TPS658629IZWSRQ1 [TI]

汽车类 2.3V 至 5.5V, 电源管理 IC,具有 3 个降压转换器和 11 个 LDO | ZWS | 169 | -40 to 85;
TPS658629IZWSRQ1
型号: TPS658629IZWSRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 2.3V 至 5.5V, 电源管理 IC,具有 3 个降压转换器和 11 个 LDO | ZWS | 169 | -40 to 85

转换器
文件: 总98页 (文件大小:3838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS658629-Q1  
www.ti.com.cn  
ZHCS099A JUNE 2011REVISED JUNE 2012  
高级电源管理单元  
查询样品: TPS658629-Q1  
1 介绍  
1.1 主要特性  
1
符合汽车应用要求  
主机接口  
具有下列结果的 AEC-Q100 测试指南:  
带有可屏蔽中断的中断控制器  
器件温度 3 级:-40°C 85°C 的环境运行温度  
范围  
外部模数转换器 (ADC) 触发和降压转换器模式控  
器件人体模型 (HBM) 静电放电 (ESD) 分类等级  
系统管理  
H1C  
双输入电源路径  
器件充电器件模型 (CDM) ESD 分类等级 C2  
集成电源  
USB 电流感测  
最大 18V 过压保护  
– 3 个可编程降压转换器  
所有电源输出上的电源良好监控  
软件复位功能  
硬件打开/关闭和重新引导控制  
– AUTOBOOT(重新引导)支持  
– 11 个通道模数转换器 (ADC),每一个都有 3 个  
运行模式  
受软件控制的使能/强制脉宽调制 (PWM) 模式  
自动节能模式  
最大 1.5A 输出(SM0 SM2)  
最大 1.3A 输出 (SM1)  
– 11 个可编程的通用低压降稳压器 (LDO)  
其中 7 个的输出电压介于 1.25V 3.3V 之间  
其中 2 个的输出电压介于 0.725V 1.5V 或  
1.25V 2.586V 之间(厂家可配置)  
单一转换  
峰值检测  
取平均值  
1 常开,输出电压介于 1.25V 3.3V 之  
1.2 应用范围  
1 个的输出电压介于 1.7V 2.475V 之间  
便携式导航设备  
显示支持功能  
便携式媒体播放器  
– 4 个带有可设定频率和占空比的 PWM 输出  
RGB 发光二级管 (LED) 驱动器  
恒定电流白光发光二级管 (WLED) 驱动器  
25mA 时为 26.5V(最大值)  
过压保护  
可编程电流电平和亮度控制  
1.3 说明  
TPS658629-Q1 在一个小型封装内为手持器件、集成型多稳压电源、系统管理和显示功能提供了一个易于使  
用、完全集成的解决方案。 I2C 接口实现了对于宽范围子系统参数的控制。 内部寄存器存有状态信息的完整  
集合,从而实现了对故障状态的简便诊断和主机控制处理。  
如需完整数据表,请发电子邮件到msapmu_contact@list.ti.com索取。  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date. Products conform to  
specifications per the terms of the Texas Instruments standard warranty. Production  
processing does not necessarily include testing of all parameters.  
版权 © 2011–2012, Texas Instruments Incorporated  
English Data Sheet: SLVSAT6  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
1.4 订购信息(1)  
封装  
标识符  
TA  
部件号(2) (3)  
封装(4)  
订购(2)  
封装标识  
TPS658629I  
-40°C 85°C  
TPS658629  
169 引脚细间距球  
状引脚栅格阵列  
(nFBGA)  
ZWS  
TPS658629IZWSRQ1  
(1) 要获得最新的封装和订购信息,请参见本文档末尾的封装选项附录,或者访问德州仪器 (TI) 的网站 www.ti.com。  
(2) TPS658629 只提供卷带封装。 数量为每卷 1000 个器件。  
(3) 具有唯一部件号的器件有针对电源缺省、排序和其它功能的唯一出厂配置。 针对每个部件的配置信息请查阅此配置。  
(4) 这个产品与 RoHS 标准兼容,其中包括铅浓度不超过产品总重量的 0.1%,并且适合应用于特定的无铅焊接工艺中。 此外,这个产品使用  
不包含卤素的封装材料,包括溴 (Br) 或者锑 (Sb) 高于产品总重量的 0.1%。  
2 ELECTRICAL SPECIFICATIONS  
2.1 ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE / UNITS  
AC and USB with respect to AGND1  
–0.3 V to 18 V  
–0.3 V to 6.5 V  
–0.3 V to 6.5 V  
–0.3 V to 6.5 V  
–0.3 V to 3.6 V  
–5.5 V to 3.6 V  
–0.3 V to 3.6 V  
–0.3 V to 3.6 V  
–0.3 V to 3.6 V  
–2.3 V to 0.3 V  
–0.3 V to 6.5 V  
–0.3 V to 6.5 V  
–0.3 V to 6.5 V  
–0.3 V to 29 V  
–0.3 V to 29 V  
–0.3 V to 0.5 V  
–0.3 V to 5.5 V  
–0.3 V to 6.5 V  
–0.3 V to +0.3 V  
Defined by ILIM  
Defined by ILIM  
2500 mA  
ANLG1, ANLG2, ANLG3 with respect to AGND2  
V(SYS) with respect to AGND1  
VIN_LDO01, VIN_LDO23, VIN_LDO4, VIN_LDO678, VIN_LDO9 with respect to AGND1  
ADC_REF with respect to AGND2  
RTC_OUT with respect to V(SYS)  
RTC_OUT with respect to AGND1  
LDO0, LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7, LDO8, LDO9, V2V2 and TS with respect to AGND1  
V32K with respect to AGND1  
TS with respect to V2V2  
SM0, L0, VIN_SM0 with respect to PGND0  
SM1, L1, VIN_SM1 with respect to PGND1  
SM2, L2, VIN_SM2 with respect to PGND2  
SM3 , L3 with respect to PGND3  
SM3SW with respect to PGND3  
FB3 with respect to PGND3  
V(BAT) with respect to AGND1, Battery power only  
All other pins (except AGNDn and PGNDn) with respect to AGND1  
AGND2, AGND3, , DGND1, DGND2DT, PGND0, PGND1, PGND2, PGND3 with respect to AGND1  
Input Current, AC pin  
Input Current, USB pin  
Output continuous current, SYS, VIN_CHG pins  
Output continuous current, BAT pin  
–3000 mA  
Continuous Current at L0, PGND0, L1, PGND1  
Continuous Current at L3, PGND3  
1500 mA  
1000 mA  
Continuous Current at L2, PGND2  
2000 mA  
Operating free-air temperature, TA  
–40°C to 85°C  
125°C  
Maximum junction temperature, TJ  
Storage temperature, TSTG  
–65°C to 150°C  
2000 V  
ESD (Human Body Model) rating , all pins  
ESD (Charged-Device Model) rating, all pins  
ESD (Machine Model) rating, all pins  
250 V  
150V  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
2
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
2.2 THERMAL INFORMATION  
ZWS  
UNITS  
THERMAL METRIC  
169 PINS  
θJA  
Junction-to-ambient thermal resistance(1)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance(3)  
33.1  
8.8  
θJCtop  
θJB  
18  
°C/W  
0.2  
ψJT  
Junction-to-top characterization parameter(4)  
Junction-to-board characterization parameter(5)  
Junction-to-case (bottom) thermal resistance(6)  
ψJB  
17  
θJCbot  
n/a  
(1) JESD51-2a 描述的环境中,按照 JESD51-7 的规定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然对流条件下的结至环  
境热阻抗。  
(2) 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但可在 ANSI SEMI 标准 G30-  
88 中找到内容接近的说明。  
(3) 按照 JESD51-8 中的说明,通过在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结至电路板的热阻。  
(4) 结至顶部的特征参数,( ψJT),估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中描述的程序从仿真数据中提取出该  
参数以便获得 θJA  
(5) 结至电路板的特征参数,(ψJB),估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第7 章)中描述的程序从仿真数据中提取出该  
参数以便获得 θJA  
(6) 通过在外露(电源)焊盘上进行冷板测试仿真来获得结至芯片外壳(底部)热阻。 不存在特定的 JEDEC 标准测试,但可在 ANSI SEMI  
标准 G30-88 中找到了内容接近的说明。  
2.3 DISSIPATION RATINGS  
T
A 25°C  
TA = 55°C  
POWER RATING  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
PACKAGE  
Psi_Jb  
POWER RATING  
ZWS(1)  
20°C/W  
5000 mW  
3500 mW  
2750 mW  
2000 mW  
(1) This data is based on using the JEDEC High-K board and the exposed die pad is connected to a Cu pad on the board. This is  
connected to the ground plane by a via matrix.  
2.4 RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
4
MAX  
16.5(1)  
5.5  
UNIT  
AC and USB with respect to AGND1  
V(SYS) with respect to AGND1  
V
V
V
V
2.9  
2.9  
2.15  
V(BAT) with respect to AGND1, battery power only  
3.25  
4.6  
V(BAT) with respect to AGND1, battery connected, AC or USB  
power selected, Selected power source >2.9 V  
ANLG1,ANLG2, ANLG3 with respect to AGND2  
0
2.6  
5.5  
V
V
Greater of : 1.7 V OR Minimum input voltage  
required for LDO/Converter operation outside  
dropout region  
VIN_LDO01, VIN_LDO23, VIN_LDO678, VIN_LDO4, VIN_LDO9  
with respect to AGND1  
Greater of : 2.3 V OR Minimum input voltage  
required for LDO/Converter operation outside  
dropout region. 2.9 V to meet parametric  
specifications.  
VIN_SM0 with respect to PGND0  
5.5  
V
VIN_SM1 with respect to PGND1  
5.5  
5.5  
V
V
VIN_SM2 with respect to PGND2  
SM3 with respect to PGND3  
28  
V
GPIOx with respect to AGND1  
0
5.5  
V
All other pins (except AGNDn and PGNDn) with respect to AGND1  
Operating free-air temperature, TA  
0
-40  
5.5  
V
85  
°C  
°C  
°C  
Maximum junction temperature, TJ , functional operation  
Maximum junction temperature, TJ , electrical characteristics  
External supply ramp rate, AC or USB pins  
-40  
125  
0
125  
1 V/mSec  
1 V/μSec  
(1) Thermal operating restrictions are reduced or avoided if input voltage does not exceed 5 V.  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
ELECTRICAL SPECIFICATIONS  
3
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
2.5 ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
QUIESCENT CURRENT – V(BAT) = 4.2V NO EXTERNAL LOADS AT SYS PIN OR SUPPLY OUTPUTS  
Quiescent current, 6586x in normal or sleep  
IQ(ON)  
Power path active, control logic in low power mode(1)  
260  
375  
μA  
mode. All supplies and peripherals off  
IQ(DIGITAL)  
Quiescent current, control logic  
Control logic in high power mode(2)  
584  
716  
14  
19  
6
870  
25  
μA  
μA  
μA  
mA  
SM0, SM1: enabled, PFM mode, from SYS pin  
SM2: enabled, PFM mode, from SYS pin when Vout=3.3V  
SM0, SM1, SM2: enabled, PWM mode, from VINSMn pin  
32  
IQ(SMn)  
SM0, SM1, SM2 operating quiescent current  
disabled via I2C  
1
μA  
I(LDOx) = no external load  
I(LDOx) = –1 mA  
24  
24  
160  
1
29  
μA  
μA  
μA  
μA  
μA  
μA  
150  
LDO quiescent current, All but one LDOx  
disabled  
IQ(LDOx)  
I(LDOx) = –50 mA  
LDO disabled, TJ = 85°C  
SM3 enabled, not switching  
Enabled, switching  
3
30  
15  
200  
IQ(SM3)  
SM3 operating quiescent current(3)  
ADC operating quiescent current  
Disabled via I2C  
1
μA  
Conversion active  
1
mA  
Not converting, waiting for trigger  
170  
μA  
IQ(ADC)  
ADC disabled via I2C  
1
μA  
μA  
RTC_OUT LDO enabled  
27  
45  
15  
IQ(RTC)  
RTC_OUT pin quiescent current  
RTC_OUT disabled via I2C, TJ = 85°C . Externally applied(4)  
V(RTC_OUT) = 2 V supplies real time clock counters and xtal oscillator  
μA  
32k buffer enabled, 100 pF external load  
Disabled via I2C  
24  
8
μA  
μA  
IQ(V32K)  
V32K supply bias current , 32k buffer enabled  
I2C INTERFACE TIMING – SDA, PSDA, PSCLK, SCLK(3)  
tR  
SCLK/SDATA rise time  
SCLK/SDATA fall time  
300  
300  
ns  
ns  
ns  
μs  
ns  
ns  
tF  
tW(H)  
tW(L)  
tSU(STA)  
tH(STA)  
SCLK pulse width high  
SCLK Pulse Width Low  
Setup time for START condition  
600  
1.3  
600  
600  
START condition hold time after which first clock  
pulse is generated  
Pull-up resistors connected to 2.2V  
tSU(DAT)  
tH(DAT)  
Data setup time  
100  
0
ns  
ns  
ns  
Data hold time  
tSU(STOP)  
Setup time for STOP condition  
600  
Bus free time between START and STOP  
condition  
t(BUF)  
FSCL  
1.3  
μs  
Clock Frequency  
400  
0.4  
kHz  
I2C BUFFERS – SDA, PSDA, PSCLK, SCLK  
VIL(I2C)  
VIH(I2C)  
VOL(I2C)  
IO(I2C)  
Low level input voltage  
High level input voltage  
Low level output voltage  
Maximum load current(3)  
Input current  
V
V
1.15  
SDA, PSDA configured as output, IOL=3mA  
SDA, PSDA configured as output  
V(pin) = 5V or 0V  
0.4  
8
V
mA  
μA  
pF  
pF  
ILKG(I2C)  
CI2C  
1
Input pin capacitance  
SDAT, SCLK, PSDAT, PSCLK pins  
SDAT, SCLK, PSDAT, PSCLK  
10  
I2C bus capacitance  
CI2CBUS  
400  
(1) Control logic in low power mode when all functions are off and no I2C communication is on going  
(2) Control logic in high power mode when one of the following events happen: 6586x in power-up/rtc/rtc_on/supplyseq states, any  
converter in PWM mode, SM3 enabled, PWM driver enabled, ADC conversion on-going, I2C communication on-going, voltage transition  
for DVM supplies on-going, AC or USB supply detected.  
(3) Not production tested.  
(4) External voltage supplied by supercap or coin cell connected to RTC_OUT pin, see application diagram for details.  
4
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUT BUFFERS: RESUME, SM0EN, SM1EN, HOTRST, LDO4EN, SYNCEN  
VIL(DIG)  
VIH(DIG)  
ILKG(DIG)  
Low level input voltage  
High level input voltage  
Input current  
0.4  
V
V
1.15  
V(pin) = 5V  
0.1  
150  
175  
μA  
RESUME pin , pull-down to AGND  
HOTRST pin, pull-up to V2V2  
55  
55  
100  
100  
RDIG  
Internal resistor  
kΩ  
PUSH-PULL OUTPUT BUFFERS, USER SELECTABLE OUTPUT VOLTAGE – NORTC, NOPOWER  
VBFRPWR  
Buffer positive supply  
Internally connected to V32K pin  
IOL = 3 mA, V32K = 1.5 V  
IOL = 10 μA, V32K > 1.1 V  
IOH = 1.4 mA, V32K = 1.5 V  
IOH = -10 μA, V32K = 1.1 V  
IOH = 1.4 mA, V32K = 1.5 V  
IOH = -10 μA, V32K = 1.1 V  
V(pin) = 2.5 V  
1.1 to 3.3  
V
V
0.6  
0.1  
VOL(OBFR)  
Low level output voltage  
V32K-0.6  
V32K-0.11  
V32K-0.6  
High level output voltage, referenced to output  
buffer supply, NORTC  
VOH(OBFR)  
V
V
High level output voltage, referenced to output  
buffer supply,NOPOWER  
VOH(OBFR)  
V32K-0.11  
IOL(OBFR)  
IOH(OBFR)  
Maximum low level sink current load(1)  
Maximum high level source current load(1)  
5
mA  
mA  
V(pin) = 0 V  
–5  
OPEN DRAIN OUTPUT BUFFERS – INT  
IOL = 3 mA, V32K = 1.5 V  
0.6  
0.1  
0.1  
VOL(OBFR)  
Low level output voltage  
V
IOL = 10 μA, V32K > 1.1 V  
ILKG(OBFR)  
Output leakage current  
Output buffer, open-drain mode, V(pin)=5.5V  
μA  
PUSH-PULL OUTPUT BUFFERS – LDO4PG, SM0PG, SM1PG  
IOL = 3 mA  
0.6  
0.1  
VOL(DBFR)  
Low level output voltage  
V
V
IOL = 10 μA  
IOH = 3 mA  
IOH = –10 μA  
V(pin) = 2.5 V  
V(pin) = 0 V  
1.5  
1.8  
High level output voltage , buffer configured as  
push-pull via I2C  
VOH(DBFR)  
IOL(DBFR)  
IOH(DBFR)  
Maximum low level sink current load(1)  
Maximum high level source current load(1)  
5
mA  
mA  
–5  
32kHz OUTPUT BUFFER , V(32K)=1.7V (min), UNLESS OTHERWISE STATED  
V32B  
Externally applied bias rail for output driver(1)  
Buffer supply voltage  
V(32K) = 1.1 V, IOL = 100 μA  
V(32K) = 1.1 V, IOL = 1 mA  
V(32K) = 1.5 V, IOL = 5 mA  
V(32K) = 1.1 V, IOH = -1 μA  
V(32K) = 1.5 V, IOH = 5 mA  
32 kHz clock driving 50pF load cap  
Peak to peak  
1.0  
3.6  
0.05  
0.2  
V
V
VOL  
Output low level  
0.5  
V32K-0.05  
V32K-0.5  
VOH  
Normal operation  
Rise/fall time  
Output jitter  
V
tF, tR  
VJITTER  
15  
15  
15  
ns  
ns  
RMS  
32kHz CLOCK AND 32K SWITCHING TIMING  
Frequency within 2% of typical value, frequency defined by XTAL  
characteristics  
tXTAL  
F32K  
XTAL oscillator stabilization time(1)  
Internal 32 kHz clock  
320  
36  
ms  
Frequency  
28  
32  
kHz  
INTERNAL REFERENCES AND POR  
UVLO  
Internal UVLO detection threshold  
V(2V2) decreasing  
-3%  
1.85  
120  
2.2  
3%  
2.3  
V
mV  
V
VUVLO_HYS  
VO(2V2)  
ISH2V2  
UVLO detection hysteresis  
Output Voltage  
V(2V2) increasing from decreasing trigger point  
Always on,  
V(2V2) = 0V  
2.1  
18  
Short Circuit current limit  
mA  
(1) Not production tested.  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
5
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
2.6 ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RTC_OUT LDO  
VO(RTC_OUT)TYP=1.25, 1.50, 1.8, 2.5,  
Output Voltage, Selectable via I2C(1)  
V
2.7,2.85,3.1,3.3  
Dropout voltage, I(RTC_OUT) = –15 mA  
V(SYS) = 2.8 V  
600  
mV  
Total accuracy, V(AC):2V to 4.7V, –15mA load,  
V(BAT1)=V(BAT2)=V(USB)=0V  
VO(RTC_OUT)  
RTC_OUT output voltage  
Short Circuit current limit  
–5%  
5%  
Load regulation, V(AC)=3.5V,  
load: 1mA –15mA  
1%  
1%  
Line regulation, 5mA load,V(AC): 3.5V18V,  
V(BAT1) =V(BAT2) =V(USB) =0V  
ISHRTC  
20  
2.3  
mA  
V
2.35  
1.9  
75  
2.45  
2
RTC_OUT power good fault detection  
threshold  
Falling RTC_OUT pin voltage, set via I2C  
V(RTCGOOD)  
1.8  
VHYS(RTC)  
Power good fault detection hysteresis  
Internal RTC UVLO detection threshold  
UVLO detection hysteresis  
Rising RTC_OUT pin voltage (Referenced to V(RTCGOOD) threshold)  
50  
145  
10%  
200  
mV  
V
VUVLO_RTC  
VRTC Decreasing  
VRTC Increasing  
–10%  
100  
1.5  
150  
VUVLO_RTC_HYS  
BOOT-UP TIMING  
tPOR  
mV  
Power-on-reset delay(2)  
Boot-up time  
Fixed time, measured from 2V2 > UVLO  
7.2  
8
8.8  
ms  
ms  
Fixed time  
75  
tBOOT  
Accuracy, referenced to tBOOT(tTYP)  
Fixed time  
–10%  
675  
225  
2.7  
10%  
825  
275  
3.3  
tHOTPLUG  
tWAKEUP  
tCHECK  
tMAX  
Hot plug deglitch time  
Wakeup pulse width  
RTC check wait time  
RTC_ON watchdog timer  
750  
ms  
μs  
Fixed time  
250  
Fixed time  
3
4×TNORTC  
10  
ms  
ms  
Fixed time  
Fixed time  
tNORTC  
NORTC pin pulse width value  
ms  
(3)  
Accuracy, relative to tNORTC  
–10%  
10%  
(TYP)  
tNOPOWER = KNOPOWER × CNOPOWER  
Pulse width accuracy, CNOPOWER < 400nF  
Fixed time  
0.25  
KNOPOWER  
NOPOWER pin pulse width const.  
Reboot and sleep request timeout  
ms/nF  
–25%  
18  
25%  
22  
tWAIT  
20  
5
ms  
ms  
ms  
tWAIT1  
4.5  
5.5  
5.5  
tSYNCEND  
Synchronization complete delay  
Supply sync delay time  
Measured from all supplies synchronized  
Regulator specific. See Table 3-10  
4.5  
5
TSYNCDLY(TYP) = 1.25, 2.5, 3.75, 15,  
20, 32, 40, 64  
TSYNCDLY  
ms  
(3)  
Accuracy, relative to TSYNCDLY(TYP)  
-10  
+10  
POWER GOOD AND THERMAL FAULT DETECTION  
Applies to all non-masked power good signals, output voltage  
falling edge.  
tDGL(PGFLT)  
Power good deglitch time  
4
5
6
ms  
tSHUT  
Thermal shutdown  
Increasing junction temperature  
Decreasing junction temperature  
Rising temperature  
150  
30  
°C  
°C  
μs  
tHYS(SHUT)  
tDGL(TSHUT)  
Thermal shutdown hysteresis  
Thermal shutdown detection delay  
15  
20  
25  
(1) Setting the RTC_OUT output voltage below the RTC_OUT power good threshold will result in a NORTC pulse being always generated  
during reboot cycles or when exiting sleep.  
Setting the RTC_OUT output voltage below VUVLO_RTC disables the use of the internal real time clock counter and xtal oscillator.  
(2) Not production tested.  
(3) Not production tested.  
6
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RESUME CONTROL TIMING  
tRESUME(H)  
tRESUME(L)  
RESUME pulse width high(1)  
RESUME pulse width low(1)  
550  
220  
ms  
ms  
SEQUENCER REBOOT CONTROL  
Reboot started when normal state is set and  
V(HOT_RST) < VREBOOT for  
t > TDT(HRST)  
VHOTRST  
Reboot control threshold  
0.4  
V
THRST(H)  
HOT_RST max pulse width  
60  
16  
ms  
TDT(HRST)  
HOT_RST min detection pulse width  
HOT_RST deglitch  
4
μs  
EXTERNAL SUPPLY DETECTION AND STATUS  
System voltage V(SYS) decreasing.  
Total accuracy, referenced to V(LOWSYS)TYP  
2.8  
V
%
VLOWSYS  
Minimum system voltage detection threshold  
-2  
2
VHYS(LOWSYS)  
TDGL(LOWSYS)  
Minimum system voltage detection hysteresis V(SYS) increasing from decreasing trigger point  
200  
5
mV  
Minimum system voltage detection deglitch  
V(SYS) decreasing  
time  
ms  
Input voltage detection threshold. Input voltage AC detected when V(AC) – V(BAT) > VIN(DT) AND V(AC) > VACMIN  
VIN(DT)  
180  
mV  
increasing, referenced to battery voltage  
USB detected when V(USB) – V(BAT) > VIN(DT)  
AC not detected:  
when V(AC) – V(BAT) < VIN(NDT) USB not detected when V(USB) –  
V(BAT) < VIN(NDT)  
Input voltage removal threshold. Input voltage  
decreasing, referenced to battery voltage  
VIN(NDT)  
65  
mV  
V
AC voltage increasing , AC not detected when V(AC) < VACMIN  
AC voltage decreasing , AC not detected when V(AC) < VACMIN  
Hysteresis  
3.5  
3.3  
3.8  
3.6  
VACMIN  
AC detection threshold, relative to GND  
185  
40  
mV  
ms  
ms  
ms  
V
tACSYS  
AC threshold to SYS delay  
AC Power detected deglitch  
USB Power detected deglitch  
Input over voltage detection  
Input over voltage detection delay  
AC=3.8V to SYS=HIGH  
50  
tDGLAC(DT)  
tDGLUSB(DT)  
VIN(OVP)  
AC voltage increasing  
22.5  
5.5  
USB voltage increasing  
5.8  
6.0  
6.3  
tDLY(INOVP)  
Rising AC or USB voltage  
Enabled at sleep mode  
100  
μs  
ANALOG COMPARATOR  
VCOMP  
Voltage threshold  
1.21  
1.245  
50  
1.28  
0.1  
V
ILK(COMP)  
COMP pin leakage current(1)  
μA  
V(COMP):01.5V0, measured from input to  
NOPOWER:HILO  
tP  
Propagation time  
μs  
(1) Not production tested.  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
7
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
2.7 ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
POWER PATH CURRENT LIMIT AND PROTECTION FUNCTIONS  
–40°C < TA < 85°C  
–25°C < TA < 85°C  
85  
92  
100  
100  
Selected Input switch not in dropout. I2C  
settings: USBMODE=HI, USBLIMIT=LO  
IUSB100  
mA  
Selected input current limit, applies to USB input  
only  
Selected Input switch not in dropout. I2C settings: USBMODE=HI,  
USBLIMIT=HI  
IUSB500  
380  
500  
mA  
A
Input current limit range, AC input  
2.75  
2.11  
Selected input current limit, applies to AC input  
Selected input current limit, applies to USB input  
Total accuracy, relative to IINLIM(TYP)  
–20%  
20%  
IINLIM  
Input current limit range, USB input configured with USBMODE=LO  
Total accuracy, relative to IINLIM(TYP)  
A
–12.5%  
12.5%  
Load at SYS pin: 80% of current limit value to 120% of regulation value  
(IINLIM, IUSB100 or IUSB500). Time measured from load transient to input current  
within regulation limits.  
tOVSH  
Input current limit transient time  
20  
μs  
Load at SYS pin: 80% of current limit value to 120% of regulation value  
IOVSHPKUSB Input current limit overshoot  
(IINLIM, IUSB100 or IUSB500),  
t < TOVSH  
20%  
VSH(SYS)  
RFLT(USB)  
RFLT(AC)  
IBATSYS  
SYS power path Short Circuit detection threshold  
All power path switches set to OFF if V(SYS) < VSH(SYS)  
V(SYS) < VSH(SYS), internal resistor connected from USB to SYS  
V(SYS) < VSH(SYS), internal resistor connected from AC to SYS  
1.6  
1.8  
550  
550  
2.0  
V
A
SYS short circuit recovery pull-up resistor  
SYS short circuit recovery pull-up resistor  
Battery Switch over-current detection  
3.0  
6.0  
Short circuit detection blanked for TDGL(BATSYS), measured from batt  
switch: OFF->ON or initial sys power path enable  
100  
110  
1
120  
ms  
ms  
mA  
tDGL(BATSYS) Battery Switch over-current detection delay  
Battery switch already turned on or sys power path enabled  
Battery Switch over-current recovery pull-up current V(BAT) –V(SYS) > VOC(SYS), internal current source connected from BAT to  
IFLT(SYS)  
30  
source  
SYS  
VSUP(SYS)  
Supplement detection threshold  
Battery switch ON at V(BAT)-V(SYS) > VSUP(SYS)  
Battery switch OFF at V(BAT)-V(SYS)<VSUPNDT(SYS)  
40  
7
mV  
mV  
VSUPNDT(SYS) Supplement mode not detected threshold  
POWER PATH INTEGRATED MOSFETS CHARACTERISTICS  
VACDO = V(AC)-V(SYS); V(AC)=4V AC input current limit set to 2.0A (typ)  
IO(SYS) = 1.0A  
VACDO  
AC switch dropout voltage  
USB switch dropout voltage  
190  
mV  
mV  
mV  
I(SYS)+I(BAT)= 0.425A  
240  
240  
VUSBDO = V(USB)-V(SYS);  
VUSBDO  
V(USB)=4.6V  
I(SYS)+I(BAT)= 85mA  
VBATDODCH = V(BAT)-V(SYS), V(BAT)=3V,  
I(BAT)= 1A  
VBATDODCH Battery Switch dropout voltage, discharge  
40  
155  
POWER PATH TIMING CHARACTERISTICS  
tSW  
tSW  
Switching from AC to BAT  
Switching from USB to BAT  
No USB, AC power removed  
No AC, USB power removed  
150  
150  
μs  
μs  
POWER PATH DISCHARGE SWITCHES  
IDCH(AC)  
AC pin discharge current  
USB pin discharge current  
Always ON, V(AC) > 1 V  
Always ON, V(USB) > 1 V  
100  
100  
μA  
μA  
IDCH(USB)  
SM0, SM1, SM2 DC/DC CONVERTERS  
Converter turned OFF at V(VIN_SMn) < VSMUV  
Hysteresis , rising input voltage  
2.0  
V
Low input voltage detection threshold, input voltage  
decreasing  
VSMUV  
100  
200  
200  
mV  
mΩ  
mΩ  
μA  
High side MOSFET on-resistance  
Low side MOSFET on-resistance  
High side leakage current  
VIN_SMx = 3.6V, 100% duty cycle  
VIN_SMx = 3.6V, 0% duty cycle  
RDS(ON)  
ILK_HS  
ILK_LS  
1
1
TJ = 85°C  
Low side leakage current  
μA  
SM0  
1550  
1550  
1300  
2.025  
2400  
2400  
1900  
2.25  
mA  
ILIM  
High side and low side current limit  
2.9V VIN_SMx 5.5V  
SM1  
SM2  
fSW  
Oscillator frequency  
PWM mode  
2.475  
MHz  
Power fault detection, Voltage decreasing, referenced to programmed  
output voltage  
–13.0%  
–10% –7.0%  
5%  
VSMPG  
Power good threshold  
Hysteresis, voltage increasing, referenced to VSMPG  
8
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
ELECTRICAL CHARACTERISTICS (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SM0, low range, 25mV  
steps  
VO(SMx)TYP = 0.725 to 1.50  
VO(SMx)TYP = 0.725 to 1.50  
VO(SMx)TYP = 3 to 4.55  
SM1, low range, 25mV  
steps  
Adjustable output voltage range, Selectable via I2C  
VIN_SMx = 2.9V to 5.5V  
V
SM2, low range, 25mV  
steps  
VO(SMx)  
VIN_SMx = 2.9V to 5.5V, PFM mode  
–1%  
–2%  
1%  
3%  
2%  
Output Voltage Accuracy, relative to VO(SMx)TYP  
VIN_SMx = 2.9V to 5.5V, PWM mode, 0mA < IOUT< 1A  
PWM mode, VIN_SMn>2.7V, Load<1A  
DC output voltage load regulation  
DC output voltage line regulation  
0.25  
0.1  
%/A  
%/V  
VIN_SMx = VOUT + 0.5V (min. 2.5V), PWM mode VIN_SMn>2.7V, Load<1A  
SM0, SM1: typical  
values:Instantaneous, 0.11,  
0.22, 0.44, 0.88, 1.76, 3.52,  
7.04  
Value set via I2C, available options:  
KRAMP(SMx) Voltage change ramp constant  
mV/μs  
Time to start switching, measured from end of I2C command enabling  
converter  
tStart  
Start-up time  
210  
μs  
tRamp  
RDCH  
VOUT Ramp UP time  
Time to ramp from 5% to 95% of VOUT  
SMx disabled  
250  
250  
μs  
Discharge switch resistance  
VIN_SM  
x/  
IPFM(ENTER) Load current to enter PFM mode  
VIN_SMx = 2.9V to 5.5V, duty cycle > 85%  
A
34Ω  
CLC  
External LC capacitor(1)  
External LC inductor(1)  
External Input capacitor(2)  
4.7  
1.5  
10  
22  
μF  
μH  
μF  
LLC  
4.7  
47  
CSMINP  
LDO’S : LDO0, LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7, LDO8, LDO9  
Electrical characteristics over the output current range IO(LDOx)  
Electrical characteristics specified , max load current = 75mA  
2.3  
1.7  
5.5  
5.5  
VINMIN  
IO  
Input voltage range(2)  
Output current(2)  
V
300  
mA  
Available output voltages:  
V(LDO6)TYP = 1.20 (LDO0  
only), 1.25, 1.5, 1.8, 2.5, 2.7,  
2.85, 3.1,3.3  
Output Voltage, Selectable via I2C. LDO6, LDO0, LDO3, LDO5,  
LDO7,LDO8,LDO9  
V
LDO1 Output Voltage, Selectable via I2C  
LDO4 Output Voltage, Selectable via  
Low range, 25mV steps  
V(LDO1)TYP = 0.725 to 1.5  
V(LDO4)TYP = 1.7 to 2.475  
V(LDO2)TYP= 0.725 to 1.5  
High range, 25mV steps  
Low range, 25mV steps  
V
LDO2 Output Voltage, Selectable via I2C  
Dropout, V(IN) = V(LDOx)TYP - 0.1V , V(IN) = 2.3V, 250mA load. 1 LDO active at  
a time per input pin group(3)  
415  
mV  
LDOx Output Voltage, Selectable via I2C  
V(LDOx)  
(4)  
Total accuracy, V(VIN_LDOx) = V(LDOx)TYP + 0.5V, 10mA 250 mA  
See  
3.5%  
0.5%  
Line Regulation, 100mA load, V(VIN_LDOx)  
:
–0.5%  
V(LDOx) TYP + 0.5V4.7V  
Load regulation, load change from 10mA 250 mA  
V(VIN_LDOx) > V(LDOx) TYP + 0.5V  
(5)  
See  
%
250mA load, 1V input to output ,CL = 4.7 μF  
100mA load, 0.5V input to output, CL = 1 μF  
40  
40  
PSRR  
PSRR at 20 kHz  
dB  
ISC  
Short circuit current limit  
Discharge resistor  
Output grounded  
LDOnILIM=HI  
310  
1
700  
mA  
RDCH  
KRAMP  
LDOx disabled  
415  
Voltage change ramp constant  
LDO2, LDO4 only. Fixed value, hardwired at top level  
7.04  
mV/μs  
μF  
load <100 mA  
load>100 mA  
CCOMP  
External output capacitor value(2)  
Stable operation  
0.01μF/mA, min cap value =  
1μF  
Power good threshold  
Hysteresis  
LDO output voltage increasing  
95%  
5%  
PGOOD  
Decreasing voltage from increasing trigger  
(1) Not production tested  
(2) Not production tested  
(3) Dropout not measured for devices with V(IN)<2.3V because minimum VIN is 2.3V  
(4) MIN = –3.2 – (0.105 × ILOAD / V(LDOX)TYP), ILOAD = load current in amps  
(5) MIN = –2.5 – (0.105 × ILOAD, ILOAD = load current in amps  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
9
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
2.8 ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SM3 BOOST CONVERTER – CONTROL CIRCUIT AND POWER STAGE  
VVIN(SM3)  
VO(SM3)  
V(OVP3)  
Input Voltage range(1)  
Output voltage range(1)  
Output over-voltage trip  
V(VIN)  
2.5  
VVIN(SM3)  
26.5  
6.5  
26.5  
29  
V
V
V
V(SM3)  
OVP detected at V(SM3) > V(OVP3) rising  
28  
OVP not detected at  
V(SM3) < V(OVP3) – VHYS(OVP3)  
VHYS(OVP3)  
Output over-voltage hysteresis  
FB3 voltage sense threshold(1)  
1.8  
V
238  
248  
258  
mV  
V
V(SM3REF)  
V(FB3) below regulation point at V(FB3) < V(SM3REF)  
1.237  
1.25  
1.263  
V
(SM3REF)  
FB3  
IO(SM3)  
LED current(1)  
0
25  
mA  
I
O(SM3)  
=
R
Current range,  
D(SM3SW) = 0% to 99.96%, set via I2C,  
2048 steps 0.05% minimum step  
LED switch duty cycle, selectable via I2C  
D(SM3SW)  
Duty cycle range  
%
2048 pulses within repetition rate time, repetition rate set via  
I2C  
F(REP_SM3)TYP = 550Hz, 366Hz, 275Hz  
or 220Hz  
Hz  
LED switch duty cycle pattern repetition rate,  
selectable via I2C  
F(REP_SM3)  
Total accuracy, relative to F(REP_SM3)TYP  
V(VIN) = 3.8 V; I(SM3SW) = 20 mA  
–12%  
12%  
2
RDSON(SM3SW)  
ILKG(SM3SW)  
RDSON(L3)  
LED switch FET on-resistance(1)  
LED switch FET leakage  
1
1
μA  
mΩ  
μA  
mA  
μs  
4
Power stage FET on-resistance  
Power stage FET leakage  
V(VIN) = 3.8 V; I(L3) = 200 mA  
2.5V< V(IN) <5.5V  
300  
1
600  
4
ILKG(L3)  
IMAX(L3)  
Power stage FET current limit  
Maximum on time detection threshold  
Minimum off time detection threshold  
400  
5
500  
6
600  
15  
500  
TSM3PWR(ON)  
TSM3PWR(OFF)  
310  
400  
ns  
HIGH/LOW BRIGHTNESS CONTROL  
RDSON(ISM3G) Output buffer switch on resistance  
ILKG(ISM3G) Leakage current  
SWITCHING FREQUENCY  
V(VIN)=2.5V, I(ISM3G)=25mA  
Hi-Z mode, V(ISM3G)=5V  
1
2
1
μA  
FSM3  
Maximum switching frequency(1)  
At nominal load  
1
MHz  
GPIO1-4 – DIGITAL OUTPUT BUFFER  
IOL = 3 mA  
0.6  
0.1  
VOL(GPIO)  
Low level output voltage  
V
V
IOL = 10 μA  
IOH = –3 mA  
IOH = –10 μA  
V(GPIOn) = 2.5V  
V(GPIOn) = 0V  
1.5  
1.8  
VOH(GPIO)  
High level output voltage GPIO  
IOL(GPIO)  
IOH(GPIO)  
Maximum low level sink current  
5
mA  
mA  
Maximum high level source current(1)  
–5  
GPIO1-4 – DIGITAL INPUT BUFFER  
VIL(GPIO) Low level input voltage  
VIH(GPIO)  
0.4  
0.5  
V
V
High level input voltage  
Input current  
1.15  
V(GPIOn) = 5V or 0V, GPIO configured,  
GPIO input current sink OFF  
ILKG(GPIO)  
μA  
GPIO1-4 - INPUT CURRENT SINK  
ON if TPS658629-Q1 is not in sleep mode and GPIO is not  
configured.  
ISNK(GPIO)  
Input current sink  
2.5  
3.5  
μA  
(1) Not production tested  
10  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
2.9 ELECTRICAL CHARACTERISTICS (Continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PWM DRIVER, PWM OPEN DRAIN OUTPUT  
IPWM  
VOL  
Maximum operating current(1)  
PWM driver ON  
200  
0.2  
mA  
V
Low level output voltage  
IOL = 100mA , V(AVDD6)=3V  
Set via I2C F(PWM)TYP = 0.75, 1.5,  
2.3, 3.0, 4.5, 6.7,11.7,23.4  
F(PWM)  
PWM driver frequency  
Frequency range  
kHz  
D(PWM) = 6.25% to 100%, set via  
I2C, 15 steps, 6.25% minimum step  
D(PWM)  
PWM driver duty cycle  
Duty cycle range  
%
ILKG(PWM)  
Output off leakage current  
Output voltage = 5V, driver set to OFF  
1
5
μA  
LED_PWM DRIVER, LED_PWM OPEN DRAIN OUTPUT  
ILEDPWM  
Maximum operating current(1)  
LED_PWM driver duty cycle  
PWM driver ON  
200  
mA  
%
D(LEDPWM) = 0% to 99.6%, set via  
I2C, 255 steps, 0.4% minimum step  
Duty cycle range, 128Hz repetition rate  
D(LEDPWM)  
Total accuracy, relative to selected value  
IOL = 50mA , V(AVDD6) = 3 V  
–10%  
10%  
0.2  
5
VOL(LEDPWM)  
ILKG(LEDPWM)  
Low level output voltage  
Output off leakage current  
V
Output voltage = 5 V, driver set to OFF  
1
μA  
RGB DRIVER, RED/GREEN/BLUE OPEN DRAIN OUTPUTS  
TFLASH(RGB) = 1 to 8 sec, set via I2C,  
0.5sec minimum step, 15 steps  
TFLASH(RGB)  
TFLASH(ON)  
D(RGB)  
RGB1, RGB2 flashing period  
RGB1, RGB2 flash on time  
RGB1, RGB2 duty cycle  
Flashing period range  
s
s
Set via I2C, TFLASH(ON) = 0.1, 0.15,  
0.2, 0.25, 0.3, 0.4, 0.5, 0.6  
Flash on time range, value selectable by I2C  
Duty cycle range, value selectable via I2C  
D(RGB) = 0% to 96.875%, set via  
I2C, 3.125% minimum step  
%
Sink current, set via I2C  
ISINK(RGB1)TYP = 0, 3.7, 7.4, 11.1  
mA  
V(RED1)  
V(GREEN1) =  
V(BLUE1) = 0.25V  
=
Absolute accuracy relative to  
selected value  
–35%  
–10%  
35%  
10%  
ISINK(RGB1)  
RGB1 output sink current  
Relative accuracy between sink  
current outputs  
ISINK(RGB TYP = 0, 3.7, 7.4, 11.1,  
at  
Sink current, set via I2C  
mA  
14.9, 18.6, 23.2, 27.3,  
V(RED2) = V(GREEN2)  
V(BLUE2) = 0.25V  
=
Absolute accuracy relative to  
selected value  
ISINK(RGB2)  
RGB2 output sink current  
Low level output voltage  
–35%  
–10%  
35%  
Relative accuracy between sink  
current outputs  
10%  
0.25  
Output low voltage, RED1/GREEN1/BLUE1 pins, one current  
source ON (4 or 8 or 12mA source) ON at a time, V(AVDD6)=3V  
VLO(RGB1)  
V
Output low voltage, 16mA load, RED2/GREEN2/BLUE2 pins,  
one current source ON (4 or 8 or 16mA source) ON at a time,  
V(AVDD6) =3V  
VLO(RGB2)  
ILKG(RGB)  
Low level output voltage  
Output off leakage current  
0.25  
2
V
Output voltage = 5V, driver set to OFF  
1
μA  
DIG_PWM , DIG_PWM1 DRIVER , PUSH PULL OUTPUT  
Frequency range  
110  
–10%  
1.7  
125  
140  
Hz  
F(PWM)  
PWM driver frequency  
Output level, HI  
Total accuracy, relative to selected value  
V(DIG_PWM) at I(DIG_PWM) = –5 mA  
V(DIG_PWM) at I(DIG_PWM) = –10 μA  
V(DIG_PWM) at I(DIG_PWM) = 5 mA  
V(DIG_PWM) at I(DIG_PWM) = –10 μA  
10%  
VHI(DIGPWM)  
V
V
2
0.5  
0.1  
VLO(DIGPWM)  
Output level, LO  
(1) Not production tested  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
11  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
2.10 ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ADC REFERENCE  
TA = 25°C  
2.595  
2.577  
3.0  
2.6  
2.595  
4.5  
2.605  
2.607  
VREF(ADC)  
Internal ADC reference voltage  
V
Over full temp range  
V(ADC_REF)=AGND1  
ISHRT(ADCREF)  
CREFADC  
ADC ANALOG INPUTS  
Internal reference short circuit limit  
mA  
Maximum capacitance for internal ADC reference  
supply(1)  
6.8  
μF  
VRNG(CH1_6)  
VRNG(CH7_10)  
VRNG(CH8_9)  
CIN(ADC)  
Full scale input range Channels 1–6(1)  
Positive inputs, Full scale ~ 2.60 V  
Positive inputs, Full scale ~ 4.622 V  
Positive inputs , Full scale ~ 5.54 V  
0
0
0
VREF(ADC)  
VREF(ADC) × 1.78  
VREF(ADC) × 2.13  
V
V
Full scale input range Channels 7, 10(1)  
Full scale input range Channels 8, 9(1)  
Input capacitance (all channels)  
Input resistance (all channels)  
V
15  
pF  
MΩ  
μA  
RINADC(CH1_6)  
ILKGADC(CH1_6)  
AVDD6-V(ANLG) >= 500mV  
ADC disabled  
1
Leakage current (all channels)  
0.1  
1
ADC – DC ACCURACY  
RES(ADC)  
MCD(ADC)  
INL(ADC)  
Resolution  
SAR ADC  
10  
None  
±3  
Bits  
Missing codes  
Integral linearity error  
Differential non-linearity error  
LSB  
LSB  
DNL(ADC)  
±1  
Deviation from the first code transition (00..00) to  
(00.001) fro m the ideal AGND + 1LSB  
OFFZERO(ADC)  
OFFCH(ADC)  
GAIN(ADC)  
Offset error  
1
1
5
5
LSB  
LSB  
LSB  
LSB  
Offset error match between channels(1)  
Gain error  
Deviation in code from the ideal full scale code  
(11…111) for the full scale voltage  
±8  
2
GAINCH(ADC)  
Gain error match  
Any two channels  
ADC THROUGHPUT SPEED  
ADCCLK  
Sampling clock(1)  
506  
562  
16  
619  
kHz  
μs  
Sampling time - 9X ADCCLK  
ADCTCONV  
Sampling and conversion time  
conversion and settling time -11X ADCCLK  
20  
μs  
ANLGx (USER_DEFINED INPUTS) BIAS CURRENTS  
00 =  
0
3
ADC channel 1 bias current, set via I2C  
register ADC_WAIT bits (ADICH2_1,  
ADICH2_2)  
01 =  
10 =  
11 =  
μA  
I(ANLGx)  
ANLG1, 2, or 3 pin internal pull-up current source  
10  
50  
Total accuracy  
–20%  
20%  
(1) Not production tested  
12  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
2.11 PIN DESCRIPTION, REQUIRED EXTERNAL COMPONENTS  
2.11.1 ZWS Package Pinout (Top View)  
N13  
L3  
N12  
N11  
N10  
N9  
N8  
N7  
N6  
N5  
N4  
N3  
N2  
N1  
FB3 DIG_PWM LED_PWM BLUE1 VIN_LDO9 VIN_LDO4 XTAL2 VIN_LDO01 GPIO4  
GPIO2  
HSK  
M2  
COMP  
M1  
M13  
L3  
M12  
M11  
M10  
M9  
M8  
M7  
M6  
M5  
M4  
M3  
SM3_SW nNOPOWER VTSBIAS GREEN1 BLUE2  
LDO9  
XTAL1 LDO0  
GPIO3  
GPIO1  
ANLG3 ANLG1  
L13  
L12  
L11  
L10  
L9  
L8  
L7  
L6  
L5  
L4  
L3  
L2  
L1  
PGND3 PGND3  
SM3  
nINT  
RED1 GREEN2  
LDO4  
LDO1  
HSK  
HSK  
ANLG2  
LDO4PG  
RSVDC  
K13  
K12  
K11  
K10  
HSK  
K9  
K8  
K7  
K6  
K5  
K4  
K3  
K2  
K1  
AVDD6  
SM3IG  
RSVDA  
PWM  
RED2  
HSK  
DGND1  
HSK  
AGND2 ADC_REF LDO7  
LDO8  
J13  
TS  
J12  
J11  
J10  
J9  
J8  
J7  
J6  
J5  
J4  
J3  
J2  
J1  
VREF1V25 V2V2  
AGND1  
HSK  
HSK  
HSK  
HSK  
HSK  
PSDAT  
PSCLK  
SDAT VIN_LDO678  
H2 H1  
H13  
RSVDB  
G13  
H12  
RSVDB  
G12  
H11  
H10  
H9  
H8  
H7  
H6  
H5  
HSK  
G5  
H4  
SCLK  
G4  
H3  
RSVDB RTC_OUT HSK  
HSK  
G8  
HSK  
G7  
HSK  
G6  
VIN_SM1 VIN_SM1 VIN_SM1  
G11  
BAT  
G10  
BAT  
G9  
G3  
G2  
L1  
G1  
L1  
BAT  
BAT  
HSK  
HSK  
HSK  
HSK  
HSK  
LDO6  
VIN_SM1  
F13  
USB  
F12  
F11  
USB  
E11  
F10  
SM0EN  
E10  
F9  
F8  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
USB  
HSK  
HSK  
HSK  
HSK  
HSK DIG_PWM2 PGND1 PGND1 PGND1  
E13  
USB  
D13  
AC  
E12  
SM2  
D12  
AC  
E9  
E8  
E7  
HSK  
D7  
E6  
HSK  
D6  
E5  
HSK  
D5  
E4  
HSK  
D4  
E3  
E2  
E1  
SM1EN SYNCEN  
HSK  
D9  
HSK  
D8  
PGND0 PGND0 PGND0  
D11  
AC  
D10  
HSK  
D3  
D2  
L0  
D1  
L0  
HSK  
HSK  
V32K DGND2DT  
HSK  
nNORTC VIN_SM0  
C4 C3  
C13  
AC  
C12  
AC  
C11  
SYS  
B11  
C10  
C9  
L2  
B9  
C8  
C7  
C6  
C5  
AGND3  
B5  
C2  
C1  
VIN_SM2  
B10  
PGND2 OUT32K  
SM1  
B6  
SM0 VIN_SM0 VIN_SM0 VIN_SM0  
B4 B3 B2 B1  
B13  
B12  
B8  
B7  
SYS  
A13  
SYS  
SYS  
A12  
SYS  
SYS  
A11  
SYS  
VIN_SM2  
A10  
L2  
A9  
L2  
PGND2  
A8  
LDO2  
A7  
LDO3  
A6  
AGND3 SM0PG LDO4EN RESUME VIN_SM0  
A5 A4 A3 A2 A1  
VIN_SM2  
PGND2  
LDO5 VIN_LDO23 SM1PG AGND3 TNOPOWERnHOT_RST VIN_SM0  
PIN FUNCTIONS  
EXTERNAL REQUIRED COMPONENTS  
(See Application Diagram)  
NAME  
PIN  
I/O  
DESCRIPTION  
SYSTEM POWER PATH  
AC  
C12,C13,  
D11,D12,  
D13  
I
Adapter input voltage, connect to AC_DC adapter 1µF(minimum) capacitor to AGND1 pin to minimize over-voltage  
positive output terminal (DC voltage)  
transients during AC power hot-plug events.  
USB  
BAT  
SYS  
E13,F11,  
F12,F13  
I
USB input voltage, connect to USB port positive  
power output  
1μF(minimum) capacitor to AGND1 pin, to minimize over-voltage  
transients during USB power hot-plug events.  
G10,G11,  
G12,G13  
I/O  
O
Battery power  
Connect to battery positive terminal. Connect 4.7μF capacitor  
(minimum) from BAT pin to clean analog ground plane  
A11,A12,  
A13,B11,  
B12,B13,  
C11  
AC/BAT/USB power path output. Connect to  
System main power rail (system power bus)  
10μF capacitor to AGND1 pin  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
13  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
PIN FUNCTIONS (continued)  
EXTERNAL REQUIRED COMPONENTS  
(See Application Diagram)  
NAME  
PIN  
I/O  
DESCRIPTION  
REFERENCE SYSTEM  
TNOPOWER  
AVDD6  
A3  
K13  
J11  
J12  
I
NOPOWER pin pulse width  
Internal supply rail  
Capacitor to AGND1. Capacitor value sets pulse width  
O
O
O
Connect 4.7μF capacitor to AGND1. Place close to pin.  
V2V2  
Internal 2.2V supply rail  
1μF (minimum) decoupling capacitor to AGND1. Place close to pin.  
VREF1V25  
Internal 1.25V reference filter capacitor  
100nF (minimum) decoupling cap to AGND1. Do not exceed 1 µF.  
Place close to pin.  
TEMPERATURE SENSOR  
TS  
J13  
K11  
M10  
I/O  
I
Temperature sense input, current source output  
Connect to battery pack thermistor to sense battery pack temperature  
Connect to external thermistor pull-up resistor  
RSVDA  
VTSBIAS  
O
Thermistor network bias supply, internally  
connected to 2V2 via integrated switch  
RSVDB  
H11,H12,  
H13  
I/O  
O
RSVDC  
L2  
SM3 BOOST CONVERTER  
L3  
M13,N13  
N12  
O
I
Drain of the integrated boost power stage switch  
4.7μH inductor to SYS pin, external Schottky diode to SM3 pin  
FB3  
White LED duty cycle switch output, LED current  
setting  
External resistor from FB3 pin to PGND3 pin sets LED peak current.  
Connect 100pF (minimum) filter capacitor to PGND3 pin.  
SM3_SW  
SM3IG  
M12  
K12  
I
Integrated white LED duty cycle switch input  
General purpose input/output  
HI-Z Output, controlled via I2C. May be used to set SM3 current gain  
step, implementing a high/low brightness control  
I/O  
SM3  
L11  
I
I
White LED driver output over-voltage detection  
Power ground, SM3 converter  
Connect 1μF capacitor to PGND3 pin. Connect SM3 pin to the  
positive side of white LED ladder.  
PGND3  
DRIVERS  
RED2  
L12,L13  
Connect to the power ground plane  
K8  
L8  
O
O
O
O
O
O
O
Programmable LED driver, open drain output,  
current sink output when active.  
Connect to RED input of RGB LED  
Connect to GREEN input of RGB LED  
Connect to BLUE input of RGB LED  
Connect to RED input of RGB LED  
Connect to GREEN input of RGB LED  
Connect to BLUE input of RGB LED  
GREEN2  
BLUE2  
M8  
L9  
RED1  
GREEN1  
BLUE1  
M9  
N9  
N10  
LED_PWM  
LED_PWM driver output, open drain,  
programmable duty cycle.  
Can be used to drive a keyboard backlight LED or other external  
functions  
PWM  
K9  
N11  
F4  
I
PWM driver, open drain output  
PWM, digital push-pull output  
PWM, digital push-pull output  
May be used to control external vibrator motor  
2V2 output voltage level  
DIG_PWM  
DIG_PWM2  
O
O
2V2 output voltage level  
DC/DC CONVERTERS  
VIN_SM0  
A1,B1,C1,  
C2,C3,D3  
I
I
SM0 synchronous buck converter positive supply 2 x 10μF capacitor to PGND0 pin  
input  
SM0  
C4  
SM0 synchronous buck converter output voltage  
sense  
LC filter: 1.5μH Inductor and 10μF Capacitor. Connect capacitor to  
PGND0 pin  
L0  
D1,D2  
O
SM0 synchronous buck converter power stage  
output  
1.5μH inductor to SM0 pin  
PGND0  
E1,E2,E3  
I
I
Power ground, SM0 converter  
Connect to the power ground plane  
VIN_SM1  
G3,H1,  
H2,H3  
SM1 synchronous buck converter positive supply 2 x 10μF capacitor to PGND1 pin  
input  
SM1  
L1  
C6  
I
SM1 synchronous buck converter output voltage  
sense  
LC filter: 1.5μH Inductor and 10μF Capacitor. Connect capacitor to  
PGND1 pin  
G1,G2  
O
SM1 synchronous buck converter power stage  
output  
1.5μH inductor to SM1 pin  
PGND1  
F1,F2,F3  
I
I
Power ground, SM1 converter  
Connect to the power ground plane  
VIN_SM2  
A10,B10,  
C10  
SM2 synchronous buck converter positive supply 2 x 10μF capacitor to PGND2 pin  
input  
SM2  
E12  
I
SM2 synchronous buck converter output voltage  
sense  
LC filter: 1.5μH Inductor, 10μF Capacitor. Connect capacitor to  
PGND2 pin  
14  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
PIN FUNCTIONS (continued)  
EXTERNAL REQUIRED COMPONENTS  
(See Application Diagram)  
NAME  
PIN  
I/O  
DESCRIPTION  
L2  
A9,B9,C9  
O
SM2 synchronous buck converter power stage  
1.5μH inductor to SM2 pin  
output  
PGND2  
ADC  
A8,B8,C8  
I
Power ground pin, SM2 converter  
Connect to power ground plane  
AGND2  
ANLG1  
K4  
I
I
Analog ground, ADC subsystem  
Connect to analog ground plane  
M1  
Analog input1 to ADC, programmable current  
source output  
Can be used to monitor additional system or pack parameters  
ANLG2  
L3  
M2  
K3  
I
I
Analog input2 to ADC, programmable current  
source output  
ANLG3  
Analog input3 to ADC, programmable current  
source output  
ADC_REF  
I/O  
ADC internal reference filter or ADC external  
reference input  
Connect a maximum capacitance of 6.8uF referenced to the AGND2  
pin.  
EXTERNAL SYSTEM RESET AND CLOCK OUTPUTS, ADJUSTABLE LEVEL  
V32K  
INT  
D7  
I
Power supply for host interface buffers  
L10  
O
Interruption pin nINT pin is LO when interrupt is  
requested by TPS658XX.  
Open drain output  
OUT32K  
NOPOWER  
NORTC  
C7  
M11  
D4  
O
O
O
32kHz clock from external XTAL  
Push-pull output, V32K level  
Host reset output, LO level, adjustable width  
RTC_OUT POR pulse, LO level, fixed width  
SEQUENCING CONTROL INPUTS  
HOT_RST  
RESUME  
LDO4EN  
A2  
B2  
I/O  
Reboot cycle request  
Sleep on/off request  
LDO4 enable control  
Supply enable control  
Hardware reboot cycle control  
Hardware sleep on/off control  
I
I
I
B3  
SM0EN  
F10  
Active low signal.  
(CORECTRL)  
SM1EN  
E11  
E10  
I
I
Supply enable control  
Supply enable control  
SYNCEN  
I2C INTERFACE  
PSDAT  
Power I2C clock line  
Connect to external host power I2C clock. Connect 2K external pull-  
up resistor. Connect to 2V2 pin if not used  
J4  
J3  
J2  
H4  
I/O  
PSCLK  
I
I/O  
I
I2C interface data line  
I2C interface clock line  
SDAT  
Connect 2K external pull-up resistor.  
SCLK  
RTC OSCILLATOR  
XTAL1  
M6  
N6  
I
I
Xtal oscillator  
Connect to external xtal  
XTAL2  
INPUT / OUTPUT  
GPIO1  
M3  
I/O  
General purpose input/output  
General purpose input/output  
Input: SM0, SM1, SM2 power saving mode and output voltage setting  
control  
GPIO2  
GPIO3  
GPIO4  
COMP  
N3  
M4  
N4  
N1  
B4  
A5  
L1  
I/O  
I/O  
I/O  
I
Input: ADC external trigger or LDO0, LDO1 enable  
Input: LDO2, LDO3 enable  
Input: ADC external trigger or LDO6, LDO7, LDO8 enable  
General purpose comparator input, ADC input  
SM0 power good status  
SM0PG  
SM1PG  
LDO4PG  
O
O
SM1 power good status  
O
LDO4 power good status  
LINEAR REGULATORS  
VIN_LDO01  
LDO0  
N5  
M5  
L6  
I
Positive supply input for LDO0, LDO1  
LDO0 output  
1μF (minimum) decoupling capacitor to AGND1  
1μF(minimum) capacitor to AGND1  
O
O
I
LDO1  
LDO1 output  
1μF(minimum) capacitor to AGND1  
VIN_LDO23  
LDO2  
A6  
B7  
B6  
Positive supply input for LDO2, LDO3  
LDO2 output  
1μF (minimum) decoupling capacitor to AGND1  
1μF(minimum) capacitor to AGND1  
O
O
LDO3  
LDO3 output  
1μF(minimum) capacitor to AGND1  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
15  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
PIN FUNCTIONS (continued)  
EXTERNAL REQUIRED COMPONENTS  
(See Application Diagram)  
NAME  
PIN  
I/O  
DESCRIPTION  
VIN_LDO4  
LDO4  
N7  
L7  
I
Positive supply input for LDO4  
LDO4 output  
1μF (minimum) decoupling capacitor to AGND1  
1μF(minimum) capacitor to AGND1  
O
O
I
LDO5  
A7  
J1  
LDO5output  
1μF(minimum) capacitor to AGND1  
VIN_LDO678  
LDO6  
Positive supply input for LDO0, LDO1  
LDO6 output  
1μF (minimum) decoupling capacitor to AGND1  
1μF(minimum) capacitor to AGND1  
G4  
K2  
K1  
N8  
M7  
H10  
O
O
O
I
LDO7  
LDO7 output  
1μF(minimum) capacitor to AGND1  
LDO8  
LDO8 output  
1μF(minimum) capacitor to AGND1  
VIN_LDO9  
LDO9  
Positive supply input for LDO9  
LDO9 output  
1μF (minimum) decoupling capacitor to AGND1  
1μF(minimum) capacitor to AGND1  
O
O
RTC_OUT  
Low leakage LDO output. Can be connected to a 1μF (minimum) capacitor to AGND1 pin or supercap  
super-capacitor or secondary cell, if used as a  
RTC backup output.  
ANALOG AND DIGITAL GROUND PINS  
DGND1  
AGND1  
AGND3  
DGND2DT  
HSK  
K6  
J10  
I
I
Digital ground pin  
Analog ground pin  
Analog ground pin  
Digital ground pin  
Connect to digital ground plane  
Connect to analog ground plane  
Connect to analog ground plane  
Connect to analog ground plane  
A4,B5,C5  
D6  
I
I/O  
See  
N/A There is an internal electrical connection between all HSK pins of the IC. The HSK pins must be connected to the same  
Package  
Drawing  
potential as the AGND1 pin on the printed circuit board. Do not use the HSK pins as the primary ground input for the  
IC.  
16  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
2.11.2 Block Diagram  
TPS6586xx  
PROCESSOR  
POWER PATH, OVP  
AND INPUT  
CURRENT LIMIT,  
REFSYS  
DRIVERS  
AC  
USB  
BAT  
VINLDO9  
VINLDO678  
LDO6  
LDO6  
1.25-3.3V  
LDO9  
LDO9  
1.25-3.3V  
LDO7  
1.25-3.3V  
LDO7  
LDO8  
SM3IG  
L3  
LDO8  
1.25-3.3V  
SM3  
WHITE LED  
DRIVER  
SM3_SW  
FB3  
RTC_OUT LDO  
1.25-3.3V  
PGND3  
RTC_OUT  
SYS  
SYS  
VIN_SM0  
LDO5  
1.25-3.3V  
0.725 - 1.5V  
31x25mv steps  
L0  
LDO5  
SM0  
PGND0  
CONTROL  
LOGIC  
VINLDO4  
LDO4  
LDO4  
1.7-2.475V,  
31X25mV steps  
VIN_SM1  
L1  
0.725 - 1.5V  
31x25mv steps  
SM1  
PGND1  
VINLDO23  
LDO2  
LDO2  
0.725-1.5V ,  
31x25mV steps  
VIN_SM2  
L2  
3 - 4.55V  
31x25mv steps  
SM2  
PGND2  
LDO3  
1.25-3.3V  
LDO3  
6 INTERNAL  
CHANNELS  
VINLDO01  
LDO0  
ANLG1  
LDO0  
1.25-3.3V  
ANLG2  
ANLG3  
10 CHANNEL  
MUX  
COMP  
LDO1  
LDO1  
0.725 -1.5V  
31x25mV steps  
A/D  
!CONVERTER  
ADC_REF  
AGND2  
RTC_OUT  
COMP  
AGND1  
AGND3  
HOST INTERFACE AND SEQUENCING  
I2C INTERFACE  
AND INTERRUPT  
CONTROLLER  
SEQUENCING AND RESET  
CONTROLLER  
I/O  
DGND1  
RTC  
DGND2DT  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
17  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
2.12 TYPICAL CHARACTERISTICS  
LDO9 Vout vs. Iout (Temp. = 25°C) 1.250V  
LDO9 Vout vs. Iout (Temp. = 25°C) 3.30V  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
Vin=Vout + 0.5, Ta=25C  
Vin=4.65v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
1.22  
1.21  
1.20  
0.10  
1.00  
10.00  
Iout [ma]  
100.00  
1000.00  
0.10  
1.00  
10.00  
100.00  
1000.00  
Iout [ma]  
Figure 2-1.  
Figure 2-2.  
LDO0 Vout vs. Iout (Temp. = 25°C) 1.250V  
LDO0 Vout vs. Iout (Temp. = 25°C) 3.30V  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
Vin=Vout + 0.5, Ta=25C  
Vin=4.65v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
100.00  
1000.00  
0.10  
1.00  
10.00  
100.00  
1000.00  
Iout [ma]  
Iout [ma]  
Figure 2-3.  
Figure 2-4.  
18  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
(continued)  
LDO1 Vout vs. Iout (Temp. = 25°C) Low Range  
LDO1 Vout vs. Iout (Temp. = 25°C) High Range  
0.75  
0.74  
0.73  
0.72  
0.71  
0.70  
0.69  
0.68  
0.67  
0.66  
2.64  
2.62  
2.60  
2.58  
2.56  
2.54  
2.52  
2.50  
Vin=Vout+0.5, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
100.00  
1000.00  
0.10  
1.00  
10.00  
100.00  
1000.00  
Iout [ma]  
Iout [ma]  
Figure 2-5.  
Figure 2-6.  
LDO2 Vout vs. Iout (Temp. = 25°C) Low Range  
LDO2 Vout vs. Iout (Temp. = 25°C) High Range  
0.75  
0.74  
0.73  
0.72  
0.71  
0.70  
0.69  
0.68  
0.67  
0.66  
2.65  
2.63  
2.61  
2.59  
2.57  
2.55  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C]  
Vin=5.5, Ta=25C  
Vin=Vout+0.5v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
100.00  
1000.00  
0.10  
1.00  
10.00  
100.00  
1000.00  
Iout [ma]  
Iout [ma]  
Figure 2-7.  
Figure 2-8.  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
19  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
(continued)  
LDO3 Vout vs. Iout (Temp. = 25°C) 1.250V  
LDO3 Vout vs. Iout (Temp. = 25°C) 3.30V  
3.40  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=Vout + 0.5, Ta=25C  
Vin=4.65v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
Iout [ma]  
100.00  
1000.00  
0.10  
1.00  
10.00  
100.00  
1000.00  
Iout [ma]  
Figure 2-9.  
Figure 2-10.  
LDO4 Vout vs. Iout (Temp. = 25°C) 2.475V  
LDO4 Vout vs. Iout (Temp. = 25°C) 1.700V  
1.74  
1.73  
1.72  
1.71  
1.70  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=Vout + 0.5, Ta=25C  
Vin=4.65v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
100.00  
1000.00  
0.10  
1.00  
10.00  
100.00  
1000.00  
Iout [ma]  
Iout [ma]  
Figure 2-11.  
Figure 2-12.  
20  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
(continued)  
LDO5 Vout vs. Iout (Temp. = 25°C) 3.30V  
LDO5 Vout vs. Iout (Temp. = 25°C) 1.250V  
3.40  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=Vout + 0.5, Ta=25C  
Vin=4.65v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
Iout [ma]  
100.00  
1000.00  
0.10  
1.00  
10.00  
Iout [ma]  
100.00  
1000.00  
Figure 2-13.  
Figure 2-14.  
LDO6 Vout vs. Iout (Temp. = 25°C) 3.30V  
LDO6 Vout vs. Iout (Temp. = 25°C) 1.250V  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=Vout + 0.5, Ta=25C  
Vin=4.65v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
100.00  
1000.00  
0.10  
1.00  
10.00  
100.00  
1000.00  
Iout [ma]  
Iout [ma]  
Figure 2-15.  
Figure 2-16.  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
21  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
(continued)  
LDO7Vout vs. Iout (Temp. = 25°C) 1.250V  
LDO7 Vout vs. Iout (Temp. = 25°C) 3.30V  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
Vin=Vout + 0.5, Ta=25C  
Vin=4.65v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
100.00  
1000.00  
0.10  
1.00  
10.00  
100.00  
1000.00  
Iout [ma]  
Iout [ma]  
Figure 2-17.  
Figure 2-18.  
LDO8 Vout vs. Iout (Temp. = 25°C) 3.30V  
LDO8 Vout vs. Iout (Temp. = 25°C) 1.250V  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
Vin=2.3v, Ta=25C  
Vin=3.9v, Ta=25C  
Vin=5.5v, Ta=25C  
Vin=Vout + 0.5, Ta=25C  
Vin=4.65v, Ta=25C  
Vin=5.5v, Ta=25C  
0.10  
1.00  
10.00  
100.00  
1000.00  
0.10  
1.00  
10.00  
Iout [ma]  
100.00  
1000.00  
Iout [ma]  
Figure 2-19.  
Figure 2-20.  
22  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
(continued)  
LDO2 0.725V DropOut at 25°C  
LDO0 1.25V DropOut at 25°C  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
0.80  
0.78  
0.76  
0.74  
0.72  
0.70  
0.68  
0.66  
0.64  
0.62  
0.60  
Temp. = 25°C  
Iout = 1mA  
Temp = 25°C  
Iout = 1mA  
Temp = 25°C  
Iout = 100mA  
Temp = 25°C  
Iout =250mA  
Temp. = 25°C  
Iout = 100mA  
Temp. = 25°C  
Iout = 250mA  
2..20  
2..00  
1..80  
1..60  
1.40  
1..20  
1.00  
2.30 2.20 2.10 2.00 1.90 1.80 1.70 1.60 1.50 1.40 1.30 1.20 1.10 1.00  
Vin [V]  
Vin [V]  
Figure 2-21.  
Figure 2-22.  
Efficiency SM0 Auto PFM Vout 1.8V at 25°C  
LDO0 3.3V DropOut at 25°C  
100  
3.50  
3.40  
3.30  
3.20  
3.10  
3.00  
2.90  
2.80  
2.70  
2.60  
2.50  
2.40  
2.30  
2.20  
2.10  
2.00  
90  
80  
70  
60  
50  
2.3  
2.8  
3.4  
3.9  
4.4  
4.9  
5.5  
6.0  
2.6  
3.1  
3.6  
4.2  
4.7  
5.2  
5.7  
40  
30  
20  
10  
0
Temp. = 25°C  
Iout = 1mA  
Temp. = 25°C  
Iout = 100mA  
Temp. = 25°C  
Iout = 250mA  
0.0001  
0.001  
0.01  
0.1  
1.0  
10.0  
3.80 3.70 3.60 3.50 3.40 3.30 3.20 3.10 3.00 2.90 2.80 2.70 2.60 2.50  
Iout [A]  
Vin [V]  
Figure 2-23.  
Figure 2-24.  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
23  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
(continued)  
Efficiency SM0 PWM Vout 1.8V at 25°C  
Efficiency SM1 Auto PFM Vout 1.25V at 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
2.3  
2.8  
3.4  
3.9  
4.4  
4.9  
5.5  
6.0  
2.6  
3.1  
3.6  
4.2  
4.7  
5.2  
5.7  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.3  
2.8  
3.4  
3.9  
4.4  
4.9  
5.5  
6.0  
2.6  
3.1  
3.6  
4.2  
4.7  
5.2  
5.7  
0.00100  
0.10000  
0.00010  
0.01000  
Iout [A]  
1.00000  
10.00000  
0.00010  
0.00100  
0.01000  
0.10000  
1.00000  
10.00000  
Iout [A]  
Figure 2-25.  
Figure 2-26.  
Efficiency SM2 Auto PFM Vout 3.25V at 25°C  
Efficiency SM1 PWM Vout 1.250V at 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.3  
2.8  
3.4  
3.9  
4.4  
4.9  
5.5  
6.0  
2.6  
3.1  
3.6  
4.2  
4.7  
5.2  
5.7  
3.0  
3.4  
3.9  
4.3  
4.7  
5.1  
5.6  
6.0  
3.2  
3.6  
4.1  
4.5  
4.9  
5.4  
5.8  
0.001  
0.01  
0.10  
1.0  
10.0  
0.0001  
0.001  
0.01  
0.1  
Iout [A]  
1.0  
10.0  
Iout [A]  
Figure 2-27.  
Figure 2-28.  
24  
ELECTRICAL SPECIFICATIONS  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
(continued)  
Efficiency SM2 PWM Vout 3.25V at 25°C  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.0  
3.4  
3.9  
4.3  
4.7  
5.1  
5.6  
6.0  
3.2  
3.6  
4.1  
4.5  
4.9  
5.4  
5.8  
0.0001  
0.001  
0.01  
0.1  
1.0  
10.0  
Iout [A]  
Figure 2-29.  
Copyright © 2011–2012, Texas Instruments Incorporated  
ELECTRICAL SPECIFICATIONS  
25  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3 DETAILED DESCRIPTION  
3.1 I2C INTERFACE  
Two I2C configurations are implemented in the TPS658629-Q1 device:  
A –Standard I2C interface (SDAT/SCLK engine) : A single I2C communication port provides a simple  
way for an I2C compatible host to access system status information, reset fault modes, and set supply  
output voltages. The I2C port functions as a SLAVE enabling I2C compatible hosts (MASTER) to perform  
WRITES and READS to/from internal registers. The I2C port is a 2-wire bidirectional interface using the  
SCLK (clock) and SDAT (data) pins. The I2C is designed to operate at SCLK frequencies up to 400 kHz.  
The standard 8 bit command is supported. The CMD part of the sequence is the 8 bit register address to  
read or write.  
B – Power I2C interface (PSDAT/PSCLK engine): The TPS658629-Q1 supports processors that use a  
dedicated I2C bus to dynamically adjust critical supply voltages by adding a second I2C bus (Power I2C)  
connected to a second, dedicated I2C engine. The Power I2C port is a 2-wire bidirectional interface using  
the PSCLK (clock) and PSDAT (data) pins. The Power I2C is designed to operate at PSCLK frequencies  
up to 400 kHz. A multiple-byte data-register pair command protocol, not compatible with the standard I2C  
protocol, is supported by the Power I2C engine. The Power I2C engine does not support read operations.  
NOTE  
The Standard and Power I2C engines are always reset by the sequencer when the  
TPS658629-Q1 is in the POWER-UP state and when the SLEEP state is set.  
3.2 I2C ADDRESS  
The TPS658629-Q1 will acknowledge (ACK) addresses 0x68 (writes) and 0x69 (reads) and will NACK any  
other address.  
3.3 DVM REGISTER ACCESS  
The sequencer state machine disables write access to specific supply voltage setting registers when the  
TPS658629-Q1 is initially powered and when the integrated supplies are being sequenced. See the  
sequencer functional description for details.  
3.4 SCLK/SDAT AND PSCLK/PSDAT TIMEOUT  
The TPS658629-Q1 monitors the SCLK/PSCLK clock lines, and it identifies a timeout condition if the clock  
line is held at a logic low for longer than 30ms. The I2C engine is NOT reset when the clock line timeout is  
identified.  
The TPS658629-Q1 monitors the SDAT/PSDAT data lines. The I2C engine will be reset when the data line  
is held at a logic low for more than 30ms.  
3.5 I2C BUS RELEASE  
The TPS658629-Q1 I2C engine does not create START or STOP states on the I2C bus during normal  
operation.  
3.6 I2C BUS ERROR RECOVERY  
The I2C bus specification does not define a method to be used when recovering from a host side bus  
error. During a read operation the SDAT pin can be left in a LO state if the host has not sent enough  
SCLK pulses to complete a transaction (i.e. host side bus error). The TPS658629-Q1 will clear any SDAT  
LO condition if 10 SCLK pulses are sent by the host, enabling recovery from host side bus error events.  
26  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
3.7 I2C COMMUNICATION PROTOCOL  
The following conventions will be used when describing the communication protocol:  
CONDITION  
CODE  
START sent from host  
STOP sent from host  
S
P
TPS658629-Q1 I2C slave address sent from host (WRITE)  
TPS658629-Q1 register address sent from TPS658629-Q1 (READ)  
Non-valid I2C slave address sent from host  
hA0  
hA1  
hA_N  
HCMD  
HCMD_N  
hDATA  
bqDATA  
hA  
Valid TPS658629-Q1 register address sent from host  
Non-valid TPS658629-Q1 register address sent from host  
I/O data byte (8 bits) sent from host to TPS658629-Q1  
I/O data byte (8 bits) sent from TPS658629-Q1 to host  
Acknowledge (ACK) from host  
Not acknowledge (NACK) from host  
hN  
Acknowledge (ACK) from TPS658629-Q1  
bqA  
Not acknowledge (NACK) from TPS658629-Q1  
bqN  
Figure 3-1. I2C Conditions  
For normal data transfers, the data line (SDAT or PSDAT) is allowed to change only when the clock line  
(SCLK or PSCLK) is low, and one clock pulse is used per bit of data. The data line must remain stable  
whenever the clock line is high, as data changes when the clock is high are reserved for indicating the  
start and stop conditions. Each data transfer is initiated with a start condition and terminated with a stop  
condition.  
When addressed, the TPS658629-Q1 device generates an acknowledge bit after the reception of each  
byte by pulling the data line Low. The master device (microprocessor) must generate an extra clock pulse  
that is associated with the acknowledge bit. After the acknowledge/not acknowledge bit, the TPS658629-  
Q1 leaves the data line high, enabling a STOP condition generation.  
3.8 I2C READ AND WRITE OPERATIONS  
The TPS658629-Q1 supports the standard I2C one byte Write. The basic I2C read protocol has the  
following steps:  
1. Host sends a start and sends TPS658629-Q1 address  
2. TPS658629-Q1 ACK’s that this is a valid I2C address and that the bus is configured for write  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
27  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3. Host sends TPS658629-Q1 register address  
4. TPS658629-Q1 ACK’s that this is a valid register and stores the register address to be read  
5. Host sends a repeated start and TPS658629-Q1 I2C slave address, reconfiguring the bus for read  
6. TPS658629-Q1 ACK’s that this is a valid address and that bus is reconfigured  
7. Bus is in read mode, TPS658629-Q1 starts sending data from selected register  
The I2C write protocol is similar to the read, without the need for a repeated start and bus being set in  
write mode. In a WRITE, it is not necessary to end each 1 byte WRITE command with a STOP as a  
START will have the same effect (repeated start).  
The host can complete a READ or a WRITE sequence with either a STOP or a START.  
NOTE  
Read operations are not supported for the PSDAT/PSCLK I2C engine.  
Figure 3-2. I2C Read/Write Example  
3.9 VALID WRITE SEQUENCES (SDAT/SCLK, PSDAT/PSCLK)  
The TPS658629-Q1 will always ACK its own address. If CMD points to an allowable READ or WRITE  
address, the device writes the address into its RAM address register and sends an ACK. If CMD points to  
a non-allowed address, the device does NOT write the address into its RAM address register and sends a  
NACK.  
S
hA0  
bqA  
S
hA0  
bqA  
hCMD  
bqA  
S
hA0  
bqA  
hCMD_N  
bqN  
28  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
3.10 ONE BYTE WRITE (SDAT/SCLK, PSDAT/PSCLK)  
The data is written to the addressed register at the end of the bq ACK, ending the one byte write  
sequence when the RAM address and the data byte are stored in the I2C registers. The host can cancel a  
WRITE by sending a STOP or START before the trailing edge of the ACK clock pulse.  
S
hA0  
bqA  
hCMD  
bqA  
hDATA  
bqA  
3.11 VALID READ SEQUENCES (SDAT/SCLK ONLY)  
The TPS658629-Q1 will always ACK its own address.  
S
hA1  
bqA  
Upon receiving hA1, TPS658629-Q1 starts at the current location of the RAM address register. The  
START and the STOP both act as priority interrupts. If the host has been interrupted and is not sure  
where it left off, it can send a STOP and reset the TPS658629-Q1 state machine to the WAIT state; once  
in the WAIT state, the TPS658629-Q1 will ignore all activity on the SCLK and SDAT lines until it receives  
a START. A repeated START and START in the I2C specification are both treated as a START.  
S
hA0  
bqA  
hCMD  
hA1  
bqA  
P
S
hA0  
bqA  
hCMD  
bqA  
S
bqA  
bqDATA  
hN  
P
3.12 VALID READ SEQUENCES (SDAT/SCLK ONLY)  
S
hA1  
bqA  
bqDATA  
hA  
hN  
P
Incremental read sequences  
S
hA1  
bqA  
bqData  
hA  
bqDATA  
. . .  
bqDATA  
hN  
P
3.13 NON-VALID SEQUENCES  
START and non-hA0 or non-hA1 Address: A START followed by an address which is not hA0 or hA1 will  
be NACKED.  
S
hA_1  
bqN  
Attempt to Specify Non-Allowed READ Address  
If the CMD points to a non-allowed READ address (reserved registers), bq will send a NACK back to the  
host and it will not load the address in the RAM address register. Note that the TPS658629-Q1 NACKS  
whether a stop is sent or not.  
S
hA0  
bqA  
hCMD_N  
bqA  
P
S
hA0  
bqA  
hCMD_N  
bqN  
Attempt to Specify Non-Allowed WRITE Address  
If the host attempts to WRITE to a READ-ONLY or non-accessible address, the TPS658629-Q1 ACKS the  
CMD containing the allowed READ address, loads the address into the address register and ACKS after  
the host sends the next data byte. A subsequent hA1 READ could read this address, but the data sent by  
the host will not have been written.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
29  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
S
hA0  
bqA  
hCMD  
bqA  
hDATA  
bqA  
3.14 INCREMENTAL READ (SDAT/SCLK ONLY)  
The SDAT/SCLK I2C interface supports incremental read operations. Each register must be accessed in a  
single read operation. A valid WRITE address is required to write to the RAM, and a valid READ address  
is required to specify the initial RAM address where the READ starts. Once a read command is received,  
the RAM data for the specified address is output to the host. If the host chooses, it can loop through the  
remaining addresses; the address is automatically incremented by one at the end of each read. If the loop  
gets to the top address, it automatically rolls over to address 0x00 and the sequence stops.  
3.15 I2C COMMUNICATION PROTOCOL – POWER I2C INTERFACE, PINS PSDAT/PSCLK  
The Power I2C interface is designed to support fast write operations using multiple register-data pair  
sequences. The Power I2C engine is a write-only engine, and it does not support read operations.  
During a write sequence, the host sends the start command, followed by the TPS658629-Q1 address.  
Then the host sends the register address byte, followed by eight bits of the data for the respective register  
(Register1 Address/Data in Figure 3-3). From this point on the TPS658629-Q1 will accept all the following  
2 byte pairs as a random register address, followed by the data content to be written to that register. This  
process continues until the host sends a valid stop condition after the last register (Register N in Figure 3-  
3) is written. A typical multi-byte sequence is shown in Figure 3-3.  
Figure 3-3. Power I2C Protocol  
3.16 SIMULTANEOUS STANDARD AND POWER I2C OPERATION  
The TPS658629-Q1 has individual address pointers for the Power I2C engine and Standard I2C engine.  
The value written to the register will be defined by the relative timing between read/write pulses when  
simultaneous I2C read/write operations happen. Simultaneous write/read operations to the same register  
will be handled as follows:  
1. Both Standard I2C and Power I2C are executing operations accessing distinct registers at the same  
time (simultaneous read/read, read/write, write/read or write/write): No conflict exists in this case.  
2. Power I2C writes and Standard I2C reads the same register at the same time  
(a) Standard I2C will read the old register value if the Standard I2C read pulse is generated at least  
110nsec (typ) before the Power I2C write pulse happens.  
(b) Standard I2C will read the new register value if the Standard I2C read pulse is generated at least  
110nsec (typ) after the Power I2C write pulse happens.  
3. Power I2C and Standard I2C write to the same register at the same time  
(a) If both write operations are more than 110nsec (typ) apart, the register final value will be set by the  
engine that executes the last write operation.  
(b) a. If both write operations are less than 110nsec (typ) apart, the priority will be given to the Power  
I2C engine. The value from the Power I2C engine will be written into the register, and the data  
received by the Standard I2C operation is not written to the TPS658629-Q1 internal memory.  
30  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
THERE IS NO CLOCK STRETCH FUNCTION IN EITHER SCLK OR PSCLK WHEN A CONFLICT  
SITUATION HAPPENS. THE CONFLICT IS HANDLED INTERNALLY BY GIVING PRIORITY TO  
PSDAT/PSCLK ENGINE.  
3.17 POWER PATH  
3.17.1 RAM Control Bits  
The power path circuit connects one of the power sources plugged into the AC, USB or BAT pins to the  
SYS pin. The supply selection is made based on system parameters monitored by the power path circuit  
and internal RAM control bits in register 0x4C.  
Table 3-1. Power Path Control  
PPATH1 [Addr 0x4C]  
Bit Number  
Defaults in BOLD  
B0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Bit Name  
USBSUSP  
USBDCH  
ACDCH  
CHGRNG  
BOOTOFF  
USBLIMIT  
USBMODE  
PWRSYS  
USB INPUT  
CURRENT LIMIT  
SETTING  
AUTO SYS  
POWER  
SELECTION  
USB SUSPEND  
MODE  
CHARGE  
USB INPUT ILIMIT  
USB INPUT  
CURRENT LIMIT  
Function  
When 0  
When 1  
SPARE  
SPARE  
VOLTAGE RANGE at BOOT PHASE  
SET BY USBLIMIT  
SUSPEND OFF  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
3.95V-4.2V  
100mA  
SET BY USBLIMIT  
BAT TO SYS  
ONLY  
SET BY  
USBMODE AND  
USBLIMIT  
AUTO MODE  
ENABLED  
SUSPEND ON  
4.3V-4.45V  
500mA  
2.25 A  
The input power priority is hard-wired internally, with the AC input having the higher priority, followed by  
the USB input (2nd) and the battery pack (3rd). The SYS pin voltage is not regulated and it will be equal  
to the input voltage (AC, USB or BAT value) minus the voltage drop across the switch that is ON when the  
selected input current limit is not active.  
Setting the control bit PWRSYS (bit 0) to 0, the user can override the power path priority, connecting the  
battery to the SYS pin even if AC or USB are detected. When PWRSYS is 0 and the battery is removed,  
the SYS pin will not be connected back to the AC or USB inputs and thereby will discharge to ground.  
The USB power will be ignored when USBSUSP (bit 7) is 1, connecting only the AC or BAT power  
sources to the SYS pin. If neither AC nor BAT is connected the SYS pin, it will discharge to ground.  
The USB input current is limited to the maximum value programmed by the host via the I2C interface by  
setting bits USBLIMIT (bit 2) and USBMODE (bit 1) as shown in Table 3-2.  
Table 3-2. Power Path Current Limit  
USBMODE  
USBLIMIT  
USB INPUT CURRENT LIMIT  
100 mA max  
AC INPUT CURRENT LIMIT  
0
0
1
0
1
X
500 mA max  
2.2 A min  
2.1 A min  
If the system current requirements exceed the input current limit, the SYS pin voltage will be reduced until  
the power path is set in supplement mode (if pack is connected).  
3.18 SYSTEM STATUS DETECTION  
The TPS658629-Q1 has integrated comparators that monitor the BAT, AC, USB and SYS pin voltages.  
Table 3-3 lists the system power detection conditions:  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
31  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Table 3-3. Power Path Detection Functions  
SYSTEM STATUS  
AC input voltage detected  
USB input voltage detected  
AC over-voltage detected  
USB over-voltage detected  
SYS pin short detected  
DETECTION CONDITIONS(1)  
VIN(OVP) > V(AC) > V(BAT) + VIN(DT)  
VIN(OVP) > V(USB) > V(BAT) + VIN(DT)  
V(AC) > VIN(OVP)  
V(USB) > VIN(OVP)  
V(SYS) < VSH(SYS)  
Battery switch over-current detection  
Supplement mode detection  
I(BAT) > IBATSYS  
V(SYS)<V(BAT)–VSUP(SYS) AND I(BAT)< IBATSYS  
(1) VIN(DT), VSH(SYS), VBATSH, VIN(OVP), VSUP(SYS) are TPS658629-Q1 internal references, refer to the electrical characteristics for additional  
details  
Figure 3-4. Simplified Power Path Block  
The I2C control bits and system status are used by the power path control logic to define the state of the  
power path switches as shown below; a fault condition will be detected when the SYS pin is shorted or a  
battery switch over-current condition is detected.  
32  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-4. Power Path Control  
FAULT  
AC  
USB  
6586xx  
MODE  
AC  
DETECTED  
USB  
DETECTED  
SYS PIN  
CONNECTED TO  
PWRSYS  
USBSUSP  
DETECTE SWITCH SWITCH BATTERY SWITCH  
D
UVLO  
X
X
X
X
X
0
X
X
X
X
X
OFF  
OFF  
ON  
OFF  
OFF  
OFF  
ON  
OFF  
OFF  
NONE  
NOT UVLO  
NOT UVLO  
NOT UVLO  
YES  
NO  
NO  
PULL-UP RES/ISRC  
YES  
NO  
X
ON if Supplement  
mode is required,  
OFF otherwise  
AC  
YES  
OFF  
USB  
1
NOT UVLO  
NOT UVLO  
NOT UVLO  
1
X
X
NO  
NO  
X
YES  
NO  
X
NO  
NO  
NO  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
BATTERY  
BATTERY  
BATTERY  
0
When a fault condition is detected, the fault recovery method (resistor or current source) is defined by the  
input power supply detection:  
Table 3-5. Power Path Fault Recovery Control  
AC DETECTED  
USB DETECTED  
RECOVERY METHOD  
AC PULL-UP RESISTOR ON  
USB PULL-UP RESISTOR ON  
30mA CURRENT SOURCE ON  
YES  
NO  
X
YES  
NO  
NO  
3.19 POWER PATH STATUS  
The power path status is available at register 0xB9, bits BATSYSON, ACSWON, USBSWON , and  
register 0xBB, bits LOWSYS, ACDET, USBDET, AC_OVP and USB_OVP. See the STATUS REGISTER  
section for bit function description.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
33  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.20 CHG1 AND CHG2 RAM REGISTERS  
Table 3-6. Control Registers  
CHG1 [Addr 0x49]  
Bit Number  
Defaults in BOLD  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
RSVD  
RSVD  
BATDCH  
TSON  
RSVD  
RSVD  
RSVD  
RSVD  
BATTERY  
DISCHARGE  
SWITCH  
THERMISTOR  
BIAS  
CONTROL  
Function  
When 0  
When 1  
OFF  
OFF  
ENABLED  
ON  
CHG2 [Addr 0x4A]  
Bit Number  
Defaults in BOLD  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
DTCON  
RSVD  
TSBYP  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
DYNAMIC  
TIMER  
FUNCTION  
ENABLE  
CHARGER  
LDO MODE  
Function  
When 0  
When 1  
OFF  
OFF  
ON  
ON  
3.21 BATTERY DETECTION, TEMPERATURE QUALIFICATION  
Battery pack insertion and battery pack temperature are detected by three comparators that monitor the  
thermistor voltage. The thermistor supply is enabled via I2C when control bit TSON=HI in register CHG1.  
This control bit enables the host software to turn on the thermistor bias when the pack temperature needs  
to be measured via the ADC, minimizing system quiescent current when operating under battery power.  
3.22 BATTERY DISCHARGE SWITCH  
An internal switch will discharge the BAT pin to ground when the battery is not detected. This switch is  
enabled via I2C control bit BATDCH on register CHG1.  
3.23 TPS658629-Q1 OPERATING MODES  
The TPS658629-Q1 has an internal state machine that sets the operating modes based on the system  
status and host commands. The state machine directly controls the state of the integrated supplies during  
power-up sequences and normal operation. It also can change the on/off state of all integrated power  
supplies and peripherals to implement protection functions or execute external hardware control or host  
software commands.  
34  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
3.24 STATE MACHINE DIAGRAM  
V(AC) > VUVLO  
OR  
NO POWER  
POWER UP(B)  
ALL REGISTERS RESET TO  
DEFAULT  
V(USB) > VUVLO  
OR  
V(BAT) > VUVLO  
ALL  
SUPPLIES  
OFF  
ENABLE POWER PATH  
OPERATION  
nNOPOWER=LO  
TPS6585X  
IN UVLO  
MODE  
V(SYS) > VLOWSYS AND t>TPOR  
V(2V2) < VUVLO  
{ [ INPUT POWER(AC OR USB): NOT DETECTED Ð DETECTED] OR  
[ RESUME=HI FOR 550ms (min) DETECTED ] OR [ RTC_ALARM=HI ]}  
AND  
CYCLE=  
INITIAL POWER UP  
ANY  
STATE  
[ V(SYS) > VLOW_SYS AND SLEEP NOT SET BY THERMAL FAULT ]  
RTC(B)  
ALL SUPPLIES OFF  
FORCE RTC_OUT LDO OFF  
nNOPOWER=LO  
RESET/START TCHECK TIMER  
AUTOBOOT ENABLED AND  
V(SYS) > VLOW_SYS AND  
SLEEP NOT SET BY THERMAL FAULT  
t >TWAIT  
CYCLE=POWER UP DONE  
AND  
HARD REBOOT  
CYCLE= INITIAL POWER UP  
AND  
V(SYS) > VLOW_SYS AND  
t > TCHECK  
ALL SYNC SUPPLIES OFF  
nNOPOWER=LO  
RESET/START TWAIT TIMER  
V(SYS) > VLOW_SYS AND  
t > TCHECK  
RTC_ON(B)  
ALL SUPPLIES OFF  
WAIT(B)  
FORCE RTC_OUT LDO ON  
SLEEP STATE  
nNOPOWER=LO  
SUPPLIES OFF  
FORCE RTC_OUT LDO ON  
ENABLE nNOPOWER TIMER  
RESET/START TMAX TIMER  
nNOPOWER=LO  
ALL SUPPLIES OFF  
ALL REGISTERS RESET TO DEFAULT  
RTC REGISTERS RESET IF RTC_OUT < VUVLO_RTC  
EE-LOADABLE REGISTERS ARE  
NOT RESET (KEEP VALUES)  
ALL OTHER REGISTERS RESET TO DEFAULT  
RESET/START TIMERS: TNORTC  
THOTPLUG, TBOOT  
,
t >TWAIT  
AND  
REBOOT REQUEST  
TO HARD REBOOT  
ENABLED  
BOOT TIMER EXPIRES  
OR  
V(RTC_OUT) > VRTCLOW  
OR t > TMAX  
NO I2C COMMUNICATION  
[ HOTPLUG TIMER EXPIRES AND  
V(SYS) < VLOW_SYS FOR 5mSEC AND  
SLEEP BY LOWSYS ENABLED]  
SUPPLYSEQ(B)  
FORCE RTC_OUT LDO ON  
RTC REGISTERS NOT RESET (KEEP VALUES)  
ALL OTHER REGISTERS RESET TO DEFAULT  
RESET/START TIMERS: TNORTC , THOTPLUG, TBOOT  
EXECUTE SUPPLY SEQUENCING  
t > TWAIT – TWAIT1  
nNOPOWER=LO  
RESET/START TIMER TSYNCEND WHEN  
SEQUENCING IS COMPLETE  
SUPPLY  
BOOT TIMER EXPIRES  
OR  
SEQUENCING  
COMPLETE  
AND  
[ HOTPLUG TIMER EXPIRES AND  
V(SYS) < VLOW_SYS FOR 5mSEC AND  
SLEEP BY LOWSYS ENABLED]  
t > TWAIT1  
t > TSYNCEND  
POWER GOOD CHECK(B)  
FORCE RTC_OUT LDO ON  
PGOOD FAULT  
DETECTED  
NO PGOOD FAULT  
NO THERMAL FAULT  
AND  
REBOOT SET VIA I2C OR  
nHOTRST PIN LO PULSE  
DETECTED  
SLEEP EXIT SET VIA I2C  
AND  
CYCLE=POWER UP DONE  
NORMAL MODE  
SLEEP REQUEST  
REBOOT  
REQUEST  
ENABLE WRITE TO DVM REGISTERS  
RTC REGISTERS RESET IF RTC_OUT < VUVLO_RTC  
TURN OFF ENABLE PIN PULL-DOWN RESISTORS  
ENABLE SUPPLY OUTPUT DISCHARGE  
RESISTORS  
RESET/ START  
TWAIT TIMER  
RESET/ START  
TWAIT TIMER  
nNOPOWER=LO  
ENABLE MPL RECOVERY IF  
SLEEP SET BY LOWSYS  
AND BAT POWER ONLY  
[ RESUME = HI FOR 400ms (min) DETECTED ] OR  
[PGOOD FAULT AND NORMAL MODE SET ] OR  
SLEEP MODE SET VIA I2C  
WHEN ANY OF THE BOOT PHASE(B) STATES ARE SET :  
OR  
THERMAL FAULT  
[ HOTPLUG TIMER EXPIRED AND  
V(SYS) < VLOW_SYS FOR 5mSEC AND  
SLEEP BY LOWSYS ENABLED VIA I2C ]  
1 - WRITE TO DVM REGISTERS IS DISABLED  
2 - SM0EN, SM1EN, SYNCEN,LDO4EN PULL-DOWN RESISTORS ON  
3 - SUPPLY OUTPUT DISCHARGE RESISTORS ON  
ANY  
STATE  
Figure 3-5. TPS658629-Q1 Operation Mode State Machine  
The state machine transitions for the TPS658629-Q1 have been defined as shown below.  
1. Supply sequencing started only when LDO4EN voltage level is a logic high  
2. REBOOT REQUEST state transitions to the HARD REBOOT state  
3. Supply sequencing is considered complete only if SM0 is turned ON  
4. Sequencer goes into sleep during initial power-up cycle  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
35  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.25 STATE MACHINE DESCRIPTION  
In a normal power-up sequence the state machine will step through the following states:  
POWER-UP: If the internal digital supply (2V2) is below the internal UVLO threshold, VUVLO (2V typ), all IC  
blocks are disabled and the TPS658629-Q1 is not operational. When the 2V2 supply voltage rises above  
VUVLO, the POWER-UP state is entered, an internal delay (TPOR, 8ms typ) is started and the SYS power  
path is enabled. The SYS pin voltage is sensed by an internal comparator, and compared to the internal  
threshold VLOW_SYS. When the power-on-reset delay expires and V(SYS) > VLOW_SYS the TPS658629-Q1  
enters the RTC mode.  
RTC: When the RTC state is set the nNOPOWER pin is pulled to ground, discharging the external  
capacitor connected to pin TNOPOWER and resetting the NOPOWER timer. The RTC_OUT LDO is  
turned off, and the voltage at pin RTC_OUT is flagged as low if V(RTC_OUT) < VRTCLOW The RTC state  
ends when the timer TCHECK expires.  
RTC_ON: When the state RTC_ON is set the integrated current source connected to the TNOPOWER pin  
and the RTC_OUT LDO are enabled. If the RTC_OUT voltage was flagged as low in the RTC state the  
TNORTC timer is enabled, and the NORTC pin is pulled low until V(RTC_OUT) > VRTC_PGOOD. The TNORTC  
timer starts counting when RTC_OUT > VRTCLOW, and NORTC will be set to hi when t > TNORTC  
.
The TNOPOWER current source will remain ON until a new reboot cycle or sleep cycle is set, charging  
the external capacitor connected to the TNOPOWER pin. The NOPOWER pin will be at a low logic level  
until the TNOPOWER pin voltage is above an internal threshold (1.23v typ). When NOPOWER pin  
transitions from LOHI, a 250μsec (typ) positive going pulse is generated at CHG_STAT pin. The  
TNOPOWER external capacitor is discharged whenever the sequencer sets the NOPOWER pin to a low  
state.  
The RTC_ON state ends when V(RTC_OUT) > VRTC_PGOOD or when the internal watchdog timer TMAX  
expires.  
WAIT: The TPS658629-Q1 will go into the WAIT state when exiting the RTC state during the initial power-  
up cycle. To avoid undesired lockup conditions this operational mode should be used only when the boot  
timer is enabled.  
Three internal timers are started when the state machine enters the WAIT state. These timers run  
independent of the sequencing state and have the following functionality:  
BOOT Timer (TBOOT): Sets the TPS658629-Q1 in the SLEEP REQUEST state if it expires during WAIT  
state.  
HOTPLUG Timer (THOTPLUG): SLEEP REQUEST state set by V(SYS) < VLOWSYS is inhibited until this  
timer expires  
NORTC Timer (TNORTC): NORTC pin will be set to a logic low level until this timer expires  
The BOOT timer value is set to 500ms and the NORTC pulse width is set to 10ms.  
SUPPLYSEQ: During the SUPPLYSEQ state all the internal supplies, with exception of RTC_OUT, are  
initially turned off and then turned on according to a pre-programmed internal sequencing. Three internal  
timers are started when the state machine enters the SUPPLYSEQ state. These timers run independent  
of the sequencing state and have the following functionality:  
BOOT Timer (TBOOT): Sets the TPS658629-Q1 in the SLEEP REQUEST state if it expires during  
SUPPLYSEQ state.  
HOTPLUG Timer (THOTPLUG): SLEEP REQUEST state set by V(SYS) < VLOWSYS is inhibited until this  
timer expires  
NORTC Timer (TNORTC): NORTC pin will be set to a logic low level until this timer expires  
The BOOT timer value is set to 500ms and the NORTC pulse width is set to 10ms.  
36  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
The I2C engines are available while the device is in the SUPPLYSEQ state, however write operations to  
the DVM registers are disabled, refer to DVM register section for more details. The TPS658629-Q1  
remains in this state until all the supplies are sequenced and the internal delay TSYNCEND (5ms typ) has  
expired.  
POWER GOOD CHECK: Supplies that were powered up during the SUPPLYSEQ state will have their  
power good flags checked during the POWER GOOD CHECK state (with exception of RTC_OUT ldo).  
The POWER GOOD CHECK state ends and the NORMAL state is set when a power good fault is not  
present. If a power good fault is detected, the POWER GOOD CHECK state will move to the SLEEP  
REQUEST state when the boot timer expires.  
NORMAL STATE: In this state write operations to the DVM registers are enabled and the external host  
controls all the TPS658629-Q1 functions. The normal state operation ends if a fault condition (defined as  
either a thermal fault, V(SYS) < VLOW_SYS or a supply power good fault) is detected or if hardware or  
software commands trigger a sleep or reboot request. While in NORMAL mode, the host can mask any of  
the power supply power good fault detection via I2C registers PGFLTMASK1 and PGFLTMASK2. Supplies  
that have their power good fault detection masked will not end the normal state operation. However, the  
status bit for the supply indicates that the output voltage is out of regulation. A RTC_OUT LDO power  
good fault does not trigger a transition to SLEEP REQUEST.  
Table 3-7. Sequencer Power Good Fault Masking  
PGFLTMASK1 [Addr 0x4D]  
Defaults in BOLD  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
MASK_PLDO8 MASK_PLDO7 MASK_PLDO6 MASK_PLDO4 MASK_PLDO3 MASK_PLDO2 MASK_PLDO1 MASK_PLDO0  
MASK  
PGOODLDO8  
MASK  
PGOODLDO7  
MASK  
PGOODLDO6  
MASK  
PGOODLDO4  
MASK  
PGOODLDO3  
MASK  
PGOODLDO2  
MASK  
PGOODLDO1  
MASK  
PGOODLDO0  
Function  
When 0  
When 1  
UNMASKED  
UNMASKED  
UNMASKED  
UNMASKED  
UNMASKED  
UNMASKED  
UNMASKED  
UNMASKED  
MASKED  
MASKED  
MASKED  
MASKED  
MASKED  
MASKED  
MASKED  
MASKED  
PGFLTMASK2 [Addr 0x4E]  
Defaults in BOLD  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
MASK_PSM3  
MASK_PSM2  
MASK_PSM1  
MASK_PSM0  
MASK_PLDO9 MASK_PLDO5  
RSVD4E1  
RSVD4E0  
MASK  
PGOODSM3  
MASK  
PGOODSM2  
MASK  
PGOODSM1  
MASK  
PGOODSM0  
MASK  
PGOODLDO9  
MASK  
PGOODLDO5  
Function  
NOT USED  
NOT USED  
When 0  
When 1  
UNMASKED  
MASKED  
UNMASKED  
UNMASKED  
UNMASKED  
UNMASKED  
NOT USED  
NOT USED  
MASKED  
UNMASKED  
MASKED  
MASKED  
MASKED  
MASKED  
NOT USED  
NOT USED  
SLEEP REQUEST: The SLEEP REQUEST state is set at anytime when a thermal fault condition is  
detected. It is also set when the TPS658629-Q1 is in the NORMAL state followed by one of the events  
shown below.  
1. A hardware sleep request is detected at the RESUME pin.  
2. A power good fault is detected at any of the integrated supplies  
3. V(SYS_IN) < VLOW_SYS and the HOTPLUG timer has expired (t > THOTPLUG  
4. SLEEP MODE is 1 (register 0x14, bit B3)  
)
When the SLEEP REQUEST state is set an internal timer is started and bit SLEEPREQ=1 is set in  
register STAT3 (address 0xBB). Writing EXITSLREQ to 1 (0x14, bit B1) returns the TPS658629-Q1 to the  
NORMAL state. If no action is taken by the host, while SLEEP_REQUEST state is set, the NOPOWER pin  
is pulled low when TWAIT1 expires and the SLEEP state is entered after the TWAIT timer expires.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
37  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Table 3-8. Sequencer Control, LDO5/LDO9 Enable  
SUPPLYENE [Addr 0x14]  
Defaults in BOLD  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
LDO9_ON  
LDO5_ON  
SYSINEN  
HOTDLY  
SLEEP MODE  
RSVD  
EXITSLREQ  
SOFT RST  
SYS_IN LOW  
VOLTAGE  
SETS SLEEP  
MODE  
SET  
TPS658629-Q1  
IN SLEEP  
MODE  
SLEEP  
REQUEST  
EXIT  
SOFTWARE  
RESET  
CONTROL  
LDO9 ON/OFF LDO5 ON/OFF  
HOT RESET  
DEGLITCH  
Function  
When 0  
When 1  
CONTROL  
CONTROL  
CONTROL  
5μsec min,  
16μsec max  
GO TO SLEEP  
at T>Twait  
OFF  
OFF  
DISABLED  
NOT ACTIVE  
NOT ACTIVE  
FORCE  
TRANSITION  
TO NORMAL  
STATE  
REBOOT  
REQUEST  
ON  
ON  
ENABLED  
5ms  
SET SLEEP  
SLEEP STATE: When the SLEEP state is set all supplies are set to OFF mode (with exception of  
RTC_LDO) and the NOPOWER output is pulled low. A few internal blocks are still active, enabling  
detection of system status changes that trigger the SLEEP state exit.  
All I2C engines are reset and all RAM registers are reset to their default condition when the SLEEP state  
is set. The RAM bits that have a default set via the non-volatile memory will keep the value they had  
before the SLEEP state was set.  
The SLEEP state ends when one of the following sequences is executed:  
A. If SLEEP was set by thermal fault: The SLEEP state will end only when all external input supplies and  
battery pack are removed and an UVLO condition is detected by the TPS658629-Q1, setting the  
POWER UP state.  
B. If SLEEP was not set by thermal fault: The SLEEP state will end when a hardware sleep exit request is  
detected at RESUME pin or the Momentary Power Loss (MLP) feature is triggered bt the conditions in  
either of the following scenarios:  
Scenario 1: If V(SYS) < VLOW_SYS for greater than 5 ms and V2V2 is above the UVLO threshold, the  
part transitions from normal to SLEEP state. For the part to exit from the SLEEP state and go to the  
RTC_CHECK state, the following conditions must be true 1 second after entering the SLEEP state:  
VBAT is greater than the voltage present on the COMP pin AND  
V(SYS) > VLOW_SYS AND  
V2V2 > UVLO  
Scenario 2: If V(SYS) and V2V2 drop below the UVLO threshold before or after the transition to the  
SLEEP state, the part will go to the power off state. If battery is re-inserted and the part enters the  
SLEEP state in the first power cycle, it was in the SLEEP state until the MPL timer (programmed to  
1 second) expires. After 1 second, the part will exit from SLEEP if the following conditions are met:  
VBAT is greater than the voltage present on the COMP pin AND  
V(SYS) > VLOW_SYS AND  
V2V2 > UVLO  
EXITING THE SLEEP STATE USING THE RESUME PIN: The figure below shows the timing relationship  
needed on the RESUME pin to exit the sleep mode. This applies for all cases where the sleep mode entry  
was triggered by any event other than a thermal fault.  
38  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
TRESUME(L)  
TRESUME(H)  
TRESUME(H)  
RESUME PIN  
TPS6586xx  
MODE  
NORMAL MODE  
SLEEP MODE  
SET SLEEP  
NORMAL MODE  
EXIT SLEEP  
ENTER/EXIT  
SLEEP  
Figure 3-6. Entering and Exiting Sleep Mode Resume  
EXITING THE SLEEP STATE USING AUTOBOOT: With the AUTOBOOT feature enabled, the  
TPS658621D will transition from SLEEP state to normal state upon power-up if the following conditions  
are met:  
AC/USB detected  
V(SYS) > VLOW_SYS  
REBOOT REQUEST: The REBOOT REQUEST state is entered from the NORMAL state. It can be set via  
software (SOFT_RST set to 1, register 0x14 Bit B0) or by a VIL level detection at HOTRST pin. When the  
reboot request state is set an internal timer TWAIT (10ms typ) is started, and the NOPOWER pin is pulled  
to ground. The reboot request ends when t > TWAIT. The REBOOT REQUEST will transition the device  
state machine to the HARD REBOOT state. The REBOOT REQUEST is set if the HOTRST low pulse  
width is greater than 10μsec (typ).  
The status bit COMPDET=1 (register STAT2, address 0xBA) when the NORMAL state is entered after a  
reboot cycle triggered by the HOTRST pin. The status bit COMPDET=0 when the NORMAL state is  
entered, after a power-up, sleep cycle or software triggered reboot cycle.  
The bit COMPDET is reset to 0 when bit SPARECC0=1, in register SPARE2 (address 0xCC). After  
resetting the COMPDET bit the host needs to set SPARECC0=0 to enable detection of another reboot  
cycle set via the HOTRST pin.  
An interrupt is generated when the TPS658629-Q1 transitions from the POWER GOOD CHECK state to  
the NORMAL state , COMPDET=1 and IMASK_COMP=0 in register INTMASK4 (address 0xB3). An  
interrupt request is generated after the NORMAL state is set if IMASK_COMP=0 and COMPDET value  
changes from 1 to 0.  
Table 3-9. Reboot Flag Control  
SPARE2 [Addr 0xCC]  
Defaults in BOLD  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SPARECC7  
LDO6PG  
SPARECC5 SPARECC4  
SPARECC3  
SPARECC2  
SPARECC1  
SPARE  
SPARECC0  
RESET  
REBOOT BY  
HOTRST  
SECONDARY  
LDO6PG  
MASK  
Function  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
STATUS BIT  
DO NOT  
RESET  
When 0  
When 1  
NOT USED  
UNMASKED  
NOT USED NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
MASKED  
NOT USED NOT USED  
NOT USED  
NOT USED  
NOT USED  
RESET  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
39  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
HARD REBOOT: The HARD REBOOT state powers down all the TPS658629-Q1 supplies, with exception  
of the RTC_OUT LDO.  
3.26 CNOPOWER CAPACITOR DISCHARGE  
The external capacitor connected to the TNOPOWER pin is always discharged when the sequencer sets  
NOPOWER=LO in the following states: POWER-UP, RTC, REBOOT REQUEST, HARD REBOOT and  
SLEEP. For large capacitance values (above 330nF) the external capacitor may not be fully discharged  
during reboot cycles, and as a result the NOPOWER pulse width may be slightly reduced when compared  
to the value indicated in the parametric tables.  
3.27 SEQUENCER STATUS  
Sequencer status information is available at registers 0xBA, bit COMPDET and register 0xBB bits  
SLEEPREQ and RESUME. See STATUS REGISTERS section for functional description of these bits.  
3.28 SUPPLY SEQUENCING AND HOST INTERFACE  
3.28.1 Integrated Supply Sequencing  
The TPS658629-Q1 enables the implementation of complex supply sequencing. With the exception of  
RTC_OUT, the integrated power-up sequencing starts when the TPS658629-Q1 state machine enters the  
SUPPLYSEQ state. The RTC_OUT LDO is always enabled in the RTC state, which occurs before the  
SUPPLYSEQ state, and the output of this LDO can be used to power an external processor or circuitry in  
systems where the supply sequencing is controlled externally using pins SM0EN, SM1EN or SYNCEN.  
Each supply rail is controlled by a combination of its default status (ON or OFF), its assigned sequencing  
trigger group (INTERNAL, SM0EN, SM1EN or SYNCEN), and a delay time.  
The default status (ON or OFF) of each rail is shown in Table 3-10.  
If the default for a supply rail is ON the trigger group associated to the supply determines the control  
signal that initiates the delay time to the start of the rail power up. There are four trigger groups, one  
internal and three external pins:  
INTERNAL This group is controlled by an internal signal that goes high when the TPS658629-Q1 goes  
from the RTC_ON state to the SUPPLYSEQ state.  
SM0EN  
SM1EN  
SYNCEN  
This group is controlled by the falling edge of the SM0EN pin and starts when the pin  
voltage is below its VIL level.  
This group is controlled by the rising edge of the SM1EN pin and starts when the pin  
voltage is above its VIH level.  
This group is controlled by the rising edge of the SYNCEN pin and starts when the pin  
voltage is above its VIH level.  
The trigger group of each rail and its associated delay is shown in Table 3-10. If a supply rail has a default  
state of ON and the appropriate trigger is high, the rail will be turned on after the delay time for that rail  
has expired. The delay time starts when the trigger signal for that supply has gone high, while  
SUPPLYSEQ state is set. No delays are available after NORMAL mode is set.  
Table 3-10. TPS658629 Integrated Supply Power-Up Defaults  
TPS658629 SETTINGS  
DEFAULT  
STATE  
DEFAULT  
VOLTAGE  
SUPPLY  
TRIGGER  
DELAY  
LDO0  
LDO1  
LDO2  
LDO3  
OFF  
ON  
1.2V  
1.1V  
1.2V  
3.3V  
SYNCEN  
INTERNAL  
INTERNAL  
SYNCEN  
3.75ms  
Value applies to LDO0, LDO1  
ON  
2.5ms  
Value applies to LDO2, LDO3  
OFF  
40  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
www.ti.com  
SUPPLY  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-10. TPS658629 Integrated Supply Power-Up Defaults (continued)  
TPS658629 SETTINGS  
DEFAULT  
STATE  
DEFAULT  
VOLTAGE  
TRIGGER  
DELAY  
LDO4  
LDO6  
LDO7  
LDO8  
LDO5  
LDO9  
SM0  
ON  
OFF  
OFF  
OFF  
OFF  
ON  
1.8V  
2.85V  
3.3V  
INTERNAL  
SYNCEN  
SYNCEN  
SYNCEN  
15ms  
15ms  
Value applies to LDO6, LDO7 and LDO8  
1.8V  
2.85V  
2.85V  
1.2V  
SYNCEN  
2.5ms  
Trigger applies to both LDO5 and LDO9  
Value applies to LDO5, LDO9  
ON  
SM0EN  
SM1EN  
3.75ms  
3.75ms  
0ms  
SM1  
OFF  
ON  
1.050V  
3.3V  
SM2  
INTERNAL  
3.29 INTEGRATED SUPPLY SEQUENCING – SUPPLY ENABLE CONTROL  
The ON or OFF mode for each supply is defined by the supply enable RAM control bits and enable pins  
SM0EN, SM1EN and LDO4EN. The supply enable bits are located in registers SUPPLYENA,  
SUPPLYENB, SUPPLYENC, SUPPLYEND, SUPPLYENE (see supply functional description for more  
details). The functionality of the RAM bits and enable pins is dependent on the state set in the state  
machine as follows:  
When the NORMAL state is NOT set : The pins SM1EN , SM0EN and LDO4EN will always control the  
ON or OFF modes for all supplies that use them as triggers. The supply enable RAM bits will control the  
ON or OFF modes for the supplies.  
When the NORMAL state is set: The supply enable RAM bits will always control the ON or OFF modes  
for the supplies. The pins SM1EN, SM0EN and LDO4EN may control the ON or OFF modes for supplies  
SM1, SM0 and LDO4. The enable pins do not control the ON or OFF modes of any other supplies.  
During sequencing, the following RAM bits control the supply ON/OFF mode: LDO2 RAM bits, LDO4 RAM  
bits, SM0 RAM bits and SM1 RAM bits.  
When the NORMAL mode is set, SM0EN controls the SM0 ON/OFF mode, SM1EN controls the SM1  
ON/OFF mode and LDO4EN controls the LDO4 ON/OFF mode.  
3.30 INTEGRATED SUPPLY SEQUENCING – POWER-DOWN  
To start a power down sequence the SLEEP REQUEST or REBOOT REQUEST states must be set. Once  
one of those two states is set the trigger pins are active again and they will control the ON/OFF state of  
the supplies associated with that trigger group. The device will enter the SLEEP or HARD REBOOT state  
10ms after the SLEEP REQUEST or REBOOT REQUEST is initiated. Any supply still active when the  
SLEEP or HARD REBOOT state is entered will be immediately disabled. This is the default turn off  
condition for any supply associated with the INTERNAL sequencing trigger group.  
For example, if a supply has a default state of OFF and it has SM1EN as the selected factory trigger: this  
supply will not power up during the SUPPLYSEQ state when SM1EN goes high. If it is enabled during the  
NORMAL state and is still enabled when the SLEEP REQUEST or REBOOT REQUEST states are  
entered, this supply will be turned off on the falling edge of SM1EN as this is its assigned trigger group  
programmed at the factory.  
If LDO4EN is set LO by the host when the TPS658629-Q1 enters the SLEEP REQUEST or REBOOT  
REQUEST states, the LDO4 supply will turn off only when the HARD REBOOT or SLEEP states are set.  
The LDO4PG pin will be pulled low when LDO4EN is below VIL, with no delay.  
All the supplies are turned off at the same time when the TPS658629-Q1 enters the SLEEP or HARD  
REBOOT state.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
41  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.31 HOST INTERFACE PINS  
The TPS658629-Q1 devices have multiple signals that can be used by the external system to execute  
power sequencing operations or verify the system status. Those signals are generated as follows:  
1. Power supply status (2V2 logic level) : SM0PG, SM1PG, LDO4PG – A HI level indicates that the  
supply is on and the regulation voltage is valid. A LO level indicates either that the supply voltage is  
out of regulation or that the supply has been disabled.  
2. External system and host control (V32K pin logic level): The NOPOWER, NORTC, and OUT32K pins  
may be used to interface to external hosts, controlling the host reset and executing host-controlled  
power-up sequencing.  
3.32 EXTERNAL 32 kHz  
The TPS658629-Q1 outputs a 32 kHz clock (pin OUT32K) that can be used by the external system. The  
OUT32K output starts when the NORTC pin is above VIH and V32K is valid. The 32 kHz can be derived  
either from an internal 32kHz oscillator or from a crystal-based clock, selectable via I2C using bit 6 of the  
RTC_CTRL (Addr 0xC0) register (see the Real Time Clock section). However, only the crystal-based  
clock is output to the OUT32K pin.  
3.33 SUPPLY INPUT PIN CONNECTION  
The input pins for all supplies (VIN_LDO01, VIN_LDO23, VIN_LDO4, VIN_LDO678, VIN_LDO9) enable  
optimization of the overall system power architecture by connecting lower output voltage supplies to  
intermediate rails or external rails. Care must be taken to ensure that the input pin for each integrated  
supply is powered when the supply is enabled during the power-up sequencing. Failure to do so will result  
in a power good fault detection with a potential lock-up situation. The input pins VIN_SM0, VIN_SM1,  
VIN_SM2 must be connected to the SYS pin  
3.34 HOST INTERFACE  
The TPS658629-Q1 may be used in systems where the sequencing is controlled by an external host or  
housekeeping circuit, as well as in systems where stand-alone sequencing is a requirement. For host  
controlled systems the RTC_OUT LDO can be used as the supply that powers the external sequencing  
control and the NOPOWER and NORTC pin signals are used as resets for the external circuit.  
Power applied  
AC, USB OR BAT  
VUVLO  
2V2  
VLOW_SYS  
HOST CONTROLLED  
SEQUENCING :  
SYS  
RTC_OUT/BBAT  
32KHZ_OUT  
VRTCLOW  
RTC_OUT SUPPLIES  
EXTERNAL CIRCUIT  
THAT DRIVES SUPPLY  
POWER-UP USING  
TRIGGER PINS SM0EN,  
SM1EN, SYNCEN  
32kHZ  
X
ENABLE  
PINS  
NOPOWER  
NORTC  
X
X
Z
TPOR=8mSec  
TNOPOWER  
TNORTC  
EXTERNAL  
CONTROL  
CIRCUIT RESET  
6586XX POWER-UP  
HOST-BASED SEQUENCING OF SUPPLIES  
SEQUENCING COMPLETED  
Figure 3-7. Host Controlled Startup  
42  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
AC, USB  
or BAT  
VUVLO  
2V2  
VLOW_SYS  
SYS  
VRTCLOW  
RTC_OUT/BBAT  
32KHZ_OUT  
Stable  
ALL  
ENABLES  
LDO4  
1.25 V  
TNOPOWER  
Capacitor  
NOPOWER  
z
NORTC  
TAC Deglitch = 22.5ms  
TSYS Cap Charging = 10ms  
TLDO4 UP = 15ms  
TBOOT = 75ms  
TPOR = 8ms  
Check = 3ms  
Internal Timing Power Up Sequencing = 121.5ms  
Check = 3ms  
TNOPOWER capacitor  
charging up to 1.25V.  
0.25 ´ capacitor value 25ꢀ  
NOTE: For the 32kHz clock to stabilize by 320ms, the TNOPWER capacitor should be greater than (185ms/0.25)nF.  
Figure 3-8. TPS658629-Q1 Controlled Startup  
90%  
95%  
Output Voltage  
PG Signal  
5ms  
Figure 3-9. Power Good Timing  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
43  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.35 INTEGRATED SUPPLIES – ENABLE CONTROL, DVM CONTROL  
3.35.1 DVM and Non-DVM Supplies  
The TPS658629-Q1 has two types of voltage control for the integrated supplies:  
1. DVM supplies: SM0, SM1, LDO2 and LDO4 are DVM supplies with dedicated register sets that enable  
a controlled transition from an initial voltage to a final voltage. The initial voltage, final voltage, and  
voltage transition start time are set via I2C. SM0 and SM1 have I2C programmable slew rate.  
2. NON-DVM supplies: LDO0, LDO1, LDO3, LDO5, LDO6, LDO7, LDO8, LDO9, SM2 and RTC_OUT  
outputs can be changed, but without slew rate and transition start time control. The output of these  
supplies will be changed to the new value as soon as TPS658629-Q1 sends the ACK of the I2C  
command setting the new output voltage.  
3.35.2 DVM and Non-DVM Supply Enable  
All the integrated supplies can be turned on/off by RAM enable bits. All the supplies (with exception of  
LDO5, LDO9 and RTC_OUT LDO's) have two enable bits on distinct registers (registers 0x10, 0x11, 0x12,  
0x13, 0x14). A supply will be enabled when ANY of its enable bits, in the registers below, are set to 1.  
Each supply will be disabled when ALL of the enable bits for that supply are set to 0. For example: SM0  
enabled: SM0_ENA=1 OR SM0_ENB=1, SM0 disabled: SM0_ENA=0 AND SM0_ENB=0  
Table 3-11. SM0-2, LDO0-9 Control  
SUPPLYENA [Addr 0x10]  
Defaults in BOLD  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RSVD107  
RSVD106  
RSVD105  
RSVD104  
LDO2_ENA1 LDO2_ENA0  
SM0_ENA  
SM1_ENA  
LDO2  
CONTROL  
LDO2  
CONTROL  
SM0  
CONTROL  
SM1  
CONTROL  
Function  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
SUPPLYENB [Addr 0x11]  
Defaults in BOLD  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RSVD117  
RSVD116  
RSVD115  
RSVD114  
LDO2_ENB1 LDO2_ENB0  
SM0_ENB  
SM1_ENB  
LDO2  
CONTROL  
LDO2  
CONTROL  
SM0  
CONTROL  
SM1  
CONTROL  
Function  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
SUPPLYENC [Addr 0x12]  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SM2_ONC  
LDO8_ONC  
LDO7_ONC  
LDO6_ONC  
LDO4_ONC  
LDO3_ONC  
LDO1_ONC  
LDO0_ONC  
SM2  
CONTROL  
LDO8  
CONTROL  
LDO7  
CONTROL  
LDO6  
CONTROL  
LDO4  
CONTROL  
LDO3  
CONTROL  
LDO1  
CONTROL  
LDO0  
CONTROL  
Function  
SUPPLYEND [Addr 0x13]  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SM2_OND  
LDO8_OND  
LDO7_OND  
LDO6_OND  
LDO4_OND  
LDO3_OND  
LDO1_OND  
LDO0_OND  
SM2  
CONTROL  
LDO8  
CONTROL  
LDO7  
CONTROL  
LDO6  
CONTROL  
LDO4  
CONTROL  
LDO3  
CONTROL  
LDO1  
CONTROL  
LDO0  
CONTROL  
Function  
SUPPLYENE [Addr 0x14]  
Defaults in BOLD  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
SLEEP  
MODE  
Bit Name  
LDO9_ON  
LDO5_ON  
SYSINEN  
HOTDLY  
RSVD  
EXITSLREQ  
SOFT RST  
SYS_IN LOW  
VOLTAGE  
SETS SLEEP DEGLITCH Q1 IN SLEEP  
SET  
SLEEP  
REQUEST  
EXIT  
LDO9  
ON/OFF  
CONTROL  
LDO5  
ON/OFF  
CONTROL  
SOFTWARE  
RESET  
CONTROL  
HOT RESET TPS658629-  
Function  
When 0  
MODE  
MODE  
CONTROL  
GO TO  
SLEEP at  
T>Twait  
5μsec min,  
16μsec max  
OFF  
OFF  
DISABLED  
NOT ACTIVE  
NOT ACTIVE  
44  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-11. SM0-2, LDO0-9 Control (continued)  
FORCE  
TRANSITION  
TO NORMAL  
STATE  
REBOOT  
REQUEST  
When 1  
ON  
ON  
ENABLED  
5ms  
SET SLEEP  
LDO5 and LDO9 will be turned on when LDO5_ON is 1 or LDO9_ON is 1, respectively. The RTC_OUT  
LDO enable bits are located in the RTC control register, see real time clock section for details.  
The supply enable defaults are unique for each device. See App Notes for device specific settings.  
3.35.3 DVM Supplies - Voltage Transition Control  
The output voltage for the DVM supplies can be set to one of the values programmed in the voltage  
setting registers SM0V1, SM0V2, SM1V1, SM2V2, LDO2AV1, LDO2AV2, LDO2BV1, LDO2BV2, LDO4V1  
and LDO4V2 as defined in registers VCC1 and VCC2.  
The voltage change for the DVM supplies is usually done with 2 I2C write commands:  
1. The host writes the new voltage to the voltage setting register for the supply(s) that will have an output  
voltage modification.  
2. The voltage change starts by setting specific control bits in registers VCC1 and VCC2.  
Bits VS in registers VCC1 and VCC2 select the next voltage for the DVM supplies. A voltage change is  
started when ANY of the GO bits for the supply is set to 1. At the end of the voltage transition the GO bits  
are cleared by the internal logic.  
Table 3-12. DVM Supply Control  
VCC1 [Addr 0x20]  
Defaults in BOLD  
B0  
Bit Number  
B7  
LDO4VS  
B6  
B5  
B4  
B3  
B2  
B1  
Bit Name  
LDO4GO  
LDO2AVS2  
LDO2AGO2  
SM0VS1  
SM0GO1  
SM1VS1  
SM1GO1  
LDO4 VOLTAGE  
SELECTION  
Function  
LDO2 VOLTAGE SELECTION SM0 VOLTAGE SELECTION SM1 VOLTAGE SELECTION  
SELECT  
VOLTAGE  
SET BY  
SELECT  
VOLTAGE  
SET BY  
SELECT  
VOLTAGE  
SET BY  
HOLD  
CURRENT  
VOLTAGE  
HOLD  
CURRENT  
VOLTAGE  
HOLD  
CURRENT  
VOLTAGE  
HOLD  
CURRENT  
VOLTAGE  
When 0  
When 1  
NOT USED  
LDO4V1  
SM0V1  
SM1V1  
RAMP TO  
VOLTAGE  
SELECTED  
BY  
SELECT  
VOLTAGE  
SET BY  
RAMP TO  
VOLTAGE  
SELECTED  
BY LDO4VS  
SELECT  
VOLTAGE  
SET BY  
RAMP TO  
VOLTAGE  
SELECTED  
BY SM0VS1  
SELECT  
VOLTAGE  
SET BY  
RAMP TO  
VOLTAGE  
SELECTED  
BY SM1VS1  
NOT USED  
LDO4V2  
SM0V2  
SM1V2  
LDO2BVS1  
VCC2 [Addr 0x21]  
Defaults in BOLD  
B0  
Bit Number  
B7  
LDO2BVS1  
B6  
B5  
B4  
B3  
B2  
B1  
Bit Name  
LDO2BGO1  
LDO2AVS1  
LDO2AGO1  
SM0VS2  
SM0GO2  
SM1VS2  
SM1GO2  
LDO2 VOLTAGE  
SELECTION  
Function  
LDO2 VOLTAGE SELECTION I SM0 VOLTAGE SELECTION SM1 VOLTAGE SELECTION  
SELECT  
VOLTAGE  
SET BY  
SELECT  
VOLTAGE  
SET BY  
SELECT  
VOLTAGE  
SET BY  
HOLD  
CURRENT  
VOLTAGE  
HOLD  
CURRENT  
VOLTAGE  
HOLD  
CURRENT  
VOLTAGE  
HOLD  
CURRENT  
VOLTAGE  
When 0  
When 1  
NOT USED  
LDO2BV1  
SM0V1  
SM1V1  
RAMP TO  
VOLTAGE  
SELECTED  
BY  
RAMP TO  
VOLTAGE  
SELECTED  
BY  
SELECT  
VOLTAGE  
SET BY  
SELECT  
VOLTAGE  
SET BY  
RAMP TO  
VOLTAGE  
SELECTED  
BY SM0VS2  
SELECT  
VOLTAGE  
SET BY  
RAMP TO  
VOLTAGE  
SELECTED  
BY SM1VS2  
NOT USED  
LDO2BV2  
SM0V2  
SM1V2  
LDO2BVS1  
LDO2BVS1  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
45  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Table 3-13. SM0 and SM1 Voltage Selection Register Settings  
SM0 OUTPUT VOLTAGE SELECTION  
SM1 OUTPUT VOLTAGE SELECTION  
SM1GO1=1 OR SM1GO2=1 STARTS  
SM0GO1=1 OR SM0GO2=1 STARTS  
VOLTAGE TRANSITION  
SM0VS1 SM0VS2  
SM1VS1 SM1VS2  
VOLTAGE TRANSITION  
TO VALUE SET BY REGISTER :  
TO VALUE SET BY REGISTER  
0
0
1
1
0
1
0
1
SM0V1  
SM0V2  
SM0V2  
SM0V2  
0
0
1
1
0
1
0
1
SM1V1  
SM1V2  
SM1V2  
SM1V2  
Table 3-14. SM0 Voltage Selection by SM0EN  
SM0 ACTIVE LEVEL  
SM0EN  
SM0 OUTPUT VOLTAGE  
0
0
0
1
1.2V  
OFF  
The SM0 output voltage value and transition is controlled by the SM0EN pin and SM0VS1/SMVS2.  
NOTE  
During a HI to LO transition of SM0EN (enabling SM0), the SM0 output will power up to the  
pre-defined default state regardless of the setting set via I2C prior to SM0 being disabled.  
Table 3-15. SM0 Output Voltage Settings Available for SM0EN Selection  
RANGE  
[4:0]  
VOUT (V)  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
[4:0]  
VOUT (V)  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
[4:0]  
VOUT (V)  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
[4:0]  
VOUT (V)  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
0.725V–1.50V  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Table 3-16. LDO4 Voltage Selection Register Settings  
LDO4 OUTPUT VOLTAGE SELECTION  
LDO4GO=1 STARTS VOLTAGE TRANSITION TO  
LDO4VS  
VALUE SET BY REGISTER  
0
1
LDO4V1  
LDO4V2  
The LDO2 output voltage selection and GO bit functionality is shown below.  
1. LDO2AGOn bits are not active  
2. LDO2BGO1=1 starts a voltage transition to the voltage selected by LDO2BV1, LDO2BV2 and  
LDO2BVS1  
3. LDO2 voltage transition starts when SM0EN is set to LO  
When the LDO2 output voltage is controlled by the SM0EN (CORECTRL) pin, registers LDO2AV2 and  
LDO2AV1 define the output voltage:  
46  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
3.35.4 DVM Supply Voltage Transition  
During a voltage transition the output voltage will be stepped from the currently programmed voltage to the  
new target voltage as shown below. The slew rate from the initial voltage to the final voltage for SM0 and  
SM1 can be selected using the I2C registers SM0SL (ADDRESS = 0x25) and SM1SL (ADDRESS = 0x28)  
respectively. LDO2 and LDO4 have the slew rate fixed internally to 7mV/μSec(typ).  
Figure 3-10. SM0 and SM1 Dynamic Voltage Slew Rate Example  
3.36 SM0, SM1, SM2 CONVERTERS  
The TPS658629-Q1 has three highly efficient step down synchronous converters. The integration of the  
power stage switching FETs reduces the external component count, and only the external output inductor  
and filter capacitor are required. The integrated power stage supports 100% duty cycle operation. The  
converters have two possible modes of operation: a 2.25MHz fixed frequency pulse width modulation  
(PWM) mode at moderate to heavy loads, and a pulse frequency modulation (PFM) mode at light loads.  
The converters SM0, SM1 and SM2 output voltages are programmable via I2C registers SMnV1 and  
SMnV2 (SM0 and SM1) and SUPPLYV2 (SM2):  
NOTE  
VIN_SM0, VIN_SM1 AND VIN_SM2 PINS SHOULD ALWAYS BE EXTERNALLY  
CONNECTED TO SYS PIN  
3.36.1 SM0, SM1 DVM Buck Converters - Output Voltage Registers  
Table 3-17. DVM Supply Voltage and Slew Rate Selection – SM0 and SM1  
SM1V1 [Addr 0x23]  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD237  
NOT USED  
RSVD236  
NOT USED  
RSVD235  
NOT USED  
SM1V1[4]  
SM1V1[3]  
SM1V1[2]  
SM1V1[1]  
SM1V1[0]  
SM1 SUPPLY OUTPUT VOLTAGE  
SM1V2 [Addr 0x24]  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
47  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Table 3-17. DVM Supply Voltage and Slew Rate Selection – SM0 and SM1 (continued)  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD247  
NOT USED  
RSVD246  
NOT USED  
RSVD245  
NOT USED  
SM1V2[4]  
SM1V2[3]  
SM1V2[2]  
SM1V2[1]  
SM1V2[0]  
SM1 SUPPLY OUTPUT VOLTAGE  
SM1SL [Addr 0x25]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
Function  
RSVD257  
RSVD256  
NOT USED  
RSVD255  
NOT USED  
RSVD254  
NOT USED  
RSVD253  
NOT USED  
SM1SL[2]  
SM1SL[1]  
SM1SL[0]  
NOT USED  
SM1 SUPPLY RAMP RATE  
SM0V1 [Addr 0x26]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
SM0V1[2]  
B1  
B0  
Bit Name  
Function  
RSVD267  
RSVD266  
NOT USED  
RSVD265  
NOT USED  
SM0V1[4]  
SM0V1[3]  
SM0V1[1]  
SM0V1[0]  
NOT USED  
SM0 SUPPLY OUTPUT VOLTAGE  
SM0V2 [Addr 0x27]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
Function  
RSVD277  
RSVD276  
NOT USED  
RSVD275  
NOT USED  
SM0V2[4]  
SM0V2[3]  
SM0V2[2]  
SM0V2[1]  
SM0V2[0]  
NOT USED  
SM0 SUPPLY OUTPUT VOLTAGE  
SM0SL [Addr 0x28]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
Function  
RSVD287  
RSVD286  
NOT USED  
RSVD285  
NOT USED  
RSVD284  
NOT USED  
RSVD283  
NOT USED  
SM0SL[2]  
SM0SL[1]  
SM0SL[0]  
NOT USED  
SM0 SUPPLY RAMP RATE  
The available output voltages and slew rates are shown below.  
Table 3-18. SM0V1[4:0] / SM0V2[4:0] / Output Voltage Settings  
RANGE  
[4:0]  
VOUT (V)  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
[4:0]  
VOUT (V)  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
[4:0]  
VOUT (V)  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
[4:0]  
VOUT (V)  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
0.725V–1.50V  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Table 3-19. SM1V1[4:0] / SM1V2[4:0] Output Voltage Settings  
RANGE  
[4:0]  
VOUT (V)  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
[4:0]  
VOUT (V)  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
[4:0]  
VOUT (V)  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
[4:0]  
VOUT (V)  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
0.725V–1.50V  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
48  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-20. SM0SL[2:0] and SM1SL[2:0] Slew Rate Settings  
SMxSL  
[2:0]  
SLEW RATE  
(mV/μs)  
SMxSL  
[2:0]  
SLEW RATE  
(mV/μs)  
SMxSL  
[2:0]  
SLEW RATE  
(mV/μs)  
SMxSL  
[2:0]  
SLEW RATE  
(mV/μs)  
000  
100  
INSTANTLY  
0.88  
001  
101  
0.11  
1.76  
010  
110  
0.22  
3.52  
011  
0.44  
111  
7.04  
Table 3-21. Non-DVM supply Voltage selection - SM2, LDO8  
SUPPLYV2 [Addr 0x42]  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VLDO8[2]  
VLDO8[1]  
VLDO8[0]  
VSM2[4]  
VSM2[3]  
VSM2[2]  
VSM2[1]  
VSM2[0]  
LDO8 OUTPUT VOLTAGE  
SM2 OUTPUT VOLTAGE  
Table 3-22. VSM2[4:0] Output Voltage Settings  
RANGE  
[4:0]  
VOUT (V)  
3.000  
3.050  
3.100  
3.150  
3.200  
3.250  
3.300  
3.350  
[4:0]  
VOUT (V)  
3.400  
3.450  
3.500  
3.550  
3.600  
3.650  
3.700  
3.750  
[4:0]  
VOUT (V)  
3.800  
3.850  
3.900  
3.950  
4.000  
4.050  
4.100  
4.150  
[4:0]  
VOUT (V)  
4.200  
4.250  
4.300  
4.350  
4.400  
4.450  
4.500  
4.550  
3.0V–4.55V  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
3.36.2 PWM Operation  
During PWM operation the converters use a fast response voltage mode controller scheme with input  
voltage feed-forward, enabling the use of small ceramic input and output capacitors. At the beginning of  
each clock cycle the high side channel MOSFET switch is turned on, and the oscillator starts the voltage  
ramp. The inductor current will ramp-up until the ramp voltage reaches the error amplifier output voltage,  
when the comparator trips and the high-side channel MOSFET switch is turned off. Internal adaptive  
break-before-make circuits turn on the integrated low-side MOSFET switch after an internal, fixed dead-  
time delay, and the inductor current ramps down, until the next cycle is started. When the next cycle starts  
the ramp voltage is reset to its low value and the high-side channel MOSFET switch is turned on again.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
49  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Figure 3-11. PWM Control  
3.36.3 PFM Mode Operation  
The TPS658629-Q1 SM0, SM1 and SM2 buck converters can be set to operate only in PWM mode or to  
switch automatically between PFM and PWM modes, via the I2C interface. While in the Pulsed Frequency  
Mode the converters operate with reduced switching frequency and with a minimum quiescent current to  
maintain high efficiency.  
In PFM mode the converter will regulate the output voltage to 1% above the nominal output voltage. To  
determine when to transition between the modes, the inductor current is monitored, and the PFM mode is  
set when the inductor ripple current approaches zero. For duty cycles above 85% the PFM mode is  
entered for load currents below the threshold IPFM(ENTER).  
V
(VIN_SMx)  
IPFM(ENTER)  
=
34W  
(1)  
In PFM mode the output voltage is monitored by a voltage comparator, which regulates the output voltage  
to the programmed value VO(SM1). If the output voltage is below VO(SM1) the PFM control circuit turns on the  
power stage, applying a burst of pulses to increase the output voltage. When the output voltage exceeds  
the target regulation voltage VO(SM1) the power stage is disabled, and the output voltage will drop until it is  
below the regulation voltage target, when the power stage is enabled again.  
The PFM operation is disabled and PWM operation set if one of the following events happens during PFM  
operation:  
1. The burst operation exceeds 7μs, typ.  
2. The output voltage falls below 3% of the target regulation voltage in PFM mode (2% of the nominal  
output voltage in PWM mode)  
3.36.4 Setting the PWM/PFM Mode  
In TPS658629-Q1 the PWM mode can be forced for each converter by setting the bit SMn_PWM to 1 in  
the SMODE1 register. If bits SMn_GPIO is 1, the GPIO will control the PWM or PFM mode setting, and  
bits SMn_PWM are ignored.  
50  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-23. SM0,SM1, SM2 PWM/PFM Mode Selection  
SMODE1 [Addr 0x47]  
Default to 0  
B0  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RSVD477  
SPARE  
SM2_GPIO  
SM1_GPIO  
SM0_GPIO  
RSVD473  
SPARE  
SM2_PWM  
SM1_PWM  
SM0_PWM  
SM2 AUTO  
PFM  
SM1 AUTO  
PFM  
SM0 AUTO  
PFM  
SM2 PWM  
MODE ON  
SM1 PWM  
MODE ON  
SM0 PWM  
MODE ON  
CONTROL  
CONTROL  
CONTROL  
SELECTION SELECTION SELECTION  
Table 3-24 details how the GPIO control is implemented. Note that the GPIO1 polarity indicated in  
Table 3-24 is controlled by bit GPIOINV, register 0x5E.  
Table 3-24. GPIO1 PWM/PFM Mode Control  
SMx_GPIO  
SMx_PWM  
GPIO1 POLARITY  
GPIO1  
CONVERTER MODE  
Auto PWM/PFM  
PWM Only  
0
0
1
1
1
1
0
1
x
x
x
x
x
x
x
0
1
0
1
x
Inverted  
Inverted  
Not Inverted  
Not Inverted  
PWM Only  
Auto PWM/PFM  
Auto PWM/PFM  
PWM Only  
3.36.5 Output Discharge Switches  
When the SM0, SM1 and SM2 converters are disabled, an integrated switch automatically discharges the  
converter output capacitor.  
The converter output discharge switches are always enabled when NORMAL state is set and during the  
SUPPLYSEQ state.  
3.36.6 Dynamic Voltage Positioning  
This feature reduces the voltage under/overshoots at load steps from light to heavy load and vice versa. It  
provides more headroom for both the voltage drop at a load step and the voltage increase at a load throw-  
off. This improves load transient behavior.  
At light loads, in which the converter operate in PFM Mode, the output voltage is regulated typically 1%  
higher than the nominal value. In case of a load transient from light load to heavy load, the output voltage  
will drop until it reaches the COMP LOW threshold set to 2% below the nominal value and enters PWM  
mode. During a load throw off from heavy load to light load, the voltage overshoot is also minimized due to  
active regulation turning on the low-side channel switch.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
51  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Figure 3-12. Voltage Positioning  
3.36.7 Soft Start  
SM0, SM1 and SM2 have an internal soft start circuit that limits the inrush current during start-up. An initial  
delay (170µs typ) from the converter enabled command to the converter effectively being operational is  
required to ensure that the internal circuits of the converter are properly biased. At the end of that initial  
delay the soft start is initiated and the internal compensation capacitor is charged with a low value current  
source. The soft start time is typically 250µs, with the output voltage ramping from 5% to 95% of the final  
target value.  
3.36.8 Dropout Operation at 100% Duty Cycle  
The TPS658629-Q1 buck converters offer a low input to output voltage difference while still maintaining  
operation when the duty cycle is set to 100%. In this mode of operation the high-side FET is constantly  
turned on to enable operation with a low input voltage. The dropout operation will start if :  
V(VIN_SMx) V(SMx) + ILx × (RDSON(PSMx) + RL)  
(2)  
where ILx is the output current plus ½ inductor ripple current and RL is the DC resistance of the inductor.  
3.36.9 Output Voltage Monitoring  
The output voltage of converters SM0, SM1 and SM2 is monitored by internal comparators, and an output  
low voltage condition is detected when the output voltage is below 90% of the programmed value. The  
power good comparator is disabled for all converters during output voltage transitions. The power  
comparator on SM2 power good is also disabled when battery tracking mode is set.  
3.36.10 Phase Control in PWM Mode  
By default the SM0, SM1 and SM2 converters operate with phased clocking when they are in PWM mode,  
with converter SM0 as the master. Converters SM0 and SM1, when enabled, will run 90 and 180 degrees  
out of phase with SM0.  
3.36.11 Integrated Snubber and Current Limit  
The SM2 converter has an integrated electronic snubber that is used to improve transient response when  
operating under conditions which cause the inductor current to flow in the negative direction (into the Ln  
node).  
52  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
3.37 LINEAR REGULATORS  
The TPS658629-Q1 offers ten integrated linear dropout regulators (LDOs), designed to be stable over the  
operating load range with use of external ceramic capacitors. The output voltage can be programmed via  
I2C. All of the LDOs, with the exception of LDO5 and RTC_OUT LDO, have uncommitted input power  
supply pins (VIN_LDO01, VIN_LDO23, VIN_LDO4, VIN_LDO678, VIN_LDO9) which should be externally  
connected to a number of system rails including SYS and the output of SM2.  
The LDO5 and RTC_OUT regulators are internally connected to the SYS pin.  
3.37.1 Output Voltage Monitoring  
Internal power good comparators monitor the LDO outputs and detect when the output voltage is below  
95% of the programmed value. This information is used by the TPS658629-Q1 to generate interrupts or to  
trigger distinct operating modes, depending on specific I2C register settings. See interrupt and sequencing  
controller section for additional details.  
3.37.2 LDO2 DVM LDO - Output Voltage Registers  
Registers 0x29, 0x2A, 0x2F and 0x30 set the output voltage for LDO2. The slew rate is internally fixed to  
7mV/μSec (typ).  
Table 3-25. DVM Supply Voltage Selection – LDO2  
LDO2AV1 [Addr 0x29]  
Defaults in BOLD  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD297  
NOT USED  
RSVD296  
NOT USED  
RSVD295  
NOT USED  
LDO2AV1[4] LDO2AV1[3] LDO2AV1[2] LDO2AV1[1] LDO2AV1[0]  
LDO2 SUPPLY OUTPUT VOLTAGE (See Table 3-26)  
LDO2AV2 [Addr 0x2A]  
Defaults in BOLD  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD2A7  
NOT USED  
RSVD2A6  
NOT USED  
RSVD2A5  
NOT USED  
LDO2AV2[4] LDO2AV2[3] LDO2AV2[2] LDO2AV2[1] LDO2AV2[0]  
LDO2 SUPPLY OUTPUT VOLTAGE (See Table 3-26)  
LDO2BV1 [Addr 0x2F]  
Defaults in BOLD  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD2F7  
NOT USED  
RSVD2F6  
NOT USED  
RSVD2F5  
NOT USED  
LDO2BV1[4] LDO2BV1[3] LDO2BV1[2] LDO2BV1[1] LDO2BV1[0]  
LDO2 SUPPLY OUTPUT VOLTAGE (See Table 3-26)  
LDO2BV2 [Addr 0x30]  
Defaults in BOLD  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD307  
NOT USED  
RSVD306  
NOT USED  
RSVD305  
NOT USED  
LDO2BV2[4] LDO2BV2[3] LDO2BV2[2] LDO2BV2[1] LDO2BV2[0]  
LDO2 SUPPLY OUTPUT VOLTAGE (See Table 3-26)  
The available output voltages for LDO2 are shown below:  
Table 3-26. LDO2AV1/2[4:0] and LDO2BV1/2[4:0] Settings  
RANGE  
[4:0]  
VOUT (V)  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
[4:0]  
VOUT (V)  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
[4:0]  
VOUT (V)  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
[4:0]  
VOUT (V)  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
0.725V–1.50V  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
53  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.37.3 LDO4 DVM LDO – Output Voltage Registers  
Registers 0x32 and 0x33 set the output voltage for LDO4. The slew rate is internally fixed to 7mV/μSec  
(typ).  
Table 3-27. DVM Supply Voltage Selection – LDO4  
LDO4V1 [Addr 0x32]  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD327  
NOT USED  
RSVD326  
NOT USED  
RSVD325  
NOT USED  
LDO4V1[4]  
LDO4V1[3]  
LDO4V1[2]  
LDO4V1[1]  
LDO4V1[0]  
LDO4 SUPPLY OUTPUT VOLTAGE (See Table 3-28)  
LDO4V2 [Addr 0x33]  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD337  
RSVD336  
NOT USED  
RSVD335  
NOT USED  
LDO4V2[4]  
LDO4V2[3]  
LDO4V2[2]  
LDO4V2[1]  
LDO4V2[0]  
NOT USED  
LDO4 SUPPLY OUTPUT VOLTAGE (See Table 3-28)  
The available output voltages are shown below:  
Table 3-28. LDO4V1[4:0] and LDO4V2[4:0] Output Voltage Settings  
RANGE  
[4:0]  
VOUT (V)  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
[4:0]  
VOUT (V)  
1.900  
1.925  
1.950  
1.975  
2.000  
2.025  
2.050  
2.075  
[4:0]  
VOUT (V)  
2.100  
2.125  
2.150  
2.175  
2.200  
2.225  
2.250  
2.275  
[4:0]  
VOUT (V)  
2.300  
2.325  
2.350  
2.375  
2.400  
2.425  
2.450  
2.475  
1.7V–2.475V  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
3.37.4 LDO Output Discharge Switches  
All LDO's, with exception of RTC_OUT LDO, have internal discharge resistors that are connected to  
ground via internal switches when the LDO is turned OFF, thus discharging the output capacitor.  
The LDO output discharge switches are always enabled when NORMAL state is set and during the  
SUPPLYSEQ state.  
3.37.5 Non-DVM Supply Voltage Settings  
Registers SUPPLYV1, SUPPLYV2, SUPPLYV3, SUPPLYV4 and SUPPLYV6 define the voltage settings  
for the non-DVM supplies.  
Register SUPPLYV4 has two bits that control the RTC_OUT LDO functionality. The RTC_OUT LDO will  
be enabled when LDORTC_ON is 1. The power good threshold for the RTC_OUT LDO can be set as  
follows: 2.4V (RTC_PGOOD is 1), 2.0V (RTC_PGOOD is 0).  
Table 3-29. Non-DVM Supply Voltage Selection  
SUPPLYV1 [Addr 0x41]  
Bit Name  
Function  
VLDO0[2]  
VLDO0[1]  
VLDO0[0]  
VLDO1[4]  
VLDO1[3]  
VLDO1[2]  
VLDO1[1]  
VLDO1[0]  
VLDO6[0]  
LDO0 OUTPUT VOLTAGE (See Table 3-31)  
LDO1 OUTPUT VOLTAGE (See Table 3-30)  
SUPPLYV3 [Addr 0x43]  
Bit Name  
Function  
LDO7_SW  
SPARE  
LDO6_SW  
SPARE  
VLDO7[2]  
VLDO7[1]  
VLDO7[0]  
VLDO6[2]  
VLDO6[1]  
LDO7 OUTPUT VOLTAGE (See Table 3-31) LDO6 OUTPUT VOLTAGE (See Table 3-31)  
SUPPLYV4 [Addr 0x44]  
54 DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-29. Non-DVM Supply Voltage Selection (continued)  
Bit Name  
Function  
LDORTC_ON RTC_PGOOD  
VRTC[2]  
VRTC[1]  
VRTC[0]  
VLDO3[2]  
VLDO3[1]  
VLDO3[0]  
RTC_LDO  
ON/OFF  
RTC_OUT  
LOW  
RTC OUTPUT VOLTAGE (See Table 3-31) LDO3 OUTPUT VOLTAGE (See Table 3-31)  
CONTROL  
VOLTAGE  
THRESHOLD  
SUPPLYV6 [Addr 0x46]  
Bit Name  
Function  
RSVD467  
RSVD466  
VLDO9[2]  
VLDO9[1]  
VLDO9[0]  
VLDO5[2]  
VLDO5[1]  
VLDO5[0]  
NOT USED  
NOT USED  
LDO9 OUTPUT VOLTAGE (See Table 3-31) LDO5 OUTPUT VOLTAGE (See Table 3-31)  
The available output voltages for the non-DVM supplies are shown below:  
Table 3-30. VLDO1[4:0] Settings  
RANGE  
[4:0]  
VOUT (V)  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
[4:0]  
VOUT (V)  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
[4:0]  
VOUT (V)  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
[4:0]  
VOUT (V)  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
0.725V–1.50V  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
Table 3-31. VLDO3/5/6/7/8/9[2:0] and VRTC[2:0] Settings  
VLDOx[2:0]  
000  
VOUT (V)  
1.25  
VLDOx[2:0]  
100  
VOUT (V)  
2.70  
2.85  
3.10  
3.30  
001  
1.50  
101  
010  
1.80  
110  
011  
2.50  
111  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
55  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Table 3-32. VLDO0[2:0] Settings  
VLDOx[2:0]  
000  
VOUT (V)  
1.20  
VLDOx[2:0]  
100  
VOUT (V)  
2.70  
001  
1.50  
101  
2.85  
010  
1.80  
110  
3.10  
011  
2.50  
111  
3.30  
Setting the RTC_OUT output voltage below the RTC_OUT power good threshold will result in a NORTC  
pulse always being generated during the reboot cycle or when exiting sleep. Setting the RTC_OUT output  
voltage below VUVLO_RTC disables the use of the internal real time clock counter and xtal oscillator.  
3.38 BOOST CONVERTER  
The TPS658629-Q1 has an integrated boost converter (SM3) that is optimized to drive white LED’s  
connected in a series configuration. Up to six series white LED’s can be driven, with programmable  
current and duty cycle adjustable via a dedicated I2C register.  
The SM3 boost Converter (SM3) has a 29v, 500mA low side integrated power stage switch, which drives  
the external inductor. Another integrated 29V, 25mA switch (LED switch) is used to modulate the external  
white LED’s brightness.  
56  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Figure 3-13. Boost Converter Block Diagram  
The SM3 boost converter operates in a pulse frequency modulation (PFM) scheme with constant peak  
current control. This control scheme maintains high efficiency over the entire load current range and  
enables the use of small external components, as the switching frequency can reach up to 1 MHz  
depending on the load conditions. The LED current ripple is defined by the external inductor size.  
The converter monitors the sense voltage at pin FB3, and turns on the integrated power stage switch  
when V(FB3) is below the 250mV (typ) internal reference voltage. The integrated power switch turns off  
when the inductor current reaches the internal peak current limit or if the switch is on for a period longer  
than the maximum on-time of 6 μs (typ).  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
57  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
As the integrated power switch is turned off the external Schottky diode is forward biased, delivering the  
stored inductor energy to the output. The main switch remains off until the FB3 pin voltage is below the  
internal 250mV reference voltage, when it is turned on again.  
This PFM peak current control sets the converter in discontinuous conduction mode (DCM), and the  
switching frequency depends on the inductor, input/output voltage and LED current. Lower LED currents  
reduce the switching frequency, with high efficiency over the entire LED current range. This regulation  
scheme is inherently stable, allowing a wide range for the selection of the inductor and output capacitor.  
3.38.1 SM3 RAM Registers  
Table 3-33. SM3 Control  
SM3_SET0 [Addr 0x57]  
Defaults in BOLD  
B0  
Bit Number  
Bit Name  
Function  
When 0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
SM3_SET7  
SM3_SET6  
SM3_SET5  
SM3_SET4  
SM3_SET3  
SM3_SET2  
SM3_SET1  
SM3_SET0  
SM3 PWM SWITCH DUTY CYCLE  
ADD 0 TO DUTY CYCLE  
When 1  
ADD 6.25%  
ADD 3.125%  
ADD 1.5625%  
ADD 0.78125%  
ADD 0.390%  
ADD 0.195% ADD 0.0976%  
ADD 0.048%  
SM3_SET1 [Addr 0x58]  
Defaults in BOLD  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
SM3SOFTOFF  
SM3_ILIM  
SM3_PRESC1  
SM3_PRESC0  
SM3_IGAIN  
SM3_SET10  
SM3_SET9  
SM3_SET8  
SM3  
CURRENT  
LIMIT  
SM3PWM  
REPETITION  
RATE[1]  
SM3PWM  
REPETITION  
RATE[0]  
ISM3G  
OUTPUTBUFF  
ER MODE  
SOFTSTART  
ENABLE  
Function  
SM3 PWM DUTY CYCLE  
SEE SM3 PWM REPETITION  
TABLE  
When 0  
When 1  
ENABLED  
300 mA  
Hi-Z  
ADD 0 TO DUTY CYCLE  
SEE SM3 PWM REPETITION  
TABLE  
DISABLED  
500 mA  
LO  
ADD 50%  
ADD 25%  
ADD 12.5%  
Table 3-34. SM3 PWM Repetition Settings  
SM3PRESC[1]  
SM3PRESC[0]  
REPETITION RATE (Hz)  
0
0
1
1
0
1
0
1
550  
366  
275  
220  
The internal LED switch, in series with the external LED’s, disconnects the LEDs from ground during  
shutdown. In addition, the LED switch is driven by a PWM signal generated internally, enabling adjusting  
the average LED current by setting the LED switch duty cycle. The duty cycle is adjusted with control bits  
SM3_SET, on register SM3_SET0. With this control method the LED brightness depends on the LED  
switch duty cycle only and is independent of the boost converter operating frequency. The duty cycle  
control used in the SM3 converter LED switch is implemented by a single PWM pulse with a fixed  
repetition rate. An example of distinct duty cycles is shown IN Figure 3-14  
58  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Figure 3-14. SM3 Duty Cycle Example  
The repetition period can be set using control bits SM3_PRESCn in the register SM3_SET1 to either  
220/275/366/550 Hz (HI). Each repetition period has a total of 2048 steps, enabling a resolution of 0.05%  
when programming the duty cycle.  
3.38.2 Peak Current Control (Boost Converter)  
The SM3 integrated power stage switch is turned on until the inductor current reaches the DC current limit  
IMAX(L3) (500 mA or 300mA, typ), selectable via bit SM3_ILIM , register SM3_SET1. Due to internal delays,  
typically around 100ns, the actual current exceeds the DC current limit threshold by a small amount. The  
typical peak current limit can be calculated as follows:  
VSM3  
IP(typ) = IMAX(L3)  
+
´ 100 ns  
L
(3)  
The peak current will be directly proportional to the input voltage and inversely proportional to the inductor  
value. The internal current limit may be set to either 300mA or 500mA via I2C.  
Note that under PWM operation the slew rate of the converter output (SM3) is dependent of the IMAX(L3)  
value selected.  
3.38.3 Soft Start  
All inductive step-up converters exhibit high in-rush current during start-up. If no special precautions are  
taken voltage drops can be observed at the input supply rail during start-up, with unpredictable results in  
the overall system operation.  
The SM3 boost converter limits the inrush current during start-up by increasing the current limit in two  
steps, starting from IMAX(L3) /4 for 256 power stage switch cycles (1cycle=power stage switch  
OFFONOFF) to IMAX(L3) /2 for the next 256 power stage switch cycles and then full current limit  
IMAX(L3). The softstart function can be disabled via control bit SM3SOFTOFF, in register SM3_SET1.  
3.38.4 Enabling the SM3 Converter  
The converter is enabled when an I2C command sets the duty cycle to a value different than zero.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
59  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.38.5 Overvoltage Protection  
The output voltage of the boost converter is sensed at pin SM3, and the integrated power stage switch is  
turned OFF when V(SM3) exceeds the internal over-voltage threshold V(OVP3). The converter returns to  
normal operation when V(SM3) < V(OVP3) – VHYS(OVP3)  
.
3.38.6 Under Voltage Lockout Operation  
The power stage mosfet switch and the LED switch are open (off) when the TPS658629-Q1 enters the  
sleep mode or if the SM3 converter is set to OFF mode.  
3.38.7 SM3 Output Current - High and Low Current Settings  
A dedicated, open-drain pin (ISM3G) enables I2C selection of a low and high brightness setting for the  
SM3 output current, by modifying the external FB3 resistor value. See application diagram for details. This  
pin is configured as an open drain and it can be turned on/off with bit SM3_IGAIN on register SM3_SET1.  
3.39 RGB AND PWM DRIVERS  
The TPS658629-Q1 has integrated open drain and push-pull drivers with programmable duty cycle and  
frequency, targeted at driving external RGB drivers, keyboard LED's, vibrator motor and other system  
peripherals.  
Figure 3-15. RGB and PWM Driver Blocks  
3.39.1 PWM Pin Driver  
The TPS658629-Q1 offers one high current (150mA max) open-drain PWM driver. The PWM driver is  
enabled when PWM_EN is 1 in register PWM.  
Table 3-35. PWM Control  
PWM [Addr 0x5B]  
Default to 0  
B0  
Bit  
Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Bit Name  
PWM_EN  
PWM_F[2]  
PWM_F[1]  
PWM_F[0] PWM_D[3] PWM_D[2]  
PWM_D[1]  
PWM_D[0]  
Function  
PWM DRIVER ON/OFF  
PWM DRIVER FREQUENCY  
PWM DRIVER DUTY CYCLE  
60  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
The PWM frequency and duty cycle are defined by the PWM register settings as shown below.  
Table 3-36. PWM Settings  
PWM_F[2:0)  
000  
FREQUENCY(kHz)  
PWM_D[3:0]  
0000  
DUTY CYCLE (%)  
PWM_D[3:0]  
1000  
DUTY CYCLE (%)  
23.4  
11.7  
6.7  
6.25  
12.5  
18.75  
25  
56.25  
62.5  
68.75  
75  
001  
0001  
1001  
010  
0010  
1010  
011  
4.5  
0011  
1011  
100  
3.0  
0100  
31.25  
37.5  
43.75  
50  
1100  
81.25  
87.5  
93.75  
100  
101  
2.3  
0101  
1101  
110  
1.5  
0110  
1110  
111  
0.75  
0111  
1111  
3.39.2 DIG_PWM, DIG_PWM2 Drivers  
The TPS658629-Q1 provides two push-pull outputs with programmable duty cycle at pins DIGPWM and  
DIGPWM2. The DIG_PWM register controls the DIGPWM pin duty cycle, register DIG_PWM2 controls the  
DIGPWM2 pin duty cycle. The DIG_PWM functions and register bit controls detailed below apply to the  
DIGPWM2 pin and DIG_PWM2 register as well. Both registers default to 0x00 upon power-up.  
Table 3-37. DIGPWM, DIGPWM2 Control  
DIG_PWM [Addr 0x5A]  
Default to 0  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
DPWM_MODE  
DPWM_SET[6]  
DPWM_SET[5]  
DPWM_SET[4]  
DPWM_SET[3]  
DPWM_SET[2]  
DPWM_SET[1]  
DPWM_SET[0]  
DIG_PWM2 [Addr 0x5C]  
Default to 0  
B0  
Bit Number  
B7  
DPWM2_MODE  
B6  
B5  
B4  
B3  
B2  
B1  
Bit Name  
DPWM2_SET[6]  
DPWM2_SET[5]  
DPWM2_SET[4]  
DPWM2_SET[3]  
DPWM2_SET[2]  
DPWM2_SET[1]  
DPWM2_SET[0]  
Mode 0 (DPWM_MODE is 0): The pulse width modulated output is a single PWM pulse of the selected  
duty cycle, with a nominal 250Hz repetition rate. The DIG_PWM register bits [6:0] sets the pulse width  
value as shown below:  
DPWM_SET[6:0]  
TON(ms) =  
, if DPWM_SET[6:0] £ 126  
32  
(4)  
(5)  
TON(ms) = Always On, if DPWM_SET[6:0] = 127)  
Mode 1 (DPWM_MODE is 1): The bit DPWMx_SET[6] of the DIG_PWMx register selects the pulse time  
range, bits DIG_PWMx[5:3] set the ON times and bits DIG_PWMx[2:0] set the off times.  
Table 3-38. Digital PWM Settings, DPWM_MODE=1  
DPWMx_SET[ 6] = 0  
ON TIME (µs) DIG_PWMx[2:0]  
DPWMx_SET[ 6] = 1  
OFF TIME  
(ms)  
ON TIME  
DIG_PWMx[5:3]  
DIG_PWMx[5:3]  
DIG_PWMx[2:0]  
OFF TIME (ms)  
(ms)  
000  
001  
010  
011  
100  
101  
110  
111  
31  
61  
000  
001  
010  
011  
100  
101  
110  
111  
0.49  
1.01  
1.50  
2.01  
2.50  
2.99  
4.00  
5.00  
000  
001  
010  
011  
100  
101  
110  
111  
5
000  
001  
010  
011  
100  
101  
110  
111  
40  
60  
10  
15  
20  
30  
40  
50  
60  
92  
80  
122  
153  
183  
214  
244  
100  
120  
140  
160  
180  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
61  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.39.3 LED_PWM Driver  
The LED PWM open drain pin has the duty cycle set by a pulse width modulation circuit. The LED_SET  
register bits (7:0) set the pulse width value in 256 steps. The pulse width modulated output is not a single  
pulse of the selected duty cycle but a collection of semi-equally spaced pulses that sum to the required  
duty cycle, with repetition rate of 125Hz (typ)  
Table 3-39. LEDPWM Control  
LED_PWM [Addr 0x59]  
Default to 0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
LED_SET[7] LED_SET[6] LED_SET[5] LED_SET[4] LED_SET[3] LED_SET[2] LED_SET[1] LED_SET[0]  
LED_SET[7:0]  
TON(ms) =  
, if LED_SET[7:0] £ 254  
32  
(6)  
(7)  
TON(ms) = Always On, if LED_SET[7:0] = 255  
3.39.4 RGB Drivers  
The TPS658629-Q1 has two dedicated drivers for RGB external LED's. Three outputs are available for  
each driver (pins REDn, GREENn, BLUEn), with I2C selection of operation mode and LED current.  
3.39.5 RGB1 Driver  
The RGB1 driver is enabled when RGB1_EN=HI, in RGB1_GREEN register. Each RGB1 pin (RED1,  
GREEN1 or BLUE1) will sink the current selected by RGB1_ISET[1:0], RGB1_RED register.  
The RGB1 driver can be set in a flashing mode, the flash operation parameters are configured in register  
RGB1FLASH. During the flashing ON time the duty cycle for each driver can be set individually using  
control bits PWMIR[4:0], PWMIG[4:0] and PWMIB[4:0] on registers RGB1_RED, RGB1_GREEN and  
RGB1_BLUE. The modulated output is not a single pulse of the selected duty cycle but a collection of  
semi-equally spaced pulses that sum to the required duty cycle, with repetition rate of 160Hz (typ). The  
start of 1 of the modulated pulses on RGB1 can be phased by 200 μs from the others so that for duty  
cycles below 50% the ON times of 2 of the LEDs will not overlap. When RGB1_PHASE is 0  
(RGB1_GREEN[6]), the Red and Blue are drivers are in phase and Green is out of phase. For  
RGB1_PHASE is 1 the Red and Green are in phase and Blue is out of phase.  
Table 3-40. RGB1 Control  
RGB1FLASH [Addr 0x50]  
Default is 0  
B0  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RSVD507  
SPARE  
FLASH1_ON[2]  
FLASH1_ON[1]  
FLASH1_ON[0]  
FLASH1_PER[3]  
FLASH1_PER[2]  
FLASH1_PER[1]  
FLASH1_PER[0]  
RGB1 RED/BLUE/GREEN FLASHING ON-TIME  
RGB1 RED/BLUE/GREEN FLASHING PERIOD  
RGB1RED [Addr 0x51]  
Bit Number  
Default is 0  
B0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Bit Name  
RSVD517  
RGB1_ISET[1]  
RGB1_ISET[0]  
PWM1R[4]  
PWM1R[3]  
PWM1R[2]  
PWM1R[1]  
PWM1R[0]  
RGB1 RED/BLUE/GREEN DRIVER  
CURRENT SINK  
Function  
NOT USED  
RGB1 RED DRIVER INTENSITY CONTROL  
RGB1GREEN [Addr 0x52]  
Default is 0  
B0  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Bit Name  
RGB1_EN  
RGB1_PHASE  
RSVD535  
PWM1G[4]  
PWM1G[3]  
PWM1G[2]  
PWM1G[1]  
PWM1G[0]  
RGB1 DRIVERS  
ON/OFF  
CONTROL  
DRIVER ON TIME  
PHASE CONTROL  
Function  
NOT USED  
RGB1 GREEN DRIVER INTENSITY CONTROL  
RGB1BLUE [Addr 0x53]  
Default is 0  
B0  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
Bit Name  
Function  
RSVD537  
RSVD536  
NOT USED  
RSVD535  
NOT USED  
PWM1B[4]  
PWM1B[3]  
PWM1B[2]  
PWM1B[1]  
PWM1B[0]  
NOT USED  
RGB1 BLUE DRIVER INTENSITY CONTROL  
62  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-41. RGB1 Sink Current Settings  
RGB1_ISET[1:0]  
RGB1 SINK CURRENT (mA)  
00  
01  
10  
11  
0
3.7  
7.4  
11.1  
Table 3-42. FLASH1_ON Settings  
FLASH1_ON[2:0]  
000  
FLASH ON TIME (s)  
0.10  
001  
010  
011  
100  
101  
110  
111  
0.15  
0.20  
0.25  
0.30  
0.40  
0.50  
0.60  
Table 3-43. FLASH1_PER Settings  
FLASH1_PER[3:0]  
FLASH PERIOD (s)  
FLASH1_PER[3:0]  
FLASH PERIOD (s)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
Always On  
Equation 8 indicates the duty cycle values for each driver, set with bit PWM1R[4:0], PWM1G[4:0] and  
PWM1B[4:0]:  
PWM1R/G/B[4:0]  
TON(ms) =  
5.4  
(8)  
3.39.6 RGB2 Driver  
The RGB2 driver is enabled when RGB2_EN is 1, in RGB2_GREEN register. Each RGB2 pin (RED2,  
GREEN2 or BLUE2) will sink the current selected by RGB2_ISET[2:0], set in RGB2_RED register.  
The RGB2 does not support a flashing mode, and will be turned on when RGB2_EN is 1. When turned  
ON the duty cycle for each driver can be set individually using control bits PWMIR[4:0], PWMIG[4:0] and  
PWMIB[4:0] on registers RGB2_RED, RGB2_GREEN and RGB2_BLUE. The modulated output is not a  
single pulse of the selected duty cycle but a collection of semi-equally spaced pulses that sum to the  
required duty cycle, with repetition rate of 160Hz (typ). The start of one of the modulated pulses on RGB2  
can be phased by 200 µs from the others, so that for duty cycles below 50% the ON times of 2 of the  
LEDs will not overlap. When RGB2_PHASE is 0 (RGB2_GREEN[6]), the Red and Blue drivers are in  
phase and Green is out of phase. When RGB2_PHASE is 1 the Red and Green are in phase and Blue is  
out of phase.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
63  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Table 3-44. RGB2 Control  
RGB2RED [Addr 0x54]  
Default to 0  
B0  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RGB2_ISET[2]  
RGB2_ISET[1]  
RGB2_ISET[0]  
PWM2R[4]  
PWM2R[3]  
PWM2R[2]  
PWM2R[1]  
PWM2R[0]  
RGB2 RED/BLUE/GREEN DRIVER CURRENT SINK  
RGB2 RED DRIVER INTENSITY CONTROL  
RGB2GREEN [Addr 0x55]  
Default to 0  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RGB2_EN  
RGB2_PHASE  
RSVD565  
PWM2G[4]  
PWM2G[3]  
PWM2G[2]  
PWM2G[1]  
PWM2G[0]  
RGB2 DRIVERS  
ON TIME PHASE  
CONTROL  
RGB2 DRIVERS  
ON/OFF CONTROL  
Function  
SPARE  
RGB2 GREEN DRIVER INTENSITY CONTROL  
RGB2BLUE [Addr 0x56]  
Default to 0  
B0  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RSVD577  
RSVD576  
NOT USED  
RSVD575  
NOT USED  
PWM2B[4]  
PWM2B[3]  
PWM2B[2]  
PWM2B[1]  
PWM2B[0]  
NOT USED  
RGB2 GREEN DRIVER INTENSITY CONTROL  
Table 3-45. RGB2 Sink Current Settings  
RGB2_ISET[2:0]  
RGB2 SINK CURRENT (mA)  
000  
001  
010  
011  
100  
101  
110  
111  
0
3.7  
7.4  
11.1  
14.9  
18.6  
23.2  
27.3  
The on time for each driver, set with bits PWM2R[4:0], PWM2G[4:0] and PWM2B[4:0], is set by the  
equation:  
PWM2R/G/B[4:0]  
TON(ms) =  
5.4  
(9)  
3.40 REAL TIME CLOCK  
The TPS658629-Q1 has an integrated real time clock circuit that maintains an accurate timer/counter  
register under all potential operating conditions (AC power input, USB power input, main battery power,  
backup coincell / SuperCap power source, or any combination of the above). The internal oscillator for the  
RTC can be driven by an external 32.768 kHz crystal. The TPS658629-Q1 has also been design with  
integrated, I2C selectable, capacitors which can be used with the external 32.768 kHz crystal such that a  
wide range of commercial crystals can be used without the need for external load capacitors.  
64  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
VRTC_OUT  
POR  
RESET RTC RAM  
32K CLOCK  
SELECTION  
PRESCALER  
XTAL2  
I2C  
40-BIT COUNTER  
(RAW RTC DATA)  
I2C  
Cd0  
7pF  
Cd1  
12pF  
STANDARD  
I2C ONLY  
RTC  
RAM  
ALARM  
DETECTION  
LOGIC  
XTAL1  
Cg0  
7pF  
Cg1  
12pF  
ALARM2  
ALARM1  
V32K  
INTERRUPT  
CONTROLLER  
SEQUENCER  
OUT32K  
EN  
Figure 3-16. Simplified RTC Block  
The following functions are provided:  
A 40-bit counter, driven by a low-power 32 kHz oscillator  
The 32 kHz oscillator can be switched using I2C, RTC_CTRL Register bit 6 (OSC_SRC_SEL),  
between the TPS658629-Q1 internal (RC) oscillator source and the crystal driven oscillator source.  
Externally biased buffer to supply the crystal driven oscillator to an external device via the OUT32K  
pin.  
Selectable pre-scaler divides the raw (32KHz) oscillator output, enabling clocking the RTC counter at  
1.024 kHz or 32 kHz  
A 24-bit alarm register (ALARM1)  
A 16-bit alarm register (ALARM2)  
The RTC registers are accessible only via the I2C bus. When an I2C read access is in progress, the RTC  
counter update is postponed. At the end of the I2C read access, the accumulated missing counts are  
added to the RTC counter.  
NOTE  
The RTC registers (0xC0-0xCA) ARE NOT reset when the TPS658629-Q1 is in the POWER  
DOWN or SLEEP STATE as long as V(RTC_OUT) is greater than VUVLO_RTC . All the RTC  
registers will be reset to their default settings, independent of the TPS658629-Q1 state,  
when V(RTC_OUT) is less than VUVLO_RTC  
.
The host software must read all five RTC counter bytes when accessing the RTC counter data, as the  
counter update is postponed starting at the first I2C byte read of a sequential I2C read of the five  
RTC_COUNT bytes and negated on the fifth I2C byte read.  
To assure proper operation of the RTC counter the following steps should always be followed:  
1. The I2C address pointer must not be left pointing in the range 0xC6 to 0xCA  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
65  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
2. The maximum time for the address pointer to be in this range is 1 ms  
3. Always read RTC_ALARM2 in the following order to prevent the address pointer from stopping at  
0xC6: RTC_ALARM2_LO, then RTC_ALARM2_HI  
When the RTC_OUT voltage falls below the internal RTC circuit Power On Reset threshold, VUVLO_RTC  
,
the RTC_CTRL register is reset. The host can identify this situation by reading the bit, POR_RESET_N,  
which will be 0.  
The clock selection is controlled by OSC_SRC_SEL (RTC_CTRL [6]). The internal 32kHz oscillator is  
connected to the RTC when the OSC_SRC_SEL bit is reset. Once the processor is running, the software  
can set this bit to 1, thereby connecting the 32.768 kHz crystal oscillator clock to the RTC. After being set,  
the OSC_SRC_SEL bit will remain 1 selecting the crystal oscillator clock, as long as the VRTC_OUT  
voltage remains above the RTC_OUT Power On Reset threshold. POR_RESET_N=HI when  
OSC_SRC_SEL is set HI, indicating to the host that the crystal clock is being delivered to the RTC.  
The RTC_ENABLE (RTC_CTRL [5]) bit is cleared to 0 by the RTC_OUT Power On Reset, disabling the  
RTC counter. To enable incrementing of the RTC_COUNT [39:0] from an initial value set by the host, the  
RTC_ENABLE bit should be written to 1 only after the RTC_OUT voltage reaches the operating range.  
The RTC_ENABLE bit must be cleared to 0 before any new value is written to the RTC_COUNT register.  
Table 3-46. RTC Control(1)  
RTC_CTRL [Addr 0xC0]  
Defaults in BOLD  
B0  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
POR_RESET_N  
OSC_SRC_SEL  
RTC_ENABLE  
BUF_ENABLE  
PRE_BYPASS  
CL_SEL[1]  
CL_SEL[0]  
RSVDC00  
RESET RTC  
COUNTER  
32K CLOCK  
SELECTION  
RTC COUNTER  
CLOCK AND  
ALARM1/2  
32KHZ BUFFER  
ENABLE  
RTC COUNTER INTERNAL XTAL1,  
PIN  
RTC_ALARM2  
DETECTION  
EXITS SLEEP  
SCALING  
USE 32K/32  
USE 32K  
XTAL2  
CAPACITANCE  
When 0  
When 1  
RESET RTC  
COUNTER  
INTERNAL 32K  
DISABLED  
DISABLED  
SEE CL_SEL SETTINGS TABLE  
SEE CL_SEL SETTINGS TABLE  
DISABLED  
OSC_SRC_SEL BIT =  
1
CRYSTAL 32K  
ENABLED  
ENABLED  
ENABLED  
(1) B7 is READ ONLY, all other bits have Read/Write access  
The selected 32KHz clock is applied to a prescaler that can divide it by 32, resulting in a timer tick  
resolution of either 32,768 ticks per second (pre-scaler disabled, PRE_BYPASS is 1) or 1,024 ticks per  
second (pre-scaler enabled, PRE_BYPASS is 0). The 32,768 Hz or 1024 Hz clock increments a 40 bit  
counter that tracks the real time and which can be read at anytime via I2C. With the prescaler enabled, the  
RTC count has a range of approximately 34 years. The RTC counter and alarm registers are shown  
below, the 40 bit RTC Counter is cleared only on when RTC_OUT is below the UVLO threshold.  
Table 3-47. RTC Counter  
RTC_COUNT4 [Addr 0xC6]  
Default to 0  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
RTC[39]  
RTC[38]  
RTC[37]  
RTC[36]  
RTC[35]  
RTC[34]  
RTC[33]  
RTC[32]  
Default to 0  
RTC[24]  
Default to 0  
RTC[16]  
Default to 0  
RTC[8]  
RTC_COUNT3 [Addr 0xC7]  
Bit Name RTC[31]  
RTC_COUNT2 [Addr 0xC8]  
Bit Name RTC[23]  
RTC_COUNT1 [Addr 0xC9]  
Bit Name RTC[15]  
RTC_COUNT0 [Addr 0xCA]  
Bit Name RTC[7]  
RTC[30]  
RTC[22]  
RTC[14]  
RTC[6]  
RTC[29]  
RTC[21]  
RTC[13]  
RTC[5]  
RTC[28]  
RTC[20]  
RTC[12]  
RTC[4]  
RTC[27]  
RTC[19]  
RTC[11]  
RTC[3]  
RTC[26]  
RTC[18]  
RTC[10]  
RTC[2]  
RTC[25]  
RTC[17]  
RTC[9]  
RTC[1]  
Default to 0  
RTC[0]  
66  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
The alarm logic compares the RTC_ALARM1 register bits to the RTC_COUNT registers as follows:  
With prescaler enabled: ALM1[23:0] is compared to RTC[23:0]  
With prescaler disabled: ALM1[23:0] is compared to RTC[28:5]  
An interrupt is sent to the host (if enabled via I2C, see interrupt controller section) when the alarm logic  
detects that the RTC_COUNT value is equal to the pre-programmed ALARM1 register value.  
The alarm logic compares the RTC_ALARM2 register bits to the RTC_COUNT registers as follows:  
With prescaler enabled: ALM2[23:0] is compared to RTC[22:7]  
With prescaler disabled: ALM2[15:0] is compared to RTC[27:12]  
An interrupt is sent to the host (if enabled via I2C, see interrupt controller section) and the sleep mode  
ends when the alarm logic detects that the RTC_COUNT value is equal to the pre-programmed ALARM2  
register value.  
Table 3-48. RTC Alarm  
RTC_ALARM1_HI [ADDRESS=0xC1]  
Default to 0  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
ALM1[23]  
ALM1[22]  
ALM1[21]  
ALM1[20]  
ALM1[19]  
ALM1[18]  
ALM1[17]  
ALM1[16]  
Default to 0  
ALM1[8]  
RTC_ALARM1_MID [Addr 0xC2]  
Bit Name ALM1[15]  
RTC_ALARM1_LO [Addr 0xC3]  
Bit Name ALM1[7]  
RTC_ALARM2_HI [Addr 0xC4]  
Bit Name ALM2[15]  
RTC_ALARM2_LO [Addr 0xC5  
Bit Name ALM2[7]  
ALM1[14]  
ALM1[6]  
ALM2[14]  
ALM2[6]  
ALM1[13]  
ALM1[5]  
ALM2[13]  
ALM2[5]  
ALM1[12]  
ALM1[4]  
ALM2[12]  
ALM2[4]  
ALM1[11]  
ALM1[3]  
ALM2[11]  
ALM2[3]  
ALM1[10]  
ALM1[2]  
ALM2[10]  
ALM2[2]  
ALM1[9]  
ALM1[1]  
ALM2[9]  
ALM2[1]  
Default to 0  
ALM1[0]  
Default to 0  
ALM2[8]  
Default to 0  
ALM2[0]  
3.41 SWITCHING BETWEEN INTERNAL AND CRYSTAL CLOCK  
When switching between the internal clock to the crystal clock, an internal logic extends the LO time of the  
clock sent to the counter to avoid undesired glitches. A typical clock switching timing diagram is shown  
below:  
SELECT CRYSTAL  
CLOCK  
INTERNAL 32K  
CRYSTAL CLOCK  
RTC CLOCK  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
67  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.42 CRYSTAL OSCILLATOR  
The crystal oscillator has internal load capacitances, in order to allow a typical 32K crystal to operate as  
described in the electrical characteristics tables. The TPS658629-Q1 has four integrated capacitors that  
can be connected to the XTAL1, XTAL2 pins as defined by control bits CL_SEL[1:0] in register  
RTC_CTRL, effectively applying a load capacitance to the external crystal.  
Table 3-49. CL_SEL[1:0] Setting  
(Default in bold)  
Total C_LOAD [pF]  
CL_SEL[1]  
CL_SEL[0]  
(typ)  
0
0
1
1
0
1
0
1
1.5  
6.5  
7.5  
12.5  
3.43 ADC FUNCTIONAL OVERVIEW  
The TPS658629-Q1 ADC is capable of running in a variety of modes programmable via I2C. The ADC  
control and data registers are accessible only by the standard I2C interface (SDA/SCLK). An internal 11:1  
analog multiplexer is used to allow a single SAR converter to sequentially monitor up to 11 analog inputs,  
as shown inTable 3-50.  
Table 3-50. ADC Channel Settings  
FULL SCALE  
READING  
CHANNEL  
CONNECTION  
PARAMETER SAMPLED  
VOLTAGE RANGE  
SPECIAL FEATURES  
CH1  
CH2  
CH3  
CH4  
ANLG1 pin  
ANLG2 pin  
ANLG3 pin  
RSVD  
Internal pull-up current  
source programmable  
via  
2.6 V  
0–2.6V  
AVDD6-V(ANLGn)>  
400mV  
2.6 V  
User defined  
N/A  
I2C: 0/ 3/10/50 μA  
2.6 V  
N/A  
2.6 V  
Voltage proportional to pack  
temperature  
0V (short) to 2.2V (no  
thermistor)  
CH5  
TS pin  
2.6 V  
CH6  
CH7  
CH8  
CH9  
RSVD  
LDO_RTC pin  
SYS pin  
N/A  
N/A  
2.6 V  
Internal LDO output voltage  
System Power bus voltage  
N/A  
0V to 3.3V  
0V to 5.5V  
N/A  
4.622 V  
5.547 V  
5.547 V  
RSVD  
Battery pack positive  
terminal voltage  
CH10  
CH11  
BAT pin  
RSVD  
0V to 4.6V  
N/A  
4.622 V  
2.6 V  
N/A  
68  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
A simplified block diagram for the ADC analog section is show in Figure 3-17.  
RSVD  
RSVD  
Figure 3-17. Simplified ADC Block  
3.43.1 ADC External Input Pins – Bias Current Settings  
The external pins ANLG1, ANLG2 and ANLG3 may be biased using internal pull-up current sources, with  
current source value set by register ADCANLG. The current sources are turned OFF when the ADC  
reference is disabled.  
Table 3-51. ADC Input Bias Selection  
ADCANLG [Addr 0x60]  
Default to 0  
IANLG1[0]  
ANLG2 BIAS CURRENT SOURCE ANLG1 BIAS CURRENT SOURCE  
Bit Name  
Function  
ANLG2FLT ANLG3FLT  
SPARE SPARE  
IANLG3[1]  
IANLG3[0]  
IANLG2[1]  
IANLG2[0]  
IANLG1[1]  
ANLG3 BIAS CURRENT SOURCE  
Table 3-52. ANLG3/2/1 Current Source Settings  
IANLG[1]  
IANLG[0]  
Current (μA)  
0
0
1
1
0
1
0
1
0
3
10  
50  
3.43.2 ADC Timing Engine Overview  
The ADC timing engine can be configured to perform either one reading, a single-trigger multiple set of  
readings, or to operate continuously until high or low limits are violated on any channel.  
A conversion cycle includes the following steps:  
1. Program the timing engine mode (single sample, multiple sample, etc.) and triggers  
2. Enable the internal ADC reference and conversion start delay  
3. Select the channel to be used as the SAR input and start the conversion cycle  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
69  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
The timing engine has an internal ALU that stores the converted data in an internal accumulator,  
executing mathematical operations with the stored data. A conversion cycle ends when the accumulator  
data is transferred to the TPS658629-Q1 ADC RAM data registers.  
When the conversion cycle is completed, an interrupt request corresponding to indicate end of conversion  
operation is generated. The interrupt controller subsystem will set the ACK_ADC (bit B1, register 0xB6) to  
indicate the source of the interrupt was the ADC subsystem. Additional information is available in the  
ADC0_INT register (0x9A).  
3.43.3 Configuring the ADC Conversion Cycle  
3.43.3.1 Number of Samples and ADC Input Setup  
Register ADC0_SET controls the following parameters for a conversion cycle: conversion start, continuous  
or fixed-interval sampling mode, number of samples to be taken and channel selection.  
Setting the ADC0_EN bit to 1 will start the conversion process. While a conversion cycle is being executed  
(and conversions are being taken) the ADC0_INT register cannot be externally accessed.  
The ADC engine has a BUSY signal generated by the ADC Digital Control Logic to indicate this condition.  
If the ADC0_EN bit is cleared to 0 during a conversion, the conversion cycle will continue until the number  
of samples specified with the RD_MODE bits has been taken so that the SUM (average) value from the  
accumulator will be valid. The ADC0_EN bit must be set to 0 before a new conversion configuration is set  
up.  
Table 3-53. ADC0 Conversion Selection  
ADC0_SET [Addr 0x61]  
Default in BOLD  
Bit  
Number  
B7  
ADC0_EN  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
Function  
REPEAT0  
RD0_MODE[1]  
RD0_MODE[0]  
CHSEL0[3] CHSEL0[2] CHSEL0[1] CHSEL0[0]  
ADC0 INPUT CHANNEL SELECTION  
ADC0 CONVERSION  
START  
ADC0 REPEAT  
MODE ENABLE  
READINGS IN A CONVERSION  
SEE ADC READING SETTINGS  
When 0  
When 1  
DISABLED  
DISABLED  
SEE ADC CHANNEL SELECT SETTINGS  
ENABLED  
ENABLED  
Table 3-54. ADC Readings Setting  
(Default in bold)  
NUMBER OF  
READINGS  
RD0_MODE[1]  
RD0_MODE[0]  
0
0
1
1
0
1
0
1
1
16  
32  
64  
Table 3-55. ADC Channel Select Settings (Default in bold)  
CHSELn[3:0]  
CHANNEL  
CH1  
CHSELn[3:0]  
1000  
CHANNEL  
CH9  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
CH2  
1001  
CH10  
CH3  
1010  
CH11  
CH4  
1011  
AGND  
AGND  
AGND  
AGND  
CH5  
1100  
CH6  
1101  
CH7  
1110  
70  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-55. ADC Channel Select Settings (Default in bold) (continued)  
CHSELn[3:0]  
CHANNEL  
CHSELn[3:0]  
CHANNEL  
0111  
CH8  
1111  
AGND  
Continuous sampling mode can be set by writing REPEAT to 1 and RD0_MODE[1:0]=00. With those  
settings the conversions will be performed as single samples, without wait times, until the ADC_EN bit is  
cleared by the host or a limit violation occurs. If fixed-interval sampling mode (REPEAT0 = 0) is chosen,  
the conversion cycle will consist of a specific number of samples (1, 16, 32, or 64) as specified by the  
RD0_MODE[1:0] bits. When a multiple sample conversion cycle is selected the time interval between  
individual samples is defined by the WAIT bits (register ADC0_WAIT). To exit the continuous conversion  
mode before a limit violation occurs, the host must first set the REPEAT bit to LO, and then set the  
ADC0_EN bit to 0.  
3.43.4 Timing and ADC Reference Setup  
The ADC0_WAIT register controls the ADC0 timing engine reset, wait time value and the converter  
internal reference voltage enable. The ADC reference and SAR are disabled when AUTO_REF=0 AND  
REF_EN=0. The use of external references for the ADC is not supported.  
Table 3-56. ADC0 Conversion Timing  
ADC0_WAIT [Addr 0x62]  
Defaults in BOLD  
B0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
ADC_RESET  
RSVD626  
AUTO_REF  
REF_EN  
WAIT0[3]  
WAIT0[2]  
WAIT0[1]  
WAIT0[0]  
RESET  
CONVERSION  
CYCLE  
WAIT TIME BETWEEN INDIVIDUAL CONVERSIONS,  
REPEAT MODE ENABLED (ms)  
Function  
NOT USED  
ADC Conversion Control  
ALL ADC  
ENGINES  
ACTIVE  
When 0  
When 1  
NOT USED  
Function is based on ADC  
Conversion Control  
SEE WAIT0 SETTINGS TABLE  
RESET ALL  
ADC ENGINES  
NOT USED  
Table 3-57. ADC Conversion Control  
(Default in bold)  
AUTO_REF  
REF_EN  
DESCRIPTION  
0
0
1
1
0
1
0
1
Reference and ADC disabled  
Manual control of the Reference. WAIT=0 is not valid. 8ms must occur between REF_EN=1 and ADC0_EN=1  
Automatic control of the Reference. Automatically enabled 8 ms before an ADC conversion is started.  
Not a valid state  
The relative timing between enabling the internal ADC reference / ANLGn pin bias currents and the start  
of a conversion cycle is controlled by bits AUTO_REF and REF_EN. Those bits allow implementation of a  
software only reference enable control or automatic reference enable control, as shown below:  
Software enables ADC reference: Clear AUTO_REF bit to 0. Software must set REF_EN to 1 at least 8  
ms before enabling an ADC engine and not clear REF_EN until all ADC engines are stopped.  
Automatic ADC reference enable, internal or external trigger, wait time < 8ms : Set AUTO_REF bit to  
1. The ADC logic will keep the ADC reference always on.  
Automatic ADC reference enable, internal trigger, wait time > 8ms : Set AUTO_REF bit to 1. The ADC  
logic enables the ADC reference 8 ms before the programmed wait time is reached  
Setting ADC_RESET to 1 will return ALL the ADC timing engine to the idle state, ready to be re-enabled  
for a new conversion cycle. During the conversion cycle the ADC_RESET bit is internally set to LO prior to  
the first ADC conversion being started. WAIT[3:0] sets the time interval between samples in the case  
where a multiple-sample conversion cycle is being executed. WAIT[3:0] should be set LO in single sample  
conversion cycles.  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
71  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Table 3-58. ADC0 Conversion Wait Settings (Default in bold);  
Valid for All Timing Engines  
WAIT0[3:0]  
0000  
WAIT TIME (ms)  
0.000  
WAIT0[3:0]  
1000  
WAIT TIME (ms)  
8.000  
0001  
0.062  
1001  
16.00  
0010  
0.125  
1010  
32.00  
0011  
0.250  
1011  
64.00  
0100  
0.500  
1100  
128.0  
0101  
1.000  
1101  
256.0  
0110  
2.000  
1110  
512.0  
0111  
4.000  
1111  
1024  
3.43.5 External Trigger Setup  
The ADC conversion cycle can be started via an internal or external trigger when using the ADC0 timing  
engine. The trigger is selectable by setting bits ADC0_TRIG4, ADC0_TRIG2 in registers ADC0_DELAY.  
Table 3-59. Trigger Settings  
ADC0_DELAY [Addr 0x67]  
Default to 0  
B0  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
ADC0_TRIG4  
ADC0_TRIG2  
ADC0HOLD  
ADC0_EDGE  
NOT USED  
RSVD673  
NOT USED  
DELAY0[2]  
DELAY0[1]  
DELAY0[0]  
GPIO4 IS ADC0  
EXT TRIGGER  
GPIO2 IS ADC0  
EXT TRIGGER  
ADC HOLDOFF  
ON/OFF CONTROL  
ADC EXTERNAL TRIGGER DELAY (μs)  
When 0  
When 1  
DISABLED  
DISABLED  
OFF  
NOT USED  
NOT USED  
000=00 001=50 010= 100 011=150  
100=200 101=250 110=350 111=450  
ENABLED  
ENABLED  
ON  
NOT USED  
NOT USED  
When more than one GPIO trigger source is selected the GPIO signals are OR'ed prior to trigger  
detection. When both of those bits are cleared to 0 the internal trigger is selected.  
ADC0_HOLDOFF (ADC0_DELAY[5]) enables the GPIOx trigger source to be used as a level-sensed  
gating signal which will suspend conversion cycles when the trigger source is low. The default for this bit  
is 0. When ADC0HOLD is 0, the conversion cycle will continue for the preset number of conversions  
selected with the RD_MODE bits once the initial trigger occurs. If the ADC0HOLD bit is 1, any pending  
conversion cycle can be suspended if the GPIO trigger goes low (and resumes once the trigger signal  
goes high again and the trigger delay time has been met). ADC0_DELAY[2:0] are used to set the initial  
wait interval from the trigger event until the first conversion in a cycle is started. This delay may be from 0  
to 450μs.  
When the GPIO's are selected as external triggers the ADC conversion start will be dependent on the  
GPIO configuration. Table 3-60 shows the possible options:  
Table 3-60. ADC0 GPIO Trigger Settings  
ADC0_TRIG2 = 1, ADC0_TRIG4 = 0  
ADC TRIGGER  
ADC0_TRIG2 = 0, ADC0_TRIG4 = 1  
ADC TRIGGER  
WHEN  
GPIO2 PIN  
WHEN HOLDOFF=HI  
GPIO4 PIN  
SOURCE  
SOURCE  
HOLDOFF=HI  
SUSPEND  
TRIGGER at  
GPIO4=LO  
GPIO2  
POSITIVE EDGE  
SUSPEND TRIGGER at  
GPIO2=LO  
GPIO4  
POSITIVE EDGE  
NON-INVERTED  
NON-INVERTED  
INVERTED  
GPIO2  
NEGATIVE  
EDGE  
SUSPEND  
TRIGGER at  
GPIO4=HI  
SUSPEND TRIGGER at  
GPIO2=HI  
GPIO4 NEGATIVE  
EDGE  
INVERTED  
72  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
ADC0_TRIG2=HI,ADC0_TRIG4=HI  
GPIO4 PIN ADC TRIGGER SOURCE  
GPIO2 PIN  
WHEN HOLDOFF=HI  
GPIO2 OR GPIO4 POSITIVE  
SUSPEND TRIGGER at GPIO2  
= LO AND GPIO4 = LO  
NON-INVERTED  
NON-INVERTED  
INVERTED  
NON-INVERTED  
INVERTED  
EDGE  
GPIO2 POSITIVE EDGE OR  
GPIO4 NEGATIVE EDGE  
SUSPEND TRIGGER at GPIO2  
= LO AND GPIO4 = HI  
GPIO2 NEGATIVE EDGE OR  
GPIO4 POSITIVE EDGE  
SUSPEND TRIGGER at GPIO2  
= HI AND GPIO4 = LO  
NON-INVERTED  
INVERTED  
GPIO2 OR GPIO4 NEGATIVE  
SUSPEND TRIGGER at GPIO2  
= HI AND GPIO4 = HI  
INVERTED  
EDGE  
The procedure to start an externally-triggered conversion cycle has the following steps:  
1. Verify that the current conversion cycle has ended (ADC0_BUSY is 0, I2C register STAT4)  
2. Clear ADC0_EN to 0 (ADC0_SET[7]).  
3. Set the appropriate bit in the corresponding ADC0_DELAY register (example – write 1 to  
ADC0_DELAY bit B7 to use GPIO4 as trigger source for ADC0). Ensure that the selected GPIOs have  
the appropriate input and polarity selection – see GPIOSET1 and GPIOSET2 registers.  
4. Set ADC0_EN to 1  
After step 4 the ADC will be armed, waiting for an external trigger detection to start a conversion cycle. In  
triggered mode the current cycle will not expire if the converter is armed and an external trigger is not  
detected.  
CONVERSION CYCLE  
GPIO2  
ON  
INTERNAL ADC  
CONVERSION STATUS  
OFF  
TWAIT(TRG)  
TDLY(TRG)  
1st  
SAMPLE  
LAST  
SAMPLE  
ADC CONVERSION TRIGGERED BY GPIO2, POSITIVE EDGE TRIGGERED, ACTIVE LEVEL HI , HOLDOFF = LO  
CONVERSION CYCLE  
GPIO2  
ON  
OFF  
INTERNAL ADC  
CONVERSION STATUS  
TWAIT(TRG)  
TDLY(TRG)  
TDLY(TRG)  
1st  
SAMPLE  
LAST  
SAMPLE  
ADC CONVERSION TRIGGERED BY GPIO2, POSITIVE EDGE TRIGGERED, ACTIVE LEVEL HI , HOLDOFF = HI, 4 SAMPLE  
CYCLE  
Figure 3-18. ADC Operation Example  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
73  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.43.6 ADC ALU Unit and Result Registers  
The ALU performs mathematical operations on the ADC output data. It can execute average (SUM)  
calculations and minimum / maximum detection for a conversion cycle. The result of the SUM calculations  
is stored in a 16 bit accumulator register (ADC0SUM2, ADC0_SUM1) and the MIN/MAX data is stored in  
10-bit registers (ADC0_MAX2, ADC0_MAX1, ADC0_MIN2, ADC0_MIN1).  
Equation 10 indicates how to translate the register data into a voltage reading for each channel:  
ADC_OUTPUT_COUNTS = [ADC_INPUT_VOLTAGE / FULL_SCALE_READING] × 1023  
(10)  
Table 3-61. ADC0 Output Data  
ADC0_SUM2(1) [Addr 0x94]  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
AVG[15]  
AVG[14]  
AVG[13]  
AVG[12]  
AVG[11]  
AVG[10]  
AVG[9]  
AVG[8]  
AVG[0]  
MAX[8]  
MAX[0]  
MIN[8]  
MIN[0]  
ADC0_SUM1 [Addr 0x95]  
Bit Name AVG[7]  
ADC0_MAX2 [Addr 0x96]  
Bit Name RSVD967  
ADC0_MAX1 [Addr 0x97]  
Bit Name MAX[7]  
ADC0_MIN2 [Addr 0x98]  
Bit Name RSVD987  
ADC0_MIN1 [Addr 0x99]  
Bit Name MIN[7]  
AVG[6]  
RSVD966  
MAX[6]  
AVG[5]  
RSVD965  
MAX[5]  
AVG[4]  
RSVD964  
MAX[4]  
AVG[3]  
RSVD963  
MAX[3]  
AVG[2]  
RSVD962  
MAX[2]  
AVG[1]  
MAX[9]  
MAX[1]  
MIN[9]  
MIN[1]  
RSVD986  
MIN[6]  
RSVD985  
MIN[5]  
RSVD984  
MIN[4]  
RSVD983  
MIN[3]  
RSVD982  
MIN[2]  
(1) All bits in ADC0_SUM2 are read only.  
3.43.7 Limit Check Setup  
The ADC0 timing engine has configurable low and high thresholds to interrupt the host when conversion  
values, stored in registers ADC0_MAX and ADC0_MIN exceed a pre-selected range . A limit violation will  
be detected and an interrupt sent to the host when the sampled value stored in registers ADC0_MAX2,  
ADC0_MAX1 exceeds the maximum value set in registers ADC0_HILIM2, ADC0_HILIM1 or when the  
minimum sampled value stored in registers ADC0_MIN2, ADC0_MIN1 is lower than the minimum value  
programmed in registers and ADC0_HILIM2, ADC0_HILIM1.  
Limit violations can not occur if Low Limit = 0x000 and High Limit = 0xFFF.  
Table 3-62. ADC0 Limit Selection  
ADC0_HILIM2 [Addr 0x63]  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
RSVD637  
RSVD636  
RSVD635  
RSVD634  
HILIMA[11]  
HILIMA[10]  
HILIMA[9]  
HILIMA[8]  
ADC0_HILIM1 [Addr 0x64]  
Bit Name HILIMA[7]  
ADC0_LOLIM2 [Addr 0x65]  
Bit Name RSVD657  
ADC0_LOLIM1 [Addr 0x66]  
Bit Name LOLIMA[7]  
HILIMA[6]  
RSVD656  
LOLIMA[6]  
HILIMA[5]  
RSVD655  
LOLIMA[5]  
HILIMA[4]  
RSVD654  
LOLIMA[4]  
HILIMA[3]  
LOLIMA[11]  
LOLIMA[3]  
HILIMA[2]  
LOLIMA[10]  
LOLIMA[2]  
HILIMA[1]  
LOLIMA[9]  
LOLIMA[1]  
HILIMA[0]  
LOLIMA[8]  
LOLIMA[0]  
The limit detection ADC conversion cycle should be configured with internal trigger and sampling  
sequences as follows:  
1. To detect when an individual sample violates the max/min limits: Set RD_MODE[1:0] to 00 and  
REPEAT to 1. With these settings the ALU will compare the 10-bit ADC data returned from the SAR  
engine to the 10 bit values loaded in the ADC0_LIMIT values. The conversion sequence will repeat  
until either a violation interrupt occurs or the ADC0_EN bit is written to 0.  
74  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
2. To detect when the average value violates the max/min limits: Set RD_MODE[1:0]) to 01, 10 or 11 and  
REPEAT to 1. At the end of the multiple sample conversion cycle the ALU will calculate the 12 bit  
average of the sample values by shifting the AVG[15:0] register (shift right 2 if 16 samples, shift right 3  
if 32 samples and shift right 4 if 64 samples) . The shifted 12-bit average value is then compared to the  
value programmed in registers ADC0_LIMIT.  
3.43.8 ADC Status Registers  
The ADC conversion status for the timing engine is available in the ADC0_INT register. The ADC0_INT  
register is read-only. Reading the ADC0_INT register clears the ADC0INT bit in the STAT4 register  
(ADC0INT=0).  
Table 3-63. ADC Conversion Status  
ADC0_ INT [Addr 0x9A]  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ADC0_ DONE  
ADC0_  
HILIM0_FLT  
LOLIM0_FLT  
RSVD9A3  
RSVD9A2  
ADC0_GPIO4ST ADC0_GPIO2ST  
ERROR  
Function  
When 0  
When 1  
CONVERSION  
CYCLE STATUS  
ADC_STATUS  
NO ERROR  
ERROR  
HI LIMIT  
FAULT  
LO LIMIT FAULT  
NO DETECTED  
DETECTED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
GPIO4 LEVEL  
AT ADC0 EOC  
GPIO2 LEVEL  
AT ADC0 EOC  
BUSY  
DONE  
NOT  
DETECTED  
LOW  
LOW  
DETECTED  
HIGH  
HIGH  
3.44 GPIO  
The TPS658629-Q1 integrates 4 general purpose push-pull ports (GPIOs) which can be configured as  
selectable inputs or outputs via register GPIOSET1 bits. When the GPIO is not configured the pull-down  
current source (2.5uA typ) is connected to the GPIOn pin. When configured as an input the GPIO can be  
set as inverting or non-inverting via bits GPIOnINV in the GPIOSET2 register.  
When configured as an output, the GPIO output level is defined by bits GPIOnOUT in the GPIOSET2  
register.  
Table 3-64. GPIO Control(1)  
GPIOSET1 [Addr 0x5D]  
Default to 0  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
GPIO4_MODE GPIO4_MODE GPIO3_MODE GPIO3_MODE GPIO2_MODE GPIO2_MODE GPIO1_MODE GPIO1_MODE  
1
0
1
0
1
0
1
0
Function  
GPIO4 CONFIGURATION  
GPIO3 CONFIGURATION  
GPIO2 CONFIGURATION  
GPIO1 CONFIGURATION  
GPIOSET2 [Addr 0x5E]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
Function  
GPIO4INV  
GPIO3INV  
GPIO2INV  
GPIO1INV  
GPIO4OUT  
GPIO3OUT  
GPIO2OUT  
GPIO1OUT  
GPIO4 INPUT  
BUFFER  
GPIO3 INPUT  
BUFFER  
GPIO2 INPUT  
BUFFER  
GPIO1 INPUT  
BUFFER  
GPIO4  
VOLTAGE,  
GPIO3  
VOLTAGE,  
GPIO2  
VOLTAGE,  
GPIO1  
VOLTAGE,  
MODE  
MODE  
MODE  
MODE  
CONFIGURED CONFIGURED CONFIGURED CONFIGURED  
AS OUTPUT  
AS OUTPUT  
AS OUTPUT  
AS OUTPUT  
When 0  
When 1  
NON-  
INVERTING  
NON-  
INVERTING  
NON-  
INVERTING  
NON-  
INVERTING  
LO  
LO  
LO  
LO  
INVERTING  
INVERTING  
INVERTING  
INVERTING  
HI  
HI  
HI  
HI  
(1) All GPIO's default to the same configuration.  
Table 3-65. GPIO4/3/2/1_MODE Settings  
GPIOx_MODE[1]  
GPIOx_MODE[0]  
GPIO4 Config  
Not Configured  
Output  
GPIO3 Config  
Not Configured  
Output  
GPIO2 Config  
Not Configured  
Output  
GPIO1 Config  
0
0
1
1
0
1
0
1
Not Configured  
Output  
Input ADC Trigger  
Input LDO6/7/8 Enable  
Input Not Used  
Input LDO2/3 Enable  
Input ADC Trigger  
Input LDO0/1 ENABLE  
Input PWM/PFM Control  
Input Not Used  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
75  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
3.45 STATUS REGISTERS  
The system status is accessible via I2C registers listed below. The STATn registers are read only.  
Table 3-66. Status Registers  
ADC0_ INT [Addr 0x9A]  
Bit Number  
Bit Name  
Function  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ADC0_ DONE  
ADC0_ ERROR  
ADC_STATUS  
HILIM0_FLT  
HI LIMIT FAULT  
LOLIM0_FLT  
LO LIMIT FAULT  
RSVD9A3  
NOT USED  
RSVD9A2  
NOT USED  
ADC0_GPIO4ST  
ADC0_GPIO2ST  
CONVERSION  
GPIO4 LEVEL AT GPIO2 LEVEL AT  
CYCLE STATUS  
ADC0 EOC  
ADC0 EOC  
When 0  
When 1  
BUSY  
DONE  
NO ERROR  
ERROR  
NOT DETECTED  
DETECTED  
NOT DETECTED  
DETECTED  
NOT USED  
NOT USED  
NOT USED  
NOT USED  
LOW  
LOW  
HIGH  
HIGH  
STAT1 [Addr 0xB9]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
BATSYSON  
BAT TO SYS  
SWITCH ON/OFF  
STATUS  
ACSWON  
USBSWON  
USB SWITCH  
ON/OFF STATUS SWITCH ON/OFF  
STATUS  
BATCHGSWON  
BAT TO VIN_CHG  
RSVDB93  
SPARE  
PACK_HOT  
PACK_COLD  
BATDET  
Function  
AC SWITCH ON/OFF  
STATUS  
PACK TEMP  
EXCEEDS HOT  
THRESHOLD  
PACK TEMP  
BELOW COLD  
THRESHOLD  
BATTTERY PACK  
TS THERMISTOR  
DETECTION  
When 0  
When 1  
OFF  
ON  
OFF  
ON  
OFF  
ON  
OFF  
ON  
NOT USED  
NOT USED  
NO  
NO  
NOT DETECTED  
DETECTED  
YES  
YES  
STAT2 [Addr 0xBA]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
RSVD  
RSVD  
RSVD  
RSVD  
SLEEPTSHUT  
NOT USED  
RSVD  
RSVD  
COMPDET  
Function  
nHOTRST PULSE  
GENERATED  
REBOOT CYCLE  
When 0  
When 1  
NOT USED  
NOT USED  
NO  
YES  
STAT3 [Addr 0xBB]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
SLEEPREQ  
LOWSYS  
RESUME  
RTC_ALARM  
SPARE  
ACDET  
USBDET  
AC_OVP  
USB_OVP  
Function  
SLEEP REQUEST  
STATE SET  
LOWSYS  
DETECTION  
STATUS  
RESUME  
DETECTION  
STATUS  
AC INPUT POWER  
STATUS  
USB INPUT  
POWER STATUS  
AC INPUT OVP  
DETECTION  
USB INPUT OVP  
DETECTION  
When 0  
When 1  
NO  
NOT DETECTED  
DETECTED  
NOT DETECTED  
DETECTED  
SPARE  
SPARE  
NOT DETECTED  
DETECTED  
NOT DETECTED  
DETECTED  
NO OVP  
NO OVP  
YES  
OVP DETECTED  
OVP DETECTED  
STAT4 [Addr 0xBC]  
Bit Number  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Bit Name  
RSVDBC7  
SPARE  
RSVDBC6  
SPARE  
RSVDBC5  
SPARE  
ADC0BUSY  
RSVDBC3  
SPARE  
RSVDBC2  
SPARE  
RSVDBC1  
SPARE  
ADC0INT  
Function  
ADC ENGINE 0  
MODE  
ADC ENGINE 0  
INTERRUPT  
When 0  
When 1  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
IDLE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
SPARE  
NOT ACTIVE  
ACTIVE  
BUSY  
3.46 INTERRUPT CONTROLLER  
The interrupt controller monitors the system status bus and internal signals continuously, generating an  
interrupt (INT = ‘0’) when a system status change is detected. Individual bits that generated the interrupt  
will be set to 1 in the INT_ACK registers (read only registers), indicating which parameters generated the  
interrupt.  
All the parameters monitored by the interrupt controller can be masked by registers INT_MASK  
(0=unmasked, 1=masked). Masked parameters do not generate an interrupt when their state changes.  
When the host reads the INT_ACK registers, the interrupt is reset causing the INT pin to go to a logic 1  
and the INT_ACK register bits are cleared.  
The power good signals from the integrated supplies are level sensitive, and they will continue to cause an  
interrupt until the power good condition returns or the signal is masked. For non-masked power good  
parameters the INT_ACK bit will indicate the present state of the power good signals. The INTMASK  
register bits are cleared to 0 upon power-up.  
76  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Table 3-67. INT_ACK registers  
INT_ACK1 [Addr 0xB5]  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
ACK_PLDO7  
ACK_PLDO6  
ACK_PLDO5  
ACK_PLDO4  
ACK_PLDO3  
ACK_PLDO2  
ACK_PLDO1  
ACK_PLDO0  
INT_ACK2 [Addr 0xB6]  
Bit Name  
ACK_PSM3  
ACK_PSM2  
ACK_CHGTEMP  
RSVDB86(2)  
ACK_PSM1  
ACK_CHGSTAT  
RSVDB85  
ACK_PSM0  
ACK_BATDET  
RSVDB84  
ACK_PLDO9  
ACK_ACDET  
RSVDB83  
ACK_PLDO8  
ACK_USBDET  
ACK_RTCACM2  
ACK_ADC  
ACK_ COMPDET(1)  
ACK_RTCALM1  
ACK_RESUME  
INT_ACK3 [Addr 0xB7]  
Bit Name  
INT_ACK4 [Addr 0xB8]  
Bit Name RSVDB87  
ACK_PP  
ACKACUSBOVP  
ACK_LOWSYS  
(1) ACK_COMPDET= ACK INT BY HOTRST FLAG SET  
(2) RSVDB86= ACK INT BY SLEEP REQUEST  
Table 3-68. INTMASK Registers  
INTMASK1 [Addr 0xB0]  
Default to 1 (Masked)  
IMASK_PLDO0  
Bit Name  
IMASK_PLDO7  
IMASK_PLDO6  
IMASK_PSM2  
IMASKACSW  
RSVD  
IMASK_PLDO5  
IMASK_PSM1  
IMASKUSBSW  
RSVD  
IMASK_PLDO4  
IMASK_PSM0  
IMASKBCHGSW  
RSVD  
IMASK_PLDO3  
IMASK_PLDO9  
RSVDB23  
IMASK_PLDO2  
IMASK_PLDO1  
IMASKADC  
INTMASK2 [Addr 0xB1]  
Default to 1 (Masked)  
RSVDB10  
Bit Name  
IMASK_PSM3  
IMASK_PLDO8  
IMASK_HOT  
RSVD  
INTMASK3 [Addr 0xB2]  
Default to 1 (Masked)  
IMASKBATDET  
Bit Name  
IMASKSYSSW  
IMASK_COLD  
IMASKRTCALM2  
IMASKAC_OVP  
INTMASK4 [Addr 0xB3]  
Bit Name  
Default to 1 (Masked)  
IMASK_COMP  
RSVD  
IMASK_TSHUT  
IMASKACDET  
INTMASK5 [Addr 0xB4]  
Bit Name  
Default to 1 (Masked)  
IMASKUSB_OVP  
RSVDB47  
IMASKLOWSYS  
IMASKRESUME  
IMASKRTCALM1  
IMASKUSBDET  
The interrupt controller can monitor either level or edge transitions to generate the interrupt request:  
PARAMETER  
STATUS BIT  
SET INT_ACK BIT ON  
MASK reg/bit  
INT_ACK reg/bit  
ACK clear at  
LDO0 power good fault  
None  
PGOOD FAULT DETECTED INTMASK1 /  
IMASK_PLDO0  
INT_ACK1 / ACK_LDO0  
Read INT_ACK1  
LDO1 power good fault  
LDO2 power good fault  
LDO3 power good fault  
LDO4 power good fault  
LDO5 power good fault  
LDO6 power good fault  
LDO7 power good fault  
LDO8 power good fault  
LDO9 power good fault  
None  
None  
None  
None  
None  
None  
None  
None  
None  
PGOOD FAULT DETECTED INTMASK1 /  
IMASK_PLDO1  
INT_ACK1 / ACK_PLDO1  
INT_ACK1 / ACK_PLDO2  
INT_ACK1 / ACK_PLDO3  
INT_ACK1 / ACK_PLDO4  
INT_ACK1 / ACK_PLDO5  
INT_ACK1 / ACK_PLDO6  
INT_ACK1 / ACK_PLDO7  
INT_ACK2 / ACK_PLDO8  
INT_ACK2 / ACK_PLDO9  
Read INT_ACK1  
Read INT_ACK1  
Read INT_ACK1  
Read INT_ACK1  
Read INT_ACK1  
Read INT_ACK1  
Read INT_ACK1  
Read INT_ACK2  
Read INT_ACK2  
PGOOD FAULT DETECTED INTMASK1 /  
IMASK_PLDO2  
PGOOD FAULT DETECTED INTMASK1 /  
IMASK_PLDO3  
PGOOD FAULT DETECTED INTMASK1 /  
IMASK_PLDO4  
PGOOD FAULT DETECTED INTMASK1 /  
IMASK_PLDO5  
PGOOD FAULT DETECTED INTMASK1 /  
IMASK_PLDO6  
PGOOD FAULT DETECTED INTMASK1 /  
IMASK_PLDO7  
PGOOD FAULT DETECTED INTMASK2 /  
IMASK_PLDO8  
PGOOD FAULT DETECTED INTMASK2 /  
IMASK_PLDO9  
SM0 power good fault  
SM1 power good fault  
SM2 power good fault  
SM3 over-voltage detection  
None  
None  
None  
None  
PGOOD FAULT DETECTED INTMASK2 / IMASK_PSM0 INT_ACK2 / ACK_PSM0  
PGOOD FAULT DETECTED INTMASK2 / IMASK_PSM1 INT_ACK2 / ACK_PSM1  
PGOOD FAULT DETECTED INTMASK2 / IMASK_PSM2 INT_ACK2 / ACK_PSM2  
Read INT_ACK2  
Read INT_ACK2  
Read INT_ACK2  
Read INT_ACK2  
SM3 OVER-VOLTAGE  
DETECTED  
INTMASK2 / IMASK_PSM3 INT_ACK2 / ACK_PSM3  
HOT RESET FLAG STATUS STAT2 bit 0  
HILO OR LOHI  
INTMASK4 / IMASK_COMP INT_ACK2 /  
ACK_COMPDET  
Read INT_ACK2  
BATSYS switch STATUS  
ACSYS SWITCH STATUS  
USBSYS SWITCH STATUS  
BATCHG SW STATUS  
STAT1 bit 7  
STAT1 bit 6  
STAT1 bit 5  
STAT1 bit 4  
HILO OR LOHI  
HILO OR LOHI  
HILO OR LOHI  
HILO OR LOHI  
INTMASK3 / IMASKSYSSW INT_ACK3 / ACK_PP  
Read INT_ACK3  
Read INT_ACK3  
Read INT_ACK3  
Read INT_ACK3  
INTMASK3 / IMASKACSW  
INT_ACK3 /ACK_PP  
INTMASK3 / IMASKUSBSW INT_ACK3 /ACK_PP  
INTMASK3 / IMASK_TERM INT_ACK3 /ACK_PP  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
77  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
ACK clear at  
PARAMETER  
STATUS BIT  
SET INT_ACK BIT ON  
MASK reg/bit  
INT_ACK reg/bit  
PACK HOT DETECTION  
STAT1 bit 2  
HILO OR LOHI  
INTMASK3 /  
IMASK_TSHUT  
INT_ACK3  
/ACK_CHGTEMP  
Read INT_ACK3  
Read INT_ACK3  
Read INT_ACK3  
Read INT_ACK3  
Read INT_ACK4  
PACK COLD DETECTION  
BATTERY INSERTION  
SLEEP and tshut detected  
STAT1 bit 1  
STAT1 bit 0  
STAT2 bit 3  
STAT3 bit7  
HILO OR LOHI  
HILO OR LOHI  
HILO OR LOHI  
LOHI  
INTMASK3 /  
IMASKCHSTAT  
INT_ACK3  
/ACK_CHGTEMP  
INTMASK3 /  
IMASKBATDET  
INT_ACK3 /ACK_BATDET  
INTMASK4 /  
IMASK_TSHUT  
INT_ACK3  
/ACK_CHGSTAT  
SLEEP REQUEST  
DETECTED  
INTMASK2/RSVDB10  
INT_ACK4 / RSVDB86  
AC DETection  
STAT3 bit 3  
STAT3 bit 2  
HILO OR LOHI  
HILO OR LOHI  
INTMASK5 / IMASKACDET INT_ACK3 / ACK_ACDET  
Read INT_ACK3  
Read INT_ACK3  
USB DETection  
INTMASK5 /  
INT_ACK3 /  
IMAKSUSBDET  
ACKACUSBOVP  
AC OVP  
STAT3 bit 1  
STAT3 bit 0  
NONE  
HILO OR LOHI  
HILO OR LOHI  
ALARM1 DETECTED  
ALARM2 DETECTED  
HILO OR LOHI  
HILO OR LOHI  
LOHI ONLY  
INTMASK5 /  
IMAKSAC_OVP  
INT_ACK3 /  
ACKACUSBOVP  
Read INT_ACK3  
Read INT_ACK3  
Read INT_ACK3  
Read INT_ACK4  
USB OVP  
INTMASK5 /  
IMASKUSB_OVP  
INT_ACK3 /  
ACKACUSBOVP  
RTC ALARM1  
RTC ALARM2  
RESUME command  
LOWSYS detection  
DADC0INT  
INTMASK5 /  
IMAKSRTCALM1  
INT_ACK3 /  
ACK_RTCALM1  
NONE  
INTMASK4 /  
IMASKRTCALM2  
INT_ACK4 /  
ACK_RTCALM2  
STAT3 bit 5  
STAT3 bit 6  
STAT4 bit 0  
INTMASK5 /  
IMASKRESUME  
INT_ACK4 / ACK_RESUME Read INT_ACK4  
INT_ACK4 / ACK_LOWSYS Read INT_ACK4  
INTMASK5 /  
IMASKLOWSYS  
INTMASK2 / IMASKADC  
INT_ACK4 / ACK_ADC  
Read ADC0_INT  
3.47 DEVICE ID RAM REGISTER  
This device has a unique 8-bit identifier stored in the read only register VERSIONID.  
Table 3-69. Device ID Register  
VERSIONID [Addr 0xCD]  
Bit Number  
Bit Name  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VCRC7  
VCRC6  
VCRC5  
VCRC4  
VCRC3  
VCRC2  
VCRC1  
VCRC0  
Device Number  
TPS658629-Q1  
VERSION IDENTIFICATION, FACTORY SET  
1
0
1
0
0
0
0
0
78  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
3.48 RAM MEMORY MAP  
REGISTER  
NAME  
MEMORY AREA  
ADDR  
R/W DESCRIPTION  
SUPPLY CONTROL AND  
VOLTAGE SETTING  
0x10  
0x11  
0x12  
SUPPLYENA  
SUPPLYENB  
SUPPLYENC  
R/W LDO2, SM0, SM1 ENABLE CONTROL  
R/W LDO2, SM0, SM1 ENABLE CONTROL  
R/W LDO0, LDO1. LDO3, LDO4, LDO6, LDO7, LDO8, SM2 ENABLE  
CONTROL  
0x13  
0x14  
0x20  
0x21  
SUPPLYEND  
SUPPLYENE  
VCC1  
R/W LDO0, LDO1. LDO3, LDO4, LDO6, LDO7, LDO8, SM2 ENABLE  
CONTROL  
R/W TPS658629-Q1 OPERATION MODE, LDO5, LDO9 ENABLE  
CONTROL  
R/W SM0, SM1, LDO2, LDO4 VOLTAGE SELECTION / CHANGE  
CONTROL  
VCC2  
R/W SM0, SM1, LDO2, LDO4 VOLTAGE SELECTION / CHANGE  
CONTROL  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2F  
0x30  
0x32  
0x33  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4C  
SM1V1  
R/W SM1 VOLTAGE SETTING #1  
R/W SM1 VOLTAGE SETTING #2  
R/W SM1 SLEW RATE  
SM1V2  
SM1SL  
SM0V1  
R/W SM0 VOLTAGE SETTING #1  
R/W SM0 VOLTAGE SETTING #2  
R/W SM0 SLEW RATE  
SM0V2  
SM0SL  
LDO2AV1  
LDO2AV2  
LDO2BV1  
LDO2BV2  
LDO4V1  
LDO4V2  
SUPPLYV1  
SUPPLYV2  
SUPPLYV3  
SUPPLYV4  
SUPPLYV5  
SUPPLYV6  
SMODE1  
SMODE2  
CHG1  
R/W LDO2 VOLTAGE SETTING #1  
R/W LDO2 VOLTAGE SETTING #2  
R/W LDO2 VOLTAGE SETTING #1  
R/W LDO2 VOLTAGE SETTING #2  
R/W LDO4 VOLTAGE SETTING # 1  
R/W LDO4 VOLTAGE SETTING # 2  
R/W LDO1, LDO0 OUPUT VOLTAGE  
R/W SM2, LDO8 OUTPUT VOLTAGE  
R/W LDO6, LDO7 OUTPUT VOLTAGE  
R/W RTC_LDO, LDO3 OUTPUT VOLTAGE, RTC_LDO ON/OFF  
R/W SPARE  
CONVERTER SETTINGS  
R/W LDO5, LDO9 OUTPUT VOLTAGE  
R/W SM0, SM1, SM2, PWM/PFM MODE SETTING  
R/W SPARE  
CONTROL SETTINGS  
R/W CONTROL SETTINGS  
CHG2  
R/W CONTROL SETTINGS  
POWER PATH SETUP  
RAM  
PPATH2  
R/W OUT POWER PATH SETTINGS  
TPS658629-Q1  
SEQUENCING  
0x4D  
0x4E  
0xCC  
PGFLTMSK1  
PGFLTMSK2  
SPARE2  
R/W POWER GOOD FAULT MASK  
R/W POWER GOOD FAULT MASK  
R/W REBOOT CYCLE FLAG RESET  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
Submit Documentation Feedback  
79  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
ADDR  
hex  
MEMORY AREA  
REGISTER NAME  
ACC  
DESCRIPTION  
PERIPHERAL  
CONTROL RAM  
0X50 RGB1FLASH  
0X51 RGB1RED  
0X52 RGB1GREEN  
0X53 RGB1BLUE  
0X54 RGB2RED  
0X55 RGB2GREEN  
0X56 RGB2BLUE  
0X57 SM3_SET0  
0X58 SM3_SET1  
0X59 LED_PWM  
0X5A DIG_PWM  
0X5B PWM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
RGB1R/G/B DRIVERS FLASH MODE SETTINGS  
RGB1 RED DRIVER INTENSITY CONTROL  
RGB1 GREEN DRIVER INTENSITY CONTROL  
RGB1 BLUE DRIVER INTENSITY CONTROL  
RGB2 RED DRIVER INTENSITY CONTROL  
RGB2 GREEN DRIVER INTENSITY CONTROL  
RGB2 BLUE DRIVER INTENSITY CONTROL  
WHITE LED DUTY CYCLE SETTINGS  
WHITE LED DUTY CYCLE SETTINGS  
LED_PWM DRIVER DUTY CYCLE SETTINGS  
DIG_PWM DRIVER DUTY CYCLE SETTINGS  
PWM DRIVER DUTY CYCLE SETTINGS  
DIG_PWM1 DRIVER DUTY CYCLE SETTINGS  
GPIO CONFIGURATION  
0X5C DIG_PWM1  
0X5D GPIOSET1  
0X5E GPIOSET2  
GPIO CONFIGURATION  
ADC0 ENGINE  
SETUP RAM  
0x60  
ADCANLG  
ADC INPUT BIAS AND FILTER CONTROL  
ADC0 CONVERSION CYCLE SETUP  
ADC0 CONVERSION CYCLE SETUP  
ADC0 HI LIMIT THRESHOLD  
ADC0 HI LIMIT THRESHOLD  
ADC0 LO LIMIT THRESHOLD  
ADC0 LO LIMIT THRESHOLD  
ADC0 TRIGGER MODE  
0X61 ADC0_SET  
0X62 ADC0_WAIT  
0X63 ADC0_HILIMIT2  
0X64 ADC0_HILIMIT1  
0X65 ADC0_LOLIMIT2  
0X66 ADC0_LOLIMIT1  
0X67 ADC0_DELAY  
ADC0 ENGINE  
DATA RAM  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
ADC0_SUM2  
ADC0_SUM1  
ADC0_MAX2  
ADC0_MAX1  
ADC0_MIN2  
ADC0_MIN1  
SUM OF ALL SAMPLES  
R
SUM OF ALL SAMPLES  
R
MAX SAMPLE VALUE  
R
MAX SAMPLE VALUE  
R
MIN SAMPLE VALUE  
R
MIN SAMPLE VALUE  
0x9A ADC0_INT  
0xB0 INT_MASK1  
0xB1 INT_MASK2  
0xB2 INT_MASK3  
0xB3 INT_MASK4  
0xB4 INT_MASK5  
0xB5 INT_ACK1  
0xB6 INT_ACK2  
0xB7 INT_ACK3  
0xB8 INT_ACK4  
0xB9 STAT1  
R
ADC0 STATUS  
INTERRUPT  
CONTROL RAM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
INT_MASK  
INT MASK  
INT MASK  
INT MANAGEMENT  
INT MANAGEMENT  
INT MANAGEMENT REGISTER  
INT MANAGEMENT REGISTER  
INT MANAGEMENT REGISTER  
INT MANAGEMENT REGISTER  
POWER PATH SWITCHES, PACK STATUS  
STATUS  
SYSTEM  
STATUS RAM  
0xBA STAT2  
R
0xBB STAT3  
R
RTC, INPUT POWER STATUS  
ADC STATUS  
0xBC STAT4  
R
80  
DETAILED DESCRIPTION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
ADDR  
hex  
MEMORY AREA  
RTC  
REGISTER NAME  
ACC  
DESCRIPTION  
0xC0 RTC_CTRL  
R/W  
RTC CONTROL REGISTER  
RTC ALARM  
0XC1 RTC ALARM  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6 RTC COUNTER  
R/W  
RTC DATA  
0xC7  
0xC8  
0xC9  
0xCA  
DEVICE ID  
0XCD VERSIONCRC  
R
DEVICE IDENTIFICATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
DETAILED DESCRIPTION  
81  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
4 APPLICATION INFORMATION  
4.1 DC/DC CONVERTER OUTPUT FILTER  
4.1.1 Inductor Selection  
The typical value for the converter inductor is 2.2μH output inductor. Larger or smaller inductor values can  
be used to optimize the performance of the device for specific operation conditions. The selected inductor  
has to be rated for its DC resistance and saturation current. The DC resistance of the inductance will  
influence directly the efficiency of the converter. Therefore an inductor with lowest DC resistance should  
be selected for highest efficiency. See document SLVA157 for more information on inductor selection.  
Equation 11 calculates the maximum inductor current under static load conditions. The saturation current  
of the inductor should be rated higher than the maximum inductor current as calculated with Equation 11.  
This is recommended because during heavy load transient the inductor current will rise above the  
calculated value.  
Vout  
1-  
DIL  
Vin  
DIL = Vout ´  
ILmax = Ioutmax +  
L ´ ¦  
2
(11)  
with:  
f = Switching Frequency (2.25MHz typical)  
L = Inductor Value  
ΔIL= Peak to Peak inductor ripple current  
ILmax = Maximum Inductor current  
The highest inductor current will occur at maximum Vin.  
Open core inductors have a soft saturation characteristic and they can usually handle higher inductor  
currents versus a comparable shielded inductor. A more conservative approach is to select the inductor  
current rating just for the maximum switch current of the corresponding converter. It must be considered,  
that the core material from inductor to inductor differs and will have an impact on the efficiency especially  
at high switching frequencies.  
Refer to Table 4-1 and the typical applications for possible inductors.  
Table 4-1. Inductors  
INDUCTANCE  
TYP DIMENSIONS  
[mm]  
SUPPLY  
INDUCTOR TYPE  
SUPPLIER  
[μH]  
SM0  
LPS4012-152  
VLS4012-1R5N1R5  
LPS4012-152  
1.5  
1.5  
1.5  
1.5  
1.5  
1.5  
4.7  
4.7  
Coilcraft  
TDK  
4x4x1  
4x4x1  
4x4x1  
4x4x1  
4x4x1.5  
4x4x2.5  
2x2x1  
3x3x1  
SM1  
SM2  
SM3  
Coilcraft  
TDK  
VLS4012-1R5N1R5  
LPS4414-152MLx  
1008PS-152Kx  
Coilcraft  
Coilcraft  
Coilcraft  
TDK  
DO2010-472  
VLS3012-47M1R0  
4.1.2 Output Capacitor Selection  
The advanced Fast Response voltage mode control scheme of the two converters allow the use of small  
ceramic capacitors with a typical value of 22μF, without having large output voltage under and overshoots  
during heavy load transients. Ceramic capacitors having low ESR values result in lowest output voltage  
ripple and are therefore recommended. Refer to for recommended components.  
82  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
 
 
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
If ceramic output capacitors are used the capacitor RMS ripple current rating will always meet the  
application requirements. Just for completeness the RMS ripple current is calculated as:  
Vout  
1-  
1
Vin  
IRMSCout = Vout ´  
´
L ´ f  
2 ´  
3
(12)  
At nominal load current the inductive converters operate in PWM mode and the overall output voltage  
ripple is the sum of the voltage spike caused by the output capacitor ESR plus the voltage ripple caused  
by charging and discharging the output capacitor:  
Vout  
1-  
æ
ç
è
ö
÷
ø
1
Vin  
DVout = Vout ´  
´
+ ESR  
L ´ ¦  
8 ´ Cout ´ ¦  
(13)  
Where the highest output voltage ripple occurs at the highest input voltage Vin.  
At light load currents the converters operate in Power Save Mode and the output voltage ripple is  
dependent on the output capacitor value. The output voltage ripple is set by the internal comparator delay  
and the external capacitor. The typical output voltage ripple is less than 1% of the nominal output voltage.  
4.1.3 Input Capacitor Selection  
Because of the nature of the buck converter having a pulsating input current, a low ESR input capacitor is  
required for best input voltage filtering and minimizing the interference with other circuits caused by high  
input voltage spikes. The converters need a ceramic input capacitor of 10μF. The input capacitor can be  
increased without any limit for better input voltage filtering.  
Table 4-2. Capacitors  
22 μF  
22 μF  
10 μF  
10 μF  
0805  
0805  
0805  
0805  
TDK C2012X5R0J226MT  
Taiyo Yuden JMK212BJ226MG  
Taiyo Yuden JMK212BJ106M  
TDK C2012X5R0J106M  
Ceramic  
Ceramic  
Ceramic  
Ceramic  
4.2 XTAL OSCILLATOR PCB – GENERAL GUIDELINES  
Table 4-3. External Crystal Specifications  
EXTERNAL CRYSTAL REQUIREMENTS [TYP CRYSTAL – EPSON MC146]  
PARAMETER  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
kHz  
FOSC  
Nominal crystal resonant frequency  
ΔF/FOSC  
32.768  
Frequency Tolerance  
–20  
20  
0.04×10–6  
65  
ppm  
1/°C2  
kΩ  
B
Parabolic Temp Co  
Equivalent Series Resistance  
Load Capacitance  
Shunt capacitance  
Drive power  
ESR  
CLOAD  
CSHUNT  
PDRIVE  
Aging  
7
pF  
0.5  
–3  
0.8  
0.5  
1.2  
1
pF  
μW  
3
ppm/Yr  
The jitter observed in the OUT32K pin is heavily dependent on the board layout close to the XTAL1 and  
XTAL2 pins. The following layout/assembly procedures are recommended :  
Layout a good ground plane around the oscillator pins.  
Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
83  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.  
Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.  
If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the  
oscillator pins.  
External capacitance is recommended for precision real-time clock applications.  
84  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
4.3 APPLICATION CIRCUIT  
4.3.1 Power Path, ADC, RTC and Ground Plane  
0.22µF  
1V25  
TPS6586xx  
XTAL1  
XTAL2  
4.7µF  
ADC_REF  
AGND2  
ANLG1  
ANLG2  
ANLG3  
4.7µF  
2V2  
AVDD6  
AGND  
2.2µF  
SYSTEM CORE  
POWER BUS  
2V2  
AGND  
VSYS  
22µF  
SYS  
AGND  
FLTDPPM  
+
-
GND  
AC_DC ADAPTER  
OUTPUT  
1µF  
1µF  
AC  
USB  
+
USB POWER  
-
GND  
RTS  
VTSBIAS  
BAT  
4.7µF  
TS  
RTS  
AGNDn  
ANALOG  
DGNDn  
DIGITAL  
GROUND  
PLANE  
GROUND  
PLANE  
AGND  
DGND  
POWER GROUND PLANE  
SUPPLY GROUND PLANE  
GND  
GROUND STAR  
P1 P2 P3 P4  
OONECTION  
SEE PCB LAYOUT  
GUIDELINES  
Figure 4-1. Power Path, ADC, RTC Connections  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
85  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
4.3.2 Integrated Supplies  
VSYS  
TPS6586xx  
VIN_SM0  
L0  
LSM0  
1.5µH  
VSM0  
VSM1  
VSM2  
10µF  
P0  
SM0  
10µF  
10µF  
10µF  
PGND0  
VIN_SM1  
L1  
LSM1  
1.5µH  
10µF  
P1  
SM1  
PGND1  
VIN_SM2  
L2  
LSM2  
1.5µH  
10µF  
P2  
SM2  
PGND2  
Supercap  
330  
RTC_OUT  
1µF  
1µF  
2.2µF  
2.2µF  
1µF  
LDO5  
VINLDO23  
VINLDO23  
LDO2  
LDO3  
VINLDO678  
VINLDO678  
LDO8  
1µF  
2.2µF  
2.2µF  
LDO6  
2.2µF  
2.2µF  
2.2µF  
LDO7  
VINLDO4  
VINLDO4  
VIN_LDO4  
LDO4  
1µF  
1µF  
VIN_LDO01  
LDO0  
2.2µF  
LDO1  
VINLDO9  
1µF  
2.2µF  
VLDO9  
VLDO1  
VLDO0  
AGND  
VLDO4  
VLDO7  
VLDO6  
VLDO8  
VLDO3  
VLDO2  
VLDO5  
VRTC_OUT  
(1) VIN_SMn pins must be always connected to VSYS .  
(2) The supply input pins must be connected to VSYS or to the output of a supply which is powered from VSYS  
Figure 4-2. Supply Rail Connections  
86  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
4.3.3 Display and Peripherals  
VRAIL  
2K  
LED_PWM  
TPS6586xx  
SM3SW  
L3  
4.7uH  
VSYS  
SM3  
FB3  
WHITE LEDS  
RFB3  
33  
100pF  
P3  
100pF  
PGND3  
ISM3G  
RFB3A  
15  
PWM  
VoLDOn  
M
DIGPWM  
TO DIGITAL INPUT  
DIGPWM2  
RGB LED  
RED1  
GREEN1  
BLUE1  
RGB LED  
RED2  
GREEN2  
BLUE2  
(1) PWM pin shown as driving an external vibrator motor, with vibrator supply connected to LDOn output  
(2) VRAIL can be the output of any of the TPS658629-Q1 integrated supplies or the SYS pin  
(3) 1. DIGPWM, DIGPWM2 are push-pull outputs  
Figure 4-3. Display and PWM Connections  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
87  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
4.3.4 Host Connections  
VI2C  
TPS6586xx  
VIO  
SCLK  
SDAT  
PSCLK  
PSDAT  
nINT  
VIO  
100kW  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
HOST  
V32K  
32KOUT  
CHG_STAT  
nNORTC  
nNOPOWER  
LDO4EN  
SM1EN  
SM0EN  
SYNCEN  
HOST SEQUENCING AND  
RESET CONTROL  
SM0PG  
SM1PG  
LDO4PG  
RESUME  
nHOTRST  
CNOPOWER  
TNOPOWER  
(1) Those are generic connections only  
(2) VIO should be connected to the TPS658629-Q1 rail that powers the host I/O domain  
(3) VI2C should be connected to 2v2 or to the TPS658629-Q1 rail that powers the host I2C engine domain  
Figure 4-4. Generic Host and Sequencing Circuit Connections  
88  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
4.3.5 Sequence Connections  
TPS65862xx  
V2V2  
V2V2  
LDO4EN  
nCORECTRL  
nCORECTRL  
LDO4  
LDO4  
LDO4  
V32K  
SYNCEN  
CPU_CTRL  
SM1EN  
4.3.6 Sequence Timing (TPS658629-Q1)  
3.3  
Power Applied  
RTC_OUT  
2V2  
nNORTC  
RESUME  
1.2V  
INTERNAL + 2.5ms  
LDO2  
SM0  
1.2V  
SM0EN + 3.75ms  
1.8V  
INTERNAL +_0ms  
SM2  
1.8V  
INTERNAL + 15ms  
LDO4  
2.85V  
SYNCEN + 2.5ms  
LDO9  
LDO1  
1.1V  
INTERNAL + 3.75ms  
0
2.5 5.0  
Power  
Applied  
7.5  
TIME (ms)  
17.5 20.0  
10.0 12.5 15.0  
Figure 4-5. Sequence Timing  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
89  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
ZHCS099A JUNE 2011REVISED JUNE 2012  
www.ti.com  
STABLE  
OUT32k  
320 ms  
nNOPOWER  
OUT32k + 1ms  
0 ms  
Figure 4-6. Sequence Timing  
90  
APPLICATION INFORMATION  
Copyright © 2011–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
TPS658629-Q1  
www.ti.com  
ZHCS099A JUNE 2011REVISED JUNE 2012  
Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Original (June, 2011) to Revision A  
Page  
AEC-Q100 信息添加到了特性中。 ............................................................................................. 1  
Changed max value of RDIG to 175. ............................................................................................. 5  
Changed max value of V(RTCGOOD) to 145. ...................................................................................... 6  
Changed min value of IUSB100 to 85. ............................................................................................. 8  
Changed min value of IUSB500 to 380. ........................................................................................... 8  
Changed min value of ISC to 310. ................................................................................................ 9  
Added rising to V(OVP3) test conditions description. ....................................................................... 10  
Changed max value of TSM3PWR(OFF) to 500. ................................................................................... 10  
Copyright © 2011–2012, Texas Instruments Incorporated  
APPLICATION INFORMATION  
91  
Submit Documentation Feedback  
Product Folder Link(s): TPS658629-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS658629IZWSRQ1  
ACTIVE  
NFBGA  
ZWS  
169  
1000 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
TPS658629I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Oct-2012  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS658629IZWSRQ1  
NFBGA  
ZWS  
169  
1000  
330.0  
24.4  
12.35 12.35  
2.3  
16.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
1-Oct-2012  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
NFBGA ZWS 169  
SPQ  
Length (mm) Width (mm) Height (mm)  
336.6 336.6 41.3  
TPS658629IZWSRQ1  
1000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
ZWS0169A  
NFBGA - 1.4 mm max height  
SCALE 1.100  
PLASTIC BALL GRID ARRAY  
12.1  
11.9  
B
A
BALL A1 CORNER  
12.1  
11.9  
(0.9)  
0.45  
1.4 MAX  
C
SEATING PLANE  
0.12 C  
BALL TYP  
TYP  
0.35  
9.6 TYP  
SYMM  
(1.2) TYP  
(1.2) TYP  
N
M
L
K
J
H
G
F
SYMM  
9.6  
TYP  
E
D
C
0.55  
169X  
0.45  
0.15  
0.05  
C A B  
C
B
A
0.8 TYP  
1
2
3
4
5
6
7
8
9 10 11 12 13  
0.8 TYP  
BALL A1 CORNER  
4221886/C 05/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZWS0169A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
169X ( 0.4)  
1
2
5
6
8
9
12 13  
3
4
7
10 11  
A
B
C
(0.8) TYP  
D
E
F
SYMM  
G
H
J
K
L
M
N
SYMM  
LAND PATTERN EXAMPLE  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
0.05 MIN  
(
0.4)  
METAL  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221886/C 05/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SSZA002 (www.ti.com/lit/ssza002).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZWS0169A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(
0.4) TYP  
(0.8) TYP  
1
2
5
6
8
9
12 13  
3
4
7
10 11  
A
B
C
(0.8) TYP  
D
E
F
SYMM  
G
H
J
K
L
M
N
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:8X  
4221886/C 05/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS658640ZQZR

Advanced Power Management Unit
TI

TPS658642

Advanced Power Management Unit
TI

TPS658642ZQZR

Advanced Power Management Unit
TI

TPS658642ZQZT

Advanced Power Management Unit
TI

TPS658643

Advanced Power Management Unit
TI

TPS658643ZGUR

Advanced Power Management Unit
TI

TPS658643ZGUT

Advanced Power Management Unit
TI

TPS658643ZQZR

Advanced Power Management Unit
TI

TPS658643ZQZT

Advanced Power Management Unit
TI

TPS658643ZWSR

Advanced Power Management Unit
TI

TPS658643_V01

Advanced Power Management Unit
TI

TPS659037

适用于 ARM Cortex A15 处理器的电源管理 IC (PMIC)
TI