TPS65310AQRVJRQ1 [TI]

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC | RVJ | 56 | -40 to 125;
TPS65310AQRVJRQ1
型号: TPS65310AQRVJRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC | RVJ | 56 | -40 to 125

文件: 总69页 (文件大小:2896K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
TPS65310A-Q1 适用于汽车类安全应用的高电压电源管IC  
• 用于控制和诊断的串行外设接(SPI)  
• 集成窗口安全装(WD)  
• 基准电压输出  
• 高(HS) 驱动器用于外部场效应晶体(FET)  
和发光二极(LED) 驱动器  
• 外部温度传感器输入集成电(IC) TA < -40°C  
时关断  
1 特性  
• 符合汽车应用要求  
AEC-Q100 测试指导结果如下:  
– 器件温度等140°C 125°C 的工作环境  
温度范围  
– 器HBM ESD 分类等H1B  
– 器CDM ESD 分类等C3B  
• 输入电压范围4V 40V瞬态高60V当使  
用外P 通道金属氧化物半导(PMOS) 时达到  
80V  
• 热增强型封装  
56 QFN (RVJ)  
2 应用  
• 单输出同步降压控制器  
• 多轨直流配电系统  
• 安全关键型汽车应用  
– 高级驾驶辅助系统  
– 峰值栅极驱动电0.6A  
490kHz 固定开关频率  
– 假随机跳频展频或三角模式  
• 双路同步降压转换器  
3 说明  
TPS65310A-Q1器件是一款电源管理单元满足由  
数字信号处理(DSP) 控制的汽车系统例如高级  
驾驶辅助系统的要求。通过集成常用功能,  
TPS65310A-Q1 器件显著降低了布板空间和系统成  
本。  
– 设计用于高2A 的输出电流  
– 异相开关  
– 开关频率0.98 MHz  
• 可350mA 线性稳压器  
• 可调异步升压转换器  
封装尺寸标称值)  
器件型号  
封装  
1A 集成开关  
TPS65310A-Q1  
VQFNP (56)(1)  
8.00mm x 8.00mm  
– 开关频率0.98 MHz  
• 所有稳压器输出的软启动功能  
• 独立电压监控  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 欠(UV) 检测和过(OV) 保护  
• 可为降压控制器、栅极驱动器、降压转换器、升压  
转换器和线性稳压器输出提供短路、过流和热保护  
VBAT  
Protection FET  
VIN  
Battery  
Sense  
IRQ  
Buck  
Controller  
I/O supply  
VBuck1  
VIO  
RESN  
RESET  
PRESN  
VBuck1  
WD Trigger  
Watchdog  
Wake  
Wake Up Input  
SPI Interface  
Buck  
Converter  
VBuck2  
SPI  
Reference Voltage  
Buck  
Converter  
Reference  
voltage  
+
VBuck3  
Comparator  
VBuck1  
Boost  
Converter  
VBooster  
HS PWM Input  
VINPROT  
High Side  
LED Driver  
Linear  
Regulator  
VLDO  
3-1. 简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLVSC15  
 
 
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
8.5 Programming ........................................................... 35  
8.6 Register Maps...........................................................36  
9 Application and Implementation..................................44  
9.1 Application Information............................................. 44  
9.2 Typical Applications ................................................. 44  
10 Power Supply Recommendations..............................55  
11 Layout...........................................................................57  
11.1 Layout Guidelines................................................... 57  
11.2 Layout Example...................................................... 58  
12 Device and Documentation Support..........................61  
12.1 Documentation Support ......................................... 61  
12.2 接收文档更新通知................................................... 61  
12.3 支持资源..................................................................61  
12.4 Trademarks.............................................................61  
12.5 Electrostatic Discharge Caution..............................61  
12.6 术语表..................................................................... 61  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................4  
6 Pin Configuration and Functions...................................5  
7 Specifications.................................................................. 7  
7.1 Absolute Maximum Ratings........................................ 7  
7.2 ESD Ratings .............................................................. 8  
7.3 Recommended Operating Conditions.........................8  
7.4 Thermal Information....................................................8  
7.5 Electrical Characteristics.............................................9  
7.6 SPI Timing Requirements ........................................ 15  
7.7 Typical Characteristics..............................................16  
8 Detailed Description......................................................20  
8.1 Overview...................................................................20  
8.2 Functional Block Diagram.........................................21  
8.3 Feature Description...................................................22  
8.4 Device Functional Modes..........................................24  
Information.................................................................... 62  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision G (May 2019) to Revision H (December 2021)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
• 将提SPI 的旧术语实例全局更改为控制器和外设............................................................................................1  
Shutdown comparator Reference voltage Min specification changed to 1mV from 10mV.................................9  
High-side switch current limit specification for for BUCK2/3 changed: Min spec changed to 2.4A from 2.5A  
and max spec changed to 3.5A from 3.3A..........................................................................................................9  
Changes from Revision F (December 2018) to Revision G (May 2019)  
Page  
Changed part number to "TPS65310ASQRWERQ1" ......................................................................................62  
Changes from Revision E (October 2014) to Revision F (December 2018)  
Page  
Deleted lead temperature from Absolute Maximum Ratings table .................................................................... 7  
Changed the Handling Ratings table to ESD Ratings and moved the storage temperature parameter to the  
Absolute Maximum Ratings table ...................................................................................................................... 8  
Changes from Revision D (July 2014) to Revision E (October 2014)  
Page  
• 添加RWE 封装选项........................................................................................................................................ 1  
Added the following text to the paragraph after the Compensation Settings table in the Compensation of the  
BUCK2 and BUCK3 Converters section: upper resistance and effective VBUCK2/3 at higher frequencies to  
the ....................................................................................................................................................................48  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Changes from Revision C (January 2014) to Revision D (July 2014)  
Page  
Added Handling Rating table, Feature Description section, Device Functional Modes, Application and  
Implementation section, Power Supply Recommendations section, Layout section, Device and  
Documentation Support section, and Mechanical, Packaging, and Orderable Information section .................. 5  
Changes from Revision B (December 2013) to Revision C (January 2014)  
Page  
Added new IOUT = 350 mA, TJ = 150°C test condition with higher typ and max values to the VDropout  
parameter and changed test condition for lower typ and max values from TJ = 150°C to TJ = 125°C ............. 9  
Changed the min value for the VHSSC_HY parameter from 1.5 to 1 and deleted the typ (2.5) and max (3.5)  
values................................................................................................................................................................. 9  
Changed the max value for the tVSSENSE_BLK parameter from 20 to 35....................................................... 9  
Changes from Revision A (June 2013) to Revision B (November 2013)  
Page  
Added reference to the TPS65310A-Q1 Efficiency Application Report to the TYPICAL CHARACTERISTICS  
condition statement...........................................................................................................................................16  
Moved the component selection portion of the Buck Controller (BUCK1) section into the Typical Applications  
section ............................................................................................................................................................. 45  
Changed R1 to R3 in the Compensation of the Buck Controller section..........................................................46  
Added the Adjusting the Output Voltage for the BUCK2 and BUCK3 Converter to the Detailed Design  
Procedure in the Synchronous Buck Converters BUCK2 and BUCK3 section................................................ 48  
Changed the inductance, capacitance and FLC values from 3.3 µH, 20 µF, and 12.9 kHz to 1.5 µH, 39 µF,  
and 13.7 kHz (respectively) in the For example: section of the Compensation of the BOOST Converter  
section.............................................................................................................................................................. 52  
Added the Linear Regulator application section .............................................................................................. 53  
Changes from Revision * (May 2013) to Revision A (June 2013)  
Page  
Changed VPOR rising VIN typ value from 4.1 to 4.2............................................................................................9  
Changed VPOR_hyst values from 0.37 min, 0.5 typ, 0.63 max to 0.47 min, 0.6 typ, and 0.73 max, respectively....  
9
Changed VDropout max value from 140 to 143.....................................................................................................9  
Changed VREF_OK threshold typ and max values from 3 to 3.07 and 3.09 to 3.12, respectively. ...................... 9  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
5 说明)  
此器件采用一个高压降压控制器进行预稳压并结合使用两个降压转换器和一个升压转换器进行后稳压。进一步  
集成的低压降稳压器 (LDO) 整合了电源的概念提供了一套带有五个独立电压轨的灵活系统设计。此器件提供一  
个低功率状态所有电源轨关闭时的 LPM0来在系统一直连接至电池线路时减少流耗。所有输出受过载和过热  
保护。  
外部 PMOS 保护功能使器件能够承受高达 80V 的瞬态电压。该外部 PMOS 还可用于安全关键型应用以在其中  
一个电源轨出现故障欠压、过压或过流时保护系统。  
内部软启动可确保所有电源的启动都能够得到控制。每个电源的输出电压均可通过外部电阻网络设置进行调节。  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
42  
VSSENSE  
BOOT3  
VIN  
GPFET  
VINPROT  
HSCTRL  
HSSENSE  
WAKE  
VSUP3  
PH3  
PGND3  
VMON3  
COMP3  
VSENSE3  
VSENSE2  
COMP2  
VMON2  
PGND2  
PH2  
TOP VIEW  
EXTSUP  
VREG  
BOOT1  
GU  
PH1  
GL  
VSUP2  
14  
29  
PGND1  
BOOT2  
6-1. RVJ Package. 56-Pin VQFN With Exposed Thermal Pad. Top View.  
6-1. Pin Functions  
PIN  
PULLUP  
PULLDOWN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
10  
BOOT1  
BOOT2  
I
I
The capacitor on these pins acts as the voltage supply for the high-side MOSFET gate-drive circuitry.  
The capacitor on these pins act as the voltage supply for the high-side MOSFET gate drive circuitry.  
29  
The capacitor on these pins act as the voltage supply for the BUCK3 high-side MOSFET gate drive  
circuitry.  
BOOT3  
42  
I
COMP1  
COMP2  
COMP3  
18  
34  
37  
O
I
Error amplifier output for the switching controller. External compensation network is connected to this node.  
Compensation selection for the BUCK2 switching converter  
I
Compensation selection for the BUCK3 switching converter.  
Error amplifier output for the boost switching controller. External compensation network is connected to this  
node.  
COMP5  
20  
O
CSN  
44  
55  
8
I
O
I
Pullup  
SPI Chip select  
DVDD  
EXTSUP  
GL  
Internal DVDD output for decoupling  
Optional LV input for gate driver supply  
Gate driver low-side FET  
13  
56  
3
O
O
O
O
O
I
GND  
Analog GND, digital GND and substrate connection  
Gate driver external protection PMOS FET.  
Gate driver high-side FET  
GPFET  
GU  
11  
5
HSCTRL  
HSPWM  
High-side gate driver output  
49  
6
Pulldown  
High side and LED PWM input  
HSSENSE  
IRQ  
I
Sense input high side and LED  
28  
51  
OD  
O
Low battery interrupt output in operating mode  
Linear regulated output (connect a low ESR ceramic output capacitor to this terminal)  
LDO  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS65310A-Q1  
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
PULLUP  
PULLDOWN  
TYPE(1)  
DESCRIPTION  
NAME  
PGND1  
PGND2  
PGND3  
PGND5  
PH1  
NO.  
14  
32  
39  
22  
12  
31  
40  
23  
26  
27  
15  
16  
46  
45  
47  
24  
O
O
O
O
O
O
O
O
OD  
OD  
I
Ground for low-side FET driver  
Power ground of synchronous converter BUCK2  
Power ground of synchronous converter BUCK3  
Power ground boost converter  
Switching node - BUCK1 (floating ground for high-side FET driver)  
Switching node BUCK2  
PH2  
PH3  
Switching node BUCK3  
PH5  
Switching node boost  
PRESN  
RESN  
S1  
Peripherals reset  
System reset  
Differential current sense inputs for BUCK1, S2 pull-down only active in RAMP and ACTIVE state  
S2  
I
Pulldown  
SCK  
I
Pulldown  
Pulldown  
SPI Clock  
SDI  
I
SPI controller out, peripheral in  
SPI controller in, peripheral out - push-pull output supplied by VIO  
Booster output voltage  
SDO  
O
I
VBOOST  
Unprotected supply input for the base functionality and band gap 1. Supplied blocks are: RESET, WD,  
wake, SPI, temp sensing, voltage monitoring and the logic block.  
VIN  
2
4
I
I
I
VINPROT  
VIO  
Main input supply pin (gate drivers and bandgap2)  
Supply input for the digital interface to the MCU. Voltage on this input is monitored. If VIO falls below UV  
threshold a reset is generated and the part enters error mode.  
48  
VMON1  
VMON2  
VMON3  
VREF  
17  
33  
38  
53  
9
I
I
Input pin for the independent voltage monitor at BUCK1  
Input pin for the independent voltage monitor at BUCK2  
I
Input pin for the independent voltage monitor at BUCK3  
O
O
Accurate reference voltage output for peripherals on the system (for example, ADC)  
Internal regulator for gate driver supply (decoupling) and VREF  
VREG  
Input for externally sensed voltage of the output using a resistor divider network from their respective  
output line to ground.  
VSENSE1  
VSENSE2  
VSENSE3  
VSENSE4  
VSENSE5  
19  
35  
36  
52  
21  
I
I
I
I
I
Input for externally sensed voltage of the output using a resistor divider network from their respective  
output line to ground  
Input for externally sensed voltage of the output using a resistor divider network from their respective  
output line to ground  
Input for externally sensed voltage of the output using a resistor divider network from their respective  
output line to ground.  
Input for externally sensed voltage of the boost output using a resistor divider network from their respective  
output line to ground.  
VSSENSE  
VSUP2  
1
I
I
I
I
Input to monitor the battery line for undervoltage conditions. UV is indicated by the IRQ pin.  
Input voltage supply for switch mode regulator BUCK2  
30  
41  
50  
VSUP3  
Input voltage supply for switch mode regulator BUCK3  
VSUP4  
Input voltage supply for linear regulator LDO  
Input pin for the comparator with shutdown functionality. This input can be used to sense an external NTC  
resistor to shutdown the IC in case the ambient temperature is too high or too low. Tie to GND if not in use.  
VT  
54  
25  
I
Shutdown comparator reference output. Internally connected to DVDD, current-limited. When not in use  
can be connected to DVDD or left open.  
VT_REF  
O
WAKE  
WD  
7
I
I
Pulldown  
Pulldown  
Wake up input  
43  
Watchdog input pin. WD is the trigger input coming from the MCU.  
(1) Description of pin type: I = Input; O = Output; OD = Open-drain output  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
80  
UNIT  
VIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
VINPROT  
60  
VSUP2, 3 (BUCK2 and 3)  
20  
Supply inputs  
VSUP4 (Linear Regulator)  
20  
V
VBOOST  
EXTSUP  
VIO  
20  
13  
5.5  
60  
1  
PH1  
2 for 100 ns  
VSENSE1  
20  
20  
8
0.3  
0.3  
0.3  
0.3  
2  
COMP1  
GU-PH1, GL-PGND1, BOOT1-PH1  
Buck controller  
V
S1, S2  
20  
2
S1-S2  
BOOT1  
68  
20  
20  
20(4)  
0.3  
0.3  
1  
VMON1  
BOOT2, BOOT3  
1(4)  
2 for 10 ns  
PH2, PH3  
VSENSE2, VSENSE3  
COMP2, COMP3  
VMON2, VMON3  
BOOTx PHx  
LDO  
20  
20  
20  
8
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
1 (3)  
0.3  
0.3  
1 (3)  
Buck controller  
V
8
Linear regulator  
Boost converter  
V
V
VSENSE4  
20  
20  
20  
20  
5.5  
20  
60  
80  
20  
VSENSE5  
PH5  
COMP5  
CSN, SCK, SDO, SDI, WD, HSPWM  
RESN, PRESN, IRQ  
WAKE  
Digital interface  
Wake input  
V
V
V
GPFET  
Protection FET  
VIN GPFET  
60  
Battery-sense input  
VSSENSE  
V
Transients up to 80 V(2)  
VT  
5.5  
20  
5.5  
60  
60  
20  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
Temperature sense  
Reference voltage  
V
V
VT_REF  
VREF  
HSSENSE  
High-side and LED  
driver  
HSCTRL  
V
VINPROT-HSSENSE, VINPROT-HSCTRL  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS65310A-Q1  
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.1 Absolute Maximum Ratings (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
55  
55  
55  
MAX  
8
UNIT  
V
Driver-supply decoupling VREG  
Supply decoupling  
DVDD  
3.6  
150  
125  
165  
V
Junction temperature, TJ  
Operating temperature, TA  
Storage temperature, Tstg  
Temperature ratings  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Internally clamped to 60-V, 20-kΩexternal resistor required, current into pin limited to 1 mA.  
(3) Imax = 100 mA  
(4) Maximum 3.5 A  
7.2 ESD Ratings  
VALUE  
±1000  
±150  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
VT pin  
Electrostatic  
discharge  
V(ESD)  
V
Charged-device model (CDM), per  
AEC Q100-011  
All pins except VT  
±500  
Corner pins (BOOT2, IRQ, S1, PGND1,  
VSSENSE, GND, WD, and BOOT3)  
±750  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM MAX UNIT  
Supply voltage at VIN, VINPROT, VSSENSE  
4.8  
40  
55  
40  
55  
40  
125  
125  
150  
150  
V
All electrical characteristics in this specification  
Operating free air  
temperature  
TA  
TJ  
°C  
Shutdown comparator and internal voltage regulators in this specification  
All electrical characteristics in this specification  
Operating virtual junction  
temperature  
°C  
Shutdown comparator and internal voltage regulators in this specification  
7.4 Thermal Information  
TPS65310A-Q1  
THERMAL METRIC(1)  
(RVJ) (VQFN)  
UNIT  
56 PINS  
27  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
11.2  
8
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJT  
4.9  
ψJB  
RθJC(bot)  
0.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application  
Report, SPRA953.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
 
 
 
 
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics  
VIN = VINPROT 4.8 V to 40 V, VSUPx = 3 V to 5.5 V, EXTSUP = 0 V, TJ = 40°C to +150°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT VOLTAGE-CURRENT CONSUMPTION  
VIN  
Device operating range  
Buck regulator operating range, Voltage on VIN and VINPROT pins  
4
3.5  
50  
3.8  
V
V
Falling VIN  
Rising VIN  
3.6  
4.2  
0.6  
VPOR  
Power-on reset threshold  
3.9  
4.3  
VPOR_hyst  
ILPM0  
Power-on reset hysteresis on VIN  
LPM0 current consumption(1)  
0.47  
0.73  
V
TA = 25°C, All off, wake active, VIN = 13 V, Total current into  
VSSENSE, VIN and VINPROT  
44  
60  
μA  
LPM0 current (commercial vehicle  
application) consumption(1)  
TA = 130°C, All off, wake active, VIN = 24.5 V, Total current into  
VSSENSE, VIN and VINPROT  
ILPM0  
μA  
BUCK1 = on, VIN = 13 V, EXTSUP = 0 V,  
Qg of BUCK1 FETs = 15 nC, TA = 25°C, Total current into  
VSSENSE, VIN and VINPROT  
IACTIVE1  
32  
40  
31  
53  
mA  
BUCK1/2/3 = on, VIN = 13 V,  
Qg of BUCK1 FETs = 15 nC, TA = 25°C, Total current into  
VSSENSE, VIN and VINPROT  
IACTIVE123  
mA  
mA  
mA  
ACTIVE total current consumption(2)  
BUCK1/2/3, LDO, BOOST, high-side switch = on, VIN = 13 V,  
Qg of BUCK1 FETs = 15 nC, TA = 25°C, EXTSUP = 5 V from  
BOOST, Total current into VSSENSE, VIN and VINPROT  
IACTIVE1235  
BUCK1/2/3, LDO, BOOST, high-side switch = on, VIN = 13 V,  
Qg of BUCK1 FETs = 15 nC, TA = 25°C, EXTSUP = open, Total  
current into VSENSE, VIN and VINPROT  
IACTIVE1235_noEXT  
BUCK CONTROLLER (BUCK1)  
VBUCK1  
Adjustable output voltage range  
3
11  
V
Internal reference voltage in operating  
mode  
VSense1_NRM  
VSENSE1 pin, load = 0 mA, Internal REF = 0.8 V  
1%  
1%  
Maximum sense voltage VSENSE1 = 0.75 V (low duty cycle)  
Minimum sense voltage VSENSE 1 = 1 V (negative current limit)  
VCOMP1 / (VS1 - VS2)  
60  
65  
4
75  
37.5  
8
90  
23  
12  
VS1-2  
ACS  
VS1-2 for forward OC in CCM  
mV  
Current-sense voltage gain  
RSTN and ERROR mode transition,  
when overcurrent is detected for >  
tOCBUCK1_BLK  
tOCBUCK1_BLK  
1
ms  
tDEAD_BUCK1  
Shoot-through delay, blanking time  
Switching frequency  
25  
fOSC / 10  
100  
ns  
MHz  
ns  
ƒSWBUCK1  
High-side minimum on time  
Maximum duty cycle  
DC  
Duty cycle  
98.75%  
EXTERNAL NMOS GATE DRIVERS FOR BUCK CONTROLLER  
IGpeak  
Gate driver peak current  
Source and sink driver  
VREG = 5.8 V  
0.6  
5
A
IG current for external MOSFET = 200 mA, VREG = 5.8 V,  
VBOOT1-PH1 = 5.8 V  
RDSON_DRIVER  
VDIO1  
10  
Bootstrap diode forward voltage  
0.8  
60  
1.1  
V
IBOOT1 = 200 mA, VREG-BOOT1  
ERROR AMPLIFIER (OTA) FOR BUCK CONTROLLERS AND BOOST CONVERTER  
COMP1/2/3/5 = 0.8 V; source and sink = 5 µA, test in feedback  
loop  
gmEA  
AEA  
Forward transconductance  
Error amplifier DC gain  
0.9  
m℧  
dB  
SYNCHRONOUS BUCK CONVERTER BUCK2/3  
VSUP2/3  
VBUCK2/3  
RDSON-HS  
RDSON-LS  
Supply voltage  
3
11  
5.5  
V
V
Regulated output voltage range  
RDSON high-side switch  
RDSON low-side switch  
0.8  
Iload = 0 to 2 A, VSUPx = VBUCK2/3 + Iload × 0.2 Ω  
VBOOTx PHx = 5.8 V  
0.20  
0.20  
Ω
Ω
VREG = 5.8 V  
Static current limit test. In application L > 1 µH at IHS-Limit and ILS-  
Limit to limit dI / dt  
IHS-Limit  
High-side switch current limit  
Low-side switch current limit  
2.4  
2
2.9  
2.5  
3.5  
A
Static current limit test. In application L > 1 µH at IHS-Limit and ILS-  
Limit to limit dI / dt  
ILS-Limit  
3
2
VSUPLkg  
ƒSWLBuck2/3  
VSense2/3  
VSUP leakage current  
Buck switching frequency  
Feedback voltage  
VSUP = 10 V for high side, controller disabled, TJ = 100°C  
1
µA  
fOSC/5  
With respect to 800-mV internal reference  
High-side minimum on time  
Maximum duty cycle  
1%  
1%  
50  
99.8%  
20  
ns  
ns  
DCBUCK2/3  
Duty cycle  
tDEAD_BUCK2/3  
Shoot-through delay  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS65310A-Q1  
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VIN = VINPROT 4.8 V to 40 V, VSUPx = 3 V to 5.5 V, EXTSUP = 0 V, TJ = 40°C to +150°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
COMP2/3HTH  
COMP2/3LTH  
COMP2/3 input threshold low  
0.9  
1.5  
V
VREG –  
COMP2/3 input threshold high  
V
VREG 0.3  
1.2  
RTIEOFF COMP23  
VDIO2 3  
BOOST CONVERTER  
COMP2/3 internal tie-off  
BUCK2/3 enabled. Resistor to VREG and GND, each  
70  
100  
1.1  
130  
1.2  
kΩ  
Bootstrap-diode forward voltage  
V
IBOOT1 = 200 mA, VREG-BOOT2, VREG-BOOT3  
VBoost  
Boost adjustable-output voltage range  
4.5  
15  
15  
18.5  
0.5  
V
V
Using 3.3-V input voltage, Ieak_switch 1 A  
VBoost  
Boost adjustable-output voltage range Using 3.3-V input voltage Iloadmax = 20 mA, Ipeak_switch = 0.3 A  
RDS-ON_BOOST  
VSense5  
Internal switch on-resistance  
Feedback voltage  
VREG = 5.8 V  
0.3  
Ω
With respect to 800-mV internal reference  
1%  
1%  
fSWLBOOST  
Boost switching frequency  
fOSC / 5  
90%  
MHz  
A
Maximum internal-MOSFET duty cycle  
at fSWLBOOST  
DCBOOST  
ICLBOOST  
Internal switch current limit  
1
1.5  
LINEAR REGULATOR LDO  
VSUP4  
VLDO  
Device operating range for LDO  
Recommended operating range  
IOUT = 1 mA to 350 mA  
3
7
V
V
Regulated output range  
0.8  
5.25  
DC output voltage tolerance at  
VSENSE4  
VSENSE4 = 0.8 V (regulated at internal reference),  
VSUP4 = 3 V to 7 V, IOUT = 1 mA to 350 mA  
VRefLDO  
2%  
2%  
2%  
VSENSE4 = 0.8 V (regulated at internal reference),  
IOUT = 1 mA to 101 mA, CLDO = 6 to 50 µF, trise = 1 µs  
Vstep1  
Load step 1  
2%  
1%  
VSense4  
Feedback voltage  
With respect to 800-mV internal reference  
IOUT = 350 mA, TJ = 25°C  
1%  
143  
127  
156  
275  
VDropout  
Dropout voltage  
IOUT = 350 mA, TJ = 125°C  
IOUT = 350 mA, TJ = 150°C  
VOUT in regulation  
180  
mV  
335  
IOUT  
Output current  
mA  
mA  
350  
1  
ILDO-CL  
Output current limit  
VOUT = 0 V, VSUP4 = 3 V to 7 V  
1000  
400  
Frequency = 100 Hz  
60  
50  
25  
Vripple = 0.5 VPP, IOUT = 300 mA,  
CLDO = 10 µF  
PSRRLDO  
Power-supply ripple rejection  
Frequency = 4 kHz  
dB  
Frequency = 150 kHz  
LDOns10-100  
LDOns100-1k  
CLDO  
10-µF output capacitance, VLDO = 2.5 V  
10-µF output capacitance, VLDO = 2.5 V  
20  
6
Output noise 10 Hz 100 Hz  
Output noise 100 Hz 10 kHz  
Output capacitor  
µV/(Hz)  
µV/(Hz)  
µF  
6
50  
Ceramic capacitor with ESR range, CLDO_ESR = 0 to 100 mΩ  
LED AND HIGH-SIDE SWITCH CONTROL  
VHSSENSE  
Current-sense voltage  
370  
4
400  
430  
60  
mV  
V
VINPROT HSSENSE, high-side switch in current limit  
Common-mode range for current  
sensing  
VCMHSSENSE  
See VINPROT  
Ramping negative  
Ramping positive  
5
26  
10  
70  
88  
87  
20  
38  
35  
50  
VINPROT HSSENSE open load  
threshold  
VHSOL_TH  
mV  
VHSOL_HY  
tHSOL_BLK  
Open load hysteresis  
18  
28  
mV  
µs  
Open-load blanking time  
100  
92.5  
90  
140  
96  
Ramping positive  
VINPROT HSSENSE load short  
detection threshold  
VHS SC  
% VHSSENSE  
Ramping negative from load short condition  
93  
VINPROT HSSENSE short circuit  
hysteresis  
VHSSC_HY  
1
4
% VHSSENSE  
Net time in current-limit to disable  
driver  
tHSS CL  
5
6
ms  
µs  
V
tS HS  
Current-limit sampling interval  
Voltage at HSCTRL when OFF  
100  
VINPROT  
VHSCTRLOFF  
VINPROT  
0.5  
Clamp voltage between HSSENSE –  
HSCTRL  
VGS  
6.1  
7.7  
30  
8.5  
30  
V
Time from rising HSPWM until high-side switch in current limitation,  
±5% settling  
µs  
tON  
Turn on time  
Time from rising HSPWM until high-side switch until voltage-clamp  
between HSSENSE HSCTRL active (within VGS limits)  
60  
µs  
VOS_HS  
Overshoot during turnon  
VOS_HS = VINPROT - HSSENSE  
400  
mV  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VIN = VINPROT 4.8 V to 40 V, VSUPx = 3 V to 5.5 V, EXTSUP = 0 V, TJ = 40°C to +150°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICL_HSCTRL  
HSCTRL current limit  
2
4.1  
5
mA  
Internal pullup resistors between  
VINPROT and HSCTRL  
RPU_HSCTRL  
70  
100  
100  
130  
130  
kΩ  
kΩ  
RPU_HSCTRL-  
Internal pullup resistors between  
HSCTRL and HSSENSE  
70  
2
HSSENSE  
VI_high  
VI_low  
High level input voltage  
Low level input voltage  
Input voltage hysteresis  
HSPWM input frequency  
External sense resistor  
HSPWM, VIO = 3.3 V  
HSPWM, VIO = 3.3 V  
HSPWM, VIO = 3.3 V  
V
V
0.8  
500  
500  
50  
VI_hys  
fHS_IN  
RSENSE  
150  
100  
1.5  
mV  
Hz  
Ω
Design info, no device parameter  
Design info, no device parameter  
External MOSFET gate source  
capacitance  
CGS  
CGD  
100  
2000  
500  
pF  
pF  
External MOSFET gate drain  
capacitance  
REFERENCE VOLTAGE  
VREF  
Reference voltage  
3.3  
V
VREF-tol  
Reference voltage tolerance  
Reference voltage current limit  
Capacitive load  
IVREF = 5 mA  
1%  
25  
1%  
10  
IREFCL  
mA  
µF  
CVREF  
0.6  
5
REFns10-100  
REFns100-1k  
2.2-µF output capacitance, IVREF = 5 mA  
2.2-µF output capacitance, IVREF = 5 mA  
Threshold, VREF falling  
20  
Output noise 10 Hz100 Hz  
Output noise 100 Hz10 kHz  
µV/(Hz)  
µV/(Hz)  
V
6
2.91  
14  
3.07  
70  
3.12  
140  
20  
VREF_OK  
TREF_OK  
Reference voltage OK threshold  
Hysteresis  
mV  
Reference voltage OK deglitch time  
10  
µs  
SHUTDOWN COMPARATOR (TJ = 55°C TO +150°C)  
IVT_REF = 20 µA. Measured as drop voltage with respect to VDVDD  
1
17  
500  
Shutdown comparator reference  
VT_REF  
voltage  
mV  
mA  
IVT_REF = 600 µA. Measured as drop voltage with respect to  
VDVDD. No VT_REF short-circuit detection.  
200  
420  
1100  
Shutdown comparator reference  
current limit  
IVT_REFCL  
VT_REF = 0  
0.6  
0.9  
1
1.4  
1.8  
Threshold, VT_REF falling. Measured as drop voltage with respect  
to VDVDD  
1.2  
130  
V
VVT_REF SH  
VT_REF short circuit detection  
Hysteresis  
mV  
Input voltage threshold on VT, rising  
edge triggers shutdown  
VTTH-H  
0.48  
0.46  
0.50  
0.52  
0.52  
VT_REF  
This feature is specified by design to work down to 55°C.  
Input voltage threshold on VT, falling  
voltage enables device operation  
VTTH-L  
VTTOL  
0.48  
VT_REF  
mV  
This feature is specified by design to work down to 55°C.  
Threshold variation  
20  
50  
50  
VTTH-H VT_REF / 2, VTTH-L VT_REF / 2  
TJ = 20°C to +150°C  
20  
400  
200  
IVT_leak  
Leakage current  
nA  
V
TJ = 55°C to 20°C  
Threshold, VT_REF rising. Measured as drop voltage with respect  
to VDVDD  
0.42  
0.9  
1.2  
VT_REFOV  
VT_REF overvoltage threshold  
VT_REF fault deglitch time  
Hysteresis  
100  
mV  
µs  
TVT_REF_FLT  
WAKE INPUT  
VWAKE_ON  
Overvoltage or short condition on VT_REF  
10  
20  
Voltage threshold to enable device  
WAKE pin is a level sensitive input  
3.3  
10  
3.7  
20  
V
Min. pulse width at WAKE to enable  
device  
tWAKE  
VWAKE = 4 V to suppress short spikes at WAKE pin  
µs  
VBAT UNDERVOLTAGE WARNING  
VSSENSETH_L  
VSSENSETH_H  
VSSENSE-HY  
tVSSENSE_BLK  
IVSLEAK  
VSSENSE falling-threshold low  
SPI selectable, default after reset  
SPI selectable  
4.3  
6.2  
4.7  
6.8  
V
V
VSSENSE falling-threshold high  
VSSENSE hysteresis  
Blanking time  
0.2  
V
10  
35  
1
µs  
µA  
µA  
mA  
VVSENSE < VSSENSETH_xx IRQ asserted  
LPM0 mode, VSSENSE 55 V  
LPM0 mode, VSSENSE 60 V  
LPM0 mode, VSSENSE 80 V  
IVSLEAK60  
Leakage current at VSSENSE  
100  
25  
IVSLEAK80  
5
Internal resistance from VSSENSE to  
GND  
RVSSENSE  
VSSENSE = 14 V, disabled in LPM0 mode  
0.7  
1
1.3  
MΩ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VIN = VINPROT 4.8 V to 40 V, VSUPx = 3 V to 5.5 V, EXTSUP = 0 V, TJ = 40°C to +150°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN OVERVOLTAGE PROTECTION  
VIN overvoltage-shutdown threshold 1  
(rising edge)  
VOVTH_H  
Selectable with SPI  
50  
36  
60  
38  
V
V
VIN overvoltage-shutdown threshold 2  
(rising edge)  
VOVTH_L  
Selectable with SPI, default after reset  
Threshold 1  
0.2  
1.5  
1.7  
2
3
VOVHY  
VIN overvoltage hysteresis  
V
Threshold 2; default after reset  
VIN > VOVTH_H GPFET off  
VIN > VOVTH_L GPFET off  
2.5  
tOFF BLK-H  
tOFF BLK-L  
Overvoltage delay time  
1
µs  
µs  
Overvoltage blanking time  
10  
20  
WINDOW WATCHDOG  
TESTSTART, TESTSTOP, VTCHECK , and RAMP mode:  
Begins after entering each mode.  
ACTIVE mode:  
ttimeout  
Timeout  
230  
300  
370  
ms  
ms  
WD timeout begins with rising edge of RESN  
Spread spectrum disabled  
Spread spectrum enable  
18  
20  
22  
22  
tWD  
Watchdog window time  
19.8  
24.2  
tWD_FAIL  
tWD_BLK  
VI_high  
VI_low  
Closed window time  
WD filter time  
tWD / 4  
0.5  
µs  
V
High level input voltage  
Low level input voltage  
Input voltage hysteresis  
WD, VIO = 3.3 V  
WD, VIO = 3.3 V  
WD, VIO = 3.3 V  
2
0.8  
V
VI_hys  
150  
500  
mV  
RESET AND IRQ BLOCK  
tRESNHOLD RESN hold time  
1.8  
0
2
2.2  
0.4  
ms  
V
Low level output voltage at RESN,  
PRESN and IRQ  
VRESL  
VIN 3 V, IxRESN = 2.5 mA  
VIN = 0 V, VIO = 1.2 V, IxRESN = 1 mA  
Vtest = 5.5 V  
Low level output voltage at RESN and  
PRESN  
VRESL  
0
0.4  
1
V
Leakage current at RESN, PRESN and  
IRQ  
IRESLeak  
µA  
Number of consecutive reset events for  
transfer to LPM0  
NRES  
7
tIRQHOLD  
tDR IRQ PRESN  
IRQ hold time  
After VVSENSE < VSSENSETH for tVSSENSE_BLK  
10  
20  
µs  
µs  
Rising edge delay of IRQ to rising  
edge of PRESN  
2
2
Falling edge delay of RESN to  
PRESN / IRQ  
tDF RESN_PRESN  
µs  
EXTERNAL PROTECTION  
VCLAMP  
Gate to source clamp voltage  
14  
15  
20  
25  
25  
V
VIN GPFET, 100 µA  
VIN = 14 V, GPFET = 2 V  
VIN = 14 V, turn off  
IGPFET  
Gate turn on current  
Gate driver strength  
µA  
Ω
RDSONGFET  
THERMAL SHUTDOWN AND OVERTEMPERATURE PROTECTION  
TSDTH  
TSDHY  
tSD-BLK  
Thermal shutdown  
Junction temperature  
160  
175  
20  
°C  
°C  
µs  
Hysteresis  
Blanking time before thermal shutdown  
10  
20  
20  
Overtemperature flag is implemented as local temp sensors and  
expected to trigger before the thermal shutdown  
TOTTH  
TOTHY  
tOT_BLK  
Overtemperature flag  
Hysteresis  
150  
165  
20  
°C  
°C  
µs  
Blanking time before thermal over  
temperature  
10  
VOLTAGE MONITORS BUCK1/2/3, VIO, LDO, BOOSTER  
VMONTH_L  
VMONTH_H  
VMON_HY  
Voltage monitor reference, falling edge REF = 0.8 V  
Voltage monitor reference, rising edge REF = 0.8 V  
90  
92  
108  
2
94  
%
%
%
106  
110  
Voltage monitor hysteresis  
Undervoltage monitoring at VIO –  
falling edge  
VVIOMON_TH  
VVIOMON_HY  
tVMON_BLK  
3
3.13  
20  
V
V
UV_VIO hysteresis  
0.05  
Blanking time between UV or OV  
condition to RESN low  
UV/OV = BUCK1/2/3 UV = VIO  
10  
µs  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VIN = VINPROT 4.8 V to 40 V, VSUPx = 3 V to 5.5 V, EXTSUP = 0 V, TJ = 40°C to +150°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Blanking time between undervoltage  
condition to ERROR mode transition or  
corresponding SPI bit  
BUCK1/2/3 ERROR mode LDO or BOOST SPI bit set or turn  
off  
tVMONTHL_BLK  
1
ms  
Blanking time between undervoltage  
condition to ERROR mode transition  
tVMONTHL_BLK1  
VIO only  
10  
10  
20  
20  
µs  
µs  
Blanking time between overvoltage  
condition to ERROR mode transition  
tVMONTHH_BLK1  
BUCK1/2/3 ERROR mode VIO has no OV protection  
Blanking time LDO and BOOST  
overvoltage condition to corresponding  
SPI bit or ERROR mode  
LDO or BOOST (ACTIVE mode) SPI bit set or turn off LDO  
(VTCHECK or RAMP mode) ERROR mode  
tVMONTHH_BLK2  
20  
40  
µs  
GND LOSS  
VGLTH-low  
GND loss threshold low  
GND loss threshold high  
GND to PGNDx  
GND to PGNDx  
V
V
0.31  
0.25  
0.19  
VGLTH-high  
0.19  
0.25  
0.31  
Blanking time between GND loss  
condition and transition to ERROR  
state  
tGL-BLK  
5
20  
µs  
POWER-UP SEQUENCING  
tSTART1  
tSTART2  
tSTART  
Soft start time of BOOST  
From start until exceeding VMONTH_L + VMON_HY Level  
0.7  
0.5  
2.7  
2
ms  
ms  
ms  
Soft start time of BUCK1/2/3 and LDO From start until exceeding VMONTH_L + VMON_HY Level  
Startup DVDD regulator  
From start until exceeding VMONTH_L + VMON_HY Level  
Internal SSDONE_BUCK1 signal  
3
Sequencing time from start of BUCK1  
to BUCK2 and BOOST  
tSEQ2  
3
14  
4
ms  
ms  
ms  
Startup time from entering  
TESTSTART to RESN high  
tWAKE-RES  
GPFET = IRFR6215  
Sequencing time from start of BOOST  
to BUCK3  
tSEQ1  
Internal SSDONE_BOOST signal  
1
INTERNAL VOLTAGE REGULATORS (TJ = 55°C to +150°C)  
IVREG = 0 mA to 50 mA, VINPROT = 6.3 V to 40 V and  
EXTSUP = 6.3 V to 12 V  
VREG  
Internal regulated supply  
5.5  
5.8  
6.1  
V
IVREG = 0 mA to 50 mA and EXTSUP ramping positive,  
ACTIVE mode  
VEXTSUP-TH  
VEXTSUP-HY  
VREGDROP  
Switch over voltage  
4.4  
4.6  
4.8  
300  
200  
V
Switch over hysteresis  
Dropout voltage on VREG  
100  
200  
mV  
mV  
IVREG = 50 mA, EXTSUP = 5 V / VINPROT = 5 V and  
EXTSUP = 0 V / VINPROT = 4 V  
IREG_CL  
EXTSUP = 0 V, VREG = 0 V  
mA  
mA  
µF  
V
250  
250  
1.2  
50  
50  
3.3  
Current limit on VREG  
Capacitive load  
IREG_EXTSUP_CL  
CVREG  
EXTSUP 4.8 V, VREG = 0 V  
2.2  
4
VREG rising  
Hysteresis  
3.8  
4.2  
VREG-OK  
VREG undervoltage threshold  
350  
420  
3.3  
490  
3.45  
mV  
V
VDVDD  
Internal regulated low voltage supply  
DVDD undervoltage threshold  
DVDD overvoltage threshold  
3.15  
2.1  
VDVDD UV  
VDVDD OV  
DVDD falling  
DVDD rising  
V
3.8  
20  
V
Blanking time from DVDD overvoltage  
condition to shutdown mode transition  
tDVDD OV  
10  
µs  
GLOBAL PARAMETERS  
RPU  
Internal pullup resistor at CSN pin  
70  
70  
100  
100  
200  
130  
130  
260  
kΩ  
kΩ  
kΩ  
nA  
Internal pulldown resistor at pins:  
HSPWM , SDI, SCK, WD, S2(3)  
RPD  
RPD-WAKE  
ILKG  
Internal pulldown resistor at WAKE pin  
140  
Input pullup current at the VSENSE1–  
5 and VMON13 pins  
VTEST = 0.8 V  
200  
100  
50  
Internal oscillator used for buck or  
boost switching frequency  
fOSC  
4.6  
4.9  
5.2  
MHz  
MHz  
fspread  
SPI  
Spread-spectrum frequency range  
0.8 × fOSC  
fOSC  
VI_high  
VI_low  
VI_hys  
VO_high  
VO_low  
High-level input voltage  
Low-level input voltage  
Input voltage hysteresis  
SDO-output high voltage  
SDO-output low voltage  
CSN, SCK, SDI; VIO = 3.3 V  
CSN, SCK, SDI; VIO = 3.3 V  
CSN, SCK, SDI; VIO = 3.3 V  
VIO = 3.3 V ISDO = 1 mA  
2
V
V
0.8  
150  
3
500  
mV  
V
VIO = 3.3 V ISDO = 1 mA  
0.2  
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
VIN = VINPROT 4.8 V to 40 V, VSUPx = 3 V to 5.5 V, EXTSUP = 0 V, TJ = 40°C to +150°C, unless otherwise noted  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CSDO  
SDO capacitance  
50  
pF  
(1) The quiescent current specification does not include the current flow through the external feedback resistor divider. Quiescent current  
is non-switching current, measured with no load on the output with VBAT = 13 V.  
(2) Total current consumption measured on the EVM includes switching losses.  
(3) RAMP and ACTIVE only.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.6 SPI Timing Requirements  
MIN  
240  
100  
100  
NOM  
MAX UNIT  
tSPI  
SCK period  
ns  
ns  
ns  
tSCKL  
tSCKH  
SCK low time  
SCK high time  
Time between falling edge of CSN and SDO output valid (FSI Falling SDO < 0.8 V; Rising  
tFSIV  
80  
55  
ns  
ns  
bit)  
SDO > 2 V  
Falling SDO < 0.8 V; Rising  
SDO > 2 V  
tSDOV  
Time between rising edge of SCK and SDO data valid  
tSDIS  
Setup time of SDI before falling edge of SCK  
Hold time for SDI after falling edge of SCK  
Hold time of CSN after last falling edge of SCK  
Delay between rising edge of CSN and SDO tri-state  
Minimum time between two SPI commands  
20  
20  
50  
ns  
ns  
ns  
ns  
µs  
tSDIH  
tHCS  
tSDOtri  
tmin2SPI  
80  
10  
CSN  
SCK  
TSPI  
tHcs  
tFSIV  
tSDOV  
tSCKL  
tSCKH  
tSDOtri  
FSI  
Bit15  
Bit14  
Bit0  
SDO  
tSDIS  
tSDIH  
Bit15  
Bit14  
Bit0  
SDI  
7-1. SPI Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
7.7 Typical Characteristics  
All parameters are measured on the TI EVM, unless otherwise specified. For efficiency measurement setup,  
please see to SLVA610.  
Buck 1 Characteristics  
7-2. Reduction of Current Limit vs Duty Cycle  
Buck 2 and 3 Characteristics  
VSUP3 = 3.8 V, 25°C  
810  
VSUP3 = 3.3 V, 25°C  
VSUP3 = 5 V, 25°C  
VSUP2 = 3.8 V, 25°C  
804  
808  
VSUP3 = 3.8 V, 140°C  
VSUP2 = 5 V, 25°C  
VSUP3 = 3.8 V, -40°C  
806  
804  
802  
800  
798  
796  
794  
792  
790  
802  
800  
798  
796  
794  
792  
790  
VSUP2 = 3.8 V, 140°C  
VSUP2 = 3.8 V, -40°C  
0
0.5  
1
1.5  
2
0
0.5  
1
1.5  
2
Load Current (A)  
Load Current (A)  
7-3. Load Regulation Buck2 = 3.3 V EXTSUP Pin  
7-4. Load Regulation Buck3 = 1.2 V EXTSUP Pin  
Open  
Open  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
805  
804  
803  
802  
801  
800  
799  
798  
797  
796  
805  
804  
803  
802  
801  
800  
799  
798  
797  
796  
795  
25°C  
25°C  
-40°C  
140°C  
-40°C  
140°C  
795  
2
2
4
6
8
10  
12  
4
6
8
10  
12  
VSUP3 (V)  
VSUP2 (V)  
7-5. Open-Load Line Regulation Buck2 = 3.3 V  
7-6. Open-Load Line Regulation Buck3 = 1.2 V  
EXTSUP Pin Open  
EXTSUP Pin Open  
6
5.5  
5
10  
9
8
4.5  
4
7
6
3.5  
3
5
2.5  
2
4
3
25°C  
25°C  
1.5  
-40°C  
125°C  
2
1
-40°C  
1
140°C  
0.5  
0
0
3
5
7
9
11  
2
4
6
8
10  
12  
VSUP2 (V)  
VSUP3 (V)  
7-7. Open-Load Supply Current Buck2 = 3.3 V  
7-8. Open-Load Supply Current Buck3 = 1.2 V  
EXTSUP Pin Open  
EXTSUP Pin Open  
801  
800.5  
800  
802  
801.5  
801  
800.5  
800  
799.5  
799  
799.5  
798.5  
VSUP2 = 3.8 V, NO LOAD  
VSUP3 = 3.8 V, NO LOAD  
799  
798  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
798.5  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110  
130  
150  
Temperature (°Celcius)  
Temperature (°Celcius)  
7-9. Buck2 = 3.3-V VSENSE2 vs Temperature  
7-10. Buck3 = 1.2-V VSENSE3 vs Temperature  
EXTSUP Pin Open  
EXTSUP Pin Open  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Boost Characteristics  
0.81  
0.805  
0.8  
0.81  
0.805  
0.8  
0.795  
0.79  
0.795  
0.79  
0
0.1  
0.2  
0.3  
0.4  
0.5  
3
3.2  
3.4  
3.6  
3.8  
4
Load Current (A)  
VSUP5 (V)  
7-12. Load Regulation Boost = 5 V At 25°C  
Extsup Pin Open, Boost Supply Input = 3.8 V  
7-11. Open-Load Line Regulation Boost = 5 V At  
25°C Extsup Pin Open, Boost Supply Input = 3.8 V  
805  
804  
803  
802  
801  
800  
799  
798  
797  
796  
795  
-50  
0
50  
100  
150  
Temperature (°Celcius)  
7-13. Boost = 5-V Vsense5 vs Temperature Extsup Pin Open, Input Supply = 3.8 V, 0.4 A Load  
LDO Noise Characteristics  
(2 × 3.3-µF output capacitance, LDO output = 2.5 V, VSUP4 = 3.8 V)  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
10  
9
8
7
6
5
4
3
2
1
0
Noise [LDO ON]  
Noise [LDO OFF]  
(Noisefloor)  
10  
100  
1000  
10000  
Frequency (Hz)  
7-14. LDO Noise Density  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The device includes one high-voltage buck controller for pre-regulation combined with a two-buck and one-boost  
converter for post regulation. A further integrated low-dropout (LDO) regulator rounds up the power-supply  
concept and offers a flexible system design with five independent-voltage rails. The device offers a low power  
state (LPM0 with all rails off) to reduce current consumption in case the system is constantly connected to the  
battery line. All outputs are protected against overload and over temperature. An external PMOS protection  
feature makes the device capable of sustaining voltage transients up to 80 V. This external PMOS is also used in  
safety-critical applications to protect the system in case one of the rails shows a malfunction (undervoltage,  
overvoltage, or overcurrent).  
Internal soft-start ensures controlled startup for all supplies. Each power-supply output has an adjustable output  
voltage based on the external resistor-network settings.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.2 Functional Block Diagram  
VBAT  
VINPROT  
IRQ  
UV  
OV  
Protection  
Warning  
DVDD  
+
POR  
VEXTSUP-TH  
VBUCK1  
5.8V  
VREG  
VIO  
UV  
Monitoring  
Bandgap1  
Bandgap2  
VREG  
RESN  
PRESN  
WD  
BOOT1  
RESET  
/
Window  
Watchdog  
Digital  
Logic  
GU  
PH1  
WAKE  
Wake Up  
circuit  
GL  
PGND1  
CSN  
SCK  
SDO  
SDI  
COMP1  
S1  
SPI  
VBUCK1  
S2  
+
-
Bandgap3  
VREF  
VSENSE1  
VMON1  
Voltage  
Monitoring  
DVDD  
VT_REF  
VT  
Short  
Protection  
VBUCK1  
Sync. Buck Converter  
BUCK2  
(low voltage)  
VSUP2  
BOOT2  
+
-
GND  
LT  
VBuck2  
VINPROT  
PH2  
Shutdown  
Comparator  
GND  
COMP2  
PGND2  
HSSENSE  
HSCTRL  
HSPWM  
VSENSE2  
VMON2  
LED Driver  
Voltage  
Monitoring  
VBUCK1  
VBUCK1  
COMP5  
Sync. Buck Converter  
BUCK3  
(low voltage)  
VSUP3  
Booster  
LDO  
(Low voltage)  
BOOT3  
PH5  
VBuck3  
PH3  
Charge  
Pump  
PGND5  
COMP3  
PGND3  
SMPS  
Voltage  
Mode  
VBOOST  
+
-
VBooster  
VSENSE3  
VMON3  
VSENSE5  
Control  
Voltage  
Monitoring  
Voltage  
Monitoring  
Voltage  
Monitoring  
VLDO  
8-1. Detailed Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Buck Controller (Buck1)  
8.3.1.1 Operating Modes  
Mode of Operation Description  
Normal Mode  
(RAMP, ACTIVE)  
Constant frequency current mode  
Continuous or discontinuous mode  
8.3.1.2 Normal Mode PWM Operation  
The main buck controller operates using constant frequency peak current mode control. The output voltage is  
programmable with external resistors.  
The switching frequency is set to a fixed value of ƒSWBUCK1. Peak current-mode control regulates the peak  
current through the inductor such that the output voltage VBUCK1 is maintained to its set value. Current mode  
control allows superior line-transient response. The error between the feedback voltage VSENSE1 and the  
internal reference produces an error signal at the output of the error amplifier (COMP1) which serves as target  
for the peak inductor current. At S1S2, the current through the inductor is sensed as a differential voltage and  
compared with this target during each cycle. A fall or rise in load current produces a rise or fall in voltage at  
VSENSE1, which causes COMP1 to rise or fall respectively, thus increasing or decreasing the current through  
the inductor until the average current matches the load. In this way the output voltage VBUCK1 is maintained in  
regulation.  
Sense Resistor  
VINPROT  
L
RS  
GU  
HS DCR Sensing  
L
RL  
VBUCK1  
PH  
PWM  
Gate  
Drivers  
Logic  
GL  
LS  
RDCR  
CDCR  
Current  
Comparator  
S1  
S2  
Current  
Sensing  
VS1-S2, INT  
VS1-S2, EXT  
VSLOPE  
Slope  
Compensation  
VSENSE1  
COMP1  
gm  
C2  
Error  
Amp  
Current Loop  
(Inner Loop)  
R1  
C1  
Voltage Loop (Outer Loop)  
8-2. Detailed Block Diagram Of Buck 1 Controller  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
The high-side N-channel MOSFET is turned on at the beginning of each clock cycle and kept on until the  
inductor current reaches its peak value as set by the voltage loop. Once the high external FET is turned OFF,  
and after a small delay (shoot-through delay), the lower N-channel MOSFET is turned on until the start of the  
next clock cycle. In dropout operation the high-side MOSFET stays on 100%. In every fourth period the duty  
cycle is limited to 95% in order to charge the bootstrap capacitor at BOOT1. This allows a maximum duty cycle  
of 98.75%.  
The maximum value of COMP1 is clamped so that the maximum current through the inductor is limited to a  
specified value. The BUCK1 controller output voltage is monitored by a central independent voltage-monitoring  
circuit, which has an independent voltage-monitoring bandgap reference for safety reasons. In addition, BUCK1  
is thermally protected with a dedicated temperature sensor.  
8.3.2 Synchronous Buck Converters Buck2 And Buck3  
Both regulators are synchronous converters operating with a fixed switching frequency ƒSW = 0.98 MHz. For  
each buck converter, the output voltage is programmable with external resistors. The synchronous operation  
mode improves the overall efficiency. BUCK3 switches in phase with BUCK1, and BUCK2 switches at a 216°  
shift to BUCK3 to minimize input current ripple.  
Each buck converter can provide a maximum current of 2 A and is protected against short circuits to ground. In  
case of a short circuit to ground, the integrated cycle-by-cycle current limit turns off the high-side FET when its  
current reaches IHS-Limit and the low-side FET is turned on until the end of the given cycle. When the current limit  
is reached in the beginning of the cycle for five consecutive cycles, the pulse-width modulation (PWM) is forced  
low for eight cycles to prevent uncontrolled current build-up. In case the low-side current limit of ILS-Limit is  
reached, for example, due an output short to VSUP2/3, the low-side FET is turned off until the end of the cycle. If  
this is detected shortly after the high-low PWM transition (immediately after the low-side overcurrent comparator  
blanking time), both FETs are turned off for eight cycles.  
The output voltages of BUCK2/3 regulators are monitored by a central independent voltage-monitoring circuit,  
which has an independent voltage-monitoring bandgap reference for safety reasons. In addition BUCK2 and  
BUCK3 are thermally protected with a dedicated temperature sensor.  
8.3.3 BOOST Converter  
The BOOST converter is an asynchronous converter operating with a fixed switching frequency ƒSW = 0.98 MHz.  
It switches in phase with BUCK1. At low load, the boost regulator switches to pulse skipping.  
The output voltage is programmable with external resistors.  
The internal low-side switch can handle maximum 1-A current, and is protected with a current limit. In case of an  
overcurrent, the integrated cycle-by-cycle current-limit turns off the low-side FET when the current reaches  
ICLBOOST until the end of the given cycle. When the current-limit is reached in the beginning of the cycle for five  
consecutive cycles, the PWM is forced low for eight cycles to prevent uncontrolled current build-up.  
The BOOST converter output voltage is monitored by a central independent voltage-monitoring circuit, which has  
an independent voltage-monitoring bandgap reference for safety reasons. If the VMONTH_L > VSENSE5 or VSENSE5  
> VMONTH_H, the output is switched off and the BOOST_FAIL bit in the SPI PWR_STAT register is set. The  
BOOST can be reactivated by setting BOOST_EN bit in the PWR_CONFIG register.  
In addition, the BOOST converter is thermally protected with a dedicated temperature sensor. If TJ > TOTTH, the  
BOOST converter is switched off and bit OT_BOOST in PWR_STAT register is set. Reactivation of the booster is  
only possible if the OT_BOOST bit is 0, and the booster enable bit in the PWR_CONFIG register is set to 1.  
8.3.4 Frequency-Hopping Spread Spectrum  
The TPS65310A-Q1 features a frequency-hopping pseudo-random spectrum or triangular spreading  
architecture. The pseudo-random implementation uses a linear feedback shift register that changes the  
frequency of the internal oscillator based on a digital code. The shift register is designed in such a way that the  
frequency shifts only by one step at each cycle to avoid large jumps in the buck and BOOST switching  
frequencies. The triangular function uses an up-down counter. Whenever spread spectrum is enabled (SPI  
command), the internal oscillator frequency is varied from one BUCK1 cycle to the next within a band of 0.8 x  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
fOSC ... fOSC from a total of 16 different frequencies. This means that BUCK3 and BOOST also step through 16  
frequencies. The internal oscillator can also change its frequency during the period of BUCK2, yielding a total of  
31 frequencies for BUCK2.  
8.3.5 Linear Regulator LDO  
The LDO is a low drop out regulator with an adjustable output voltage through an external resistive divider  
network. The output has an internal current-limit protection in case of an output overload or short circuit to  
ground. In addition, the output is protected against overtemperature. If TJ > TOTTH, the LDO is switched off and  
bit OT_LDO in PWR_STAT register is set. Reactivation of the LDO is only possible through the SPI by setting  
the LDO enable bit in the PWR_CONFIG register to 1 if the OT_LDO bit is 0.  
The LDO output voltage is monitored by a central independent voltage-monitoring circuit, which has an  
independent voltage-monitoring bandgap reference for safety reasons. If the VMONTH_L > VSENSE4 or VSENSE4  
>
VMONTH_H, the output is switched off and the LDO_FAIL bit in the SPI PWR_STAT register is set. The LDO can  
be reactivated through the SPI by setting the LDO_EN bit in the PWR_CONFIG register. In case of overvoltage  
in VTCHECK and RAMP mode, the GPFET is turned off and the device changes to ERROR mode.  
8.3.6 Gate Driver Supply  
The gate drivers of the BUCK1 controller, BUCK2 and BUCK3 converters and the BOOST converter are  
supplied from an internal linear regulator. The internal linear regulator output (5.8-V typical) is available at the  
VREG pin and must be decoupled using a typical 2.2-μF ceramic capacitor. This pin has an internal current-limit  
protection and must not be used to power any other circuits.  
The VREG linear regulator is powered from VINPROT by default when the EXTSUP voltage is lower than 4.6 V  
(typical).  
If the VINPROT is expected to go to high levels, there can be excessive power dissipation in this regulator when  
using large external MOSFETs. In this case, it is advantageous to power this regulator from the EXTSUP pin,  
which can be connected to a supply lower than VINPROT but high enough to provide the gate drive. When  
EXTSUP is connected to a voltage greater than 4.6 V, the linear regulator automatically switches to EXTSUP as  
its input to provide this advantage. This automatic switch-over to EXTSUP can only happen once the  
TPS65310A-Q1 device reaches ACTIVE mode. Efficiency improvements are possible when one of the switching  
regulator rails from the TPS65310A-Q1 device, or any other voltage available in the system is used to power  
EXTSUP. The maximum voltage that must be applied to EXTSUP is 12 V.  
8.4 Device Functional Modes  
8.4.1 RESET  
RESN and PRESN are open drain outputs which are active if one or more of the conditions listed in 8-1 are  
valid. RESN active (low) is extended for tRESNHOLD after a reset is triggered. RESN is the main processor reset  
and also asserts PRESN as a peripheral signal.  
PRESN is latched and is released when window trigger mode of the watchdog is enabled (first rising edge at WD  
pin).  
RESN and PRESN must keep the main processor and peripheral devices in a defined state during power up and  
power down in case of improper supply voltages or a critical failure condition. Therefore, for low supply voltages  
the topology of the reset outputs specify that RESN and PRESN are always held at a low level when RESN and  
PRESN are asserted, even if VIN falls below VPOR or the device is in SHUTDOWN mode.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Loss of LPM clock  
Thermal Shutdown  
RESN  
Mono  
Flop  
WD_RESET  
Loss of GND  
POR  
1  
Voltage Monitor Buck1-3 fail  
Voltage Monitor VIO fail  
Over Temperature BUCK1-3, VREG  
Over Voltage LDO  
PRESN  
RESET  
1  
S
R
Q
WD Trigger  
Over-Current BUCK1  
8-3. RESET Functionality  
8-1. RESET Conditions  
RESET CONDITIONS  
The device reinitializes all registers with their default values. Error counter  
is cleared.  
POR, Loss of LPM Clock, and Thermal Shutdown  
Voltage Monitor BUCK 1-3  
Input voltage at VMON1-3 pin out-of-bounds:  
VVMON1-3 < VMONTH_L or VVMON1-3 > VMONTH_H  
Over Voltage LDO  
Voltage Monitor VIO  
Loss of GND  
Vsense4 > VMONTH_H  
Input voltage at VIO pin out-of-bounds: VVIO < VVIOMON TH  
Open at PGNDx or GND pin  
OT BUCK1-3, VREG  
WD_RESET  
Overtemperature on BUCK13 or VREG  
Watchdog window violation  
Any reset event (without POR, thermal shutdown, or loss of LPM clock) increments the error counter (EC) by  
one. After a reset is consecutively triggered NRES times, the device transfers to the LPM0 state, and the EC is  
reset to 0. The counter is decremented by one if an SPI LPM0_CMD is received. Alternatively, the device can be  
put in LOCK state once an SPI LOCK_CMD is received. Once the device is locked, it cannot be activated again  
by a wake condition. The reset counter and lock function avoid cyclic start-up and shut-down of the device in  
case of a persistent fault condition. The reset counter content is cleared with a POR condition, a thermal  
shutdown or a loss of LPM clock. Once the device is locked, a voltage below VPOR at the VIN pin or a thermal  
shutdown condition are the only ways to unlock the device.  
8.4.2 Soft Start  
The output voltage slopes of BUCK, BOOST and LDO regulators are limited during ramp-up (defined by tSTARTx).  
During this period the target output voltage slowly settles to its final value, starting from 0 V. In consequence,  
regulators that offer low-side transistors (BUCK1, BUCK2 and BUCK3) actively discharge their output rails to the  
momentary ramp-value if previously charged to a higher value.  
8.4.3 INIT  
Coming from a power-on reset the device enters INIT mode. The configuration data from the EEPROM is loaded  
in this mode. If the checksum is valid and the internal VREG monitor is indicating an undervoltage condition  
(self-test VREG comparator), the device enters TESTSTART.  
8.4.4 TESTSTART  
TESTSTART mode is entered:  
After the INIT state (coming from power on)  
After detecting that VT > VTTH-H  
After ERROR mode and the fail condition is gone  
After a wake command in LPM0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
In this mode the OV/UV comparators of BUCK1-3, BOOST, LDO and VIO are tested. The test is implemented in  
such a way that during this mode all comparators have to deliver a 1 (fail condition). If this is the case the device  
enters TESTSTOP mode.  
If this is not the case, the device stays in TESTSTART. If the WAKE pin is low, the device enters LPM0 after  
ttimeout. If the WAKE pin is high, the part stays in TESTSTART.  
8.4.5 TESTSTOP  
In this mode the OV/UV comparators are switched to normal operation. It is expected that only the UV  
comparators give a fail signal. In case there is an OV condition on any rail or one of the rails has an  
overtemperature the device stays in TESTSTOP. If the WAKE pin is low the device enters LPM0 mode after  
ttimeout. If the WAKE pin is high, the part stays in TESTSTOP. If there is no overvoltage and overtemperature  
detected, the part enters VTCHECK mode.  
8.4.6 VTCHECK  
VTCHECK mode is used to:  
1. Switch on the external GPFET in case VIN < VOVTH_L  
2. Turn on the VREG regulator and VT_REF  
3. Check if the voltage on pin VT < VTTH-L  
4. Check if the SMPS clock is running correctly  
5. Check if the VREG,VT_REF exceeds the minimum voltage  
If all checks are valid the part enters the RAMP state. In case the device is indicating a malfunction and the  
WAKE pin is low, the device enters LPM0 after ttimeout to reduce current consumption.  
In case the voltage monitors detect an overvoltage condition on BUCK1-3/LDO, a loss of GND or an  
overtemperature condition on BUCK1-3 / VREG the device enters ERROR mode and the error counter is  
increased.  
8.4.7 RAMP  
In this mode the device runs through the power-up sequencing of the SMPS rails (see Power-Up Sequencing).  
8.4.8 Power-Up Sequencing  
After the power-up sequence (described in 8-4), all blocks are fully functional. BUCK1 starts first. After tSEQ2  
elapses and BUCK1 is above the undervoltage threshold, BUCK2 and BOOST start. BUCK3 and VREF start  
one tSEQ1 after BUCK2. After the release of RESN pin, the µC can enable the LDO per SPI by setting bit 4  
LDO_EN in PWR_CONFIG register to 1 (per default, this LDO_EN is set to 0 after each reset to the µC).  
In case any of the conditions listed below happen during power-up sequencing, the device enters ERROR mode  
and the error counter (EC) is increased:  
Overtemperature on BUCK1-3 or VREG  
Overvoltage on BUCK1-3 or LDO  
Overcurrent on BUCK1  
SMPS clock fail  
VT_REF/VREG undervoltage  
Loss of GND  
In case VT > VTTH-H, the device transitions to TESTSTART.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
WakeUp event through WAKE pin  
VPOR  
VIN  
tSTART  
VINPROT  
VREG-OK / VVT_REF_SH  
VREG/  
VT_REF  
VMONTH_L + VMON_HY  
BUCK1  
BUCK1 > VMONTH_L + VMON_HY AND tSEQ2 elapsed before BUCK2 and BOOST are enabled  
tSTART2  
tSEQ2  
VMONTH_L + VMON_HY  
BOOSTER  
tSTART1  
VMONTH_L + VMON_HY  
BUCK2  
VREF  
tSTART2  
VREF_OK  
VMONTH_L + VMON_HY  
BUCK3  
LDO  
LDO enabled through SPI by mC  
tSEQ1  
tSTART2  
VMONTH_L + VMON_HY  
tSTART2  
tRESNHOLD  
RESN  
tWAKE-RES  
WD  
Only when device  
is in ACTIVE state  
PRESN  
With the device in LPM0 mode, the start point of VREG/VT_REF is with the rising edge of WAKE. When input  
voltage is first applied, the rising edge of the VIN pin initiates the start-up sequence even if WAKE is low, and  
enters LPM0 mode if WAKE remains low through NRES timeout events.  
8-4. Power-Up Sequencing  
After the power-up sequence is completed (except LDO) without detecting an error condition, the device enters  
ACTIVE mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS65310A-Q1  
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4.9 Power-Down Sequencing  
There is no dedicated power-down sequencing. All rails are switched off at the same time. The external FETs of  
BUCK1 are switched off and the outputs of BUCK2/3/BOOST (PHx) and the LDO are switched in a high-  
impedance state.  
8.4.10 Active  
This is the normal operating mode of the device. Transitions to other modes:  
ERROR  
The device is forced to go to ERROR in case of:  
Any RESET event (without watchdog reset)  
VREG/VREF/VT_REF below undervoltage threshold  
SMPS clock fail  
During the transition to ERROR mode the EC is incremented.  
LOCKED  
In case a dedicated SPI command (SPI_LOCK_CMD) is issued.  
TESTSTART  
The device moves to TESTSTART after detecting that VT < VTTH-L  
.
LPM0  
The device can be forced to enter LPM0 with a SPI LPM0 command. During this transition the EC is  
decremented.  
If the EC reaches the NRES value, the device transitions to LPM0 mode and EC is cleared. Depending on the  
state of the WAKE pin, the device remains in LMP0 (WAKE pin low) or restart to TESTSTART (WAKE pin high).  
To indicate the device entered LPM0 after EC reached NRES value, a status bit EC_OF (error counter overflow,  
SYS_STAT bit 3) is set. The EC_OF bit is cleared on read access to the SYS_STAT register.  
A watchdog reset in ACTIVE mode only increases the EC, but it does not change the device mode.  
8.4.11 ERROR  
In this mode all power stages and the GPFET are switched off. The devices leave ERROR mode and enter  
TESTSTART if:  
All rails indicate an undervoltage condition  
No GND loss is detected  
No overtemperature condition is detected  
When the EC reaches the NRES value, the device transitions to LPM0 and the EC is cleared. To indicate the  
device entered LPM0 after EC reached NRES, a status bit EC_OF (error counter overflow, SYS_STAT bit 3) is  
set. The EC_OF bit is cleared on read access to the SYS_STAT register.  
8.4.12 LOCKED  
Entering this mode disables the device. The only way to leave this mode is through a power-on reset, thermal  
shutdown, or the loss of an LPM clock.  
8.4.13 LPM0  
Low-power mode 0 is used to reduce the quiescent current of the system when no functionality is needed. In this  
mode the GPFET and all power rails except for DVDD are switched off.  
In case a voltage > VWAKE_ON longer than tWAKE is detected on the WAKE pin, the part switches to TESTSTART  
mode.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4.14 Shutdown  
The device enters and stays in this mode, as long as TJ > TSDTH - TSDHY or VIN < VPOR or DVDD under or  
overvoltage, or loss of low power clock is detected. Leaving this mode and entering INIT mode generates an  
internal POR.  
8.4.14.1 Power-On Reset Flag  
The POR flag in the SYS_STAT SPI register is set:  
When VIN is below the VPOR threshold  
System is in thermal shutdown  
Over or undervoltage on DVDD  
Loss of low power clock  
8.4.15 Wake Pin  
Only when the device is in LPM0 mode, it can be activated by a positive voltage on the WAKE pin with a  
minimum pulse width tWAKE. A valid wake condition is latched. Normal deactivation of the device can only occur  
through the SPI Interface by sending an SPI command to enter LMP0. Once in LMP0, the device stays in LPM0  
when the WAKE pin is low, or restarts to TESTSTART when the WAKE pin is high.  
The WAKE pin has an internal pulldown resistance RPD-WAKE, and the voltage on the pin is not allowed to  
exceed 60 V. A higher voltage compliance level in the application can be achieved by applying an external series  
resistor between the WAKE pin and the external wake-up signal.  
The device cannot be re-enabled by toggling the WAKE pin when the device is in LOCKED state (by SPI  
command).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
PowerOn  
Reset  
VIN > VPOR  
(EC==0)  
VT>VTTH-H (if enabled)  
VT_ref_ok = 1‘  
& VT<VTTH-L  
& vreg_ok = 1‘  
& SMPS clock O.K.  
VTCHECK  
RAMP  
no OV (BUCK1, LDO)  
Independent voltage monitors  
(IVM)  
OV (BUCK1, LDO)  
& Tj < TOTTH  
OR OV (BUCK2,3 if  
enabled)  
OR Tj > TOTTH  
(BUCK1-3,VREG)  
OR vreg_ok = 0‘  
OR VT_ref_ok = 0‘  
OR no SMPS clock  
OR BUCK1 OC  
OR GND LOSS  
(EC++)  
Timeout**  
& WAKE  
pin low  
INIT  
OV (BUCK1, LDO)  
OR Tj > TOTTH  
(BUCK1-3,VREG)  
OR GND LOSS  
(EC++)  
TESTSTOP  
CRC=O.K.  
& EE ready  
& Vreg_ok = 0  
READY****  
UV and OV  
Independet voltage  
monitors  
Timeout**  
& WAKE  
pin low  
& VIO  
Timeout**  
& WAKE  
pin low  
Voltage Monitors < VMONTHL  
& Tj < TOTTH  
TESTSTART  
ERROR  
EC=NRES (ECã0, EC_OFã1)  
Timeout**  
& WAKE  
pin low  
WD Reset  
(EC++)  
VT>VTTH-H  
All RESET events*** (w/o WD)  
OR vreg_ok = 0‘  
(if enabled)  
Wake  
(WAKE pin  
high)  
OR vref_ok = 0‘  
OR VT_REF_ok = 0‘  
OR no SMPS clock  
(EC++)  
EC=NRES  
(ECã0, EC_OFã1)  
OR SPI LPM0 CMD  
(EC--)  
ACTIVE  
LPM0  
SPI LOCK CMD  
LOCKED  
Tj>TSDTH OR VIN < VPOR  
OR DVDD UV/OV  
OR loss of low power clock  
* GPFET is turned on in VTCHECK, RAMP, ACTIVE and if  
VIN<VINOV  
** TIMEOUT counter will be reset with every state transition  
*** RESET EVENTS : WD, GROUND LOSS, VOLTAGE  
MONITOR BUCK1, MONITOR BUCK2-3(if enabled), Over  
Voltage LDO (if enabled), VOLTAGE MONITOR VIO,  
OVERTEMPERATURE BUCK1-3 OR VREG, BUCK1  
OVERCURRENT  
SHUTDOWN  
Generation of  
POR  
**** READY = VREF_OK & not BUCK1_UV & Power Up  
Sequence completed  
8-5. Operating Mode Transitions  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4.16 IRQ Pin  
The IRQ pin has two different functions. In OPERATING mode, the pin is forced low when the voltage on the  
battery line is below the VSSENSETHx threshold. The IRQ pin is low as long as PRESN is low. If PRESN goes high  
and the battery line is already below the VSSENSETHx threshold, the IRQ pin is forced high for tVSSENSE_BLK  
.
8.4.17 VBAT Undervoltage Warning  
Low battery condition on VSSENSE asserts IRQ output (interrupt for µC, open drain output)  
Sense input can be directly connected to VBAT through the resistor  
Detection threshold for undervoltage warning can be selected through the SPI.  
An integrated filter time avoids false reaction due to spikes on the VBAT line.  
8.4.18 VIN Over Or Undervoltage Protection  
Undervoltage is monitored on the VIN line, for POR generation.  
Two VIN overvoltage shutdown thresholds (VOVTH) can be selected through the SPI. After POR, the lower  
threshold is enabled.  
During LPM0, only the POR condition is monitored.  
An integrated filter time avoids false reaction due to spikes on the VIN line.  
In case of overvoltage, the external PMOS is switched off to protect the device. The BUCK1 controller is not  
switched off and it continues to run until the undervoltage on VREG or BUCK1 output is detected.  
VINPROT  
VBAT  
VSSENSE  
VIN  
GPFET  
IRQ  
UV  
OV  
LOCKED  
ERROR  
LPM0  
PWR_CMD  
Bit0  
LV_THRES  
=
=
1  
INIT  
TESTSTART  
TESTSTOP  
DVDD  
+ POR  
8-6. Overvoltage Or Undervoltage Detection Circuitry  
8.4.19 External Protection  
The external PMOS switch is disabled if:  
The device detects VIN overvoltage  
The device is in ERROR, LOCKED, POR, INIT, TESTSTART, TESTSTOP or LPM0 mode  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
备注  
Depending on the application, the external PMOS can be omitted as long as VBAT < 40 V  
VSSENSE  
VIN  
PCH  
PCH  
GPFET  
VINPROT  
20µA  
50 œ 60V  
GND  
8-7. PMOS Control Circuitry  
8.4.20 Overtemperature Detection And Shutdown  
There are two levels of thermal protection for the device.  
Overtemperature is monitored locally on each regulator.  
OT for BUCK1-3: If a thermal monitor on the buck rails reaches a threshold higher than TOTTH, the device enters  
ERROR mode. Leaving ERROR mode is only possible if the temperature is below TOTTH TOTHY  
.
OT for BOOST/LDO: If the temperature monitor of the BOOST or the LDO reaches the TOTTH threshold, the  
corresponding regulator is switched off.  
Overtemperature Shutdown: is monitored on a central die position. In case the TSDTH is reached, the device  
enters shutdown mode. It leaves shutdown when the TSD sensor is below TSDTH TSDHY. This event internally  
generates a POR.  
8.4.21 Independent Voltage Monitoring  
The device contains independent voltage-monitoring circuits for BUCK13, LDO, VIO and BOOST. The  
reference voltage for the voltage monitoring unit is derived from an independent bandgap. BUCKs 13 use  
separate input pins for monitoring. The monitoring circuit is implemented as a window comparator with an upper  
and lower threshold.  
If there is a violation of the upper (only LDO [RAMP, VTCHECK], or BUCK13) or lower threshold (only  
BUCK13, or VIO), the device enters ERROR mode, RESN and PRESN are asserted low, the external PMOS  
(main system switch) is switched off, and the EC is incremented.  
In TESTSTART mode, a self-test of the independent voltage monitors is performed.  
In case any of the supply rails for BUCK2/3, LDO or BOOST are not used in the application, the respective  
VMON2/3 or VSENSE4/5 pin of the unused supply must be connected to VMON1. Alternatively, the VSENSE4  
pin can also be connected directly to ground in case the LDO is not used.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.4.22 GND Loss Detection  
All power grounds PGNDx are monitored. If the voltage difference to GND exceeds VGLTH-low or VGLTH-high, the  
device enters ERROR mode. RESN and PRESN are asserted low, the external PMOS (main system switch) is  
switched off, and the EC is incremented.  
8.4.23 Reference Voltage  
The device includes a precise voltage reference output to supply a system ADC. If this reference voltage is used  
in the application, a decoupling capacitor between 0.6 and 5 µF must be used. If this reference voltage is not  
used in the application, this decoupling capacitor can be left out. The VREF output is enabled in RAMP state.  
The output is protected against a short to GND.  
8.4.24 Shutdown Comparator  
An auxiliary, short circuit protected output supplied from DVDD is provided at the VT_REF pin. It is used as a  
reference for an external resistive divider to the VT pin. In case a voltage > VTTH is detected on the VT pin, the  
main switch (external PMOS driven by GPFET) is switched off. This functionality can be used to monitor over  
and under temperature (using a NTC resistor) to avoid operation below or above device specifications.  
If the voltage at VT_REF falls below VVT_REF SH while the shutdown comparator is enabled, an ERROR transition  
occurs. The shutdown comparator is enabled in VTCHECK state, and can be turned off by SPI. Disabling the  
comparator saves power by also disabling the VT_REF output.  
8.4.25 LED And High-Side Switch Control  
This module controls an external PMOS in current-limited high-side switch.  
The current levels can be adjusted with an external sense resistor. Enable and disable is done with the HS_EN  
bit. The switch is controlled by the HSPWM input pin. Driving HSPWM high turns on the external FET.  
The device offers an open load diagnostic indicated by the HS_OL flag in the SPI register PWR_STAT. Open  
load is also indicated in case the voltage on VINPROTVSSENSE does not drop below the threshold when  
PWM is low (self-test).  
A counter monitors the overcurrent condition to detect the risk of overheating. While HSPWM = high and HS_EN  
= high the counter is incremented during overcurrent conditions, and decremented if the current is below the  
overcurrent threshold at a sampling interval of tS HS (shown in 8-9). When reaching a net current limit time of  
tHSS CL, the driver is turned off and the HS_EN bit is cleared. This feature can be disabled by SPI bit HS_CLDIS.  
When HS_EN is cleared, the counter is reset.  
VINPROT  
VINPROT  
HSPWM  
VHSOL_TH  
VHSSENSE  
OL  
HSSENSE  
VHS_SC  
HSCTRL  
SC  
ECU  
Connector  
8-8. High-Side Control Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
VHSPWM  
PWM  
VVINPROT - VHSSENSE  
VHSSENSE  
VHS_SC  
countermax ) tHSS_CL  
HS_EN  
HS_CLDIS  
8-9. HS Overcurrent Counter  
备注  
In case the LED or High-Side Switch Control is not used in the application, HSSENSE must be  
connected to VINPROT  
8.4.26 Window Watchdog  
WD in Operating Mode:  
The WD is used to detect a malfunction of the MCU and DSP. Description:  
Timeout trigger mode with long timing starts on the rising edge at RESN  
Window trigger mode with fixed timing after the first and each subsequent rising edge at the WD pin  
Watchdog is triggered by rising edge at the WD pin  
A watchdog reset happens by:  
A trigger pulse outside the WD trigger open window  
No trigger pulse during window time  
After the RESN pin is released (rising edge) the DSP and MCU must trigger the WD by a rising edge on the WD  
pin within a fixed time ttimeout. With this first trigger, the window watchdog functionality is released.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Start of tWD time with a  
rising edge of WD  
VWD  
WD Trigger fail  
WD Trigger open window  
tWD_FAIL_min  
tWD_FAIL_max  
t
tWD1_min  
tWD_min  
tWD_max  
8-10. WD Window Description  
8.4.27 Timeout In Start-Up Modes  
A timer is used to limit the time during which the device can stay in each of the start-up modes: TESTSTART,  
TESTSTOP, VTCHECK and RAMP. If the device enters one of these start-up modes and VIN or VT is not in a  
proper range, the part enters LPM0 after ttimeout is elapsed and the WAKE pin is low.  
8.5 Programming  
8.5.1 SPI  
The SPI provides a communication channel between the TPS65310A-Q1 device and a controller. The  
TPS65310A-Q1 device is always the peripheral. The processor/MCU is always the controller . The SPI controller  
selects the TPS65310A-Q1 device by setting CSN (chip select) to low. SDI (peripheral in) is the data input, SDO  
(peripheral out) is the data output, and SCK (serial clock input) is the SPI clock provided by the controller. If chip  
select is not active (high), the data output SDO is high impedance. Each communication consist of 16 bits.  
1 bit parity (odd) (parity is built over all bits including: R/W, CMD_ID[5:0], DATA[7:0])  
1 bit R/W; read = 0 and write = 1  
6 bits CMD identifier  
8 bits data  
Bit15 Bit14 Bit13 Bit12 Bit11 Bit10  
Bit9  
Bit8  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Parity  
R/W  
CMD_ID5 CMD_ID4 CMD_ID3 CMD_ID2 CMD_ID1 CMD_ID0 DATA7  
DATA6  
DATA5  
DATA4  
DATA3  
DATA2  
DATA1  
DATA0  
8-11. SPI Bit-Frame  
Each command is valid if:  
A valid CMD_ID is sent  
The parity bit (odd) is correct  
Exactly 16 SPI clocks are counted between falling and rising edge of CSN  
The response to each controller command is given in the following SPI cycle. The response address is the  
CMD_ID of the previous sent message and the corresponding data byte. The response data is latched with the  
previous cycle such that a response to a write command is the status of the register before the write access.  
(Same response as a read access.) The response to an invalid command is the original command with the  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
correct parity bit. The response to an invalid number of SPI clock cycles is a SPI_SCK_FAIL communication  
(CMD_ID = 0x03). Write access to a read-only register is not reported as an SPI error and is treated as a read  
access. The initial answer after the first SPI command sent is: CMD_ID[5:0] = 0x3F and Data[7:0] 0x5A.  
8.5.1.1 FSI Bit  
The peripheral transmits an FSI bit between the falling edge of CSN and the rising edge of SCK. If the SDO line  
is high during this time, a failure occurred in the system and the MCU must use the PWR_STAT to get the root  
cause. A low level of SDO indicates normal operation of the device.  
The FSI bit is set when: PWR_STAT ! = 0x00, or (SYS_STAT and 0x98) ! = 0x00, or SPI_STAT ! = 0x00. The FSI  
is cleared when all status flags are cleared.  
8.6 Register Maps  
8.6.1 Register Description  
8-2. Register Description  
CMD_ID  
0x00  
0x03  
0x11  
0x12  
0x21  
0x22  
0x23  
0x24  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x31  
0x32  
0x33  
Name  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
0x00  
SCK[3]  
0xAA  
Bit2  
Bit1  
Bit0  
NOP  
SPI_SCK_FAIL  
LPM0_CMD  
LOCK_CMD  
PWR_STAT  
SYS_STAT  
SPI_STAT  
1
0
0
SCK_OF  
SCK[2]  
SCK[1]  
SCK[0]  
0x55  
BUCK_FAIL  
WD  
VREG_FAIL  
POR  
OT_BUCK  
TestMode  
OT_LDO  
OT_BOOST  
EC_OF  
LDO_FAIL  
EC2  
BOOST_FAIL  
EC1  
HS_OL  
EC0  
SMPCLK_FAIL  
CLOCK_FAIL  
BUCK3-0  
CMD_ID FAIL  
BUCK2-1  
PARITY FAIL  
BUCK2-0  
COMP_STAT  
Serial Nr 1  
BUCK3-1  
Bit [7:0]  
Serial Nr 2  
Bit [15:8]  
Bit [23:16]  
Bit [31:24]  
Bit [39:32]  
Bit [47:40]  
Minor3  
Serial Nr 3  
Serial Nr 4  
Serial Nr 5  
Serial Nr 6  
DEV_REV  
Major3  
F_EN  
Major2  
Major1  
Major0  
Minor2  
HS_EN  
VT_EN  
F2  
Minor1  
Minor0  
IRQ_THRES  
RSV  
PWR_CONFIG  
DEV_CONFIG  
CLOCK_CONFIG  
BUCK2_EN  
BUCK3_EN  
LDO_EN  
BOOST_EN  
HL_CLDIS  
F3  
GPFET_OV_HIGH  
RSV  
F1  
SS_EN  
SS_MODE  
F4  
F0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.2 NOP0X00  
8-12. NOP0X00  
NOP 0x00  
Bit7  
0
Bit6  
0
Bit5  
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
After RESET  
Read  
0
0
0
0
0
0
0
0
0
Write  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.2.1 SPI_SCK_FAIL 0x03  
8-13. SPI_SCK_FAIL 0x03  
SPI_SCK_FAIL 0x03  
Bit7  
1
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
Default after  
RESET  
Read  
1
0
0
SCK_OF  
SCK[3]  
SCK[2]  
SCK[1]  
SCK[0]  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8-13. SPI_SCK_FAIL 0x03 (continued)  
SPI_SCK_FAIL 0x03  
Write  
d.c.  
d.c.  
d.c. d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit Name  
Bit No.  
Description  
Between a falling and a rising edge of CSN, the number of SCK was greater than 16.  
0:  
SCK_OF  
4
1:  
Number of SCK cycles was > 16  
Comment: This flag is cleared after its content is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
The number of rising edges on SCK between a falling and a rising edge of CSN minus 1. Saturates at 0xF if  
16 or more edges are received.  
SCK[3:0]  
3:0  
Comment: This flag is cleared after its content is transmitted to the controller.  
8.6.2.2 LPMO_CMD 0x11  
8-14. LPMO_CMD 0x11  
LPM0_CMD 0x11  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
After RESET  
Read  
0
0
0
0
0
0
0
0
Write  
0xAA  
This command is used to send the device into LPM0 mode.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.2.3 LOCK_CMD 0x12  
8-15. LPMO_CMD 0x12  
LOCK_CMD 0x12  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
After RESET  
Read  
0
0
0
0
0
0
0
0
Write  
0x55  
Sending a lock command (0x55) brings the device into LOCK mode. Only a POR brings the device out of this state.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.2.4 PWR_STAT 0x21  
8-16. PWR_STAT 0x21  
PWR_STAT 0x21  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
Default after  
POR  
Read  
Write  
BUCK_FAIL VREG_FAIL  
d.c. d.c.  
OT_BUCK  
d.c.  
OT_LDO  
d.c.  
OT_BOOST  
d.c.  
LDO_FAIL BOOST_FAIL  
d.c. d.c.  
HS_OL  
d.c.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Bit Name  
Bit No.  
Description  
BUCK power fail flag  
0:  
BUCK_FAIL  
7
1: Power stages shutdown detected caused by OC BUCK1, UV, OV, loss of GND (BOOST + all bucks)  
BUCK_FAIL flag is cleared in case the fail condition is not present anymore and the flag is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
Internal voltage regulator too low  
0:  
VREG_FAIL  
6
1:  
VREG fail  
VREG_FAIL flag is cleared in case the fail condition is not present anymore and the flag is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
BUCK1-3 overtemperature flag  
0:  
OT_BUCK  
5
1:  
IC power stages shutdown due to overtemperature  
OT flag is cleared in case the fail condition is not present anymore and the flag is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
LDO overtemperature flag  
0:  
OT_LDO  
4
1:  
LDO shutdown due to overtemperature  
OT flag is cleared in case the fail condition is not present anymore and the flag is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
BOOST overtemperature flag  
OT_BOOST  
3
0:  
1: BOOST shutdown due to overtemperature  
OT flag is cleared in case the fail condition is not present anymore and the flag is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
LDO under or overvoltage flag  
0:  
LDO_FAIL  
2
1:  
LDO out of regulation  
LDO_FAIL flag is cleared if there is no undervoltage and no overvoltage and the flag is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
Booster under or overvoltage flag or loss of GND  
BOOST_FAIL  
1
0:  
1: Booster out of regulation  
BOOST_FAIL flag is cleared if there is no undervoltage and no overvoltage and the flag was transmitted to the controller.  
Bit Name  
Bit No.  
Description  
High-side switch open load condition  
HS_OL  
0
0:  
1: Open load at high side  
Bit indicates current OL condition of high side (no flag)  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.6.2.5 SYS_STAT 0x22  
8-17. SYS_STAT 0x22  
SYS_STAT 0x22  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
1
Default after  
POR  
0
Read  
Write  
WD  
d.c.  
POR  
d.c.  
Testmode  
d.c.  
SMPCLK_FAIL  
d.c.  
0
EC2  
d.c.  
EC1  
d.c.  
EC0  
d.c.  
d.c.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit Name  
Bit No.  
Description  
Watchdog reset flag  
0:  
WD  
7
1:  
Last reset caused by watchdog  
Comment: This flag is cleared after its content is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
Power-on reset flag  
0:  
POR  
6
1:  
Last reset caused by a POR condition  
Comment: This flag is cleared after its content is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
If this bit is set, the device entered test mode  
0:  
Testmode  
5
1:  
Device in Testmode  
Comment: This flag is cleared after its content is transmitted to the controller and the device left the test mode.  
Bit Name  
Bit No.  
Description  
If this bit is set, the clock of the switch mode power supplies is too low.  
0: Clock OK  
SMPCLK_  
FAIL  
4
1: Clock fail  
Comment: This flag is cleared after its content is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
Actual error flag counter  
EC [2:0]  
0-2  
0:  
1:  
-
-
*Error Counter is only deleted with a POR  
8.6.2.6 SPI_STAT 0x23  
8-18. SPI_STAT 0x23  
SPI_STAT 0x23  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
Bit1  
Bit0  
Default after RESET  
0
0
0
Read  
Write  
0
0
0
0
0
CLOCK_FAIL  
d.c.  
CMD_ID FAIL  
d.c.  
PARITY FAIL  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit Name  
Bit No.  
Description  
Between a falling and a rising edge of CSN, the number of SCK does not equal 16  
0:  
CLOCK_FAIL  
2
1:  
Wrong SCK  
Comment: This flag is cleared after its content is transmitted to the controller.  
Bit Name  
Bit No.  
Description  
Last received CMD_ID in a reserved area  
CMD_ID FAIL  
1
0:  
1: Wrong CMD_ID  
Comment: This flag is cleared after its content is transmitted to the controller and is not set if the number of SCK cycles is incorrect.  
Bit Name  
Bit No.  
Description  
Last received command has a parity bit failure  
0:  
PARITY_FAIL  
0
1:  
Parity bit error  
Comment: This flag is cleared after its content is transmitted to the controller and is not set if the number of SCK cycles is incorrect.  
8.6.2.7 COMP_STAT 0x24  
8-19. COMP_STAT 0x24  
COMP_STAT 0x24  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
1
Bit1  
1
Bit0  
0
Default after  
RESET  
Read  
Write  
0
0
0
0
BUCK3-1  
d.c.  
BUCK3-0  
d.c.  
BUCK2-1  
d.c.  
BUCK2-0  
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
Register to read back the actual BUCK2 and BUCK3 compensation settings on COMP2 and COMP3. 0x1 0 V 0 x 2 VREG 0 x 3 ≥  
open  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.2.8 DEV_REV 0x2F  
8-20. DEV_REV 0x2F  
DEV_REV 0x2F  
Bit7  
Major3  
Major3  
d.c.  
Bit6  
Major2  
Major2  
d.c.  
Bit5  
Major1  
Major1  
d.c.  
Bit4  
Major0  
Major0  
d.c.  
Bit3  
Minor3  
Minor3  
d.c.  
Bit2  
Minor2  
Minor2  
d.c.  
Bit1  
Minor1  
Minor1  
d.c.  
Bit0  
Minor0  
Minor0  
d.c.  
After RESET  
Read  
Write  
Hard coded device revision can be read from this register  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
8.6.2.9 PWR_CONFIG 0x31  
8-21. PWR_CONFIG 0x31  
PWR_CONFIG 0x31  
Bit7  
0
Bit6  
1
Bit5  
1
Bit4  
0
Bit3  
1
Bit2  
Bit1  
Bit0  
0
Default after RESET  
Read  
0
0
0
BUCK2_EN  
BUCK3_EN  
LDO_EN  
BOOST_EN  
HS_EN  
GPFET_OV_HIGH  
IRQ_THRES  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8-21. PWR_CONFIG 0x31 (continued)  
PWR_CONFIG 0x31  
Write  
0
BUCK2_EN  
BUCK3_EN  
LDO_EN  
BOOST_EN  
HS_EN  
GPFET_OV_HIGH  
IRQ_THRES  
This register contains all power rail enable bits.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit Name  
Bit No.  
Description  
BUCK2 enable flag  
0:  
BUCK2_EN  
6
1: Enable BUCK2  
After reset, BUCK2 is enabled  
Bit Name  
Bit No.  
Description  
Description  
Description  
Description  
Description  
BUCK3 enable flag  
0:  
BUCK3_EN  
5
1:  
After reset, BUCK3 is enabled  
Enable BUCK3  
Bit Name  
Bit No.  
LDO enable flag  
LDO_EN  
4
0:  
1: LDO enabled  
After reset, LDO is disabled  
Bit Name  
Bit No.  
BOOST enable  
0:  
BOOST_EN  
3
1: BOOST enabled  
After reset, BOOST is enabled  
Bit Name  
Bit No.  
LED and high-side switch enable  
HS_EN  
2
0:  
1:  
High side disabled  
High side enabled  
After reset, high side is disabled  
Bit Name  
Bit No.  
Protection FET overvoltage shutdown  
GPFET_OV_HIGH  
1
0: Protection FET switches off at VIN > VOVTH-L  
1: Protection FET switches off at VIN > VOVTH-H  
After reset, the lower VIN protection threshold is enabled  
Bit Name  
Bit No.  
Description  
VSSENSE IRQ low voltage interrupt threshold select  
IRQ_THRES  
0
0:  
1:  
Low threshold selected (VSSENSETH_L  
)
High threshold selected (VSSENSETH_H  
)
After reset, the lower VBAT monitoring threshold is enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
8.6.2.10 DEV_CONFIG 0x32  
8-22. DEV_CONFIG 0x32  
DEV_CONFIG 0x32  
Bit7  
0
Bit6  
0
Bit5  
0
Bit4  
0
Bit3  
0
Bit2  
1
Bit1  
1
Bit0  
0
Default after RESET  
Read  
Write  
0
0
0
0
0
VT_EN  
VT_EN  
RSV  
1
RSV  
0
d.c.  
d.c.  
d.c.  
d.c.  
d.c.  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit Name  
Bit No.  
Description  
LED and high-side switch current limit counter disable bit  
0: LED and high-side switch current limit counter enabled  
1: LED and high-side switch current limit counter disabled  
HS_CLDIS  
3
Bit Name  
Bit No.  
Description  
VT enable bit  
VT_EN  
2
0: VT monitor disabled  
1: VT monitor enabled  
The VT monitor cannot be turned on after it was turned off. Turn on only happens during power up in the VTCHECK state.  
Bit Name  
Bit No.  
Description  
Voltage reference enable bit  
RSV  
1
0:  
1:  
not recommended setting  
default setting  
Bit Name  
Bit No.  
Description  
Reserved - keep this bit at 1  
0: default setting  
RSV  
0
1: not recommended setting  
8.6.2.11 CLOCK_CONFIG 0x33  
8-23. CLOCK_CONFIG 0x33  
CLOCK_CONFIG 0x33  
Bit7  
Bit6  
0
Bit5  
0
Bit4  
1
Bit3  
0
Bit2  
0
Bit1  
0
Bit0  
0
Default after  
RESET  
0
Read  
Write  
F_EN  
F_EN  
SS_EN  
SS_EN  
SS_MODE  
SS_MODE  
F4  
F4  
F3  
F3  
F2  
F2  
F1  
F1  
F0  
F0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Bit Name  
Bit No.  
Description  
Frequency tuning enable register  
0:  
1:  
F_EN  
7
Off Setting of Bit4Bit0 are not effective, setting of Bit6 and Bit5 become effective  
On Setting of Bit4Bit0 become effective, setting of Bit6 and Bit5 are not effective  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Bit Name  
Bit No.  
Description  
Spread spectrum mode enable  
0: Spread spectrum option for all switching regulators disabled  
1: Spread spectrum option for all switching regulators enabled (only when F_EN = 0)  
When enabled, the switching frequency of BUCK1, BUCK2, BUCK3 and BOOST is modulated between 0.8 × fosc and fosc  
SS_EN  
6
Bit Name  
Bit No.  
Description  
Spread spectrum mode select (effective only when F_EN = 0)  
SS_MODE  
5
0:  
1:  
Pseudo random  
Triangular  
Bit Name  
F4, F3, F2, F1, F0  
Bit No.  
Description  
Frequency tuning register (effective only when F_EN = 1)  
4-0  
0x10 is default value, trim range is 25% for 0x00 setting to 20% for 0x1F setting. Frequency tuning influences the switching frequency of  
BUCK1, BUCK2, BUCK3 and BOOST as well as the watchdog timing.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The TPS65310A-Q1 device is a multi-rail power supply including one buck controller, two buck converters, one  
boost converter and one linear regulator (LDO). The buck controller is typically used to convert a higher car  
battery voltage to a lower DC voltage which is then used as pre-regulated input supply for the buck converters,  
boost converter, and the linear regulator. Use the following design procedure and application example to select  
component values for the TPS65310A-Q1 device.  
9.2 Typical Applications  
9.2.1 Buck Controller 1  
D1  
VBAT  
4 V to 40 V (typ. 12 V)  
VINPROT  
10  
BOOT1  
Q2  
Q3  
11  
12  
13  
14  
GU  
PH1  
GL  
PGND1  
4.7 nF  
TPS65310A-Q1  
8.25 k  
R3  
18  
COMP1  
C1  
C2 47 pF  
15  
16  
S1  
S2  
VBUCK1  
19  
17  
VSENSE1  
VMON1  
VBUCK1  
9-1. Buck Controller Schematic  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage  
12 V  
3.8 V  
2.5 A  
Output voltage (VBUCK1)  
Maximum output current (Imax_peak_coil)  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
 
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9-1. Design Parameters (continued)  
DESIGN PARAMETER  
EXAMPLE VALUE  
1.25A  
Load Step ΔIOUT  
Output current ripple IL_ripple  
Output voltage ripple  
500 mA  
3 mV  
0.228 (or 6%)  
490 kHz  
Allowed voltage step on output ΔVOUT  
Switching frequency (fSWBUCK1)  
Bandwidth (FBW)  
60 kHz  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Adjusting the Output Voltage for the BUCK1 Controller  
A resistor divider from the output node to the VSENSE1 pin sets the output voltage. TI recommends using 1%  
tolerance or better divider resistors. Start with 16 kΩfor the R1 resistor and use 方程1 to calculate R2 (see 图  
9-1).  
R1´ (VBUCK1 - 0.8 V)  
R2 =  
0.8 V  
(1)  
Therefore, for the value of VBUCK1 to equal to 3.8V, the value of R2 must be 60.4 kOhms.  
For voltage monitoring of the BUCK1 output voltage, placing an additional resistive divider with the exact same  
values from the output node to the VMON1 pin is recommended for safety reasons (see 9-1). If no safety  
standard must be fulfilled in the application, the VMON1 pin can be directly connected to VSENSE1 pin without  
the need for this additional resistive divider.  
9.2.1.2.2 Output Inductor, Sense Resistor and Capacitor Selection for the BUCK1 Controller  
An external resistor senses the current through the inductor. The current sense resistor pins (S1 and S2) are fed  
into an internal differential amplifier which supports the range of VBUCK1 voltages. The sense resistor RS must  
be chosen so that the maximum forward peak current in the inductor generates a voltage of 75 mV across the  
sense pins. This specified typical value is for low duty cycles only. At typical duty-cycle conditions around 28%  
(assuming 3.8-V output and 12-V input), 60 mV is a more reasonable value, considering tolerances and  
mismatches. The typical characteristics (see Reduction of Current Limit vs Duty Cycle) provide a guide for using  
the correct current-limit sense voltage.  
60 mV  
=
RS  
Imax_peak  
(2)  
Optimal slope compensation which is adaptive to changes in input voltage and duty cycle allows stable operation  
at all conditions. In order to specify optimal performance of this circuit, the following condition must be satisfied in  
the choice of inductor and sense resistor:  
L = 410´Rs  
(3)  
where  
L = inductor in µH  
Rs = sense resistor in Ω  
The current sense pins S1 and S2 are high impedance pins with low leakage across the entire VBUCK1 range.  
This allows DCR current sensing (see Detailed Block Diagram Of Buck 1 Controller) using the DC resistance of  
the inductor for better efficiency.  
For selecting the output capacitance and its ESR resistance, the following set of equations can be used:  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS65310A-Q1  
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
2 ´ DIOUT  
COUT  
COUT  
RESR  
>
>
<
ƒSW ´ DVOUT  
IL  
_
1
ripple  
´
8´ ƒSW Vo _ripple  
Vo _ripple  
IL  
_
ripple  
(4)  
where  
• ƒsw is the 490-kHz switching frequency  
• ΔIOUT is the worst-case load step from the application  
• ΔVOUT is the allowed voltage step on the output  
Vo_ripple is the allowed output voltage ripple  
IL_ripple is the ripple current in the coil  
9.2.1.2.3 Compensation of the Buck Controller  
The main buck controller requires external type 2 compensation on pin COMP1 for normal mode operation. The  
components can be calculated as follows.  
1. Select a value for the bandwidth, FBW, to be between fSWBUCK1 / 6 (faster response) and fSWBUCK1 / 10 (more  
conservative)  
2. Use 方程5 to select a value for R3 (see 8-2).  
2p ´ F ´ VOUT1 ´ COUT1  
BW  
R3 =  
gm ´ KCFB ´ V  
refBUCK  
(5)  
where  
COUT1 is the load capacitance of BUCK1  
gm is the error amplifier transconductance  
KCFB = 0.125 / Rs  
VrefBUCK is the internal reference voltage  
3. Use 方程6 to select a value for C1 (in series with R3, see 8-2) to set the zero frequency close to FBW  
/
10.  
10  
C1=  
2p ´ R3´ F  
BW  
(6)  
(7)  
4. Use 方程7 to select a value for C2 (parallel with R3, C1, see 8-2) to set the second pole below  
fSWBUCK1 / 2  
1
C2 =  
2p ´ R3´ F ´ 3  
BW  
For example:  
fSWBUCK1 = 490 kHz, VrefBUCK = 0.8 V, FBW = 60 kHz  
VOUT1 = 3.8 V, Cout 1 = 50 µF, Rs = 22 mΩ  
Assuming capacitor de-rating, we select the below values:  
C2 = 47pF  
C1 = 0.0047uF  
R3 = 8.25kOhms  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
Resulting in FBW: 57 kHz  
Resulting in zero frequency: 4.2 kHz  
Resulting in second pole frequency: 193 kHz  
Stability and load step response must be verified in measurements to fine tune the values of the compensation  
components.  
9.2.1.2.4 Bootstrap Capacitor for the BUCK1 Controller  
The BUCK1 controller requires a bootstrap capacitor. This bootstrap capacitor must be 0.1 μF. The bootstrap  
capacitor is located between the PH1 pin and the BOOT1 pin (see Buck Controller Schematic). The bootstrap  
capacitor must be a high-quality ceramic type with X7R or X5R grade dielectric for temperature stability.  
9.2.1.3 BUCK 1 Application Curve  
100  
90  
80  
70  
60  
50  
VBAT = 5 V  
VBAT = 10 V  
VBAT = 18 V  
VBAT = 26 V  
VBAT = 34 V  
VBAT = 37 V  
VBAT = 8.1 V  
VBAT = 14 V  
VBAT = 22 V  
VBAT = 30 V  
VBAT = 36 V  
40  
30  
20  
10  
0
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
Iload (A)  
C001  
9-2. Efficiency Results Of Buck1  
9.2.2 Synchronous Buck Converters BUCK2 and BUCK3  
VBUCK1  
5 V  
30  
VSUP2  
29  
31  
BOOT2  
PH2  
3.3 µH  
VBuck2  
3.3 V, 2 A max  
34  
32  
35  
33  
COMP2  
PGND2  
VSENSE2  
VMON2  
TPS65310A-Q1  
VBUCK1  
5 V  
41  
VSUP3  
42  
40  
BOOT3  
PH3  
3.3 µH  
VBuck3  
1.2 V, 2 A max  
37  
39  
36  
38  
COMP3  
PGND3  
VSENSE3  
VMON3  
9-3. Synchronous Buck Converter Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS65310A-Q1  
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2.2.1 Design Requirements  
For this design example, use the parameters listed in 9-2.  
9-2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage  
3.8 V  
3.3 V  
1.2 V  
Output voltage (VBUCK2/3  
)
Maximum output current (Imax_peak  
)
2 A  
300 mA  
0.98 MHz  
Output current ripple ΔIL_PP  
Switching frequency (fSWBUCK2/3  
)
9.2.2.2 Detailed Design Procedure  
9.2.2.2.1 Adjusting the Output Voltage for the BUCK2 and BUCK3 Converter  
A resistor divider from the output node to the VSENSE2 to ground respectively between the VSENSE3 to ground  
pin sets the output voltage (see 9-3). TI recommends using 1% tolerance or better divider resistors. Start by  
selecting 1.6 kΩ for the value of the Rx resistor between the VSENSE2 to ground respectively between the  
VSENSE3 to ground pin VSENSE3 pin and use 方程式 8 to calculate the value for the Ry resistor between  
BUCK2 and BUCK3 output and the VSENSE2 to ground respectively between the VSENSE3 to ground pin.  
Rx ´ (VBUCK2/3 - 0.8 V)  
Ry =  
0.8 V  
(8)  
Therefore, for VBUCK2 to equal to 3.3 V, the value of Ry must be 4.99k. For VBUCK3 to equal to 1.2 V, the value of  
Ry must be 806 Ohms.  
For voltage monitoring of the BUCK2 and BUCK3 output voltage, placing an additional resistive divider with  
exact same values from the output node to the VMON2 and VMON3 pins is recommended for safety reasons  
(see 9-3). If no safety standard must be fulfilled in the application, the VMON2 and VMON3 pins can be  
directly connected to VSENSE2 and VSENSE3 pins without the need for this additional resistive divider.  
9.2.2.2.2 Output Inductor Selection for the BUCK2 and BUCK3 Converter  
The inductor value L depends on the allowed ripple current ΔIL_PP in the coil at chosen input voltage VIN and  
output voltage VOUT, and given switching frequency fsw:  
V
OUT ´(VIN - VOUT )  
L =  
DIL _PP ´ V ´ fsw  
IN  
(9)  
For example:  
VIN = 5 V  
VOUT = 3.3 V  
ΔIL_PP = 0.35 mA  
fsw = 0.98 MHz  
L 3.3 μH  
9.2.2.2.3 Compensation of the BUCK2 and BUCK3 Converters  
The regulators operate in forced continuous mode, and have internal frequency compensation. The frequency  
response can be adjusted to the selected LC filter by setting the COMP2 and COMP3 pin low, high, or floating.  
After selecting the output inductor value as previously described, the output capacitor must be chosen so that  
the L × COUT × VBUCK2/3 product is equal to or less than one of the three values, as listed in 9-3.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9-3. Compensation Settings  
COMP 2/3  
= 0 V  
L × COUT × VBUCK2/3  
125 µF × µH × V  
250 µF × µH × V  
500 µF × µH × V  
EXAMPLE COMPONENTS  
40 µF × 2.7 µH × 1.2 V  
30 µF × 3.3 µH × 2.5 V  
200 µF × 2.2 µH × 1.2 V  
= OPEN  
= VREG  
Larger output capacitors can be used if a feed-forward capacitor is placed across the upper resistance, Ry, of the  
feedback divider. This works effectively for output voltages > 2 V. With an RC product greater than 10 µs, the  
effective VBUCK2/3 at higher frequencies can be assumed as 0.8 V, thus allowing an output capacitor increase by  
a factor equal to the ratio of the output voltage to 0.8 V.  
9.2.2.2.4 Bootstrap Capacitor for the BUCK2/3 Converters  
The BUCK2 and BUCK3 converters require a bootstrap capacitor. This bootstrap capacitor must be 0.1 μF. The  
bootstrap capacitor is located between the PH2 pin and the BOOT2 pin and between the PH3 pin and the  
BOOT3 pin (see Synchronous Buck Converter Schematic). The bootstrap capacitor must be a high-quality  
ceramic type with X7R or X5R grade dielectric for temperature stability.  
9.2.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
EFF VSUP3 = 3.8 V  
EFF VSUP3 = 3.3 V  
EFF VSUP3 = 5 V  
EFF VSUP2 = 3.8 V  
EFF VSUP2 = 5 V  
LOSS VSUP2 = 3.8 V  
LOSS VSUP2 = 5 V  
LOSS VSUP3 = 3.8 V  
LOSS VSUP3 = 3.3 V  
LOSS VSUP3 = 5 V  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Load Current (A)  
Load Current (A)  
9-5. Efficiency Buck3 = 1.2 V At 25°C L = 3.3 uH,  
C = 30 uF, COMP2 Pin To Ground EXTSUP Pin  
Open, Measured Buck3 Output Power With  
Respect To VSUP3 Input Power  
9-4. Efficiency Buck2 = 3.3 V At 25°C L = 3.3 uH,  
C = 20 uF, COMP2 Pin Open EXTSUP Pin Open,  
Measured Buck2 Output Power With Respect To  
VSUP2 Input Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
100  
100  
95  
90  
85  
80  
75  
95  
VSUP3 = 3.8 V, 1-A LOAD  
90  
VSUP2 = 3.8 V, 0.5-A LOAD  
85  
80  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
9-6. Buck2 = 3.3-V Efficiency At 0.5 A vs  
Temperature L = 3.3 uH, C = 20 uF, Comp2 Pin  
Open EXTSUP Pin Open, Measured Buck2 Output  
Power With Respect To VSUP2 Input Power  
9-7. Buck3 = 1.2-V Efficiency At 1 A vs  
Temperature L = 3.3 uH, C = 30 uF, COMP2 Pin To  
Ground EXTSUP Pin Open, Measured Buck3  
Output Power With Respect To VSUP3 Input Power  
100  
100  
VSUP3 = 3.8 V  
95  
95  
90  
90  
85  
80  
VSUP2 = 3.8 V  
85  
80  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
Temperature (°C)  
Temperature (°C)  
9-8. Buck2 = 3.3-V Peak Efficiency vs  
9-9. Buck3 = 1.2-V Peak Efficiency vs  
Temperature L = 3.3 uH, C = 20 uF, COMP2 Pin  
Open EXTSUP Pin Open, Measured Buck2 Output  
Power With Respect To VSUP2 Input Power  
Temperature L = 3.3 uH, C = 30 uF, COMP2 Pin To  
Ground EXTSUP Pin Open, Measured Buck3  
Output Power With Respect To VSUP3 Input Power  
9.2.3 BOOST Converter  
VBUCK1  
2.7 nF  
3.8 V  
20  
COMP5  
12 k  
23  
22  
PH5  
PGND5 TPS65310A-Q1  
D2  
24  
21  
VBOOST  
VBOOST  
8.4 kW  
5 V,  
300 mA  
VSENSE5  
9-10. BOOST Converter Schematic  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2.3.1 Design Requirements  
For this design example, use the parameters listed in 9-4.  
9-4. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
3.8 V  
Input voltage  
Output voltage (VBOOST  
)
5 V  
Peak coil current (Ipeak_coil  
)
1 A  
Maximum output current IOUT  
400 mA  
200 mA  
0.98 MHz  
Output current ripple ΔIL_PP  
Switching frequency (fSWBOOST  
)
9.2.3.2 Detailed Design Procedure  
9.2.3.2.1 Adjusting the Output Voltage for the Boost Converter  
A resistor divider from the output node to the VSENSE5 pin sets the output voltage. TI recommends using 1%  
tolerance or better divider resistors. Start with a value of 1.6 kΩ for the Rx resistor and use 方程式 10 to  
calculate Ry (see 9-10).  
Rx ´ (VBOOST - 0.8 V)  
Ry =  
0.8 V  
(10)  
Therefore, for the value of VBOOST to equal to 5 V, the value of Ry must be 8.4 kΩ.  
9.2.3.2.2 Output Inductor and Capacitor Selection for the BOOST Converter  
The inductor value L depends on the allowed ripple current ΔIL_PP in the coil at chosen input voltage VIN and  
output voltage VOUT, and given switching frequency fsw:  
V
IN ´(VOUT - V )  
IN  
L =  
DIL _PP ´ VOUT ´ fsw  
(11)  
For example:  
VIN = 3.3 V (from BUCK1)  
VOUT = 5 V  
ΔIL_PP = 200 mA (20% of 1-A peak current)  
ƒsw = 0.98 MHz  
L 4.7 μH  
The capacitor value COUT must be selected such that the L-C double-pole frequency FLC is in the range of  
10 kHz15 kHz. The FLC is given by 方程12:  
V
IN  
F
=
LC  
2´ p´ VOUT ´ L ´ COUT  
(12)  
The right half-plane zero FRHPZ, as given in 方程13, must be > 200 kHz:  
V2  
IN  
FRHPZ  
=
> 200 kHz  
2 ´ p L ´ IOUT ´ VOUT  
(13)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS65310A-Q1  
 
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
where  
IOUT represents the load current  
If the condition FRHPZ > 200 kHz is not satisfied, L and therefore COUT have to be recalculated.  
9.2.3.2.3 Compensation of the BOOST Converter  
The BOOST converter requires an external R-C network for compensation (see 9-10, COMP5). The  
components can be calculated using 方程14 and 方程15:  
æ
ç
è
ö2  
÷
F
BW  
R = 120´ V  
´
IN  
F
LC ø  
(14)  
(15)  
1
C =  
2´ p´R´F  
LC  
where  
FBW represents the bandwidth of the regulation loop, and must be set to 30 kHz  
FLC represents the L-C double-pole frequency, as mentioned previously  
For example:  
VIN = 3.8 V  
VOUT = 5 V  
L = 4.7 μH  
C = 54 uF  
FLC = 7.6 kHz  
FBW = 30 kHz  
R 8 k  
C 2.7 nF  
Stability and load step response must be verified in measurements to fine tune the values of the compensation  
components. Like in this case, while fine tuning, it was observed on the EVM that using 12k as the  
compensation resistance gave better load transient results and stability response than using 8k. The equations  
serve as a good starting point for calculating compensation values.  
9.2.3.2.4 Output Diode for the BOOST Converter  
The BOOST converter requires an external output diode between the PH5 pin and VBOOST pin (see BOOST  
Converter Schematic, component D2). The selected diode must have a reverse voltage rating equal to or greater  
than the VBOOST output voltage. The peak current rating of the diode must be greater than the maximum inductor  
current. The diode must also have a low forward voltage in order to reduce the power losses. Therefore,  
Schottky diodes are typically a good choice for the catch diode.  
Also, select a diode with an appropriate power rating, because the diode conducts the output current during the  
off-time of the internal power switch.  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2.3.3 BOOST Converter Application Curves  
100  
90  
250  
200  
150  
100  
50  
100  
95  
80  
70  
60  
Efficiency  
Power Loss  
90  
50  
40  
30  
20  
10  
0
85  
80  
0
-50  
0
50  
100  
150  
0.001  
0.01  
0.1  
1
Temperature (°C)  
Load Current (A)  
9-12. Boost = 5-V Peak Efficiency vs  
9-11. Efficiency BOOST = 5 V At 25°C EXTSUP  
Pin Open, BOOST Supply Input = 3.8 V, Measured  
BOOST Output Power With Respect To Supply  
Input Power  
Temperature EXTSUP Pin Open, BOOST Supply  
Input = 3.8 V, Measured Boost Output Power With  
Respect To Supply Input Power  
9.2.4 Linear Regulator  
TPS65310A-Q1  
1 µF  
VLDO_OUT  
1.74 kW  
2.5 V, max 350 mA  
9-13. Linear Regulator Schematic  
9.2.4.1 Design Requirements  
For this design example, use the parameters listed in 9-5.  
9-5. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
3.3 V  
Input voltage  
Output voltage (VLDO_OUT  
)
2.5 V  
Maximum output current (IOUT  
)
350 mA  
9.2.4.2 Detailed Design Procedure  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS65310A-Q1  
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
9.2.4.2.1 Adjusting the Output Voltage for the Linear Regulator  
A resistor divider from the output node to the VSENSE4 pin sets the output voltage. TI recommends using 1%  
tolerance or better divider resistors. In order to get the minimum required load current of 1 mA for the linear  
regulator, start with a value of 820 Ωfor the Rx resistor and use 方程16 to calculate Ry (see 9-13).  
Rx ´ (VLDO _ OUT - 0.8 V)  
Ry =  
0.8 V  
(16)  
Therefore, for the value of VLDO_OUT to equal to 2.5 V, the value of Ry must be 1.74 kΩ.  
9.2.4.2.2 Output Capacitance for the Linear Regulator  
The linear regulator requires and external output capacitance with a value between 6 µF and 50 µF.  
9.2.4.3 Linear Regulator Application Curve  
10  
9
Noise [LDO ON]  
8
Noise [LDO OFF]  
(Noisefloor)  
7
6
5
4
3
2
1
0
10  
100  
1000  
10000  
Frequency (Hz)  
9-14. LDO Noise Density  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
10 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range between 4 V and 40 V (see 10-1 for  
reference). This input supply must be well regulated. In case the supply voltage in the application is likely to  
exceed 40 V, the external PMOS protection device as explained in 8.4.19 must be applied between VIN and  
VINPROT pins. Furthermore, if the supply voltage in the application is likely to reach negative voltage (for  
example, reverse battery), a forward diode must be placed between the VSSENSE and VIN pins. A ceramic  
bypass capacitor with a value of 100 μF (typical) is recommended to be placed close to the VINPROT pin. For  
the VIN pin, a small ceramic capacitor of typical 1 µF is recommended. Also place 1-µF (typical) bypass  
capacitors to the DVDD and VREF pins, and 100-nF (typical) bypass capacitors to VIO pin. Furthermore, the  
VREG pin requires a bypass capacitor of 2.2 µF (typical).  
The BUCK1 output voltage is the recommended input supply for the BUCK2, BUCK3, and BOOST regulators.  
Place local, 10-µF (typical) bypass capacitors at the VSUP2 and VSUP3 pins and at the supply input of the  
BOOST in front of the BOOST-inductor. Also place a local, 1-µF (typical) bypass capacitor at the VSUP4 pin.  
The EXTSUP pin can be used to improve efficiency. For the EXTSUP pin to improve efficiency, a voltage of more  
than 4.8 V is required in order to have VREG regulator supplied from EXTSUP pin. If the EXSUP pin is not used,  
the VINPROT pin supplies the VREG regulator. The EXTSUP pin requires a 100-nF (typical) bypass capacitor.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
D1  
VBAT  
4 V to 40 V (typ. 12 V)  
Q1  
VINPROT  
28  
48  
IRQ  
VIO  
VBUCK1  
10  
BOOT1  
Q2  
Q3  
11  
12  
13  
14  
GU  
PH1  
27  
26  
43  
RESN  
PRESN  
WD  
GL  
10 kW  
WAKE  
PGND1  
4.7 nF  
C1  
44  
46  
47  
45  
8.25 k  
R3  
CSN  
SCK  
18  
COMP1  
SDO  
SDI  
C2 47 pF  
15  
16  
S1  
S2  
53  
VBUCK1  
VREF  
3.8 V, 2.5 A  
19  
17  
VSENSE1  
VMON1  
25  
54  
VT_REF  
VT  
VBUCK1  
30  
TPS65310A-Q1  
VSUP2  
VINPROT  
29  
31  
BOOT2  
PH2  
3.3 µH  
VBuck2  
6
5
HSSENSE  
HSCTRL  
HSPWM  
3.3 V, 2 A  
34  
32  
35  
33  
COMP2  
PGND2  
49  
VSENSE2  
VMON2  
VBUCK1  
2.7 nF  
VBUCK1  
20  
COMP5  
41  
VSUP3  
12 k  
23  
22  
42  
40  
PH5  
BOOT3  
PH3  
3.3 µH  
PGND5  
D2  
1.2 V, 2 A  
24  
21  
37  
39  
36  
38  
VBOOST  
COMP3  
PGND3  
VBOOST  
5 V,  
300 mA  
8.4 kW  
VSENSE5  
VSENSE3  
VMON3  
1 µF  
VLDO_OUT  
2.5 V, maximum 350 mA  
1.74 kW  
10-1. Typical Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Buck Controller  
Connect a local decoupling capacitor between the drain of Q3 and the source of Q2. The length of this trace  
loop should be short.  
The Kelvin-current sensing for the shunt resistor should have traces with minimum spacing, routed in parallel  
with each other. Place any filtering capacitor for noise near the S1-S2 pins.  
The resistor divider for sensing the output voltage connects between the positive pin of the output capacitor  
and the GND pin (IC signal ground). Do not locate these components and their traces near any switching  
nodes or high-current traces. The resistor divider for monitoring the output voltage is to be placed as close as  
possible to the sensing resistor divider, and should be connected to same traces.  
Connect the boot-strap capacitance between the PH1 and BOOT1 pins, and keep the length of these trace  
loops as short as possible.  
Connect the compensation network between the COMP1 pin and GND pin (IC signal ground).  
Connect a local decoupling capacitor between the VREG and PGDN1 pin, and between the EXTSUP and  
PGND1 pin. The length of this trace loop should be short.  
11.1.2 Buck Converter  
Connect a local decoupling capacitor between VSUP2 and PGND2 respectively VSUP3 and PGND3 pins.  
The length of this trace loop should be short.  
The resistor divider for sensing the output voltage connects between the positive pin of the output capacitor  
and the GND pin (IC signal ground). Do not locate these components and their traces near any switching  
nodes or high-current traces. The resistor divider for monitoring the output voltage is to be placed as close as  
possible to the sensing resistor divider, and should be connected to same traces.  
Connect the boot-strap capacitance between the PH2 and BOOT2 respectively PH3 and BOOT3 pins, and  
keep the length of this trace loop as short as possible.  
If COMP2 and/or COMP3 are chosen to be connected to ground, use the signal ground trace connected to  
GND pin for this.  
11.1.3 Boost Converter  
The path formed from the input capacitor to the inductor and the PH5 pin should have short trace length. The  
same applies for the trace from the inductor to Schottky diode D2 to the output capacitor and the VBOOST  
pin. Connect the negative pin of the input capacitor and the PGND5 pin together with short trace lengths.  
The resistor divider for sensing the output voltage connects between the positive pin of the output capacitor  
and the GND pin (IC signal ground). Do not locate these components and their traces near any switching  
nodes or high-current traces.  
Connect the compensation network between the COMP5 pin and GND pin (IC signal ground).  
11.1.4 Linear Regulator  
Connect a local decoupling capacitor between VSUP4 and GND (IC signal ground) pins. The length of this  
trace loop should be short.  
The resistor divider for sensing the output voltage connects between the positive pin of the output capacitor  
and the GND pin (IC signal ground). Do not locate these components and their traces near any switching  
nodes or high-current traces.  
11.1.5 Other Considerations  
Short PGNDx and GND to the thermal pad.  
Use a star ground configuration if connecting to a non-ground plane system. Use tie-ins for the  
compensation-network ground, voltage-sense feedback ground, and local biasing bypass capacitor ground  
networks to this star ground.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS65310A-Q1  
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
11.2 Layout Example  
Analog Signal Ground trace  
Sense resistors LDO  
VSSENSE  
BOOT3  
VSUP3  
PH3  
D1  
VIN  
BUCK3 output voltage  
Q1  
GPFET  
Sense and  
Monitoring  
resistors  
BUCK3  
VINPROT  
HSCTRL  
HSSENSE  
WAKE  
PGND3  
VMON3  
COMP3  
VSENSE3  
VSENSE2  
COMP2  
VMON2  
PGND2  
PH2  
Compensation connection BUCK2  
(either to Analog Signal Ground, to VREG or leave open)  
Exposed Thermal  
Pad area  
EXTSUP  
VREG  
Compensation connection BUCK2  
(either to Analog Signal Ground, to VREG or leave open)  
BOOT1  
Sense and  
Monitoring  
resistors  
BUCK2  
Q2  
GU  
PH1  
Q3  
BUCK2 output voltage  
GL  
VSUP2  
BOOT2  
PGND1  
Power  
ground  
plane  
VT_REF  
BOOST output  
voltage  
Sense and  
Monitoring  
resistors  
BUCK1  
Sense resistors  
BOOST  
Analog Signal Ground trace  
11-1. TPS65310-Q1 Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
备注  
(1) Theres very high dI/dt in path where the switching current flows. Any inductance in this path  
results in ringing on switched node. Its very important to minimize these loop areas.  
11-2. EVM Top Layer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
11-3. EVM Bottom Layer  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
TPS65310A-Q1 Efficiency SLVA610  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS65310A-Q1  
 
 
 
 
 
 
 
TPS65310A-Q1  
ZHCSB89H MAY 2013 REVISED DECEMBER 2021  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPS65310A-Q1  
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65310AQRVJRQ1  
ACTIVE  
VQFN  
RVJ  
56  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TPS65310A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS65310AQRVJRQ1  
VQFN  
RVJ  
56  
2000  
330.0  
16.4  
8.3  
8.3  
2.25  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RVJ 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TPS65310AQRVJRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RVJ0056A  
PLASTIC QUAD FLATPACK- NO LEAD  
8.1  
7.9  
A
B
0.1 MIN  
8.1  
7.9  
(0.13)  
SECTION A-A  
PIN 1 INDEX AREA  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
5.2±0.1  
(0.2) TYP  
15  
28  
52X 0.5  
(0.16)  
14  
29  
SYMM  
A
A
57  
4X  
6.5  
5.2±0.1  
1
42  
0.30  
56X  
0.20  
PIN 1 ID  
(OPTIONAL)  
43  
56  
0.1  
C A B  
C
0.55  
0.35  
56X  
SYMM  
0.05  
4225251/A 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RVJ0056A  
PLASTIC QUAD FLATPACK- NO LEAD  
(7.75)  
(5.2)  
SYMM  
56X (0.65)  
56  
43  
1
42  
56X (0.25)  
52X (0.5)  
SYMM  
(7.75)  
57  
(5.2)  
8X (1.27)  
6X (1.08)  
(Ø0.2) VIA  
TYP  
14  
29  
(R0.05)  
TYP  
15  
28  
8X (1.27)  
6X (1.08)  
LAND PATTERN EXAMPLE  
SCALE: 10X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225251/A 09/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RVJ0056A  
PLASTIC QUAD FLATPACK- NO LEAD  
(7.75)  
SYMM  
56X (0.65)  
56  
43  
1
42  
57  
16X  
SQ (1.07)  
56X (0.25)  
52X (0.5)  
SYMM  
(7.75)  
8X (0.635)  
6X (1.27)  
METAL TYP  
14  
29  
(R0.05)  
TYP  
15  
28  
8X (0.635)  
6X (1.27)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 10X  
4225251/A 09/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TPS65311-Q1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC
TI

TPS65311QRVJRQ1

适用于汽车安全应用的汽车类 4V 至 40V、5 稳压输出电源管理 IC | RVJ | 56 | -40 to 125
TI

TPS65313-Q1

适用于汽车应用的高压 PMIC
TI

TPS65320D-Q1

采用 280mA 自动拉电流 LDO 稳压器的汽车类 3.6V 至 36V、3.2A 降压转换器
TI

TPS65320DQPWPRQ1

采用 280mA 自动拉电流 LDO 稳压器的汽车类 3.6V 至 36V、3.2A 降压转换器 | PWP | 14 | -40 to 125
TI

TPS65320QPWPRQ1

40-V Step-Down Converter With Eco-mode™ Codec and LDO Regulator
TI

TPS65321A-Q1

采用宽输入电压范围、280mA LDO 稳压器的汽车类 3.6V 至 36V 3.2A 降压转换器
TI

TPS65321AQPWPRQ1

采用宽输入电压范围、280mA LDO 稳压器的汽车类 3.6V 至 36V 3.2A 降压转换器 | PWP | 14 | -40 to 125
TI

TPS65381-Q1

Multi-Rail Power Supply for Microcontrollers in Safety-Critical Applications
TI

TPS65381A-Q1

适用于安全应用中的微控制器的多轨电源 (PMIC)
TI

TPS65381AQDAPRQ1

适用于安全应用中的微控制器的多轨电源 (PMIC) | DAP | 32 | -40 to 125
TI

TPS65381AQDAPTQ1

适用于安全应用中的微控制器的多轨电源 (PMIC) | DAP | 32 | -40 to 125
TI