacitor with a value of 47 μF is a typical choice.  
10 Layout  
10.1 Layout Guidelines  
The TPS65266 supports a 2-layer PCB layout, shown in Figure 50.  
Layout is a critical portion of good power supply design. See Figure 50 for a PCB layout example. The top  
contains the main power traces for VIN, VOUT, and LX. The top layer also has connections for the remaining  
pins of the TPS65266 and a large top-side area filled with ground. The top-layer ground area should be  
connected to the bottom layer ground using vias at the input bypass capacitor, the output filter capacitor, and  
directly under the TPS65266 device to provide a thermal path from the exposed thermal pad land to ground. The  
bottom layer acts as ground plane connecting analog ground and power ground.  
For operation at full-rated load, the top-side ground area together with the bottom-side ground plane must  
provide an adequate heat dissipating area. Several signals paths conduct fast changing currents or voltages that  
can interact with stray inductance or parasitic capacitance to generate noise or degrade the power supplies'  
performance. To help eliminate these problems, the VIN pin should be bypassed to ground with a low-ESR  
ceramic bypass capacitor with X5R or X7R dielectric. Take care to minimize the loop area formed by the bypass  
capacitor connections, the VIN pins, and the ground connections. The VIN pin must also be bypassed to ground  
using a low-ESR ceramic capacitor with X5R or X7R dielectric.  
Because the LX connection is the switching node, the output inductor should be located close to the LX pins, and  
the area of the PCB conductor minimized to prevent excessive capacitive coupling. The output filter capacitor  
ground should use the same power ground trace as the VIN input bypass capacitor. Try to minimize this  
conductor length while maintaining adequate width. The small signal components should be grounded to the  
analog ground path.  
The FB and COMP pins are sensitive to noise so the resistors and capacitors should be located as close as  
possible to the IC and routed with minimal lengths of trace. Place the additional external components  
approximately as shown in Figure 50.  
Copyright © 2014–2015, Texas Instruments Incorporated  
31  
TPS65266  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
www.ti.com.cn  
10.2 Layout Example  
VOUT1  
VOUT3  
BST1  
BST3  
LX3  
LX1  
PGND3  
PGND1  
VIN1  
EN1  
VIN3  
VIN2  
PGND2  
LX2  
VIN  
VIN  
EN2  
EN3  
AGND  
BST2  
VOUT2  
TOPSIDE  
GROUND  
AREA  
0.010-inch Diameter  
Thermal VIA to Ground Plane  
VIA to Ground Plane  
Figure 50. PCB Layout  
32  
版权 © 2014–2015, Texas Instruments Incorporated  
TPS65266  
www.ti.com.cn  
ZHCSD90B NOVEMBER 2014REVISED JANUARY 2015  
11 器件和文档支持  
11.1 器件支持  
11.1.1 相关器件  
器件型号  
说明  
备注  
TPS65261  
4.5V 18V 三路降压,均配有输入电压电 三路降压 3A/2A/2A 输出电流,通过开漏 RESET 信号监视输入电源故障,支  
TPS65261-1  
源故障指示灯  
持自动电源排序  
三路降压 3A/1A/1A 输出电流,支持自动电源排序  
双路 LDO:  
TPS65262  
4.5V 18V 三路降压,具有双路可调  
TPS65262-1  
LDO  
TPS65262200mA/100mA  
TPS65262-1350mA/150mA  
TPS65263  
4.5V 18V 三路降压,具有 I2C 接口  
三路降压 3A/2A/2A 输出电流,I2C 控制的动态电压调节 (DVS)  
11.2 商标  
All trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
12 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2014–2015, Texas Instruments Incorporated  
33  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65266RHBR  
TPS65266RHBT  
ACTIVE  
VQFN  
VQFN  
RHB  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
TPS  
65266  
ACTIVE  
RHB  
NIPDAU  
TPS  
65266  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65266RHBR  
TPS65266RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
330.0  
180.0  
12.4  
12.4  
5.3  
5.3  
5.3  
5.3  
1.1  
1.1  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS65266RHBR  
TPS65266RHBT  
VQFN  
VQFN  
RHB  
RHB  
32  
32  
3000  
250  
346.0  
210.0  
346.0  
185.0  
33.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHB 32  
5 x 5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224745/A  
www.ti.com  
PACKAGE OUTLINE  
RHB0032E  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
(0.1)  
5.1  
4.9  
SIDE WALL DETAIL  
20.000  
OPTIONAL METAL THICKNESS  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.5  
(0.2) TYP  
3.45 0.1  
9
EXPOSED  
THERMAL PAD  
16  
28X 0.5  
8
17  
SEE SIDE WALL  
DETAIL  
2X  
SYMM  
33  
3.5  
0.3  
0.2  
32X  
24  
0.1  
C A B  
C
1
0.05  
32  
25  
PIN 1 ID  
(OPTIONAL)  
SYMM  
0.5  
0.3  
32X  
4223442/B 08/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.45)  
SYMM  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
(1.475)  
28X (0.5)  
33  
SYMM  
(4.8)  
(
0.2) TYP  
VIA  
8
17  
(R0.05)  
TYP  
9
16  
(1.475)  
(4.8)  
LAND PATTERN EXAMPLE  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223442/B 08/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHB0032E  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X ( 1.49)  
(0.845)  
(R0.05) TYP  
32  
25  
32X (0.6)  
1
24  
32X (0.25)  
28X (0.5)  
(0.845)  
SYMM  
33  
(4.8)  
17  
8
METAL  
TYP  
16  
9
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 33:  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223442/B 08/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS65268-Q1

4V 至 8V、3A、2A 三路同步降压转换器
TI

TPS65268QRHBRQ1

4V 至 8V、3A、2A 三路同步降压转换器 | RHB | 32 | -40 to 125
TI

TPS65268QRHBTQ1

4V 至 8V、3A、2A 三路同步降压转换器 | RHB | 32 | -40 to 125
TI

TPS65270

具有 4.5V 至 16V 输入电压的 2 个降压转换器,2A/3A 输出电流
TI

TPS65270PWPR

具有 4.5V 至 16V 输入电压的 2 个降压转换器,2A/3A 输出电流 | PWP | 24 | -40 to 85
TI

TPS65270RGER

4.5-V TO 18-V INPUT VOLTAGE, 2-A/3-A OUTPUT CURRENT, DUAL SYNCHRONOUS STEP-DOWN REGULATOR WITH INTEGRATED MOSFET
TI

TPS65270RGET

具有 4.5V 至 16V 输入电压的 2 个降压转换器,2A/3A 输出电流 | RGE | 24 | -40 to 85
TI

TPS65273V

4.5-V TO 18-V INPUT VOLTAGE, 3.5-A/3.5-A DUAL SYNCHRONOUS STEP-DOWN CONVERTER WITH I2C CONTROLLED VID AND CURRENT SHARING
TI

TPS65273VDAP

4.5-V TO 18-V INPUT VOLTAGE, 3.5-A/3.5-A DUAL SYNCHRONOUS STEP-DOWN CONVERTER WITH I2C CONTROLLED VID AND CURRENT SHARING
TI

TPS65273VDAPR

4.5-V TO 18-V INPUT VOLTAGE, 3.5-A/3.5-A DUAL SYNCHRONOUS STEP-DOWN CONVERTER WITH I2C CONTROLLED VID AND CURRENT SHARING
TI

TPS65273VDAPT

4.5-V TO 18-V INPUT VOLTAGE, 3.5-A/3.5-A DUAL SYNCHRONOUS STEP-DOWN CONVERTER WITH I2C CONTROLLED VID AND CURRENT SHARING
TI

TPS65273VRHH

4.5-V TO 18-V INPUT VOLTAGE, 3.5-A/3.5-A DUAL SYNCHRONOUS STEP-DOWN CONVERTER WITH I2C CONTROLLED VID AND CURRENT SHARING
TI