TPS65810_14 [TI]

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC;
TPS65810_14
型号: TPS65810_14
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC

文件: 总99页 (文件大小:2009K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC  
FEATURES  
8-channel integrated A/D samples system  
parameters with single conversion, peak  
detection, or averaging operating modes  
BATTERY CHARGER  
Complete charge management solution for  
single Li-Ion/Li-Pol cell with thermal  
foldback, dynamic power management and  
pack temperature sensing, supporting up  
to 1.5-A max charge current  
HOST INTERFACE  
Host can set system parameters and  
access system status using I2C interface  
Interrupt function with programmable  
masking signals system status  
modification to host  
Programmable charge parameters for AC  
adapter and USB port operation  
INTEGRATED POWER SUPPLIES  
3 GPIO ports, programmable as drivers,  
integrated A/D trigger or buck converters  
standby mode control  
A total of 9 LDOs are integrated:  
Six adjustable output LDOs (1.25-V to  
3.3-V)  
APPLICATIONS  
Two fixed-voltage LDOs (3.3-V)  
PDAs  
Smart Phones  
MP3s  
Internet Appliances  
Handheld Devices  
One RTC backup supply with low  
leakage (1.5-V)  
Two 0.6-V to 3.4-V programmable dc/dc  
buck converters (600-mA for TPS65810,  
750-mA for TPS65811) with enable,  
standby-mode operation, and automatic  
low-power mode setting  
DISPLAY FUNCTIONS  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
SM3  
1
2
3
4
5
6
7
BLUE  
SCLK  
SDA T  
Two open-drain PWM outputs with  
programmable frequency and duty cycle.  
Can be used to control keyboard backlight,  
vibrator, or other external peripheral  
functions  
FB3  
SM3SW  
L3  
RTC_OUT  
SIM  
PGND3  
LDO1  
LED_PWM  
USB  
AC  
GROUND PAD  
RGB LED driver with programmable  
flashing period and individual R/G/B  
brightness control  
8
VIN_LDO02  
PWM  
OUT  
OUT  
9
10  
LDO2  
LDO_PM  
11  
12  
13  
14  
LDO0  
ISET1  
TS  
Constant-current white LED driver, with  
programmable current level, brightness  
control, and overvoltage protection can  
drive up to 6 LEDs in series configuration  
SYS_IN  
31  
30  
29  
TMR  
LDO35_REF  
VIN_LDO35  
DPPM  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
SYSTEM MANAGEMENT  
Dual input power path function with input  
current limiting and OVP protection  
QFN 56-Pin, 8 x 8 mm Package  
(Top View - Not To Scale)  
POR function with programmable masking  
monitors all integrated supplies outputs  
Software and hardware reset functions  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2007, Texas Instruments Incorporated  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be  
more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
DESCRIPTION  
The TPS65810 provides an easy to use, fully integrated solution for handheld devices, integrating charge  
management, multiple regulated power supplies, system management and display functions, in a small  
thermally-enhanced 8x8 package. The high level of integration enables typical board area space savings of 70%  
when compared to equivalent discrete solutions, while implementing a high-performance and flexible solution,  
portable across multiple platforms. If required, an external host may control the TPS65810 via I2C interface, with  
access to all integrated systems. The I2C enables setting output voltages, current thresholds, and operation  
modes. Internal registers have a complete set of status information, enabling easy diagnostics, and  
host-controlled handling of fault conditions. The TPS65810 can operate in stand-alone mode, with no external  
host control, if the internal power-up defaults are compatible with the system requirements  
AVAILABLE OPTIONS(1)  
TJ  
DEVICES(2)(3)(4)  
TPS65810RTQ  
TPS65811RTQ  
MARKING  
TPS65810  
TPS65811  
–40°C to 125°C  
–40°C to 125°C  
(1) For the most current package and ordering information, see the Package Option Addendum at the end  
of this document, or see the TI Web site at www.ti.com.  
(2) The RTQ package is available in tape and reel. Add R suffix (TPS65810RTQR) to order quantities of  
2000 parts per reel. Add T suffix (TPS65810RTQT) to order quantities of 250 parts per reel.  
(3) This product is RoHS compatible, including a lead concentration that does not exceed 0.1% of total  
product weight, and is suitable for use in specified lead-free soldering processes. In addition, this  
product uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb)  
above 0.1% of total product weight.  
(4) Other power-up sequences and default power-up states for the supplies can be implemented upon  
request. Consult factory for available options  
2
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
FUNCTIONAL BLOCK DIAGRAM  
TPS65810  
AC  
OUT  
OUT  
USB  
BAT  
LDO_PM  
OUT  
BAT  
BAT  
3.3V  
10 mA  
ON/OFF  
LDO_PM  
POWER PATH  
CONTROL  
LINEAR  
CHARGER  
TS  
DPPM  
AGND1  
OUT  
SIM,RTC LDOS  
TMR  
CHARGE  
SYSTEM  
POWER  
1.8V/2.  
5
V
ISET1  
SIM  
MANAGEMENT  
8 mA  
OUT  
AGND0  
OUT  
AGND1  
AGND1  
DISPLAY AND I /O  
1.5V  
8 mA  
PWM  
RTC_OUT  
PWM  
DRIVER  
LED_PWM  
AGND1  
RED  
RGB  
DRIVER  
VIN_LDO2  
LDO0  
LDO0,1,2  
GREEN  
BLUE  
3.3V  
150mA  
GPIO1  
GPIO2  
GPIO3  
GPIO’S  
AGND1  
OUT  
1.25V-3.3V  
150 mA  
LDO1  
DISPLAY AND I /O  
L3  
1.25V-3.3V  
150mA  
LDO2  
SM3  
WHITE LED  
DRIVER  
SM3_SW  
AGND1  
FB3  
PGND3  
CONTROL  
LOGIC  
VIN_LDO35  
LDO3  
LDO3,4,5  
VIN_SM1  
DC/DC  
1.224V-4.4V  
100 mA  
L1  
0.6-1.8V  
600 mA  
SM1  
1.224V-4.4V  
100 mA  
LDO4  
PGND1  
VIN_SM2  
LDO35_REF  
1.224V-4.4V  
100 mA  
L2  
LDO5  
1.0V-3.4V  
600 mA  
SM2  
AGND2  
OUT  
PGND2  
6 INTERNAL  
CHANNELS  
HOST INTERFACE AND  
SEQUENCING  
OUT  
SCLK  
SDAT  
INT  
I2C INTERFACE  
AND INTERRUPT  
CONTROLLER  
AGND1  
ADC  
ANLG1  
ANLG2  
8 CHANNEL  
MUX  
OUT  
SYS_IN  
INTERNAL BIAS  
RESET  
HOT_RST  
REFERENCE  
SYSTEM  
A/D  
CONTROLLER  
ADC_REF  
RESPWRON  
TRSTPWON  
CONVERTER  
AGND1  
AGND1  
AGND2  
AGND 0, AGND 1 AND AGND 2PINS SHORTED TO EACH OTHER INSIDE TPS 6580.0 ALL AGND PINS ARE INTERNALLY CONNECTED TO  
THE TPS 65800 THERMAL PAD AND SUBSTRATE  
PGND1, PGND 3 AND PGND 3PINS ARE NOT CONNECTED TO EACH OTHER OR TO THE TPS  
.
65800 SUBSTRATE / POWER PAD  
Figure 1. TPS65810 Simplified Block Diagram  
3
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
UNIT  
AC and USB with respect to AGND1  
–0.3 to 18  
ANLG1, ANLG2 with respect to AGND2  
V(OUT) with respect to AGND1  
–0.3 to V(OUT)  
5
VIN_LDO12, VIN_LDO35, LDO3, LDO4, LDO5 with respect to AGND2  
LDO35_REF, ADC_REF with respect to AGND2  
SIM, RTC_OUT with respect to AGND1  
SM1, L1, VIN_SM1 with respect to PGND1  
SM2, L2, VIN_SM2 with respect to PGND2  
SM3, L3 with respect to PGND3  
–0.3 to V(OUT)  
–0.3 to smaller of: 3.6 or V(OUT)  
–0.3 to smaller of: 3.6 or V(OUT)  
–0.3 to V(OUT)  
–0.3 to V(OUT)  
–0.3 to 29  
–0.3 to V(OUT)  
–0.3 to 0.5  
–0.3 to V(OUT)  
–0.3 to +0.3  
2750  
V
SM3SW with respect to PGND3  
FB3 with respect to PGND3  
All other pins (except AGND and PGND), with respect to AGND1  
AGND2, AGND0, PGND1, PGND2, PGND3 with respect to AGND1  
Input Current, AC pin  
Input Current, USB pin  
600  
Output continuous current, OUT pin  
3000  
mA  
Output continuous current, BAT pin  
–3000  
Continuous Current at L1, PGND1, L2, PGND2  
1800  
TA  
Operating free-air temperature  
Maximum junction temperature  
Storage temperature  
–40 to 85  
125  
TJ  
°C  
TSTG  
–65 to 150  
260  
Lead temperature 1,6 mm (1/16-inch) from case for 10 seconds  
ESD rating, all pins  
1.5  
kV  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
DISSIPATION RATINGS  
TA55°C  
POWER RATING  
DERATING FACTOR  
ABOVE TA = 55°C  
PACKAGE  
θJA  
(1)(2)  
RTQ  
21.7°C/W  
3.22 W  
0.046 W/°C  
(1) This data is based on using the JEDEC High-K board and the exposed die pad is connected to a Cu  
pad on the board. This is connected to the ground plane by a via matrix.  
(2) The RTQ package MSL level: HIR3 at 260°C  
4
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.35  
0
MAX UNIT  
AC and USB with respect to AGND1  
ANLG1,ANLG2 with respect to AGND2  
VIN_LDO35 with respect to AGND2  
VIN_LDO12 with respect to AGND1  
VIN_SM1 with respect to PGND1  
VIN_SM2 with respect to PGND2  
SM3 with respect to PGND3  
16.5(1)  
V
V
2.6  
Greater of: 3.6 V OR minimum input  
voltage required for LDO/converter  
operation outside dropout region  
4.7  
4.7  
V
4.7  
4.7  
28  
V
TA  
Operating free-air temperature  
–40  
–40  
0
85  
C  
C  
C  
TJ(op)  
TJ  
Junction temperature, functional operation assured  
Junction temperature, electrical characteristics assured  
125  
125  
(1) Thermal operating restrictions are reduced or avoided if input voltage does not exceed 5 V.  
5
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – I2C INTERFACE  
Over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 3 (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
I2C TIMING CHARACTERISTICS  
tR  
SCLK/SDATA rise time  
300  
300  
tF  
SCLK/SDATA fall time  
SCLK pulse width high  
SCLK Pulse Width Low  
ns  
tW(H)  
600  
1.3  
600  
600  
100  
0
tW(L)  
µs  
tSU(STA)  
tH(STA)  
tSU(DAT)  
tH(DAT)  
tSU(STOP)  
t(BUF)  
FSCL  
Setup time for START condition  
START condition hold time after which first clock pulse is generated  
Data setup time  
ns  
Data hold time  
Setup time for STOP condition  
Bus free time between START and STOP condition  
Clock Frequency  
600  
1.3  
µs  
400  
kHz  
I2C INTERFACE LOGIC LEVELS  
VIH  
VIL  
IH  
High level input voltage  
1.3  
0
6
V
Low level input voltage  
Input bias current  
0.6  
0.01  
µA  
t
t
t
w(L)  
su(STA)  
w(H)  
t
t
r
f
SCL  
t
t
r
f
START  
SDA  
t
h(STA)  
t
h(DAT)  
STOP  
t
h(DAT)  
t
su(DAT)  
SCL  
SDA  
3
7
8
9
1
2
ACK  
START  
t
su(STOP)  
SCL  
SDA  
3
7
8
9
1
2
ACK  
t
(BUF)  
STOP  
Figure 2. I2C Timing  
6
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – SYSTEM SEQUENCING AND OPERATING MODES  
Over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 3 (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
QUIESCENT CURRENT  
BAT pin current, sleep  
mode set  
BAT pin current, charge Charger function enabled by I2C, termination detected, input  
terminated power detected and selected  
BAT pin current, charge Charger function disabled by I2C, termination not detected,  
function OFF  
IBAT(SLEEP)  
IBAT(DONE)  
IBAT(CHGOFF)  
Input power not detected, V(BAT) = 4.2 V, Sleep mode set  
400  
3
µA  
µA  
µA  
3
input power detected and selected  
Charger function disabled by I2C, termination not detected,  
input power detected and selected. All integrated supplies  
and drivers OFF, no load at OUT pin.  
AC or USB pin current,  
charge function OFF  
IINP(CHGOFF)  
200  
3%  
µA  
UNDERVOLTAGE LOCKOUT  
Internal UVLO detection NO POWER mode set at V(OUT) < VUVLO  
,
VUVLO  
–3%  
2.5  
120  
5
V
threshold  
V(OUT) decreasing  
UVLO detection  
VUVLO_HYS  
V(OUT) increasing  
mV  
ms  
hysteresis  
UVLO detection deglitch  
time  
tDGL(UVLO)  
Falling voltage only  
SYSTEM LOW VOLTAGE THRESHOLD  
Minimum system voltage System voltage V(SYS_IN) decreasing, SLEEP mode set if  
VLOW_SYS  
0.97  
1
50  
5
1.03  
V
detection threshold  
V(SYS_IN) < VLOW_SYS  
Minimum system voltage  
detection hysteresis  
VHYS(LOWSYS)  
V(SYS_IN) increasing  
mV  
ms  
tDGL(LOWSYS) Minimum system voltage V(SYS_IN) decreasing  
detection deglitch time  
THERMAL FAULT  
TSHUT  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
165  
30  
°C  
°C  
Thermal shutdown  
hysteresis  
THYS(SHUT)  
INTEGRATED SUPPLY POWER FAULT DETECTION  
Power good fault  
detection threshold  
Falling output voltage, applies to all integrated supply  
outputs. Referenced to the programmed output voltage value  
VPGOOD  
84%  
3%  
90%  
5%  
96%  
7%  
Power good fault  
detection hysteresis  
Rising output voltage, applies to all integrated supply outputs.  
Referenced to VPGOOD threshold  
VHYS(PGOOD)  
HOT RESET FUNCTION  
VHRSTON Low level input voltage  
VHRSTOFF High level input voltage  
tDGL(HOTRST) Hot reset input deglitch  
SYSTEM RESET – OPEN DRAIN OUTPUT RESPWRON  
RESET mode set at V(HOT_RESET) < VHRSTON  
HOT reset not active at V(HOT_RESET) > VHRSTOFF  
0.4  
V
V
1.3  
5
ms  
VRSTLO  
Low level output voltage IIL = 10 mA, V(RESPWRON ) < VRSTLO  
0
0.3  
1.2  
V
ITRSTPWON  
KRESET  
Pull-up current source  
Reset timer constant  
Internally connected to TRSTPWRON pin  
0.9  
1.0  
1
µA  
TRESET = KRESET× CTRSTPWON  
ms/nF  
7
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – POWER PATH AND CHARGE MANAGEMENT  
Over recommended operating conditions (typical values at TJ = 25°C), circuit as in Figure 3 (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
VOLTAGE DETECTION THRESHOLDS  
Input Voltage detection  
threshold  
AC detected at V(AC)– V(BAT) > VIN(DT)  
USB detected at V(USB)– V(BAT) > VIN(DT)  
;
VIN(DT)  
190  
mV  
Input Voltage removal  
threshold  
AC not detected at V(AC)– V(BAT) < VIN(NDT);  
USB not detected at V(USB)– V(BAT) < VIN(NDT)  
VIN(NDT)  
125  
mV  
ms  
mV  
tDGL(NDT)  
VSUP(DT)  
Power not detected deglitch  
22.5  
60  
Supplement detection  
threshold  
Battery switch ON at V(BAT) – V(OUT) > VSUP(DT)  
Battery switch OFF at V(BAT)– V(OUT) < VSUP(NDT)  
Supplement not detected  
threshold  
VSUP(NDT)  
20  
mV  
POWER PATH INTEGRATED MOSFETs CHARACTERISTICS  
VACDO = V(AC)– V(OUT); V(AC) = 4.75 V AC input current limit set to 2.75 A  
(typ), IO(OUT) = 1.0 A  
VACDO  
AC switch dropout voltage  
USB switch dropout voltage  
350  
375  
mV  
VUSBDO = V(USB)– V(OUT); V(USB) = 4.6 V  
USB input current limit set to 2.75 A (typ)  
I(OUT)+ I(BAT)= 0.5 A  
I(OUT)+ I(BAT)= 0.1 A  
175  
35  
190  
45  
mV  
mV  
VUSBDO  
Battery switch dropout  
voltage, discharge  
VBATDODCH  
VBATDOCH  
V(BAT): 3 V VCH(REG), I(BAT) = –1 A  
60  
60  
100  
100  
mV  
mV  
Battery switch dropout  
voltage, charge  
Charger on, V(BAT): 3 V 4.2 V, I(BAT) = 1 A  
POWER PATH INPUT CURRENT LIMIT  
Selected input current limit,  
IINP(LIM1)  
Selected input switch not in dropout, I2C settings: ISET2 = LO, PSEL = LO  
Selected input switch not in dropout, I2C settings: ISET2 = HI, PSEL = LO  
80  
100  
500  
mA  
mA  
applies to USB input only  
Selected Input current limit,  
IINP(LIM2)  
400  
applies to USB input only  
Selected Input current limit,  
applies to either AC or USB  
input  
Selected input switch not in dropout, I2C settings: ISET2 = HI OR LO, PSEL  
= HI  
IINP(LIM3)  
2.75  
4.7  
A
V
SYSTEM REGULATION VOLTAGE  
VSYS(REG) Output regulation voltage  
VSYS(REG) = V(OUT), DPPM loop not active, selected input current limit not  
reached. Selected input voltage (AC or USB) > 5.1 V  
4.6  
POWER PATH PROTECTION AND RECOVERY FUNCTIONS  
Input-to-output short-circuit  
detection threshold  
VINOUTSH  
RSH(USBSH)  
RSH(ACSH)  
AC and USB switches set to OFF if V(OUT) < VINOUTSH  
0.6  
500  
500  
6.5  
0.1  
200  
1
V
OUT short circuit recovery  
pullup resistor  
V(OUT) < 1 V, internal resistor connected from USB to OUT  
V(OUT) < 1 V, internal resistor connected from AC to OUT  
OUT short circuit recovery  
pullup resistor  
Overvoltage detection  
threshold  
Rising voltage, overvoltage detected when V(AC) > VOVP or  
V(USB) > VOVP  
6
6.8  
VOVP  
V
Overvoltage detection  
hysteresis  
Falling voltage, relative to detection threshold  
Battery-to-output short-circuit  
detection threshold  
VBATOUTSH  
KBLK(SHBAT)  
ISH(BAT)  
BAT switch set to OFF if V(BAT) – V(OUT) > VBATOUTSH  
mV  
mS/nF  
mA  
Battery-to-ouput short-circuit V(DPPM) < 1v, tBLK(SHBAT) = KBLK(SHBAT) X CDPPM, CDPPM capacitor is  
blanking time constant  
connected from DPPM pin to AGND1  
OUT short circuit recovery  
pullup current source  
V(BAT)– V(OUT) > VBATOUTSH  
,
10  
Internal current source connected between OUT and BAT  
BAT short circuit recovery  
resistor  
V(BAT)< 1V,  
RSH(BAT)  
1
kΩ  
Internal resistor connected from OUT to BAT  
Internal resistor connected from BAT to AGND1 when battery is not detected  
by ANLG1  
RDCH(BAT)  
BAT pulldown resistor  
500  
8
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – POWER PATH AND CHARGE MANAGEMENT (Continued)  
Over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 3 (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
POWER PATH TIMING CHARACTERISTICS, DPPM AND THERMAL LOOPS NOT ACTIVE, RTMR = 50 kΩ  
tBOOT  
Boot-up time  
Measured from input power detection  
120  
200  
300  
50  
ms  
µs  
µs  
No USB: measured from V(AC)– V(BAT) < VIN(NDT), USB  
detected:CE=LO (after CE hold-off time)  
tSW(ACBAT)  
Switching from AC to BAT  
No AC: measured from V(USB)– V(BAT) < VIN(NDT),USB  
detected:CE=LO (after CE hold-off time)  
50  
tSW(USBBAT)  
tSW(PSEL)  
Switching from USB to BAT  
Switching from USB to AC  
Toggling I2C PSEL bit  
50  
µs  
µs  
Switching from AC to USB or USB to  
AC  
tSW(ACUSB)  
AC power removed or USB power removed  
100  
BATTERY REMOVAL DETECTION  
VNOBATID  
Battery ID resistor detection  
ID resistor not detected at V(OUT)– V(ANLG1) < VNOBATID  
0.5  
V
Deglitch time for battery removal  
detection  
tDGL(NOBAT)  
0.6  
1.2  
ms  
V(OUT) * 1.2  
500 kW  
00, V(OUT): 2.5 V to 4.4 V  
Set via I2C bits  
µA  
(BATID1,BATID2)  
ADC_WAIT register  
01  
10  
11  
10  
50  
60  
IO(ANLG1)  
ANLG1 pullup current  
Total accuracy  
25%  
25%  
FAST CHARGE CURRENT, V(OUT) > V(BAT) + 0.1 V, V(BAT) > VLOWV  
Charge current range  
100  
1500  
mA  
V
K(SET)   V(SET)  
+
IO(BAT)  
IO(BAT)  
RSET  
11, 100% scaling  
10, 75% scaling  
01, 50% scaling  
00, 25% scaling  
2.475  
1.875  
1.225  
0.575  
350  
2.500  
1.900  
1.250  
0.600  
400  
2.525  
1.925  
1.275  
0.625  
450  
VSET = V(ISET1),  
(ISET1_1, ISET1_0) =  
VSET  
Battery charge current set voltage  
Battery charge current set factor  
100 mA < IO(BAT)1 A  
1 mA < IO(BAT)100 mA  
KSET  
100  
400  
1000  
PRE-CHARGE CURRENT, V(OUT) > V(BAT) + 0.1 V, VBATSH < V(BAT) < VLOWV, t < t(PRECHG)  
V(PRECHG)   K(SET)  
IO(PRECHG)  
Precharge current range  
IO(PRECHG)  
+
10  
150  
mA  
RSET  
VPRECHG  
VLOWV  
Precharge set voltage  
VPRECHG = V(ISET1)  
220  
2.8  
250  
3
270  
3.2  
mV  
V
Precharge to fast-charge transition  
Fast charge at V(BAT) > VLOWV  
Deglitch time for fast charge to  
precharge transition  
Decreasing battery voltage, RTMR = 50 kΩ  
22.5  
ms  
tDGL(PRE)  
CHARGE REGULATION VOLTAGE, V(OUT) > VO(BATREG) + 0.1V  
4.2  
V
V
Voltage options, selection via I2C  
4.356  
VO(BATREG)  
Battery charge voltage  
Accuracy, TA = 25°C  
–0.5%  
–1%  
0.5%  
1%  
Total accuracy  
CHARGE TERMINATION, V(BAT) > VRCH, VOLTAGE REGULATION MODE SET  
V(TERM)   K(SET)  
+
I(TERM)  
ITERM  
Charge termination current range  
10  
150  
mA  
RSET  
11, 100% scaling  
10, 75% scaling  
01, 50% scaling  
00, 25% scaling  
240  
145  
90  
260  
160  
110  
60  
280  
175  
130  
75  
Battery termination detection set  
voltage  
VTERM = V(ISET1),  
(ISET1_1, SET1_0) =  
VTERM  
mV  
ms  
40  
tDGL(TERM)  
Deglitch time for termination detection V(ISET1) < VTERM, RTMR = 50 kΩ  
22.5  
9
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – POWER PATH AND CHARGE MANAGEMENT (Continued)  
Over recommended operating conditions (typical values at TJ = 25°C), circuit as in Figure 3 (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
BATTERY RECHARGE DETECTION  
New charge cycle starts if V(BAT) < VO(BATREG)– VRCH, after  
termination was detected  
VRCH  
Recharge threshold voltage  
80  
100  
130  
mV  
ms  
Deglitch time for recharge  
detection  
tDGL(RCH)  
RTMR = 50 kΩ  
22.5  
DPPM FUNCTION  
VDPPM  
IO(DPPM)  
KDPPM  
DPPM regulation point range  
V(DPPM) = RDPPM× KDPPMM× IO(DPPM)  
2.6  
95  
4.4  
V
DPPM pin current source  
DPPM scaling factor  
AC or USB Present  
100  
105  
µA  
1.139  
1.15 1.162  
500  
tDGL(DPPM  
)
Status bit set indicating DPPM loop active after deglitch time,  
RTMR = 50 kΩ  
DPPM de-glitch time  
µs  
CHARGE AND PRE-CHARGE SAFETY TIMER  
Charge safety timer  
programmed value  
Safety timer range, thermal/DPPM loop not active,  
tCHG = RTMR× KTMR  
tCHG  
3
5
10  
0.36 0.414  
2 × tCHG  
30  
h
KTMR  
Charge timer set factor  
0.313  
s/Ω  
h
Total elapsed time when DPPM Fast charge on, tCHGADD is the maximum add-on time added to  
or thermal loop are active  
tCHGADD  
tCHG  
Precharge safety timer  
programmed value  
Pre charge safety timer range, thermal/DPPM loop not active,  
tPRECHG = KPRE× RTMR× KTMR  
min  
tPRECHG  
KPRE  
tPCHGADD  
RTMR  
18  
60  
Pre-charge timer set factor  
0.09  
0.1  
0.11  
Total elapsed time when DPPM Pre-charge on, tPCHGADD is the maximum add-on time added to  
or thermal loop are active  
2 × tPRECHG  
h
tPRECHG  
External timer resistor limits  
30  
100  
135  
kΩ  
kΩ  
Timer fault recovery pullup  
resistor  
Internal resistor connected from OUT to BAT after safety timer  
timeout  
RTMR(FLT)  
1
THERMAL REGULATION LOOP  
TTHREG Temperature regulation limit  
CHARGER THERMAL SHUTDOWN  
Charge current decreased and timer extended when TJ  
TTHREG  
>
°C  
°C  
115  
TTHCHG  
Charger thermal shutdown  
Charger turned off when TJ>TTHCHG  
150  
30  
Charger thermal shutdown  
hystersis  
THCHGHYS  
10  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – LINEAR REGULATORS  
Over recommended operating conditions (typical values at TJ = 25°C), application circuit Figure 3 (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SELECTABLE OUTPUT VOLTAGE LDO’S: LDO1, LDO2  
I(LDO1,2) = –1 mA  
I(LDO1,2) = –150 mA  
15  
Quiescent current, either LDO1 or  
LDO2 enabled, LDO0 disabled  
IQ(LDO12)  
IO(LDO1,2)  
IQ(LDO12) = I(VIN_LDO02)  
µA  
160  
Output current range  
150  
mA  
V
Available output voltages:  
VO(LDO1,2)TYP = 1.25, 1.5, 1.8,  
2.5, 2.85, 3, 3.2, 3.3  
Output Voltage, Selectable via I2C.  
Dropout voltage, 150 mA load  
300  
mV  
VO(LDO1,2)  
LDO1, LDO2 Output Voltage  
Total accuracy, V(VIN_LDO02) = 3.65 V  
–3%  
–1%  
3%  
1%  
Line Regulation, 100 mA load,  
V(VIN_LDO02): V(LDO1,2)TYP + 0.5 V 4.7 V  
Load regulation, load: 10 mA 150 mA  
V(VIN_LDO02) > VO(LDO1,2) TYP + 0.5V  
–1.5%  
1.5%  
PSR(LDO12)  
ISC(LDO1,2)  
PSRR at 20 kHz  
150mA load at output, V(VIN_LDO02) – VO(LDO1,2)=1V  
Output grounded  
40  
300  
300  
2
dB  
mA  
LDO1&2 short circuit current limit  
LDO disabled by I2C command  
LDO off  
RDCH(LDO1,2) Discharge resistor  
ILKG(LDO1,2) Leakage current  
SIM LINEAR REGULATOR  
µA  
IQ(SIM)  
IO(SIM)  
Quiescent current  
Internally connected to OUT pin  
20  
µA  
Output current range  
8
mA  
Available output voltages:  
VO(SIM)TYP = 1.8 or 2.5  
Output voltage, selectable via I2C.  
V
V
Dropout voltage, 8 mA load  
0.2  
Total accuracy, V(OUT): 3.2 V to 4.7 V, 8 mA  
–5%  
–3%  
5%  
3%  
VO(SIM)  
SIM LDO output voltage  
Load regulation, load: 1 mA 8 mA,  
V(OUT) > VO(SIM) TYP + 0.5 V  
Line regulation, 5 mA load, V(OUT):  
VO(SIM) TYP + 0.5 V 4.7 V  
–2%  
2%  
ISC(SIM)  
Short-circuit current limit  
Leakage current  
Output grounded  
LDO off  
20  
1
mA  
ILKG(SIM)  
µA  
PROGRAMMABLE OUTPUT VOLTAGE LDO’S: LDO3, LDO4, LDO5  
Quiescent current, only one of  
LDO3, LDO4, LDO5 is enabled  
IQ(LDO35)  
IO(LDO35)  
IQ(LDO35) = I(VIN_LDO35)  
70  
µA  
Output current range  
100  
mA  
Available output voltages:  
VO(LDO35)TYP = 1.224 V to  
4.46 V, 25-mV steps  
Output voltage, selectable via I2C  
V
Dropout voltage, 100-mA load  
240  
mV  
VO(LDO35)  
LDO3, LDO4, LDO5 output voltage  
Total accuracy, 100 mA load V(VIN_LDO35) = 5 V  
–3%  
–1%  
3%  
1%  
Load regulation, V(VIN_LDO35) > VO(LDO35)TYP + 0.5 V, load: 1  
mA 50 mA  
Line regulation, 10-mA load,  
V(VIN_LDO35): VO(LDO35)TYP + 0.5 V 4.7 V  
–1%  
1%  
ISC(LDO35)  
Short-circuit current limit  
PSRR at 10 kHz  
Output grounded  
250  
40  
mA  
dB  
PSR(LDO35)  
V(VIN_LDO35) > VO(LDO3,5) +1 V, 50 mA load at output  
LDO is disabled by I2C command  
LDO off  
RDCH(LDO35) Discharge resistor  
ILKG(LDO35) Leakage current  
400  
1
µA  
11  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – LINEAR REGULATORS (continued)  
Over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 3 (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
20  
MAX  
UNIT  
RTC_OUT LINEAR REGULATOR  
IQ(RTC_OUT)  
IO(RTC_OUT)  
Quiescent current for RTC LDO  
Internally connected to OUT pin  
µA  
mA  
V
Output current range  
8
Fixed output voltage value  
1.5  
Dropout voltage, I(RTC_OUT) = –8 mA  
200  
5%  
mV  
Total accuracy, V(OUT): 2 V to 4.7 V, 8 mA load,  
sleep mode not set  
–5%  
–3%  
–2%  
VO(RTC_OUT)  
RTC_OUT output voltage  
Load regulation, load: 1 mA 8 mA,  
2 V < V(OUT) < 4.7 V  
3%  
2%  
Line regulation, 5-mA load  
V(OUT): 2 V 4.7 V  
ISH(RTC_OUT)  
ILKG(RTC_OUT)  
Short-circuit current limit  
Leakage current  
V(RTC_OUT) = 0 V  
20  
880  
250  
mA  
nA  
TJ = 85°C  
V(RTC_OUT) = 1.5 V,  
V(OUT) = 0 V  
TJ = 25°C  
LDO0 LINEAR REGULATOR  
IQ(LDO0) Quiescent current  
IO(LDO0)  
I(LDO0) = –1 mA  
I(LDO0) = –150 mA  
15  
Internally connected to VIN_LDO12  
pin  
µA  
160  
Output current range  
150  
mA  
V
Fixed output voltage value  
Dropout voltage, I(LDO0) = –150 mA  
Total accuracy  
3.3  
300  
3%  
mV  
–3%  
–1%  
VO(LDO0)  
Output voltage  
Line regulation, V(OUT): VO(LDO0) + 0.5 4.7 V,  
1%  
I(LDO0) = –100 mA  
Load regulation, I(LDO0) = –10 mA – 150 mA  
–1.5%  
1.5%  
PSR(LDO0)  
ISC(LDO0)  
PSRR at 20 kHz  
150 mA load at output, V(VIN_LDO12) – VO(LDO1,2) = 1V  
40  
300  
1
dB  
mA  
µA  
Short circuit current limit  
Leakage current  
V(LDO0) = 0 V  
LDO off  
ILKG(LDO0)  
LDO_PM LINEAR REGULATOR  
IQ(LD0_PM)  
VO(LDO_PM)  
ILKG(LDOPM)  
Output current range  
20  
mA  
V
Fixed output voltage value, V(OUT) > 4V  
Dropout voltage, I(LDOPM) = –12 mA  
Total accuracy  
3.3  
0.5  
Output voltage  
0.7  
5%  
V
–5%  
Leakage current  
LDO off  
1
µA  
12  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – SWITCHED-MODE SM1 STEP-DOWN CONVERTER  
Over recommended operating conditions (typical values at TJ = 25°C), VO(SM1) = 1.24 V, application circuit Figure 3 (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
IQ(SM1) = I(VIN_ SM1), no output load  
SM1 OFF, set via I2C  
MIN  
TYP MAX  
UNIT  
Not switching  
10  
0.1  
IQ(SM1)  
Quiescent current for SM1  
µA  
Vin = 4.2 v, Vout = 1.24 V (TPS65810)  
Vin = 4.2 v, Vout = 1.24 V (TPS65811)  
600  
750  
IO(SM1)  
Output current range  
mA  
Available output  
voltages: VO(SM1)TYP  
0.6 V to 1.8 V,  
=
Output voltage, selectable via I2C, Standby OFF  
adjustable in 40-mV  
steps  
V
Available output  
voltages: VSBY(SM1)  
0.6 V to 1.8 V,  
adjustable in 40-mV  
steps  
=
VO(SM1) = VSBY(SM1), Output voltage range, Standby  
ON  
VO(SM1)  
Output voltage, PWM mode  
Total accuracy, VO(SM1)TYP = VSBY(SM1) = 1.24 V,  
V(VIN_SM1) = 3.0 V to 4.7 V; 0 mA IO(SM1)600 mA  
–3%  
3%  
Line Regulation, V(VIN_SM1): 3.0 4.70 V,  
IO(SM1) = 10 mA  
%/V  
%/A  
0.027  
0.139  
Load Regulation, V(VIN_SM1) = 4.7 V,  
IO(SM1): 60 mA 540 mA  
P-channel MOSFET  
on-resistance  
RDSON(PSM1)  
ILKG(PSM1)  
RDSON(NSM1)  
ILKG(PSM1)  
V(VIN_SM1) = 3.6 V, 100% duty cycle set  
V(VIN_SM1) = 3.6 V, 0% duty cycle set  
310 500  
mΩ  
µA  
P-channel leakage current  
0.1  
N-channel MOSFET  
on-resistance  
220 330  
mΩ  
µA  
N-channel leakage current  
5
3 V < V(VIN_SM1) < 4.7 V (TPS65810)  
3 V < V(VIN_SM1) < 4.7 V (TPS65811)  
PWM mode set  
900  
1000  
1.3  
1050 1200  
1200 1400  
ILIM(SM1)  
P- and N-channel current limit  
mA  
fS(SM1)  
Oscillator frequency  
Efficiency  
1.5  
1.7  
MHz  
V(VIN_SM1) = 4.2 V, PWM mode, IO(SM1) = 300 mA,  
VO(SM1) = 3 V  
EFF(SM1)  
90%  
Converter OFFON, VO(SM1): 5% 95% of target  
value  
tSS(SM1)  
Soft start ramp time  
750  
170  
µs  
tDLY(SM1)  
Converter turn-on delay  
GPIO1 pin programmed as SM1 converter enable  
µ s  
control. Measured from V(GPIO1): LO HI  
13  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – SWITCHED MODE SM2 STEP DOWN CONVERTER  
Over recommended operating conditions (typical values at TJ = 25°C), VO(SM1) = 1.24 V, application circuit Figure 3 (unless  
otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
IQ(SM2) = I(VIN_ SM2), no output load, not  
switching  
10  
IQ(SM2)  
Quiescent current for SM2  
µA  
SM2 OFF, set via I2C  
0.1  
600  
750  
Vin = 4.2 v, Vout = 1.24 V (TPS65810)  
Vin = 4.2 v, Vout = 1.24 V (TPS65811)  
IO(SM2)  
Output current range  
mA  
V
Available output voltages:  
VO(SM2)TYP = 1 V to 3.4 V,  
adjustable in 80-mV steps  
Output voltage, selectable via I2C, standby OFF  
Available output voltages:  
VSBY(SM2) = 1 V to 3.4 V,  
adjustable in 80-mV steps  
VO(SM2) = VSBY(SM2), Output voltage range,  
Standby ON  
Total accuracy, VO(SM2)TYP = VSM2(SBY) = 1.8 V,  
V(VIN_SM2) = greater of [3.0 V or (VO(SM2) + 0.3  
V)]  
VO(SM2)  
Output voltage  
–3%  
3%  
to 4.7 V; 0 mA IO(SM2) 600 mA  
Line regulation, V(VIN_SM2) = greater of  
[3 V or (VO(SM2) + 0.3 V)]  
to 4.7 V; 0 mA IO(SM2) 600 mA  
%/V  
%/A  
0.027  
0.139  
Load regulation, V(VIN_SM2) = 4.7 V,  
IO(SM2): 60 mA 540 mA  
P-channel MOSFET  
on-resistance  
RDSON(PSM2)  
ILKG(PSM2)  
RDSON(NSM2)  
ILKG(PSM2)  
V(VIN_SM2) = 3.6 V, 100% duty cycle set  
V(VIN_SM2) = 3.6 V, 0% duty cycle set  
310 500  
mΩ  
µA  
P-channel leakage current  
0.1  
N-channel MOSFET  
on-resistance  
220 330  
mΩ  
µA  
N-channel leakage current  
5
3 V < V(VIN_SM2) < 4.7 V (TPS65810)  
3 V < V(VIN_SM2) < 4.7 V (TPS65811)  
PWM mode set  
900  
1000  
1.3  
1050 1200  
1200 1400  
ILIM(SM2)  
P- and N-channel current limit  
mA  
fS(SM2)  
Oscillator frequency  
Efficiency  
1.5  
1.7  
MHz  
V(VIN_SM2) = 4.2 V, IO(SM2) = 300 mA,  
VO(SM2) = 3 V  
EFF(SM2)  
90%  
Converter OFFON, VO(SM2) : 5% 95% of  
target value  
tSS(SM2)  
Soft start ramp time  
750  
170  
µs  
µs  
tDLY(SM2)  
Converter turn-on delay  
GPIO2 pin programmed as SM2 converter  
enable control. Measured from V(GPIO2): LO →  
HI  
ELECTRICAL CHARACTERISTICS – GPIOs  
Over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 3 (unless otherwise  
noted).  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
0.5  
UNIT  
GPIO1–3  
VOL  
Low level output voltage GPIO0  
Low level sink current into GPIO1,2,3  
Low level input voltage  
IOL = 20 mA  
V
mA  
V
IOGPIO  
VIL  
V(GPIOn) = V(OUT)  
20  
0.4  
ILKG(GPIO)  
Input leakage current  
V(GPIOn) = V(OUT)  
1
µA  
14  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – ADC  
Over recommended operating conditions (typical values at TJ = 25°C), V(ADC_REF) =2.535v if external reference voltage is  
used, application circuit as in Figure 3 (unless otherwise noted).  
PARAMETER  
ANALOG INPUTS  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Full scale input range Ch1 to  
Ch5  
Positive inputs (active clamp)  
Full scale ~ 2.535 V  
V(ADC_  
REF)  
VRNG(CH1_5)  
VRNG(CH6_8)  
0
0
V
V
Full scale input range Ch6 to  
Ch8  
VINTREF  
×
Positive inputs (active clamp), full scale ~4.7 V  
1.854  
Input capacitance (all  
channels)  
CIN(ADC)  
15  
pF  
RINADC(CH1_5)  
Input resistance  
(Ch1 to Ch5)  
1
MΩ  
nA  
ILKGADC(CH1_5) Leakage current  
RINADC(CH6_8) Input resistance  
ILKGADC(CH6_8) Leakage current  
(Ch1 to Ch5)  
100  
10  
(Ch6 to Ch8)  
430  
540  
kΩ  
(Ch6 to Ch8)  
µA  
TJ = 25°C, ADC channel 5 input voltage  
Temperature coefficient  
1.895  
6.5  
V
Internal voltage proportional to  
junction temperature  
VCH5(ADC)  
mV/ °C  
DC ACCURACY  
RES(ADC)  
Resolution  
SAR ADC  
10  
Bits  
MCD(ADC)  
INL(ADC)  
No missing codes  
SPECIFIED  
Integral linearity error  
Differential non-linearity error  
±3  
±1  
LSB  
LSB  
DNL(ADC)  
Difference between the first code transition  
(00...00 to 00...01) and the ideal AGND + 1 LSB  
OFFZERO(ADC) Offset error  
5
5
LSB  
LSB  
Offset error match between  
OFFCH(ADC)  
channels  
Deviation in code from the ideal full scale code  
(11111) for the full scale voltage  
GAINADC  
Gain error  
±8  
LSB  
LSB  
GAINCH(ADC)  
Gain error match  
Any two channels  
2
THROUGHPUT SPEED  
ADCCLK  
Sampling clock  
600  
44  
750  
59  
900  
68  
kHz  
Sampling, conversion and setting Rs 200 K for  
CH1,CH2,CH3; Rs 500 for CH6, CH7, CH8  
ADCTCONV  
Conversion time  
µ s  
REFERENCE VOLTAGES  
Internal ADC reference  
voltage  
TA = 25°C, V(ADC_REF)=VINTREF when internal  
ADC reference is selected  
VINTREF  
2.53 2.535  
2.54  
V
Internal reference short circuit V(ADC_REF)= AGND1, internal reference  
limit  
ISHRT(INTREF)  
VREF(DRIFT)  
IQ(ADC)  
6
50  
40  
mA  
enabled via I2C  
ADC internal reference  
temperature drift  
100 ppm/°C  
µA  
ADC Internal reference  
quiescent current  
Measured at OUT pin (internal reference) or  
ADC_REF pin (external reference)  
00  
0
ADC channel 2 bias current, set via  
01  
10  
I2C register ADC_WAIT bits  
µA  
ANLG2 pin internal pullup  
current source  
I(ANLG2)  
10  
50  
(ADC_CH2I_D1_1, ADC_CH2I _D2)  
11  
60  
Total accuracy, relative to selected value  
–25%  
25%  
V(OUT) * 1.2  
00  
µA  
500 kW  
ADC channel 1 bias current, set via  
I2C register ADC_WAIT bits  
(BATIDI_D1, BATIDI _D2)  
01  
10  
11  
10  
50  
60  
ANLG1 pin internal pullup  
current source  
I(ANLG1)  
Total accuracy  
10%  
10%  
15  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – ADC (continued)  
Over recommended operating conditions (typical values at TJ = 25°C), V(ADC_REF) =2.535v if external reference voltage is  
used, application circuit as in Figure 3 (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INTERNAL REFERENCE POWER CONSUMPTION  
PDACTIVE  
PDARMED  
Power dissipation  
Power dissipation  
Conversion active  
2.3  
mW  
mW  
Not converting  
0.43  
TRIGGER TIMING CHARACTERISTICS  
tDELAY(TRG)  
Trigger delay time accuracy  
Trigger wait time accuracy  
Time range, set via I2C register ADC_DELAY  
Relative to typical value set via I2C  
Time range, set via I2C register ADC_WAIT  
Relative to typical value set via I2C  
0
–20%  
0
750  
+20%  
20.48  
+20%  
uS  
tWAIT(TRG)  
mS  
–20%  
ELECTRICAL CHARACTERISTICS – LED AND PWM DRIVERS  
Over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 3 (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SM3 BOOST CONVERTER, WHITE LED CONSTANT CURRENT DRIVER  
VVIN(SM3)  
VOVP3  
Input Voltage range  
V(OUT) = 3.3 V  
3
4.7  
30  
V
V
V
Output overvoltage trip  
OVP detected at V(SM3) > VOVP3  
26.5  
29  
VHYS(OVP3)  
Output overvoltage hysteresis OVP not detected at V(SM3) < VOVP3– VHYS(OVP3)  
1.8  
LED current below regulation point at  
LED current sense threshold  
VSM3REF  
244  
252  
260  
mV  
mA  
V(FB3) < VSM3REF  
V(SM3REF)  
+
IO(SM3)  
0
25  
RFB3  
IO(SM3)  
LED current  
Current range, Vin = 3.3 V,  
Total accuracy, IO(SM3) = 10mA  
–10%  
10%  
DSM3SW = 0% to 99.6%, set  
via I2C,  
256 steps, 0.4% minimum  
step  
DSM3SW  
LED switch duty cycle  
Duty cycle range  
SM3_LF_OSC = 0  
SM3_LF_OSC = 1  
122  
183  
LED switch duty cycle pattern 256 pulses within repetition  
FREP_SM3  
Hz  
repetition rate  
rate time  
LED switch MOSFET  
on-resistance  
RDSON(SM3SW)  
ILKG(SM3SW)  
RDSON(L3)  
V(OUT)=3.6 V; I(SM3SW)=20 mA  
1
1
2
LED switch MOSFET leakage  
µA  
mΩ  
Power stage MOSFET  
on-resistance  
V(OUT) = 3.6 V; I(L3) = 200 mA  
300  
600  
Power stage MOSFET  
leakage  
ILKG(L3)  
IMAX(L3)  
1
µA  
Power stage MOSFET current  
limit  
3 V < V(OUT) < 4.7 V  
400  
500  
600  
0.5  
mA  
PWM DRIVER, PWM OPEN DRAIN OUTPUT  
VOL(PWM)  
Low level output voltage  
I(PWM)= 150 mA  
V
Set via I2C, FPWM  
0.5/1/1.5/2/3/4.5/7.8/15.6  
=
Frequency range  
Hz  
FPWM  
PWM driver frequency  
Total accuracy, relative to selected value  
– 20%  
+20%  
DPWM = 6.25% to 100%,  
set via I2C,  
DPWM  
PWM driver duty cycle  
Duty cycle range  
6.25% minimum step  
16  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ELECTRICAL CHARACTERISTICS – LED AND PWM DRIVERS (continued)  
Over recommended operating conditions (typical values at TJ = 25°C), application circuit as in Figure 3 (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LED_PWM DRIVER, LED_PWM OPEN DRAIN OUTPUT  
DLEDPWM = 0% to 99.6%,  
set via I2C, 256 steps  
0.4% minimum step  
DLEDPWM  
LED_PWM driver duty cycle  
Duty cycle range  
SM3_LF_OSC = 0  
SM3_LF_OSC = 1  
122  
180  
0.5  
6
LED_PWM driver duty cycle  
pattern repetition rate  
256 pulses within repetition  
rate time  
FREP(LEDPWM)  
Hz  
VOL(LEDPWM) Low level output voltage  
VOH(LEDPWM) High level output voltage  
I(LED_PWM) = 150 mA  
V
V
RGB DRIVER, RED/GREEN/BLUE OPEN DRAIN OUTPUTS  
tFLASH(RGB) = 1 to 8 sec, set  
via I2C, 0.5 sec minimum  
step, 8 steps  
Flashing period range  
Total accuracy  
sec  
sec  
tFLASH(RGB)  
Flashing period  
–20%  
+20%  
Set via I2C, tFLASH(ON)  
=
Flash on time range, value selectable by I2C  
Total accuracy relative to selected value  
Duty cycle range, value selectable via I2C  
00 = (Driver set to  
0.1/0.15/0.2/0.25/0.3/0.4/  
0.5/0.6 Sec  
tFLASH(ON)  
Flash on time  
Duty cycle  
– 20%  
+20%  
DRGB = 0% to 99.98%, set  
via I2C, 3.23% minimum  
step  
DRGB  
OFF)  
V(RED) = V(GREEN) =  
01  
10  
11  
2.4  
4.8  
7
4
8
5.6  
11.2  
16.6  
ISINK(RGB)  
RGB output sink current  
V(BLUE) = 2 V, set via I2C  
RGB_ISET1,0  
mA  
12  
Output low voltage, 8-mA load, RED/GREEN/BLUE  
PINS  
VOL(RGB)  
ILKG(RGB)  
Low-level output voltage  
Output off leakage current  
0.3  
V
V(RED)=V(GREEN)=V(BLUE) = 4.7 V, all drivers  
disabled  
1
µA  
17  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
PIN ASSIGNMENT  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
SM3  
1
BLUE  
FB3  
SCLK  
SDA T  
2
3
4
5
6
7
SM3SW  
L3  
RTC_OUT  
SIM  
PGND3  
LDO1  
LED_PWM  
USB  
AC  
GROUND PAD  
8
VIN_LDO02  
PWM  
OUT  
OUT  
9
10  
LDO2  
LDO_PM  
11  
12  
13  
14  
LDO0  
ISET1  
TS  
SYS_IN  
31  
30  
29  
TMR  
LDO35_REF  
VIN_LDO35  
DPPM  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
PIN DESCRIPTION, REQUIRED EXTERNAL COMPONENTS  
NAME  
PIN  
I/O  
DESCRIPTION  
EXTERNAL REQUIRED COMPONENTS  
(SEE APPLICATION DIAGRAM)  
AC  
7
I
Adapter charge input voltage, connect to 1-µF (minimum) capacitor to AGND1 pin to minimize  
AC_DC adapter positive output terminal  
(dc voltage)  
overvoltage transients during AC power hot-plug events.  
ADC_REF  
22  
I/O ADC internal reference filter or ADC  
external reference input  
4.7 µF (minimum) to 10 µF (maximum) capacitor connected to  
AGND2 pin  
AGND0  
AGND1  
AGND2  
ANLG1  
16  
48  
25  
24  
I
Analog ground connection  
Analog ground pin  
Connect to analog ground plane  
Connect to analog ground plane  
Analog ground pin  
Connect to analog ground plane  
Analog input to ADC, programmable  
current source output  
Can be used to monitor additional system or pack parameters  
ANLG2  
BAT  
23  
I
Analog input to ADC, programmable  
current source output  
Can be used to monitor additional system or pack parameters  
17,  
18  
I/O Battery power  
Connect to battery positive terminal. Connect 10-µF capacitor  
(minimum) from BAT pin to AGND1 pin.  
BLUE  
DPPM  
1
O
I
Programmable blue driver, open drain  
output, current sink output when active.  
Connect to BLUE input of RGB LED  
14  
Dynamic power path management  
set-point  
External resistor from DPPM pin to AGND1 pin sets the DPPM  
regulation threshold. 1-nF (minimum) capacitor to from DPPM  
to AGND1 sets BAT to OUT short circuit blanking delay when  
battery is hot-plugged into system  
FB3  
41  
I/O White LED duty cycle switch output, LED External resistor from FB3 pin to PGND3 pin sets LED peak  
current setting  
current. Connect 100 pF (minimum) filter capacitor to PGND3  
pin.  
GPIO1  
GPIO2  
43  
53  
I/O General purpose programmable I/O  
I/O General purpose programmable I/O  
Power-up default: SM1 enable control, SM1 ON @ GPIO1=HI.  
Power-up default: SM2 enable control, SM2 ON at GPIO2 =  
HI.  
GPIO3  
54  
56  
I/O General purpose programmable I/O.  
Example: ADC conversion start trigger.  
Connect to GREEN input of RGB LED  
GREEN  
O
Programmable LED driver, open drain  
output, current sink output when active.  
18  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
PIN ASSIGNMENT (continued)  
NAME  
PIN  
15  
I/O  
DESCRIPTION  
EXTERNAL REQUIRED COMPONENTS  
(SEE APPLICATION DIAGRAM)  
HOT_RST  
I/O Hardware reset input, reset generated  
when connected to ground  
Connect to an external push-button switch. Connect to external  
pullup resistor.  
INT  
19  
O
Interruption pin, open-drain output  
Connect 100-kexternal pullup resistor between INT and OUT  
INT pin is LO when interrupt is requested by TPS65810.  
ISET1  
11  
I
Current set point when charging in auto  
mode with AC selected. Pre-charge and  
charge termination set point for all charge  
modes  
External resistor from ISET1 pin to AGND1 pin sets charge  
current value  
L1  
L2  
L3  
46  
51  
39  
O
O
O
SM1 synchronous buck converter  
power-stage output  
3.3-µH inductor to SM1 pin  
3.3-µH inductor to SM2 pin  
SM2 synchronous buck converter  
power-stage output  
Drain of the integrated boost power-stage 4.7-µH inductor to OUT pin, external Schottky diode to SM3  
switch  
pin  
LDO0  
32  
37  
33  
28  
30  
27  
26  
10  
36  
8, 9  
O
O
O
O
I
LDO0 output, fixed voltage  
LDO1 output  
1-µF (minimum) capacitor to AGND1  
1-µF (minimum) capacitor to AGND1  
1-µF (minimum) capacitor to AGND1  
2.2-µF (minimum) capacitor to AGND2  
LDO1  
LDO2  
LDO2 output  
LDO3  
LDO3 output  
LDO35_REF  
LDO4  
Linear regulators LDO3-5 reference filter 100-nF capacitor to AGND2  
O
O
O
O
O
LDO4 output  
2.2-µF (minimum) capacitor to AGND2  
LDO5  
LDO5 output  
2.2-µF (minimum) capacitor to AGND2  
1-µF (minimum) capacitor to AGND1 pin  
Can be used to drive a keyboard backlight LED  
10-µF capacitor to AGND1 pin  
LDO_PM  
LED_PWM  
OUT  
General purpose LDO output  
PWM driver output, open drain.  
Power-path output. Connect to system  
main power rail (system power bus)  
PGND1  
PGND2  
45  
52  
SM1 synchronous buck converter power Connect to Power ground plane  
ground  
SM1 synchronous buck converter power Connect to power ground plane  
ground  
PGND3  
PWM  
RED  
38  
34  
55  
White LED driver power ground input.  
PWM driver output, open drain.  
Connect to a power ground plane  
O
O
Can be used to drive a vibrator or other external functions  
Connect to RED input of RGB LED  
Programmable LED driver, open drain  
output, current sink output when active.  
RESPWRON  
RTC_OUT  
21  
4
O
O
System reset, open-drain output  
100-kexternal pullup resistor to OUT. RESPWRON pin is LO  
when TPS65810 is resetting the system.  
Low leakage LDO output. Can be  
connected to a super-capacitor or  
secondary cell, if used as a RTC backup  
output.  
1-µF (minimum) capacitor to AGND1 pin or supercapacitor  
SCLK  
SDAT  
SIM  
2
3
I
I2C interface clock line  
2-kpullup resistor to OUT pin  
2-kpullup resistor to OUT pin  
1-µF (minimum) capacitor to AGND1 pin  
I/O I2C interface data line  
5
O
I
General purpose LDO output  
SM1  
44  
SM1 synchronous buck converter output LC filter: 10-µF capacitor to PGND1 pin  
voltage sense  
SM2  
49  
42  
40  
31  
I
I
I
I
SM2 synchronous buck converter output LC filter: 10-µF capacitor to PGND2 pin  
voltage sense  
SM3  
White LED driver output overvoltage  
detection  
Connect 1-µF capacitor to PGND3 pin. Connect SM3 pin to  
the positive side of white LED ladder.  
SM3SW  
SYS_IN  
Integrated white LED duty cycle switch  
input  
Connect to negative side of external LED ladder  
System power bus low-voltage detection External resistive divider sets minimum system operational  
voltage. TPS65810 enters sleep mode when voltage below  
minimum system voltage threshold is detected. 1-nF filter  
capacitor to AGND1 recommended.  
19  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
PIN ASSIGNMENT (continued)  
NAME  
PIN  
13  
I/O  
DESCRIPTION  
EXTERNAL REQUIRED COMPONENTS  
(SEE APPLICATION DIAGRAM)  
TMR  
I
I
Charge safety timer program input  
System reset pulse-duration setting  
External resistor from TMR pin to AGND1 pin sets the charge  
safety timer time-out value  
TRSTPWON  
20  
100-nF (minimum) capacitor to AGND. External capacitor from  
TRSTPWON pin to AGND1 pin sets RESPWRON pulse  
duration.  
TS  
12  
6
I/O Temperature sense input, current source Connect to battery pack thermistor to sense battery pack  
output  
temperature. Connect to external pullup resistor.  
USB  
I
USB charge input voltage, connect to  
USB port positive power output  
1-µF (minimum) capacitor to AGND1 pin, to minimize  
overvoltage transients during USB power hot-plug events.  
VIN_LDO35  
VIN_LDO02  
29  
35  
Input to LDOs 3 to 5  
1-µF (minimum) decoupling capacitor to AGND2  
1-µF (minimum) decoupling capacitor to AGND1  
Positive supply input for LDO0, LDO1,  
LDO2  
VIN_SM1  
VIN_SM2  
47  
50  
57  
SM1 synchronous buck converter positive 10-µF capacitor to PGND1 pin  
supply input  
SM2 synchronous buck converter positive 10-µF capacitor to PGND2 pin  
supply input  
Exposed  
thermal pad  
There is an internal electrical connection between the exposed thermal pad and AGNDn pins of the IC.  
The exposed thermal pad must be connected to the same potential as the AGND1 pin on the printed  
circuit board. Do not use the thermal pad as the primary ground input for the IC. AGNDn pins must be  
connected to a clean ground plane at all times.  
20  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
APPLICATION DIAGRAM  
AC _ DC  
ADAPTER  
OUTPUT  
+
-
VOUT  
GND  
USB  
POWER  
+
C 1  
22 uF  
10 uF  
C 26  
7
6
5
4
AC  
TPS65810  
OUT  
OUT  
8
9
-
SYSTEM  
POWER  
BUS  
C 2  
10 uF  
USB  
V
R
SIM  
C 3 2 .2 uF  
SET  
SIM  
GND  
VOUT  
ISET  
1
11  
C 4  
C 5  
Supercap  
1 uF  
1 K  
C 24  
RTC _ OUT  
R 12  
0 .22 uF  
C 25  
10 KΩ  
17  
BAT  
Battery  
10 uF  
C 6  
1 uF  
1 uF  
BAT 18  
35  
10  
VIN _ LDO 12  
LDO _ PM  
C 7  
C 8  
12  
13  
TS  
R
TMR  
49 .9 K  
37 .4 K  
4 .7 uF  
4.7 uF  
4 .7 uF  
A 1  
TMR  
32  
LDO  
0
1
R
DPPM  
C 9  
37 LDO  
33 LDO  
DPPM 14  
C 10  
V SM2  
2
A 1  
VOUT  
C 23  
47 nF  
GND  
48  
AGND  
1
47  
46  
VIN _SM  
1
LSM  
3.3 uH  
1
V SM1  
L 1  
V LDO 4  
1 uF  
C 11  
V LDO  
3
C 22  
29  
30  
VIN _ LDO 35  
LDO 35 _ REF  
C 21  
10 uF  
44  
45  
SM  
1
1
C 12  
C 13  
0 .1 uF  
2 .2 uF  
2 .2 uF  
2 .2 uF  
10 uF  
PGND  
VOUT  
P 1  
28  
27  
26  
25  
15  
LDO  
LDO  
LDO  
AGND  
3
4
5
50  
51  
49  
VIN _ SM  
2
A 2  
C 14  
C 15  
LSM  
2
L 2  
V SM2  
3 .3 uH  
V LDO  
5
C 20  
C 19  
SM  
2
2
10 uF  
10 uF  
2
52  
PGND  
RESET SWITCH  
R 7  
V SM2  
HOT _ RST  
TRSTPWON  
P 2  
40  
39  
0 .1 uF  
SM 3 SW  
L 3  
20  
LSM  
D 1  
3
4 .7 uH  
100  
K
VOUT  
C
TRSTPWON  
R 1  
C 16  
100 K  
31 SYS _ IN  
VOUT  
2 K  
R 2  
R 3  
1 nF  
42  
SM  
FB  
3
3
2
SCLK  
C 28  
1 uF  
WHITE LEDS  
A 1  
2 K  
100  
100  
3
210  
K
SDAT  
R 6  
C 27  
41  
38  
100 pF  
R 4  
R 5  
K
K
C 18  
100 pF  
R
19 INT  
FB3  
10  
P 3  
PGND  
3
21  
RESPWRON  
ADC _ REF  
P 3  
C 17  
4 .7 uF  
34  
36  
PWM  
EXTERNAL  
PERIPHERALS  
22  
23  
LED _ PWM  
ANLG  
2
1
A 2  
24 ANLG  
RED 55  
VOUT  
R 9  
1 K  
TURN ON SWITCH  
43  
53  
56  
1
GPIO  
GPIO  
1
GREEN  
BLUE  
BAT  
2
3
R 10  
V
AGND 0  
16  
LDO_PM  
54 GPIO  
1 K  
PWRGND  
57  
RGB LED  
NOTES:  
M1  
A 0  
1) RESISTOR VALUES IN OHMS  
2) THE FOLLOWING PARAMETERS ARE PROGRAMMED  
V SM2  
A 1  
:
RESET  
ALARM  
R 11  
100 KΩ  
49.9K: 6 HOUR CHARGE SAFETY TIMER ,  
30 MIN PRE-CHARGE SAFETY TIMER  
= 1K: 1A CHARGE CURRENT (NO SCALING , INPUT LIMIT=2.5A),  
- R  
- R  
=
TMR  
SET  
C 29  
R 8  
100  
ADC  
K
DATA  
100 mA TERMINATION AND PRE -CHARGE CURRENTS  
mA WHITE LED CURRENT  
4 .7 uF  
EXTERNAL  
ANALOG  
INPUTS  
CLOCK  
EXTERNAL HOST  
10 O:HMS 25  
3 =  
- R  
- C  
- R  
FB  
TRSTPWON  
=
=
100  
V
nF : 100mSEC RESET PULSE WIDTH  
=
A 1  
37.4K:  
4.3V  
DPPM  
(DPPM )  
ADC TRIGGER  
SYSTEM_ON  
3) THE CAPACITOR VALUES SHOWN IN THE APPLICATION DIAGRAM  
MAY BE LARGER THAN THE MINIMUM REQUIRED VALUES INDICATED  
IN THE PIN DESCRIPITON TABLE  
4) THE VALUES SHOWN IN THE APPLICATION DIAGRAM MATCH THE  
COMPONENT VALUES USED IN THE HPA 129 EVM, SEE DESIGN NOTES  
SECTION FOR COMPONENT SELECTION DETAILS  
A 1 A 2 A 3 P 1 P 2  
GND  
P 3  
5) AFTER GPIOS ARE SET TO HI THE HOST NEEDS TO TURN ON M1 IN  
LESS THAN 1 SEC (WITH R8=100K AND C29=4.7uF) TO KEEP THE  
SYSTEM RUNNING UNDER BATTERY POWER ONLY  
Figure 3. TPS65810 Application Diagram, Recommended External Components  
21  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS – POWER PATH MANAGEMENT  
Measured with Application Circuit shown in Figure 3, unless otherwise noted  
SWITCHING FROM AC TO BATTERY  
ON AC REMOVAL  
SWITCHING FROM USB TO BATTERY  
ON AC REMOVAL  
USB = 5 V,  
BAT = 3.3 V  
AC = 5 V,  
BAT = 3.3 V  
I
I
BAT  
BAT  
V
AC  
V
USB  
V
OUT  
V
BAT  
V
OUT  
V
BAT  
Figure 4.  
Figure 5.  
22  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS – LINEAR REGULATORS 0, 1, 2  
Measured with Application Circuit shown in Figure 3, unless otherwise noted  
LOAD REGULATION  
vs  
JUNCTION TEMPERATURE  
LINE REGULATION  
vs  
JUNCTION TEMPERATURE  
0.25  
-0.500  
VIN_LDO02 = 3.65 V,  
Load = 10 mA to 150 mA,  
-0.550  
-0.600  
C
(LDO02) = 1 mF  
O
0.2  
0.15  
0.1  
-0.650  
-0.700  
-0.750  
-0.800  
0.05  
0
VIN_LDO02 = 3.8 V to 4.7 V,  
Load = 10 mA,  
(LDO02) = 1 mF  
C
O
-0.850  
0
0
20  
40  
60  
80  
100  
120  
140  
20  
40  
60  
80  
100  
120  
140  
T
- Junction Temperature - °C  
J
T
- Junction Temperature - °C  
J
Figure 6.  
Figure 7.  
OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
DROPOUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
140  
3.5  
3
VIN_LDO 02 = 3.3 V,  
Load = 150 mA, C  
= 1 mF  
LDO 0  
O(LDO02)  
130  
120  
2.5  
2
110  
100  
90  
VIN_LDO 02 = 3.65 V, Load = 10 mA,  
V
V
= 3.3 V,  
= 1.225 V  
O(LDO 1,2)  
O(LDO 0)  
LDO 1  
LDO 2  
1.5  
80  
1
0
70  
0
20  
40  
60  
80  
100  
120  
140  
20  
40  
60  
80  
100  
120  
140  
T
- Junction Temperature - °C  
T
- Junction Temperature - °C  
J
J
Figure 8.  
Figure 9.  
23  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS – LINEAR REGULATORS 3, 4, 5  
Measured with Application Circuit shown in Figure 3, unless otherwise noted  
LOAD REGULATION  
vs  
JUNCTION TEMPERATURE  
LINE REGULATION  
vs  
JUNCTION TEMPERATURE  
-0.010  
-0.011  
-0.5  
-0.55  
-0.6  
VIN_LDO 35 = 3.3 V to 4.7 V,  
Load = 100 mA,  
(LDO 35) = 1 mF  
VIN_LDO 35 = 3 V,  
Load = 10 mA to 150 mA,  
C
C
= 1 mF  
O
O(LDO 35)  
-0.012  
-0.013  
-0.014  
-0.015  
-0.65  
-0.70  
-0.75  
-0.80  
-0.85  
-0.90  
-0.016  
-0.017  
-0.018  
-0.95  
-1  
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
T
J
- Junction Temperature - °C  
T
J
- Junction Temperature - °C  
Figure 10.  
Figure 11.  
OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
DROPOUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
1.2325  
1.232  
140  
VIN_LDO35 = 4.7 V,  
Load = 10 mA,  
VIN_LDO35 = 3.3 V,  
Load = 150 mA,  
V
(LDO35) = 1.228 V,  
C
(LDO35) = 1 mF  
O
O
130  
120  
C
(LDO35) = 1 mF  
1.2315  
1.231  
O
1.2305  
110  
100  
1.23  
1.2295  
1.229  
1.2285  
90  
0
100  
120  
140  
0
40  
60  
80  
20  
20  
40  
60  
80  
100  
120  
140  
T
- Junction Temperature - °C  
J
T
J
- Junction Temperature - °C  
Figure 12.  
Figure 13.  
24  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS – SM1 AND SM2 BUCK CONVERTERS  
Measured with Application Circuit shown in Figure 3, unless otherwise noted  
PWM MODE  
EFFICIENCY  
EFFICIENCY IN AUTOMATIC  
PWM/PFM MODE  
vs  
OUTPUT CURRENT  
92  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
88  
86  
84  
82  
VIN_SM1 = 4 V,  
(SM1) = 1.24 V,  
80  
78  
VIN_SM2 = 4.6 V,  
VO (SM2) = 1.8 V,  
L = 3.3 mH.  
V
O
L = 3.3 mH,  
(SM1) = 10 mF  
C
10  
0
O
C
(SM2) = 10 mF  
O
76  
0
0.4  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.1  
0.2  
0.3  
0.5  
0.6  
0.7  
I
- Output Current - A  
I
- Output Current - A  
O
O
Figure 14.  
Figure 15.  
PFM OPERATION  
PFM LOW RIPPLE OPERATION  
AC = 5 V,  
VIN_SM2 = 4.6 V,  
(SM2 = 1.8 V  
AC = 5 V,  
VIN_SM2 = 4.6 V,  
(SM2 = 1.8 V  
V
V
O
O
I
(SM2)  
I
(SM2)  
O
O
L = 3.3 mF,  
(SM2) = 10 mF  
L = 3.3 mF,  
(SM2) = 10 mF  
C
C
O
O
Figure 16.  
Figure 17.  
25  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS – DRIVERS  
Measured with Application Circuit shown in Figure 3, unless otherwise noted  
LINE TRANSIENT  
LOAD TRANSIENT  
VIN_SM2  
VO(SM2)  
VO_SM2  
AC = 5 V,  
VIN_SM2 = 4 V,  
V
(SM2) = 1.8 V,  
O
I
(SM2) = 0 mA to 600 mA,  
O
AC = 5 V, VIN_SM2 = 3 V (DC) + 1 V (AC),  
VO(SM2) = 1.8 V, IO(SM2) = 100 mA,  
L = 3.3 mF, CO(SM1) = 10 mF,  
CH1 = VO_SM2,  
CH3 = I (SM2)  
I
(SM2)  
O
L = 3.3 mF, CO(SM1) = 10 mF,  
O
CH1 = VIN_SM2, CH2 = VO(SM2)  
Figure 18.  
Figure 19.  
TRANSIENT - SM1 STARTUP  
TRANSIENT - SM2 STARTUP  
AC = 5 V,  
VIN_SM2/SM2 = 4 V,  
SM2 Voltage  
SM1 Voltage  
V
(SM2) = 1.8 V,  
O
AC = 5 V,  
VIN_SM2/SM2 = 4 V,  
I
(SM2) = 600 mA,  
O
L = 3.3 mF,  
(SM1) = 10 mF  
V
(SM2) = 1.8 V,  
O
C
I
(SM2) = 600 mA,  
O
O
L = 3.3 mF,  
(SM1) = 10 mF  
C
O
SM1 Current  
SM2 Current  
Figure 20.  
Figure 21.  
26  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
TYPICAL CHARACTERISTICS – DRIVERS (continued)  
Measured with Application Circuit shown in Figure 3, unless otherwise noted  
SM3 LED CURRENT  
vs  
PWM DUTY CYCLE  
SM3 WHITE LED DRIVER  
SOFT START  
BAT = 4 V,  
DC = 0%  
L3 = 4.7 mF,  
BAT = 4 V, DC = 0%  
L3 = 4.7 mF, C (SM3) = 10 mF,  
C
(SM3) = 10 mF,  
O
CH1 = L3,  
CH4 = SM3  
O
CH1 = L3, CH4 = SM3  
Figure 22.  
Figure 23.  
27  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
SERIAL INTERFACE  
Overview  
The TPS65810 is compatible with a host-controlled environment, with internal parameters and status information  
accessible via an I2C interface. An I2C communication port provides a simple way for an I2C compatible host to  
access system status information and reset fault modes, functioning as a SLAVE port enabling I2C compatible  
hosts to WRITE to or to READ from internal registers. The TPS65810 I2C port is a 2-wire bidirectional interface  
using SCL (clock) and SDA (data) pins; the SDA pin is open drain and requires an external pullup. The I2C is  
designed to operate at SCL frequencies up to 400 kHz. The standard 8 bit command is supported, the CMD part  
of the sequence is the 8 bit register address to READ from or to WRITE to.  
Register Default Values  
The internal TPS65810 registers are loaded during the initial power-up from an internal, non-volatile memory  
bank. The power-up default values are described in the sections detailing the registers functionality.  
The register contents remain intact as long as OUT pin voltage remains above the internal UVLO threshold,  
VUVLO. All register bits are reset to the internal power up default when the OUT pin voltage falls below the VUVLO  
threshold or if the HOT_RESET pin is set to LO.  
I2C Address  
The I2C specification contains several global addresses, which the slaves on the bus are required to respond to.  
The TPS65810 only responds (ACK) to addresses: 0x90 and 0x91 and does not respond (NACK) to any other  
address.  
Table 1. TPS65810 I2C Read/Write Address  
BYTE  
BIT  
MSB  
1
6
0
5
0
4
1
3
0
2
0
1
0
LSB  
0
TPS65810 I2C WRITE ADDRESS  
TPS65810 I2C READ ADDRESS  
I/O DATA BUS  
1
0
0
1
0
0
0
1
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Incremental Read  
The TPS65810 does not support incremental read operations. Each register must be accessed in a single read  
operation.  
I2C Bus Release  
The TPS65810 I2C engine does not create START or STOP states on the I2C bus during normal operation.  
Sleep Mode Operation  
When the sleep mode is set SDAT is held LO by the TPS65810. The overall system operation is not affected, as  
in sleep mode all TPS65810 integrated supplies are disabled and no power is available for any external devices  
connected to the TPS65810 SDAT pin. When sleep mode ends the SDAT pin is released before the TPS65810  
integrated regulated supplies are enabled. See section on System Sequencing and TPS65810 Operating Modes  
for additional details on sleep mode operation.  
I2C Communication Protocol  
The following conventions are used when describing the communication protocol:  
Table 2. I2C Naming Conventions Used  
CONDITION  
CODE  
S
START sent from host  
STOP sent from host  
P
TPS65810 I2C slave address sent from host, bus direction set from host to TPS65810 (WRITE)  
hA0  
28  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 2. I2C Naming Conventions Used (continued)  
CONDITION  
CODE  
hA1  
TPS65810 register address sent from TPS65810, bus direction is from TPS65810 to host (READ)  
Non-valid I2C slave address sent from host  
Valid TPS65810 register address sent from host  
Non-valid TPS65810 register address sent from host  
I/O data byte (8 bits) sent from host to TPS65810  
I/O data byte (8 bits) sent from TPS65810 to host  
Acknowledge (ACK) from host  
hA_N  
HCMD  
HCMD_N  
hDATA  
bqDATA  
hA  
Not acknowledge (NACK) from host  
hN  
Acknowledge (ACK) from TPS65810  
bqA  
Not acknowledge (NACK) from TPS65810  
bqN  
STOP  
CONDITION  
(P)  
START  
CONDITION  
(S)  
STOP  
CONDITION  
(P)  
BIT0  
LSB  
ACKNOWLEDGE  
(hA or bq)A  
BIT 7  
MSB  
BIT 6  
SCL  
SDA  
STOP  
CONDITION  
(P)  
START  
CONDITION  
(S)  
BIT 7  
MSB  
BIT 6  
DATA  
CHANGE  
ALLOWED  
NOT  
ACKNOWLEDGE  
(hN or bqN)  
STOP  
CONDITION  
(P)  
START  
CONDITION  
(S)  
STOP  
CONDITION  
(P)  
SCL  
SDA  
BIT 7  
MSB  
BIT 0  
LSB  
BIT 5-1  
BIT 6  
SCL  
SDA  
DATA LINE  
STABLE  
Figure 24. I2C operation waveforms  
For normal data transfers, SDA is allowed to change only when SCL is low, and one clock pulse is used per bit  
of data. The SDA line must remain stable whenever the SCL line is high, as SDA changes when SCL is high are  
reserved for indicating the start and stop conditions. Each data transfer is initiated with a start condition and  
terminated with a stop condition.  
When addressed, the TPS65810 device generates an acknowledge bit after the reception of each byte by  
pulling the SDA line Low. The master device (microprocessor) must generate an extra clock pulse that is  
associated with the acknowledge bit. After the acknowledge/not acknowledge bit the TPS65810 leaves the data  
line high, enabling a STOP condition generation.  
I2C Read and Write Operations  
The TPS65810 supports the standard I2C one byte Write. The basic I2C read protocol has the following steps:  
Host sends a start and sets TPS65810 I2C slave address in write mode  
TPS65810 ACK’s that this is a valid I2C address and that the bus is configured for write  
Host sends TPS65810 register address  
TPS65810 ACK’s that this is a valid register and stores the register address to be read  
Host sends a repeated start and TPS65810 I2C slave address, reconfiguring the bus for read  
TPS65810 ACK’s that this is a valid address and that bus is reconfigured  
Bus is in read mode, TPS65810 starts sending data from selected register  
The I2C write protocol is similar to the read, without the need for a repeated start and bus being set in write  
mode. In a WRITE, it is not necessary to end each 1-byte WRITE command with a STOP; a START has the  
same effect (repeated start).  
29  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
SCLK  
SDAT  
...  
..  
...  
..  
...  
...  
..  
ACK  
..  
ACK  
ACK  
ACK  
A6  
A0 R/W  
0
R7  
R0  
A6  
A0 R/W  
1
D7  
D0  
Slave  
Master Drives  
ACK and Stop  
0
0
0
Register  
Address  
hCMD  
Drives  
the Data  
bqDATA  
Start  
Slave Address  
hA0  
Slave Address  
hA1  
bqA  
bqA  
S
bqA  
hA  
P
Repeated Start, can be replaced by a  
STOP and START  
SCLK  
SDAT  
...  
...  
...  
...  
...  
...  
D6 D5  
A6  
A5 A4  
A0 R/W  
0
R7  
R6  
R5  
R0 ACK  
D7  
D0 ACK  
0
ACK  
0
0
Register  
Address  
hCMD  
Host Sends  
Data  
hDATA  
Slave Address  
hA0  
Start  
bqA  
bqA  
bqA  
P
Figure 25. I2C read and write operations  
The host can complete a READ or a WRITE sequence with either a STOP or a START.  
Valid Write Sequences  
The TPS65810 always ACKs its own address. If the CMD points to an allowable READ or WRITE address, bq  
writes the address into its RAM address register and sends an ACK. If the CMD points to a non-allowed  
address, bq does NOT write the address into its RAM address register and sends a NACK.  
S
S
S
hA0  
hA0  
hA0  
bqA  
bqA  
bqA  
hCMD  
hCMD_N  
bqA  
bqN  
One-Byte Write  
The data is written to the addressed register when the bq ACK ending the one byte write sequence is received.  
The host can cancel a WRITE by sending a STOP or START before the trailing edge of the bq ACK clock pulse.  
S
hA0  
bqA  
hCMD  
bqA  
hDATA  
bqA  
30  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Valid Read Sequences  
The TPS65810 always ACKs its own address.  
S
hA1  
bqA  
Upon receiving hA1, TPS65810 starts at wherever the RAM address register is pointing. The START and the  
STOP both act as priority interrupts. If the host has been interrupted and is not sure where it left off it can send a  
STOP and reset the TPS65810 state machine to the WAIT state; once in WAIT state, the TPS65810 ignores all  
activity on the SCL and SDA lines until it receives a START. A repeated START and START in the I2C  
specification are both treated as a START.  
S
S
S
hA0  
hA0  
hA1  
bqA  
bqA  
bqA  
hCMD  
hCMD  
bqDATA  
bqA  
bqA  
hN  
P
S
P
hA1  
bqA  
bqDATA  
hN  
P
Non-Valid Sequences  
Incremental read sequences  
S
hA1  
bqA  
bqDATA  
hA  
bqDATA  
hA  
bqDATA  
hA  
bqDATA  
hA  
...  
bqDATA  
hA  
P
START and non-hA0 or non-hA1 Address  
A START followed by an address which is not bqA0 or bqA1 is NACKED.  
S
hA_N  
bqN  
Attempt to Specify Non-Allowed READ Address  
If the CMD points to a non-allowed READ address (reserved registers), bq sends a NACK back to the host, and  
it does not load the address in the RAM address register. Note that TPS65810 NACKS whether a stop is sent or  
not.  
S
S
hA0  
hA0  
bqA  
bqA  
hCMD_N  
hCMD_N  
bqN  
bqN  
P
Attempt to Specify Non-Allowed WRITE Address  
If the host attempts to WRITE to a READ-ONLY or non-accessible address TPS65810 ACKS the CMD  
containing the allowed READ address, loads the address into the address register and NACKS after the host  
sends the next data byte. After issuing the NACK TPS65810 returns to WAIT state. A subsequent hA1 READ  
could read this address.  
S
hA0  
bqA  
hCMD  
bqA  
hDATA  
bN  
31  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
TPS65810 INTERNAL REGISTER MAP  
hex  
NAME  
DESCRIPTION  
ADDITIONAL  
DETAILS  
0
RESERVED_01  
RESERVED_02  
PGOOD  
RESERVED  
RESERVED  
FACTORY ONLY  
FACTORY ONLY  
1
2
Output voltage status for linear regulators and dc/dc buck converters  
Interrupt request masking settings  
3
INTMASK1  
INTMASK2  
INT_ACK1  
INT_ACK2  
PGOODFAULT_MASK  
SOFT_RESET  
CHG_CONFIG  
CHG_STAT  
EN_LDO  
4
Interrupt request masking settings  
5
Masked interrupt request register, latched  
Masked interrupt request register, latched  
System Reset masking settings  
6
7
8
Generates a software reset  
9
Battery charger configuration  
A
Battery charger status  
B
Linear regulator ON/OFF control  
C
LDO12  
LDO1 and LDO2 output voltage setting  
LDO3 output voltage settings  
D
LDO3  
E
LDO4  
LDO4 output voltage settings  
F
LDO5  
LDO5 output voltage settings  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
2E  
SM1_SET1  
SM1_SET2  
SM1_STANDBY  
SM2_SET1  
SM2_SET2  
SM2_STANDBY  
SM3_SET  
SM1 Buck converter ON/OFF control and output voltage setting, normal mode  
SM1 Buck converter configuration  
SM1 Buck converter standby mode ON/OFF and standby output voltage setting  
SM2 Buck converter ON/OFF control and output voltage setting, normal mode  
SM2 Buck converter configuration  
SM2 Buck converter standby mode ON/OFF and standby output voltage setting  
SM3 White LED driver ON/OFF control and settings  
Overall RGB driver timing settings  
RGB_FLASH  
RGB_RED  
RGB_GREEN  
RGB_BLUE  
GPIO12  
RGB driver: RED duty cycle and output current setting  
RGB driver: GREEN duty cycle and output current setting  
RGB driver: BLUE duty cycle and output current setting  
GPIO1 and GPIO2 configuration  
GPIO3  
GPIO2 and GPIO3 configuration, battery charge voltage selection  
PWM output configuration  
PWM  
ADC_SET  
ADC On/OFF control, ADC configuration  
ADC data output  
ADC reading_hi  
ADC reading_lo  
DHILIM1  
ADC data output  
ADC Maximum threshold setting  
DHILIM2  
ADC Maximum threshold setting  
DLOLIM1  
ADC Minimum threshold setting  
DLOLIM2  
ADC Minimum threshold setting  
ADC_DELAY  
ADC_WAIT  
LED_PWM  
RESERVED_03  
ADC configuration: conversion delay  
ADC configuration: wait and repeat operation  
LED_PWM configuration  
RESERVED  
FACTORY ONLY  
32  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
FUNCTIONALITY REFERENCE GUIDE – HOST INTERFACE AND SYSTEM SEQUENCING  
INTERRUPT CONTROLLER, OPEN-DRAIN OUTPUT (INT)  
System Parameters Monitored by Interrupt Controller  
Power up  
default  
Supply Output  
Power Good Fault  
Detection(1)  
System  
Status  
Modification  
Charger Status  
Transition  
Input and Output  
Power Transition  
ADC status  
Charge: PreFast  
Done  
DPPM:on off  
Charge Suspend: on ↔  
off  
SM1,  
SM2,  
SM3,  
ADC conversion end  
ADC  
Input out of range  
External resistive  
load connected to  
ANLG1  
Thermal Fault or  
GPIO 1,2  
configured as  
external interrupt  
request  
AC detected: yes no  
USB detected: yes no  
Input OVP: yes no  
System Power: AC ↔  
USB  
All interrupt  
controller  
inputs set to  
non-masked  
LDO1, LDO2,  
LDO3, LDO4,  
LDO5  
Thermal Foldback: on  
off  
Can be masked Individually  
via I2C. Blanked during  
initial power up  
Can be masked as a group via a single I2C mask  
register bit  
Can be masked Individually via I2C  
(1) For all supplies (except) for SM3 an output fault is detected if the output voltage is below 90% of the programmed regulation voltage. In  
the SM3 converter an output fault indicates that the output OVP threshold was reached.  
EVENTS TRIGGERING TPS65810 OPERATING MODE CHANGES  
EVENT  
POWER GOOD FAULT  
DETECTION(1)  
THERMAL  
FAULT  
HARDWARE  
RESET  
SOFTWARE  
RESET  
How transition is  
triggered  
Integrated regulator output  
voltage below target value:  
SM1, SM2, SM3, LDO1,  
LDO2,LDO3, LDO4, LDO5  
Internal IC junction  
temperature  
Using HOT_RST control  
pin  
I2C register control bit  
Operating mode  
change  
Sets Sleep mode or starts a  
new power-up cycle when  
power good fault is detected  
(see state machine diagram).  
Sets Sleep mode when  
thermal fault is detected  
Generates external host  
reset pulse at pin  
RESPWON when  
HOT_RST=LO.  
Generates external host  
reset pulse at pin  
RESPWON when I2C  
control bit is set.  
Power good fault detection  
comparators are blanked during cycling required to exit  
initial power-up. sleep  
Input and Battery power  
Pulse duration set by  
external capacitor.  
Pulse duration set by  
external capacitor.  
Controls  
Can be masked Individually via Fixed Internal Threshold  
I2C.  
External Input  
Set via I2C  
(1) For all supplies (except) for SM3 an output fault is detected if the output voltage is below 90% of the programmed regulation voltage. In  
the SM3 converter an output fault indicates that the output OVP threshold was reached.  
TPS 65810  
HOST INTERFACE  
AND SEQUENCING  
SCLK  
SDAT  
I2C ENGINE  
INTERRUPT  
CONTROLLER  
HOST  
INT  
RESPWRON  
TRSTPWON  
STATE MACHINE  
AND RESET  
CONTROLLER  
HOT_RST  
C
TRSTPWON  
0.1uF  
SYS_IN  
R 1  
OUT  
A 1  
R 6  
210 K  
100 K  
C 16  
A1  
V SM2  
100 nF  
A1  
Figure 26. Required External Components, Recommended Values, External Connections  
33  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
INTERRUPT CONTROLLER AND SYSTEM SEQUENCING  
Overview  
The TPS65810 has two dedicated internal controllers that execute the host interface and system sequencing  
tasks: a sequencing controller and an interrupt controller.  
The sequencing controller monitors internal and system parameters and defines the sequencing of the internal  
power supplies during power up and power down / power fault events, and executes specific internal power  
supply reset operations under external hardware control or host software commands.  
The following parameters are monitored by the sequencing controller:  
System power bus voltage (at SYS_IN pin), input supply voltage, battery pack voltage  
TPS65810 thermal fault status  
Integrated supply status  
The interrupt controller monitors multiple system status parameters and signals to the host when one of the  
monitored parameters toggled, as a result of a system status change. The interrupt controller inputs include all  
the parameters monitored by the sequencing controller plus:  
Charger status  
Battery pack status  
ADC status  
Internal I2C registers enable masking of all the monitored parameters. Using those registers, the host can select  
which parameters trigger an interrupt or a power-good fault. Power-good faults trigger a change in the  
TPS65810 operating mode, as detailed in the next sections.  
A simplified block diagram for the TPS65810 sections that interface to the external host is shown in Figure 27.  
HOST INTERFACE AND SEQUENCING  
TPS65810  
SCLK  
2 .5 V  
I2 C ENGINE  
I2C REGISTERS  
AND NON -  
VOLATILE  
SDAT  
AC /USB /BAT  
)
INTERRUPT  
(HIGHER VOLTAGE  
MEMORY  
CONTROLLER  
INT  
2. 5 V  
HOST  
RESPWRON  
TRSTPWON  
SEQUENCING  
AND OPERATING  
MODE SETTING  
CONTROL  
LOGIC  
VSYS  
1 V  
HOT _ RST  
C
TRSTPWON  
SYS _IN  
OUT  
A
1
R
1
R
6
C 16  
V SM 2  
A
1
Figure 27. Simplified Block Diagram  
34  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
SYSTEM SEQUENCING AND TPS65810 OPERATING MODES  
The TPS65810 has a state machine that controls the device power up and power down sequencing. The main  
operating modes are shown in the state diagram below:  
POWER UP  
LOAD POWER UP DEFAULTS IN  
I2C REGISTERS  
CONNECT AC , USB OR BAT PIN TO  
OFF  
OUT PIN  
DISABLE POWER GOOD FAULT  
DETECTION  
V(AC) > V  
OR  
UVLO  
V(OUT) < V  
UVLO  
V(USB) > V  
OR  
UVLO  
UVLO  
INT PIN = HIGH IMPEDANCE  
POR_FLAG= HI  
V(BAT) > V  
ANY  
STATE  
V(LOW_SYS)  
ENABLE STATE  
V(SYS_IN) <  
OR  
RESPWRON = LO  
THERMAL  
FAULT  
OR  
I2C SOFT_RESET  
REGISTER  
POWER UP DEFAULTS LOADED  
IN ALL I2C REGISTERS  
(Except INT_ACKn)  
V
V(SYS_IN) >  
AND  
(LOW_SYS)  
V(OUT) > VUVLO  
POWER DOWN RAILS,  
WAIT 5 msec  
BIT SLEEP_MODE = HI  
(SELF-CLEARED)  
SEQUENCE STATE  
POWER  
CYCLE  
AND  
START INTEGRATED  
SUPPLY START - UP SEQUENCE  
V(HOT_RESET) = HI OR  
I2C SOFT_RESET  
REGISTER BIT  
SLEEP NOT SET BY  
THERMAL FAULT  
= LO  
RESPWRON  
SOFT_RESET = LO  
(SELF CLEARED)  
SLEEP STATE  
ONLY RTC_LDO IS ON  
POWER PATH ACTIVE  
RESPWRON = 0  
RESET STATE  
RESPWRON=LO  
RESPWRON=LO  
START SYSTEM RESET PULSE TIMER  
WHEN HOT_RESET=HI  
REGISTER CONTENTS NOT RESET  
INTERRUPT CLEARED  
V(HOT_RESET)=LO  
OR  
I2C SOFT_RESET  
REGISTER BIT  
SOFT_RST = HI  
PGOOD  
FAULT  
V(HOT_RESET)=LO  
OR  
RESET  
TIMER EXPIRES  
I2C SOFT_RESET  
REGISTER BIT  
SOFT_RST= HI  
PROCESSOR  
STANDBY STATE  
POWER GOOD  
CHECK STATE  
RESPWRON = HI  
PG FOR SM1&SM2  
is masked  
PGOOD FAULT : A NON- MASKED BIT OF THE  
POWER_GOOD I2C REGISTER TOGGLES  
FROM LO TO HI  
RESPWRON=HI  
ENABLE POWER GOOD COMPARATORS  
INT PIN MODE SET BY INTERRUPT  
CONTROLLER  
STANDBY ON : SM1 AND SM2 SET IN STANDBY  
MODE BY GPIO OR I 2C COMMAND  
STANDBY  
OFF  
NO PGOOD  
FAULT  
STANDBY OFF : SM1 AND SM2 EXIT STANDBY  
MODE BY GPIO OR  
STANDBY  
ON  
I2C COMMAND  
RESET TIMER: VALUE SET BY CAPACITOR  
CONNECTED TO TRSTPWON PIN  
NORMAL MODE  
RESPWRON=HI  
I2C SOFT_RESET BIT LOCATED IN  
SOFT_RESET REGISTER, BIT B0  
PGOOD  
FAULT  
Figure 28. TPS65810 State Diagram  
POWER UP– If the AC, USB and BAT pin voltages are below the internal UVLO threshold VUVLO (2.5 V typ) all  
IC blocks are disabled and the TPS65810 is not operational, with all functions OFF. When an external power  
source or battery with voltage greater than the VUVLO voltage threshold is applied to AC/USB or BAT pins the  
internal TPS65810 references are powered up, biasing internal circuits. When all the main internal supply rails  
are active the TPS65810 I2C registers are set to the power-up default values, shown below:  
35  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 3. Integrated Supply and Drivers I2C Registers Power-Up Defaults  
SUPPLY  
LDO0  
POWER-UP DEFAULT  
OFF, 3.3 V  
OTHER BLOCKS  
POWER PATH  
PWM  
POWER-UP DEFAULT  
INPUT TO SYSTEM  
LDO1  
1.25V, OFF  
OFF  
LDO2  
3.3 V, OFF  
PWM_LED  
OFF  
LDO3  
1.505 V, OFF  
1.811 V, OFF  
3.111 V, ON  
2.5 V, ON  
GPIO1  
INPUT, SM1 ON/OFF CONTROL  
LDO4  
GPIO2  
INPUT, SM2 ON/OFF CONTROL  
LD05  
GPIO3  
INPUT  
SIM  
ADC  
OFF  
RTC_OUT  
LDO_PM  
SM1  
ON, 1.5 V  
SM3 (WHITE LED)  
RGB DRIVER  
INTERRUPT MASK  
POWER GOOD MASK  
OFF  
3.3 V, ON @ OUT POWERED  
OFF, 1.24 V  
OFF  
NONE MASKED  
ALL MASKED  
SM2  
OFF, 3.32 V  
CHARGER  
OFF  
After the internal I2C register power-up defaults are loaded the power path control logic is enabled, connecting  
the external power source to the OUT pin. A status flag (nRAMLOAD) is set to LO in the SOFT_RESET register,  
indicating that the I2C registers were loaded with the power-up defaults, and the TPS65810 enters the ENABLE  
state.  
ENABLE: In the ENABLE mode the RESPWRON output is set to the LO level, the INT pin mode is set to high  
impedance and all the power good comparators that monitor the integrated supply outputs are disabled. The  
ENABLE mode is used by the TPS65810 to detect when the main system power rail (OUT pin) is powered and  
ready to be used on the internal supply power-up. The OUT pin voltage is sensed by an internal  
low-system-voltage comparator which holds the IC in the ENABLE mode until the system power-bus voltage  
(OUT pin) has reached a minimum operating voltage, defined by the user. The internal comparator senses the  
system voltage at pin SYS_IN, and the threshold for the minimum system operating voltage at the OUT pin is  
set by the external divider connected from OUT pin to SYS_IN pin. The threshold voltage is calculated as  
follows:  
R6  
R1  
  ǒ1 ) Ǔ:  
V(OUT) + V(LOW_SYS)  
where R6 and R1 are external resistors, V(LOW_SYS) + 1 V typical  
(1)  
The minimum system operating voltage should always be set above the internal UVLO threshold VUVLO. In  
normal application conditions the minimum system operating voltage is usually set to a value that assures that  
the TPS65810 integrated regulators are not operating in the dropout region.  
When the voltage at the SYS_IN pin exceeds the internal threshold V(LOW_SYS) the TPS65810 is ready to start  
the system power sequencing, and the SEQUENCING mode is entered.  
SEQUENCING– The sequencing state starts immediately after the enable state. In this mode of operation the  
integrated supplies are turned ON. The TPS65810 sequencing timing diagram shown in figure details the  
internal timing delays and supply sequencing. At the end of the sequencing state the user-programmable reset  
timer is started, and the TPS65810 enters the reset state.  
36  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Power Applied  
AC, USB or BAT  
V
UVLO  
OUT  
V
UVLO  
SYS_IN  
V
LOW_SYS  
RTC_OUT  
LDO1  
LDO2  
LDO4  
LDO5  
LDO3  
See Note 2  
SM1  
SM2  
See Note 1  
See Note 1  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
INT  
RESPWRON  
RESET DELAY  
PROGRAMMED BY EXTERNAL CAPACITOR  
CONNECTED TO PIN TRSTPWON  
NO POWER  
SEQUENCING  
RESET  
NORMAL  
ENABLE  
I2C Registers Loaded  
From EEPROM  
(1) SM1 and SM2 are externally enabled by GPIO1 and GPIO2. This waveform represents the earliest time that SM1  
and SM2 are enabled if GPIO1 and GPIO2 are tied high.  
(2) LDO5, SM1, and SM2 are all enabled at the same time. This waveform represents the earliest time that LDO5 is  
enabled if VIN_LDO35 is connected to OUT. LDO5 power up can be synchronized to SM1 or SM2 by connecting  
VIN_LDO35 to the SM1 or SM2 output, respectively.  
Figure 29. TPS65810 Supply Sequencing Timing  
RESET– When the reset state starts the RESPWRON output is LO. The user can program the reset timer value  
selecting the value of the external capacitor connected to pin TRSTPWON, as shown below:  
T(RESET) = KRESET° CTRSTPWON; where KRESET is the reset timer constant (1 ms/nF typ)  
The TPS65810 RESPWRON pin should be used to reset the external host. During the external host reset  
(RESPWRON = LO) the I2C SDA and SCL pins are not used to access TPS65810 internal registers. If a  
non-standard configuration is used to reset the system the SDA and SCL lines should not be used to  
communicate with the TPS65810 until RESPWRON = HI, in order to avoid overwriting the integrated power  
supply internal power-up settings during the sequencing mode.  
The power good comparators are masked during the reset mode. The reset mode ends when the reset timer  
expires, and the TPS65810 goes into the power good check mode.  
37  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
The RESPWRON signal set to a high level is the proper signal to use as an indicator that the device has  
transitioned out of the reset state. During the power-up sequence the RESPWRON pin is asserted LOW until the  
RESET TIMER expires. The RESET TIME (treset = 1ms/nF × CTRSTPWON) can be programmed via a capacitor  
between the TRSTPWON pin and ground.  
When the RESPWRON signal is LO, all internal and external interrupts are ignored. As a result, the open-drain  
output that asserts the INT pin LO during a NORMAL MODE interrupt request is disabled. The INT pin is then  
asserted HI via a pullup resistor that is typically connected to VOUT. After the RESPWRON signal goes HI, the  
interrupt controller is given control of the INT pin. Finally, the rising edge of the RESPWRON pin should be used  
to indicate the PMIC has transitioned from the RESET STATE to the POWER GOOD CHECK STATE. At that  
point, the interrupt controller asserts an interrupt if necessary.  
POWER GOOD CHECK– In the power good check mode the power good comparators are enabled, providing  
status on the integrated supplies output voltages. An output voltage is considered as out of regulation and  
generates a fault condition if the output voltage is below 90% of the target output voltage regulation value. If a  
power good fault is detected the SLEEP mode is set, if a power good fault is not detected the NORMAL mode is  
set.  
The individual supply power good status can be masked via an I2C register PGOODFAULT_MASK. Supplies  
that have their power-good fault status masked do not generate a power-good fault. However, the status bit for  
the supply indicates that the output voltage is out of regulation.  
The power good mask register bits default to masked upon power up.  
NORMAL MODE– If a power good fault is not present at the end of the power good check mode the NORMAL  
mode starts. In this mode of operation the I2C registers define the TPS65810 operation, and the host has full  
control on operation modes, parameter settings, etc. The normal state operation ends if a thermal fault, system  
low voltage fault ( V(SYS_IN) < VLOW_SYS ) or power good fault is detected. A thermal fault or system low voltage  
fault sets the SLEEP mode operation, a power good fault sets the NO POWER operation mode. From the  
normal mode the converters SM1 and SM2 can be set in the STANDBY mode, with reduced output voltages. In  
NORMAL mode either an I2C register bit (SOFT_RESET register bit SOFT_RST) or a hardware input (  
HOT_RESET pin set to LO) can trigger a transition to the RESET state, enabling implementation of a host reset  
function. In NORMAL mode an I2C register bit (SOFT_RESET register bit SLEEP_MODE) can trigger a  
transition to SLEEP mode.  
SLEEP MODE– The SLEEP mode is set when a thermal fault or system low voltage fault is detected, under  
NORMAL operation mode set. This operation mode is also set when a power good fault is detected during the  
power good check state or via the I2C bit SLEEP_MODE. In the SLEEP mode the RESPWRON output is set to  
LO, and the I2C registers keep the same contents as in the state preceding SLEEP mode, with the exception of  
the following control bits, which are reset to the default power-up values:  
1. LDO1,2,3,4,5 and RTC_OUT are enabled, SIM LDO is disabled: EN_LDO register set to default values  
2. LDO0 disabled, all GPIO’s with no control function assigned: GPIO12, GPIO3 registers set to default  
values  
3. White LED driver is set to OFF: SM3_SET register has all bits set to LO  
4. RGB drivers are set to OFF: RGB_FLASH, RGB_RED, RGB_GREEN, RGB_BLUE registers are set to  
default values  
5. PWM, PWM_LED drivers OFF: PWM, LED_PWM registers are set to default values  
6. ADC engine reset to power up default: ADC_SET, ADC_DELAY, ADC_WAIT registers are set to default  
values  
In SLEEP mode the power path and main internal blocks are still active, but the internal integrated  
supply sequencing is disabled. As a result of that, during SLEEP mode ALL integrated supplies (ALL  
LDO's, ALL buck Converters) are disabled.  
At the end of the SLEEP mode, the sequencer block uses the I2C control register values (which were reset to  
the default power-up values) to sequence the integrated power supplies. The SLEEP mode ends when one of  
the three following events happens:  
1. If SLEEP was set by thermal fault: The SLEEP mode ends only when all external input supplies and  
battery pack are removed and a UVLO condition is detected by the TPS65810, setting the NO POWER  
mode.  
2. If SLEEP was set by a system low voltage detection, or I2C bit SLEEP_MODE, only with battery present:  
38  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Input power must be connected, setting the TPS65810 in the ENABLE mode. If no input power is  
inserted, the battery discharges until the TPS65810 detects a UVLO condition and enters the NO  
POWER mode.  
3. ) If sleep was set by a system low voltage detection, power good fault or SLEEP_MODE, with battery and  
input power present: all external input supplies connected to AC and USB pins must be removed, and  
then at least one of them reconnected to the system. The input power cycling triggers a transition from  
SLEEP mode to the ENABLE mode.  
PROCESSOR STANDBY STATE– This state is set using an I2C register or a GPIO configured as SM1/SM2  
standby control. In standby mode operation, the SM1 and SM2 voltages are set to value distinct than the normal  
mode output voltage, and SM1/SM2 are set to PFM mode. The standby output voltage is defined in I2C registers  
SM1_STANDBY and SM2_STANDBY.  
TPS65810 OPERATING MODE CONTROLS  
HARDWARE RESET: A dedicated control pin, HOT_RESET, enables implementation of a hardware reset  
function. The system reset pin RESPWRON is set to LO when HOT_RESET = LO for a period longer than the  
internal deglitch (5mSec typ). The RESET mode is started when the HOT_RESET pin transitions from LO to HI,  
as shown in the state diagram. When HOT_RESET = LO all I2C registers are reset to the default power-up  
values.  
SOFTWARE RESET: The external host can set the TPS65810 in RESET mode using the I2C register  
SOFT_RESET, bit B0 (SOFT_RST).  
SOFTWARE SLEEP: The external host can set the TPS65810 in SLEEP mode using the I2C register  
SOFT_RESET, bit B6 (SLEEP_MODE).  
A software reset does not affect the contents of the I2C registers.  
SEQUENCING AND OPERATING MODES – I2C REGISTERS  
The I2C registers that control sequencing-related functions are shown below. The HEX address for each register  
is shown by the register name, together with the R or W functionality for the register bits. Shaded values indicate  
default initial power-up values.  
SOFT_RESET, ADDRESS=08, ALL BITS R/W, BITS B7/B6/B1/B0 APPLY TO SEQUENCING.  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit name  
Function  
STBY MODE  
SLEEP MODE  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
SM3_LF_OSc  
NOT USED  
NOT USED  
nRAMLOAD  
SOFT RST  
SET SM1 AND SET TPS65810  
NOT RELATED  
TO  
SEQUENCING  
SEE SM3  
SECTION  
RAM RESET  
FLAG  
SOFTWARE  
RESET  
CONTROL  
SM2 IN  
STANDBY  
MODE  
IN SLEEP  
MODE  
When 0  
When 1  
NOT ACTIVE  
NOT ACTIVE  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
RAM  
DEFAULTS  
LOADED  
NOT ACTIVE  
When 1 SET  
SM1 AND SM2 MODE (reset to  
IN STANDBY LO internally)  
SET SLEEP  
RAM  
DEFAULTS  
NOT LOADED  
SET RESET  
MODE (reset to  
LO internally)  
Some host algorithms need to identify when the power-up defaults are loaded in the RAM, in order to start  
routines that initialize specific RAM registers. If that functionality is required the nRAMLOAD bit should be set to  
HI by the host when entering the NORMAL operation mode. The nRAMLOAD bit is reset to LO by the  
TPS65810 when the power-up defaults are loaded in the I2C registers (V(OUT) < VUVLO OR V(HOT_RESET) =  
LO), enabling the host algorithm to detect that the RAM registers need to be initialized.  
The integrated supplies status is available in a dedicated register, shown below. The host can select which  
integrated supply outputs trigger a power-good fault condition using the PGOODFAULT_MASK register. When a  
non-masked power-good status register bit toggles state, the sequence controller generates a transition in the  
TPS65810 state machine, indicated as a PGOOD FAULT in TPS65810 state diagram. The power-good status  
register and mask register are shown below:  
39  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
SYSTEM STATUS MONITORED BY SEQUENCING CONTROLLER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
PGOOD, ADDRESS=02, ALL BITS READ ONLY - POWER UP DEFAULTS SHOW SYSTEM STATUS WHEN EXITING POWER DOWN  
Bit name  
Function  
PGOOD SM1  
PGOOD SM2  
PGOOD SM3  
PGOOD LDO1 PGOOD LDO2 PGOOD LDO3 PGOOD LDO4 PGOOD LDO5  
LDO1 OUTPUT LDO2 OUTPUT LDO3 OUTPUT LDO4 OUTPUT LDO5 OUTPUT  
SM1 OUTPUT  
STATUS  
SM2  
OUTPUT  
STATUS  
SM3 OVP  
STATUS  
STATUS  
STATUS  
STATUS  
STATUS  
STATUS  
When 0  
When 1  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
OK  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
PGOODFAULT_MASK, ADDRESS=07, ALL BITS R/W  
Bit name  
Function  
MASK_PSM1  
MASK_PSM2 MASK_PSM3  
MASK_PLDO1 MASK_PLDO2 MASK_PLDO3 MASK_PLDO4 MASK_PLDO5  
MASK PGOOD  
FAULT BY SM1  
MASK  
PGOOD  
FAULT BY  
SM2  
MASK PGOOD MASK PGOOD MASK PGOOD MASK PGOOD MASK PGOOD MASK PGOOD  
FAULT BY  
SM3  
FAULT BY  
LDO1  
FAULT BY  
LDO2  
FAULT BY  
LDO3  
FAULT BY  
LDO4  
FAULT BY  
LDO5  
When 0  
When 1  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
INTERRUPT CONTROLLER  
The TPS65810 has internal block and overall system status information stored in I2C status registers. The  
following subsystems and system parameters are monitored:  
External power supply status: AC or USB supply detected, AC or USB connected to system, AC/USB OVP  
Charger status: on/off/suspend, fast charge/pre-charge, termination detected, DPPM on, thermal loop ON  
Battery pack status: temperature, discharge on/off  
TPS65810 thermal shutdown  
ADC status: conversion status, input out of range, ANLG1 high impedance detection  
Integrated supplies status: output out of regulation (power good fault)  
The GPIO1 and GPIO2 pins can be configured as inputs, generating an interrupt request to the host (  
INT:HILO) at the GPIO rising or falling edge. The host can use internal the INT_MASK I2C registers to define  
which of the monitored status variables triggers an interrupt. When a non-masked system status bit toggles  
state, the interrupt controller issues an interrupt, following the steps below:  
1. system status bits that caused the interruption are set to HI in registers INT_ACK1 and INT_ACK2  
2. An interrupt is sent to the host ( INT:HILO)  
Once an interrupt is sent to the host, INT is kept in the LO state and the INT_ACK register contents are latched,  
holding the system status that generated the currently issued interrupt request. When an interrupt request is  
active (INT = LO) additional changes in non-masked status registers and control signals are ignored, and the  
INT_ACK registers are not updated.  
The host must write a 0 to the INT_ACK register bit that generated the interrupt in order to set INT = HI and  
enable new updates to the INT_ACK registers. If the host stops in the middle of a WRITE or READ operation,  
the INT pin stays at the LO level. The TPS65810 has no reset timeout; it is assumed that the host does not  
leave INT = LO and the status registers unread for a long time.  
The non-masked I2C register bits and internal control signals generate a new interrupt only after INT is set to HI.  
The non-masked power-good fault register bits generate a power-good fault when any of the non-masked bits  
detects that the monitored output voltage is out of regulation, independently of the INT pin level.  
SYSTEM STATUS — I2C REGISTERS  
The I2C registers that have system status data are shown below. The HEX address for each register is shown  
by the register name, together with the R or W functionality for the register bits. Those registers are valid, after  
an initial power up, when the TPS65810 enters the normal operation mode.  
SYSTEM STATUS MONITORED BY INTERRUPT CONTROLLER  
B7  
PGOOD, ADDRESS=02, ALL BITS READ ONLY - POWER UP DEFAULTS SHOW SYSTEM STATUS WHEN EXITING POWER DOWN  
Bit name PGOOD SM1 PGOOD SM2 PGOOD SM3 PGOOD LDO1 PGOOD LDO2 PGOOD LDO3 PGOOD LDO4 PGOOD LDO5  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
40  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
SYSTEM STATUS MONITORED BY INTERRUPT CONTROLLER  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Function  
SM1 OUTPUT  
STATUS  
SM2 OUTPUT  
STATUS  
SM3 OVP  
STATUS  
LDO1 OUTPUT LDO2 OUTPUT LDO3 OUTPUT LDO4 OUTPUT LDO5 OUTPUT  
STATUS  
OK  
STATUS  
OK  
STATUS  
OK  
STATUS  
OK  
STATUS  
OK  
When 0  
OK  
OK  
OK  
When 1  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
FAULT  
ADC STATUS  
REGISTER ADC_READING_HI, B7: CONVERSION COMPLETE;  
INTERNAL STATUS BITS (NO I2C REGISTER BIT AVAILABLE: INPUT OUT OF RANGE (HI OR LO), ANLG1 PIN IMPEDANCE TO AGND2 EXCEEDS 1  
m. See additional details in theAnalog-to-Digital Converter section.  
OTHER SYSTEM STATUS: THERMAL FAULT DETECTED  
INTERRUPT CONTROLLER – I2C REGISTERS  
The I2C registers that control an interrupt generation (INT: HILO) are shown below. The HEX address for each  
register is shown by the register name, together with the R or W functionality for the register bits. Shaded values  
indicate default initial power-up values.  
INTERRUPT AND POWER GOOD FAULT MANAGEMENT REGISTERS  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
INTMASK1, ADDRESS=03, ALL BITS R/W  
Bit name  
Function  
MASK_ISM1  
MASK_ISM2  
MASK_ISM3  
MASK_ILDO1  
MASK INT by  
MASK_ILDO2  
MASK INT by  
MASK_ILDO3  
Mask INT by  
MASK_ILDO4  
MASK INT by  
MASK_ILDO5  
MASK INT by  
MASK INT by  
SM1 PGOOD  
FAULT  
MASK INT by  
SM2 PGOOD  
FAULT  
MASK INT by  
SM3 PGOOD  
FAULT  
LDO1 PGOOD LDO2 PGOOD LDO3 PGOOD LDO4 PGOOD LDO5 PGOOD  
FAULT  
UNMASKED  
MASKED  
FAULT  
UNMASKED  
MASKED  
FAULT  
UNMASKED  
MASKED  
FAULT  
UNMASKED  
MASKED  
FAULT  
UNMASKED  
MASKED  
When 0  
When 1  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
INTMASK2, ADDRESS=04, ALL BITS R/W  
Bit name  
MASK_IADC  
MASK_IANLG1 MASK_IGPIO2 MASK_IGPIO1 MASK_ITHSH MASK_ICHGS MASK_IADC_H MASK_IADC_L  
UT  
T
I
O
Function  
MASKS INT BY MASKS INT BY MASKS INT BY MASKS INT BY MASKS INT BY MASK INT BY  
MASK INT BY  
ADC INPUT  
ABOVE HI  
LIMIT  
MASK INT BY  
ADC INPUT  
BELOW LO  
LIMIT  
ADC END OF  
CONVERSION  
ANLG1 HIGH  
IMPEDANCE  
GPIO2 EDGE  
TRANSITION  
GPIO1 EDGE  
TRANSITION  
THERMAL  
FAULT  
CHG_STAT  
REGISTER  
BITS  
When 0  
When 1  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
INT_ACK1, ADDRESS=05, ALL BITS R/W  
Bit name  
Function  
ACK_SM1  
ACK_SM2  
ACK_SM3  
ACK_LDO1  
ACK_LDO2  
ACK_LDO3  
ACK_LDO4  
ACK_LDO5  
SM1 INT  
REQUEST  
SM2 INT  
REQUEST  
SM3 INT  
REQUEST  
LDO1 INT  
REQUEST  
LDO2 INT  
REQUEST  
LDO3 INT  
REQUEST  
LDO4 INT  
REQUEST  
LDO5 INT  
REQUEST  
When 0  
When 1  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
SM1 PGOOD  
FAULT  
GENERATED  
INT  
SM2 PGOOD  
FAULT  
GENERATED  
INT  
SM3 OVP  
FAULT  
GENERATED  
INT  
LDO1 PGOOD LDO2 PGOOD LDO3 PGOOD LDO4 PGOOD LDO5 PGOOD  
FAULT  
GENERATED  
INT  
FAULT  
GENERATED  
INT  
FAULT  
GENERATED  
INT  
FAULT  
GENERATED  
INT  
FAULT  
GENERATED  
INT  
INT_ACK2, ADDRESS=06, ALL BITS READ ONLY  
Bit name  
ACK_ADC  
ACK_ANLG1  
ACK_GPIO2  
ACK_GPIO1  
ACK_THSHUT ACK_CHGSTA ACK_ADC_HI  
T
ACK_ADC_LO  
Function  
ADC INT  
REQUEST 1  
ANLG1  
COMPARATO  
R INT  
GPIO2 INT  
REQUEST  
GPIO1 INT  
REQUEST  
THERMAL  
FAULT INT  
REQUEST  
CHARGER INT  
REQUEST  
ADC INT  
REQUEST 2  
ADC INT  
REQUEST 3  
REQUEST  
When 0  
When 1  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
CLEAR FLAG  
ADC DONE  
GENERATED  
INT REQUEST  
ANLG1 HIGH  
IMPEDANCE  
DETECTION  
GENERATED  
INT REQUEST  
GPIO2 EDGE  
GENERATED  
INT REQUEST INT REQUEST GENERATED  
GPIO1 EDGE  
GENERATED  
THERMAL  
FAULT  
CHARGER  
STATUS  
CHANGE  
ADC INPUT  
ABOVE HI  
LIMIT  
ADC INPUT  
BELOW LO  
LIMIT  
INT REQUEST GENERATED  
GENERATED  
GENERATED  
INT REQUEST INT REQUEST INT REQUEST  
PGOODFAULT_MASK, ADDRESS=07, ALL BITS R/W  
Bit name  
Function  
PGOOD SM1  
PGOOD SM2  
PGOOD SM3  
PGOOD LDO1 PGOOD LDO2 PGOOD LDO3 PGOOD LDO4 PGOOD LDO5  
MASK PGOOD MASK PGOOD MASK PGOOD MASK PGOOD MASK PGOOD MASK PGOOD MASK PGOOD MASK PGOOD  
FAULT BY  
SM1  
FAULT BY  
SM2  
FAULT BY  
SM3  
FAULT BY  
LDO1  
FAULT BY  
LDO2  
FAULT BY  
LDO3  
FAULT BY  
LDO4  
FAULT BY  
LDO5  
41  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
INTERRUPT AND POWER GOOD FAULT MANAGEMENT REGISTERS  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
When 0  
When 1  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
UNMASKED  
MASKED  
FUNCTIONALITY GUIDE — SYSTEM POWER AND CHARGE MANAGEMENT  
CHARGE MANAGEMENT  
Fast Charge(1)  
Precharge  
Current  
Termination  
Current Current Scaling  
Charge  
Voltage  
Precharge  
Voltage  
SafetyTimer  
Timeout  
Power Up  
Default  
Charge  
Current Value  
Charge Current  
Scaling  
IO(BAT)  
Programmable,  
1.5A max  
,
25%, 50%, 75%,  
100% of IO(BAT)  
10% of  
IO(BAT)  
I(TERM), 10% of 25%, 50%, 75%,  
4.2 V or  
4.36 V  
3.0 V  
Fixed  
Programmable  
Charger OFF  
IO(BAT)  
100% of I(TERM)  
value  
Set via I2C  
Set via I2C  
Set via I2C  
Set via external  
resistor  
Fixed ratio  
Fixed ratio  
Set via external  
resistor  
(1) The input current limit (see system power management below ) regulates the input current, effectively limiting the charge current if the  
input current limit is lower than the fast charge current value programmed.  
POWER PATH MANAGEMENT  
INPUT CURRENT LIMIT  
INPUT CONNECTED TO OUT PIN  
INPUT POWER TO SYSTEM  
POWER UP DEFAULT  
AC PIN  
USB PIN  
BATTERY TO SYSTEM  
2.5 A typ  
100 mA max or  
500 mA max or  
2.5 A typ  
#1 – AC  
#2 – USB  
Battery connected to  
system, independently of  
battery voltage  
Input Power to System,  
USB mode selected,  
100 mA max  
#3 – Battery (when AC pin power and USB pin power are  
not detected )  
Set via I2C  
Set via I2C, overrides  
internal algorithm  
Internal fixed  
current limit  
Automatic internal algorithm  
TPS 65810  
AC _DC Adapter  
Output  
AC SWITCH  
SYSTEM POWER BUS  
AC  
OUT  
OUT  
C26  
22 mF  
USB Power  
C1  
USB SWITCH  
USB  
BATTERY  
SWITCH  
A1  
C2  
10 mF 10 mF  
Battery  
BAT  
BAT  
TS  
+
C24  
0.22 mF  
POWER PATH  
CONTROL  
LINEAR  
C25  
10 mF  
DPPM  
TMR  
50 kW  
NTC  
A1  
A1  
CHARGER  
ISET  
1
-
RSET RTMR  
C23  
47 nF  
RDPPM  
1 kW 49.9 kW  
37.4 kW  
System Power  
Selection  
Charge Voltage  
Fast Charge  
GND  
With the above components the following system  
parameters are set :  
Input Current Limit  
Selection  
A1  
Current Scaling  
Charge Suspend  
Fast Charge Current = 1A (100% scaling, input limit=2.5A)  
Safety Timer = 5hours, 30 min pre-charge  
DPPM threshold = 4.3V  
I2C REGISTERS  
Temp hot: 65C  
Temp Cold : 5C  
Figure 30. Required External Components, Recommended Values, External Connections  
POWER PATH AND CHARGE MANAGEMENT  
Overview  
The TPS65810 has an integrated charger with power path integrated MOSFETs. This topology, shown in the  
simplified block diagram below, enables using an external input power to run the system and charge the battery  
simultaneously. The power path has dual inputs that can be used to select either an external AC_DC adapter  
(AC pin) or an USB port power (USB pin) to power the end equipment main power rail (OUT pin, also referred to  
as the system power bus) and charge the battery pack (connected to BAT pin).  
42  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
OUTSHORT  
500Ω  
I(AC)  
OUT  
AC  
AC SWITCH  
OUTSHORT  
I(AC) / KINTAC  
BATSHORT  
500  
I(USB)  
ACOFF  
USB  
USB SWITCH  
AC Control Loops  
I(USB) / KINTUSB  
V(OUT)  
VO(REG)  
BATOFF  
System Voltage  
Regulation Loop  
USBOFF  
BATTERY  
SWITCH  
I(BAT )  
AC Input Current  
Limit Loop  
BAT  
V(ACOC)  
USB Control Loops  
BAT  
DISCHARGE  
CIRCUIT  
V(USB1)  
V(USB2)  
USB Input Current  
Limit Loop  
INPUT_LIM  
V(OUT)  
I(OUT) / K(SET)  
VO(REG)  
System Voltage  
Regulation Loop  
ISET1  
V(ISET1)  
Charge Voltage  
Loop  
V(PRECHG)  
SCALING  
VREF  
V(BAT)  
Charge  
Current  
Loop  
V(SET)  
VO(REG)  
CHMODE  
V(DPPM)  
DPPM  
ATTENUATION  
TJ  
DPPM  
Loop  
VREF  
TJ(REG)  
Thermal  
Loop  
Charger Control Loops  
Timer Fault  
On, Reset  
TMR  
Dynamically  
Controlled  
Oscillator  
CONTROL SIGNALS  
VREF  
CHARGE  
CONTROL AND  
POWER PATH  
MANAGEMENT  
TS  
SYSTEM  
STATUS  
DETECTION  
USB  
AC  
OUT  
BATTERY  
STATUS  
DETECTION  
CE  
CHG_UVLO  
LATCH  
SYSTEM  
STATUS  
BATTERY  
STATUS  
BAT  
ISET1  
CE  
System Power  
Charger Status  
Input Power Status  
Selection  
Input Current Limit  
Selection  
Charge Voltage  
Fast Charge  
Current Scaling  
Charge Suspend  
I2C  
REGISTERS  
TPS65810  
Figure 31. TPS65810 Charger and Power Path Section Simplified Block Diagram  
The power path has three integrated power MOSFETs: the battery to system MOSFET (battery switch), the AC  
input to system MOSFET (AC switch) and the USB input to system MOSFET (USB switch). Each of those power  
MOSFETs can be operated either as an ON/OFF switch or as a linear pass element under distinct operating  
conditions, as defined by the control circuits that set the power MOSFET gate voltage.  
The TPS65810 regulates the voltage at the OUT pin to 4.6 V when one of the external supplies connected to  
pins AC or USB is powering the OUT pin. The selected input (AC or USB pin) current is limited to a value  
defined by I2C register settings. The input current limit function assures compatibility with USB standard  
requirements, and also implements a protection function by limiting the maximum current supplied by an external  
AC_DC adapter or USB port power terminal.  
43  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
The AC power MOSFET and USB power MOSFET operating modes are set by integrated control loops. Each of  
the power MOSFETs is controlled by two loops: one system voltage regulation loop and one input current  
limiting loop. The integrated loops modulate the AC or USB power MOSFETs drain to source resistance to  
regulate either the OUT pin voltage or to limit the input current. If no input power is present (AC and USB input  
power not detected) the AC and USB power MOSFETs are turned OFF, and the battery MOSFET is turned ON,  
connecting the BAT pin to the OUT pin.  
The battery switch is turned ON when the AC or USB input power is detected and the charger function is  
enabled, charging the battery pack. During charge the battery MOSFET switch operation mode is defined by the  
charger control loops. The battery MOSFET switch drain-to-source resistance is modulated by the charge  
current loop and charge voltage loop in order to implement the battery charging algorithm. In addition to that  
multiple safety functions are activated (thermal shutdown, safety timers, short circuit recovery), and additional  
functions (thermal loop and DPPM loop) optimize the charging process.  
POWER PATH MANAGEMENT FUNCTION  
Detecting the System Status  
The power path and charge management block operate independently of the other TPS65810 circuits. Internal  
circuits check battery parameters (pack temperature, battery voltage, charge current) and system parameters  
(AC and USB voltage, battery voltage detection), setting the power path MOSFETs operating modes  
automatically. The TPS65810 has integrated comparators that monitor the battery voltage, AC pin voltage, USB  
pin voltage and the OUT pin voltage. The data generated by those comparators is used by the power path  
control logic to define which of the integrated power path switches are active. A simplified block diagram for the  
system status detection is shown below.  
AC  
AC DETECTED  
BAT  
DPPM  
1 V  
NO BATT  
SHORT  
AC OVP  
VOVP  
USB  
BAT  
USB DETECTED  
USB OVP  
POWER PATH  
VOVP  
CONTROL LOGIC  
VOUTSH  
OUT SHORTED  
OUT  
BAT  
VBATSH  
BAT  
SHORTED  
OUT LOWER  
THAN BAT  
BAT  
OUT  
Figure 32. TPS65810 Systems Status Detection, Charger and Power Path Section  
Table 4 lists the system power detection conditions. VIN(DT), VOUTSH, VBATSH, VOVP are TPS65810 internal  
references, refer to the electrical characteristics for additional details.  
44  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 4. System Status Detection, Charger and Power Path Section  
AC input voltage detected  
USB input voltage detected  
AC overvoltage detected  
USB overvoltage detected  
V(AC) – V(BAT) > VIN(DT)  
V(USB) – V(BAT) > VIN(DT)  
V(AC) > VOVP  
V(USB) > VOVP  
AC PIN TO OUT pin OR USB TO OUT PIN short detected V(OUT) < VINOUTSH  
BAT pin to OUT pin short detected  
V(BAT) - V(OUT) > VBATOUTSH  
Battery supplement mode need detected  
Blank BAT to OUT short circuit detection  
V(BAT) – V(OUT) > VSUP  
V(DPPM) < 1V  
Power Path Logic: Priority Algorithm  
The system power bus supply is automatically selected by the power path control logic, following an internal  
algorithm. The power path function detects an external input power connection when the input voltage exceeds  
the battery pack voltage. It also detects a supplement mode need (battery switch must be turned ON) when the  
system voltage (OUT pin) is below the battery voltage. A connected and non-selected external supply or the  
battery is automatically switched to the system bus, following the priority algorithm, when the external supply  
currently selected is disconnected from the system.  
The input power priority is hard-wired internally, with the AC input having the higher priority, followed by the USB  
input (2nd) and the battery pack (3rd). Using the I2C CHG_CONFIG register control bit CE the user can override  
the power path algorithm, connecting the battery to the system power bus. Care must be taken when using the  
battery-to-system connection option, as the system power bus is not connected back to the AC or USB inputs  
(even if those are detected) when the battery is removed. Table 5 describes the priority algorithm.  
Table 5. Power Path Control Logic Priority Algorithm  
CE BIT  
EXTERNAL SUPPLY  
DETECTED  
SWITCH MODE  
SYSTEM POWER  
SOURCE  
(I2C CHG_CONFIG Register)  
AC  
YES  
NO  
USB  
NO  
AC  
ON  
USB  
Battery  
HI  
OFF  
ON  
ON if Supplement mode is  
required, OFF otherwise  
AC  
USB  
YES  
YES  
NO  
OFF  
ON  
YES  
NO  
OFF  
OFF  
OFF  
AC  
OFF  
OFF  
BATTERY  
BATTERY  
LO  
XX  
XX  
ON  
The power path status is stored in register CHG_STAT.  
Input Current Limit  
The USB input current is limited to the maximum value programmed by the host, using the I2C interface. If the  
system current requirements exceed the input current limit, the output voltage collapses, the charge current is  
reduced, and finally, the supplement mode is set. The input current limit value is set with the I2C charge control  
register bits PSEL and ISET2, and it is applied to the USB input ONLY. The AC input current limit is fixed to the  
internal short circuit limit value.  
Table 6. Charge Current Scaling via I2C  
PSEL (I2C)  
ISET2 (I2C)  
INPUT CURRENT LIMIT  
USB  
AC  
LO  
LO  
HI  
LO  
HI  
100 mA  
500 mA  
2.75 A  
2.75 A  
2.75 A  
2.75 A  
2.75 A  
2.75 A  
LO  
HI  
HI  
45  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
System Voltage Regulation  
The system voltage is regulated to a fixed voltage when one of the input power supplies is connected to the  
system. The system voltage regulation is implemented by a control loop that modulates the selected switch  
Rds(on).  
The typical system regulation voltage is 4.6 V.  
Input Overvoltage Detection  
The AC and USB input voltages are monitored by voltage comparators that identify an overvoltage condition. If  
an overvoltage condition is detected a status register bit is set, indicating a potential fault condition.  
When an overvoltage condition is detected, the AC or USB switches state is not modified. If any of those  
switches was ON, it is kept in the ON state. During overvoltage conditions, the system voltage is still regulated,  
and no major safety issues are observed when not modifying the input switch state.  
If the input overvoltage condition results in excessive power dissipation, the thermal shutdown circuit is  
activated, the AC and USB switches are turned OFF, and the BAT switch is turned ON.  
Output Short-Circuit Detection  
If the OUT pin voltage falls below an internal threshold VINOUTSH the AC and USB switches are turned off and  
internal pullup resistors are connected from AC pin to OUT pin and USB pin to OUT pin. When the short circuit  
is removed those resistors enable the OUT pin voltage to rise above the VINOUTSH threshold, returning the  
system to normal operation.  
Battery Short-Circuit Detection  
If the OUT pin voltage falls below the BAT pin voltage by more than an internal threshold VBATOUTSH the battery  
switch is turned off and internal pullup resistor is connected between the OUT pin and the BAT pin. This resistor  
enables detection of the short removal, returning the system to normal operation.  
Initial Power Path Operation  
During the initial TPS65810 power-up the contents of the ISET2, CE and SUSPEND bits on the control register  
are immediately implemented. The charger is disabled (SUSPEND=LO) and the selected input current limit is  
set internally to 500 mA max.  
No-Battery Detection Circuit  
The ANLG1 pin may be used to detect the connection of an external resistor that is embedded in a battery pack  
and is used as a pack ID function. The ANLG1 pin has an internal current source connected between OUT and  
ANLG1, which is automatically enabled when the TPS65810 is not in SLEEP mode. The current levels for  
ANLG1 pin can be programmed via I2C register ADC_WAIT, bits BATID_n, as shown below:  
OUT  
BAT  
I2C  
_
V(OUT) - V(NOBATID)  
+
TPS65810  
ANLG 1  
Battery  
PACK ID  
Resistor  
Figure 33. Battery Removal Detection, ANLG1 Pin  
46  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
An internal comparator with a fixed deglitch time, t  
monitors the ANLG1 pin voltage, if V(ANLG1) >  
V(OUT) - VNOBATID a battery removed condition isDGdLe(NteOcBtAeTd) and an internal discharge switch is activated,  
connecting an internal resistor from BAT pin to AGND1. Note that ANLG1 can also be used as an analog input  
for the ADC converter, in this case the voltage at pin ANLG1 must never exceed the V(OUT) - VNOBATID  
threshold to avoid undesired battery discharge.  
Using the Input Power to Run the System and Charge the Battery Pack  
The external supply connected to AC or USB pins must be capable of supplying the system power and the  
charger current. If the external supply power is not sufficient to run the system and charge the battery pack the  
TPS65810 executes a two-stage algorithm that prevents a low voltage condition at the system power bus:  
1. The charge current is reduced, until the total (charger + system current) is at a level that can be supplied  
by the external input supply. This function is implemented by a dedicated charger control loop (see DPPM  
section in charger functional description for additional details).  
2. The battery switch is turned ON if the charge current is reduced to zero and the input current is not  
enough to run the system. In this mode of operation both the battery and the external input power supply  
the system power ( supplement operation mode).  
The supplement operation mode is automatically set by the TPS65810 when the input power is switched to the  
OUT pin, and the OUT pin voltage falls below the battery voltage.  
BATTERY CHARGE MANAGEMENT FUNCTION  
Operating Modes  
The TPS65810 supports charging of single-cell Li-Ion or Li-Pol battery packs. The charge process is executed in  
three phases: pre-charge (or pre-conditioning), constant current and constant voltage.  
The charge parameters are selectable via I2C interface and using external components. The charge process  
starts when an external input power is connected to the system, the charger is enabled by the I2C register  
CHG_CONFIG bits CE=HI and CHGON=HI, and the battery voltage is below the recharge threshold, V(BAT) <  
V(RCH). When the charge cycle starts a safety timer is activated. The safety timer timeout value is set by an  
external resistor connected to the TMR pin.  
When the charger is enabled two control loops modulate the battery switch drain to source impedance to limit  
the BAT pin current to the programmed charge current value (charge current loop) or to regulate the BAT pin  
voltage to the programmed charge voltage value (charge voltage loop). If V(BAT) < 3 V (typ) the BAT pin current  
is internally set to 10% of the programmed charge current value. A typical charge profile is shown below, for an  
operation condition that does not cause the IC junction temperature to exceed 125°C (typ).  
47  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Pre-  
conditioning  
Phase  
Current  
Regulation  
Phase  
Voltage Regulation and  
Charge Termination  
Phase  
DONE  
VO(BATREG)  
IO(BAT)  
Battery Current,  
I(BAT)  
FAST-CHARGE  
CURRENT  
Charge  
Complete  
Status,  
Charger  
Off  
Battery voltage,  
V(BAT)  
V(LOWV)  
IO(PRECHG) , I(TERM)  
PRE-CHARGE  
CURRENT AND  
TERMINATION  
THRESHOLD  
T(PRECHG)  
T(CHG)  
DONE  
Figure 34. Typical Charge Cycle, Thermal Loop not Active  
If the operating conditions cause the IC junction temperature to exceed 125°C the charge cycle is modified, with  
the activation of the integrated thermal control loop. The thermal control loop is activated when an internal  
voltage reference, which is inversely proportional to the IC junction temperature, is lower than a fixed,  
temperature stable internal voltage. The thermal loop overrides the other charger control loops and reduces the  
charge current until the IC junction temperature returns to 125°C, effectively regulating the IC junction  
temperature.  
OUT  
VREF  
Thermal  
Loop  
Battery  
Switch  
I(BAT)  
VTJ  
BAT  
I(OUT)/K(SET)  
ISET 1  
Charge Voltage  
Loop  
V(OUT)  
V(BAT)  
VO(REG)  
VO(REG)  
System Voltage  
Regulation Loop  
48  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
A modified charge cycle, with the thermal loop active, is shown here:  
Thermal  
Regulation Regulation  
Phase Phase  
Current  
Pre-  
conditioning  
Phase  
Voltage Regulation and  
Charge Termination  
Phase  
DONE  
VO(BATREG)  
IO(BAT)  
Battery Current,  
I(BAT)  
FAST-CHARGE  
CURRENT  
Battery  
Voltage,  
V(BAT)  
Charge  
Complete  
Status,  
Charger  
Off  
V(LOWV)  
PRE-CHARGE  
CURRENT AND  
TERMINATION  
THRESHOLD  
IO(PRECHG) , I(TERM)  
T(THREG)  
IC Junction  
Temperature, Tj  
T(PRECHG)  
T(CHG)  
DONE  
Figure 35. Typical Charge Cycle, Thermal Loop Active  
Battery Preconditioning  
The TPS65810 applies a pre-charge current Io(PRECHG) to the battery if the battery voltage is below the V(LOWV)  
threshold, pre-conditioning deeply discharged cells. The charge current loop regulates the ISET1 pin voltage to  
an internal reference value, VPRECHG. The resistor connected between the ISET1 and AGND pins, RSET  
determines the precharge rate.  
,
The pre-charge rate programmed by RSET is always applied to a deeply discharged battery pack, independently  
of the input power selection (AC or USB). The pre-charge current can be calculated as follows:  
V
+
  K  
PRECHG  
SET  
I
O(PRECHG)  
R
SET  
(2)  
where:  
KSET is the charge current scaling factor and VPRECHG is the pre-charge set voltage.  
CONSTANT CURRENT CHARGING  
The constant charge current mode (fast charge) is set when the battery voltage is higher than the pre-charge  
voltage threshold. The charge current loop regulates the ISET1 pin voltage to an internal reference value, VSET  
.
The fast charge current regulation point is defined by the external resistor connected to the ISET1 pin, RSET, as  
shown in the following:  
V
+
  K  
SET  
SET  
I
O(BAT)  
R
SET  
(3)  
where:  
VSET (2.5 V typ) is the voltage at ISET1 pin during charge current regulation and KSET = Charge Current  
Scaling Factor.  
The reference voltage VSET can be reduced via I2C register CHG_CONFIG bits ISET1_1 and ISET1_0. VSET can  
be selected as a percentage (75%, 50% or 25%) of the original 2.5 V typ, non-attenuated VSET value, effectively  
scaling down the charge current.  
49  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
The ISET1 resistor always sets the maximum charge current if the AC input is selected. When the USB input is  
selected, the maximum charge current is defined by the USB input current limit and the programmed charge  
current. If the USB input current limit is lower than the IO(OUT) value, the battery switch is set in the dropout  
region and the charge current is defined by the input current limit value and system load, as shown in the  
following curves:  
2.75 A  
I(USB)  
INPUT  
CURRENT  
BATTERY  
CHARGE  
CURRENT  
500 mA  
750 mA  
800 mA  
(800 mA DEFINED  
BY RSET VALUE)  
SYSTEM LOAD  
300 mA  
200 mA  
I(OUT )  
-250 mA  
BATTERY  
CHARGING,  
USB INPUT LIMIT  
SET TO 2.75 A  
BATTERY  
DISCHARGING,  
SUPPLEMENT  
MODE SET  
BATTERY  
CHARGING,  
INPUT LIMIT SET  
TO 500 mA  
Figure 36. Input Current Limit Impact on Effective Charge Current  
CHARGE TERMINATION AND RECHARGE  
The TPS65810 monitors the charging current during the voltage regulation phase. Charge is terminated when  
the charge current is lower than an internal threshold, set to 10% (typ) of the fast charge current rate. The  
termination point applies to both AC and USB charging, and it can be calculated as follows:  
V
+
  K  
TERM  
SET  
I
TERM  
R
SET  
(4)  
where  
VTERM is the termination detection voltage reference.  
The voltage at ISET1 pin is monitored to detect termination, and termination is detected when V(SET1) < VTERM  
(0.25 V typ). The voltage reference VTERM is internally set to 10% of the VSET reference voltage, and it is  
modified if the reference voltage VSET is scaled via I2C register CHG_CONFIG bits ISET1_1 and ISET1_0.  
VTERM is reduced by the same percentage used to scale down VSET  
.
The table below shows charge current and termination thresholds for a 1-A charge current set (1-kresistor  
connected to ISET1 pin), with the selected input current limit set to a value higher than the programmed charge  
current. The termination current is scaled for all charge current modes (AC or USB), as it is always set by the  
ISET1 pin external resistor value.  
Table 7. Charge Current and Termination Threshold Selection Example  
Charge Control Register Bits  
Charge Current, (% of typical value  
programmed by ISET1 resistor)  
Vset  
(V)  
Vterm  
(mV)  
Charge  
Current (A)  
Termination  
Current (mA)  
ISET1_1  
ISET1_0  
0
0
1
1
0
1
0
1
25%  
50%  
0.6  
1.25  
1.9  
60  
0.24  
0.5  
0.78  
1
20  
40  
115  
160  
250  
75%  
60  
100%  
2.5  
100  
50  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Once termination is detected, a new charge cycle starts if the voltage on the BAT pin falls below the V(RCH)  
threshold. A new charge start is also triggered if the charger is enabled/disabled/enabled via I2C (CHG_CONFIG  
register bits CE or CHGON), or if both AC and USB input power are removed and then at least one of them is  
re-inserted.  
The termination is disabled when the thermal loop OR DPPM loop are active, and during supplement mode.  
BATTERY VOLTAGE REGULATION, CHARGE VOLTAGE  
The voltage regulation feedback is Implemented by sensing the BAT pin voltage, which is connected to the  
positive side of the battery pack. The TPS65810 monitors the battery-pack voltage between the BAT and  
AGND1 pins, when the battery voltage rises to the VO(REG) threshold the voltage regulation phase begins and the  
charging current tapers down.  
The charging voltage can be selected as 4.2 V or 4.365 V (typ). The default power-up voltage is 4.2 V. As a  
safety measure the 4.365 V charge voltage is programmed only if two distinct bits are set via I2C: VCHG=HI in  
the CHG_CONFIG, and CHG_VLTG=LO in the GPIO3 register.  
TEMPERATURE QUALIFICATION  
The TPS65810 charger section does not monitor the battery temperature. This function may be implemented by  
an external host, which can measure the pack temperature by monitoring the ADC channel connected to the TS  
pin. An external pullup resistor should be connected to the TS pin in order to bias the pack thermistor, as the  
TPS65810 has no internal current source connected to the TS pin.  
DYNAMIC POWER PATH MANAGEMENT  
Under normal operating conditions, the OUT pin voltage is regulated when the AC or USB pin is powering the  
OUT pin and the battery pack is being charged. If the total (system + charge current) exceeds the available input  
current, the system voltage drops below the regulation value.  
The dynamic power path management function monitors the system output voltage. A condition where the  
external input supply rating has been exceeded or the input current limit has been reached is detected when the  
OUT pin voltage drops below an user-defined threshold, VDPPM  
:
V
+ R  
  K  
  I  
DPPM  
DPPM  
DPPM DPPM  
(5)  
where:  
RDPPM = external resistor connected to DPPM pin  
KDPPM = DPPM scaling factor  
IDPPM = DPPM pin internal current source  
To correct this situation the DPPM loop reduces the charge current, regulating the OUT pin voltage to the  
user-defined VDPPM threshold. The DPPM loop effectively identifies the maximum current that can be delivered  
by the selected input and dynamically adjusts the charge current to guarantee that the end equipment is always  
powered. In order to minimize OUT voltage ripple during DPPM operation the VDPPM threshold should be set just  
below the system regulation voltage.  
If the charge current is reduced to zero by the DPPM and the input current is still lower than the OUT pin load,  
the output voltage falls below the DPPM threshold, decreasing until the battery supplement mode is set [V(OUT)  
= V(BAT) – VSUP(DT) ].  
CHARGER OFF MODE  
The TPS65810 charger circuitry enters the low-power OFF mode if both AC and USB power are not detected.  
This feature prevents draining the battery during the absence of input supply.  
PRE-CHARGE SAFETY TIMER  
The TPS65810 activates an internal safety timer during the battery pre-conditioning phase. The pre-charge  
safety timer time-out value is set by the external resistor connected to TMR pin, RTMR, and the timeout  
constants KPRE and KTMR  
:
TPRECHG = KPRE× RTMR× KTMR  
51  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
The KPRE constant typical value is 0.1, setting the pre-charge timer value to 10% of the charge safety timer  
value.  
When the charger is in suspend mode, set via I2C register CHG_CONFIG bit CHGON or set by a pack  
temperature fault, the pre-charge safety timer is put on hold (i.e., charge safety timer is not reset). Normal  
operation resumes when the charger exits the suspend mode. If V(BAT) does not reach the internal voltage  
threshold VPRECHG within the pre-charge timer period a fault condition is detected and the charger is turned off.  
If the TMR pin is left floating, an internal resistor of 50 K(typ) is used to generate the time base used to set the  
pre-charge timeout value. The typical pre-charge timeout value can be then calculated as:  
TPRECHG = KPRE× 50K × KTMR  
CHARGE SAFETY TIMER  
As a safety mechanism the TPS65810 has a user-programmable timer that measures the total fast charge time.  
This timer (charge safety timer) is started at the end of the pre-conditioning period. The safety charge timeout  
value is set by the value of an external resistor connected to the TMR pin RTMR). The charge safety timer  
time-out value is calculated as follows:  
TCHG = KTMR× RTMR  
When the charger is in suspend mode, set via I2C register CHG_CONFIG bit CHGON or set by a pack  
temperature fault, the charge safety timer is put on hold (i.e., charge safety timer is not reset). Normal operation  
resumes when the charger exits the suspend mode. If charge termination is not reached within the timer period  
a fault condition is detected, and the charger is turned off.  
The charge safety timer is held in reset if the TMR pin is left floating. Under this mode of operation an internal  
resistor, 50Ktypical, sets the internal charger and power path deglitch and delay times, as well as the  
pre-charge safety timer timeout value.  
TIMER FAULT RECOVERY  
The TPS65810 provides a recovery method to deal with timer fault conditions. The following summarizes this  
method:  
Condition 1: Charge voltage above recharge threshold, VRCH, and timeout fault occurs.  
Recovery method: The IC waits for the battery voltage to fall below the recharge threshold. This could happen  
as a result of a load on the battery, self-discharge or battery removal. Once the battery falls below the recharge  
threshold, the IC clears the fault and starts a new charge cycle.  
Condition 2: Charge voltage below recharge threshold,V(RCH), and timeout fault occurs.  
Recovery method: Under this scenario, the IC connects an internal pullup resistor from OUT pin to BAT pin.  
This pullup resistor is used to detect a battery removal condition and remains on as long as the battery voltage  
stays below the recharge threshold. If the battery voltage goes above the recharge threshold, the IC disables the  
pullup resistor connection and executes the recovery method described for condition 1.  
All timers are reset and all timer fault conditions are cleared when a new charge cycle is started either via I2C  
(toggling CHG_CONFIG bits CE, CHGON) or by cycling the input power. All timers are reset and all timer fault  
conditions are cleared when the TPS65810 enters the UVLO mode.  
DYNAMIC TIMER FUNCTION  
The charge and pre-charge safety timers are programmed by the user to detect a fault condition if the charge  
cycle duration exceeds the total time expected under normal conditions. The expected total charge time is  
usually calculated based on the fast charge current rate.  
When the thermal loop or the DPPM loops are activated the charge current is reduced, and a false safety timer  
fault can be observed if this mode of operation is active for a long periods. To avoid this undesirable fault  
condition the TPS65810 activates the dynamic timer function when the DPPM and thermal loops are active. The  
dynamic timer function slows down the safety timers clock, effectively adding an extra time to the programmed  
timeout value as follows:  
1. If the battery voltage is below the battery depleted threshold: the pre-charge timer value is modified while  
the thermal loop or the DPPM loop are active  
52  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
2. If the battery voltage is above the pre-charge threshold: the safety timer value is modified if the DPPM or  
the thermal loop are active AND the battery voltage is below the recharge threshold.  
The TPS65810 dynamic timer function circuit monitors the voltage at pin ISET1 during pre-charge and fast  
charge. When the charger is regulating the charge current, the voltage at pin ISET1 is regulated by the control  
loops to either VSET or VPRECHG. If the thermal loop or DPPM loops are active, the voltage at pin ISET1 is lower  
than VSET or VPRECHG, and the dynamic timer control circuit changes the safety timers clock period based on the  
VSET/V(ISET1) ratio (fast charge) or VPRECHG/V(ISET1) ratio (pre-charge).  
The maximum clock period is internally limited to twice the value of the programmed clock period, which is  
defined by the resistor connected to TMR pin, as shown in the following figure:  
2
1
1
2
V(SET)  
V(PRECHG)  
V(ISET 1)  
,
V(SET 1)  
Figure 37. Safety Timer Internal Clock Slowdown  
The effective charge safety timer value can then be expressed as follows:  
Effective pre-charge timeout = t(PRECHG) + t(PCHGADD)  
Effective charge safety timeout = t(CHG) + t(CHGADD)  
where the added timeout values, t(PCHGADD), t(CHGADD), are equal to the sum of all time periods when either the  
thermal loop or DPPM loops were active. The maximum added timeout value is internally limited to 2 × t(CHG) or  
2 x t(PRECHG)  
CHARGE AND SYSTEM POWER MANAGEMENT — I2C REGISTERS  
The I2C registers that control charger and power path related functions are shown below. The HEX address for  
each register is shown by the register name, together with the R or W functionality for the register bits. Shaded  
values indicate default initial power-up values. Note that the CHG_STAT register contents are valid only when  
either AC or USB power are applied to the TPS65810. The output of linear regulator LDO_PM can be used as  
an indicator of external input power detection; if LDO_PM is in regulation the CHG_STAT register contents are  
valid.  
53  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
CHG_CONFIG, ADDRESS=9, ALL BITS R/W  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit name  
Function  
VCHG  
CHGON  
NOT USED  
NOT USED  
ISET1_1  
ISET1_0  
ISET2  
PSEL  
CE(1)  
CHARGE  
VOLTAGE  
SELECTION  
SUSPEND  
CHARGE  
CHARGE CURRENT SCALING  
FACTOR  
USB  
CURRENT  
LIMIT  
SELECTED  
INPUT  
CURRENT  
LIMIT  
SYSTEM  
POWER  
SELECTION  
When 0  
When 1  
4.36 V  
4.20 V  
CHARGE  
SUSPENDED  
NOT USED  
NOT USED  
00= 0.25 10=0.75  
01= 0.5 11= 1  
Note: Relative to charge current  
programmed by external ISET pin  
resistor.  
100 mA  
500 mA  
USE USB  
CURRENT  
LIMIT  
BATTERY TO  
SYSTEM  
CHARGE ON  
INPUT  
INPUT POWER  
TO SYSTEM(1)  
CURRENT  
LIMIT SET TO  
MAXIMUM  
(1) The CE bit state is latched inside the charger control logic (CE latch) during an OUT pin UVLO event, prior to resetting the charge  
control register bit CE to its power up default value. The charger CE latch controls the charger and power path state as long as the  
TPS65810 is in UVLO mode and an external supply is connected to the charger block. The CE latch is reset to its power-up value  
(CE=HI) only when the input power is removed from the charger block. The CE latch is disabled and the CE charge control register bit  
sets the charger and power path MOSFETs state when the TPS65810 exits the UVLO mode. This feature avoids a host software loop  
when the host algorithm requires a depleted (or absent) battery to be connected to the system bus while input power is present.  
GPIO3, ADDRESS= 1C, ALL BITS R/W. NOTE: ONLY BIT B4 CONTROLS CHARGER-RELATED FUNCTIONALITY  
B7  
B6  
B5  
B4  
B3  
NOT USED GPIO2 _INTSRC GPIO1 _INTSRC  
NOT USED SEE Table 15 Table 15  
B2  
B1  
B0  
Bit name  
Function  
GPIO3i/O  
GPIO3_LEVEL  
SEE Table 15  
LDO0_ENABLE  
SEE Table 15  
CHARGE _VLTG  
GPIO2 _SM2  
SEE Table 15  
SEE  
Table 15  
CHARGE  
VOLTAGE  
SELECTION  
SAFETY BIT  
When 0  
When 1  
4.2 V  
4.36 V  
CHG_STAT, ADDRESS=A, ALL BITS READ ONLY– POWER UP DEFAULTS SHOW SYSTEM STATUS WHEN EXITING POWER DOWN  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit name  
Function  
BAT_STAT(1)(2)  
INPUT _PWR  
THDPPM_ON  
ACPG(3)  
USBPG(3)  
STAT1  
STAT2  
INP_OV  
BATTERY  
SUPPLEMENT  
MODE STATUS  
SELECTED  
INPUT  
POWER  
STATUS  
THERMAL  
LOOP AND  
DPPM  
AC INPUT  
POWER  
STATUS  
USB INPUT  
POWER  
STATUS  
CHARGE STATUS  
AC OR USB  
INPUT OVP  
DETECTION  
STATUS  
When 0  
When 1  
SUPPLEMENT  
MODE OFF  
AC INPUT  
SELECTED  
BOTH OFF  
AC NOT  
DETECTED  
USB NOT  
DETECTED  
00 = FAULT/SUSPEND/OFF  
01 = CHARGE DONE  
10 = FAST CHARGE ON  
11 = PRECHARGE  
NO OVP  
SUPPLEMENT  
MODE ON  
USB INPUT  
SELECTED  
DPPM ON OR  
THERMAL ON  
AC  
DETECTED  
USB  
DETECTED  
OVP  
DETECTED  
(1) The battery supplement is entered when V(BAT)– V(OUT) > 60 mV (typ), and it ends when V(BAT)– V(OUT) < 20 mV. When the system  
power bus current exceeds the input current limit or the external supply current capability, the supplement mode is set. An oscillatory  
behavior for BAT_STAT bit can happen if the battery switch dropout voltage is less than 20 mV (typ) when in supplement mode.  
(2) The BAT_STAT is always masked internally, and does not generate interrupts.  
(3) The ACPG and USBPG bits have valid data only when V(LDO_PM) > 2 V.  
54  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
FUNCTIONALITY GUIDE — LINEAR REGULATORS  
SELECTABLE OUTPUT VOLTAGE LDO  
Supply  
ON/OFF  
Control  
Output Discharge  
Switch  
OUTPUT VOLTAGE (V), set via I2C  
IO Max  
(mA)  
Acc  
%
Power Up  
Default  
# of Steps  
Available Values (V)  
LDO1  
LDO2  
SIM  
Yes, set via  
I2C  
Yes, enabled via I2C  
Yes, enabled via I2C  
no  
8
8
2
1.25/1.5/1.8/2.5/2.85/3/3.2/3.3  
150  
150  
8
3
3
2
OFF, 1.25 V  
OFF, 3.3 V  
ON, 2.5 V  
Yes, set via  
I2C  
1.25/1.5/1.8/2.5/2.85/3/3.2/3.3  
1.8 / 2.5  
Yes, set via  
I2C  
PROGRAMMABLE OUTPUT VOLTAGE LDO  
Supply  
ON/OFF  
Control  
Output Discharge  
Switch  
OUTPUT VOLTAGE (V), set via I2C  
IO Max  
(mA)  
Acc  
%
Power Up  
Default  
Range  
# of Steps  
128  
Min Step  
LDO3  
LDO4  
LDO5  
yes, set via I2C Yes, enabled via I2C  
yes, set via I2C Yes, enabled via I2C  
yes, set via I2C Yes, enabled via I2C  
1.224–4.46  
1.224–4.46  
1.224–4.46  
25 mV  
25 mV  
25 mV  
100  
100  
100  
3
3
3
OFF, 1.505 V  
OFF, 1.811 V  
ON, 3.111 V  
128  
128  
FIXED OUTPUT VOLTAGE LDO’S  
Supply  
ON/OFF Control  
OUTPUT  
IO Max (mA)  
Acc %  
Power Up Default  
VOLTAGE (V)  
RTC_OUT  
LDC0  
Yes, via I2C  
1.5, fixed  
3.3, fixed  
3.3, fixed  
8
5
3
5
ON  
OFF  
150  
20  
LDO_PM  
NO, enabled internally  
ON if AC or USB power detected  
TPS65810  
ON/OFF , Output Voltage  
Discharge Control  
ON/OFF  
ON/OFF  
Output Voltage  
1.224-4.4 V  
100 mA  
1.25-3.3 V  
150 mA  
1.5 V  
8 mA  
1.224-4.4 V  
100 mA  
3.3 V  
10 mA  
1.25-3.3 V  
150 mA  
1.224-4.4 V  
100 mA  
3.3 V  
150 mA  
1.8 V / 2.5 V  
8 mA  
A2  
A1  
Figure 38. Required External Components, Recommended Values, External Connections  
55  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
LINEAR REGULATORS — FUNCTIONAL DESCRIPTION  
The TPS65810 offers nine integrated linear regulators, designed to be stable over the operating load range with  
use of external ceramic capacitors, as long as the recommended filter capacitor values (see application diagram  
and pinout description) are used. The output voltage can be programmed via I2C (LDO0-2, LDO3-5) or have a  
fixed output voltage.  
Simplified Block Diagram  
A simplified block diagram for the LDOs is shown in Figure 39.  
INPUT SUPPLY  
VREF  
_
I2C  
REGISTERS  
OUTPUT  
VOLTAGE  
SAMPLE  
OUTPUT VOLTAGE  
ON/OFF  
CONTROL  
+
BIAS  
CONTROL  
LDO3-5 ONLY  
All LDOs  
except  
LDO_PM  
SHORT CIRCUIT  
PROTECTION  
OUTPUT  
VOLTAGE  
SETTING  
OUTPUT  
CURRENT  
SAMPLE  
Programmable  
LDOs only  
DISCHARGE  
CONTROL  
ENABLE  
DISCHARGE  
CONTROL  
LDO1, LDO2,  
LDO3-5 ONLY  
LDO1, LDO2,  
LDO3-5 ONLY  
Figure 39. Simplified Block Diagram  
Connecting the LDO Input Supply  
Both LDO1-2 and LDO3-5 have uncommitted input power supply pins (VIN_LDO12, VIN_LDO35), which should  
be externally connected to the OUT pin. Optionally the LDO0-2 and LDO3-5 input supplies can be connected to  
the output of the available buck converters SM1 or SM2, as long as the resulting overall power-up sequence  
meets the system requirements.  
The RTC_OUT, SIM, LDO0 and LDO_PM linear regulators are internally connected to the OUT pin.  
ON/OFF Control  
All the LDO’s, with exception of LDO_PM LDO, have a ON/OFF control which can be set via I2C commands,  
facilitating host management of the distinct system power rails. The LDO_PM LDO On/OFF control is internally  
hard-wired, and it is set to ON when either the AC or USB input power is detected.  
Output Discharge Switch  
LDO1, LDO2 AND LDO3-5 have integrated switches that discharge each output to ground when the LDO is set  
to OFF by an I2C command. The output discharge switch function can be disabled by using I2C register control  
bits. The discharge switches are enabled after the initial power-up  
Special Functions  
The RTC_OUT, SIM (Subscriber line interface module) and LDO_PM linear regulators are designed to support  
lower load currents. The SIM and RTC_LDO have low leakage in OFF mode, with the input pin voltage above or  
below the output pin voltage. The LDO_PM can be used for USB enumeration, or a status indication of input  
power connection.  
56  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Output Voltage Monitoring  
Internal power good comparators monitor the LDO outputs and detect when the output voltage is below 90% of  
the programmed value. This information is used by the TPS65810 to generate interrupts or to trigger distinct  
operating modes, depending on specific I2C register settings. See interrupt and sequencing controller section for  
additional details.  
LINEAR REGULATORS — I2C REGISTERS  
The I2C registers that control LDO-related functions are shown below. The HEX address for each register is  
shown by the register name, together with the R or W functionality for the register bits. Shaded values indicate  
default initial power-up values.  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
EN_LDO: ADDRESS = B, ALL BITS R/W  
Bit name  
Function  
LDO1_EN  
LDO2_EN  
LDO3_EN  
LDO4_EN  
LDO5_EN  
SIM_SET  
SIM EN1  
RTC_EN  
LDO15 ON/OFF CONTROL  
SIM LDO output  
voltage  
SIM/RTC ON/OFF CONTROL  
When 0  
When 1  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
2.5 V, ON  
1.8 V  
OFF  
ON  
OFF  
ON  
LDO12: ADDRESS = C, ALL BITS R/W  
Bit name  
Function  
LDO1_DISCH  
LDO1_2 SET  
LDO1_1 SET  
LDO1_0 SET LDO2_DISCH  
LDO2_2 SET  
LDO2_1 SET  
LDO2_0 SET  
LDO1 output  
discharge switch  
enable  
LDO1 OUTPUT VOLTAGE SETTING  
LDO2 output  
discharge  
switch enable  
LDO2 OUTPUT VOLTAGE SETTING  
When 0  
When 1  
OFF  
ON  
000 = 1.25 V  
010 = 1.8 V  
100 = 2.85 V  
110 = 3.2 V  
001 = 1.5 V  
011 = 2.5 V  
110 = 3 V  
Default =  
1.25 V  
OFF  
ON  
000 = 1.25 V  
001 = 1.5 V  
011 = 2.5 V  
110 = 3 V  
Default = 3.3 V  
010 = 1.8 V  
100 = 2.85 V  
110 = 3.2 V  
111 = 3.3 V  
111 = 3.3 V  
LDO3, ADDRESS = D, ALL BITS R/W  
Bit name  
Function  
LDO3_DISCH  
LDO3_6 SET  
LDO3_5 SET  
LDO3_4 SET  
LDO3_3 SET  
LDO3_2 SET  
LDO3_1 SET  
LDO3_0 SET  
LDO4_0 SET  
LDO5_0 SET  
LDO3 output  
discharge switch  
enable  
LDO3 OUTPUT VOLTAGE SETTING  
When 0  
When 1  
OFF  
ON  
SeeTable 8 for LDO3-5 output voltage setting,  
Power-up default = 1.505 V  
LDO4, ADDRESS = E, ALL BITS R/W  
Bit name  
Function  
LDO4_DISCH  
LDO4_6 SET  
LDO4_5 SET  
LDO4_4 SET  
LDO4_3 SET  
LDO4_2 SET  
LDO4_1 SET  
LDO4 output  
discharge switch  
enable  
LDO4 OUTPUT VOLTAGE SETTING  
When 0  
When 1  
OFF  
ON  
See Table 8 for LDO3-5 output voltage setting,  
Power-up default = 1.811 V  
LDO5, ADDRESS = F, ALL BITS R/W  
Bit name  
Function  
LDO5_DISCH  
LDO5_6 SET  
LDO5_5 SET  
LDO5_4 SET  
LDO5_3 SET  
LDO5_2 SET  
LDO5_1 SET  
LDO5 output  
discharge switch  
enable  
LDO5 OUTPUT VOLTAGE SETTING  
When 0  
When 1  
OFF  
ON  
See Table 8 for LDO3-5 output voltage setting,  
Power-up default = 3.111 V  
GPIO3, ADDRESS = 1C, ALL BITS R/W. NOTE: ONLY BIT B5 CONTROLS LDO-RELATED FUNCTIONALITY  
Bit name  
GPIO3i/O  
GPIO3 LEVEL LDO0 ENABLE  
CHARGE  
_VLTG  
NOT USED GPIO2 _INTSRC GPIO1 _INTSRC GPIO2 _SM2  
Function  
SEE Table 15  
SEE Table 15 LDO0 ON/OFF SEE Table 15  
NOT USED SEE Table 15 SEE Table 15 SEE Table 15  
CONTROL  
When 0  
When 1  
LDO0 OFF  
LDO0 ON  
57  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 8. LDO 3–5 Programming Step Values  
Step  
0
B6–B0  
Vset  
1.224  
1.250  
1.275  
1.301  
1.326  
1.352  
1.377  
1.403  
1.428  
1.454  
1.479  
1.505  
1.530  
1.556  
1.581  
1.607  
1.632  
1.658  
1.683  
1.709  
1.734  
1.760  
1.785  
1.811  
1.836  
1.862  
1.887  
1.913  
1.938  
1.964  
1.989  
2.015  
Step  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
B6–B0  
Vset  
2.040  
2.066  
2.091  
2.117  
2.142  
2.168  
2.193  
2.219  
2.244  
2.270  
2.295  
2.321  
2.346  
2.372  
2.397  
2.423  
2.448  
2.474  
2.499  
2.525  
2.550  
2.576  
2.601  
2.627  
2.652  
2.678  
2.703  
2.729  
2.754  
2.780  
2.805  
2.831  
Step  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
B6–B0  
Vset  
2.015  
2.040  
2.907  
2.933  
2.958  
2.984  
3.009  
3.035  
3.060  
3.086  
3.111  
3.137  
3.162  
3.188  
3.213  
3.239  
3.264  
3.290  
3.315  
3.341  
3.366  
3.392  
3.417  
3.443  
3.468  
3.494  
3.519  
3.545  
3.570  
3.596  
3.621  
3.647  
Step  
96  
B6-B0  
Vset  
2.856  
2.882  
3.723  
3.749  
3.774  
3.800  
3.825  
3.851  
3.876  
3.902  
3.927  
3.953  
3.978  
4.004  
4.029  
4.055  
4.080  
4.106  
4.131  
4.157  
4.182  
4.208  
4.233  
4.259  
4.284  
4.310  
4.335  
4.361  
4.386  
4.412  
4.437  
4.463  
000 0000  
000 0001  
000 0010  
000 0011  
000 0100  
000 0101  
000 0110  
000 0111  
000 1000  
000 1001  
000 1010  
000 1011  
000 1100  
000 1101  
000 1110  
000 1111  
001 0000  
001 0001  
001 0010  
001 0011  
001 0100  
001 0101  
001 0110  
001 0111  
001 1000  
001 1001  
001 1010  
001 1011  
001 1100  
001 1101  
001 1110  
001 1111  
010 0000  
010 0001  
010 0010  
010 0011  
010 0100  
010 0101  
010 0110  
010 0111  
010 1000  
010 1001  
010 1010  
010 1011  
010 1100  
010 1101  
010 1110  
010 1111  
011 0000  
011 0001  
011 0010  
011 0011  
011 0100  
011 0101  
011 0110  
011 0111  
011 1000  
011 1001  
011 1010  
011 1011  
011 1100  
011 1101  
011 1110  
011 1111  
100 0000  
100 0001  
100 0010  
100 0011  
100 0100  
100 0101  
100 0110  
100 0111  
100 1000  
100 1001  
100 1010  
100 1011  
100 1100  
100 1101  
100 1110  
100 1111  
101 0000  
101 0001  
101 0010  
101 0011  
101 0100  
101 0101  
101 0110  
101 0111  
101 1000  
101 1001  
101 1010  
101 1011  
101 1100  
101 1101  
101 1110  
101 1111  
110 0000  
110 0001  
110 0010  
110 0011  
110 0100  
110 0101  
110 0110  
110 0111  
110 1000  
110 1001  
110 1010  
110 1011  
110 1100  
110 1101  
110 1110  
110 1111  
111 0000  
111 0001  
111 0010  
111 0011  
111 0100  
111 0101  
111 0110  
111 0111  
111 1000  
111 1001  
111 1010  
111 1011  
111 1100  
111 1101  
111 1110  
111 1111  
1
97  
2
98  
3
99  
4
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
58  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
FUNCTIONALITY GUIDE — SWITCHED MODE STEP-DOWN CONVERTERS  
BUCK CONVERTERS, I2C PROGRAMMABLE OUTPUT VOLTAGE  
OUTPUT VOLTAGE (V), Set via I2C,  
Separate Settings for Normal or  
Standby Mode  
Supply  
PFM Mode  
Standby  
Mode  
IO Max  
(mA)  
PWM Freq  
and Phase  
SLEW RATE, mV/µS, Set Power Up Default  
via I2C  
Range  
# of Steps  
Min  
Step  
Acc  
(%)  
Range  
# of  
Steps  
Min  
Step  
SM1  
PFM/PWM  
with  
automatic  
mode  
selection or  
PWM only.  
Standby  
mode  
with  
0.6-1.8  
32  
40 mV  
3
600  
600  
1.5MHz, 0°  
0, 0.24  
to 15.36  
8
8
0.24  
OFF, skip mode  
off, PWM only,  
1.24 V(on/sby),  
15.36mV/µS  
distinct  
voltage  
available  
.
Standby  
mode set  
via I2C  
or with  
GPIO pin  
SM2  
Mode of  
operation set  
via I2C  
1.0-3.4  
32  
80mV  
3
1.5MHz,  
0/90/180  
270°, with  
respect to  
SM1, set via  
I2C  
0,  
0.48-  
30.72  
0.48  
OFF, skip mode  
on, PWM/PFM,  
3.32V (on/sby),  
180°, 30.72mV/µS  
TPS65810  
OUT  
V
O(SM1)  
SYNC BUCK  
I2C REGISTERS  
VIN_SM1  
LSM 1  
Operating Mode  
Output Voltage  
Phase Control  
L1  
0.6-1.8 V  
600 mA  
3.3 mH  
C21  
10 mF  
C22  
10 mF  
SM1  
Discharge Control  
PGND1  
P1  
V
O(SM2)  
VIN_SM2  
LSM 2  
Operating Mode  
Output Voltage  
Phase Control  
L2  
1.0-3.4 V  
600 mA  
3.3 mH  
C19  
10 mF  
C20  
10 mF  
SM2  
Discharge Control  
PGND2  
P2  
Figure 40. Required External Components, Recommended Values, External Connections  
STEP-DOWN SWITCHED MODE CONVERTERS: SM1 and SM2  
The TPS65810 has two highly efficient step down synchronous converters. The integration of the power stage  
switching MOSFETs reduces the external component count, and only the external output inductor and filter  
capacitor are required. The integrated power stage supports 100% duty cycle operation. Multiple operation  
modes are available, enabling optimization of the overall system performance under distinct load conditions.  
The converters have two modes of operation: a 1.5 MHz fixed frequency pulse width modulation (PWM) mode at  
moderate to heavy loads, and a pulse frequency modulation (PFM) mode at light loads. The converter output  
voltage is programmable via I2C registers SM1_SET1 and SM2_SET1.  
When the SM1/SM2 converters are disabled an integrated switch automatically discharges the converter output  
capacitor. The discharge switch function can be disabled by setting the control bits DISCHSM1 and DISCHSM2  
to LO, in I2C registers SM1_SET2 and SM2_SET2.  
59  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
TPS65810  
OUT  
EN_PFM  
SM 1 CONVERTER  
DAC  
SM1 OUTPUT  
VOLTAGE SETTING  
VIN_SM1  
PWM CONTROL  
PWMON  
EN_PWM  
GATE  
CONTROL  
LOGIC  
VO(SM1)  
I2C  
3.3 µH  
LSM1  
L1  
REGISTERS  
PFM CONTROL  
I(L1)  
PFMON  
C21  
C22  
10 µF  
10 µF  
PGND1  
I(L1)  
POWER STAGE  
CURRENT COMPARATORS  
+
_
V(VIN_SM1)  
29 Ω  
EN_PFM  
EN_PWM  
EN_ALL  
P1  
RESET  
OUT  
SET  
+
_
V(VIN_SM1)  
SM1 OPERATING  
MODE:  
SM1  
39  
Ω
DCHGON  
CONTROL  
LOGIC  
ON/OFF,  
PWM, PFM, STANDBY  
SM1 DISCHARGE  
SWITCH ENABLE ,  
LOW PFM RIPPLE  
SM1  
SM2 OUTPUT  
VIN_SM2  
VOLTAGE SETTING  
SM2 OPERATING  
MODE:  
VO(SM2)  
3.3 µH  
LSM2  
L2  
ON/OFF,  
PWM, PFM, STANDBY  
SM2 CONVERTER  
SAME TOPOLOGY AS SM1 CONVERTER  
C19  
SM1 DISCHARGE  
SWITCH ENABLE ,  
LOW PFM RIPPLE  
C20  
10 µF  
10 µF  
PGND2  
SM2  
SM1/SM2 PHASE  
CONTROL  
P2  
Figure 41. SM1/SM2 Converter  
The TPS65810 SM1 and SM2 buck converters can be set to operate only in PWM mode or to switch  
automatically between PFM and PWM modes. The average load current is monitored, and the PFM mode is set  
if the average load current is below the threshold IPFM(ENTER). When in PFM mode the load current is also  
monitored, and the PWM mode is set when the load current exceeds the threshold IPFM(LEAVE). The thresholds  
for automatic PFM/PWM switching are calculated as shown in Equation 6 for the SM1 converter, the same  
thresholds apply to the SM2 converter by replacing VIN_SM1 by VIN_SM2:  
V(VIN_SM3)  
V(VIN_SM3)  
I
+
I
+
,
PFM(ENTER)  
PFM(LEAVE)  
39 W  
29 W  
(6)  
The automatic switching mode is enabled via the control bits PFM_SM1 and PFM_SM2 on I2C registers  
SM1_SET1 and SM2_SET1.  
Output Voltage Slew Rate  
I2C registers enable setting the output voltage slew rate, when transitioning from one programmed voltage to a  
new programmed voltage value. These events can be triggered by a new output voltage selection or by  
switching from a low power mode (standby) to a normal operating mode. During a transition, the output voltage  
is stepped from the currently programmed voltage to the new target voltage. The slew rate from the initial  
voltage to the final voltage can be selected using I2C registers, SM1_SET2 and SM2_SET2, ranging from 0.24  
mv/µs to 15.36 mV/µs for the SM1 converter and 0.48 to 30.72 mV/µS for the SM2 converter. If the slew rate is  
set to OFF the output voltage goes from the current value to the programmed value in a single step.  
During the transition to standby mode the Power Good comparators are disabled.  
60  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Soft Start  
SM1 and SM2 have an internal soft start circuit that limits the inrush current during start-up. An initial delay (170  
µsec typ) from the converter enabled command to the converter effectively being operational is required, to  
assure that the internal circuits of the converter are properly biased. At the end of that initial delay the soft start  
is initiated, and the internal compensation capacitor is charged with a low value current source. The soft start  
time is typically 750 µs, with the output voltage ramping from 5% to 95% of the final target value.  
Dropout Operation at 100% Duty Cycle  
The TPS65810 buck converters offer a low input to output voltage difference while still maintaining operation  
when the duty cycle is set to 100%. In this mode of operation the P-channel switch is constantly turned on,  
enabling operation with a low input voltage. The dropout operation starts if:  
V(VIN_SM1) v V(SM1) ) I(L1)ǒR  
) R Ǔ  
DSON(PSM1)  
L
(7)  
Where:  
I(L1) = Output current plus inductor ripple current.  
RL = DC resistance of the inductor  
Equation 7 can be also used for the SM2 converter, replacing SM1 by SM2 and L1 by L2.  
Output Voltage Monitoring  
The output voltage of converters SM1 and SM2 is monitored by internal comparators, and an output low voltage  
condition is detected when the output voltage is below 90% of the programmed value. The power good status  
for SM1 and SM2 is accessible via I2C, see interrupt controller section for more details.  
The power good comparators for SM1 and SM2 are disabled during the transition to standby mode operation.  
They are enabled when the transition to standby mode is complete.  
Standby Mode  
Using the I2C SM1 and SM2 can be set in stand-by mode. In STANDBY mode the PFM operation mode is set  
and the output voltage is defined by I2C registers SM1_STANDBYand SM2_STANDBY, and it can be set to a  
value different than the normal mode output regulation voltage. The standby mode can also be set by the GPIO  
pins, if those are configured as control pins that define the SM1/SM2 operating mode.  
PWM Operation  
During PWM operation the converters use a fast response voltage mode controller scheme with input voltage  
feed-forward, enabling the use of small ceramic input and output capacitors. At the beginning of each clock cycle  
the P-channel MOSFET switch is turned on, and the oscillator starts the voltage ramp. The inductor current  
ramps up until the ramp voltage reaches the error amplifier output voltage, when the comparator trips and the  
p-channel MOSFET switch is turned off. Internal adaptative break-before-make circuits turn on the integrated  
n-channel MOSFET switch after an internal, fixed dead-time delay, and the inductor current ramps down, until  
the next cycle is started. When the next cycle starts the ramp voltage is reset to its low value and the p-channel  
MOSFET switch is turned on again.  
61  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
PWM CONTROL SECTION  
(SHOWN FOR SM1, SAME TOPOLOGY FOR SM2)  
ERROR AMP WITH “TYPE-3  
LIKE” COMPENSATION  
OUT  
_
VIN_SM1  
OUTPUT  
VOLTAGE  
SETTING  
+
V
GATE  
CONTROL  
LOGIC  
O(SM1)  
3.3 mH  
+
_
L1  
LSM1  
OSC  
(L1)  
RAMP PEAK-TO-PEAK VOLTAGE  
PROPORTIONAL TO VIN_SM1  
C21  
10 mF  
C22  
10 mF  
PGND1  
SM1  
Figure 42. PWM Operation  
The integrated power MOSFETs current is monitored at all times and the power MOSFET is turned off if its  
internal short circuit current limit is reached.  
Phase Control in PWM Mode  
The SM1 and SM2 converters operate synchronized to each other when both are in PWM mode, with converter  
SM1 as the master. I2C control register bits S1S2PHASE in register SM1_SET2 enables delaying the SM2 PWM  
clock with respect to SM1 PWM clock, selecting a phase shift from 0 to 270 degrees. The out-of-phase operation  
reduces the average current at the input node, enabling use of smaller input filter capacitors when both  
converters are connected to the same input supply.  
PFM Mode Operation  
Using the I2C interface the SM1 and SM2 converters can have the automatic power saving PFM mode enabled.  
When the PFM mode is set the switching frequency is reduced and the internal bias currents are decreased,  
optimizing the converter efficiency under light load conditions.  
In PFM mode, the output voltage is monitored by a voltage comparator, which regulates the output voltage to  
the programmed value, VO(SM1). If the output voltage is below VO(SM1), the PFM control circuit turns on the power  
stage, applying a burst of pulses to increase the output voltage. When the output voltage exceeds the target  
regulation voltage, VO(SM1), the power stage is disabled, and the output voltage drops until it is below the  
regulation voltage target, when the power stage is enabled again.  
62  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
OUT  
VIN_SM1  
PFM CONTROL SECTION  
(SHOWN FOR SM1, SAME TOPOLOGY FOR SM2)  
GATE  
CONTROL  
LOGIC  
V
O(SM1)  
3.3 mH  
L
1
LSM1  
I(L1)  
C22  
10 mF  
OUTPUT VOLTAGE  
COMPARATOR  
C21  
10 mF  
POWER STAGE PEAK  
CURRENT COMPARATORS  
_
PGND1  
I(L1)  
-
_
V
O(SM1)  
V(VIN_SM1)  
29 W  
+
RESET  
P1  
+
OUT  
SET  
BIAS CONTROL  
+
_
V(VIN_SM1)  
39 W  
SM1  
Figure 43. PFM Mode Operation  
During burst operation two current comparators control the power stage integrated MOSFETs. These  
comparators monitor the instantaneous inductor current and compare it to the internal thresholds IPFM(ENTER) and  
IPFM(LEAVE), turning the p-channel switch on if the inductor current is less than IPFM(LEAVE) and turning it off if the  
inductor current exceeds IPFM(ENTER). The n-channel switch is turned on when the p-channel MOSFET is off.  
The PFM output voltage comparator quiescent current may be reduced using the I2C register bits PFM_RPL1  
and PFM_RPL2 in registers SM1_SET and SM2_SET. The voltage comparator quiescent current is reduced if  
PFM_RPL1 and PFM_RPL2 bits are set to LO, and the comparator response time (tCOMP, see Figure 44)  
increases. A reduction in quiescent current increases the converter efficiency at light loads, at the expense of a  
larger output voltage ripple when in PFM mode.  
The ripple is minimized if PFM_RPL1 and PFM_RPL2 bits are set to HI, at the expense of reduced efficiency  
under light loads. The operation under low and high ripple settings is described in Figure 44.  
T
COMP  
T
COMP  
T
COMP  
T
COMP  
V(OUT)  
OUTPUT  
VOLTAGE  
IPFM(ENTER)  
IPFM(LEAVE)  
INDUCTOR  
BURST  
BURST  
CURRENT  
MAXIMUM EFFICIENCY  
PFM OPERATION  
LOW RIPPLE  
PFM OPERATION  
Figure 44. PFM mode operation waveforms  
When a burst of pulses is generated, the PFM current comparators control the power-stage MOSFETs to limit  
the inductor current to a value between the thresholds IPFM(LEAVE) and IPFM(ENTER). The number of pulses in a  
burst cycle is proportional to the load current, and the average current is always below IPFM(LEAVE) once PFM  
operation is set. The typical burst operation in PFM mode is shown in Figure 45.  
63  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
BURST  
V(OUT)  
I
PFM(ENTER)  
INDUCTOR CURRENT  
I
PFM(LEAVE)  
I
PFM(LEAVE)  
LOAD CURRENT  
Figure 45. Typical Burst Operation in PFM Mode  
The PFM operation is disabled and PWM operation set if one of the following events happen during PFM  
operation:  
1. The total burst operation time exceeds 10 µs, typ.  
2. The output voltage falls below 2% of the target regulation voltage.  
The PFM mode can be disabled through the serial interface to force the individual converters to stay in fixed  
frequency PWM mode.  
64  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
SWITCHED-MODE STEP-DOWN CONVERTERS — I2C REGISTERS  
The I2C registers that control buck converter-related functions are shown below. The HEX address for each  
register is shown by the register name, together with the R or W functionality for the register bits. Shaded values  
indicate default initial power-up values.  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SM1_SET1, ADDRESS=10, ALL BITS R/W  
Bit name  
Function  
SM1 EN  
PFM_RPL1  
PFM_SM1  
SetV4_SM1  
SetV3_SM1  
SetV2_SM1  
SetV1_SM1  
SetV0_SM1  
SM1 ON/OFF  
CONTROL  
SM1 PFM  
FUNCTION  
OPERATION  
SM1 PFM  
MODE ON/OFF  
CTRL  
SM1 OUTPUT VOLTAGE REGULATION VALUE, STANDBY MODE NOT SET  
When 0  
When 1  
OFF  
ON  
MAXIMIZE  
EFFICIENCY  
PWM/PFM  
See Table 9 for SM1, SM2 voltage setting, Power up default=1.24 V  
MINIMIZE  
OUTPUT  
RIPPLE  
Only PWM  
SM1_SET2, ADDRESS=11, ALL BITS R/W  
Bit name  
NOT USED  
STANDBY_SM  
1
DISCHSM1  
S1S2PHASE_1 S1S2PHASE_0 SLEWSM1_2  
SLEWSM1_1  
SLEWSM1_0  
Function  
NOT USED  
SM1 STANDBY  
MODE ON  
SM1 output  
discharge  
switch enable  
SM2 PWM CLOCK DELAY,  
WITH RESPECT TO SM1 PWM  
CLOCK  
SM1 OUTPUT SLEW RATE SETTING  
When 0  
When 1  
NOT USED  
NOT USED  
OFF  
ON  
OFF  
ON  
00 = 0°  
01 = 90°  
10 = 180°  
11 = 270°  
Default = 180° IMMEDIATE  
Unit: mV/µs  
000 = 0.24 010 = 0.96 100 = 5.84 110 = 15.36  
001 = 0.48 011 = 1.92 101 = 7.68 111 =  
Default= 15.36  
SM1_STANDBY, ADDRESS=12, B4-B0 R/W, B7-B5 READ ONLY  
Bit name  
Function  
GPIO3LVL  
GPIO2LVL  
GPIO1LVL  
SetV4_SM1SL SetV3_SM1SL SetV2_SM1SL SetV1_SM1SL SetV0_SM1SL  
SM1 OUTPUT VOLTAGE REGULATION VALUE, STANDBY MODE SET  
GPIO3 pin logic GPIO2 pin logic GPIO1 pin logic  
level  
LO  
HI  
level  
LO  
HI  
level  
LO  
HI  
When 0  
When 1  
See Table 9 for SM1, SM2 voltage setting, Power-up default = 1.24 V  
SM2_SET1, ADDRESS=13, ALL REGISTER BITS R/W  
Bit name  
Function  
SM2 EN  
PFM_RPL2  
PFM_SM2  
SetV4_SM2  
SetV3_SM2  
SetV2_SM2  
SetV1_SM2  
SetV0_SM2  
SM2 ON/OFF  
CONTROL  
SM2 PFM  
FUNCTION  
OPERATION  
SM2 PFM  
MODE ON/OFF  
CTRL  
SM2 OUTPUT VOLTAGE REGULATION VALUE, STANDBY MODE NOT SET  
When 0  
When 1  
OFF  
ON  
MAXIMIZE  
EFFICIENCY  
PWM/PFM  
See Table 9 for SM1, SM2 voltage setting, Power-up default = 3.32 V  
MINIMIZE  
OUTPUT  
RIPPLE  
ONLY PWM  
SM2_SET2, ADDRESS=14, ALL REGISTER BITS R/W  
Bit name  
NOT USED  
STANDBY_SM  
2
DISCHSM2  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
SLEWSM2_2  
SLEWSM2_1  
SLEWSM2_0  
Function  
NOT USED  
SM2 STANDBY  
MODE ON  
SM2 output  
discharge  
SM2 OUTPUT SLEW RATE SETTING  
switch enable  
When 0  
When 1  
NOT USED  
NOT USED  
OFF  
ON  
OFF  
ON  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
000 = 0.48 010 = 1.92 100 = 7.68  
110 = 30.72 001 = 0.096 011 = 3.84  
101 = 15.36 111 = IMMEDIATE  
Unit: mV/µs  
Default = 30.72  
SM2_STANDBY, ADDRESS=15, ALL REGISTER BITS R/W  
Bit name  
Function  
When 0  
When 1  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
SetV4_SM2SL SetV3_SM2SL SetV2_SM2SL SetV1_SM2SL SetV0_SM2SL  
SM1 OUTPUT VOLTAGE REGULATION VALUE, STANDBY MODE SET  
See Table 9 for SM1, SM2 voltage setting, Power up default=3.32 V  
65  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 9. Programmable Settings for SM1 and SM2 (Including STANDBY)  
SetV4_  
SM  
SetV3_  
SM  
SetV2_  
SM  
SetV1_  
SM  
SetV0_  
SM  
Vset SM1 Vset SM2  
SetV4_  
SM  
SetV3_  
SM  
SetV2_  
SM  
SetV1_  
SM  
SetV0_  
SM  
Vset SM1 Vset SM2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.24  
1.28  
1.32  
1.36  
1.4  
2.28  
2.36  
2.44  
2.52  
2.6  
0.64  
0.68  
0.72  
0.76  
0.8  
1.08  
1.16  
1.24  
1.32  
1.4  
1.44  
1.48  
1.52  
1.56  
1.6  
2.68  
2.76  
2.84  
2.92  
3
0.84  
0.88  
0.92  
0.96  
1
1.48  
1.56  
1.64  
1.72  
1.8  
1.64  
1.68  
1.72  
1.76  
1.8  
3.08  
3.16  
3.24  
3.32  
3.4  
1.04  
1.08  
1.12  
1.16  
1.2  
1.88  
1.96  
2.04  
2.12  
2.2  
0.6  
1
A
SM1, SM2 PHASE  
S1S2_PHASE1 S1S2_PHASE0  
SMX_SLEW RATE, SMX = SM1 OR SM2  
SM1  
SM2  
mV/µs  
PHASE  
SLEWX_2  
SLEWX_1  
SLEWX_0  
mV/µs  
0
0
1
1
0
1
0
1
0°  
90°  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.24  
0.48  
0.48  
0.96  
180°  
270°  
0.96  
1.92  
1.92  
3.84  
3.84  
7.68  
7.68  
15.36  
30.72  
15.36  
Immediate  
66  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
FUNCTIONALITY GUIDE – ANALOG TO DIGITAL CONVERTER  
10 BIT SUCCESSIVE APPROXIMATION ADC  
ADC Input Channels  
Trigger Mode  
Conversion  
Count  
Converter Mode  
Trigger Delay  
Wait Time, Multiple  
Conversions  
Power Up  
Default  
Internal  
External  
Range  
Min Step  
GPIB, I2C  
driven, Repeat  
Charge  
Current,  
ANLG1 and  
ANLG2  
voltages  
1, 4, 8, 16, 32, Single, Average,  
0-750 µs,  
16 steps  
50 µs  
µs: 20, 40, 60, 80, 160,  
ADC off  
64, 128, 256  
Find max value,  
Find min value  
240, 320, 640  
Thermistor  
temperature,  
IC junction  
temperature,  
RTC_OUT  
voltage, OUT  
voltage,  
ms: 1.28, 1.92, 2.56,  
5.12, 10.24, 15.36, 20.48  
Battery  
voltage  
Selectable via I2C  
Fixed  
internally  
Selectable via Selectable via  
I2C I2C  
Selectable via  
I2C  
Selectable via  
I2C  
Selectable  
via I2C  
Selectable  
via I2C  
SYSTEM POWER BUS  
OUT  
6 INTERNAL  
CHANNELS  
ADC  
ANLG1  
ANLG2  
EXTERNAL ANALOG  
INPUT VOLTAGE  
8 CHANNEL  
MUX  
ADC  
CONTROL  
LOGIC  
ADC _REF  
A/D  
CONVERTER  
C17  
4.7 mF  
AGND 2  
A 2  
A 2  
Figure 46. Required External Components, Recommended Values, External Connections  
ANALOG-TO-DIGITAL CONVERTER  
Overview  
The TPS65810 has a 10 bit integrated successive approximation A/D, capable of running A/D conversions on  
eight distinct channels in a variety of modes. Two of the eight channels are connected to uncommitted pins  
ANLG1 and ANLG2, and can be used to convert external voltages. The other six channels monitor system  
parameters which are critical to the overall system monitoring. The channel selection is set via I2C.  
A dedicated set of I2C registers enables configuration of the ADC to perform a conversion cycle with either a  
single conversion or a multiple conversions. The ALU generates a data set containing maximum value detection,  
minimum value detection and average value calculation for each conversion cycle. Each cycle can be performed  
a single time or multiple times.  
Input Channels  
The following channels are available for selection via the I2C register ADC_SET bits CHSEL_SET bits:  
67  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 10. ADC input channel overview  
Channel Connection  
Parameter Sampled  
Voltage Range Under  
Normal Operating  
Conditions  
Special Features  
Full Scale Reading  
(Internal reference  
selected )  
LSB  
value  
CH1  
CH2  
ANLG1 pin User defined  
User defined  
Internal pullup current  
source programmable  
via I2C: 0/ 10/50/60  
µA  
2.535 V  
2.535 V  
Full scale  
reading  
÷ 1023  
ANLG2 pin  
CH3  
CH4  
ISET1 pin  
TS pin  
Voltage proportional to  
charge current  
0 V (charger off) to  
2.525 V (fast charge)  
2.535 V  
2.535 V  
Voltage proportional to pack 0 V (short) to 4.7V (no  
temperature  
No internal pullup  
current, use external  
pullup resistor to bias  
pack thermistor  
thermistor)  
CH5  
CH6  
Internal  
junction  
temperature  
Voltage proportional to IC  
junction temperature  
1.85 V at TJ = 25°C,  
–6.5 mV/°C slope typ  
2.535 V  
4.7 V  
RTC_OUT  
pin  
Internal LDO output voltage 0 V to 3.3 V  
CH7  
CH8  
OUT pin  
BAT pin  
System Power bus voltage  
0 V to 4.4 V  
0 V to 4.4 V  
4.7 V  
4.7 V  
Battery pack positive  
terminal voltage  
FUNCTIONAL OVERVIEW  
The TPS65810 ADC can be subdivided in four sections:  
1. Input selection: The input selection section has two major blocks, the input bias control and an 8  
channel MUX. The input bias control provides the bias currents that are applied to pins ANLG1 and  
ANLG2. The bias currents for pins ANLG1 and ANLG2 are set on I2C register ADC_WAIT.  
The ANLG1 pin current source is automatically enabled when the input power is detected, providing the  
required setup to measure a battery ID resistor (ANLG1 pin). ANLG1 and ANLG2 can be used to  
measure external resistive loads or analog voltages. The bias current sources are always connected to  
the OUT pin internally.  
The internal MUX connects one of the monitored analog inputs to the ADC engine, following the selection  
defined on register ADC_SET.  
2. ADC engine: The ADC engine uses an internal or external voltage reference, as defined by the  
ADC_REF bit on the ADC_SET control register. If the internal reference is selected ADC_REF is  
connected to an internal LDO that regulates the ADC_REF pin voltage to generate the ADC supply and  
internal voltage reference. The internal LDO maximum output current is 6 mA typical, and a conversion  
should be started only after the external capacitor is fully charged.  
If an external reference is used it should be connected to the ADC_REF pin. When an external reference  
is selected the internal LDO connected to ADC_REF is disabled. Care must be taken when selecting an  
external reference as the ADC reference voltage, as it affects the ADC LSB absolute value.  
3. Trigger control and synchronization: The ADC engine starts a conversion of the selected input when  
the trigger control circuit sends a start command. The trigger control circuit starts the ADC conversion and  
transfers the ADC output data to the arithmetic logic unit (ALU) at the end of the conversion. It also  
synchronizes the data transfer from the ALU to the I2C ADC_READING register at the end of a  
conversion cycle, and generates the ADC status information sent to the ADC registers.  
An ADC engine conversion is triggered by the TPS65810 trigger control circuit using either an internal  
trigger or an external trigger. The internal trigger is automatically generated by the TPS65810 at the end  
of each ADC engine conversion, following the timing parameters set on I2C registers ADC_SET,  
ADC_DELAY and ADC_WAIT.  
The GPIO3 pin can be used as an external trigger if the bit ADC_TRG_GPIO3 is set HI, in the I2C register  
ADC_DELAY. In the external trigger mode a new conversion is started after the GPIO3 pin has an edge  
transition, following the timing parameters set on I2C registers ADC_SET, ADC_DELAY and ADC_WAIT.  
68  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
4. Arithmetic Logic Unit (ALU): The ALU performs mathematical operations on the ADC output data as  
defined by the I2C ADC_READING registers. It executes average calculations or minimum /maximum  
detection. The result of the calculations is stored in a 11 bit accumulator register (1 bit allocated for  
carry-over). The accumulator value is transferred to the I2C data register at the end of a conversion cycle.  
A simplified block diagram for the ADC is shown in Figure 47.  
TPS65810  
ADC SUPPLY  
ANLG 1/  
AND  
ANLG 2 BIAS  
SELECTION  
REFERENCE  
SELECTION  
I2C  
OUT  
ADC REFERENCE  
ADC_REF  
BIAS CONTROL  
AND SUPPLY  
SELECTION  
4.7 mF  
SUPPLY  
REF  
ANLG1  
ANLG2  
ISET1  
10 BIT SUCCESSIVE  
APROXIMATION ADC  
CURRENT SAMPLE  
A 2  
START DONE  
TS  
8 CHANNEL  
MUX  
ARITHMETIC LOGIC  
UNIT  
T
J
RTC_OUT  
OUT  
TRIGGER CONTROL  
AND  
ACCUMULATOR  
BAT  
SYNCHRONIZATION  
ADC CONFIGURATION :  
TRIGGER, HOLDOFF, REPEAT  
MODES  
ALU MODE :  
TO I2C:  
STATUS AND  
CONVERSION  
DATA  
ADC  
SINGLE,  
AVERAGE ,  
MIN,, MAX  
CHANNEL  
SELECTION  
DELAY AND WAIT TIMING  
I2C  
Figure 47. ADC Simplified Block Diagram  
ADC Conversion Cycle  
A conversion cycle includes all the steps required to successfully sample the selected input signal and transfer  
the converted data to the I2C, generating an interrupt request to the host ( pin: HILO). The number of  
individual conversions (samples) in a conversion cycle is defined by the I2C ADC_SET register bits  
READ_MODE settings, and can range from a single sample to 256 samples. The conversion cycle settings for  
the ALU is defined by register ADC_READING and it can be set to average, maximum value detection, minimum  
value detection or no processing (ADC engine output loaded in the accumulator directly).  
The conversion cycle starts with the first sampling and ends when:  
The required ALU operations are performed on the final sample, and  
The ALU accumulator data is transferred to the I2C ADC_READING register, and  
The register bit ADC_STATUS in the ADC_READING register is set to LO.  
A conversion cycle is always started by the external host when the ADC_EN bit in the ADC_SET register is  
toggled from LO to HI by a I2C write operation. Resetting the ADC_EN bit to LO before the current conversion  
cycle ends (INT: LO HI, ADC_STATUS bit set to LO) is not recommended, as the ADC keeps its current  
configuration until the current conversion cycle ends.  
At the end of a conversion cycle the output data is stored at registers in the ALU block. The ADC_STATUS bit is  
set to LO ( DONE ) and an interrupt is generated (INT pin: HILO ) if the ADC_STATUS bit is unmasked, at the  
interrupt masking registers INT_MASK. It should be noted that the minimum, maximum and average values are  
ALWAYS calculated by the ALU for each conversion cycle.  
69  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
The value loaded in the I2C registers ADC READING_HI and ADC READING_LO at the end of a conversion  
cycle is defined by control bits ADC_READ0 and ADC_READ1 in register ADC READING_HI. The average,  
minimum, maximum, and last-sample values for a conversion cycle can be read if the external host executes an  
I2C write operation, changing the values of bits ADC_READ0 and ADC_READ1, followed by an I2C read  
operation on registers ADC READING_HI and ADC READING_LO. The minimum, maximum, average, and last  
values have the same value if a conversion cycle with only one sample is executed.  
The ADC_READ0 and ADC_READ1 bits can not be modified during the execution of a conversion cycle. A new  
conversion cycle should be started only after the current conversion cycle is completed, by toggling the ADC_EN  
bit from HI to LO and HI again.  
External Trigger Operation  
The trigger control circuit can be programmed to use an external signal to start a conversion. The TPS65810  
GPIO3 input is configurable as an ADC trigger, with ADC conversion starting on either a rising edge or falling  
edge. When using an external trigger the trigger delay, trigger wait time delay and trigger hold-off mode can be  
programmed using I2C registers.  
The procedure to start an externally-triggered conversion cycle has the following steps:  
1. Verify that the current conversion cycle has ended (ADC_STATUS=LO, I2C register ADC_READING_HI)  
2. Set ADC_EN=LO  
3. Configure ADC sampling mode, ALU mode, trigger parameters, etc.  
4. Set ADC_EN=HI  
After step 4 the ADC is armed, waiting for an external trigger detection to start a conversion cycle. Similarly to  
the non-triggered mode, the ADC configuration should not be modified until the current conversion cycle ends.  
Note that in the external trigger mode the current cycle does not end if the converter is armed and an external  
trigger is not detected.  
Detecting an External Trigger Event  
An external trigger event is detected when the GPIO3 input has an edge that matches the edge detection  
programmed in the EDGE bit, at the I2C register ADC_DELAY. The internal ADC trigger can be delayed with  
respect to the external trigger signal edge. The delay time value is set by the ADC_DELAY register bits  
DELAY_n, and can range from 0 µs (no delay) to 750 µsec. A conversion is started only if the external trigger  
remains at its active level when the delay time expires, as shown in Figure 48. In a positive-edge detection the  
active trigger level is HI; in a negative-edge detection the active trigger level is LO.  
GPIO 3  
INTERNAL ADC  
CONVERSION START  
CONVERTER  
MODE  
CONVERTING  
ARMED  
T
T
DLY(TRG)  
DLY(TRG)  
Figure 48. ADC Conversion Triggered by GPIO3 Positive Edge Triggered Active Level Hi  
Executing Multiple-Sample Cycles With an External Trigger  
When executing conversion cycles that require multiple samples it may be desirable to synchronize the input  
signal conversion using either an external trigger that has a periodic repetition rate or an external asynchronous  
trigger that indicates when the external input signal being converted is valid. The TPS65810 has additional  
operating modes and timing parameters that can be programmed using the I2C to configure multiple sample  
conversion cycles.  
In multiple sample cycles the host can select the wait time between samples using the bits WAITn in the  
ADC_WAIT register to set the wait time between samples. The wait time is measured between the end of a  
conversion and the start of a new conversion.  
70  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
With the default power-up settings (HOLDOFF=LO, ADC_DELAY register), the TPS65810 executes a  
multiple-sample conversion cycle if the first sample is taken when the trigger is at its active level. Subsequent  
samples are converted at the end of the wait time, even if the trigger returns to the non-active level. The external  
trigger level edge is ignored until the current conversion cycle ends.  
CONVERSION CYCLE  
GPIO 3  
ON  
INTERNAL ADC  
OFF  
CONVERSION STATUS  
tDLY(TRG  
tWAIT(TRG)  
)
LAST  
SAMPLE  
FIRST  
SAMPLE  
Figure 49. ADC Conversion Triggered by GPIO3 Positive Edge Triggered Active Level Hi, Holdoff = LC  
If the sample conversion needs to be synchronized with an external trigger, during multiple sample conversion  
cycles, the control bit HOLDOFF should be set to HI. When the holdoff mode is active, the internal trigger starts  
a sample conversion only if the external trigger was detected and is at its active level at the end of the wait time,  
as shown in Figure 50.  
CONVERSION CYCLE  
GPIO 3  
ON  
INTERNAL ADC  
OFF  
CONVERSION STATUS  
T
T
DLY(TRG)  
DLY(TRG)  
T
WAIT(TRG)  
LAST  
SAMPLE  
FIRST  
SAMPLE  
Figure 50. ADC Conversion Triggered by GPIO3 Positive Edge Triggered Active Level HI,  
Holdoff = HI, Four Sample Cycles  
When the multiple sample cycles are executed the host must configure the maximum and minimum limits for the  
ADC output using registers DLOLIM1, DLOLIM2, DHILIM1 and DHILIM2. A conversion cycle ends if any  
individual conversion result exceeds the maximum limit value or is below the minimum limit value. When an out  
of limit conversion is detected an interrupt is sent to the host, and the ADC_STATUS bit on register ADC  
READING_HI is set to DONE.  
Continuous Conversion Operation (Repeat Mode)  
The TPS65810 ADC can be set to operate in a continuous conversion mode, with back-to-back conversion  
cycles executed. The REPEAT mode is targeted at applications where an input is continuously monitored for a  
period of time, and the host must be informed if the monitored input is out of the range set by I2C registers  
DLOLIM1, DLOLIM2, DHILIM1 and DHILIM2. In REPEAT mode each conversion is started when the ADC  
trigger (internal or external) is detected, and a new conversion cycle is started when the current conversion cycle  
ends. All the trigger and sampling modes available for normal conversion cycles are available in repeat mode.  
Executing I2C read operations to get the ADC readings for average, minimum, maximum and last sample values  
is possible in REPEAT mode. However, this is not a recommended operation, as the REPEAT mode does not  
generate a DONE status flag making it difficult to synchronize the ADC data reading to the end of a conversion  
cycle.  
The recommended use of the REPEAT mode is:  
1. Configure the ADC conversion cycle: trigger mode, sample mode, select input signal, etc.  
2. Configure the HI and LO limits for the ADC readings  
3. Set the ADC_DELAY register bit REPEAT to HI  
4. Toggle ADC_DELAY register bit ADC_EN bit from LO to HI  
71  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
5. Monitor the INT pin. An interrupt triggered by ADC_STATUS=LO indicates that the selected input signal is  
out of range  
To exit the continuous mode the host must follow the steps below, if external trigger mode was set:  
1. Exit external trigger mode  
2. Set REPEAT bit to LO, effectively terminating the repeat mode. This generates an additional conversion;  
at the end of this conversion the ADC is ready for a new configuration.  
3. Set ADC_EN to LO after on-going conversion ends.  
To exit the continuous mode the host must follow the steps below, if internal trigger mode was set:  
1. Set REPEAT bit to LO, effectively terminating the repeat mode.  
2. Set ADC_EN to LO, after on-going conversion ends  
ADC Input Signal Range Setting  
The registers DHILIMn and DLOLIMn can be used by the host to set maximum and minimum limits for the DAC  
engine output. At the end of each conversion the ADC output is checked for the maximum and minimum limits,  
and a status flag is set if the converted data exceeds the high limit or is under the low limit. In multiple sample  
operation the converted data range is checked when all programmed samples have been converted.  
The host can mask or unmask interrupts caused by the ADC range status bits using the INT_MASKn registers.  
72  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ADC State Machine  
The ADC state machine with all the trigger and operation modes is shown in Figure 51.  
HOST STARTS NEW  
CONVERSION  
CYCLE BY SETTING  
ADC  
ENABLED  
(I2C) ?  
NO  
ADC_EN=HI  
TPS  
EXTERNAL  
TRIGGER  
65810READY  
FOR NEW  
YES  
CONVERSION  
CYCLE  
NO,  
ADC+EN=LO,  
NEED TO  
RECONFIGURE  
ADC  
PARAMETERS  
TRIGGER  
EDGE  
DETECT  
NO  
YES  
LOAD ADC  
CONFIGURATION  
DATA FROM I2C  
START TRIGGER  
DELAY  
TRIGGER MODE,  
TRIGGER DELAY  
SAMPLE WAIT TIME,  
HOLDOFF MODE  
REPEAT ON/OFF  
TRIGGER  
DELAY  
NO  
ALU MODE : AVG/MAX/MIN  
NUMBER OF SAMPLES  
ADC INPUT RANGE  
ADC CHANNEL  
OVER  
FALLING  
EDGE  
TRIGGER  
EDGE  
MODE  
NO, OPPOSITE  
TRIGGER EDGE  
HAPPENED  
BEFORE DELAY  
TIME  
RISING  
EDGE  
TRIGGER  
VALID  
I2C WRITE OPERATION  
CONFIGURES NEXT  
CONVERSION CYCLE  
ADC_EN=LO  
YES  
NO  
TRIGGER  
HI  
ALU  
RESET  
NO, HOST ENDS  
CURRENT  
CONVERSION  
CYCLE SETTING  
ADC_EN=LO  
NO  
TRIGGER  
LO  
HOLDOFF  
ON  
YES, CURRENT  
YES, CHECK  
TRIGGER  
CONVERSION  
CYCLE STILL  
ACTIVE,  
ADC  
ENABLED  
(I2C) ?  
NO  
ADC_EN = HI  
1) SET ADC  
BUSY STATUS  
2) START  
CONVERSION  
YES  
NO,SEND  
DATA  
TO I2C  
ADC  
ENABLED  
(I2C) ?  
ADC CONVERSION  
COMPLETE  
1) LOAD DATA IN  
ALU  
2) ALU OUTPUT  
WAIT TIME  
0 µs to20.5 msec  
STORED IN  
ACCUMULATOR  
ALU OUTPUT  
DATA READY  
YES  
) LOAD I2C DATA  
REGISTER WITH  
ALU DATA  
1
NO,SEND  
DATA  
TO I2C  
ALU  
N
NO  
NO  
REPEAT  
MODE  
2) SET ADC STATUS  
TO DONE  
DATA OUT OF  
RANGE  
CONVERSIONS  
?
3) INT SENT TO HOST  
IF NON-MASKED  
YES FAULT  
DETECTED  
YES  
NTH  
NO  
1) SET ADC_HI OR  
ADC_LO FAULT  
2) SET ADC STATUS  
TO DONE  
CONVERSION  
DONE  
YES  
CURRENT  
CYCLE ENDS  
3) INT SENT TO HOST  
IF NON-MASKED  
Figure 51. Trigger and Operation Modes for the ADC State Machine  
BATTERY DETECTION CIRCUIT  
The ANLG1 pin has an internal current source connected between OUT and ANLG1, which is automatically  
turned on when the OUT pin voltage exceeds the minimum system voltage set by the SYS_IN pin external  
resistive divider. The current levels for ANLG1 pin can be programmed via I2C register ADC_WAIT, bits  
BATID_n. An integrated switch discharges the BAT pin to AGND1 when V(ANLG1)> V(OUT) – V(NOBATID)  
,
enabling implementation of a battery removal function if an external pack resistor ID is connected between  
ANLG1 and ground.  
The ANLG1 pin may be used to monitor other parameters than a pack ID resistor. When ANLG1 pin is used as  
a generic ADC analog input V(ANLG1) should never exceed V(OUT) – V(NOBATID), to avoid undesired battery  
discharge caused by activation of the battery pin discharge circuit.  
73  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
ADC – I2C REGISTERS  
The I2C registers that control ADC-related functions are shown below. The HEX address for each register is  
shown by the register name, together with the R or W functionality for the register bits. Default, initial power-up  
values are shown in bold. In the timing equations, replace Bn with 1 for HI state, and 0 for LO state.  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ADC_SET, ADDRESS=1E, ALL BITS R/W  
Bit Name  
Function  
ADC_ENABLE  
ADC_REF_EN CHSEL2_SET CHSEL1_SET CHSEL0_SET READ_MODE2 READ_MODE1 READ_MODE0  
ADC ON/OFF  
CONTROL  
ADC  
ADC CHANNEL SELECTION  
ADC SAMPLING SETTINGS  
REFERENCE  
SELECTION  
When 0  
When 1  
OFF  
ON  
Internal  
External  
000 = ANLG1  
001 = ANLG2  
010 = V(ISET1) 101 =  
V(RTC_OUT)  
011 = V(TS)  
100 = Tj  
110 = V(OUT)  
000 = 1  
001= 4  
010 = 8  
011 = 16  
100 = 32  
101 = 64  
110 = 128  
111 = 256  
Default = 1  
111 = V(BAT)  
Default =  
ANLG1  
ADC READING_HI, ADDRESS=1F, BITS B3/B4 R/W, ALL OTHER BITS READ ONLY  
Bit Name  
Function  
ADC_STATUS  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
ADC_READ1  
ADC_READ0  
D10  
D9_MSB  
D8  
CURRENT  
CONVERSION  
STATUS  
ALU OUTPUT DATA  
ADC  
AVERAGE  
CARRYOVER  
BIT  
ADC CONVERSION OUTPUT  
BITS  
SELECTION  
When 0  
When 1  
DONE  
BUSY  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
00=LAST 10 = MAXIMUM  
01=AVERAGE 11 = MINIMUM  
Default= LAST  
VALID ONLY AFTER ADC  
CONVERSION ENDS SEE  
ADC_READING_LO  
ADC READING_LO, ADDRESS=20, READ ONLY  
Bit Name  
Function  
Value  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0_LSB  
ADC CONVERSION OUTPUT BITS, VALID ONLY AFTER ADC CONVERSION ENDS  
VALUE=[B10*512 + B9*256 + B8*128 + B7*64 + B6*32 + B5*16 + B4*8 + B3*4 + B2*2 + B1] * [ VRNG(CHn) / 1023]; Unit=Volts,  
The LSB bit value is proportional to the ADC reference voltage - See VRNG(CHn) in electrical parameters  
DHILIM1, ADDRESS=21, ALL BITS R/W  
Bit Name  
Function  
NOT USED  
NOT USED  
NOT USED  
RESERVED  
NOT USED  
NOT USED  
DHILIM10  
DHILIM9  
DHILIM8  
ADC MAX INPUT LIMIT RANGE SETTING (3  
MSBs)  
DHILIM2, ADDRESS=22, ALL BITS R/W  
Bit Name  
Function  
DHILIM7  
DHILIM6  
DHILIM5  
DHILIM4  
DHILIM3  
DHILIM2  
DHILIM1  
DHILIM0_LSB  
ADC MAX INPUT LIMIT RANGE SETTING (8 LSBs)  
DLOLIM1, ADDRESS=23, ALL BITS R/W  
Bit Name  
Function  
NOT USED  
NOT USED  
NOT USED  
RESERVED  
NOT USED  
DLOLIM4  
NOT USED  
DLOLIM3  
DLOLIM10  
DLOLIM9  
DLOLIM8  
ADC MIN INPUT LIMIT RANGE SETTING (3 MSBs)  
DLOLIM2, ADDRESS=24, ALL BITS R/W  
Bit Name  
Function  
DLOLIM7  
DLOLIM6  
DLOLIM5  
DLOLIM2  
DLOLIM1  
DLOLIM0_LSB  
ADC MIN INPUT LIMIT RANGE SETTING (8 LSBs)  
ADC_DELAY, ADDRESS=25, ALL BITS R/W  
Bit Name  
Function  
ADC_TRG_GPIO3 EDGE _GPIO3  
HOLDOFF  
REPEAT  
Delay_3  
Delay_2  
Delay_1  
Delay_0  
USE GPIO3 AS  
ADC TRIGGER  
GPIO3  
TRIGGER  
MODE  
ADC  
HOLDOFF  
ON/OFF  
REPEAT  
MODE  
ON/OFF  
ADC EXTERNAL TRIGGER DELAY SETTING  
CONTROL  
When 0  
When 1  
OFF  
ON  
Falling Edge  
Rising Edge  
OFF  
ON  
OFF  
ON  
tDLY(TRIG)= B4*400 + B3 * 200 + B2*100 + B1* 50, Units = µs Default  
= 0 µs  
ADC_WAIT, ADDRESS=26, ALL BITS R/W  
Bit Name  
Function  
ADC_cH2I_D1  
ADC_cH2I_D0  
BATIDI_D1  
BATIDI_D0  
WAIT_D3  
WAIT_D2  
WAIT_D1  
WAIT_LSB  
ANLG2 PULL-UP CURRENT  
SOURCE VALUE  
ANLG1 PULL-UP CURRENT  
SOURCE VALUE  
ADC SAMPLE WAIT TIME, MULTIPLE SAMPLES MODE  
When 0  
When 1  
11:60 µA, 10:50 µA, 01:10 µA,00: 0  
11:60 µA, 10:50 µA, 01:10 µA,  
00: WEAK PULL UP  
Default: 00  
0000 = 0  
0100 = 0.08  
0101 = 0.16  
0110 = 0.24  
0111 = 0.32  
1000 = 0.64  
1001 = 1.28  
1010 = 1.92  
1011 = 2.56  
1100 = 5.12  
1101 = 10.24  
1110 = 15.36  
1111 = 20.48  
Default = 0  
Default= 00  
0001 = 0.02  
0010 = 0.04  
0011 = 0.06  
Units = ms  
74  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
FUNCTIONALITY GUIDE — LED AND PERIPHERAL DRIVERS  
WHITE LED CONSTANT CURRENT DRIVER  
Driver  
PWM  
Duty Cycle  
Output  
Voltage  
LED Current  
Eff (%)  
Power Up  
Default  
# of Steps  
Io(Typ)  
Max  
Acc (%)  
Range  
SM3  
Off (0%),  
0.4% -99.6%  
Set via I2C  
256  
5 V–25 V  
Set by external resistor  
25 mA  
25  
80  
Off (0%)  
OPEN DRAIN PWM DRIVERS  
Driver  
PWM Freq (kHz)  
PWM Duty Cycle  
Io(max)  
mA  
Power Up Default  
Range  
# of Steps  
Min Step  
PWM  
0.5/1/1.5/2/3/ 4.5/7.8/15.6  
Set via I2C  
Off (0%),  
6.25% to 100  
Set via I2C  
8
6.25%  
150  
Off(0%)  
LED_PWM 15.625 or 23.4 , set via I2C  
Off(0%),  
0.4% to 99.6%  
Set via I2C  
256  
0.4%  
150  
Off (0%)  
RGB OPEN DRAIN LED DRIVER  
Driver  
Flash Period (same for RGB) Flash On time (same for RGB)  
Brightness  
(Individual R/G/B Control)  
Io mA  
Power Up  
Default  
Range  
# of  
Steps  
Min Step  
Range  
# of  
Steps  
Min Step Duty (%) # of Min  
Steps Steps  
32 3.125% 0/4/8/12  
RED,  
No flash,  
16  
0.5 sec  
0.1–0.6 sec  
Set via I2C  
8
0.1 sec  
Off (0%),  
3.125 to  
96.87  
Flash Off, 0  
mA,  
0%  
brightness  
duty cycle  
GREEN, or 1–8 sec  
BLUE  
Set via I2C  
Set via I2C  
TPS65810  
OUT  
DISPLAY AND I/O  
SM3_SW  
4.7 mH  
L3  
LSM3  
WHITE LED  
DRIVER  
D1  
SM3  
C27  
FB3  
1 mF  
R
FB3  
10 W  
PGND3  
C18  
100 pF  
WHITE LEDS  
P3  
PWM  
PWM  
DRIVER  
EXTERNAL  
PERIPHERALS  
LED_PWM  
RED  
GREEN  
BLUE  
RGB  
DRIVER  
AGND0  
RGB LED  
A0  
Figure 52. Required External Components, Recommended Values, External Connections  
75  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
WHITE LED CONSTANT CURRENT DRIVER  
The TPS65810 has an integrated boost converter (SM3) that is optimized to drive white LEDs connected in a  
series configuration. Up to six series white LEDs can be driven, with programmable current and duty cycle  
adjustable via a dedicated I2C register.  
The SM3 boost converter (SM3) has a 30-V, 500-mA, low-side integrated power stage switch that drives the  
external inductor. Another integrated 30-V, 25-mA switch (LED switch) is used to modulate the brightness of the  
external white LEDs. A simplified block diagram is shown in Figure 53  
LSM3  
3.3 mH  
D1  
OUT  
L3  
TPS65810  
INDUCTOR PEAK  
CURRENT  
DETECTION  
+
C27  
1 mF  
POWER  
STAGE  
SWITCH  
500 mA  
_
SOFT  
START  
OFF  
CONTROL LOGIC AND  
MINIMUM OFF TIME  
MAXIMUM ON TIME  
GATE  
DRIVE  
PGND3  
P3  
OUTPUT OVP  
DETECTION  
SM3  
ON EN  
OFF  
+
_
SM3_SW  
28V  
ON  
LED SWITCH  
FREQUENCY  
AND DUTY  
CYCLE  
GATE  
DRIVE  
DUTY CYCLE  
CONTROL  
LED  
SWITCH  
I2C REGISTER  
LED LOW CURRENT  
DETECTION  
FB3  
_
R
FB3  
10 W  
+
250 mV  
P3  
Figure 53. Simplified Block Diagram  
The SM3 converter operates like a standard boost converter. The LED current is defined by the value of the  
external resistor RFB3, connected from pin FB3 to AGND1. The integrated power stage switch control monitors  
the LED switch current (FB3) and the integrated power stage switch current, implementing a topology that  
effectively regulates the LED current independently of the input voltage and number of LEDs connected. The  
high voltage rating of the integrated switches enables driving up to six white LEDs, connected in a series  
configuration.  
The internal LED switch, in series with the external LEDs, disconnects the LEDs from ground during shutdown.  
In addition, the LED switch is driven by a PWM signal that sets the duty cycle, enabling adjustment to the  
average LED current by modifying the settings of the I2C register SM3_SET. With this control method, the LED  
brightness depends on the LED switch duty cycle only, and is independent of the PWM control signal.  
The duty cycle control used in the SM3 converter LED switch is implemented by generating a burst of high  
frequency pulses, with a pattern that is repeated periodically. For a duty cycle of 50%, all of the high frequency  
pulses have a 50% duty cycle. The duty cycle control sets individual pulses to 100% duty cycle when increasing  
the LED_PWM output duty cycle; for decreasing LED_PWM output duty cycles, individual pulses are set to 0%  
duty cycle. An example of distinct duty cycles is shown in Figure 54, the sum of the individual pulses on/off time  
over the repetition period are equivalent to the duty cycle obtained with traditional single-pulse duty cycle  
circuits.  
76  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
SM3 CONVERTER  
50% DUTY CYCLE  
SM3 CONVERTER  
<50% DUTY CYCLE  
SM3 CONVERTER  
>50% DUTY CYCLE  
REPETITION PERIOD  
Figure 54. Example of Distinct Duty Cycles  
The repetition period can be set using the register SOFT_RESET control bit SM3_LF_OSC to either 183 Hz (HI)  
or 122 Hz (LO). Each repetition period has a total of 256 pulses, enabling a resolution of 0.4% when  
programming the duty cycle.  
SM3 Control Logic Overview  
The SM3 boost converter operates in a pulse frequency modulation (PFM) scheme with constant peak current  
control. This control scheme maintains high efficiency over the entire load current range and enables the use of  
small external components, as the switching frequency can reach up to 1 MHz depending on the load  
conditions. The LED current ripple is defined by the external inductor size.  
The converter monitors the sense voltage at pin FB3, and turns on the integrated power stage switch when  
V(FB3) is below the 250-mV (typ) internal reference voltage and the LED Switch is ON, starting a new cycle. The  
integrated power switch turns off when the inductor current reaches the internal 500-mA (typ) peak current limit,  
or if the switch is on for a period longer than the maximum on-time of 6 µs (typ). The integrated power switch  
also turns off when the LED switch is set to OFF. As the integrated power switch is turned off, the external  
Schottky diode is forward biased, delivering the stored inductor energy to the output. The main switch remains  
off until the FB3 pin voltage is below the internal 250-mV reference voltage and the LED switch is turned ON,  
when it is turned on again.  
This PFM peak current control scheme sets the converter in discontinuous conduction mode (DCM), and the  
switching frequency depends on the inductor, input/output voltage and LED current. Lower LED currents reduce  
the switching frequency, with high efficiency over the entire LED current range. This regulation scheme is  
inherently stable, allowing a wide range for the selection of the inductor and output capacitor.  
Peak Current Control (Boost Converter)  
The SM3 integrated power stage switch is turned on until the inductor current reaches the dc current limit IMAX(L3)  
(500 mA, typ). Due to internal delays, typically around 100 ns, the actual current exceeds the DC current limit  
threshold by a small amount. The typical peak current limit can be calculated as shown in Equation 8  
V(OUT)  
L
V(OUT)  
L
I
+ I  
)
  100 ns, or : I + 500 mA )  
P(typ)  
  100 ns  
P(typ)  
MAX(L3)  
(8)  
The current overshoot is directly proportional to the input voltage, and inversely proportional to the inductor  
value.  
Soft Start  
All inductive step-up converters exhibit high in-rush current during start-up. If no special precautions are taken,  
voltage drops can be observed at the input supply rail during start-up, with unpredictable results in the overall  
system operation.  
The SM3 boost converter limits the inrush current during start-up by increasing the current limit in three steps:  
1. 125 mA (typ),  
2. 250 mA (typ) and  
3. 500 mA (typ)  
The two initial steps (125 mA and 250 mA) are active for 256 power stage switching cycles.  
77  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Enabling the SM3 Converter  
The SM3_SET I2C register controls the SM3 LED switch duty cycle. If the register is set to all zeros SM3 is set  
to OFF mode. When the host writes a value other than 00 in SM3_SET the SM3 converter is enabled, entering  
the soft start phase and then normal operation. The SM3 converter can operate with duty cycles varying from  
0.4% to 99.6%, with LED switch frequencies of 122 Hz or 180 Hz. The LED switch operating frequency is set by  
bit SM3_LF, in the SOFT_RESET register.  
Overvoltage Protection  
The output voltage of the boost converter is sensed at pin SM3, and the integrated power stage switch is turned  
OFF when V(SM3) exceeds the internal overvoltage threshold VOVP3. The converter returns to normal operation  
when V(SM3) < VOVP3– VHYS(OVP3)  
.
Under Voltage Lockout Operation  
When the TPS65810 enters the UVLO mode, the SM3 converter is set to OFF mode with the power stage  
MOSFET switch and the LED switch open (off).  
Thermal Shutdown Operation  
When the TPS65810 enters the thermal shutdown mode, the SM3 converter is set to OFF mode with the power  
stage MOSFET switch and the LED switch open (off).  
PWM DRIVERS  
PWM Pin Driver  
The TPS65810 offers one low-frequency, open-drain PWM driver, capable of driving up to 150 mA. The PWM  
frequency and duty cycle are defined by the PWM I2C register settings. The PWM parameters are set in I2C  
register PWM. Available frequency values range from 500 Hz to 15 kHz, with 8 frequency values and 16 duty  
cycle options (6.25% each).  
LED_PWM Pin Driver  
The TPS65810 has another PWM driver output (pin LED_PWM), which is optimized to drive a backlight LED.  
The LED_PWM driver controls the external LED current intensity using a pulse-width control method, with duty  
cycle being set by the I2C register LED_PWM.  
The pulse width method implemented generates a burst of high frequency pulses, with a pattern that is repeated  
periodically. For a duty cycle of 50%, all of the high -frequency pulses have a 50% duty cycle. The duty cycle  
control sets individual pulses to 100% duty cycle when increasing the LED_PWM output duty cycle; for  
decreasing LED_PWM output duty cycles individual pulses are set to 0% duty cycle. An example of distinct duty  
cycles is shown in Figure 55; the sum of the individual pulses on/off time over the repetition period is equivalent  
to the duty cycle obtained with traditional single-pulse duty cycle circuits.  
LED_PWM, 50% DUTY CYCLE  
LED_PWM, <50% DUTY CYCLE  
LED_PWM, >50% DUTY CYCLE  
REPETITION PERIOD  
Figure 55. Example of Distinct Duty Cycles  
The repetition period can be set using the register SOFT_RESET control bit SM3_LF_OSC to either 180 Hz (HI)  
or 122 Hz (LO). Each repetition period has a total of 256 pulses, enabling a resoltuion of 0.4% when  
programming the duty cycle. The LED_SET register enables control of the duty cycle via I2C, with duty cycle  
ranging from 0.4% to 99.6%. Setting the LED_SET register to all zeros forces the LED_PWM pin to 0% duty  
cycle (OFF).  
78  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
RGB Driver  
The TPS65810 has a dedicated driver for an RGB external LED. Three outputs are available (pins RED,  
GREEN, BLUE), with common settings for operation mode (flash on/off, flash period, flash on time), LED current  
and phase delay between outputs. The TPS65810 RGB driver continually flashes the external LEDs connected  
to the RED, GREEN and BLUE pins using the flash operation parameters defined in register RGB_FLASH.  
The currents for the external LEDs can be programmed via I2C, and external resistors are not required to limit  
the LED current. However, they can be added to set the LED current if the available I2C values are not  
compatible with the current application, as shown in the circuit below:  
OUT  
RED  
R
R
BLUE  
R
RED  
GRN  
FLASH  
CONTROL  
I
LEDR  
GREEN  
LED  
LED  
CURRENT  
SETTINGS  
CONTROL  
I
LEDG  
LOGIC  
RGB  
DUTY  
CYCLE  
BLUE  
CONTROL  
I
LEDB  
Figure 56. Limiting the External LED Current  
The flashing-mode parameters defined in register RGB_FLASH enable setting the flashing period from 1 to 8  
seconds in 0.5-sec steps, or to continuous operation. Flashing operation is enabled by setting the FLASH_EN bit  
in register RGB_FLASH to HI. This bit must be set HI to enable the RGB current-sink channels.  
Each driver has an individual duty cycle control. The duty cycle modulation method used is similar to the  
PWM_LED duty cycle control, with high frequency pulses being generated when the driver (RED, GREEN, or  
BLUE pins) is ON. The repetition period for the RGB drivers has a total of 32 pulses, enabling a 3.125%  
resolution when programming the individual RED, GREEN and BLUE drivers duty cycles. The duty cycles for  
each driver can be set individually using control bits on registers RGB_RED, RGB_GREEN and RGB_BLUE.  
The RGB drivers can be programmed to sink 4, 8, or 12 mA, with no external current limiting resistor.  
79  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
White LED, PWM Drivers — I2C Registers  
The I2C registers that control LED AND PWM driver related functions are shown below. The HEX address for  
each register is shown by the register name, together with the R or W functionality for the register bits. Shaded  
values indicate default initial power-up values. In the equations replace Bn with 1 for HI state, and 0 for LO state.  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SM3_SET, ADDRESS = 16, ALL BITS R/W  
Bit Name  
Function  
Value  
SM3_I7 set  
SM3_I6 set  
SM3_I5 set  
SM3_I4 set  
SM3_I3 set  
SM3_I2 set  
SM3_I1 set  
SM3_I0 set  
SM3 DUTY CYCLE CONTROL  
See Table 11 for SM3 duty cycle settings, default = 0 (OFF)  
RGB_FLASH, ADDRESS = 17, ALL BITS R/W  
Bit Name  
Function  
FLASH_EN  
FLASH_ON2  
FLASH_ON1  
FLASH_ON0  
FLASH_PER3  
FLASH_PER2  
FLASH_PER1  
FLASH_PER0  
FLASH MODE  
ON/OFF CTRL  
FLASH MODE ON TIME  
FLASH MODE PERIOD  
When 0  
When 1  
OFF  
ON  
See Table 12 for RGB ON TIME settings, default =  
See Table 12 for RGB FLASH settings, default = 1  
0.1  
RGB_RED, ADDRESS = 18, ALL BITS R/W  
Bit Name  
Function  
RGB_ISET1  
RGB_ISET0  
PHASE  
PWMR_D4  
PWMR_D3  
PWMR_D2  
PWMR_D1  
PWMR_D0  
RGB LED CURRENT SETTINGS  
PHASE  
REG DRIVER DUTY CYCLE CONTROL  
CONTROL  
When 0  
When 1  
00= 0 10= 8 mA  
01= 4 mA 11=12 mA  
GREEN out of  
Φ with RED &  
BLUE  
See Table 12 for RGB_RED DUTY settings, default = 0  
BLUE out of Φ  
with RED &  
GREEN  
RGB_GREEN, ADDRESS = 19, ALL BITS R/W  
Bit Name  
Function  
Value  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
PWMG_D4  
PWMB_D4  
PWM_F0  
PWMG_D3  
PWMG_D2  
PWMG_D1  
PWMG_D0  
PWMB_D0  
PWM_D0  
GREEN DRIVER DUTY CYCLE CONTROL  
See Table 12 for RGB_GREEN DUTY settings, default = 0  
RGB_BLUE, ADDRESS = 1A, ALL BITS R/W  
Bit Name  
Function  
Value  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
PWMB_D3  
PWMB_D2  
PWMB_D1  
BLUE DRIVER DUTY CYCLE CONTROL  
See Table 12 for RGB_BLUE DUTY settings, default = 0  
PWM, ADDRESS = 1D, ALL BITS R/W  
Bit Name  
Function  
PWM_EN  
PWM1_F2  
PWM_F1  
PWM_D3  
PWM_D2  
PWM_D1  
PWM ON/OFF  
CONTROL  
PWM DRIVER FREQUENCY SETTINGS  
PWM DRIVER DUTY CYCLE SETTINGS  
When 0  
When 1  
Disabled  
Enabled  
000 = 15.6 kHz 011 = 3 kHz  
110 = 1 kHz  
111 = 500 Hz  
Default = 15.6  
kHz  
See Table 13 for PWM DUTY settings, default = 0.0625  
001 = 7.8 kHz  
010 = 4.5 kHz  
100 = 2 kHz  
101 = 1.5 kHz  
LED_PWM, ADDRESS = 27, ALL BITS R/W  
Bit Name  
Function  
Value  
LPWM_7 set  
LPWM_6 set  
LPWM_5 set  
LPWM_4 set  
LPWM_3 set  
LPWM_2 set  
LPWM_1 set  
LPWM_0 set  
LED_PWM DRIVER DUTY CYCLE CONTROL  
See Table 11 for LED_PWM DUTY settings, default = 0 (OFF)  
80  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 11. SM3 Duty Cycle Settings  
Dec  
0
B7-B0  
Dcpu  
Dec  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
B7-B0  
Dcpu  
0.203  
0.207  
0.211  
0.215  
0.219  
0.223  
0.227  
0.23  
Dec  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
B7-B0  
Dcpu  
0.406  
0.41  
Dec  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
B7-B0  
Dcpu  
0.609  
0.613  
0.617  
0.621  
0.625  
0.629  
0.633  
0.637  
0.641  
0.645  
0.648  
0.652  
0.656  
0.66  
Dec  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
B7-B0  
Dcpu  
0.813  
0.816  
0.82  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0000 0101  
0000 0110  
0000 0111  
0000 1000  
0000 1001  
0000 1010  
0000 1011  
0000 1100  
0000 1101  
0000 1110  
0000 1111  
0001 0000  
0001 0001  
0001 0010  
0001 0011  
0001 0100  
0001 0101  
0001 0110  
0001 0111  
0001 1000  
0001 1001  
0001 1010  
0001 1011  
0001 1100  
0001 1101  
0001 1110  
0001 1111  
0010 0000  
0010 0001  
0010 0010  
0010 0011  
0010 0100  
0010 0101  
0010 0110  
0010 0111  
0010 1000  
0010 1001  
0010 1010  
0010 1011  
0010 1100  
0010 1101  
0010 1110  
0010 1111  
0011 0000  
0011 0001  
0011 0010  
0011 0011  
0011 0100  
0011 0101  
0011 0110  
0011 0111  
0011 1000  
0011 1001  
0011 1010  
0011 1011  
0011 1100  
0011 1101  
0011 1110  
0011 1111  
0100 0000  
0100 0001  
0100 0010  
0100 0011  
0100 0100  
0100 0101  
0100 0110  
0100 0111  
0100 1000  
0100 1001  
0100 1010  
0100 1011  
0100 1100  
0100 1101  
0100 1110  
0100 1111  
0101 0000  
0101 0001  
0101 0010  
0101 0011  
0101 0100  
0101 0101  
0101 0110  
0101 0111  
0101 1000  
0101 1001  
0101 1010  
0101 1011  
0101 1100  
0101 1101  
0101 1110  
0101 1111  
0110 0000  
0110 0001  
0110 0010  
0110 0011  
0110 0100  
0110 0101  
0110 0110  
0110 0111  
0110 1000  
0110 1001  
0110 1010  
0110 1011  
0110 1100  
0110 1101  
0110 1110  
0110 1111  
0111 0000  
0111 0001  
0111 0010  
0111 0011  
0111 0100  
0111 0101  
0111 0110  
0111 0111  
0111 1000  
0111 1001  
0111 1010  
0111 1011  
0111 1100  
0111 1101  
0111 1110  
0111 1111  
1000 0000  
1000 0001  
1000 0010  
1000 0011  
1000 0100  
1000 0101  
1000 0110  
1000 0111  
1000 1000  
1000 1001  
1000 1010  
1000 1011  
1000 1100  
1000 1101  
1000 1110  
1000 1111  
1001 0000  
1001 0001  
1001 0010  
1001 0011  
1001 0100  
1001 0101  
1001 0110  
1001 0111  
1001 1000  
1001 1001  
1001 1010  
1001 1011  
1001 1100  
1001 1101  
1001 1110  
1001 1111  
1010 0000  
1010 0001  
1010 0010  
1010 0011  
1010 0100  
1010 0101  
1010 0110  
1010 0111  
1010 1000  
1010 1001  
1010 1010  
1010 1011  
1010 1100  
1010 1101  
1010 1110  
1010 1111  
1011 0000  
1011 0001  
1011 0010  
1011 0011  
1011 0100  
1011 0101  
1011 0110  
1011 0111  
1011 1000  
1011 1001  
1011 1010  
1011 1011  
1011 1100  
1011 1101  
1011 1110  
1011 1111  
1100 0000  
1100 0001  
1100 0010  
1100 0011  
1100 0100  
1100 0101  
1100 0110  
1100 0111  
1100 1000  
1100 1001  
1100 1010  
1100 1011  
1100 1100  
1100 1101  
1100 1110  
1100 1111  
1101 0000  
1101 0001  
1101 0010  
1101 0011  
1101 0100  
1101 0101  
1101 0110  
1101 0111  
1101 1000  
1101 1001  
1101 1010  
1101 1011  
1101 1100  
1101 1101  
1101 1110  
1101 1111  
1110 0000  
1110 0001  
1110 0010  
1110 0011  
1110 0100  
1110 0101  
1110 0110  
1110 0111  
1110 1000  
1110 1001  
1110 1010  
1110 1011  
1110 1100  
1110 1101  
1110 1110  
1110 1111  
1111 0000  
1111 0001  
1111 0010  
1111 0011  
1111 0100  
1111 0101  
1111 0110  
1111 0111  
1111 1000  
1111 1001  
1111 1010  
1111 1011  
1111 1100  
1111 1101  
1111 1110  
1111 1111  
1
0.004  
0.008  
0.012  
0.016  
0.02  
2
0.414  
0.418  
0.422  
0.426  
0.43  
3
0.824  
0.828  
0.832  
0.836  
0.84  
4
5
6
0.023  
0.027  
0.031  
0.035  
0.039  
0.043  
0.047  
0.051  
0.055  
0.059  
0.063  
0.066  
0.07  
7
0.434  
0.438  
0.441  
0.445  
0.449  
0.453  
0.457  
0.461  
0.465  
0.469  
0.473  
0.477  
0.48  
8
0.234  
0.238  
0.242  
0.246  
0.25  
0.844  
0.848  
0.852  
0.855  
0.859  
0.863  
0.867  
0.871  
0.875  
0.879  
0.883  
0.887  
0.891  
0.895  
0.898  
0.902  
0.906  
0.91  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
0.254  
0.258  
0.262  
0.266  
0.27  
0.664  
0.668  
0.672  
0.676  
0.68  
0.273  
0.277  
0.281  
0.285  
0.289  
0.293  
0.297  
0.301  
0.305  
0.309  
0.313  
0.316  
0.32  
0.074  
0.078  
0.082  
0.086  
0.09  
0.684  
0.688  
0.691  
0.695  
0.699  
0.703  
0.707  
0.711  
0.715  
0.719  
0.723  
0.727  
0.73  
0.484  
0.488  
0.492  
0.496  
0.5  
0.094  
0.098  
0.102  
0.105  
0.109  
0.113  
0.117  
0.121  
0.125  
0.129  
0.133  
0.137  
0.141  
0.145  
0.148  
0.152  
0.156  
0.16  
0.504  
0.508  
0.512  
0.516  
0.52  
0.914  
0.918  
0.922  
0.926  
0.93  
0.523  
0.527  
0.531  
0.535  
0.539  
0.543  
0.547  
0.551  
0.555  
0.559  
0.563  
0.566  
0.57  
0.324  
0.328  
0.332  
0.336  
0.34  
0.934  
0.938  
0.941  
0.945  
0.949  
0.953  
0.957  
0.961  
0.965  
0.969  
0.973  
0.977  
0.98  
0.734  
0.738  
0.742  
0.746  
0.75  
0.344  
0.348  
0.352  
0.355  
0.359  
0.363  
0.367  
0.371  
0.375  
0.379  
0.383  
0.387  
0.391  
0.395  
0.398  
0.402  
0.754  
0.758  
0.762  
0.766  
0.77  
0.164  
0.168  
0.172  
0.176  
0.18  
0.773  
0.777  
0.781  
0.785  
0.789  
0.793  
0.797  
0.801  
0.805  
0.809  
0.574  
0.578  
0.582  
0.586  
0.59  
0.984  
0.988  
0.992  
0.996  
0.184  
0.188  
0.191  
0.195  
0.199  
0.594  
0.598  
0.602  
0.605  
81  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 12. RGB Duty Cycle Control Settings  
RGB_D4 RGB_D3 RGB_D2 RGB_D1 RGB_D0 DC(%)  
FLASH_PER3  
FLASH_PER2  
FLASH_PER1  
FLASH_PER0  
P(s)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.00  
3.23  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1.5  
6.45  
2
9.68  
2.5  
12.90  
16.13  
19.35  
22.58  
25.80  
29.03  
32.25  
35.48  
38.70  
41.93  
45.15  
48.38  
51.60  
54.83  
58.05  
61.23  
64.50  
67.73  
70.95  
74.18  
77.40  
80.63  
83.85  
87.08  
90.30  
93.53  
96.75  
99.98  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
Continuous  
FLASH_ON2  
FLASH_ON1  
FLASH_ON0  
ON_TIME (s)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0.1  
0.15  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
82  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Table 13. PWM Frequency and Duty Cycle Settings  
PWM FREQUENCY TABLE  
PWM_D DUTY CYCLE  
PWM_F2  
PWM_F1  
PWM_F0  
F (Hz)  
15600  
7800  
4500  
3000  
2000  
1500  
1000  
500  
PWM2_D3  
PWM2_D2  
PWM2_D1  
PWM2_D0  
D_cycle (pu)  
0.0625  
0.125  
0.1875  
0.25  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.3125  
0.375  
0.4375  
0.5  
0.5625  
0.625  
0.6875  
0.75  
0.8125  
0.875  
0.9375  
1
83  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
FUNCTIONALITY GUIDE – GENERAL PURPOSE INPUTS/OUTPUTS  
GPIO3 FUNCTIONS  
CONFIGURED AS OUTPUT  
CONFIGURED AS INPUT  
POWER-UP  
DEFAULT  
OUTPUT LEVEL  
Io(max)  
A/D CONVERSION START TRIGGER  
mA  
HI or LO at output set  
via I2C  
5
Falling or rising edge selected via I2C  
Input, no mode  
selected  
GPIO2 FUNCTIONS  
CONFIGURED AS OUTPUT  
CONFIGURED AS INPUT  
POWER-UP  
DEFAULT  
OUTPUT LEVEL  
Io(max)  
HOST INTERRUPT  
SM2 ENABLE  
mA  
REQUEST  
HI or LO at output set  
via I2C  
5
Set INT pin to LO via I2C  
when GPIO2 pin edge is  
detected. Rising or falling  
edge detection selected via  
I2C  
GPIO2 level sets SM2 converter ON/OFF operation.  
GPIO2 pin level (HI or LO) for ON operation  
selected via I2C  
Input, SM2  
enable, SM2  
ON@  
GPIO2=HI  
The host interrupt request and SM2 enable GPIO2 functions are mutually exclusive,  
and they should NOT be configured simultaneously  
GPIO1 FUNCTIONS  
CONFIGURED AS OUTPUT  
CONFIGURED AS INPUT  
POWER-UP  
DEFAULT  
OUTPUT LEVEL  
Io(max)  
HOST INTERRUPT  
REQUEST  
SM1 ENABLE  
SM1 AND SM2 STANDBY  
CONTROL  
mA  
HI or LO at output set  
via I2C  
5
Set INT pin to LO via I2C  
when GPIO1 pin edge is  
detected. Rising or falling  
edge detection set via I2C  
GPIO1 level sets SM1 GPIO1 level sets SM2 and  
converter ON/OFF SM1 converters in standby  
operation. GPIO2 pin mode. GPIO1 pin level (HI  
Input, SM1  
enable, SM1  
ON@  
level (HI or LO) for ON  
or LO) for standby mode  
GPIO1=HI  
operation set via I2C  
set selected via I2C  
The host interrupt request, SM1 enable and SM1/SM2 standby control GPIO1  
functions are mutually exclusive, and they should NOT be configured  
simultaneously.  
CONFIGURATION MODES:  
1-OUTPUT  
TPS65810  
2-SM1/SM2 STANDBY CONTROL INPUT  
3-SM1 ON/OFF CONTROL INPUT  
4-INTERRUPT REQUEST CONTROL INPUT  
GPIO1  
GENERATES INT PIN HI®LO TRANSITION  
I2C  
CONFIGURATION MODES:  
SETTINGS  
GPIO  
1-OUTPUT  
GPIO  
GPIO2  
2-SM2 ON/OFF CONTROL  
CONTROL  
3-INTERRUPT REQUEST CONTROL INPUT  
4-GENERATES INT PIN HI®LO TRANSITION  
FUNCTION  
AND MODE  
GPIO3  
CONFIGURATION MODES:  
1-OUTPUT  
2-ADC TRIGGER CONTROL  
3-LDC0 ENABLE  
4-CHARGE VOLTAGE SELECTION  
Figure 57. Required External Components, Recommended Values, External Connections  
84  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
General Purpose I/Os — GPIO 1, 2, 3  
The TPS65810 integrates 3 general purpose open drain ports (GPIOs) that can be configured as selectable  
inputs or outputs. When configured as outputs the output level can be set to LO or HI via I2C commands. When  
the GPIOs are configured as inputs the action to be taken when a transition or HI/LO level is detected at the  
GPIO pin is selectable via I2C.  
When configured as inputs the GPIOs can be set in the following modes:  
1. Interrupt request: In this mode of operation, a transition at the GPIO pin generates an interrupt request at  
the interrupt controller. The GPIO interrupt request can be masked at the INT_MASK register. This  
operation mode is available for GPIO’s 1 and 2.  
2. SM1 and SM2 control: The GPIO’s can be used to turn the converters SM1 and SM2 ON/OFF, as well as  
setting them in standby mode. This control mode is available for GPIO1 (SM1 on/off and SM1/SM2  
standby) and GPIO2 (SM2 on/off control).  
3. ADC trigger: GPIO3 can be configured as an external ADC trigger. The GPIO3 trigger configuration bit is  
located at the ADC register ADC_DELAY.  
GPIOs Input Level Configuration  
When using I2C commands, the GPIO1 and GPIO2 pins can be configured as logic output signals or as  
level-controlled inputs which enables (or disables) the switch mode converters SM1 and/or SM2. These pins  
may also be configured as rising- or falling-edge-triggered inputs to externally control the generation of an  
interrupt signal (INT), if desired.  
The GPIO3 pin may be used as an external trigger source to start an A/D conversion cycle or as a logic output.  
See Figure 58 for a description of the logic used for GPIO1 and GPIO2 inputs when configured for  
edge-triggered interrupt generation. The signal from the GPIO pin input is double-latched before being sent to  
the interrupt contoller logic. The inversion of the Q output from the first flip-flop must be HI to allow the output  
latch to be cleared when a READ command occurs. On the initial edge of the GPIO signal, the Q output of the  
flip-flop is set (HI). The INT line is asserted (LO) after the initial selected edge from the GPIO pin. On the next  
falling (or rising) edge of the GPIO pin, the interrupt can again be cleared (which allows the INT pin to go back  
high). The INT signal is cleared (set back HI) after an I2C READ operation is performed.  
Thus, two successive edges of the GPIO signal, followed by an I2C READ command, are required to clear the  
INT pin output. If no I2C READ commands occur, repeatedly applying edges to the GPIO pin does not toggle the  
state of the INT pin output.  
In addition to an I2C READ command after two GPIO edges, a UVLO event or reconfiguration of the GPIO pins  
as outputs also de-asserts the INT signal.  
I2C INTACK READ  
Command?  
Equivalent circuit for internal  
logic when configured as edge  
interrupt with no masking  
SET  
Multiplexer  
D
Q
INT  
INT  
S1  
S2  
D
GPIO  
Signal Pin  
Q
CLR  
C
ENB  
HI = Rising Edge,  
LO = Falling Edge  
UVLO  
GPIO Config = OUTPUT  
Figure 58. GPIO 1 or GPIO2 Configured as an Interrupt Request Input  
85  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Function Implementation: I2C Commands Versus GPIO Commands  
Some of the GPIO SM1/SM2 control functions overlap I2C register control functions. Table 14 describes the  
TPS65810 action when the GPIO’s command and I2C registers commands are not compatible with each other.  
Table 14. GPIO Commands and I2C Registers Commands  
SM1 AND SM2 ON/OFF I2C COMMAND  
CONVERTER DISABLED  
CONVERTER ENABLED  
DON’T CARE  
SM1 AND SM2 STANDBY I2C COMMAND  
DO NOT SET STANDBY  
SET STANDBY  
GPIO COMMAND  
CONVERTER DISABLED  
DON’T CARE  
SM1 OR SM2 MODE SET  
DISABLED  
ENABLED  
CONVERTER ENABLED  
GPIO COMMAND  
DON’T CARE  
ENABLED  
SM1 OR SM2 MODE SET  
NORMAL  
SET STANDBY  
STANDBY  
DON’T CARE  
DO NOT SET STANDBY  
NORMAL  
86  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
GPIO Configuration Table  
Table 15 describes the I2C register settings required to program the available GPIO modes. The GPIO pins logic  
level is available at register SM1_STANDBY, bits B5, B6 and B7.  
Table 15. Recommended GPIO Configuration Procedure  
GPIO MODE  
I2C  
I2C REGISTER BIT SETTING  
ADDITIONAL DETAILS  
REGISTERS  
GPIO3 = OUTPUT  
GPIO3  
GPIO3I/O=HI AND GPIO3OUT=HI  
GPIO3I/O=HI AND GPIO3OUT=LO  
GPIO3 PIN SET TO HIGH IMPEDANCE  
MODE  
V(GPIO3) = VOL  
GPIO3 =INPUT  
ADC CONVERSION  
START TRIGGER  
GPIO3 AND  
ADC_DELAY  
GPIO3I/O=LO AND ADC_TRG_GPIO3=HI AND GPIO3 pin rising edge triggers ADC  
EDGE_GPIO3=HI conversion  
GPIO3I/O=LO AND ADC_TRG_GPIO3=HI AND GPIO3 pin falling edge triggers ADC  
EDGE_GPIO3=LO  
conversion  
GPIO2 = OUTPUT  
GPIO12  
GPIO2I/O=HI AND GPIO2OUT=HI  
GPIO2 PIN SET TO HIGH IMPEDANCE  
MODE  
GPIO2I/O=HI AND GPIO2OUT=LO  
V(GPIO2) = VOL  
GPIO2=INPUT,  
HOST INTERRUPT  
REQUEST  
GPIO12 AND  
GPIO3  
GPIO2I/O=LO AND GPIO2INT=HI AND  
GPIO2LVL=HI AND GPIO2SM2=LO  
INT pin HILOHI at V(GPIO2) falling  
edge  
GPIO2I/O=LO AND GPIO2INT=HI AND  
GPIO2LVL=HI AND GPIO2SM2=LO  
INT pin HILOHI at V(GPIO2) rising  
edge  
GPIO2=INPUT,  
SM2 ENABLE  
GPIO12 AND  
GPIO3  
GPIO2I/O=LO AND GPIO2INT=LO AND  
GPIO2LVL=HI AND GPIO2SM2=HI  
SM2 converter ON at V(GPIO2)=HI  
GPIO2I/O=LO AND GPIO2INT=LO AND  
GPIO2LVL=LO AND GPIO2SM2=HI  
SM2 converter ON at V(GPIO2)=LO  
GPIO1 = OUTPUT  
GPIO12  
GPIO1I/O=HI AND GPIO1OUT=HI  
GPIO1 PIN SET TO HIGH IMPEDANCE  
MODE  
GPIO1I/O=HI AND GPIO1OUT=LO  
V(GPIO1) = VOL  
GPIO1=INPUT,  
HOST INTERRUPT  
REQUEST  
GPIO12 AND  
GPIO3  
GPIO1I/O=LO AND GPIO1INT=HI AND  
GPIO1LVL=HI AND GPIO1SM1=LO AND  
GPIO1SMSBY=LO  
INT pin HILOHI at V(GPIO1) falling  
edge  
GPIO1I/O=LO AND GPIO1INT=HI AND  
GPIO1LVL=LO AND GPIO1SM1=LO AND  
GPIO1SMSBY=LO  
INT pin HILOHI at V(GPIO1) rising  
edge  
GPIO1=INPUT,  
SM1 ENABLE  
GPIO12 AND  
GPIO3  
GPIO1I/O=LO AND GPIO1INT=LO AND  
GPIO1LVL=HI AND GPIO1SM1=HI AND  
GPIO1SMSBY=LO  
SM1 converter ON at V(GPIO1)=HI  
SM1 converter ON at V(GPIO1)=LO  
GPIO1I/O=LO AND GPIO1INT=LO AND  
GPIO1LVL=LO AND GPIO1SM1=HI AND  
GPIO1SMSBY=LO  
GPIO1=INPUT,  
SM1/SM2 STANDBY  
CONTROL  
GPIO12 AND  
GPIO3  
GPIO1I/O=LO AND GPIO1INT=LO AND  
GPIO1LVL=HI AND GPIO1SM1=LO AND  
GPIO1SMSBY=HI  
SM1/SM2 converter standby set at  
V(GPIO1) = HI  
GPIO1I/O=LO AND GPIO1INT=LO AND  
GPIO1LVL=LO AND GPIO1SM1=LO AND  
GPIO1SMSBY=HI  
SM1/SM2 converter standby set at  
V(GPIO1) = LO  
87  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
GPIOs — I2C Registers  
The I2C registers that control GPIO-related functions are shown below. The HEX address for each register is  
shown by the register name, together with the R or W functionality for the register bits. Shaded values indicate  
default initial power-up values.  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GPIO12, ADDRESS=1B, ALL BITS R/W  
Bit Name  
Function  
GPIO2I/O  
GPIO1I/O  
GPIO2OUT  
GPIO1OUT  
GPIO2LVL  
GPIO1LVL  
GPIO1SMSBY  
GPIO1SM1  
GPIO2 MODE  
GPIO1 MODE  
SET GPIO2  
LEVEL  
(OUTPUT  
ONLY)  
SET GPIO1  
LEVEL  
(OUTPUT  
ONLY)  
GPIO2 EDGE  
AND LEVEL  
DETECTION  
GPIO1 EDGE  
AND LEVEL  
DETECTION  
GPIO 1  
CONTROLS  
SM1 AND SM2 SM1 ON/OFF  
STANDBY  
GPIO1  
CONTROLS  
ON/OFF  
When 0  
When 1  
INPUT  
INPUT  
LOW  
HIGH  
LOW  
HIGH  
RISING EDGE, RISING EDGE,  
DISABLED  
ENABLED  
DISABLED  
ENABLED  
LO LEVEL  
LO LEVEL  
OUTPUT  
OUTPUT  
FALLING  
EDGE, HI  
LEVEL  
FALLING  
EDGE, HI  
LEVEL  
GPIO3, ADDRESS=1C, ALL BITS R/W  
Bit Name  
Function  
GPIO3I/O  
GPIO3OUT  
LDO0_EN  
CHG_VOLT  
NOT USED  
NOT USED  
GPIO2 INT  
GPIO1 INT  
GPIO2SM2  
GPIO3 MODE  
SET GPIO3  
LEVEL  
(OUTPUT  
ONLY)  
LDO0 ON/OFF  
CONTROL  
CHARGE  
VOLTAGE  
SAFETY BIT  
GPIO2  
TRIGGERS  
INT:HILO  
GPIO1  
TRIGGERS  
INT:HILO  
SM2 ON/OFF  
CONTROL  
When 0  
When 1  
INPUT  
LOW  
HIGH  
OFF  
ON  
4.20 V  
4.36 V  
NOT USED  
NOT USED  
DISABLED  
ENABLED  
DISABLED  
ENABLED  
DISABLED  
ENABLED  
OUTPUT  
88  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
APPLICATION INFORMATION  
INDUCTOR AND CAPACITOR SELECTION — CONVERTERS SM1 AND SM2  
SM1 and SM2 are designed with internal voltage mode compensation and the stabilization is based on choosing  
an LC filter that has a corner frequency around 27 kHz. It is not recommended to use LC values that would be  
outside the range of 13 kHz to 40 kHz.  
Equation 9 calculates the corner frequency of the output LC filter. The standard recommended LC values are 3.3  
µH and 10 µF.  
1
F +  
+ 27.7 kHz (a) for L + 3.3 mH and C + 10 mF  
Ǹ
2p LC  
(9)  
The inductor value, along with the input voltage VIN, output voltage VOUT and switching frequency f define the  
ripple current. Typically the ripple current target is 30% of the full load current. At light loads it is desirable for  
ripple current to be less then 150% of the light load current.  
The inductor should be chosen with a rating to handle the peak ripple current., if an inductor’s current gets  
higher than its rated saturation level (DCR), the inductance starts to fall off, and the inductor’s ripple current  
increases exponentially. The DCR of the inductor plays an important role in efficiency and size of the inductor.  
Larger diameter wire has less DCR but may increase the size of the inductor  
Equation 10 calculates the target inductor value. If an inductor value has already been chosen, Equation 11,  
calculates the inductor’s ripple current under static operating conditions. The ripple amplitude can be calculated  
during the on time (positive ramp) or during the off time (negative ramp). It is easiest to calculate the ripple using  
the off time since the inductor’s voltage is the output voltage.  
V
OUT  
1 *  
ǒ Ǔ  
V
IN_MAX  
V
OUT  
I
+
target  
0.3   I  
f
OUT_MAX  
(10)  
V
OUT  
ǒ1 * Ǔ  
V
V
V
IN  
OUT  
L
DI +  
  Dt +  
L
L
L
f
(11)  
(12)  
Equation 12 calculates the peak current due to the output load and ripple current  
DI  
L
I
+ I  
)
Lmax  
OUTmax  
2
For a faster transient response, a lower inductor and higher capacitance allows the output current to ramp faster,  
while the addition capacitance holds up the output longer (a 2.2-µH inductor in combination with a 22-µF output  
capacitor are recommended).  
The highest inductor current occurs at the maximum input voltage. The peak inductor current during a transient  
may be higher than the steady state peak current and should be considered when choosing an inductor.  
Monitoring the inductor current for non-saturation operation during a transient of 1.2 × I_loadmax at Vin_max  
ensures adequate saturation margin.  
Table 16. Inductors for Typical Operation Conditions  
DEVICE  
INDUCTOR VALUE  
3.3 µH  
TYPE  
COMPONENT SUPPLIER  
DCDC3 converter  
CDRH2D14NP-3R3  
PDS3010-332  
Sumida  
Coilcraft  
TDK  
3.3 µH  
3.3 µH  
VLF4012AT-3R3M1R3  
VLF4012AT-2R2M1R5  
NR3015T2R2  
2.2 µH  
TDK  
2.2 µH  
Taoup-Uidem  
89  
Submit Documentation Feedback  
 
 
 
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
APPLICATION INFORMATION (continued)  
Table 16. Inductors for Typical Operation Conditions (continued)  
DEVICE  
INDUCTOR VALUE  
3.3 µH  
TYPE  
COMPONENT SUPPLIER  
DCDC2 converter  
CDRH2D18/HPNP-3R3  
VLF4012AT-3R3M1R3  
VLCF4020-2R2  
Sumida  
TDK  
3.3 µH  
2.2 µH  
TDK  
DCDC1 converter  
3.3 µH  
CDRH3D14/HPNP-3R2  
CDRH4D28C-3R2  
MSS5131-332  
Sumida  
Sumida  
Coilcraft  
TDK  
3.3 µH  
3.3 µH  
2.2 µH  
VLCF4020-2R2  
OUTPUT CAPACITOR SELECTION, SM1, SM2 CONVERTERS  
The advanced Fast Response voltage mode control scheme of the SM1, SM2 converters implemented in the  
TPS65020 allow the use of small ceramic capacitors with a typical value of 10 µF for a 3.3-µH inductor, without  
having large output voltage under and overshoots during heavy load transients.  
Ceramic capacitors having low ESR values have low output voltage ripple, and recommended values and  
manufacturers are listed in Table 1. Often, due to the low ESR, the ripple current rating of the ceramic capacitor  
is adequate to meet the inductor’s currents requirements.  
The RMS ripple current is calculated as:  
V
OUT  
1 *  
V
IN  
1
3
I
+
 
RMSCout  
Ǹ
2   L   f  
(13)  
At nominal load current, the inductive converters operate in PWM mode. The overall output voltage ripple is the  
sum of the voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and  
discharging the output capacitor: The output voltage ripple is maximum at the highest input voltage Vin.  
V
OUT  
1 *  
V
IN  
1
ǒ
) ESRǓ  
V
+
 
RMSCout  
L
 
 
f  
8
 
 
Cout
 
 
f  
(14)  
At light load currents, the converters operate in PFM and the output voltage ripple is dependent on the output  
capacitor value. The output voltage ripple is set by the internal PFM output voltage comparator delay and the  
external capacitor. The typical output voltage ripple is less than 1% of the nominal output voltage.  
Table 17. Input/Output Capacitors for Typical Operation Conditions  
CAPACITOR VALUE  
CASE SIZE  
1260  
COMPONENT SUPPLIER  
TDK C3216X5R0J226M  
COMMENTS  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
22 µF  
22 µF  
10 µF  
10 µF  
22 µF  
22 µF  
1260  
Taiyo Yuden JMK316BJ226ML  
Taiyo Yuden JMK212BJ106M  
TDK C2012X5R0J106M  
0805  
0805  
0805  
TDK C2012X5R0J226MT  
Taiyo Yuden JMK212BJ226MG  
0805  
90  
Submit Documentation Feedback  
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
INPUT CAPACITOR SELECTION, SM1, SM2 CONVERTERS  
Buck converters have a pulsating input current that can generate high input voltage spikes at VIN. A low ESR  
input capacitor is required to filter the input voltage, minimizing the interference with other circuits connected to  
the same power supply rail. Each dc-dc converter requires a 10-µF ceramic input capacitor on its input pin.  
OUTPUT VOLTAGE SELECTION, SM1, SM2 CONVERTERS  
Typically the output voltage is programmed by the I2C. An external divider can be added to raise the output  
voltage, if the available I2C values do not meet the application requirements. Care must be taken with this  
special option, because this external divider (gain factor) would apply to any selected I2C output voltage value  
for this converter.  
Equation 16 calculates R1, Let R2 = 20 k:  
V
SMxOUT  
R1 + ƪ  
* 1ƫR2  
V
FB  
(16)  
where VFB is the I2C selected voltage, is the desired output voltage and R1/R2 is the feedback divider.  
DESIGN EXAMPLES  
SM1, SM2 CONVERTER DESIGN EXAMPLE  
Design Conditions and Parametrs for SM1 or SM2:  
Vin_SM1/2: 4.6 V typical (may be less if input source is limited).  
Vout_SM1/2: 1.24 V  
Iout_max: 0.6 A  
fsw = 1500 kHz  
fc = 25 kHz  
V
OUT  
1 *  
ƪ ƫ  
V
IN_MAX  
V
OUT  
L
+
+ 3.35 mH, 3.3 mH is a good target.  
target  
0.3   I  
fsw  
OUT_MAX  
(17)  
(18)  
1
C +  
+ 10.5 mF 10 mF is a good target.  
L[2   p   fc]2  
CHARGER DESIGN EXAMPLE  
Design Conditions and Parameters for Charger:  
Vout: 4.6 V; (OUT pin is input to charger)  
Fast-charge current, IPGM: 1 A  
DPPM-OUT threshold: 4.3 V; (charging current reduces when OUT falls to this level)  
Safety timer: 5 h  
Battery short-circuit delay, tDELAY: 47 µs; (delays BAT short circuit during hot plug of battery)  
TS temperature range: disabled  
KSET = 400; VSET = 2.5 V; KDPPM = 1.15; IDPPM = 100 µA; KTMR= 0.36 s/Ω  
Program Fast Charge Current Level:  
K
  V  
SET  
SET  
R
+
+ 1 kW  
ISET  
I
PGM  
(19)  
Program DPPM_OUT Voltage Level (Level at Which Charging Current Reduces)  
V
DPPM_OUT  
R
+
+ 3.74 kW  
DPPM  
K
  I  
DPPM  
DPPM  
(20)  
91  
Submit Documentation Feedback  
 
TPS65810  
TPS65811  
www.ti.com  
SLVS658BMARCH 2006REVISED FEBRUARY 2007  
Program BAT Short Circuit Delay (Used for inserting battery)  
C
+ t  
  I  
+ 4.7 Nf  
DPPM  
DELAY  
DPPM  
(21)  
(22)  
Program 5-Hour Safety Timer  
t
  3600 secńhr  
SAFETY*HR  
R
+
+ 50 kW  
TMR  
K
TMR  
92  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
PACKAGING INFORMATION  
Orderable Device  
TPS65810RTQR  
TPS65810RTQRG4  
TPS65810RTQT  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RTQ  
56  
56  
56  
56  
56  
56  
56  
56  
2000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
QFN  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
RTQ  
2000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TPS65810RTQTG4  
TPS65811RTQR  
TPS65811RTQRG4  
TPS65811RTQT  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
TPS65811RTQTG4  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
TAPE AND REEL INFORMATION  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Device  
Package Pins  
Site  
MLA  
MLA  
MLA  
MLA  
Reel  
Diameter Width  
(mm)  
Reel  
A0 (mm)  
8.3  
B0 (mm)  
8.3  
K0 (mm)  
2.25  
P1  
W
Pin1  
(mm) (mm) Quadrant  
(mm)  
TPS65810RTQR  
TPS65810RTQT  
TPS65811RTQR  
TPS65811RTQT  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
330  
16  
12  
12  
12  
12  
16 PKGORN  
T2TR-MS  
P
177  
330  
177  
22  
16  
22  
8.3  
8.3  
2.25  
16 PKGORN  
T2TR-MS  
P
8.3  
8.3  
2.25  
16 PKGORN  
T2TR-MS  
P
8.3  
8.3  
2.25  
16 PKGORN  
T2TR-MS  
P
TAPE AND REEL BOX INFORMATION  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
TPS65810RTQR  
TPS65810RTQT  
TPS65811RTQR  
TPS65811RTQT  
RTQ  
RTQ  
RTQ  
RTQ  
56  
56  
56  
56  
MLA  
MLA  
MLA  
MLA  
346.0  
190.0  
346.0  
190.0  
346.0  
212.7  
346.0  
212.7  
33.0  
31.75  
33.0  
31.75  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
17-May-2007  
Pack Materials-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TPS65811

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65811RTQ

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65811RTQR

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65811RTQRG4

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65811RTQT

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65811RTQTG4

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65820

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65820RSH

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65820RSHR

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65820RSHRG4

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65820RSHT

SINGLE-CELL Li-ION BATTERY- AND POWER-MANAGEMENT IC
TI

TPS65820RSHTG4

8-CHANNEL POWER SUPPLY SUPPORT CKT, PQCC56, 7 X 7 MM, GREEN, PLASTIC, QFN-56
TI