TPS6590379ZWSR [TI]

适用于 ARM Cortex A15 处理器的电源管理 IC (PMIC) | ZWS | 169 | -40 to 85;
TPS6590379ZWSR
型号: TPS6590379ZWSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 ARM Cortex A15 处理器的电源管理 IC (PMIC) | ZWS | 169 | -40 to 85

集成电源管理电路
文件: 总102页 (文件大小:2019K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
适用于处理器的 TPS659037 电源管理单元 (PMU)  
1 器件概述  
1.1 特性  
1
一个 0.9V-3.3V/50mA LDO,由经过预稳压的电  
源供电  
七个降压开关模式电源 (SMPS) 稳压器:  
其中一个输出为 0.7V-1.65V/6A(阶跃为  
10mV)  
一个 100mA USB LDO  
一个 0.9V-3.3V/高达 100mA 低噪声 LDO(低噪  
声性能高达 50mA)  
两个供 PMU 内部使用的附加 LDO  
短路保护  
支持数字电压调节 (DVS) 控制的双相配置  
其中一个输出为 0.7V-1.65V/4A(阶跃为  
10mV)  
支持 DVS 控制的双相配置  
时钟管理 16MHz 晶体振荡器和 32kHz RC 振荡器  
一个缓冲式 32kHz 输出  
其中一个输出为 0.7V-3.3V/3A(阶跃为 10mV 或  
20mV)  
单相配置  
具有警报唤醒机制的实时时钟 (RTC)  
该稳压器可搭配 6A 稳压器构成 9A 三相稳压  
器(通过 DVS 控制)  
具有三个外部输入通道和六个自监控内部通道的 12  
Σ-Δ 通用模数转换器 (GPADC)  
两个 0.7V-3.3V/2A(步长为 10mV 20mV)  
单相配置  
过热监控  
高温警告  
一个支持 DVS 控制的稳压器,也可配置成 3A  
稳压器  
热关断  
控制  
两个 0.7V-3.3V/1A(步长为 10mV 20mV)  
单相配置  
可配置上电和断电序列(一次性可编程 [OTP])  
睡眠和激活状态之间的可配置序列(OTP 可编  
程)  
一个支持 DVS 控制的稳压器  
1A SMPS 稳压器外的所有稳压器均支持输出  
电流测量  
一个可纳入到启动序列中的专用数字输出信号  
(REGEN)  
双相和三相稳压器均支持差分遥感(输出和接  
地)  
三个与 GPIO 进行多路复用并可纳入到启动序列  
中的数字输出信号  
通过硬件和软件控制的 Eco-mode™高达 5mA,  
静态电流为 15µA  
短路保护  
电源正常指示(电压和过流指示)  
内部软启动可限制浪涌电流  
可通过相位同步将 SMPS 与外部时钟或内部备用  
时钟同步  
可选控制接口  
一个用于资源配置和 DVS 控制的串行外设接  
(SPI)  
两个 I2C 接口。其中一个专用于 DVS 控制,  
另一个是用于资源配置和 DVS 控制的通用 I2C  
接口  
欠压锁定  
系统电压范围为 3.135V 5.25V  
封装选项  
七个步长为 50mV 的通用低压降稳压器 (LDO):  
两个 0.9V-3.3V/300mA LDO,由经过预稳压的电  
源供电  
– 12mm × 12mm169 引脚 nFBGA 封装,引脚间  
距为 0.8mm  
两个 0.9V-3.3V/200mA LDO,由经过预稳压的电  
源供电  
1.2 应用  
工厂自动化  
模块上系统  
人机界面  
可编程逻辑控制器  
1.3 说明  
TPS659037 器件是一款集成式电源管理 IC (PMIC)。该器件提供七个可配置的降压转换器,输出电流高达  
6A,可用于存储器、处理器内核、输入/输出 (I/O) LDO 预稳压。其中一个可配置的降压转换器与另一个  
3A 稳压器组合后可提供高达 9A 的输出电流。所有这些降压转换器均可与频率介于 1.7MHz 2.7MHz 之  
间的外部时钟源或频率为 2.2MHz 的内部备用时钟同步。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLIS165  
 
 
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
TPS659037 器件提供七个供外部使用的 LDO 稳压器。这些 LDO 稳压器可由系统电源或经过预稳压的电源  
供电。上电和断电控制器是可配置的,能够支持所有上电和断电序列(基于 OTP)。TPS659037 器件包含  
一个 32kHz RC 振荡器,可在上电和断电过程中对所有资源进行排序。在需要快速启动的情况下,也可使用  
16MHz 晶体振荡器来快速为系统产生一个稳定的 32kHz 频率。所有 LDO SMPS 转换器均可由 SPI 或  
I2C 接口或通过电源请求信号进行控制。此外,电压调节寄存器允许将 SMPS 转换为 SPII2C 或顶部/底部  
控制所需的不同电压。  
每种封装中都有一个专用引脚可配置为上电序列的一部分,用于控制外部资源。该器件具备通用输入输出  
(GPIO) 功能,两个 GPIO 均可配置为上电序列的一部分,用于控制外部资源。电源请求信号通过启用电源  
模式控制功能来实现电源优化。该器件包含一个带有三个外部输入通道的通用 -Δ 模数转换器 (GPADC)。  
TPS659037 器件采用 13 引脚 × 13 引脚 nFBGA 封装,引脚间距为 0.8mm。  
器件信息(1)  
封装  
器件型号  
封装尺寸(标称值)  
12.00mm × 12.00mm  
TPS659037  
ZWS (169)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品附录。  
1.4 简化方框图  
TPS659037  
Reference and Bias  
SMPS12  
0.7 to 1.6 V,  
10-mV step, 6 A  
PLL for external  
Sync Clock  
Programmable Power  
Sequencer Controller  
Dual Phase or  
Triple Phase  
16-  
MHz  
Crystal  
RTC  
ECO  
PWM  
DVS  
SMPS3  
0.7 to 1.6 V,  
10-mV step  
1 to 3.3 V,  
Switch On or Off  
12-Bit GPADC  
with 3 External  
Channels  
20-mV step, 3 A  
OTP Controller  
SMPS45  
0.7 to 1.6 V,  
10-mV step, 4 A  
OTP Registers  
Registers  
LDO1  
300 mA  
Dual Phase or  
Triple Phase  
LDO2  
300 mA  
SMPS7  
0.7 to 1.6 V,  
10-mV step  
1 to 3.3 V,  
LDO3  
200 mA  
Watchdog  
20-mV step, 2 A  
LDO4  
200 mA  
SMPS6  
0.7 to 1.6 V,  
10-mV step  
Thermal Monitoring  
and Shutdown  
LDO9  
50 mA  
1 to 3.3 V,  
20-mV step, 2 or 3 A  
LDOLN  
50 mA  
Power Good Monitor  
VSYS Monitor  
SMPS8  
0.7 to 1.6 V,  
10-mV step  
1 to 3.3-V,  
LDOUSB  
100 mA  
20-mV step, 1 A  
LDOVRTC  
20 mA  
SMPS9  
0.7 to 1.6 V,  
10-mV step  
1 to 3.3 V,  
2
8x GPIO  
2x I C or 1x SPI  
20-mV step, 1 A  
Copyright © 2016, Texas Instruments Incorporated  
2
器件概述  
版权 © 2014–2019, Texas Instruments Incorporated  
 
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
内容  
4.16 Electrical Characteristics: Digital Input Signal  
Parameters .......................................... 23  
4.17 Electrical Characteristics: Digital Output Signal  
Parameters .......................................... 23  
1
器件概.................................................... 1  
1.1 特性 ................................................... 1  
1.2 应用 ................................................... 1  
1.3 说明 ................................................... 1  
1.4 简化方框图............................................ 2  
修订历史记录............................................... 3  
Pin Configuration and Functions..................... 5  
Specifications ........................................... 12  
4.1 Absolute Maximum Ratings......................... 12  
4.2 ESD Ratings ........................................ 12  
4.3 Recommended Operating Conditions............... 13  
4.4 Thermal Information................................. 13  
4.18 Electrical Characteristics: I/O Pullup and Pulldown. 25  
4.19 I2C Interface Timing Requirements ................. 25  
4.20 SPI Timing Requirements........................... 27  
4.21 Typical Characteristics .............................. 29  
Detailed Description ................................... 31  
5.1 Overview ............................................ 31  
5.2 Functional Block Diagram........................... 32  
5.3 Feature Description ................................. 33  
5.4 Device Functional Modes ........................... 60  
Application and Implementation .................... 76  
6.1 Application Information.............................. 76  
6.2 Typical Application .................................. 76  
Power Supply Recommendations .................. 87  
Layout .................................................... 87  
8.1 Layout Guidelines ................................... 87  
8.2 Layout Example ..................................... 90  
器件和文档支持 .......................................... 93  
9.1 器件支............................................. 93  
9.2 文档支............................................. 93  
9.3 接收文档更新通知 ................................... 93  
9.4 社区资............................................. 93  
9.5 商标.................................................. 93  
9.6 静电放电警告 ........................................ 93  
9.7 Glossary ............................................. 93  
2
3
4
5
6
4.5  
4.6  
4.7  
Electrical Characteristics: Latch Up Rating ......... 13  
Electrical Characteristics: LDO Regulator .......... 14  
Electrical Characteristics: Dual-Phase (SMPS12  
and SMPS45) and Triple-Phase (SMPS123 and  
SMPS457) Regulators .............................. 16  
7
8
4.8  
4.9  
Electrical Characteristics: Stand-Alone Regulators  
(SMPS3, SMPS6, SMPS7, SMPS8, and SMPS9).. 17  
Electrical Characteristics: Reference Generator  
(Bandgap) ........................................... 19  
9
4.10 Electrical Characteristics: 16-MHz Crystal Oscillator,  
32-kHz RC Oscillator, and Output Buffers .......... 19  
4.11 Electrical Characteristics: DC-DC Clock Sync ...... 20  
4.12 Electrical Characteristics: 12-Bit Sigma-Delta ADC. 20  
4.13 Electrical Characteristics: Thermal Monitoring and  
Shutdown............................................ 22  
4.14 Electrical Characteristics: System Control  
Threshold............................................ 22  
4.15 Electrical Characteristics: Current Consumption.... 22  
10 机械、封装和可订购信息 ............................... 94  
2 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision F (January 2018) to Revision G  
Page  
Updated the LDOVRTC_OUT pulldown resistor recommendation to only include applicable silicon revisions. ........ 6  
Changed ESD Ratings for charge device model on 6 pins ................................................................... 12  
Clarified that LDO1 and LDO2 input pins are not included in this minimum recommended operating voltage. See  
Electrical Characteristics: LDO Regulators for more information. ............................................................ 13  
Changed minimum recommended operating condition of OSC16MIN from 0V to -0.7V ................................. 13  
Added LDO and SMPS output capacitance footnote .......................................................................... 14  
Changed VSYS_LO hysteresis from 95mV to 75mV .......................................................................... 22  
Updated Caution statement to only include applicable silicon revisions. ................................................... 31  
Changed discharge resistance to match electrical characteristics table .................................................... 34  
Added information about shutdown timing during short circuit detection ................................................... 37  
Updated POWERGOOD description to clarify multi-phase operation. ...................................................... 37  
Updated LDOVRTC note to only include applicable silicon revisions. ...................................................... 42  
Added details on identifying device version. .................................................................................... 60  
Added typical debounce time from POWERHOLD to the enable of the first rail in the power sequence. .............. 62  
Added VSYS_LO note for applicable silicon revisions. ........................................................................ 73  
Updated POR requirements to only include applicable silicon revisions. ................................................... 74  
SMPS and LDO output capacitance specification further explained ......................................................... 81  
Added design considerations for VCC1 capacitance to support loss of power ............................................. 81  
Corrected 9-Vpp with 7V absolute maximum specification in the Layout Guidelines section............................. 87  
版权 © 2014–2019, Texas Instruments Incorporated  
修订历史记录  
3
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Updated requirements relating to measurement of high-side and low-side FETs in the Layout Guidelines section... 89  
Updated images and description on differential measurements across high-side and low-side FETs .................. 89  
Changes from Revision E (July 2017) to Revision F  
Page  
Deleted pullup and pulldown from BOOT0 pin description ................................................................... 10  
Deleted the voltage mode to the I/O digital supply voltage, VIO_IN parameter from the Recommended  
Operating Conditions table......................................................................................................... 13  
Added 2-A mode for SMPS6 in the test conditions for high-side and low-side MOSFET forward current limit and  
low-side MOSFET negative current limit in the Electrical Characteristics: Stand-Alone Regulators (SMPS3,  
SMPS6, SMPS7, SMPS8, and SMPS9) table................................................................................... 18  
已添加 the number of active SMPS phases (K) to the equation for the temperature compensated result in the  
Current Monitoring and Short Circuit Detection section........................................................................ 37  
已添加 additional description of SMPS short detection and recovery behavior ............................................ 37  
已添加 equation to convert GPADC code to internal die temperature ....................................................... 47  
已添加 description of VIO power-up timing, and updated start up timing diagram ......................................... 67  
已添加 additional description of VSYS_LO functionality ....................................................................... 72  
已更改 静电放电注意事项 声明 .................................................................................................... 93  
Changes from Revision D (April 2016) to Revision E  
Page  
已删除 CLK32KGO from the Startup Timing Diagram ......................................................................... 67  
已添加 OTP note to the Application Schematic ................................................................................. 77  
已更改 the VIO_GND connection to C6 in the Typical Application Schematic.............................................. 78  
Updated part numbers and settings for released devices in the Design Parameters table .............................. 79  
已添加 接收文档更新通知 部分 .................................................................................................... 93  
Changes from Revision C (November 2015) to Revision D  
Page  
Changed the LDOVRTC_OUT pin description in the Pin Functions table ................................................... 6  
Changed the typical value for the channel 11 SMPS output current measurement gain factor parameter in the  
12-Bit Sigma-Delta ADC Characteristics table .................................................................................. 21  
Changed the typical value for the channel 11 SMPS output current measurement current offset parameter in the  
12-Bit Sigma-Delta ADC Characteristics table .................................................................................. 21  
已添加 maximum current of LDOVRTC in BACKUP and OFF states........................................................ 42  
已添加 a note to the LDOVRTC section ......................................................................................... 42  
已添加 additional description of POR in System Voltage Monitoring section ............................................... 75  
Updated part numbers and settings for released devices in the Design Parameters table .............................. 79  
Changes from Revision B (November 2015) to Revision C  
已添加 statement to the Current Monitoring and Short Circuit Detection section that the  
Page  
SMPS_SHORT_REGISTER bit will keep a resource off until it is cleared .................................................. 37  
Changes from Revision A (September 2015) to Revision B  
Page  
已更改 将器件状态从预告信息 更改成了量产数据 ............................................................................... 2  
4
修订历史记录  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
3 Pin Configuration and Functions  
A
B
C
D
E
F
G
H
J
K
L
M
N
PBKG  
SMPS1_2_FDBK  
GPIO_1  
SMPS1_IN  
SMPS1_SW  
SMPS2_SW  
SMPS2_IN  
SMPS3_IN  
SMPS3_SW  
SMPS3_FDBK  
LDO34_IN  
GND_ANA  
PBKG  
13  
12  
11  
10  
9
SMPS1_2_FDBK  
_GND  
GPIO_2  
VCC_SENSE2  
LDOUSB_IN1  
LDOUSB_IN2  
LDOVRTC_OUT  
GND_ANA  
GPIO_0  
SMPS1_IN  
SMPS1_IN  
SMPS1_GND  
VIO_IN  
SMPS1_SW  
SMPS1_SW  
SMPS1_GND  
SMPS1_GND  
PBKG  
SMPS2_SW  
SMPS2_SW  
SMPS2_GND  
SMPS2_GND  
REGEN1  
SMPS2_IN  
SMPS2_IN  
SMPS2_GND  
GPIO_7  
SMPS3_IN  
SMPS3_IN  
SMPS3_GND  
GPIO_3  
SMPS3_SW  
SMPS3_SW  
SMPS3_GND  
SMPS3_GND  
SMPS9_FDBK  
POWERGOOD  
PBKG  
LDO4_OUT  
LDO3_OUT  
GPIO_4  
LDO34_IN  
SMPS8_FDBK  
SMPS8_GND  
SMPS8_GND  
SMPS9_GND  
SMPS9_GND  
SMPS6_GND  
SMPS6_GND  
NC  
GND_DIG  
CLK32KGO  
SMPS8_SW  
SMPS8_IN  
SMPS9_IN  
SMPS9_SW  
SMPS6_IN  
SMPS6_SW  
LDO_SUPPLY  
I2C2_SCL_SCE  
PBKG  
VPROG  
PBKG  
RPWRON  
GPIO_6  
PBKG  
GPIO_5  
SMPS8_SW  
SMPS8_IN  
SMPS9_IN  
SMPS9_SW  
SMPS6_IN  
SMPS6_SW  
LDO_SUPPLY  
LDO_SUPPLY  
VIO_GND  
LDOUSB_OUT  
SYNCDCDC  
VBG  
NC  
RESET_IN  
PWRDOWN  
BOOT1  
LDOVANA_OUT  
VBUS  
PWRON  
I2C2_SDA_SDO  
8
VCC1  
PBKG  
GND_ANA  
NRESWARM  
NSLEEP  
PBKG  
PBKG  
PBKG  
7
LDO12_IN  
LDO2_OUT  
LDOLN_OUT  
GPADC_VREF  
VCC_SENSE  
GPADC_IN0  
SMPS7_FDBK  
LDO1_OUT  
LDOLN_IN  
LDO9_IN  
PBKG  
PBKG  
RESET_OUT  
SMPS4_GND  
SMPS4_GND  
SMPS4_SW  
SMPS4_SW  
SMPS4_SW  
PBKG  
SMPS6_FDBK  
6
LDO9_OUT  
SMPS7_GND  
SMPS7_GND  
SMPS7_SW  
SMPS7_SW  
SMPS7_SW  
GND_ANA  
SMPS4_GND  
SMPS4_IN  
SMPS4_IN  
SMPS4_IN  
SMPS5_GND  
SMPS5_GND  
SMPS5_SW  
SMPS5_SW  
SMPS5_SW  
ENABLE1  
NC  
5
REFGND1  
SMPS7_GND  
SMPS7_IN  
SMPS7_IN  
SMPS7_IN  
SMPS5_GND  
NC  
4
SMPS4_5_FDBK  
_GND  
OSC16MIN  
OSC16MOUT  
PBKG  
GPADC_IN2  
GPADC_IN1  
OSC16MCAP  
SMPS5_IN  
BOOT0  
3
SMPS5_IN  
SMPS4_5_FDBK  
I2C1_SDA_SDI  
2
SMPS5_IN  
INT  
I2C1_SCL_SCK  
PBKG  
PBKG  
1
Figure 3-1. 169-Pin ZWS New Fine Pitch Ball Grid Array (NFBGA) With 0,8-mm Pitch  
Top View  
Copyright © 2014–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
5
Submit Documentation Feedback  
Product Folder Links: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions  
PIN  
NAME  
CONNECTION IF NOT  
USED OR NOT  
I/O  
PU OR PD(1)  
DESCRIPTION  
NO.  
AVAILABLE  
A1  
A2  
PBKG  
O
Ground  
Substrate ground  
OSC16MOUT  
Floating  
16-MHz crystal oscillator output or floating in case of digital clock  
16-MHz crystal oscillator input or digital clock input  
Floating or ground in  
bypass mode  
A3  
OSC16MIN  
I
A4  
A5  
A6  
A7  
REFGND1  
LDO9_OUT  
LDO12_IN  
GND_ANA  
O
I
Ground  
Floating  
System reference ground  
LDO9 output voltage  
System supply  
Ground  
Power input voltage for LDO1 and LDO2 regulators  
Analog power ground  
Internal LDOVRTC output voltage. For silicon revisions 1.3 or earlier, rapid power off and on  
requires a pulldown resistor on the LDOVRTC_OUT pin. See 5.4.11 for more details.  
A8  
LDOVRTC_OUT  
O
A9  
LDOUSB_IN2  
LDOUSB_IN1  
VCC_SENSE2  
I
I
I
System supply  
System supply  
System supply  
Power input voltage 2 for LDOUSB regulator  
Power input voltage 1 for LDOUSB regulator  
System-supply sense line  
A10  
A11  
PPU  
PPD  
I/O  
Primary function: General-purpose input(2) or output  
A12  
GPIO_2  
Floating  
O
I
Secondary function: REGEN2 — External regulator enable output 2  
Substrate ground  
A13  
B1  
PBKG  
Ground  
Floating  
Ground  
SMPS7_FDBK  
GPADC_IN0  
VCC_SENSE  
GPADC_VREF  
LDOLN_OUT  
LDO2_OUT  
VBG  
Output voltage-sense (feedback) input for step-down converter, SMPS7  
Sigma-delta GPADC input 0  
B2  
I
B3  
I
System supply  
Floating  
Floating  
Floating  
System-supply sense line  
B4  
O
O
O
O
I
Sigma-delta GPADC output reference voltage  
Output voltage for the low-noise dropout regulator, LDOLN  
LDO2 output voltage  
B5  
B6  
B7  
Bandgap reference voltage  
B8  
SYNCDCDC  
LDOUSB_OUT  
Ground  
Sync pin to sync DC-DCs with external clock  
LDOUSB output voltage  
B9  
O
Floating  
B10  
B11  
B12  
B13  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
PBKG  
Ground  
Substrate ground  
GPIO_0  
SMPS1_2_FDBK  
OSC16MCAP  
GPADC_IN1  
GPADC_IN2  
LDO9_IN  
I/O  
I
PPD  
Ground or VSYS (VCC1) General-purpose input(2) or output  
Ground  
Floating  
Output voltage-sense (feedback) input for step-down converters, SMPS1 and SMPS2  
O
I
Filtering capacitor for the 16-MHz crystal oscillator  
Sigma-delta GPADC input 1  
Ground  
I
Ground  
Sigma-delta GPADC input 2  
I
System supply  
System supply  
Floating  
Power input voltage for LDO9 regulator  
Power input voltage for the low-noise dropout regulator, LDOLN  
LDO1 output voltage  
LDOLN_IN  
LDO1_OUT  
VCC1  
I
O
I
System supply  
Analog input voltage supply  
LDOVANA_OUT  
NC  
O
Internal LDOVANA output voltage  
Not connected  
PPU  
PPD(2)  
I/O  
O
Ground  
Floating  
Primary function: General-purpose input(2) or output  
C10  
GPIO_5  
Secondary function: CLK32KGO1V8 — 32-kHz digital-gated output clock available when  
VRTC is present  
C11  
C12  
RPWRON  
I
I
PU  
Floating  
Ground  
External remote switch-on event  
SMPS1_2_FDBK_GND  
Ground-sense (feedback) input for step-down converters, SMPS1 and SMPS2  
Primary function: General-purpose input(2) or output  
Secondary function: VBUSDET - VBUS detection  
I/O  
O
PPU  
PPD  
C13  
GPIO_1  
Floating  
(1) The PU/PD column shows the pullup and pulldown resistors on the digital input lines. The pullup and pulldown resistors are defined as  
follows:  
PU  
pullup  
PD  
pulldown  
PPU  
software-programmable pullup  
software-programmable pulldown  
PPD  
(2) Default option  
6
Pin Configuration and Functions  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
CONNECTION IF NOT  
USED OR NOT  
AVAILABLE  
I/O  
PU OR PD(1)  
DESCRIPTION  
NO.  
NAME  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
E1  
SMPS7_SW  
O
Floating  
Switch node of step-down converter, SMPS7. Connect the output to an inductor.  
SMPS7_GND  
PBKG  
Ground  
Ground  
Power ground connection for step-down converter, SMPS7  
Substrate ground  
VBUS  
VIO_IN  
I
I
Ground  
System supply  
Ground  
VBUS Detection Voltage  
Digital supply input for GPIOs and I/O supply voltage  
Power ground connection for step-down converter, SMPS1  
SMPS1_GND  
SMPS1_IN  
SMPS7_IN  
I
I
System supply  
System supply  
Power input for step-down converter, SMPS1  
Power input for step-down converter, SMPS7  
E2  
E3  
E4  
SMPS7_GND  
NSLEEP  
I
PPU(2)  
PPD  
PPU(2)  
Ground  
Floating  
Power ground connection for step-down converter, SMPS7  
NSLEEP request signal  
E5  
E6  
NRESWARM  
GND_ANA  
PBKG  
I
Floating  
Ground  
Ground  
Warm reset input  
Analog power ground  
Substrate ground  
E7  
E8  
E9  
SMPS1_GND  
Ground  
Power ground connection for step-down converter, SMPS1  
E10  
E11  
E12  
E13  
F1  
SMPS1_SW  
O
Floating  
Switch node of step-down converter, SMPS1. Connect the output to an inductor.  
F2  
SMPS4_IN  
I
System supply  
Power input for step-down converter, SMPS4  
F3  
F4  
SMPS4_GND  
GND_ANA  
Ground  
Ground  
Power ground connection for step-down converter, SMPS4  
Analog power ground  
F5  
F6  
PBKG  
O
Ground  
Floating  
Ground  
Substrate ground  
F7  
F8  
REGEN1  
External regulator enable output 1  
Power ground connection for step-down converter, SMPS2  
F9  
SMPS2_GND  
F10  
F11  
F12  
F13  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
SMPS2_SW  
O
Floating  
Switch node of step-down converter, SMPS2. Connect the output to an inductor.  
SMPS4_SW  
O
Floating  
Ground  
Switch node of step-down converter, SMPS4. Connect the output to an inductor.  
Power ground connection for step-down converter, SMPS4  
SMPS4_GND  
RESET_OUT  
PBKG  
O
I
Floating  
Ground  
Floating  
System reset and power on output (Low Reset, High Active or Sleep)  
Substrate ground  
PWRON  
PU  
External power-on event (on-button switch-on event)  
Primary function: General-purpose input(2) or output  
Secondary function: POWERHOLD input  
I/O  
I
PPD  
PPD(2)  
G9  
GPIO_7  
Ground or VRTC  
Ground  
G10  
G11  
G12  
G13  
SMPS2_GND  
Power ground connection for step-down converter, SMPS2  
SMPS2_IN  
I
System supply  
Power input for step-down converter, SMPS2  
Copyright © 2014–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
7
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
NAME  
CONNECTION IF NOT  
USED OR NOT  
AVAILABLE  
I/O  
PU OR PD(1)  
DESCRIPTION  
NO.  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
SMPS5_SW  
O
Floating  
Ground  
Switch node of step-down converter, SMPS5. Connect the output to an inductor.  
SMPS5_GND  
Power ground connection for step-down converter, SMPS5  
Substrate ground  
PBKG  
Ground  
Floating  
DVS I2C serial bidirectional data (external pullup) and SPI data read signal or I2C serial  
bidirectional data (external pullup)  
H8  
I2C2_SDA_SDO  
I/O  
H9  
GPIO_3  
I
PPD  
Ground  
Ground  
General-purpose input(2) or output  
H10  
H11  
H12  
H13  
J1  
SMPS3_GND  
Power ground connection for step-down converter, SMPS3  
SMPS3_IN  
SMPS5_IN  
I
I
System supply  
System supply  
Power input for step-down converter, SMPS3  
Power input for step-down converter, SMPS5  
J2  
J3  
J4  
SMPS5_GND  
ENABLE1  
I
PPU  
PPD(2)  
Ground  
Floating  
Power ground connection for step-down converter, SMPS5  
Peripheral power request input 1  
J5  
J6  
PBKG  
O
I
Ground  
Floating  
Ground  
Substrate ground  
J7  
POWERGOOD  
SMPS9_FDBK  
Indication signal for valid regulator output voltages  
Output voltage-sense (feedback) input for step-down converter, SMPS9  
J8  
J9  
SMPS3_GND  
Ground  
Power ground connection for step-down converter, SMPS3  
J10  
J11  
J12  
J13  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
SMPS3_SW  
O
Floating  
Switch node of step-down converter, SMPS3. Connect the output to an inductor.  
INT  
O
I
Maskable interrupt output request to the host processor  
SMPS4_5_FDBK  
SMPS4_5_FDBK_GND  
Ground  
Ground  
Output voltage-sense (feedback) input for step-down converters, SMPS4 and SMPS5  
Ground-sense (feedback) input for step-down converters, SMPS4 and SMPS5  
I
NC  
Not connected  
SMPS6_FDBK  
BOOT1  
I
I
I
I
Ground  
Ground or VRTC  
Floating  
Output voltage sense (feedback) input for step-down converter, SMPS6  
Boot pin 1 for power-up sequence selection  
Power-down signal  
PWRDOWN  
RESET_IN  
PPD  
PPD  
PPU  
PPD(2)  
Floating  
Reset input  
I/O  
Primary function: General-purpose input(2) or output  
K10  
GPIO_4  
Floating  
O
O
O
I
Secondary function: SYSEN1 — External system enable  
LDO3 output voltage  
K11  
K12  
K13  
LDO3_OUT  
LDO4_OUT  
Floating  
Floating  
Floating  
LDO4 output voltage  
SMPS3_FDBK  
Output voltage-sense (feedback) input for step-down converter, SMPS3  
Control I2C serial clock (external pullup) and SPI clock signal  
L1  
L2  
I2C1_SCL_SCK  
I2C1_SDA_SDI  
I/O  
I/O  
Floating  
Floating  
Control I2C serial bidirectional data (external pullup) and SPI data signal  
Boot pin 0 for power-up sequence selection  
Not connected  
L3  
BOOT0  
NC  
I
Ground or VRTC  
L4  
L5  
SMPS6_GND  
SMPS9_GND  
Ground  
Ground  
Power ground connection for step-down converter, SMPS6  
Power ground connection for step-down converter, SMPS9  
L6  
L7  
L8  
L9  
SMPS8_GND  
SMPS8_FDBK  
I
Ground  
Ground  
Power ground connection for step-down converter, SMPS8  
L10  
L11  
Output voltage-sense (feedback) input for step-down converter, SMPS8  
8
Pin Configuration and Functions  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Pin Functions (continued)  
PIN  
CONNECTION IF NOT  
USED OR NOT  
AVAILABLE  
I/O  
PU OR PD(1)  
DESCRIPTION  
NO.  
NAME  
L12  
L13  
M1  
LDO34_IN  
I
System supply  
Power input voltage for LDO3 and LDO4 regulators  
PBKG  
Ground  
Floating  
Substrate ground  
M2  
DVS I2C serial clock (external pullup) and SPI enable signal or I2C serial clock (external pullup)  
Power input voltage for internal LDO  
M3  
I2C2_SCL_SCE  
I/O  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
N1  
LDO_SUPPLY  
SMPS6_SW  
SMPS6_IN  
SMPS9_SW  
SMPS9_IN  
SMPS8_IN  
SMPS8_SW  
CLK32KGO  
GND_DIG  
I
O
I
System supply  
Floating  
Switch node of step-down converter, SMPS6. Connect the output to an inductor.  
Power input for step-down converter, SMPS6  
System supply  
Floating  
O
I
Switch node of step-down converter, SMPS9 Connect the output to an inductor.  
Power input for step-down converter, SMPS9  
System supply  
System supply  
Floating  
I
Power input for step-down converter, SMPS8  
O
O
I
Switch node of step-down converter, SMPS8 Connect the output to an inductor.  
32-kHz digital-gated output clock available when VIO_IN input supply is present  
Digital power ground  
Floating  
Ground  
GND_ANA  
PBKG  
Ground  
Analog power ground  
Ground  
Substrate ground  
N2  
VIO_GND  
Ground  
Digital ground connection  
N3  
LDO_SUPPLY  
LDO_SUPPLY  
SMPS6_SW  
SMPS6_IN  
SMPS9_SW  
SMPS9_IN  
SMPS8_IN  
SMPS8_SW  
System supply  
System supply  
Floating  
Power input voltage for internal LDO  
N4  
I
Power input voltage for internal LDO  
N5  
O
I
Switch node of step-down converter, SMPS6. Connect the output to an inductor.  
Power input for step-down converter, SMPS6  
N6  
System supply  
Floating  
N7  
O
I
Switch node of step-down converter, SMPS9 Connect the output to an inductor.  
Power input for step-down converter, SMPS9  
N8  
System supply  
System supply  
Floating  
N9  
I
Power input for step-down converter, SMPS8  
N10  
O
Switch node of step-down converter, SMPS8 Connect the output to an inductor.  
PPU  
PPD(2)  
I/O  
Ground  
Primary function: General-purpose input(2) or output  
N11  
GPIO_6  
O
I
Floating  
Ground or floating  
Floating  
Secondary function: SYSEN2 — External system enable  
Primary function: OTP programming voltage  
Secondary function: TESTV  
N12  
N13  
VPROG  
PBKG  
O
Ground  
Substrate ground  
Copyright © 2014–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Table 3-1. Summary of Digital Signals and Some Dedicated Analog Signals  
POWER DOMAIN AND  
TOLERANCE LEVEL  
OUTPUT TYPE  
SELECTION  
ACTIVE HIGH OR  
LOW  
OTP POLARITY  
SELECTION  
(1)  
SIGNAL NAME  
I/O  
INPUT PU/PD  
OTP PU/PD SELECTION  
PWRON  
VSYS (VCC1)  
VSYS (VCC1)  
Input  
Input  
PU fixed  
PU fixed  
PPD(2)  
N/A (fixed)  
N/A (fixed)  
N/A (input)  
N/A (input)  
Low  
Low  
No  
No  
RPWRON  
VRTC, fail-safe  
(5.25-V tolerance)  
PWRDOWN  
Input  
Yes  
N/A (input)  
Low or high(2)  
Yes  
(Optional External PU)  
N/A (output)  
No  
POWERGOOD  
BOOT0  
VRTC  
VRTC  
VRTC  
Output  
Input  
N/A (output)  
Open-drain  
N/A (input)  
N/A (input)  
Low or high(2)  
Boot conf.  
Yes  
No  
No  
No  
BOOT1  
Tri-level input  
PPU or PPD(2)  
Boot conf.  
No  
VRTC, fail-safe  
(5.25-V tolerance)  
GPIO_0  
Input(2) or output  
Input(2) or output  
PPD(2)  
Yes  
Yes  
Open-drain  
Low or high  
Low or high  
No  
No  
GPIO_1  
(primary function)  
PPU/PPD(2)  
Push-pull(2) or open- drain  
VSYS  
VSYS  
GPIO_1  
secondary function:  
VBUSDET  
Output  
Input(2) or output  
Output  
N/A (output)  
PPU or PPD(2)  
N/A (output)  
N/A (output)  
Yes  
Push-pull(2) or open- drain  
Push-pull(2) or open- drain  
Push-pull(2) or open- drain  
Open-drain  
High  
Low or high  
High  
GPIO_2  
(primary function)  
No  
Yes  
No  
GPIO_2  
secondary function:  
REGEN2  
N/A (output)  
VRTC, fail-safe  
(5.25-V tolerance)  
GPIO_3  
Input(2) or output  
Input(2) or output  
PPD(2)  
Yes  
No  
Low or high(2)  
Low or high  
GPIO_4  
(primary function)  
PPU/PPD(2)  
VIO (VIO_IN)  
Push-pull  
GPIO_4  
secondary function:  
SYSEN1  
Output  
N/A (output)  
PPU/PPD(2)  
N/A (output)  
No  
High  
GPIO_5  
(primary function)  
Input(2) or output  
Push-pull(2) or open- drain  
Push-pull  
Low or high  
No  
No  
GPIO_5  
VRTC  
secondary function:  
CLK32KGO1V8 or  
SYNCCLKOUT  
Output  
N/A (output)  
N/A (output)  
Toggling  
(1) The pullup and pulldown resistors are defined as follows:  
PU  
pullup  
PD  
pulldown  
PPU  
software-programmable pullup  
software-programmable pulldown  
PPD  
(2) Default option.  
10  
Pin Configuration and Functions  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
SIGNAL NAME  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Table 3-1. Summary of Digital Signals and Some Dedicated Analog Signals (continued)  
POWER DOMAIN AND  
TOLERANCE LEVEL  
OUTPUT TYPE  
SELECTION  
ACTIVE HIGH OR  
LOW  
OTP POLARITY  
SELECTION  
(1)  
I/O  
INPUT PU/PD  
OTP PU/PD SELECTION  
GPIO_6  
(primary function)  
Input(2) or output  
PPU/PPD(2)  
No  
Low or high  
High  
VIO (VIO_IN)  
Push-pull  
No  
No  
GPIO_6  
secondary function:  
SYSEN2  
Output  
Input(2) or output  
Input  
N/A (output)  
PPD(2)  
N/A (output)  
GPIO_7  
(primary function)  
Yes  
No  
Open-drain  
N/A (input)  
Low or high  
High  
VRTC, fail-safe  
(5.25-V tolerance)  
GPIO_7  
secondary function:  
POWERHOLD  
PD fixed  
NSLEEP  
VRTC  
Input  
Input  
PPU(2) or PPD  
PPU or PPD(2)  
No  
No  
N/A (input)  
N/A (input)  
Low(2) or high  
Low or high(2)  
No but software possible  
No but software possible  
ENABLE1  
VIO (VIO_IN)  
Push-pull or open- drain  
(OTP selection)  
REGEN1  
VSYS (VCC1)  
Output  
Input  
N/A (output)  
PPD(2)  
N/A (output)  
Yes  
High  
No  
VRTC, fail-safe  
(5.25-V tolerance)  
RESET_IN  
N/A (input)  
Low(2) or high  
Yes  
RESET_OUT  
NRESWARM  
INT  
VIO (VIO_IN)  
VRTC  
Output  
Input  
N/A (output)  
PPU(2)  
N/A (output)  
No  
Push-pull  
N/A (input)  
Push-pull(2) or open- drain  
Low  
Low  
No  
No  
VIO (VIO_IN)  
VIO (VIO_IN)  
VIO (VIO_IN)  
Output  
N/A (output)  
N/A (output)  
No  
N/A (output)  
N/A (output)  
No  
Low(2) or high  
Toggling  
High (I2C)  
High (I2C)  
High (I2C)  
No but software possible  
No  
CLK32KGO  
I2C1_SDA_SDI  
Output  
Push-pull  
Yes (I2C/SPI)  
Yes (I2C/SPI)  
Yes (I2C/SPI)  
Input or output  
Open-drain  
I2C1_SCL_SCK  
I2C2_SCL_SCE  
VIO (VIO_IN)  
VIO (VIO_IN)  
Input  
Input  
No  
No  
No  
No  
N/A (input)  
N/A (input)  
Open-drain (I2C) or Push-  
pull (SPI)  
High (I2C)  
Yes (I2C/SPI)  
I2C2_SDA_SD0  
VIO (VIO_IN)  
Input or output  
No  
No  
GPADC_IN0  
GPADC_IN1  
GPADC_IN2  
GPADC_VREF  
OSC16MIN  
VRTC  
VANA  
Input  
Input  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
No  
N/A (analog)  
N/A (analog)  
N/A (analog)  
N/A (analog)  
N/A (analog)  
N/A (analog)  
N/A (analog)  
N/A (analog)  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
Analog  
No  
No  
No  
No  
No  
No  
No  
No  
VANA  
Input  
VANA  
Output  
Input  
VRTC  
OSC16MOUT  
VCC_SENSE2  
VCC_SENSE  
VRTC  
Output  
Input  
VSYS (VCC1)  
VSYS (VCC1)  
Input  
Copyright © 2014–2019, Texas Instruments Incorporated  
Pin Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
4 Specifications  
4.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–2  
MAX  
UNIT  
V
VCC1 pins  
6
7
VCC_SENSE, VCC_SENSE2 pins  
V
All LDOs and SMPS supply voltage input pins (except LDOUSB_IN2)  
SMPSx_SW pins, 10 ns transient  
6
V
7
V
All SMPS-related input pins, SMPSx_FDBK  
LDOUSB regulator LDOUSB_IN2 input voltage  
–0.3  
–0.3  
3.6  
20  
V
V
–0.3  
VIOmax  
0.3  
VIOmax  
0.3  
+
I/O digital supply voltage(3)  
+
V
Voltage  
VBUS  
–2  
20  
5.25  
2.5  
V
V
V
V
GPADC pins: GPADC_IN0, GPADC_IN1  
GPADC pins: GPADC_IN2  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
OTP supply voltage VPROG  
20  
Without fail-safe  
2.15  
5.25  
VRTC digital input pins  
With fail-safe  
V
V
VIOmax  
0.3  
+
VIO digital input pins (VIO_IN pin reference)  
–0.3  
VSYS digital input pins (VCC1 pin reference)  
–0.3  
–5  
6
5
V
mA  
A
Peak output current on all pins other than power resources  
Power pins, nFBGA  
1
Current  
Buck SMPS, SMPSx_IN, SMPSx_SW, and SMPSx_OUT total per phase  
4
A
LDOs  
1
A
Junction temperature range, TJ  
Storage temperature range, Tstg  
–45  
–65  
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum conditions for extended periods may affect device reliability.  
(2) When operating the TPS659037 device without an external crystal, each SMPS regulating an output voltage greater than 1.8 V must be  
disabled before VCC is removed. Lowering VCC below the programmed VSYS_LO level while any SMPS is regulating an output voltage  
above 1.8 V may cause damage to the device.  
(3) VIO_IN with respect to VIO_GND.  
4.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS–001(1)  
±2000  
V
Electrostatic  
discharge  
Pins B4, B7, H8, L1, L2,  
M3  
V(ESD)  
±450  
±500  
Charged device model (CDM), per JEDEC specification  
JESD22-C101(2)  
V
All other pins  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
12  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
4.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3.135  
3.135  
3.135  
1.75  
3.6  
NOM  
MAX  
5.25  
UNIT  
V
All system voltage input pins VCC1 (named VSYS in the specification)  
VCC_SENSE and VCC_SENSE2, HIGH_VCC_SENSE = 0(1)  
VCC_SENSE and VCC_SENSE2, HIGH_VCC_SENSE = 1(1)  
All LDO-related input pins _IN (except LDOUSB)(2)  
LDOUSB_IN1  
3.8  
VVCC1  
VVCC1 – 1  
5.25  
V
V
3.8  
3.8  
V
5.25  
V
LDOUSB_IN2  
4.3  
5.25  
V
All SMPS-related input pin _IN  
3.135  
0
5.25  
V
All SMPS-related input pins _FDBK  
VOmax + 0.3  
0.3  
V
All SMPS-related input pins _FDBK_GND  
I/O digital supply voltage VIO_IN, for 1.8-V Mode  
I/O digital supply voltage VIO_IN, for 3.3-V Mode  
Voltage on the GPADC pins GPADC_IN0, GPADC_IN1 pins  
Voltage on the GPADC pins GPADC_IN2 pin  
Voltage on the crystal oscillator OSC16MIN pin  
OTP supply voltage VPROG  
–0.3  
1.71  
3.135  
0
V
1.8  
3.3  
1.89  
V
3.465  
1.25  
V
V
0
2.5  
V
-0.7 VLDOVRTC  
1.85  
V
0
0
8
VLDOVRTC  
VIO  
10  
V
Voltage on VRTC digital input pins  
1.85  
V
Voltage on VIO digital input pins (VIO_IN pin reference)  
Voltage on VSYS digital input pins (VCC1 pin reference)  
Operating free-air temperature range(3)  
0
VIOmax  
5.25  
V
0
3.8  
V
–40  
–40  
27  
85  
°C  
°C  
Operating Junction temperature  
27  
125  
(1) If measured with GPADC, see 5-3.  
(2) Does not include LDO1 and LDO2 minimum input voltages.  
(3) Additional cooling strategies may be necessary to maintain junction temperature at recommended limits.  
4.4 Thermal Information  
TPS659037  
ZWS (NFBGA)  
THERMAL METRIC(1)  
UNIT  
169 PINS  
36.4  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
6.6  
18.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
ψJB  
18.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4.5 Electrical Characteristics: Latch Up Rating  
Over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
I2C and SPI pins  
LDOVANA_OUT pin  
All other pins  
90  
mA  
100  
ILU  
Latch up current, Class 2  
–60  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
13  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
4.6 Electrical Characteristics: LDO Regulator  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input filtering capacitance (C29, C30,  
C31, C32, C33, C34)  
Connected from LDOx_IN to GND. Shared input tank capacitance  
(depending on platform requirements)  
0.6  
2.2  
µF  
Output filtering capacitance (C35, C36,  
C37, C38, C45, C46, C47)(1)  
Connected from LDOx_OUT to GND (Except LDO9)  
Connected from LDO9_OUT to GND  
0.6  
0.6  
0.6  
2.2  
2.2  
1
2.7  
2.7  
1.2  
µF  
µF  
LDO9 Output filtering capacitance  
(C44)(1)  
Connected from LDO9_OUT to GND. LDO9 configured in BYPASS  
MODE (LDO9_CTRL.LDO_PYPASS_EN = 1)  
< 100 kHz  
20  
1
100  
10  
600  
20  
mΩ  
mΩ  
CESR  
Filtering capacitor ESR  
Input voltage, LDOx  
1 MHz f 10 MHz  
0.9 V VO 2.15 V  
1.2  
VVCC1  
5.25  
VVCC1  
5.25  
VVCC1  
5.25  
3.6  
LDO1, LDO2  
2.2 V VO 3.3 V  
1.2  
0.9 V VO 2.15 V  
LDOLN, LDO3, LDO4  
1.75  
1.75  
1.75  
1.75  
1.75  
3.6  
VLDOx  
2.2 V VO 3.3 V  
V
0.9 V VO 1.75 V  
LDO9  
1.8 V VO 3.3 V  
Bypass Mode  
0.9 V VO 2.15 V  
2.2 V VO 3.3 V  
0.9 V VO 2.15 V  
2.2 V VO 3.3 V  
VVCC1  
5.25  
VVCC1  
5.25  
5.25  
3.3  
VLDOUSB1  
Input voltage, LDOUSB1  
LDOUSB – From LDOUSB_IN1  
LDOUSB – From LDOUSB_IN2  
V
V
3.6  
4.3  
VLDOUSB2  
VI(VCC1)  
Input voltage, LDOUSB2  
Input voltage, VCC1  
4.3  
VCC1 – Used for internal power supply  
VO(LDOx) < VLDOx – VDROPOUT(LDOx)  
Step size  
3.135  
0.9  
3.8  
50  
V
V
LDO output voltage programmable(2)  
(except LDOVRTC and LDOVANA)  
VO(LDOx)  
mV  
0.99 ×  
VO(LDOx)  
–0.014  
1.006 ×  
All LDOs except LDO3, LDO4, LDOVANA, and LDOVRTC  
LDO3, LDO4: IO = 200 mA  
VO(LDOx)  
+
0.014  
0.99 ×  
VO(LDOx)  
–0.014  
1.006 ×  
VO(LDOx)  
+
Total DC output voltage accuracy,  
including voltage references, DC  
load/line regulations, process and  
temperature  
0.014  
TDCOV(LDOx)  
V
0.99 ×  
1.006 ×  
LDO3, LDO4: 200 mA < IO 300 mA  
VOUT(LDOx)  
VOUT(LDOx)  
+
0.018  
0.018  
LDOVRTC_OUT  
1.726  
2.002  
1.8  
1.85  
2.119  
150  
290  
550  
230  
150  
290  
200  
900  
150  
300  
300  
50  
LDOVANA_OUT  
2.093  
LDO1, LDO2: IO = IOmax  
LDO3, LDO4: IO = 200 mA  
LDO3, LDO4: IO = IOmax  
LDO9: IO = IOmax  
VDROPOUT(LDOx)  
Dropout voltage(3)  
mV  
LDOLN: IO = IOmax  
LDOLN: IO = 100 mA (Functional, not low-noise performance)  
LDOUSB – From LDOUSB_IN1: IO = IOmax  
LDOUSB – From LDOUSB_IN2: IO = IOmax  
LDOVRTC, LDOVANA: IO = IOmax  
LDO1, LDO2  
VDROPOUT(LDOx)  
Dropout voltage, internal LDOs  
Output current  
mV  
mA  
LDO3, LDO4  
IO(LDOx)  
LDO9, LDOLN  
LDOUSB  
100  
10  
LDOVANA  
IO(LDOx_int)  
Output current, internal LDOs  
LDO inrush current  
mA  
mA  
LDOVRTC  
25  
LDO1, LDO2  
500  
(1) Additional information about how this parameter is specified is located in 6.2.2.  
(2) LDO output voltages are programmed separately.  
(3) VDROPOUT(LDOx) = VI – VO, where VO = VOnom – 2%  
14  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Electrical Characteristics: LDO Regulator (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
380  
400  
120  
120  
150  
100  
55  
TYP  
600  
650  
200  
250  
325  
250  
250  
4
MAX UNIT  
1800  
LDO1, LDO2  
LDO3, LDO4  
LDO9  
1300  
400  
IL(LDOx)  
LDO current limitation  
LDOUSB  
LDOLN  
600  
740  
400  
400  
16  
mA  
LDOVANA  
LDOVRTC  
LDO1, LDO2: IO = 0 to IOmax at pin  
LDO3, LDO4: 0 to 200 mA at pin  
LDO3, LDO4: IO = 0 to IOmax at pin  
All other LDOs: IO = 0 to IOmax at pin  
VI = VImin to VImax, IO = IOmax  
4
14  
ΔVO(ΔVI)(DC)  
DC load regulation, ΔVO  
mV  
4
18  
4
14  
0.1%  
0.2%  
DC line regulation, except VRTC,  
ΔVO / VO  
ΔVO(DVI)(DC)  
VSYS = VSYSmin to VSYSmax  
O 2.2 V  
, IO = IOmax. VI constant (LDO preregulated),  
0.3%  
0.75%  
1%  
V
DC line regulation on LDOVRTC,  
ΔVO/VO  
VSYS = VSYSmin to VSYSmax, IO = IOmax  
Bypass resistance of LDO9  
Turnon time  
VI 2.7 V, programmed to BYPASS  
IO = 0, VO = 0.1 V up to VOmin  
IO = 0, VO down to 10% × VO  
4.2  
500  
500  
Ω
ton  
toff  
100  
250  
µs  
μs  
Turnoff time (except VRTC )  
Pulldown discharge resistance at LDO OFF mode, pull down enabled and LDO disabled. Also applies to  
RDIS  
30  
125  
Ω
output, except LDOVRTC  
bypass mode  
ƒ = 217 Hz, IO = IOmax  
55  
28  
25  
55  
50  
55  
20  
20  
55  
25  
25  
90  
45  
35  
90  
60  
90  
45  
35  
90  
45  
35  
0.1  
0.2  
Power-supply ripple rejection, LDO1,  
LDO2  
ƒ = 50 kHz, IO = IOmax  
dB  
ƒ = 1 MHz, IO = IOmax  
LDO9, LDOUSB: ƒ = 217 Hz, IO = IOmax  
LDO3, LDO4: ƒ = 217 Hz, IO = IOmax  
LDO3, LDO4: ƒ = 217 Hz, IO = 200 mA  
All other LDOs: ƒ = 50 kHz, IO = IOmax  
All other LDOs: ƒ = 1 MHz, IO = IOmax  
ƒ = 217 Hz, IO = IOmax  
Power-supply ripple rejection, LDO3,  
LDO4,LDO9, LDOUSB  
dB  
Power-supply ripple rejection, LDOLN  
Quiescent-current off mode  
ƒ = 50 kHz, IO = IOmax  
dB  
µA  
ƒ = 1 MHz, IO = IOmax  
For all LDOs, T = 27°C  
IQ(off)  
For all LDOs, T 85°C  
IL = 0 mA (LDO1, LDO2), 0.9 V VO 3.3 V, VO(LDOx) < VLDOx  
VDROPOUT(LDOx)  
39  
70  
IL = 0 mA (LDO3, LDO4, LDO9), VO(LDOx) < VLDOx – VDROPOUT(LDOx)  
IL = 0 mA (LDOLN) , VO 1.8 V, VO(LDOx) < VLDOx – VDROPOUT(LDOx)  
IL = 0 mA (LDOLN) , VO > 1.8 V, VO(LDOx) < VLDOx – VDROPOUT(LDOx)  
IL = 0 mA (LDOUSB) – IN1, VO(LDOx) < VLDOx – VDROPOUT(LDOx)  
IL = 0 mA (LDOUSB) – IN2, VO(LDOx) < VLDOx – DV(LDOx)  
IO < 100 µA  
36  
140  
180  
45  
47  
190  
210  
65  
IQ(on)  
Quiescent-current LDO ON mode  
µA  
18  
25  
4%  
2%  
1%  
Quiescent current coefficient, LDO ON  
mode(4)  
αQ  
100 µA IO < 1 mA  
IO 1 mA  
All LDOs except LDO3, LDO4, LDO9, LDOLN: ON mode, IO = 10 mA  
to IOmax / 2, tr = tf = 1 µs  
–25  
25  
LDO9, LDOLN: ON mode, IO = 1 mA to IOmax /2, tr = tf = 1 µs  
LDO3, LDO4: ON mode, IO = 10 mA to 100 mA, tr = tf = 1 µs  
LDO3, LDO4: ON mode, IO = 10 mA to IOmax / 2, tr = tf = 1 µs  
ON mode, IO = 100 µA to IOmax / 2, tr = tf = 1 µs  
–25  
–25  
–40  
–50  
25  
25  
ΔVO(ΔIO)(T)  
Transient load regulation ΔVO  
mV  
25  
33  
VI step = 600 mVPP, tr = tf = 10 µs  
0.25%  
0.8%  
0.5%  
ΔVO(ΔVI)(T)  
Transient line regulation, ΔVO / VO  
VSYS step = 600 mVPP, tr = tf = 10 µs. VI constant (LDO preregulated),  
1.6%  
VO 2.2 V  
(4) IQO = IQ(on) + αQ × IO  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
15  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: LDO Regulator (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
5000  
1250  
150  
250  
400  
62  
MAX UNIT  
100 Hz < ƒ 10 kHz  
10 kHz < ƒ 100 kHz  
100 kHz < ƒ 1 MHz  
ƒ > 1 MHz  
8000  
2500  
nV/Hz  
300  
Noise (except LDOLN)  
500  
100 Hz < ƒ 5 kHz, IO = 50 mA, VO 1.8 V  
5 kHz < ƒ 400 kHz, IO = 50 mA, VO 1.8 V  
400 kHz < ƒ 10 MHz, IO = 50 mA, VO 1.8 V  
LDO1, LDO2, ripple (from internal charge pump)  
500  
Noise (LDOLN)  
Ripple  
125 nV/Hz  
25  
50  
5
mVPP  
4.7 Electrical Characteristics: Dual-Phase (SMPS12 and SMPS45) and Triple-Phase  
(SMPS123 and SMPS457) Regulators  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input capacitance (C9, C10, C11, C12,  
C13)  
4.7  
µF  
Output capacitance (C18, C19, C21,  
C22)(1)  
SMPS12 or SMPS45 dual phase operation, per phase  
33  
33  
47  
57  
µF  
Output capacitance, (C20, C24)(1)  
SMPS3 and SMPS7 (triple phase operation)  
47  
2
57  
10  
µF  
CESR  
Filtering capacitor ESR  
1 MHz f 10 MHz  
mΩ  
Output filter inductance (L1, L2, L3, L4,  
L5)  
SMPSx_SW  
0.7  
1
1.3  
µH  
DCRL  
Filter inductor DC resistance  
50  
100  
mΩ  
VSMPSx  
Input voltage range, SMPSx_IN  
Connected to VSYS (VCC1)  
3.135  
0.7  
5.25  
V
RANGE = 0 (value for RANGE must not be changed when SMPS is  
active). In Eco-mode the output voltage values are fixed (defined  
before Eco-mode is enabled). RANGE = 1 is not supported for Multi-  
phase regulators.  
1.65  
V
VOSMPSx  
Output voltage, programmable, SMPSx  
Step size, 0.7 V VO 1.65 V (RANGE = 0)  
10  
mV  
DC output voltage accuracy, includes  
voltage references, DC load/line  
regulation, process and temperature  
Eco-mode  
–3%  
–1%  
4%  
2%  
Forced PWM mode  
Maximum load, VI = 3.8 V, VO = 1.2 V, ESRCO = 2 mΩ, measure with  
20-MHz LPF  
Ripple, dual phase  
Ripple, triple phase  
4
1
mVPP  
mVPP  
Maximum load, VI = 3.8 V, VO = 1.2 V, ESRCO = 2 mΩ, measure with  
20-MHz LPF  
ΔVO(ΔVI)  
ΔVO(ΔIO)  
DC line regulation  
DC load regulation  
0.1  
0.1  
%/V  
%/A  
Transient load step response, dual  
phase  
IO = 0.8 to 2 A, tr = tf = 400 ns, CO = 47 µF , L= 1 µH  
IO = 0.8 to 2 A, tr = tf = 400 ns, CO = 47 µF , L= 1 µH  
IO = 0.5 to 500 mA, tr = tf = 100 ns, CO = 47 µF , L= 1 µH  
3%  
3%  
3%  
Transient load step response, triple  
phase  
Transient load step response, dual or  
triple phase  
Rated output current, SMPS12  
Rated output current, SMPS123  
Rated output current, SMPS45  
Maximum output current, Eco-mode  
Advance thermal design is required to avoid thermal shutdown  
Advance thermal design is required to avoid thermal shutdown  
Advance thermal design is required to avoid thermal shutdown  
6
9
4
5
IOmax  
A
mA  
A
SMPS123, each phase  
SMPS45, each phase  
SMPS123, each phase  
SMPS45, each phase  
SMPS123, phase 1  
3.7  
2.7  
4
3
I(LIM_HS_FET)  
High-side MOSFET forward current-limit  
Low-side MOSFET forward current-limit  
Low-side MOSFET negative current-limit  
3.7  
2.7  
0.6  
0.6  
115  
115  
30  
I(LIM_LS_FET)  
A
A
SMPS45, phase 4  
SMPS123, each phase  
SMPS45, each phase  
SMPS123, each phase  
SMPS45, each phase  
N-channel MOSFET on-resistance,  
high-side FET  
rDS(on_HS_FET)  
mΩ  
N-channel MOSFET on-resistance, low-  
side FET  
rDS(on_LS_FET)  
t(start)  
mΩ  
30  
Time from enable to start of the ramp  
150  
µs  
(1) Additional information about how this parameter is specified is located in 6.2.2.  
16 Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Electrical Characteristics: Dual-Phase (SMPS12 and SMPS45) and Triple-Phase (SMPS123 and  
SMPS457) Regulators (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
t(ramp)  
Time from enable to 80% of VO  
Overshoot during turnon  
Output voltage slew rate  
CO < 57 µF per phase, no load  
400  
1000  
5%  
µs  
Fixed TSTEP  
2.5  
mV/μs  
SMPS turned off  
300  
Pulldown discharge resistance at  
SMPS2, SMPS4 output  
R(DIS)  
Ω
SMPSx_SW, SMPS turned off. Pulldown is at the master phase  
output.  
9
22  
Between SMPS1_2_FDBK, SMPS1_2_FDBK_GND  
Between SMPS4_5_FDBK, SMPS4_5_FDBK_GND  
SMPS3_FDBK input resistance  
380  
380  
380  
1300  
1300  
1300  
1
Input resistance for remote sense/sense  
line  
R(SENSE)  
kΩ  
IQ(off)  
Quiescent current – OFF mode  
IL = 0 mA  
0.1  
13.5  
15  
µA  
µA  
Eco-mode, device not switching, VO < 1.8 V  
Eco-mode, device not switching, VO 1.8 V  
19  
Quiescent current -ON mode, dual or  
triple phase  
21  
IQ(on)  
FORCED_PWM mode, IL= 0 mA, VI = 3.8 V, device switching, 1-  
phase operation  
11  
mA  
SMPS output voltage rising, referenced to programmed output voltage  
SMPS output voltage falling, referenced to programmed output voltage  
IL_AVG_COMP_rising  
–7.5%  
VSMPSPG  
Powergood threshold  
–12.5%  
IOmax – 20%  
IOmax IOmax + 20%  
IL_AVG_COMP  
Powergood: GPADC monitoring SMPS IL_AVG_COMP_falling, 3-A phase  
IL_AVG_COMP_falling, 2-A phase  
IL_AVG_COMP_rising – 5%  
IL_AVG_COMP_rising – 8%  
4.8 Electrical Characteristics: Stand-Alone Regulators (SMPS3, SMPS6, SMPS7, SMPS8,  
and SMPS9)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input capacitance (C11, C14, C15, C16,  
C17)  
4.7  
µF  
Output capacitance (C20, C23, C24,  
C25, C26)(1)  
SMPSx operation  
1 MHz f 10 MHz  
SMPSx_SW  
33  
47  
2
57  
10  
µF  
mΩ  
µH  
CESR  
Filtering capacitor DC ESR  
Output filter inductance (L3, L6, L7, L8,  
L9)  
0.7  
1
1.3  
LR(DC)  
Filter inductor DC resistance  
50  
100  
mΩ  
VSMPSx  
Input voltage range, SMPSx_IN  
Connected to VSYS (VCC1)  
3.135  
0.7  
5.25  
V
RANGE = 0 (value for RANGE must not be changed when SMPS is  
active). In Eco-mode the output voltage value is fixed (defined before  
Eco-mode is enabled).  
1.65  
3.3  
V
RANGE = 1 (value for RANGE must not be changed when SMPS is  
active). In Eco-mode the output voltage value is fixed (defined before  
Eco-mode is enabled).  
VOSMPSx  
Output voltage, programmable, SMPSx  
1
Step size, 0.7 V VO 1.65 V  
Step size, 1 V VO 3.3 V  
Eco-mode  
10  
20  
mV  
DC output voltage accuracy, includes  
voltage references, DC load/line  
regulation, process and temperature  
–3%  
–1%  
4%  
2%  
PWM mode  
Max load, VI = 3.8 V, VO = 1.2 V,  
ESRCO = 2 mΩ, measure with 20-MHz LPF  
Ripple  
8
mVPP  
DCLNR  
DCLDR  
DC line regulation  
DC load regulation  
TA = –40°C to 85°C  
TA = –40°C to 85°C  
0.1  
0.1  
%/V  
%/A  
SMPS3, SMPS6, SMPS7 , IOUT = 0.5 to 500 mA,  
tr = tf = 100 ns,  
CO = 47 µF , L = 1 µH  
TLDSR  
Transient load step response  
Transient load step response  
3%  
3%  
SMPS8, SMPS9, IO = 0.5 to 500 mA,  
TR = TF = 1 µs,  
TLDSR  
CO = 47 µF , L = 1 µH  
VI 3 V, Advance thermal design is required to avoid thermal  
shutdown  
3
2
Rated output current, SMPS3  
A
VI < 3 V, Advance thermal design is required to avoid thermal  
shutdown  
(1) Additional information about how this parameter is specified is located in 6.2.2.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Specifications  
17  
Product Folder Links: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: Stand-Alone Regulators (SMPS3, SMPS6, SMPS7, SMPS8, and  
SMPS9) (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
When OTP programmed with BOOST_CURRENT = 0  
Advance thermal design is required to avoid thermal shutdown  
2
A
3
Rated output current, SMPS6  
Rated output current, SMPS7  
When OTP programmed with BOOST_CURRENT = 1  
Advance thermal design is required to avoid thermal shutdown  
Advance thermal design is required to avoid thermal shutdown  
2
1
5
A
A
Rated output current, SMPS8, SMPS9 Advance thermal design is required to avoid thermal shutdown  
Maximum output current, Eco-mode  
SMPS3, and SMPS6 in 3-A mode  
High-side MOSFET forward current limit SMPS6 in 2-A mode, SMPS7  
SMPS8, SMPS9  
mA  
3.7  
2.7  
1.7  
4
3
ILIM  
A
A
HS FET  
LS FET  
2
SMPS3, and SMPS6 in 3-A mode  
Low-side MOSFET forward current limit SMPS6 in 2-A mode, SMPS7  
SMPS8, SMPS9  
3.7  
2.7  
1.7  
0.6  
0.6  
0.6  
115  
115  
180  
30  
ILIM  
SMPS3, and SMPS6 in 3-A mode  
Low-side MOSFET negative current limit SMPS6 in 2-A mode, SMPS7  
SMPS8, SMPS9  
A
SMPS3  
N-channel MOSFET on-resistance  
(high-side FET)  
rDS(on_HS_FET)  
SMPS6, SMPS7  
mΩ  
mΩ  
SMPS8, SMPS9  
SMPS3  
N-channel MOSFET on-resistance (low-  
side FET)  
rDS(on_LS_FET)  
SMPS6, SMPS7  
30  
SMPS8, SMPS9  
79  
t(start)  
Time from enable to start of the ramp  
150  
400  
µs  
µs  
t(ramp)  
Time from enable to 80% of VO  
Overshoot during turnon  
Output voltage slew rate  
CO < 57 µF, no load  
1000  
5%  
Fixed TSTEP, only available on SMPS6, SMPS8  
SMPSx_FDBK, SMPS turned off  
2.5  
300  
9
mV/μs  
Ω
Pulldown discharge resistance at  
SMPSx output  
R(DIS)  
IQ(off)  
SMPSx_SW, SMPS turned off  
22  
1
Quiescent current – OFF mode  
IL = 0 mA  
0.1  
µA  
Eco-mode, device not switching, VO < 1.8 V  
Eco-mode, device not switching, VO 1.8 V  
FORCED_PWM mode, IL = 0 mA, VI = 3.8 V, device switching  
Eco-mode, device not switching, VO < 1.8 V  
Eco-mode, device not switching, VO 1.8 V  
FORCED_PWM mode, IL = 0 mA, VI = 3.8 V, device switching  
SMPS output voltage rising, referenced to programmed output voltage  
SMPS output voltage falling, referenced to programmed output voltage  
IL_AVG_COMP_rising  
12  
15  
23  
µA  
Quiescent current – ON mode - SMPS3,  
SMPS6, SMPS7  
IQ(on_SMPS3,6,7)  
13.5  
11  
mA  
µA  
10.5  
12  
15  
23  
Quiescent current – ON mode - SMPS8,  
SMPS9  
IQ(on_SMPS8,9)  
7
mA  
–7.5%  
–12.5%  
VSMPSPG  
Powergood threshold  
IOmax – 20%  
IOmax IOmax + 20%  
Powergood: GPADC monitoring SMPS IL_AVG_COMP_falling, 3-A phase  
IL_AVG_COMP_falling, 2-A phase  
IL_AVG_COMP_rising – 5%  
IL_AVG_COMP_rising – 8%  
18  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
4.9 Electrical Characteristics: Reference Generator (Bandgap)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
Filtering capacitor  
Input voltage  
TEST CONDITIONS  
MIN  
30  
TYP  
100  
3.8  
0.85  
20  
MAX UNIT  
Connected from VBG to REFGND  
150 nF  
VI  
2.1  
5.25  
V
V
Output voltage  
Ground current  
Start-up time  
40 µA  
ms  
1
3
4.10 Electrical Characteristics: 16-MHz Crystal Oscillator, 32-kHz RC Oscillator, and  
Output Buffers  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
CRYSTAL CHARACTERISTICS  
Crystal frequency  
TEST CONDITIONS  
MIN  
TYP  
16.384  
33  
MAX UNIT  
Typical with specified load capacitors  
Parameter of crystal; TA 27°C  
Parameter of crystal  
MHz  
30 ppm  
43 mH  
Crystal frequency tolerance  
Crystal motional inductance  
Crystal series resistance  
–30  
23  
At fundamental frequency  
90  
Ω
The power dissipated in the crystal during oscillator  
operation  
Oscillator drive power  
15  
10  
120 μW  
Corresponding to crystal frequency, including  
parasitic capacitances  
Load capacitance  
8
12 pF  
Crystal shunt capacitance  
Parameter of crystal  
0.5  
4
pF  
TJ from –40°C to 125°C, VCC1 from 3.15 V to 5.25  
Oscillator frequency drift  
V
–50  
50 ppm  
10 ms  
Excluding crystal tolerance  
Time from VCC1 > 3.15 V until 32-kHz clock output  
is available from crystal oscillator  
Oscillator startup time  
32-kHz RC OSCILLATOR  
Output frequency low-level output voltage  
Output frequency accuracy  
Cycle jitter (RMS)  
32768  
0
Hz  
After trimming, TA 27°C  
–10%  
40%  
10%  
10%  
Output duty cycle  
50%  
4
60%  
Settling time  
150 μs  
Active current consumption  
Power-down current  
8
μA  
30 nA  
CLK32KGO OUTPUT BUFFER  
Logic output external load  
Rise and fall time  
5
5
35  
50  
50 pF  
100 ns  
60%  
CL = 35 pF, 10% to 90%  
Logic output signal  
Duty cycle  
40%  
50%  
CLK32KGO1 V8 OUTPUT BUFFER  
Settling time  
25  
7
50 μs  
10 μA  
30 nA  
2%  
Active current consumption  
Power-down current  
5
Duty cycle degradation contribution  
External output load  
–2%  
5
10  
15  
50 pF  
30 ns  
20 ns  
Output delay time  
Output load = 10 pF  
Output load = 10 pF  
Output rise and fall time  
SYNCCLKOUT OUTPUT BUFFER  
Logic output external load  
Rise and fall time  
7.5  
5
5
35  
50  
50 pF  
CL = 35 pF, 10% to 90%  
100 ns  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
19  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: 16-MHz Crystal Oscillator, 32-kHz RC Oscillator, and Output  
Buffers (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Logic output signal  
MIN  
TYP  
MAX UNIT  
Duty cycle  
40%  
50%  
60%  
4.11 Electrical Characteristics: DC-DC Clock Sync  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SYNC CLOCK SPECIFICATION AND DITHER PARAMETERS  
The allowed range of the  
ƒ(SYNC)  
1.7  
2.2  
2.7 MHz  
128 kHz  
external sync clock input  
A(DITHER)  
M(DITHER)  
Dither amplitude  
kHz/  
1.35  
Dither slope  
µs  
SYNC DC-DC DIGITAL CLOCK INPUT  
Low-level input on  
SYNCDCDC pin  
0.3 ×  
V
VIL  
–0.3  
0
VVRTC  
High-level input on  
SYNCDCDC pin  
0.7 ×  
VVRTC  
VIH  
VVRTC  
5.25  
80%  
V
Duty cycle of SYNCDCDC  
input signal  
20%  
0.1 ×  
VVRTC  
Hysteresis of input buffer  
V
SYNC CLOCK AND FREQUENCY FALLBACK  
ƒ(FALLBACK)  
ƒ(SAT_LO)  
ƒ(SAT_HI)  
Fall-back frequency  
1.98  
2.8  
2.2  
2.42 MHz  
1.65 MHz  
The low saturation frequency  
output of the PLL  
The high saturation  
frequency output of the PLL  
MHz  
Time from initial application  
or removal of sync clock until  
PLL output has settled to 1%  
of its final value  
ƒ(SETTLE)  
100 µs  
The steady-state percent  
difference between fSYNC and  
the switching frequency  
ƒ(ERROR)  
–1%  
15  
1%  
Time delay between  
corresponding staggered  
phases  
td  
30  
45 ns  
4.12 Electrical Characteristics: 12-Bit Sigma-Delta ADC  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
During conversion  
MIN  
TYP  
MAX UNIT  
IQ(on)  
IQ(off)  
ƒ
Current consumption  
OFF mode current  
Running frequency  
Resolution  
1500  
1600 μA  
GPADC is not enabled (no conversion)  
1
μA  
MHz  
Bit  
2.5  
12  
Number of available external  
inputs  
3
5
Number of available internal  
inputs  
20  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Electrical Characteristics: 12-Bit Sigma-Delta ADC (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Active or sleep with VANA ON and  
RC15MHZ_ON_IN_SLEEP = 1 or sleep with  
GPADC_FORCE = 1  
0
μs  
Turnon time  
Sleep or OFF  
794  
282  
μs  
μs  
Sleep with VANA enabled  
Gain error (without scaler)  
Gain error of the scaler  
Offset before trimming  
Offset drift after trimming  
Gain error drift (after  
–3.5%  
–1%  
–50  
3.5%  
1%  
50 LSB  
Temperature and supply  
–2  
2
LSB  
trimming, including reference Temperature and supply  
voltage)  
–0.6%  
0.2%  
INL  
Integral nonlinearity  
Differential nonlinearity  
Input capacitance  
Best fitting  
–3.5  
–1  
3.5 LSB  
3.5 LSB  
pF  
DNL  
GPADC_IN0–GPADC_IN2  
0.5  
Source resistance without capacitance  
Source capacitance with > 20-kΩ source resistance  
20 kΩ  
nF  
Source input impedance  
100  
GPADC_VREF voltage  
reference  
1.237  
1.25  
1.263  
V
Load current for  
GPADC_VREF  
200 µA  
Typical range  
0
1.250  
Input range (sigma-delta  
ADC)  
V
Assured range without saturation  
1 channel, EXTEND_DELAY = 0  
1 channel, EXTEND_DELAY = 1  
2 channels  
0.01  
1.215  
113  
563  
223  
0
Conversion time  
μs  
CURRENT_SRC_CH0[1:0] = 00 (default)  
CURRENT_SRC_CH0[1:0] = 01  
CURRENT_SRC_CH0[1:0] = 10  
CURRENT_SRC_CH0[1:0] = 11  
4.5  
14.45  
19.2  
5.13  
15.55  
20.7  
5.75  
16.65  
22.1  
GPADC_IN0 current source  
μA  
SMPS current monitoring  
(GPADC Channel 11)  
See 公式 1 and 公式 2  
Channel 11 SMPS output  
current measurement gain  
factor  
IFS0  
3.958  
A
A
Channel 11 SMPS output  
current measurement current  
offset  
IOS0  
0.652  
Channel 11 SMPS output  
current measurement  
temperature coefficient  
ppm/  
C
TC_R0  
–1090  
SMPS3, SMPS6, SMPS7 IL(error) (%) = IL(meas) / IL  
100 at 1 A, 25°C  
×
–13%  
13%  
SMPS6, SMPS7 IL(error) (%) = IL(meas) / IL × 100 at 2  
A, 25°C  
–9%  
–8%  
–7%  
9%  
8%  
7%  
SMPS output current  
measurement Accuracy,  
I(ERROR) (%), GPADC  
trimmed  
SMPS3 IL(error) (%) = IL(meas) / IL × 100 at 3 A, 25°C  
SMPS45 IL(error) (%) = IL(meas) / IL × 100 at 4 A,  
25°C  
SMPS12 IL(error) (%) = IL(meas) / IL × 100 at 6 A,  
25°C,  
–7%  
–7%  
7%  
7%  
SMPS123 IL(error) (%) = IL(meas) / IL × 100 at 9 A,  
25°C  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
21  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
4.13 Electrical Characteristics: Thermal Monitoring and Shutdown  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Rising threshold, THERM_HD_SEL[1:0] = 00  
Falling threshold, THERM_HD_SEL[1:0] = 00  
Rising threshold, THERM_HD_SEL[1:0] = 01  
Falling threshold, THERM_HD_SEL[1:0] = 01  
Rising threshold, THERM_HD_SEL[1:0] = 10  
Falling threshold, THERM_HD_SEL[1:0] = 10  
Rising threshold, THERM_HD_SEL[1:0] = 11  
Falling threshold, THERM_HD_SEL[1:0] = 11  
Rising threshold  
MIN  
104  
95  
TYP  
117  
108  
121  
112  
125  
116  
130  
120  
148  
123  
MAX UNIT  
129  
119  
109  
99  
133  
124  
°C  
Hot-die temperature  
threshold  
113  
104  
117  
108  
133  
111  
136  
128  
143  
132  
163  
°C  
Thermal shutdown threshold  
Falling threshold  
135  
Off ground current (two  
sensors on the die,  
specification for one sensor)  
Device in OFF state, VVCC1 = 3.8 V, T = 25°C  
0.1  
IQ(off)  
µA  
Device in OFF state  
0.5  
On ground current (two  
sensors on the die,  
specification for one sensor)  
Device in ACTIVE state, VVCC1 = 3.8 V, T = 25°C  
Device in ACTIVE state, GPADC measurement  
7
15  
IQ(on)  
µA  
25  
40  
4.14 Electrical Characteristics: System Control Threshold  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2
TYP  
2.15  
2
MAX UNIT  
POR (power-on reset) rising-edge threshold Measured on VCC1 pin  
2.50  
2.10  
V
V
POR falling-edge threshold  
POR hysteresis  
Measured on VCC1 pin  
Rising edge to falling edge  
Voltage range, 50-mV steps  
Voltage accuracy  
1.90  
40  
300 mV  
3.10  
2.75  
–50  
75  
V
VSYS_LO, measured on VCC1 pin  
VSYS_LO hysteresis  
95 mV  
Falling edge to rising edge  
Voltage range, 50-mV steps  
Voltage accuracy  
460 mV  
2.9  
–55  
2.75  
–70  
2.9  
2.8  
3.85  
105 mV  
4.6  
140 mV  
V
VSYS_HI, measured on VCC_SENSE pin  
Voltage range, 50-mV steps  
Voltage accuracy  
V
VSYS_MON, measured on VCC_SENSE  
pin  
Rising threshold  
3.6  
3.3  
V
V
VBUS detection (VBUS wake-up  
comparator threshold)  
Falling threshold  
4.15 Electrical Characteristics: Current Consumption  
Over operating free-air temperature range, typical values are at TA = 27°C (unless otherwise noted)  
PARAMETER  
OFF MODE  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Current consumption in OFF mode  
VSYS (VCC1) = 3.8 V  
20  
45  
µA  
SLEEP MODE  
LDO2 and LDO9 enabled without  
load, 16-MHz oscillator completely  
disabled with system clock coming  
solely on internal 32-KHz RC  
oscillator  
VSYS (VCC1) =  
3.8 V  
120  
150  
180  
225  
µA  
VSYS (VCC1) =  
5.25 V  
Current consumption in SLEEP  
mode  
VSYS (VCC1) =  
3.8 V  
2.64  
3.3  
2.81  
3.5  
LDO2 and LDO9 enabled without  
load, 16-MHz oscillator enabled  
mA  
VSYS (VCC1) =  
5.25 V  
22  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
4.16 Electrical Characteristics: Digital Input Signal Parameters  
Over operating free-air temperature range, typical values are at TA = 27°C VIO refers to the VIO_IN pin, VSYS to the VCC1  
pin (unless otherwise noted)  
PARAMETER  
PWRON, RPWRON  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-level input voltage related to  
VSYS (VCC1 pin reference)  
0.35 ×  
VVSYS  
VIL  
–0.3  
0
V
V
V
VVSYS  
+
0.3  
5.25  
High-level input voltage related to  
VSYS (VCC1 pin reference)  
0.65 ×  
VVSYS  
VIH  
VVSYS  
0.05 ×  
VVSYS  
Hysteresis  
ENABLE1, GPIO_4, GPIO_6, I2C1_SCL_SCK, I2C1_SDA_SDI, I2C2_SCL_SCE, I2C2_SDA_SDO  
Low-level input voltage related to  
VIO (VIO_IN pin reference)  
VIL  
–0.3  
0
0.3 × VIO  
V
V
V
High-level input voltage related to  
VIO (VIO_IN pin reference)  
VIH  
0.7 × VIO  
VIO VIO + 0.3  
0.05 ×  
VIO  
Hysteresis  
BOOT0, PWRDOWN, RESET_IN, NSLEEP, NRESWARM, GPIO_0, GPIO_1, GPIO_2, GPIO_3, GPIO_5, GPIO_7 OR POWERHOLD  
Low-level input voltage related to  
VRTC  
0.3 ×  
VVRTC  
VIL  
VIH  
–0.3  
0
V
V
V
V
High-level input voltage related to  
VRTC  
0.7 ×  
VVRTC  
VVRTC  
+
VVRTC  
0.3  
0.05 ×  
VVRTC  
Hysteresis  
Input voltage maximum for  
RESET_IN and GPIO_7  
5.25  
BOOT1  
Low-level input voltage related to  
VRTC  
0.3 ×  
VVRTC  
VIL  
–0.3  
0
V
V
High-level input voltage related to  
VRTC  
0.95 ×  
VVRTC  
VVRTC  
+
VIH  
VVRTC  
0.3  
4.17 Electrical Characteristics: Digital Output Signal Parameters  
Over operating free-air temperature range, typical values are at TA = 27°C, VIO refers to the VIO_IN pin, VSYS to the VCC1  
pin (unless otherwise noted)  
PARAMETER  
REGEN1, REGEN2  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
IOL = 2 mA  
0
0
0.45  
0.2  
V
V
Low-level output voltage, push-pull  
and open-drain  
VOL  
IOL = 100 µA  
VVSYS  
IOH = 2 mA  
VVSYS  
VVSYS  
VVSYS  
V
V
V
0.45  
High-level output voltage, push-  
pull  
VOH  
VVSYS  
IOH = 100 µA  
0.2  
Supply for external pullup resistor,  
open-drain  
GPIO_1 or VBUSDET, GPIO_2  
Low-level output voltage, push-pull  
VOL  
IOL = 10 mA  
IOH = 2 mA  
IOH = 100 µA  
0
0.4  
VVSYS  
VVSYS  
VVSYS  
V
V
V
V
and open-drain  
VVSYS  
0.45  
High-level output voltage, push-  
pull  
VOH  
VVSYS  
0.2  
Supply for external pullup resistor,  
open-drain  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
23  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Electrical Characteristics: Digital Output Signal Parameters (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C, VIO refers to the VIO_IN pin, VSYS to the VCC1  
pin (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
INT  
IOL = 2 mA  
0
0
0.45  
0.2  
V
V
Low-level output voltage, push-pull  
and open-drain  
VOL  
IOL = 100 µA  
VIO  
0.45  
IOH = 2 mA  
VIO  
VIO  
VIO  
V
V
V
High-level output voltage, push-  
pull (VIO_IN pin reference)  
VOH  
IOH = 100 µA  
VIO – 0.2  
Supply for external pullup resistor,  
open-drain  
GPIO_4 or SYSEN1, GPIO_6 or SYSEN2, RESET_OUT  
IOL = 2 mA  
0
0
0.45  
0.2  
V
V
VOL  
Low-level output voltage, push-pull  
IOL = 100 µA  
VIO  
0.45  
IOH = 2 mA  
VIO  
VIO  
V
V
High-level output voltage, push-  
pull (VIO_IN pin reference)  
VOH  
IOH = 100 µA  
VIO – 0.2  
POWERGOOD  
IOL = 2 mA  
0
0
0.45  
0.2  
V
V
Low-level output voltage, open-  
drain  
VOL  
IOL = 100 µA  
Supply for external pullup resistor,  
open-drain  
VVRTC  
V
GPIO5  
IOL = 2 mA  
IOL = 100 µA  
IOL = 2 mA  
IOL = 100 µA  
0
0
0
0
0.45  
0.2  
V
V
V
V
Low-level output voltage, open-  
drain  
VOL  
0.45  
0.2  
VOL  
Low-level output voltage, push-pull  
VVRTC  
IOH = 2 mA  
VVRTC  
VVRTC  
VVRTC  
V
V
V
0.45  
High-level output voltage, push-  
pull  
VOH  
VVRTC  
IOH = 100 µA  
0.2  
Supply for external pullup resistor,  
open-drain  
CLK32KGO1 V8, SYNCCLKOUT  
IOL = 1 mA  
0
0
0.45  
0.2  
V
V
VOL Low-level output voltage, push-pull  
IOL = 100 µA  
VVRTC  
IOH = 1 mA  
VVRTC  
VVRTC  
V
V
0.45  
High-level output voltage, push-  
pull  
VOH  
VVRTC  
IOH = 100 µA  
0.2  
CLK32KGO  
IOL = 1 mA  
0
0
0.45  
0.2  
V
V
VOL  
Low-level output voltage, push-pull  
IOL = 100 µA  
VIO  
0.45  
IOH = 1 mA  
VIO  
VIO  
V
V
High-level output voltage, push-  
pull (VIO_IN pin reference)  
VOH  
IOH = 100 µA  
VIO – 0.2  
GPIO_0, GPIO_3, GPIO_7  
Low-level output voltage, open-  
External pullup to VRTC, IOL = 2 mA  
0
0
0.45  
0.2  
V
V
VOL  
drain  
External pullup to VRTCIOL = 100 μA  
Maximum supply for external  
pullup resistor, open-drain  
5.25  
V
I2C1_SDA_SDI, I2C2_SDA_SDO  
24 Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Electrical Characteristics: Digital Output Signal Parameters (continued)  
Over operating free-air temperature range, typical values are at TA = 27°C, VIO refers to the VIO_IN pin, VSYS to the VCC1  
pin (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Low-level output voltage VOL  
related to VIO (VIO_IN pin  
reference)  
3-mA sink current  
0
0.1 × VIO 0.2 × VIO  
V
Capacitive load for  
I2C2_SDA_SDO  
in SPI mode  
CB  
20 pF  
4.18 Electrical Characteristics: I/O Pullup and Pulldown  
Over operating free-air temperature range, VIO refers to the VIO_IN pin, VSYS to the VCC1 pin (unless otherwise noted)  
PULLUP  
SUPPLY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
PWRON, RPWRON pullup resistance, fixed  
pullup  
VSYS  
55  
120  
400  
370  
kΩ  
PWRDOWN pulldown resistance  
BOOT1 pullup resistance  
VRTC  
180  
900  
13.5  
14  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
kΩ  
BOOT1 pulldown resistance  
GPIO_0 pulldown resistance  
180  
170  
170  
180  
170  
170  
170  
170  
400  
400  
400  
400  
400  
400  
400  
400  
900  
950  
950  
900  
950  
950  
950  
950  
GPIO_1, GPIO_2 pullup resistance  
GPIO_1, GPIO_2 pulldown resistance  
GPIO_3, RESET_IN pulldown resistance  
GPIO_4, GPIO_6 pullup resistance  
GPIO_4, GPIO_6 pulldown resistance  
GPIO_5 pullup resistance  
VSYS  
VIO  
VRTC  
GPIO_5 pulldown resistance  
GPIO_7 or POWERHOLD pulldown  
resistance  
180  
400  
900  
kΩ  
NSLEEP, ENABLE1 pullup resistance  
NSLEEP, ENABLE1 pulldown resistance  
NRESWARM pullup resistance  
VRTC  
170  
170  
78  
400  
400  
120  
950  
950  
225  
kΩ  
kΩ  
kΩ  
VRTC  
4.19 I2C Interface Timing Requirements  
Over operating free-air temperature range(1)(2)(3)(4). For the timing diagram for fast and standard (F/S) modes, see Figure 4-1.  
For the timing diagram for high-speed (HS) mode, see Figure 4-2.  
MIN  
MAX UNIT  
100 kHz  
400 kHz  
3.4 MHz  
3.4 MHz  
1.7 MHz  
1.7 MHz  
µs  
Standard mode  
Fast mode  
High-speed mode (write operation), CB – 100 pF max  
High-speed mode (read operation), CB – 100 pF max  
High-speed mode (write operation), CB – 400 pF max  
High-speed mode (read operation), CB – 400 pF max  
Standard mode  
ƒ(SCL)  
SCL clock frequency  
4.7  
1.3  
Bus free time between a STOP  
and START condition  
t(BUF)  
Fast mode  
µs  
(1) Specified by design. Not tested in production.  
(2) All values referred to VIHmin and VIHmax levels.  
(3) For bus line loads CB between 100 and 400 pF, the timing parameters must be linearly interpolated.  
(4) A device must internally provide a data hold time to bridge the undefined part between VIH and VIL of the falling edge of the SCLH  
signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time.  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
I2C Interface Timing Requirements (continued)  
Over operating free-air temperature range(1)(2)(3)(4). For the timing diagram for fast and standard (F/S) modes, see Figure 4-1.  
For the timing diagram for high-speed (HS) mode, see Figure 4-2.  
MIN  
4
MAX UNIT  
Standard mode  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
ns  
Hold time (REPEATED) START  
condition  
th(STA)  
Fast mode  
600  
160  
4.7  
1.3  
160  
320  
4
High-speed mode  
Standard mode  
Fast mode  
t(LOW)  
Low period of the SCL clock  
High period of the SCL clock  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
Fast mode  
600  
60  
t(HIGH)  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
120  
4.7  
600  
160  
250  
100  
10  
Setup time for a REPEATED  
START condition  
tsu(STA)  
Fast mode  
High-speed mode  
Standard mode  
tsu(DAT)  
Data setup time  
Data hold time  
Fast mode  
High-speed mode  
Standard mode  
0
3.45  
0.9  
µs  
µs  
ns  
ns  
Fast mode  
0
th(DAT)  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
0
70  
0
150  
20 + 0.1  
CB  
Standard mode  
Fast mode  
1000  
300  
ns  
ns  
20 + 0.1  
CB  
tr(CL)  
Rise time of the SCL signal  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
10  
20  
40  
80  
ns  
ns  
20 + 0.1  
CB  
Standard mode  
Fast mode  
1000  
300  
ns  
ns  
Rise time of the SCL signal  
after a REPEATED START  
condition and after an  
Acknowledge bit  
20 + 0.1  
CB  
tr(CL1)  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
10  
20  
80  
ns  
ns  
160  
20 + 0.1  
CB  
Standard mode  
Fast mode  
300  
300  
ns  
ns  
20 + 0.1  
CB  
tf(CL)  
Fall time of the SCL signal  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
10  
20  
40  
80  
ns  
ns  
20 + 0.1  
CB  
Standard mode  
Fast mode  
1000  
300  
ns  
ns  
20 + 0.1  
CB  
tr(DA)  
Rise time of the SDA signal  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
10  
20  
80  
ns  
ns  
160  
26  
Specifications  
Copyright © 2014–2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
I2C Interface Timing Requirements (continued)  
Over operating free-air temperature range(1)(2)(3)(4). For the timing diagram for fast and standard (F/S) modes, see Figure 4-1.  
For the timing diagram for high-speed (HS) mode, see Figure 4-2.  
MIN  
MAX UNIT  
20 + 0.1  
CB  
Standard mode  
Fast mode  
300  
300  
ns  
ns  
20 + 0.1  
CB  
tf(DA)  
Fall time of the SDA signal  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
10  
20  
80  
ns  
ns  
µs  
ns  
ns  
160  
4
Setup time for a STOP  
condition  
tsu(STOP)  
Fast mode  
600  
160  
High-speed mode  
4.20 SPI Timing Requirements  
For the SPI timing diagram, see Figure 4-3  
MIN  
30  
30  
67  
20  
20  
5
MAX UNIT  
tsu(ce)  
th(ce)  
Chip-select setup time  
ns  
ns  
Chip-select hold time  
tc(clk)  
Clock cycle time  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tp(HIGH_ck)  
tp(LOW_ck)  
tsu(si)  
Clock high typical pulse duration  
Clock low typical pulse duration  
Input data set up time, before clock active edge  
Input data hold time, after clock active edge  
Data retention time  
th(si)  
5
tdr  
15  
t(CE)  
Time from CE going low to CE going high  
67  
SDA  
t
t
f
(buf)  
t
t
t
f
(LOW)  
t
t
r
su(DAT)  
t
t
r
h(STA)  
SCL  
t
t
h(STA)  
su(STO)  
su(STA)  
t
h(DAT)  
S
t
S
(HIGH)  
Sr  
P
Figure 4-1. Serial Interface Timing Diagram for F/S Mode  
Copyright © 2014–2019, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Sr  
Sr  
P
t
f(DA)  
t
r(DA)  
SDA (HS)  
t
h(DAT)  
t
su(STO)  
t
su(STA)  
t
su(DAT)  
t
h(STA)  
SCL (HS)  
t
f(CL1)  
t
t
r(CL1)  
r(CL1)  
t
r(CL1)  
t
(LOW)  
t
See note A.  
(LOW)  
t
t
(HIGH)  
(HIGH)  
See note A.  
= MCS Current Source Pullup  
= R Resistor Pullup  
(P)  
A. The first rising edge of the SCL (HS) signal after the repeated START condition (Sr) and after each acknowledge bit.  
Figure 4-2. Serial Interface Timing Diagram For HS Mode  
SPI chip select  
tc(clk)  
tp(HIGH_ck)  
th(ce)  
tp(LOW_ck)  
tsu(ce)  
SPI clock enable  
tsu(si)  
th(si)  
Address  
SPI data input  
SPI data output  
Data  
R/W  
Unused  
tdr  
Don‘t care  
Figure 4-3. SPI Timing Diagram  
28  
Specifications  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
4.21 Typical Characteristics  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VO = 0.7 V  
VO = 1.2 V  
VO = 1.05 V  
VO = 1.2 V  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Load Current (mA)  
Load Current (A)  
D010  
D009  
VI = 3.8 V  
ƒS = 2.2 MHz  
VI = 3.8 V  
ƒS = 2.2 MHz  
4-4. SMPS Efficiency for Multi-Phase  
Eco-mode  
4-5. SMPS Efficiency for 4-A Multi-Phase  
PWM Mode  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VO = 1.05 V  
VO = 1.2 V  
VO = 1.05 V  
VO = 1.2 V  
0
0.6 1.2 1.8 2.4  
3
3.6 4.2 4.8 5.4  
6
0
0.8 1.6 2.4 3.2  
4
4.8 5.6 6.4 7.2  
8
8.8  
Load Current (A)  
Load Current (A)  
D008  
D007  
VI = 3.8 V  
ƒS = 2.2 MHz  
VI = 3.8 V  
ƒS = 2.2 MHz  
4-6. SMPS Efficiency for 6-A Multi-Phase  
PWM Mode  
4-7. SMPS Efficiency for 9-A Multi-Phase  
PWM Mode  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8  
0
0.2  
0.4  
0.6  
0.8  
1
Load Current (mA)  
Load Current (A)  
D006  
D005  
VI = 3.8 V  
ƒS = 2.2 MHz  
VI = 3.8 V  
ƒS = 2.2 MHz  
4-8. SMPS Efficiency for 1-A Single-Phase  
Eco-mode  
4-9. SMPS Efficiency for 1-A Single-Phase  
PWM Mode  
版权 © 2014–2019, Texas Instruments Incorporated  
Specifications  
29  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VO = 0.7 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
Load Current (mA)  
Load Current (A)  
D004  
D003  
VI = 3.8 V  
ƒS = 2.2 MHz  
VI = 3.8 V  
ƒS = 2.2 MHz  
4-10. SMPS Efficiency for 2-A Single-Phase  
Eco-ode  
4-11. SMPS Efficiency for 2-A Single-Phase  
PWM Mode  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VO = 0.7 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 3.3 V  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
4.4 4.8  
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
Load Current (mA)  
Load Set (A)  
D002  
D001  
VI = 3.8 V  
ƒS = 2.2 MHz  
VI = 3.8 V  
ƒS = 2.2 MHz  
4-12. SMPS Efficiency for 3-A Single-Phase  
Eco-mode  
4-13. SMPS Efficiency for 3-A Single-Phase  
PWM Mode  
30  
Specifications  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5 Detailed Description  
5.1 Overview  
The TPS659037 device is a power-management integrated circuit (PMIC), available in a 169-pin, 0.8-mm  
pitch, 12-mm × 12-mm nFBGA package. The TPS659037 device provides seven configurable step-down  
converter rails, with the ability to combine power rails and supply up to 9 A of output current in multi-phase  
mode. The TPS659037 device has seven LDOs. The device also has a 12-bit GPADC with three external  
channels, eight configurable GPIOs, two I2C interface channels or one SPI channel, real-time clock  
module with calendar function, PLL for external clock sync and phase delay capability, and programmable  
power sequencer and control for supporting different processors and applications.  
The seven step-down converter rails are consisting of nine high frequency switch mode converters with  
integrated FETs. The step-down converter rails are capable of synchronizing to an external clock input  
and supports switching frequency between 1.7 MHz and 2.7 MHz. The SMPS12 and SMPS45 are dual-  
phase step-down converters that can combine with the SMPS3 or SMPS7 respectively and become triple-  
phase converters. In addition, the SMPS12, SMPS45, SMPS6, and SMPS8 support dynamic voltage  
scaling by a dedicated I2C interface for optimum power savings.  
All of the LDOs support a 0.9 to 3.3-V output with 50-mV step. The regulators are fully controllable by the  
I2C interface and can be supplied from either a system supply or a preregulated supply.  
All LDOs and step-down converters can be controlled by the SPI or I2C interface, or by power request  
signals. In addition, voltage scaling registers allow transitioning the SMPS to different voltages by SPI, I2C,  
or roof-and-floor control.  
The power-up and power-down controller is configurable and programmable through OTP. The  
TPS659037 device includes a 32-kHz RC oscillator to sequence all resources during power up and power  
down. In cases where a fast start-up is required, a 16-MHz crystal oscillator is also included to quickly  
generate a stable 32-kHz for the system. The TPS659037 device also includes an RTC module which  
provides date, time, calendar, and alarm capability, which is best used when a 16-MHz crystal or an  
external and high accuracy 32-kHz clock is present.  
The TPS659037 device also has eight configurable GPIOs with a multiplexed feature. Three of the GPIOs,  
together with the REGEN1 pin can be configured and used as enable signals for external resources,  
which can be included into the power-up and power-down sequence. The TPS659037 device also  
includes a general-purpose (GP) sigma-delta analog-to-digital converter (ADC) with three external input  
channels, which can be used as thermal or voltage and current monitors.  
CAUTION  
When operating the TPS659037 device using silicon revision 1.3 or earlier,  
without an external crystal, each SMPS regulating an output voltage greater  
than 1.8 V must be disabled before VCC is removed. Lowering VCC below the  
programmed VSYS_LO level while any SMPS is regulating an output voltage  
above 1.8 V may cause damage to the device. See 5.3.10 to identify the  
silicon version in the device.  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
31  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.2 Functional Block Diagram  
BOOT0  
BOOT1  
SMPS1_IN  
SMPS1_SW  
SMPS1_GND  
SMPS1  
3 A  
(DVS)  
[Slave]  
PWRON  
RESET_IN  
Control  
inputs  
PWRDOWN  
Dual-Phases  
PWRON  
SMPS2_IN  
Power  
Management  
LDOVANA  
LDOVRTC  
ENABLE1  
NSLEEP  
Test and  
program  
SMPS2_SW  
SMPS2  
3 A  
(DVS)  
[Master]  
SMPS1_2_FDBK  
NRESWARM  
VCC internal  
supply  
EN  
VSEL  
RAMP  
SMPS1_2_FDBK_GND  
SMPS2_GND  
I2C1_SCL_CLK  
I2C1_SDA_SDI  
I2C2_SCL_SCE  
I2C2_SDA_SDO  
I2C CNTL,  
I2C DVS,  
or SPI  
TPS659037  
Triple-Phases  
JTAG  
DFT  
SMPS3_IN  
SMPS3_SW  
SMPS3  
3 A  
[Multi Or  
Stand-alone]  
EN  
VSEL  
RESET_OUT  
INT  
SMPS3_FDBK  
SMPS3_GND  
OTP controller  
OTP memory  
Control  
outputs  
REGEN1  
Registers  
Internal  
Interrupt  
events  
SMPS4_IN  
SMPS4_SW  
SMPS4_GND  
VCC1  
POR  
SMPS4  
2 A  
(DVS)  
[Slave]  
POWERGOOD  
GPIO_0  
Programmable  
power sequencer  
controller  
VCC1  
VSYS_LO  
VBUSDET  
ECO  
PWM  
DVS  
GPIO_1  
VCC_SENSE  
VSYS_MON  
Dual-Phases  
SMPS5_IN  
REGEN2  
GPIO_2  
GPIO_3  
GPIO_4  
Switch ON and  
OFF  
SMPS5_SW  
VBUS_SENSE  
SMPS5  
2 A  
(DVS)  
[Master]  
VBUS_WKUP_UP  
SMPS4_5_FDBK  
EN  
VSEL  
RAMP  
WDT  
RTC  
SMPS4_5_FDBK_GND  
SMPS5_GND  
Thermal  
monitoring  
SYSEN1  
GPIO_6  
GPIO_7  
GPIO_5  
Thermal shutdown  
Hot die detection  
Triple-Phases  
SYSEN2  
SMPS7_IN  
SMPS7_SW  
SMPS7  
2 A  
[Multi Or  
Stand-alone]  
EN  
VSEL  
POWERHOLD  
SMPS7_FDBK  
SMPS7_GND  
CLK32KGO1V8  
EN  
SMPS6_IN  
16-MHz  
Oscillator  
VSEL  
RAMP  
OSC16MIN  
SMPS6  
2 A  
(DVS)  
SMPS6_SW  
Internal  
RC  
Oscillator  
SMPS6_FDBK  
RC  
32 kHz  
OSC16MOUT  
SMPS6_GND  
OSC16MCAP  
Output  
Buffers  
EN  
VSEL  
RAMP  
SMPS8_IN  
CLK32KGO  
SYNCDCDC  
SMPS8  
1 A  
(DVS)  
SMPS8_SW  
SMPS8_FDBK  
SMPS8_GND  
SMPS8_IN  
GPADC_IN0  
GPADC_IN1  
GPADC_IN2  
GPADC_VREF  
12-bit  
SD-  
ADC  
EN  
VSEL  
SMPS8_SW  
SMPS8_FDBK  
SMPS8_GND  
SMPS9  
1 A  
VBG  
Reference  
and bias  
Bypass  
REFGND1  
LDOLN  
50 mA  
LDO1  
300 mA  
LDO2  
300 mA  
LDO3  
200 mA  
LDO4  
200 mA  
LDOUSB  
100 mA  
LDO9  
50 mA  
Grounds  
Copyright © 2016, Texas Instruments Incorporated  
32  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5.3 Feature Description  
5.3.1 Power Management  
The TPS659037 device integrates an embedded power controller (EPC) that fully manages the state of  
the device during power transitions. According to four defined types of requests (ON, OFF, WAKE, and  
SLEEP), the EPC executes one of the five predefined power sequences (OFF2ACT, ACT2OFF,  
SLP2OFF, ACT2SLP, and SLP2ACT) to control the state of the device resources. Any resource can be  
included in any power sequence. When a resource is not controlled or configured through a power  
sequence, the resource remains in the default state of the resource (from OTP).  
Each resource is configured only through register bits. Therefore, a resource can be controlled statically  
by the user through the control interfaces (I2C or SPI) or controlled automatically by the EPC during power  
transitions (predefined sequences of registers accesses).  
The EPC is powered by an internal LDO that is automatically enabled when VSYS is available to the  
device. Ensuring that the VSYS pin (which is connected to VCC1, VCC_SENSE, SMPSx_In and LDOx_IN  
as suggested in 5.2) is the first supply available to the device is important to ensure proper operation of  
all the power resources provided by the TPS659037 device. Ensuring that the VSYS pin is stable prior to  
the VIO supply becoming available is important to ensure proper operation of the control interface and  
device IOs.  
5.3.2 Power Resources (Step-Down and Step-Up SMPS Regulators, LDOs)  
The power resources provided by the TPS659037 device includes inductor-based SMPSs and linear low-  
dropout voltage regulators (LDOs). These supply resources provide the required power to the external  
processor cores, external components, and to modules embedded in the device. 5-1 lists the power  
sources provided by the TPS659037 device.  
5-1. Power Sources  
RESOURCE  
TYPE  
VOLTAGE  
CURRENT  
COMMENTS  
Can be used as one triple-phase regulator (9 A)  
or one dual-phase (6 A) and single-phase (3 A)  
regulators  
SMPS1, SMPS2,  
and SMPS3  
0.5 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
SMPS  
9 A  
Can be used as one triple-phase regulator (6 A)  
or one dual-phase (4 A) and single-phase (2 A)  
regulators  
SMPS4, SMPS5,  
and SMPS7  
0.5 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
SMPS  
6 A  
0.5 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
Can be configured as 2-A or 3-A SMPS through  
OTP programming  
SMPS6  
SMPS8  
SMPS9  
SMPS  
SMPS  
SMPS  
2 A or 3 A  
1 A  
0.5 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
0.5 to 1.65 V, 10-mV steps  
1 to 3.3 V, 20-mV steps  
1 A  
LDO1  
LDO2  
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
LDO  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
0.9 to 3.3 V, 50-mV steps  
300 mA  
300 mA  
200 mA  
200 mA  
50 mA  
LDO3  
LDO4  
LDO9  
LDOLN  
LDOUSB  
50 mA  
100 mA  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
33  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.2.1 Step-Down Regulators  
The synchronous step-down converter used in the power-management core has high efficiency while  
enabling operation with small and cost-competitive external components. The SMPSx_IN supply pins of all  
the converters must be individually connected to the VSYS supply (VCC1 pin). Four of these configurable  
step-down converters are multi-phased to create up to 4-A and 6-A rails, while another converter can be  
combined to these two rails to create two rails up to 9 A and 6 A of output current. All of the step-down  
converters can synchronize to an external clock source between 1.7 MHz and 2.7 MHz, or an internal fall  
back clock at 2.2 MHz.  
The step-down converter supports two operating modes, which can be selected independently:  
Forced PWM mode: In forced PWM mode, the TPS659037 device avoids pulse skipping and allows  
easy filtering of the switch noise by external filter components. The drawback is the higher  
IDDQ at low output current levels.  
Eco-mode (lowest quiescent current mode): Each step-down converter can be individually controlled  
to enter a low quiescent current mode. In Eco-mode, the quiescent current is reduced and  
the output voltage is supervised by a comparator while most parts of the control are disabled  
to save power. The regulators should not be enabled under Eco-mode in order to ensure the  
stability of the output. Eco-mode should be enabled only when a converter has less than 5  
mA of load current and VO can remain constant. In addition, Eco-mode should be disabled  
before a load transient step to let the converter respond in a timely manner to the excess  
current draw. To ensure proper operation of the converter while it is in Eco-mode, the output  
voltage level must be less then 70% of the input supply voltage level. If the VO of the  
converter is greater than 2.8 V, the TPS659037 device will monitor the supply voltage of the  
converter, and automatically shut down the converter if the input voltage falls below 4 V  
which prevents damage to the converter due to design limitation while the converter is in  
ECO mode.  
In addition to the operating modes, the following parameters can be selected for the regulators:  
Power good: The POWERGOOD signal high indicates that all SMPS outputs are within 10% (typical  
case) of the programmed value. The individual power good signal of a switching regulator is  
blanked when the regulator is disabled or when the regulator voltage transitions from one set  
point to another.  
Output discharge: Each switching regulator is equipped with an output discharge enable bit. When this  
bit is set to 1, the output of the regulator is discharged to ground with the equivalent of a 9-Ω  
resistor when the regulator is disabled. If the regulator enable bit is set, the discharge bit of  
the regulator is ignored.  
Output current monitoring: GPADC can monitor the SMPS output current. One SMPS at a time can be  
selected for measurement from the following: SMPS12, SMPS3, SMPS123, SMPS45,  
SMPS457,  
SMPS6  
and  
SMPS7.  
Selection  
is  
controlled  
through  
the  
GPADC_SMPS_ILMONITOR_EN register.  
Step-down converter ENABLE: The step-down converter enable and disable is part of the flexible  
power-up and power-down state-machine. Each converter can be programmed so that it is  
powered up automatically to a preselected voltage in one of the time slots after a power-on  
condition occurs. Alternatively, each SMPS can be controlled by a dedicated pin. Pins  
NSLEEP and ENABLE1 can be mapped to any resource (LDOs, SMPS converter, 32-kHz  
clock output or GPIO) to enable or disable it. Each SMPS can also be enabled and disabled  
through I2C register access.  
34  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5.3.2.1.1 Sync Clock Functionality  
The TPS659037 device contains a SYNCDCDC input to sync DC-DCs with the external clock.  
In forced PWM mode, SMPSs are synchronized on an external input clock (SYNCDCDC) whereas in Eco-  
mode or if the SYNCDCDC pin is grounded, the switching frequency is based on an internal RC oscillator.  
The clock generated from the internal RC oscillator can be output through GPIO5 to provide  
synchronization clock to external SMPSs. For PWM mode, a PLL is present to buffer the external input  
clock to create nine clock signals for the nine SMPSs with different phases.  
The sync clock dither specification parameters are based on a triangular dither pattern, but other patterns  
that comply with the minimum and maximum sync frequency range and the maximum dither slope can  
also be used.  
ƒ
(SYNC)  
M
(DITHER)  
t
(DITHER)  
ƒ
(SYNCmax)  
A
(DITHER)  
ƒ
(SYNCmin)  
t
5-1. Sync Clock Range and Dither  
The ollowing figure shows ƒ(SYNC), the frequency of SYNCDCDC input clock and ƒSW, the frequency of  
PLL output signal.  
When there is no clock present on SYNCDCDC pin, the PLL generates a clock with a frequency equal to  
ƒ(FALLBACK)  
If a clock is present on SYNCDCDC pin with a frequency between ƒ(SAT_LO) and ƒ(SAT_HI), then the PLL is  
synchronised on SYNCDCDC clock and generates a clock with frequency equal to ƒ(SYNC)  
If ƒ(SYNC) is higher than ƒ(SAT_HI), then the PLL generates a clock with a frequency equal to ƒ(SAT_HI)  
If ƒ(SYNC) is smaller than ƒ(SAT_LO), then the PLL generates a clock with a frequency equal to ƒ(SAT_LO)  
.
.
.
.
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
35  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
t
s
ƒ
(SAT_HI)  
ƒ
(A)  
ƒ
SW  
ƒ
(FALLBACK)  
ƒ
(SAT_LO)  
t
s
ƒ
(SAT_HI)  
ƒ
(A)  
ƒ
(SYNC)  
ƒ
(SAT_LO)  
No Clock  
5-2. Sync Clock Saturation and Frequency Fallback  
5.3.2.1.2 Output Voltage and Mode Selection  
The default output voltage and enabling of the regulator during startup sequence is defined by OTP bits.  
After start-up the software can change the output voltage with the RANGE and VSEL bits in the  
SMPSx_VOLTAGE register. The value 0x0 disables the SMPS (OFF).  
The operating mode of an SMPSx when the TPS659037 device is in ACTIVE mode can be selected in  
SMPSx_CTRL register with MODE_ACTIVE[1:0].  
The operating mode of an SMPSx when the TPS659037 device is in SLEEP mode is controlled by  
MODE_SLEEP[1:0] bit depending on SMPS assignment to NSLEEP and ENABLE1, see 5-13.  
Soft-start slew rate is fixed (t(ramp)).  
The pulldown discharge resistance for OFF mode is enabled and disabled in the SMPS_PD_CTRL  
register. By default, discharge is enabled.  
SMPS behavior for warm reset (reload default values or keep current values) is defined by the  
SMPSx_CTRL.WR_S bit.  
5.3.2.1.3 Current Monitoring and Short Circuit Detection  
The step-down converters include several other features.  
The SMPS sink current limitation is controlled with the SMPS_NEGATIVE_CURRENT_LIMIT_EN register.  
The limitation is enabled by default.  
Channel 11 of the GPADC can be used to monitor the output current of SMPS12, SMPS3, SMPS123,  
SMPS45, SMPS457, SMPS6, or SMPS7. Load current monitoring is enabled for a given SMPS in the  
SMPS_ILMONITOR_EN register. SMPS output power monitoring is intended to be used during the steady  
state of the output voltage, and is supported in PWM mode only.  
36  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Use 公式 1 as the basic equation for the SMPS output current result.  
IFS ì GPADC code  
212 -1  
IL =  
-IOS  
(
)
where  
IFS = IFS0 × K (K is the number of active SMPS phases)  
IOS = IOS0 × K (K is the number of active SMPS phases)  
(1)  
(2)  
Use 公式 2 to calculate the temperature compensated result.  
IFS ì GPADC code  
IL =  
-IOS  
12  
»
ÿ
» ÿ  
-1 ì 1+ TC_R0 ì Temperature - 25  
2
(
)
(
)
For values of IFS0 and IOS0, see Section 4.12.  
The SMPS thermal monitoring is enabled (default) and disabled with the SMPS_THERMAL_EN register.  
When enabled, the SMPS thermal status is available in the SMPS_THERMAL_STATUS register. SMPS12  
and SMPS3 have shared thermal protection, in effect, if SMPS12 triggers the thermal protection, then  
SMPS3 operating in stand-alone mode is disabled. There is no dedicated thermal protection in SMPS8 or  
SMPS9.  
Each SMPS has a detection for load current above ILIM, indicating overcurrent or shorted SMPS output. A  
register SMPS_SHORT_STATUS indicates any SMPS short condition. Depending on the interrupt short  
line mask bit register (INT2_MASK.SHORT), an interrupt is generated upon any shorted SMPS. If a short  
situation occurs on any enabled SMPSs, the corresponding short status bit is set in the  
SMPS_SHORT_STATUS register. A switch-off signal is then sent to the corresponding SMPS, and  
remains off until the corresponding bit in the SMPS_SHORT_STATUS register is cleared. This register is  
cleared on a read, or by issuing a POR. The SMPS_SHORT_STATUS register is cleared when read, or  
by issuing a POR. The same behavior applies to LDO shorts using the SDO_SHORT_STATUS registers.  
This same behavior applies to LDO shorts using the LDO_SHORT_STATUS registers.  
A short must occur on any enabled SMPS or LDO for at least 155 us to 185 us for the short detection to  
shut off the rail. During startup of the device, there is a 2 ms counter that masks any short-circuit  
shutdown. This counter starts when the device is enabled and the counter is reset when any SMPSx or  
LDOx rail becomes ACTIVE. When no rail has been enabled for 2 ms, the counter reaches its threshold  
and the short-circuit shutdown is no longer masked for the enabled SMPSs and LDOs.  
5.3.2.1.4 POWERGOOD  
The external POWERGOOD pin indicates if the outputs of the SMPS are correct or not (5-3). Either  
voltage and current monitoring or a current monitoring only can be selected for POWERGOOD indication.  
This selection is common for all SMPSs in the  
SMPS_POWERGOOD_MASK2.POWERGOOD_TYPE_SELECT bit register. When both voltage and  
current are monitored, POWERGOOD signal active (polarity is programmable) indicates that all SMPS  
outputs are within certain percentage, VSMPSPG , of the programmed value and that load current is below  
ILIM  
.
All POWERGOOD sources can be masked in the SMPS_POWERGOOD_MASK1 and  
SMPS_POWERGOOD_MASK2 registers. By default, only the SMPS12 rail (or SMPS123 rail if in triple  
phase) is monitored. When an SMPS is disabled, it should be masked to prevent it forcing POWERGOOD  
inactive. When SMPS voltage is transitioning from one target voltage to another due to DVS command,  
voltage monitoring is internally masked and POWERGOOD is not impacted.  
Including POWERGOOD in the GPADC result is possible for SMPS output current monitoring by setting  
SMPS_COMPMODE = 1. Only one SMPS can be monitored by the GPADC channel at the time.  
The POWERGOOD function can also be used for monitoring an external SMPS is at the correct output  
level and the load is lower than the current limit; indication is through the GPIO_7 pin.  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
37  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
All  
POWERGOOD  
sources  
can  
be  
masked  
in  
SMPS_POWERGOOD_MASK1  
and  
SMPS_POWERGOOD_MASK2 registers.  
CAUTION  
The current monitor on multi-phase rails (such as SMPS12, SMPS123, or  
SMPS45) may cause POWERGOOD to change to a low level (with default  
polarity) when transitioning from multi-phase operation to single phase  
operation. TI recommends masking the multi-phase rails as a POWERGOOD  
source,  
using  
SMPS_POWERGOOD_MASK1,  
or  
debouncing  
the  
POWERGOOD signal if this POWERGOOD toggle is not desired in the  
application design.  
OVER_TEMP  
INT  
SMPS_SHORT_STATUS  
SMPS_THERMAL_STATUS  
INT2_MASK[6]  
ILIM  
SMPS12 POWERGOOD  
SMPS_POWERGOOD_MASK1[0]  
SMPS_POWERGOOD_MASK1[1]  
SMPS3  
POWERGOOD  
SMPS_POWERGOOD_MASK1[7]  
External SMPS (through GPIO7)  
SMPS_POWERGOOD_MASK2[2]  
5-3. POWERGOOD Block Diagram  
5.3.2.1.5 DVS-Capable Regulators  
The step-down converters SMPS12 or SMPS123, SMPS45 or SMPS457, SMPS6, and SMPS8 are DVS-  
capable and have some additional parameters for control. The slew rate of the output voltage during a  
change in the voltage level is fixed at 2.5 mV/μs. The control for the two different voltage levels (ROOF  
and FLOOR) with the NSLEEP and ENABLE1 signals is available. The control bits for the output voltage  
slew rate control the following additional control bits. When the ROOF_FLOOR control is not used, two  
different voltage levels can be selected with the CMD bit in the SMPSx_FORCE register.  
The output voltage slew rate for achieving new output voltage value is fixed at 2.5 mV/μs.  
38  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
The NSLEEP and ENABLE1 pins can be used for roof-floor control of SMPS. For roof-floor operation  
sets the SMPSx_CTRL.ROOF_FLOOR_EN register, and assign SMPS to NSLEEP and ENABLE1 in  
the NSLEEP_SMPS_ASSIGN and ENABLE1_SMPS_ASSIGN registers. When the controlling pin is  
active, the SMPS output value is defined by the SMPSx_VOLTAGE register. When the controlling pin  
is not active, the SMPS output value is defined by the SMPSx_FORCE register.  
Set the second value for the output voltage with the SMPSx_FORCE.VSEL register. A value of 0x0  
disables the SMPS (OFF).  
Select which register, SMPSx_VOLTAGE or SMPSx_FORCE, to use with the SMPSx_FORCE.CMD  
bit. The default is the voltage setting of SMPSx_VOLTAGE. For the CMD bit to work, ensure that  
SMPSx_CTRL.ROOF_FLOOR_EN = 0.  
5-5 and 5-4 show the SMPS controls for DVS.  
SMPSx_FORCE.VSEL (sleep mode)  
SMPSx_VOLTAGE.VSEL (active mode)  
SMPSx_VOLTAGE.VSEL  
SMPSx_OUT  
Discharge control (pulldown)  
SMPS_PD_CTRL.SMPSx  
(disabled or enabled)  
t
(start)  
2
I C  
VSEL[6:0] (voltage selection): OFF, 0.5 to 1.65 V in 10-mV steps if SMPSx_VOLTAGE.RANGE = 1  
1 to 3.3 V in 20-mV steps if SMPSx_VOLTAGE.RANGE = 1  
2
I C: Control through access to SMPSx_VOLTAGE, SMPSx_FORCE registers  
5-4. DVS - SMPS Controls  
Voltage Control Through I2C (SMPSx_CTRL.ROOF_FLOOR_EN = 0)  
SMPSx_VOLTAGE.VSEL (active mode)  
SMPSx_FORCE.VSEL (sleep mode)  
SMPSx_VOLTAGE.VSEL  
SMPSx_OUT  
Discharge control (pulldown)  
SMPS_PD_CTRL.SMPSx  
(disabled or enabled)  
t
(start)  
EN  
(1)  
EN: Control through NSLEEP or ENABLE1  
(1) See 5-13.  
5-5. DVS - SMPS Controls  
Voltage Control Through External Pin (SMPSx_CTRL.ROOF_FLOOR_EN = 1)  
5.3.2.1.6 Non DVS-Capable Regulators  
SMPS3 and SMPS7, when they are not part of the multi-phase configuration, will work as single phase  
step down converters. Together with SMPS9, these are non-DVS-Capable regulators. The output voltage  
slew rate is not controlled internally, and the converter will achieve the new output voltage in JUMP mode.  
When changes to the output voltage are necessary while SMPS3, SMPS7, or SMPS9 are configured as  
single phase converters, programming the changes to the output voltages at a rate which is slower than  
2.5 mV/μs is recommended to avoid voltage overshoot or undershoot.  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
39  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.2.1.7 Step-Down Converters SMPS12 and SMPS123  
The step-down converters SMPS1, SMPS2, and SMPS3 can be used in two different configurations:  
SMPS12 in dual-phase configuration supporting 6-A load current and SMPS3 in single-phase  
configuration supporting 3-A load current  
SMPS123 in triple-phase configuration supporting 9-A load current  
SMPS1 and SMPS2 cannot be used as separate converters. In dual-phase configuration the two  
interleaved synchronous buck regulator phases with built-in current sharing operate in opposite phase. In  
triple-phase configuration the three interleaved synchronous buck regulator phases with built-in current  
sharing operate 120° out of phase. For light loads, the converter automatically changes to 1-phase  
operation.  
5-6 shows the connections for dual-phase and triple-phase configurations.  
a. Dual-Phase SMPS and Stand-Alone SMPS  
b. Triple Phase SMPS  
C10 (C23)  
C10 (C23)  
VSYS  
VSYS  
SMPS1_IN (SMPS5_IN)  
SMPS1_IN (SMPS5_IN)  
SMPS1_SW  
SMPS1_SW  
L2 (L7)  
(SMPS5_SW)  
L2 (L7)  
(SMPS5_SW)  
SMPS1  
SMPS1  
(SMPS5)  
(SMPS5)  
SMPS1_GND  
SMPS1_GND  
(SMPS5_GND)  
C11, C13  
[Slave]  
(SMPS5_GND)  
[Slave]  
Vapps1  
(C20, C24)  
C12 (C19)  
C12 (C19)  
VSYS  
VSYS  
SMPS2_IN (SMPS4_IN)  
SMPS2_IN (SMPS4_IN)  
SMPS2_SW  
C11, C13, C16  
(C20, C24, C28)  
Vapps1  
SMPS2_SW  
L3 (L6)  
(SMPS4_SW)  
L3 (L6)  
(SMPS4_SW)  
SMPS2  
SMPS2  
(SMPS4)  
(SMPS4)  
SMPS2_GND (SMPS4_GND)  
SMPS2_GND (SMPS4_GND)  
[Master]  
[Master]  
SMPS1_2_FDBK (SMPS4_5_FDBK)  
SMPS1_2_FDBK (SMPS4_5_FDBK)  
SMPS1_2_FDBK_GND (SMPS4_5_FDBK_GND)  
SMPS1_2_FDBK_GND (SMPS4_5_FDBK_GND)  
C14 (C27)  
VSYS  
C14 (C27)  
VSYS  
SMPS3_IN (SMPS7_IN)  
SMPS3_IN (SMPS7_IN)  
Vapps2  
C16 (C28)  
SMPS3_SW  
SMPS3_SW  
L4 (L9)  
L4 (L9)  
(SMPS7_SW)  
(SMPS7_SW)  
SMPS3  
(SMPS7)  
SMPS3  
(SMPS7)  
SMPS3_GND (SMPS7_GND)  
SMPS3_GND (SMPS7_GND)  
SMPS3_FDBK (SMPS7_FDBK)  
[Stand-  
alone]  
[Multi]  
SMPS3_FDBK (SMPS7_FDBK)  
(floating)  
5-6. Multi-Phase SMPS Connectivity  
To use the SMPS123 or SMPS12 and SMPS3 in the system:  
OTP defines dual-phase (SMPS12) operation, single-phase (SMPS3) operation, or triple-phase  
(SMPS123) operation. If SMPS123 mode is selected, the SMPS12 registers control SMPS123.  
By default SMPS123 and SMPS12 operate in multiphase mode for higher load currents and switch  
automatically to single-phase mode for low load currents. Forcing multiphase operation or single-phase  
operation by setting the SMPS_CTRL.SMPS123_PHASE_CTRL[1:0] bits when the SMPS123 or  
SMPS12 are loaded is also possible. Under no-load condition, do not force the multiphase operation,  
as this causes the SMPS to exhibit instability.  
5.3.2.1.8 Step-Down Converter SMPS45 and SMPS457  
The step-down converters SMPS4, SMPS5 and SMPS7 can be used in two different configurations:  
SMPS45 in dual-phase configuration supporting 4-A load current and SMPS7 in single-phase  
configuration supporting 2-A load current  
SMPS457 in triple-phase configuration supporting 6-A load current  
40  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
SMPS4 and SMPS5 cannot be used as separate converters. In dual-phase configuration the two  
interleaved synchronous buck regulator phases with built-in current sharing operate in opposite phase. In  
triple-phase configuration the three interleaved synchronous buck regulator phases with built-in current  
sharing operate 120 degrees out of phase. For light loads, the converter automatically changes to 1-phase  
operation.  
To use SMPS457 or SMPS45 and SMPS7 in the system:  
OTP defines dual-phase (SMPS45) operation, single-phase (SMPS7) operation, or triple-phase  
(SMPS457) operation. If SMPS457 mode is selected, the SMPS45 registers control SMPS457.  
By default SMPS457 and SMPS45 operate in multiphase mode for higher load currents and switch  
automatically to single-phase mode for low load currents. Forcing multiphase operation or single-phase  
operation by setting the SMPS_CTRL.SMPS457_PHASE_CTRL[1:0] bits when the SMPS457 or  
SMPS45 are loaded is also possible. Under no-load condition, do not force the multiphase operation,  
as this causes the SMPS to exhibit instability.  
5.3.2.1.9 Step-Down Converters SMPS3, SMPS6, SMPS7, SMPS8, and SMPS9  
The SMPS3 is a buck converter supporting up to a 3-A load current, SMPS6 and SMPS7 are buck  
converters supporting up to a 2-A load current. The SMPS6 can support up to 3A if programmed in OTP  
for boosted current mode. Using extended current mode increases SMPS6 current limits so to protect  
external coil from damage, coil should be selected according to the higher current rating.  
SMPS8 and SMPS9 are buck converters supporting up to a 1-A load current. SMPS6 and SMPS8 are  
DVS-capable.  
5.3.2.2 LDOs – Low Dropout Regulators  
All LDOs are integrated so that they can be connected to a system supply, to an external buck boost  
SMPS, or to another preregulated voltage source. The output voltages of all LDOs can be selected,  
regardless of the LDO input voltage level VI. There is no hardware protection to prevent software from  
selecting an improper output voltage if the VI minimum level is lower than TDCOV (total DC output voltage)  
+ DV (dropout voltage). In such conditions, the output voltage would be lower and nearly equal to the input  
supply. The regulator output voltage cannot be modified on the fly from one (0.9–2.1 V) voltage range to  
the other (2.2–3.3 V) voltage range and vice versa. The regulator must be restarted in these cases. If an  
LDO is not needed, the external components can be unplaced. The TPS659037 device is not damaged by  
such configuration, and the other functions do not depend on the unused LDOs and work properly.  
5.3.2.2.1 LDOVANA  
The VANA voltage regulator is dedicated to supply the analog functions of the TPS659037 device, such  
as the GPADC and other analog circuits. VANA is automatically enabled and disabled when it is needed.  
The automatic control optimizes the overall SLEEP state current consumption.  
5.3.2.2.2 LDOVRTC  
The VRTC regulator supplies always-on functions, such as real-time clock (RTC) and wake-up functions.  
This power resource is active as soon as a valid energy source is present.  
This resource has two modes:  
Normal mode is able to supply all digital parts of the TPS659037 device  
Backup mode is able to supply only always-on parts  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
41  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
VRTC supplies the digital part of the TPS659037 device. In the BACKUP state, the VRTC regulator is in  
low-power mode and the digital activity is reduced to the RTC parts only and maintained in retention  
registers of the backup domain. The rest of the digital is under reset and the clocks are gated. In the OFF  
state, the turn-on events and detection mechanism are also added to the previous RTC current load. In  
BACKUP and OFF states, the external load on VRTC should not exceed 0.5 mA. In the ACTIVE state,  
VRTC switches automatically into ACTIVE mode. The reset is released and the clocks are available. In  
SLEEP state, VRTC is kept active. The reset is released and only the 32-kHz clock is available. To reduce  
power consumption, low-power mode can be selected by software.  
For silicon revision 1.3 or earlier, if VCC is discharged rapidly and then resupplied, a POR  
may not be reliably generated. In this case a pulldown resistor can be added on the  
LDOVRTC output. See 5.4.11 for details. See 5.3.10 to identify the silicon version in  
the device.  
5.3.2.2.3 LDO Bypass (LDO9)  
LDO9 has a bypass capability to connect the input voltage to the output. It allows switching between 1.8 V  
and the preregulated supply.  
5.3.2.2.4 LDOUSB  
This LDOUSB has two inputs, LDOUSB_IN1 and LDOUSB_IN2. The input selection occurs by the  
LDOUSB_ON_VBUS_VSYS bit in the LDO_CTRL register.  
5.3.2.2.5 Other LDOs  
All the other LDOs have the same output voltage capability, from 0.9 to 3.3 V in 50-mV steps. All the LDO  
inputs can be independently connected into system voltage or into preregulated supply. The preregulated  
supply can be higher or lower than the system supply.  
5.3.3 Long-Press Key Detection  
The TPS659037 device can detect a long press on the PWRON pin. Upon detection, the device generates  
a LONG_PRESS_KEY interrupt and then switches the system off. The key-press duration is configured  
through the LONG_PRESS_KEY.LPK_TIME bits.  
The interrupt clear has two behaviors based on the configuration of the  
LONG_PRESS_KEY .LPK_INT_CLR bit:  
LONG_PRESS_KEY.LPK_INT_CLR = 0: If PWRON remains low and the interrupt is cleared, the  
switch-off sequence is cancelled. If PWRON remains low and the interrupt is not cleared, the switch-off  
sequence is executed.  
LONG_PRESS_KEY.LPK_INT_CLR = 1: Switch off cannot be cancelled as long as PWRON remains  
low (default).  
5.3.4 RTC  
5.3.4.1 General Description  
The RTC is driven by the 32-kHz oscillator and it provides the alarm and time-keeping functions.  
The main functions of the RTC block are:  
Time information (seconds, minutes, hours) in binary-coded decimal (BCD) code  
Calendar information (day, month, year, day of the week) in BCD code up to year 2099  
42  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Programmable interrupts generation; the RTC can generate two interrupts:  
Timer interrupts periodically (1-second, 1-minute, 1-hour, or 1-day periods), which can be masked  
during the SLEEP state to prevent the host processor from waking up  
Alarm interrupt at a precise time of the day (alarm function)  
Oscillator frequency calibration and time correction with 1/32768 resolution  
5-7 shows the RTC block diagram.  
32-kHz clock  
input  
32-kHz  
counter  
Week  
days  
Frequency  
compensation  
Control  
Years  
Months  
Seconds  
Hours  
Minutes  
Days  
Interrupt  
Alarm  
INT_ALARM  
INT_TIMER  
5-7. RTC Block Diagram  
5.3.4.2 Time Calendar Registers  
All the time and calendar information is available in the time calendar (TC) dedicated registers:  
SECONDS_REG, MINUTES_REG, HOURS_REG, DAYS_REG, WEEKS_REG, MONTHS_REG, and  
YEARS_REG. The TC register values are written in BCD code.  
Year data ranges from 00 to 99.  
Leap Year = Year divisible by four (2000, 2004, 2008, 2012, and so on)  
Common Year = Other years  
Month data ranges from 01 to 12.  
Day value ranges:  
1 to 31 when months are 1, 3, 5, 7, 8, 10, 12  
1 to 30 when months are 4, 6, 9, 11  
1 to 29 when month is 2 and year is a leap year  
1 to 28 when month is 2 and year is a common year  
Week value ranges from 0 to 6.  
Hour value ranges from 0 to 23 in 24-hour mode and ranges from 1 to 12 in AM or PM mode.  
Minutes value ranges from 0 to 59.  
Seconds value ranges from 0 to 59.  
Example: Time is 10H54M36S PM (PM_AM mode set), 2008 September 5; previous registers values are  
listed in 5-2:  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
43  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5-2. RTC Time Calendar Registers Example  
REGISTER  
CONTENT  
0x36  
SECONDS_REG  
MINTURES_REG  
HOURS_REG  
DAYS_REG  
0x54  
0x10  
0x05  
MONTHS_REG  
YEARS_REG  
0x09  
0x08  
The user can round to the closest minute, by setting the ROUND_30S register bit in the RTC_CTRL_REG  
register. TC values are set to the closest minute value at the next second. The ROUND_30S bit is  
automatically cleared when the rounding time is performed.  
Example:  
If current time is 10H59M45S, round operation changes time to 11H00M00S  
If current time is 10H59M29S, round operation changes time to 10H59M00S  
5.3.4.2.1 TC Registers Read Access  
TC registers read accesses can be done in two ways:  
A direct read to the TC registers. In this case, there can be a discrepancy between the final time read  
and the real time because the RTC keeps running because some of the registers can toggle in  
between register accesses. Software must manage the register change during the reading.  
Read access to shadowed TC registers. These registers are at the same addresses as the normal TC  
registers. They are selected by setting the GET_TIME bit in the RTC_CTRL_REG register. When this  
bit is set, the content of all TC registers is transferred into shadow registers so they represent a  
coherent timestamp, avoiding any possible discrepancy between them. When processing the read  
accesses to the TC registers, the value of the shadowed TC registers is returned so it is completely  
transparent in terms of register access.  
5.3.4.2.2 TC Registers Write Access  
TC registers write accesses can be done in two ways:  
Direct write into the TC registers. In this case, because the RTC keeps running, there can be a  
discrepancy between the final time written and the target time to be written because some of the  
registers can toggle in between register accesses. Software must manage the register change during  
the writing.  
Write access while RTC is stopped. Software can stop the RTC by the clearing STOP_RTC bit of the  
control register and checking the RUN bit of the status to be sure that RTC is frozen. It then updates  
the TC values and restarts the RTC by setting the STOP_RTC bit, which ensures that the final written  
values are aligned with the targeted values.  
5.3.4.3 RTC Alarm  
RTC alarm registers (ALARM_SECONDS_REG, ALARM_MINUTES_REG, ALARM_HOURS_REG,  
ALARM_DAYS_REG, ALARM_MONTHS_REG, and ALARM_YEARS_REG) are used to set the alarm  
time or date to the corresponding generated IT_ALARM interrupts. This interrupt is enabled through the  
IT_ALARM bit in the RTC_INTERRUPTS_REG register. These register values are written in BCD code,  
with the same data range as described for the TC registers (see 5.3.4.2).  
5.3.4.4 RTC Interrupts  
The RTC supports two types of interrupts:  
IT_ALARM interrupt. This interrupt is generated when the configured date or time in the corresponding  
ALARM registers is reached. This interrupt is enable by the IT_ALARM bit in the  
RTC_INTERRUPT_REG register.  
44  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
IT_TIMER interrupt. This interrupt is generated when the periodic time set in the EVERY bits of the  
RTC_INTERRUPT_REG register is reached. This interrupt is enabled by the IT_TIMER bit in the  
RTC_INTERRUPT_REG register. During the SLEEP state, the IT_TIMER interrupt can either be  
masked (stored and generated as soon as the TPS659037 device exists the SLEEP state) or  
unmasked using the IT_SLEEP_MASK_EN bit of the RTC_INTERRUPT_REG register.  
5.3.4.5 RTC 32-kHz Oscillator Drift Compensation  
The RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers are used to compensate for any  
inaccuracy of the 32-kHz clock output from the 16.384-MHz crystal oscillator. To compensate for any  
inaccuracy, software must perform an external calibration of the oscillator frequency, calculate the drift  
compensation needed versus one time hour period, and load the compensation registers with the drift  
compensation value.  
The compensation mechanism is enabled by the AUTO_COMP_EN bit in the RTC_CTRL_REG register.  
The process happens after the first second of each hour. The time between second 1 to second 2  
(T_ADJ) is adjusted based on the settings of the two RTC_COMP_MSB_REG and  
RTC_COMP_LSB_REG registers. These two registers form a 16-bit, 2s complement value COMP_REG  
(from –32767 to 32767) that is subtracted from the 32-kHz counter as shown in 公式 3 to adjust the length  
of T_ADJ:  
32768 - COMP_REG  
«
÷
32768  
(3)  
Therefore, adjusting the compensation with a 1/32768-second time unit accuracy per hour and up to 1 s  
per hour is possible.  
Software must ensure that these registers are updated before each compensation process (there is no  
hardware protection). For example, software can load the compensation value into these registers after  
each hour event, during second 0 to second 1, just before the compensation period, happening from  
second 1 to second 2.  
Preloading the internal 32-kHz counter with the content of the RTC_COMP_MSB_REG and  
RTC_COMP_LSB_REG registers possible when setting the SET_32_COUNTER bit in the  
RTC_CTRL_REG register. This setting must occur when the RTC is stopped.  
5-8 shows the RTC compensation scheduling.  
4
5
6
3
HOURS_REG  
SECONDS_REG  
0
58  
59  
1
...  
0
1
...  
58  
59  
0
1
...  
58  
59  
0
1
...  
58  
59  
HOURS_REG  
3
4
SECONDS_REG  
58  
59  
0
1
2
3
New COMP Value  
COMP Value Frozen  
RTC_COMP_xxx_REG  
Compensation  
Event  
Register  
Updated  
5-8. RTC Compensation Scheduling  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
45  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.5 GPADC – 12-Bit Sigma-Delta ADC  
The GPADC consists of a 12-bit sigma-delta ADC combined with an analog input multiplexer. The GPADC  
allows the host processor to monitor a variety of analog signals using analog-to-digital conversion on the  
input source. After the conversion completes, an interrupt is generated for the host processor and it can  
read the result of the conversion through the I2C interface.  
The GPADC on this PMIC supports 16 analog inputs. However only a total of 9 inputs are available for the  
application use. Three of these inputs are available on external pins, and the remaining six are dedicated  
to internal resource monitoring. One of the three external inputs is associated with a current source  
allowing measurements of resistive elements (thermal sensor). To improve the measurement accuracy,  
the reference voltages GPADC_VREF can be used with an external resistor for the NTC resistor  
measurement. The reference voltage GPADC_VREF is always present when the GPADC is enabled.  
GPADC_IN0 is associated with three selectable current sources. The selectable current levels are 5, 15,  
and 20 μA.  
GPADC_IN1 is intended to measure temperature with an NTC sensor connected to ground. Two resistors,  
one in parallel with the NTC resistor and the other one between GPADC_IN1 and GPADC_VREF, can be  
used to modify the exponential function of the NTC resistor.  
5-9 shows the block diagram of the GPADC.  
ADC voltage reference  
GPADC_VREF  
GPADC_IN0  
GPADC_IN1  
Software  
conversion result  
GPADC_IN2  
Input  
12-bit sigma  
delta ADC  
Scalar  
AUTO conversion result  
Internal Channels  
(Supply Voltage, DCDC Current,  
and Die Temperature Monitoring)  
AUTO conversion request  
Software conversion request  
ADC control  
Interrupt  
5-9. Block Diagram of the GPADC  
For all the measurements performed by the monitoring GPADC, voltage dividers, current to voltage  
converters, and current source are integrated in the TPS659037 device to scale the signal to be measured  
to the GPADC input range.  
46  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
The conversion requests are initiated by the host processor either by software through the I2C. This mode  
is useful when real-time conversion is required.  
Two kinds of conversion requests are available with the following priority:  
1. Asynchronous conversion request (SW)  
2. Periodic conversion (AUTO)  
The EXTEND_DELAY bit in the GPADC_RT_CTRL register can extend by 400 μs the delay from the  
channel selection or triggering to the sampling.  
Use 公式 4 to convert from the GPADC code to the internal die temperature using GPADC channels 12  
and 13.  
GPADC Code  
212  
»
ÿ
ì 1.25 - 0.753 V  
÷
Ÿ
«
Die Temperature (èC) =  
2.64 mV  
(4)  
5-3. GPADC Channel Assignments  
INPUT VOLTAGE FULL  
RANGE(1)  
INPUT VOLTAGE  
CHANNEL  
TYPE  
SCALER  
OPERATION  
PERFORMANCE RANGE(2)  
Resistor value or general purpose. Select  
source current 0, 5, 15, or 20 μA  
0 (GPADC_IN0)  
External(3)  
0 to 1.25 V  
0.01 to 1.215 V  
No  
Platform temperature, NTC resistor value  
and general purpose  
1 (GPADC_IN1)  
2 (GPADC_IN2)  
External(3)  
External(3)  
0 to 1.25 V  
0 to 2.5 V  
0.01 to 1.215 V  
0.02 to 2.43 V  
No  
2
Audio accessory or general purpose  
2.5 to 5 V when  
2.5 to 4.86 V when  
HIGH_VCC_SENSE = 0  
2.3 V to (VCC1–1 V) when  
HIGH_VCC_SENSE = 1  
HIGH_VCC_SENSE = 0  
2.3 V to (VCC1–1 V) when  
HIGH_VCC_SENSE = 1  
7 (VCC_SENSE)  
Internal  
4
System supply voltage (VCC_SENSE)  
10 (VBUS)  
Internal  
Internal  
Internal  
Internal  
Internal  
0 to 6.875V  
0 to 1.25 V  
0 to 1.25 V  
0 to 1.25 V  
0 to VCC1 V  
0.055 to 5.25 V  
5.5  
No  
No  
No  
5
VBUS Voltage  
11  
12  
13  
15  
DC-DC current probe  
PMIC internal die temperature  
PMIC internal die temperature  
Test network  
0 to 1.215 V  
0 to 1.215 V  
0.055 to VCC1 V  
(1) The minimum and maximum voltage full range corresponds to typical minimum and maximum output codes (0 and 4095).  
(2) The performance voltage is a range where gain error drift, offset drift, INL and DNL parameters are specified.  
(3) If VANA LDO is OFF, maximum current to draw from GPADC_INx is 1 mA for reliability. For current higher than 1 mA, VANA must be  
set to SLEEP or ACTIVE mode.  
5.3.5.1 Asynchronous Conversion Request (SW)  
Software can also request conversion asynchronously. This conversion is not critical in terms of start-of-  
conversion positioning. Software must select the channel to be converted, and then requests the  
conversion with the GPADC_SW_SELECT register. An INT interrupt is generated when the conversion  
result is ready, and the result is stored in the GPADC_SW_CONV0_LSB and GPADC_SW_CONV0_MSB  
registers.  
CAUTION  
A defect in the digital controller of TPS659037 device may cause an unreliable  
result from the first asynchronous conversion request after the device exit from  
a warm reset. TI recommends that user rely on subsequent requests to obtain  
accurate result from the asynchronous conversion after a device warm reset.  
In addition, a cold reset event which happens during a GPADC conversion will  
cause the GPADC controller to lock up. A software workaround for these issues  
are described in detail in the Guide to Using the GPADC in TPS65903x and  
TPS6591x Devices.  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
47  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.5.2 Periodic Conversion Request (AUTO)  
Software can enable periodic conversions to compare one or two channels with a predefined threshold  
level. Software must select one or two channels with the GPADC_AUTO_SELECT register and thresholds  
and polarity with the GPADC_THRES_CONV0_LSB, GPADC_THRES_CONV0_MSB,  
GPADC_THRES_CONV1_LSB, and GPADC_THRES_CONV1_MSB registers. In addition, software must  
select the conversion interval with the GPADC_AUTO_CTRL register and enable the periodic conversion  
with the AUTO_CONV0_EN and AUTO_CONV1_EN bits. There is no need to enable the GPADC  
separately. The control logic enables and disables the GPADC automatically to save power. When AUTO  
mode is the only conversion enabled, do not use the AUTO_CONV0_EN and AUTO_CONV1_EN bits to  
disabled the conversion. Instead, force the state machine of the GPADC on by setting the  
GPADC_CTRL1. GPADC_FORCE bit = 1, then shutdown the GPADC AUTO conversion using  
GPADC_AUTO_CTRL.SHUTDOWN_CONV[01] = 0. Wait 100 µs before disabling the GPADC state  
machine by setting GPADC_CTRL1. GPADC_FORCE bit = 0. The latest conversion result is always  
stored in the GPADC_AUTO_CONV0_LSB, GPADC_AUTO_CONV0_MSB,  
GPADC_AUTO_CONV1_LSB, and GPADC_AUTO_CONV1_MSB registers. All selected channels are  
queued and converted from channel 0 to 7. The first (lower) converted channel results is placed in the  
GPADC_AUTO_CONV0 register and the second one is placed in the GPADC_AUTO_CONV1 register.  
Therefore, TI recommends putting the lower channel to convert in AUTO_CONV0_SEL and the higher  
channel to convert in AUTO_CONV1_SEL.  
If the conversion result triggers the threshold level, an INT interrupt is generated and the conversion result  
is stored. If the interrupt is not cleared or the results are not read before another auto-conversion is  
completed, then the registers store only the latest results, discarding the previous ones. The auto  
conversion is never stopped by an uncleared interrupt or unread registers.  
Programming the triggering of the threshold level can also generate shutdown. This is available for  
CONV0 and CONV1 channels independently and is enabled with the SHUTDOWN bits in the  
GPADC_AUTO_CTRL register. During SLEEP and OFF modes, only channels from 0 to 10 can be  
converted. For channels 12 and 13, conversion is possible in sleep if thermal sensor is not disabled.  
5.3.5.3 Calibration  
The GPADC channels are calibrated in the production line using a two-point calibration method. The  
channels are measured with two known values (X1 and X2) and the difference (D1 and D2) to the ideal  
values (Y1 and Y2) are stored in OTP memory. The principle of the calibration is shown in 5-10.  
D2 = Y2 œ  
Y2  
Ideal curve  
Measured  
curve  
Y1  
D1 = Y1 œ X1  
Offset  
Ideal code  
X1  
X2  
Calibration points  
Measured points  
5-10. ADC Calibration Scheme  
48  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Some of the GPADC channels can use the same calibration data and the corrected result can be  
calculated using the equations:  
(D2 -D1) ’  
k = 1+  
÷
(X2 - X1)  
«
Gain:  
(5)  
(6)  
b = D1- k -1 ì X1  
(
)
Offset:  
If the measured code is a, the corrected code a' is:  
a - b  
(
)
a' =  
k
(7)  
5-4 lists the parameters X1 and X2, and the register of D1 and D2 required in the calculation for all the  
channels.  
5-4. GPADC Calibration Parameters  
CHANNEL  
0,1  
X1  
X2  
D1  
D2  
COMMENTS  
2064 (0.63 V)  
2064 (1.26 V)  
2064 (2.52 V)  
3112 (0.95 V)  
3112 (1.9 V)  
3112 (3.8 V)  
GPADC_TRIM1  
GPADC_TRIM3  
GPADC_TRIM7  
GPADC_TRIM2  
GPADC_TRIM4  
GPADC_TRIM8  
Channel 1 trimming is used  
2
7
5.3.6 General-Purpose I/Os (GPIO Pins)  
The TPS659037 device integrates eight configurable general-purpose I/Os that are multiplexed with  
alternative features as described in 5-5.  
5-5. General Purpose I/Os Multiplexed Functions  
PIN  
PRIMARY FUNCTION  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
SECONDARY FUNCTION  
GPIO_1  
GPIO_2  
GPIO_4  
Output: VBUSDET (VBUS detection)  
Output: REGEN2  
Output: SYSEN1 (external system enable)  
Output: CLK32KGO1V8 (32-kHz digital-fated output clock in VRTC domain) or  
SYNCCLKOUT (Fallback synchronization clock for SMPS, 2.2MHz)  
GPIO_5  
General-purpose I/O  
GPIO_6  
GPIO_7  
General-purpose I/O  
General-purpose I/O  
Output: SYSEN2 (external system enable)  
Input: POWERHOLD  
For GPIO characteristics, refer to:  
Pin description (see Section 3)  
Electrical characteristics (see Section 4.16, and Section 4.17)  
Pullup and pulldown characteristics (see Section 4.18)  
Each GPIO event can generate an interrupt on either rising and/or falling edge and each line is individually  
maskable (as described in 5.3.8)  
All GPIOs can be used as wake-up events.  
GPIO_4 and GPIO_6 are in the VIO domain and need the I/O supply to be available.  
When configured in OTP as SYSEN1 and SYSEN2, GPIO_4 and GPIO_6 can be programmed to be part  
of power-up sequence.  
Selection between primary and secondary functions is controlled through the registers  
PRIMARY_SECONDARY_PAD1 and PRIMARY_SECONDARY_PAD2.  
When configured as primary functions, all GPIOs are controlled through the following set of registers:  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
49  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
GPIO_DAT_DIR: Configure each GPIO direction individually (Read or Write)  
GPIO_DATA_IN: Data line-in when configured as an input (Read Only)  
GPIO_DATA_OUT: Data line-out when configured as an output (Read or Write)  
GPIO_DEBOUNCE_EN: Enable each GPIO debouncing individually (Read or Write)  
GPIO_CTRL: Global GPIO control to enable or disable all GPIOs (Read or Write)  
GPIO_CLEAR_DATA_OUT: Clear each GPIO data out individually (Write Only)  
GPIO_SET_DATA_OUT: Set each GPIO data out individually (Write Only)  
PU_PD_GPIO_CTRL1, PU_PD_GPIO_CTRL2: Configure each line pull up and pull down (Read or  
Write)  
OD_OUTPUT_GPIO_CTRL: Enable individual open-drain output (Read or Write)  
When configured as secondary functions, none of the GPIO control registers (see 5-5) affect GPIO  
lines. Line configuration (pullup, pulldown, open-drain) for secondary functions is held in a separate  
register set, as well as specific function settings.  
5.3.6.1 REGEN Output  
Dedicated REGEN signal REGEN1 can be programmed to be part of power sequences to enable external  
devices like external SMPS. The REGEN2 signal is MUXed in GPIO_2, and when REGEN2 mode is  
selected it can also be programmed to be part of power sequences. All REGEN signals are at VSYS level.  
5.3.7 Thermal Monitoring  
The TPS659037 device includes several thermal monitoring functions:  
Thermal protection module internal to the TPS659037 device, placed close to the SMPS and LDO  
modules  
Platform temperature monitoring with an external NTC resistor  
Platform temperature monitoring with an external diode  
The TPS659037 device integrates two thermal detection modules to monitor the temperature of the die.  
These modules are placed on opposite sides of the chip and close to the LDO and SMPS modules.  
Overtemperature at either module generates a warning to the system; if the temperature continues to rise,  
the TPS659037 device shuts down before damage to the die can occur.  
Thus, two protection levels are available:  
A hot-die (HD) function sends an interrupt to software. Software is expected to close any noncritical  
running tasks to reduce power.  
A thermal shutdown (TS) function immediately begins the TPS659037 device switch-off.  
By default, thermal protection is always enabled except in the BACKUP or OFF state. Disabling thermal  
protection in SLEEP mode for minimum power consumption is possible.  
To use thermal monitoring in the system:  
Set the value for the HD temperature threshold with the OSC_THERM_CTRL.THERM_HD_SEL[1:0]  
register.  
TS can be disabled in SLEEP mode by setting the THERM_OFF_IN_SLEEP bit to 1 in the  
OSC_THERM_CTRL register.  
During operation, if the die temperature increases above HD_THR_SEL, an interrupt (INT1.HOTDIE) is  
sent to the host processor. Immediate action to reduce the TPS659037 device power dissipation must  
be taken by shutting down some function.  
If the die temperature of the TPS659037 device rises further (above 148°C) an immediate shutdown  
occurs. A TS event indication is written to the status register, INT1_STATUS_HOTDIE. The system  
cannot restart until the temperature falls below HD_THR_SEL.  
50  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5.3.7.1 Hot-Die Function (HD)  
The HD detector monitors the temperature of the die and provides a warning to the host processor  
through the interrupt system when temperature reaches a critical value. The threshold value must be set  
below the thermal shutdown threshold. Hysteresis is added to the HD detection to avoid the generation of  
multiple interrupts.  
The integrated HD function provides the host PM software with an early warning overtemperature  
condition. This monitoring system is connected to the interrupt controller and can send an interrupt when  
the temperature is higher than the programmed threshold. The TPS659037 device allows the  
programming of four junction-temperature thresholds to increase the flexibility of the system: in nominal  
conditions, the threshold triggering of the interrupt can be set from 117°C to 130°C. The HD hysteresis is  
10°C in typical conditions.  
When an interrupt is triggered by the power-management software, immediate action must be taken to  
reduce the amount of power drawn from the TPS659037 device (for example, noncritical applications must  
be closed).  
5.3.7.2 Thermal Shutdown (TS)  
The TS detector monitors the temperature on the die. If the junction reaches a temperature at which  
damage can occur, a switch-off transition is initiated and a thermal shutdown event is written into a status  
register.  
The system cannot be restarted until the die temperature falls below the HD threshold.  
5.3.7.3 Temperature Monitoring With External NTC Resistor or Diode  
The GPADC_IN1 channel can be used to measure a temperature with an external NTC resistor. External  
pullup and pulldown resistors can be connected to the input to linearize the characteristics of the NTC  
resistor. The temperature limits are set by external resistors.  
5.3.8 Interrupts  
5-6 lists the TPS659037 device interrupts.  
These interrupts are split into four register groups (INT1, INT2, INT3, INT4) and each group has three  
associated control registers:  
INTx_STATUS: Reflects which interrupt source has triggered an interrupt event  
INTx_MASK: Used to mask any source of interrupt, to avoid generating an interrupt on a specified  
source  
INTx_LINE_STATE: Reflects the real-time state of each line associated to each source of interrupt  
The INT4 register group has two additional registers, INT4_EDGE_DETECT1 and  
INT4_EDGE_DETECT2, to independently configure rising and falling edge detection.  
All interrupts are logically combined on a single output line INT (default active low). This line is used as an  
external interrupt line to warn the host processor of any interrupt event that has occurred within the  
TPS659037 device. The host processor has to read the interrupt status registers (INTx_STATUS) through  
the control interface (I2C or SPI) to identify the interrupt sources. Any interrupt source can be masked by  
programming the corresponding mask register (INTx_MASK). When an interrupt is masked, its associated  
event detection mechanism is disabled. Therefore the corresponding STATUS bit is not updated and the  
INT line is not triggered if the masked event occurs. Any event happening while its corresponding interrupt  
is masked is lost. If an interrupt is masked after it has been triggered (event has occurred and has not yet  
been cleared), then the STATUS bit reflects the event until it is cleared and it does not trigger again if a  
new event occurs (because it is now masked).  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
51  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Because some interrupts are sources of ON requests (see 5-6), source masking can be used to mask  
a specific device switch-on event. Because an active interrupt line INT is treated as an ON request, any  
interrupt not masked must be cleared to allow the execution of a SLEEP sequence of the TPS659037  
device when requested.  
The INT line polarity and interrupts clearing method can be configured using the INT_CTRL register.  
An INT line event can be provided to the host in either SLEEP or ACTIVE mode, depending on the setting  
of the OSC_THERM_CTRL.INT_MASK_IN_SLEEP bit.  
When a new interrupt occurs while the interrupt line INT is still active (not all interrupts have been  
cleared), then:  
If the new interrupt source is the same as the one that has already triggered the INT line, it can be  
discarded or stored as a pending interrupt depending on the setting of the INT_CTRL.INT_PENDING  
bit.  
When the INT_CTRL.INT_PENDING bit is active (default), then any new interrupt event occurring  
on the same source (while the INT line is still active) is stored as a pending interrupt. Because only  
one level of pending interrupt can be stored for a given source, when several events (more than  
two) occur on the same source, only the last one is stored. While an interrupt is pending, two  
accesses are needed (either read or write) to clear the STATUS bit: one access for the actual  
interrupt and another for the pending interrupt. Note: two consecutive read or write operations to  
the same register clear only one interrupt. Another register must be accessed between the two read  
or write clear operations. Example for clear-on-read: when INT signal is active, read all four  
INTx_STATUS registers in sequence to collect status of all potential interrupt sources. Read access  
clears the full register for an active or actual interrupt. If the INT line is still active, repeat read  
sequence to check and clear pending interrupts.  
When the INT_CTRL.INT_PENDING bit is inactive, then any new interrupt event occurring on the  
same source (while the INT line is still active) is discarded. Note: two consecutive read or write  
operations to the same register clear only one interrupt. Another register must be accessed  
between the two read or write clear operations.  
If the new interrupt source is different from the one that already triggered the INT line, then it is stored  
immediately into its corresponding STATUS bit.  
To clear the interrupt line, all status registers must be cleared. The clearing of all status registers is  
achieved by using a clear-on-read or a clear-on-write method. The clearing method is selectable though  
the INT_CTRL.INT_CLEAR bit. When set, the clearing method applies to all bits for all interrupts.  
Clear-on-read  
Read access to a single status register clears all the bits for only this specific register (8 bits).  
Therefore, clearing all interrupts requests to read the four status registers. If the INT line is still  
active when the four read accesses complete, then another interrupt event has occurred during the  
read process; therefore the read sequence must be repeated.  
Clear-on-write  
This method is bit-based; setting a specific bit to 1 clears only the written bit. Therefore, to clear a  
complete status register, 0xFF must be written. Clearing all interrupts requests to write 0xFF into  
the four status registers. If the INT line is still active when the four write accesses are complete,  
then another interrupt event has occurred during the write process; therefore the write sequence  
must be repeated.  
52  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5-6. Interrupt Sources  
ASSOCIATED  
EVENT  
REGISTER  
GROUP  
REGISTER  
BIT  
INTERRUPT  
EDGES DETECTION  
ON REQUEST  
DESCRIPTION  
System voltage monitoring interrupt: Triggered when system  
voltage has crossed the configured threshold in VSYS_MON  
register.  
VSYS_MON  
Internal event  
Internal event  
Rising and falling  
Never  
6
5
Hot-die temperature interrupt: The embedded thermal monitoring  
module has detected a die temperature above the hot-die  
detection threshold. Interrupt is generated in ACTIVE and  
SLEEP state, not in OFF state.  
HOTDIE  
Rising and falling  
Never  
Never  
Power-down interrupt: Triggered when the event is detected on  
the PWRDOWN pin.  
PWRDOWN  
RPWRON  
PWRDOWN (pin)  
RPWRON (pin)  
Rising and falling  
Falling  
4
3
INT1  
Remote power-on interrupt: Triggered when a signal change is  
detected. Interrupt is generated in ACTIVE and SLEEP state, not  
in OFF state.  
Always  
(INT mask don't care)  
Power-on long key-press interrupt. Triggered when PWRON is  
low during more than the long-press delay  
LONG_PRESS_KEY.LPK_TIME.  
LONG_PRESS_KEY  
PWRON  
PWRON (pin)  
PWRON (pin)  
Falling  
Falling  
Never  
2
1
Power-on interrupt: Triggered when PWRON button is pressed  
(low) while the TPS659037 device is on. Interrupt is generated in  
ACTIVE and SLEEP state, not in OFF state.  
Always  
(INT mask don't care)  
Yes  
Short interrupt: Triggered when at least one of the power  
resources (SMPS or LDO) has its output shorted.  
SHORT  
RESET_IN  
WDT  
Internal event  
RESET_IN (pin)  
Internal event  
Rising  
Rising  
Rising  
6
4
2
(if INT not masked)  
RESET_IN interrupt: Triggered when event is detected on  
RESET_IN pin.  
Never  
Never  
Watchdog time-out interrupt: Triggered when watchdog time-out  
has expired.  
INT2  
Real-time clock timer interrupt: Triggered at programmed regular  
period of time (every second or minute). Running in ACTIVE,  
OFF, and SLEEP state, default inactive.  
Yes  
RTC_TIMER  
Internal event  
Rising  
1
(if INT not masked)  
Yes  
Real-time clock alarm interrupt: Triggered at programmed  
determinate date and time.  
RTC_ALARM  
VBUS  
Internal event  
VBUS (pin)  
Rising  
Rising and falling  
N/A  
0
7
2
(if INT not masked)  
Yes  
VBUS wake-up comparator interrupt. Active in OFF state.  
Triggered when VBUS present.  
(if INT not masked)  
Yes  
GPADC software end of conversion interrupt: Triggered when  
conversion result is available.  
GPADC_EOC_SW  
Internal event  
(if INT not masked)  
GPADC automatic periodic conversion 1: Triggered when result  
of conversion is either above or below (depending on  
configuration) reference threshold GPADC_AUTO_CONV1_LSB  
and GPADC_AUTO_CONV1_MSB.  
Yes  
INT3  
GPADC_AUTO_1  
GPADC_AUTO_0  
Internal event  
Internal event  
N/A  
N/A  
1
0
(if INT not masked)  
GPADC automatic periodic conversion 0: Triggered when result  
of conversion is either above or below (depending on  
configuration) reference threshold GPADC_AUTO_CONV0_LSB  
and GPADC_AUTO_CONV0_MSB.  
Yes  
(if INT not masked)  
Yes  
GPIO_7  
GPIO_6  
GPIO_5  
GPIO_4  
GPIO_3  
GPIO_2  
GPIO_1  
GPIO_0  
GPIO_7 (pin)  
GPIO_6 (pin)  
GPIO_5 (pin)  
GPIO_4 (pin)  
GPIO_3 (pin)  
GPIO_2 (pin)  
GPIO_1 (pin)  
GPIO_0 (pin)  
Rising and/or falling  
Rising and/or falling  
Rising and/or falling  
Rising and/or falling  
Rising and/or falling  
Rising and/or falling  
Rising and/or falling  
Rising and/or falling  
7
6
5
4
3
2
1
0
GPIO_7 rising- or falling-edge detection interrupt  
GPIO_6 rising- or falling-edge detection interrupt  
GPIO_5 rising- or falling-edge detection interrupt  
GPIO_4 rising- or falling-edge detection interrupt  
GPIO_3 rising- or falling-edge detection interrupt  
GPIO_2 rising- or falling-edge detection interrupt  
GPIO_1 rising- or falling-edge detection interrupt  
GPIO_0 rising- or falling-edge detection interrupt  
(if INT not masked)  
Yes  
(if INT not masked)  
Yes  
(if INT not masked)  
Yes  
(if INT not masked)  
INT4  
Yes  
(if INT not masked)  
Yes  
(if INT not masked)  
Yes  
(if INT not masked)  
Yes  
(if INT not masked)  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
53  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.9 Control Interfaces  
The TPS659037 device has two exclusive selectable (from factory settings) interfaces; two high-speed I2C  
interfaces (I2C1_SCL_SCK or I2C1_SDA_SDI and I2C2_SCL_SCE or I2C2_SDA_SDO) or one SPI  
(I2C1_SCL_SCK, I2C1_SDA_SDI, I2C2_SDA_SDO, or I2C2_SCL_SCE). Both are used to fully control  
and configure the TPS659037 device and have access to all the registers. When the I2C configuration is  
selected the I2C1_SCL_SCK or I2C1_SDA_SDI, a general purpose control (GPC) interface is dedicated  
to configure the TPS659037 device and the I2C2_SCL_SCE or I2C2_SDA_SDO interface dynamic  
voltage scaling (DVS) is dedicated to dynamically change the output voltage of the SMPS converters. The  
DVS I2C interface has access only to the voltage scaling registers of the SMPS converters (read and write  
mode).  
5.3.9.1 I2C Interfaces  
The GPC I2C interface (I2C1_SCL_SCK and I2C1_SDA_SDI) is dedicated to access the configuration  
registers of all the resources of the system.  
The DVS I2C interface (I2C2_SCL_SCE and I2C_SDA_SDO) is dedicated to access the DVS registers  
independently from the GPC I2C.  
The control interfaces comply with the HS-I2C specification and support the following features:  
Mode: Slave only (receiver and transmitter)  
Speed:  
Standard mode (100 kbps)  
Fast mode (400 kbps)  
High-speed mode (3.4 Mbps)  
Addressing: 7-bit mode addressing device  
The following features are not supported:  
10-bit addressing  
General call  
Master mode (bus arbitration and clock generation)  
I2C is a 2-wire serial interface developed by NXP (formerly Philips Semiconductor) (see I2C-Bus  
Specification and user manual, Rev 03, June 2007). The bus consists of a data line (SDA) and a clock line  
(SCL) with pullup structures. When the bus is idle, the SDA and SCL lines are pulled high. All the I2C-  
compatible devices connect to the I2C bus through open-drain I/O pins, SDA and SCL. A master device,  
usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for  
generating the SCL signal and device addresses. The master also generates specific conditions that  
indicate the start and stop of data transfers. A slave device receives and/or transmits data on the bus  
under control of the master device. The data transfer protocol for standard and fast modes is exactly the  
same, and they are referred to as F/S mode in this document. The protocol for high-speed mode is  
different from F/S mode, and it is referred to as HS mode.  
5.3.9.1.1 I2C Implementation  
The standard I2C 7-bit slave device address is set to 010010xx (binary) where the two least-significant bits  
are used for page selection.  
The TPS659037 device is organized in five internal pages of 256 bytes (registers) as follows:  
Slave device address 0x48: Power registers  
Slave device address 0x49: Interfaces and auxiliaries  
Slave device address 0x4A: Trimming and test  
Slave device address 0x4B: OTP  
Slave device address 0x12: DVS  
The device address for the DVS I2C interface is set to 0x12.  
54  
Detailed Description  
提交文档反馈意见  
版权 © 2014–2019, Texas Instruments Incorporated  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
If one of the addresses conflicts with another device I2C address, it is possible to remap each address to a  
fixed alternative one as described in 5-7. I2C for DVS is fixed because it is dedicated interface.  
5-7. I2C Address Configuration  
REGISTER  
BIT  
PAGE  
Power registers  
ADDRESSES  
ID_I2C1[0] = 0: 0x48  
ID_I2C1[0] = 1: 0x58  
ID_I2C1[1] = 0: 0x49  
ID_I2C1[1] = 1: 0x59  
ID_I2C1[2] = 0: 0x4A  
ID_I2C1[2] = 1: 0x5A  
ID_I2C1[3] = 0: 0x4B  
ID_I2C1[3] = 1: 0x5B  
ID_I2C2 = 0: 0x12  
ID_I2C1[0]  
ID_I2C1[1]  
ID_I2C1[2]  
Interfaces and auxiliaries  
Trimming and test  
I2C_SPI  
ID_I2C1[3]  
ID_IDC2  
OTP  
DVS  
5.3.9.1.2 F/S Mode Protocol  
The master initiates data transfer by generating a START condition. The START condition is when a high-  
to-low transition occurs on the SDA line while SCL is high (see 5-11). All I2C-compatible devices should  
recognize a START condition.  
The master then generates the SCL pulses and transmits the 7-bit address and the read or write direction  
bit (R/W) on the SDA line. During all transmissions, the master ensures that data is valid. A valid data  
condition requires the SDA line to be stable during the entire high period of the clock pulse (see 5-12).  
All devices recognize the address sent by the master and compare it to their internal fixed addresses.  
Only the slave device with a matching address generates an acknowledge (see 5-13) by pulling the  
SDA line low during the entire high period of the ninth SCL cycle. When this acknowledge is detected, the  
master knows that the communication link with a slave has been established.  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 1) or receive data  
from the slave (R/W bit 0). In either case, the receiver must acknowledge the data sent by the transmitter.  
An acknowledge signal can be generated by the master or the slave, depending on which one is the  
receiver. Nine-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as  
long as necessary.  
To signal the end of the data transfer, the master generates a STOP condition by pulling the SDA line  
from low to high while the SCL line is high (see 5-11). This releases the bus and stops the  
communication link with the addressed slave. All I2C-compatible devices must recognize the STOP  
condition. Upon the receipt of a STOP condition, all devices know that the bus is released, and they wait  
for a START condition followed by a matching address.  
Attempting to read data from register addresses not listed in this section results in 0xFF being read out.  
5.3.9.1.3 HS Mode Protocol  
When the bus is idle, the SDA and SCL lines are pulled high by the pullup devices.  
The master generates a START condition followed by a valid serial byte containing HS master code  
00001XXX. This transmission is made in F/S mode at no more than 400 kbps. No device is allowed to  
acknowledge the HS master code, but all devices must recognize it and switch their internal setting to  
support 3.4-Mbps operation.  
The master then generates a REPEATED START condition (a REPEATED START condition has the  
same timing as the START condition). After the REPEATED START condition, the protocol is the same as  
F/S mode, except transmission speeds up to 3.4 Mbps are allowed. A STOP condition ends the HS mode  
and switches all the internal settings of the slave devices to support F/S mode. Instead of using a STOP  
condition, REPEATED START conditions are used to secure the bus in HS mode.  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
55  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Attempting to read data from register addresses not listed in this section results in 0xFF being read out.  
DATA  
CLK  
S
P
START  
Condition  
STOP  
Condition  
5-11. START and STOP Conditions  
CLK  
Data line stable;  
data valid  
Change of data allowed  
5-12. Bit Transfer on the Serial Interface  
Data output by  
transmitter  
Not acknowledge  
Data output by  
receiver  
Acknowledge  
SCL by master  
1
2
8
9
S
Clock pulse for  
acknowledgement  
START  
condition  
5-13. Acknowledge on the I2C Bus  
56  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
Recognizes SROP  
or repeated START  
condition  
Recognizes START  
or repeated STOP  
condition  
Generates  
ACKNOWLEDGE  
signal  
P
SDA  
MSB  
Acknowledgement  
from slave  
Sr  
Address  
R/W  
1
2
7
8
9
SCL  
1
3-8  
9
2
S
or  
Sr  
S
or  
Sr  
ACK  
ACK  
The clock line is held  
low while the interrupts  
are serviced  
START or repeated  
STOP condition  
STOP or repeated  
START condition  
5-14. Bus Protocol  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
57  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.9.2 Serial-Peripheral Interface (SPI)  
The SPI is a 4-wire slave interface used to access and configure the TPS659037 device. The SPI allows  
read-and-write access to the configuration registers of all resources of the system.  
The SPI uses the following signals:  
SCE (I2C2_SCL_SCE): Chip enable – Input driven by host master, used to initiate and terminate a  
transaction  
SCK (I2C1_SCL_SCK): Clock – Input driven by host master, used as master clock for data transaction  
SDI (I2C1_SDA_SDI): Data input – Input driven by host master, used as data line from master to slave  
SDO (I2C2_SDA_SDO): Data output – Output driven by the TPS659037 device, used as data line from  
slave to master and defaults to high impedance  
5.3.9.2.1 SPI Modes  
The SPI does not have access to the OTP and DVS registers (slave device address 0x4B & 0x12) of the  
device. The SPI_PAGE_CTRL.SPI_PAGE_ACCESS regsiter can be configured to access all other  
registers (slave device address 0x48, 0x49, & 0x4A) by:  
SPI_PAGE_CTRL.SPI_PAGE_ACCESS = 0: Page1 = 0x48, Page2 = 0x49  
SPI_PAGE_CTRL.SPI_PAGE_ACCESS = 1: Page1 = 0x48, Page3 = 0x4A  
This SPI supports two access modes (Note: all shifts are done MSB first (Data, Address, Page):  
• Single access (read or write)  
This consists of fetching and storing one single data location. The protocol is depicted in 5-15.  
The R/W bit is always provided first, followed by page address and register address fields. When  
R/W = 0, a read access is performed. When R/W = 1, a write access is performed.  
1 burst bit indicates if following transfer is a single access (BURST = 0) or a burst access (BURST  
= 1).  
4 unused bits follow the burst bit and finally the 8-bit data is either shifted in (write) or out (read).  
For a write access, the data output line SDO is invalid (useless) during the whole transaction.  
For a read access, the data output line SDO is invalid during the unused bits (time slot used for  
data fetch) and then becomes active or valid after the unused bits.  
Burst access (read or write)  
This consists of fetching and storing several data at contiguous locations. The protocol is depicted  
in 5-16.  
The R/W bit is always provided first, followed by page address and register address fields. When  
R/W = 0, a read access is performed. When R/W = 1, a write access is performed.  
1 burst bit indicates if following transfer is a single access (BURST = 0) or a burst access (BURST  
= 1).  
4 unused bits follow the burst bit and finally packets of 8-bit data are either shifted in (write) or out  
(read).  
The transaction remains active as long as the SCE signal is maintained high by the host.  
The address is automatically incremented internally for each new 8-bit packet received.  
The host must pull the SCE signal low after a complete 8-bit data is transferred, otherwise the last  
transaction is discarded.  
For a write access, the data output line SDO is invalid (useless) during the whole transaction.  
For a read access, the data output line SDO is invalid during the unused bits (time slot used for  
data fetch) and then becomes active or valid after the unused bits.  
58  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5.3.9.2.2 SPI Protocol  
SPI Write  
SCE  
SCK  
SDI  
RW Page  
Burst  
Register address (8)  
Unused bits (5)  
Data (8)  
(SDI)  
TPS659037 samples SDI on SCK rising edge  
: Master to assert data on falling edge  
SPI Read  
SCE  
SCK  
SDI  
RW Page  
Burst  
Register address (8)  
Unused bits (5)  
Unused bits (8)  
Data (8)  
(SDI)  
SDO  
(SDO)  
TPS659037 samples SDI on SCK rising edge  
PMIC asserts SDO so that it is available on SCK rising edge  
: Master to assert data on falling edge  
: Master must sample data on rising edge  
5-15. SPI Single Read and Write Access  
SPI Write  
SCE  
SCK  
SDI  
Data (8)  
Data (8)  
RW Page  
Burst  
Data (8)  
Register address (8)  
Unused bits (5)  
(SDI)  
TPS659037 samples SDI on SCK rising edge  
: Master to assert data on falling edge  
SPI Read  
SCE  
SCK  
SDI  
Unused bits (8)  
Data (8)  
Unused bits (8)  
Data (8)  
RW Page  
Burst  
Unused bits (8)  
Data (8)  
Register address (8)  
Unused bits (5)  
(SDI)  
SDO  
Unused bits  
(SDO)  
TPS659037 samples SDI on SCK rising edge  
PMIC asserts SDO so that it is available on SCK rising edge  
: Master to assert data on falling edge  
: Master must sample data on rising edge  
5-16. SPI Burst Read and Write Access  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
59  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.3.10 Device Identification  
The following registers can differentiate the TPS659037 device being used.  
5-8. TPS65903x-Q1 Device ID  
REGISTER NAME  
REGISTER DESCRIPTION  
VALUE  
For all TPS659037 devices, this register will have the same  
value.  
PRODUCT_ID_MSB  
0x90  
For all TPS659037 devices, this register will have the same  
value.  
PRODUCT_ID_LSB  
DESIGNREV  
0x39  
Revision 1.0  
0x0  
0x1  
0x2  
0x3  
0x4  
Revision 1.1  
This register distinguishes which silicon  
Revision 1.2  
version is used.  
Revision 1.3  
Revision 1.4  
This register will be representative of the OTP version  
programmed on the device.  
SW_REVISION  
OTP dependent  
5.4 Device Functional Modes  
5.4.1 Embedded Power Controller  
The EPC is composed of three main modules:  
An event arbitration module used to prioritize ON, OFF, WAKE, and SLEEP requests.  
A power state-machine used to determine which power sequence to execute, based on the system  
state (supplies, temperature, and so forth) and requested transition (from the event arbitration module).  
A power sequencer that fetches the selected power sequence from OTP and executes it. The power  
sequencer sets up and controls all resources accordingly, based on the definition of each sequence.  
5-17 shows the EPC block diagram.  
Power  
Sequence  
Pointer  
ON Requests  
OFF Requests  
Resources  
Resources  
Resources  
Event  
Power State  
Machine  
Power  
Sequencer  
Events  
SLEEP Requests  
Arbitration  
WAKE Requests  
System State  
(Supplies, Temperature, ...)  
Power  
Sequences  
OFF2ACT  
ACT2OFF  
SLP2OFF  
ACT2SLP  
SLP2ACT  
5-17. EPC Block Diagram  
The power state-machine is defined through the following states:  
NO SUPPLY The TPS659037 device is not powered by any energy source on the system power rail  
(VCC1 < POR).  
BACKUP  
OFF  
The TPS659037 device is not powered by a valid supply on the system power rail (VCC1 <  
VSYS_LO) (VCC > POR).  
The TPS659037 device is powered by a valid supply on the system power rail (VCC1 >  
VSYS_LO) and it is waiting for a start-up event or condition. All device resources are in the  
OFF state. The approximate time for the TPS659037 device to arrive the OFF state from the  
NO SUPPLY state, without considering the rise time of VSYS and the settling time of the  
VSYS_LO comparator, is approximately 5.5 ms.  
60  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
ACTIVE  
The TPS659037 device is powered by a valid supply on the system power rail (VCC1 >  
VSYS_LO) and has received a start-up event. It has switched to the ACTIVE state, having  
full capacity to supply the processor and other platform modules.  
SLEEP  
The TPS659037 device is powered by a valid supply on the system power rail (VCC1 >  
VSYS_LO) and is in low-power mode. All configured resources are set to their low-power  
mode, which can be ON, SLEEP, or OFF depending on the specific resource setting. If a  
given resource is maintained active (ON) during low-power mode, then all its linked  
subsystems are automatically maintained active.  
5-18 shows the state diagram for the power control state-machine.  
No Supply  
VCC > POR_threshold  
VCC < POR  
BACKUP  
VCC > POR  
and  
VCC < VSYS_LO  
VCC > VSYS_LO  
VCC < VSYS_LO  
VCC < POR  
VCC < VSYS_LO  
OFF  
VCC < POR  
ON Request and  
VCC_SENSE > VSYS_HI  
OFF Request  
VCC < VSYS_LO  
ACTIVE  
OFF Request  
SLEEP Request  
WAKE Request  
SLEEP  
5-18. State Diagram for the Power Control State-Machine  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
61  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Power sequences define how a resource state switches between the OFF, ACTIVE, and SLEEP states,  
but they have no effect during the NO SUPPLY or BACKUP states. The EPC supervises the system  
according to these power sequences when the TPS659037 device is brought into the OFF state from a  
NO SUPPLY or BACKUP state. This supervision is achieved automatically by internal hardware controlling  
the device before handing it over to the EPC.  
The allowed power transitions are:  
OFF to ACTIVE (OFF2ACT)  
ACTIVE to OFF (ACT2OFF)  
ACTIVE to SLEEP (ACT2SLP)  
SLEEP to ACTIVE (SLP2ACT)  
SLEEP to OFF (SLP2OFF)  
Each power transition consists of a sequence of one or several register accesses that controls the  
resources according to the EPC supervision. Because these sequences are stored in nonvolatile memory  
(OTP), they cannot be altered.  
5.4.2 State Transition Requests  
5.4.2.1 ON Requests  
ON requests are used to switch on the TPS659037 device, which transitions the device from the OFF to  
the ACTIVE state. 5-9 lists the ON requests.  
5-9. ON Requests  
EVENT  
MASKABLE  
POLARITY  
Low  
COMMENT  
Level sensitive  
Level sensitive  
DEBOUNCE  
16 ms ± 1 ms  
N/A  
RPWRON (pin)  
PWRON (pin)  
No  
No  
Low  
Part of interrupts  
(event)  
Yes (INTx_MASK register.  
Default: Masked)  
Event  
High  
Edge sensitive  
Level sensitive  
N/A  
POWERHOLD (pin)  
No  
3 - 5 ms typical  
If one of the events listed in 5-9 occurs, it powers on the device, unless one of the gating conditions  
listed in 5-10 is present. For interrupt sources that can be configured as ON requests, see 5-6.  
5-10. ON Requests Gating Conditions  
EVENT  
MASKABLE  
POLARITY  
Low  
COMMENT  
VCC_SENSE < VSYS_HI  
Device temperature exceeds HOTDIE level  
VSYS_HI (event)  
HOTDIE (event)  
PWRDOWN (pin)  
RESET_IN (pin)  
No  
No  
No  
No  
High  
OTP configurable  
OTP configurable  
5.4.2.2 OFF Requests  
OFF requests are used to switch off the TPS659037 device, and transition the device from the SLEEP or  
the ACTIVE to the OFF state. 5-11 lists the OFF requests. OFF requests have the highest priority, and  
no gating conditions exist. Any OFF request is executed even though a valid SLEEP or ON request is  
present and force the device to go to the OFF state. When the OFF request is cleared it reacts to an ON  
request, if any is present.  
5-11. OFF Requests  
EVENT  
MASKABLE  
POLARITY  
Low  
DEBOUNCE  
SWITCH OFF DELAY  
SWOFF_DLY  
RESET LEVEL  
HWRST  
RESET SEQUENCE  
SD  
PWRON (pin)  
(long press key)  
No  
No  
N/A  
PWRDOWN (pin)  
OTP configurable  
SWOFF_DLY  
OTP Configurable  
OTP Configurable  
62  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5-11. OFF Requests (continued)  
EVENT  
MASKABLE  
POLARITY  
DEBOUNCE  
SWITCH OFF DELAY  
RESET LEVEL  
RESET SEQUENCE  
N/A. WDT is disabled by  
default but software can  
enable it.  
WATCHDOG TIMEOUT  
(internal event)  
NA  
N/A  
SWOFF_DLY  
OTP Configurable  
OTP Configurable  
THERMAL SHUTDOWN  
(internal event)  
No  
No  
No  
NA  
OTP configurable  
NA  
N/A  
N/A  
N/A  
0
OTP Configurable  
OTP Configurable  
OTP Configurable  
OTP Configurable  
OTP Configurable  
OTP Configurable  
RESET_IN (pin)  
SWOFF_DLY  
0
SW_RST  
(register bit)  
DEV_ON  
(register bit)  
No  
No  
NA  
NA  
N/A  
0
0
SWORST  
SD  
VSYS_LO  
(internal event)  
OTP Configurable  
OTP Configurable  
POWERHOLD (pin)  
No  
Low  
NA  
0
SWORST  
SD  
GPADC_SHUTDOWN  
Yes  
N/A  
SWOFF_DLY  
OTP Configurable  
OTP Configurable  
Notes:  
SWOFF_DLY is the same for all requests. When configured to a specific value (0, 1, 2, or 4 s) it is  
applied to all OFF requests.  
RESET_LEVEL is selectable as HWRST (wide set of registers is reset to default values) or SWORTS  
(more limited set of registers is reset).  
OFF requests are configured to force the EPC to either execute a shutdown (SD) or a cold restart  
(CR).  
When configured to generate an SD, the EPC executes a transition to the OFF state (SLP2OFF or  
ACT2OFF power sequence) and remains in the OFF state.  
When configured to generate a CR, the EPC executes a transition to the OFF state (SLP2OFF or  
ACT2OFF power sequence) and restarts, transitioning to the ACTIVE state (OFF2ACT power  
sequence) if none of the ON request gating conditions are present.  
Watchdog is disabled by default. SW can enable watchdog and lock (write protect) watchdog register  
(WATCHDOG).  
The DEV_ON event has a lower priority over other ON events; it forces the TPS659037 device to go to  
the OFF state only if no other ON conditions are keeping the device active (POWERHOLD).  
The POWERHOLD event has a lower priority over other ON events; it forces the TPS659037 device to  
go to the OFF state only if no other ON conditions are keeping the device active (DEV_ON).  
5.4.2.3 SLEEP and WAKE Requests  
SLEEP requests are used to put the TPS659037 device in the SLEEP state, meaning a transition from the  
ACTIVE to SLEEP state. This sets internal resources into low-power mode, as well as user-defined  
resources into their user predefined low-power mode. The states of the resources during active and sleep  
modes are defined in the LDO*_CTRL registers and SMPSx_CTRL registers.  
5-12 lists the SLEEP requests. Any of these events trigger the ACT2SLP sequence unless pending  
interrupts (unmasked) occur. Only an interrupt or NSLEEP inactive (high) generates a WAKE request to  
wake up the TPS659037 device (exit from the SLEEP state). A WAKE request (only during the SLEEP  
state) wakes up the device and triggers a SLEEP2ACT or a SLEEP2OFF power sequence.  
5-12. SLEEP Requests  
EVENT  
MASKABLE  
POLARITY  
COMMENT  
NSLEEP (pin)  
Yes (Default: Masked)  
Low  
Level sensitive  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
63  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
For each resource, a transition from the ACTIVE to SLEEP state or SLEEP to ACTIVE state can be  
controlled in two different ways:  
Through EPC sequencing (ACT2SLP or SLP2ACT power sequence), when the resource is associated  
to the NSLEEP signal.  
Through direct control of the resource power mode (active or sleep).  
The user can bypass SLEEP and WAKE sequencing by having resources assigned to one external  
control signal (ENABLE1). This signal has direct control on the power modes (active or sleep) of  
any resources associated to it and it triggers an immediate switch from one mode to the other,  
regardless of the EPC sequencing.  
All resources can therefore be associated to two external pins (NSLEEP and ENABLE1) and they switch  
between the SLEEP and ACTIVE states based on 5-13.  
64  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5-13. Resources SLEEP and ACTIVE Assignments  
ENABLE1  
ASSIGNMENT  
NSLEEP  
ASSIGNMENT  
ENABLE1 PIN  
STATE  
NSLEEP PIN STATE  
STATE  
TRANSITION  
0
0
1
0
1
0
Don't care  
Don't care  
0 1  
0
Don't care  
0 1  
Don't care  
0 1  
0 1  
0
ACTIVE  
None  
Sequenced  
Immediate  
Sequenced  
None  
SLEEP ACTIVE  
SLEEP ACTIVE  
SLEEP ACTIVE  
ACTIVE  
1
1
1
0 1  
0 1  
SLEEP ACTIVE  
ACTIVE  
Immediate  
None  
1
The polarity of the NSLEEP and ENABLE1 signals is configurable through the  
POLARITY_CTRL register. By default:  
ENABLE1 is active high; a transition from 0 to 1 requests a transition from SLEEP to  
ACTIVE.  
NSLEEP is active low; a transition from 1 to 0 requests a transition from ACTIVE to  
SLEEP.  
Resource assignments to the NSLEEP and ENABLE1 signals are configured in the  
ENABLEx_YYY_ASSIGN and NSLEEP_YYY_ASSIGN registers (where x = 1 or 2 and  
YYY = RES or SMPS or LDO)  
Several resources can be assigned to the same ENABLE1 signal and therefore, when  
triggered, they all switch their power mode at the same time.  
When resources are assigned only to the NSLEEP signal, their respective switching  
order is controlled and defined in the power sequence.  
When a resource is not assigned to any signal (NSLEEP and ENABLE1), it never  
switches from the ACTIVE to SLEEP state. The resource always remains in active mode.  
CAUTION  
A defect in the digital controller of the TPS659037 device was discovered,  
which may cause the PLL to shut down unexpectedly under the following  
sequence of events:  
PLL is programmed to be OFF under SLEEP mode through the PLLEN_CTRL  
register  
NSLEEP is assigned to control the entering of SLEEP mode for the PLL through the  
NSLEEP_RES_ASSIGN register  
The TPS659037 device goes through a SLP2OFF state transition followed by an  
OFF2ACT state transition  
PLL is again assigned to be OFF in SLEEP mode through the programming of the  
PLLEN_CTRL and the NSLEEP_RES_ASSIGN registers while the TPS659037  
device remains in ACTIVE mode  
Two possible actions are recommended to help prevent the PLL from shutting  
down unexpectedly:  
[Hardware Implementation] Toggle the NSLEEP pin twice to force the ACT2SLP and  
SLP2ACT state transitions as soon as the TPS659037 device wakes up from back  
to back SLP2OFF and OFF2ACT state transitions  
[Software Implementation] Toggle the NSLEEP_POLARITY bit (0 1 0) of the  
POLARITY_CTRL register to force the ACT2SLP and SLP2ACT device state  
transitions as soon as the TPS659037 device wakes up from back to back SLP2OFF  
and OFF2ACT state transitions  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
65  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.4.3 Power Sequences  
A power sequence is an automatic pre-programmed sequence handled by the TPS659037 device to  
configure the device resources: SMPSs, LDOs, 32-kHz clock, part of GPIOs, , REGEN signals) into on,  
off, or sleep modes. See 5.3.6 for GPIO details.  
5-19 shows an example of an OFF2ACT transition followed by an ACT2OFF transition. The sequence  
is triggered through PWRON pin and the resources controlled (for this example) are: SMPS8, LDO1,  
SMPS12, SMPS45, REGEN1, LDOLN, LDOUSB, and LDO2. The time between each resource enable  
and disable (t(instX)) is also part of the preprogrammed sequence definition.  
When a resource is not assigned to any power sequence, it remains in off mode. The user (through  
software) can enable and configure this resource independently after the power sequence completes.  
OFF2ACT Power Sequence  
X
ACT2OFF Power Sequence  
PWRON  
SMPS8  
X
X
X
t(inst16)  
t(inst15)  
t(inst1)  
LDO1  
t(inst2)  
SMPS12  
SMPS45  
REGEN1  
LDOLN  
t(inst14)  
t(inst3)  
t(inst4)  
t(inst5)  
t(inst6)  
t(inst13)  
t(inst12)  
t(inst11)  
LDOUSB  
LDO2  
t(inst10)  
t(inst9)  
t(inst7)  
t(inst8)  
RESET_OUT  
INT  
Interrupt Acknowledge  
Interrupt Acknowledge  
PWRON_IT = 1  
PWRON_IT = 1  
5-19. Power Sequence Example  
The power sequence of the TPS659037 device is defined according to the processor requirements. For  
more information, refer to TPS659037 User's Guide to Power AM572x and AM571x.  
5.4.4 Startup Timing and RESET_OUT Generation  
The total start-up time of the TPS659037 device from the first supply insertion until the release of reset to  
the processor is defined by the boot time of internal resources as well as the OTP defined boot sequence.  
Following figure shows the power up sequence timing and the generation of the RESET_OUT signal.  
66  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
VCC1  
VRTC  
RC 32kHz  
VIO  
td(1)  
td(2)  
16.384-MHz oscillator  
clock output  
1st rail in power  
sequence  
td(3)  
RESET_OUT  
5-20. Startup Timing Diagram  
The td(1) time is the delay between VCC1 crossing the POR threshold and VIO (first rail in the power  
sequence) rising up. The td(1) time must be at least 6 ms. If the time from VCC to VIO is less than 6 ms,  
the VIO buffers are supplied while the OTP is still being initialized, which could cause glitches on any VIO  
output buffer. Supplying VIO at least 6 ms after supplying VCC makes sure that the OTP is initialized and  
the output buffers are held low when VIO is supplied. The VIO_IN pin may be supplied before or after the  
first rail in the power sequence is enabled, as long as it is at least 6 ms after VCC.  
The td(2) time is the internal 16.384-MHz crystal oscillator start-up time, or the external 32-kHz clock input  
availability delay time.  
The td(3) time is the delay between the power up sequence start and RESET_OUT release. RESET_OUT  
is released when the power up sequence is complete and one of the following:  
The 16.384-MHz clock is stabilized if the 16.384-MHz crystal is present and the oscillator is enable.  
The external 32-kHz clock is stabilized and the 16.384-MHz oscillator is bypassed.  
The GATE_RESET_OUT_OTP bit is used to allow the TPS659037 device to power up without the  
presence of the 16.384-MHz crystal nor the external 32-kHz clock input.  
The duration of the power-up sequence depends on OTP programming; average value is about 10 ms.  
5.4.5 Power On Acknowledge  
The TPS659037 device is designed to support the following power on acknowledge modes:  
POWERHOLD mode and AUTODEVON mode.  
5.4.5.1 POWERHOLD Mode  
In POWERHOLD mode, the acknowledge of the power on is achieved through a dedicated pin,  
POWERHOLD. Upon receipt of an ON request, the TPS659037 device initiates the power-up sequence  
and asserts the RESET_OUT pin high when it is in the ACTIVE state (reset released). While in the  
ACTIVE state, the device remains active for 8 s and then automatically shuts down. During this time-  
frame, to keep the device active, the host processor must assert and keep the POWERHOLD pin high. If  
the POWERHOLD pin is then set back to low, it is interpreted as an OFF request by the TPS659037  
device.  
5-21 shows the POWERHOLD mode timing diagrams.  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
67  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
Switch-ON event  
Device switch off starts  
with no delay  
Device maintained ACTIVE for  
8 seconds  
Power-up sequence  
RESET_OUT  
POWERHOLD  
5-21. POWERHOLD Mode Timing Diagrams  
5.4.5.2 AUTODEVON Mode  
In this mode, at the end of the power-up sequence, the register bit DEV_CTRL.DEV_ON is automatically  
set to 1 and the TPS659037 device remains in its ACTIVE state until this bit is cleared by the host  
processor.  
5-22 and 5-23 show the AUTODEVON mode timing diagrams.  
Switch-on event  
Device maintained ACTIVE for  
8 seconds  
Device switch off starts  
with no delay  
Power-up sequence  
RESET_OUT  
DEV_ON  
I2C-SPI access  
5-22. AUTODEVON Mode Timing Diagrams  
The DEV_ON bit can also be configured so that it is not auto-updated (set to 1) at the end of the power-up  
sequence. In this case, the TPS659037 device behaves similarly to the POWERWHOLD mode, except the  
host has control over it using the DEV_CTRL.DEV_ON register bit instead of the POWERHOLD pin.  
Therefore, to keep the TPS659037 device active, the host must set and keep this bit at 1.  
Switch-on event  
Device maintained ACTIVE for  
8 seconds  
Device switch off starts  
with no delay  
Power-up sequence  
RESET_OUT  
DEV_ON  
I2C-SPI access  
I2C-SPI access  
5-23. DEV_ON Mode Timing Diagrams  
68  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
5.4.6 BOOT Configuration  
All of the device resource settings are stored under the form of registers. Therefore, any platform-related  
settings are linked to an action altering these registers. This action can be a static update (register  
initialization value) or a dynamic update of the register (either from the user or from a power sequence).  
Resources and platform settings are stored in nonvolatile memory (OTP):  
Static platform settings:  
These settings define, for example, SMPS or LDO default voltages, GPIO functionality, and the  
device switch-on events. Part of the static platform settings can have two different values, and  
these values are selected with the BOOT0 pin. Static platform settings can be overwritten by a  
power sequence or by the user.  
Sequence platform settings:  
These settings define the TPS659037 device power sequences between state transitions, for  
example, the OFF2ACT sequence when transitioning from OFF mode to ACTIVE mode. Each  
power sequence is composed of several register accesses that define which resources (and their  
corresponding registers) must be updated during the respective state transition. Three different  
sequences can be defined with the BOOT0 and BOOT1 pins. These settings can be overwritten by  
the user when the power sequence completes execution.  
Platform settings  
are modifiable by  
the MCU during an  
OFF, ACTIVE, or  
SLEEP transition  
Static Platform Settings  
(Default configuration  
for all boot, I/O mux,  
default, voltage, and  
others)  
Reload during the  
OFF state transition  
(According to the  
respective reset domain,  
SWORST and HWRST  
Power IC  
Selectable Platform  
Settings  
Switch ON event  
Resources  
configuration  
and control  
registers  
Initialization occurs  
at reset  
RD  
BOOT0  
Sequence Platform  
Settings  
(State transition  
micro program)  
The register updates during  
OFF, ACTIVE, and  
RD  
SLEEP transitions  
Voltage modification,  
resource enable  
or disable  
MCU  
BOOT0  
BOOT1  
5-24. Boot Pin Control  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
69  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
5.4.6.1 Boot Pin Selection  
5-14 lists the boot pins associated configurations.  
Generally two of the three power sequence definitions are small modifications from the main  
sequence to the respective OTP memory size.  
5-14. Boot Pin Associated Configurations  
BOOT0  
BOOT1  
OTP CONFIGURATION  
POWER SEQUENCE SELECTOR  
0
0
1
1
0
1
0
1
Set_0  
Set_0  
Set_1  
Set_1  
Sel_0  
Sel_1  
Sel_2  
Sel_2  
The BOOT0 and BOOT1 pins must be grounded or pulled up, but the pins must not be unconnected (high  
impedance).  
The BOOT0 pin is used to select between two different OTP sets (Set_0 and Set_1) of device  
configuration (referred to as selectable platform settings in 5-24). For list of OTP programmable  
parameters with programmed values refer to the Application Note of the relevant part number.  
The respective VSEL[6:0] bit field in the SMPSn_VOLTAGE and SMPSn_FORCE registers  
is mapped on a same OTP memory location, meaning that they are loaded at reset with the  
same value and that the BOOT0 pin changes the setting for both of them.  
The BOOT0 pin can also be used with the BOOT1 pin as static selectors during execution of the power  
sequence. This is intended to provide a possibility from within a static power sequence, to branch to  
different instructions. This allows choosing power sequences (or subpart of power sequences) based on  
BOOT pins without altering power sequences themselves in OTP.  
5.4.7 Reset Levels  
The TPS659037 device resource control registers are defined by three categories:  
POR registers  
HW (HARDWARE) registers  
SWO (SWITCHOFF) registers  
These registers are associated to three levels of reset as described below:  
Power-on reset (POR)  
Power-on reset happens when the TPS659037 device gets its supplies and transition from the  
NOSUPPLY state to the BACKUP state. This is the global device reset.  
Additionally, SMPS_THERMAL_STATUS, SMPS_SHORT_STATUS,  
SMPS_POWERGOOD_MASK, LDO_SHORT_STATUS and SWOFF_STATUS registers are in  
POR domain. This list is indicative only.  
HWRST – Hardware reset  
Hardware reset happens when any OFF request is configured to generate a hardware reset. This  
reset triggers a transition to the OFF state from either the ACTIVE or SLEEP state (execute either  
the ACT2OFF or SLP2OFF sequence).  
70  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
SWORST – Switch-off reset  
Switch-off reset happens when any OFF request is configured to not generate a hardware reset.  
This reset acts as the HWRST, except only the SWO registers are reset. The device goes in the  
OFF state, from either ACTIVE or SLEEP, and therefore executes the ACT2OFF or SLP2OFF  
sequence.  
Power resource control registers for SMPS and LDO voltage levels and operating mode control are  
in SWORST domain. Additionally some registers control the 32-kHz, REGENx and SYSENx,  
watchdog, external charger control, and VSYS_MON comparator. This list is indicative only.  
5-15 lists the reset levels, and 5-25 shows the reset levels versus registers.  
5-15. Reset Levels  
LEVEL  
RESET TAG  
POR  
REGISTERS AFFECTED  
COMMENT  
0
POR, HW, SWO  
This reset level is the lowest level, for which all registers are reset.  
During hardware reset (HWRST), all registers are reset except the  
POR registers.  
1
2
HWRST  
HW, SWO  
SWO  
SWORST  
Only the SWO registers are reset.  
POR reset  
HWRST reset  
SWORST reset  
POR registers  
HW registers  
SWO registers  
5-25. Reset Levels versus Registers  
5.4.8 Warm Reset  
The TPS659037 device can execute a warm reset. The main purpose of this reset is to recover the  
TPS659037 device from a locked or unknown state by reloading the default configuration. The warm reset  
is triggered by the NRESWARM pin. During a warm reset, the OFF2ACT sequence is executed regardless  
of the actual state (ACTIVE, SLEEP) and the TPS659037 device returns to or remains in the ACTIVE  
state. Resources that are not part of the OFF2ACT sequence are not impacted by warm reset and  
maintain the previous state. Resources that are part of power-up sequence go to ACTIVE mode and the  
output voltage level is reloaded from OTP or kept in the previous value depending on the WR_S bit in the  
SMPSx_CTRL register or the LDOx_STRL register.  
5.4.9 RESET_IN  
RESET_IN is a gating signal for on request and causes a switch-off event (Cold Reset or Shutdown). 表  
5-11 shows that the RESET_IN behavior is programmable.  
5.4.10 Watchdog Timer (WDT)  
The watchdog timer has two modes of operation, periodic mode and interrupt mode.  
In periodic mode, an interrupt is generated with a regular period N that is defined by the  
WATCHDOG.TIMER setting. This interrupt is generated at the beginning of the period (when the  
watchdog internal counter equals 1). The IC initiates a shutdown at the end of the period (when the  
internal counter has reached N) only if the interrupt has not been cleared within the defined time frame (0  
to N). In this mode, when the interrupt is cleared, the internal counter is not reset. The counter continues  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
71  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
to count until it reaches the maximum value (defined by the TIMER setting) and automatically rolls over to  
0 in order to start a new counting period. Regardless of when the interrupt is cleared within a given period  
(N), the next interrupt is generated only when the ongoing period completes (reaches N). The internal  
watchdog counter is initialized and kept at 0 as long as the RESET_OUT pin is low. The counter begins  
counting as soon as the RESET_OUT pin is released.  
In interrupt mode, any interrupt source resets the watchdog counter and begins the counting. If the  
sources of the interrupts are not cleared (INT line released) before the end of the predefined period N (set  
by WATCHDOG.TIMER setting) then the device initiates a shutdown. If the sources of the interrupts are  
cleared within the predefined period, then the watchdog counter is discarded (DC) and no shutdown  
sequence is initiated.  
By default, the watchdog is disabled.  
5-27 and 5-26 show the watchdog timings.  
Watchdog  
Internal Counter  
1
...  
i
...  
N
0
1
...  
...  
N
0
0
Watchdog IT cleared  
New Watchdog IT  
New IT (reset WDT counter)  
IT not cleared in  
allowed timeframe  
INT pin (active high)  
RESET_OUT pin  
Device switch off  
5-26. Watchdog Timing Diagrams—Periodic Mode  
Watchdog  
Internal Counter  
...  
i
dc  
dc  
0
0
X
0
1
1
...  
N
IT not cleared in  
allowed timeframe  
New IT (reset WDT counter)  
New IT (reset WDT counter)  
INT pin (active high)  
IT Cleared  
Device switch off  
RESET_OUT pin  
5-27. Watchdog Timing Diagrams—Interrupt Mode  
5.4.11 System Voltage Monitoring  
The power state-machine of the TPS659037 device is controlled by comparators monitoring the voltage on  
the VCC_SENSE and VCC1 pins. For electrical parameters see Section 4.14.  
POR:  
When the supply at the VCC1 pin is below the POR threshold, the TPS659037 device is in  
the NO SUPPLY state. All functionality, including RTC, is off. When the voltage in VCC1  
rises above the POR threshold, the device enters from the NO SUPPLY to the BACKUP  
state.  
VSYS_LO: When the voltage on VCC1 pin rises above VSYS_LO, the TPS659037 device enters from  
the BACKUP state to the OFF state. When the device is in the ACTIVE, SLEEP, or OFF  
state and the voltage on VCC1 decreases below VSYS_LO, the device enters BACKUP  
mode. When the device transitions from the ACTIVE state to the BACKUP state, all active  
SMPS and LDO regulators, except LDOVRTC, are disabled simultaneously. When operating  
with a 16.384-MHz crystal, the regulators are immediately disabled after VCC1 becomes less  
than VSYS_LO. When operating without a crystal, a 180-µs deglitch time occurs after VCC1  
72  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
becomes less than VSYS_LO and before the regulators are disabled. The VSYS_LO level is  
OTP programmable.  
For silicon revision 1.3 or earlier, when operating without a crystal, transitioning from the  
ACTIVE state to the BACKUP state using VSYS_LO while the outputs are active must  
always be followed by a POR event to make sure the device is reset properly. See 5.3.10  
to identify the silicon version in the device.  
VSYS_MON: During power up, the VSYS_HI OTP value is used as a threshold for the VSYS_MON  
comparator which is gating the PMIC start-up (as a threshold for transition from OFF to  
ACTIVE state). The VSYS_MON comparator monitors the VCC_SENSE pin. After power up,  
software can configure the comparator threshold in the VSYS_MON register.  
5-28 shows a block diagram of the system comparators.  
OTP bits  
Register bits  
VCC1  
VSYS_LO  
VSYS_LO  
VCC_SENSE  
VSYS_MON  
VSYS_MON  
Default VSYS_HI  
VBUS_SENSE  
VBUS_DET  
VBUS_WKUP_UP  
VSYS_HI  
VSYS_MON  
VSYS_LO  
INT  
ACTIVE and SLEEP  
STATE  
OFF  
BACKUP  
5-28. System Comparators  
To use comparators in the system:  
The VSYS_LO and VSYS_HI thresholds are defined in the OTP. Software cannot change these levels.  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
73  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
After start-up, the VSYS_MON comparator is automatically disabled. Software can select a new  
threshold level using the VSYS_MON register and enable the comparator.  
In order for the same coding on the rising and falling edge, the VSYS_MON comparator does not  
include hysteresis and therefore can generate multiple interrupts when the voltage level is at the  
threshold level. New interrupt generation has a 125-μs debounce time which allows the software to  
mask the interrupt and update the threshold level or disable the comparator before receiving a new  
interrupt.  
5-29 shows additional details on the VSYS_MON comparator. When the VSYS_MON comparator is  
enabled, and the internal buffer is bypassed, input impedance at the VCC_SENSE pin is 500 kΩ (typical).  
When the comparators are disabled, the VCC_SENSE pin is at high impedance mode. If GPADC is  
enabled to measure channel 6 or channel 7, 40 kΩ is added in parallel to the corresponding comparator.  
See 5-3 for the GPADC input range.  
To enable system voltage sensing above 5.25 V, an external resistive divider can be used. Internal buffers  
are enabled by setting OTP bit HIGH_VCC_SENSE = 1 to provide high impedance for the external  
resistive dividers. The maximum input level for the internal buffer is VCC1 – 1 V.  
HIGH_VCC_SENSE  
0 : buffer bypassed (not enabled)  
1 : buffer enabled, bypass disbaled (Hi-Z at SENSE input)  
VCC1  
VCC_SENSE  
1
0
VSYS_MON  
VSYS_MON  
Default VSYS_HI  
500 k  
HIGH_VCC_SENSE  
30 kΩ  
10 kΩ  
Scale down,  
divide by 4  
GPADC  
GPADC_IN7  
5-29. VSYS_MON Comparator Details  
5.4.11.1 Generating a POR  
This section applies to silicon revisions 1.3 or earlier. Newer silicon revisions do not have this  
requirement because the VCC is continuously sampled. See 5.3.10 to identify the silicon  
version in the device.  
74  
Detailed Description  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
To generate a POR from a falling VCC, VCC is sampled every 1 ms and compared to the POR threshold.In  
case VCC is discharged and resupplied quickly, a POR may not be reliably generated if VCC crosses the  
POR threshold between samples. Another way to generate POR is to discharge the LDOVRTC regulator  
to 0 V after VCC is removed. With no external load, this could take 3 s for the LDOVRTC output to  
discharge to 0 V. The PMIC should not be restarted after VCC is removed but before LDOVRTC is  
discharged to 0 V. If necessary, TI recommends to add a pulldown resistor from the LDOVRTC output to  
GND with a minimum of 3.9 kΩ to speed up the LDOVRTC discharge time. For more details, refer to the  
POR Generation in TPS65903x and TPS6591x Devices application report.  
The value of the pulldown resistor should be chosen based on the desired discharge time and acceptable  
current draw in the OFF state, but no greater than 0.5 mA. Use 公式 8 to calculate the pulldown resistor  
based on the desired discharge time.  
RPD (kΩ) = tdischarge (ms) / [CO (µF) × 3]  
where  
tdischarge = discharge time of the VRTC output  
RPD = pulldown resistance from the VRTC output to GND  
CO = output capacitance on the VRTC line (typically 2.2 µF)  
(8)  
Because LDOVRTC is always on when VCC is supplied, additional current is drawn through the pulldown  
resistor. The output current of LDOVRTC while the PMIC is in OFF state should not exceed 0.5 mA. Use  
公式 9 to calculate the pulldown current.  
IPD = 1.8 V / RPD  
where  
IPD = current through the pulldown resistor  
RPD = pulldown resistance from the VRTC regulator  
(9)  
版权 © 2014–2019, Texas Instruments Incorporated  
Detailed Description  
75  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
6 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
6.1 Application Information  
The TPS659037 device is integrated power management integrated circuits (PMIC), both available in a  
169-pin, 0.8-mm pitch, 12-mm × 12-mm nFBGA package. It has seven configurable step-down converter  
rails, with the ability to combine power rails and supply up to 9 A of output current in multi-phase mode.  
The TPS659037 device also has seven LDOs. The device has a 12-bit GPADC with three external  
channels, eight configurable GPIOs, two I2C interface channels or one SPI channel, a real-time clock  
module with calendar function, a PLL for external clock sync and phase delay capability, and a  
programmable power sequencer and control for supporting different processors and applications.  
As the TPS659037 device is highly integrated PMIC device, users must take necessary actions to ensure  
the PMIC is operating under the recommended operating conditions to ensure desired performance from  
the device. Additional cooling strategies may be necessary to maintain the junction temperature below  
maximum limit allowed for the device. To minimize the interferences when turning on a power rail while  
the device is in operation, optimal PCB layout and grounding strategy are essential and are recommended  
in 8. In addition, users can take steps such as turning on additional rails only when the systems is  
operating in light load condition.  
The following sections provides the typical application use case with the recommended external  
components and layout guidelines. For application design guidance and cross checks, refer to the  
TPS659037 Design Guide and the TPS659037 Design Checklist.  
6.2 Typical Application  
Following the typical application schematic and the list of recommended external components will allow  
the TPS659037 device to achieve accurate and stable regulation with its SMPS and LDO outputs. These  
power sources are internally compensated and have been designed to operate most effectively with the  
component values listed in 6-2. Deviating from these values is possible but is highly discouraged.  
76  
Application and Implementation  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
VCC1  
VSYS  
VSYS  
Processor  
MPU  
TPS659037  
SMPS12  
VCC_SENSE  
FDBK  
VBAT_SENSE  
PWRON  
6 A  
FDBK_GND  
GPU and Video  
CORE  
FDBK  
SMPS45  
4 A  
RPWRON(1)  
RESET_IN(1)  
BOOT0  
FDBK_GND  
SMPS6  
3 A  
FDBK  
BOOT1  
GPIO_4  
SMPS8  
1A  
DSPEVE  
1.8-V IO  
3.3-V buck  
SYSEN1  
SYSEN2  
3V3  
VIO_IN  
1.8-V IO  
SMPS7  
1.8 V, 2 A  
GPIO_6  
DDR supply  
REGEN1  
SMPS9  
3.3 V, 1 A  
3.3-V Serial Interfaces  
VDDA_RTC  
GPIO_1  
GPIO_2  
LDOVRTC  
1.8 V, 25 mA  
ENABLE1(1)  
LDO9_IN  
LDO9  
1 V, 50 mA  
3V3  
VDD_RTC  
LDOLN_IN  
LDO12_IN  
LDOLN  
1.8 V, 50 mA  
OSC, slicer, DPLL  
VSYS  
VSYS  
LDO1  
1.p V, 0.3 A  
Digital Core  
RTC IO  
LDO2  
3.3 V, 0.3 A  
LDO34_IN  
LDO3  
1.8 V, 0.2 A  
1.8-V PHY Supply  
1.8-V Interface  
VSYS  
LDO4  
1.8 V, 0.2 A  
LDO7_LDOUSB_IN  
VSYS  
VBUS  
LDOUSB  
3.25 V, 0.1 A  
USB PHY  
LDOUSB_IN2  
GPADC_IN0(1)  
GPADC_IN1(1)  
GPADC_IN2(1)  
I2C1_SCL_SCK  
I2C1_SDA_SDI  
I2C2_SCL_SCE  
I2C2_SDA_SDO  
CNTL I2C  
SR I2C  
GPADC_VREF(1)  
VBUS  
INT  
INT  
NSLEEP  
PREQ1  
PORZ  
RESET_OUT  
NRESWARM  
POWERDOWN  
POWERGOOD  
NRESWARM  
GPIO_5  
GPIO_7  
CLK32KGO1V8  
GPIOx  
POWERHOLD  
VBUSDET  
GPIO_1  
USB PHY  
32-kHz IN  
CLK32KGO  
SMPS3  
1.8 V,3 A  
DDR3  
Copyright © 2017, Texas Instruments Incorporated  
(1) Input can be left floating if not used.  
(2) Processor connections are OTP dependent. For OTP-specific connections, refer to the TPS659037 User's Guide to Power AM572x  
and AM571x.  
6-1. Application Schematic  
版权 © 2014–2019, Texas Instruments Incorporated  
Application and Implementation  
77  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
VIO  
VSYS  
VSYS  
C17  
C6  
C8  
C40  
C29  
C37  
VSYS  
Boot  
mode  
selection  
BOOT0  
BOOT1  
SMPS1_IN  
SMPS1_SW  
SMPS1_GND  
VSYS  
SMPS1  
3 A  
(DVS)  
[Slave]  
L2  
PWRON  
C10  
RESET_IN  
Control  
inputs  
PWRDOWN  
PWRON  
External power on  
External power  
request  
Dual-Phases  
VSYS  
L3  
SMPS2_IN  
Power  
Management  
LDOVANA  
LDOVRTC  
ENABLE1  
NSLEEP  
Test and  
program  
SMPS2_SW  
SMPS2  
3 A  
C11  
C13  
SMPS1_2_FDBK  
NRESWARM  
EN  
VSEL  
RAMP  
(DVS)  
[Master]  
SMPS1_2_FDBK_GND  
SMPS2_GND  
I2C1_SCL_CLK  
I2C1_SDA_SDI  
I2C2_SCL_SCE  
I2C2_SDA_SDO  
C12  
I2C CNTL,  
I2C DVS,  
or SPI  
TPS659037  
Triple-Phases  
JTAG  
DFT  
VSYS  
L4  
SMPS3_IN  
SMPS3_SW  
Application  
Processor  
SMPS3  
3 A  
[Multi Or  
Stand-alone]  
EN  
VSEL  
RESET_OUT  
SMPS3_FDBK  
SMPS3_GND  
OTP controller  
OTP memory  
C14  
C16  
Control  
outputs  
INT  
REGEN1  
Registers  
Internal  
Interrupt  
events  
VSYS  
L6  
SMPS4_IN  
SMPS4_SW  
SMPS4_GND  
VCC1  
POR  
SMPS4  
2 A  
(DVS)  
[Slave]  
Programmable  
power sequencer  
controller  
POWERGOOD  
GPIO_0  
VCC1  
VSYS_LO  
C19  
VBUSDET  
ECO  
PWM  
DVS  
GPIO_1  
VCC_SENSE  
VSYS_MON  
Dual-Phases  
VSYS  
L7  
SMPS5_IN  
REGEN2  
GPIO_2  
GPIO_3  
GPIO_4  
SMPS5_SW  
VBUS_SENSE  
Switch ON and  
OFF  
SMPS5  
2 A  
VBUS_WKUP_UP  
C20  
C24  
SMPS4_5_FDBK  
EN  
VSEL  
RAMP  
WDT  
(DVS)  
[Master]  
GPIO  
signals  
and  
SMPS4_5_FDBK_GND  
SMPS5_GND  
Thermal  
monitoring  
SYSEN1  
C23  
RTC  
Thermal  
shutdown  
GPIO_6  
GPIO_7  
GPIO_5  
controls  
Triple-Phases  
SYSEN2  
VSYS  
L9  
SMPS7_IN  
SMPS7_SW  
SMPS7  
2 A  
[Multi Or  
Stand-alone]  
Hot die detection  
EN  
VSEL  
POWERHOLD  
SMPS7_FDBK  
SMPS7_GND  
C27  
C28  
CLK32KGO1V8  
EN  
VSEL  
RAMP  
SMPS6_IN  
VSYS  
L8  
16-MHz  
Oscillator  
OSC16MIN  
SMPS6  
2 A  
(DVS)  
SMPS6_SW  
Internal  
SMPS6_FDBK  
Y1  
C21  
RC  
C26  
C25  
OSC16MOUT  
RC  
32 kHz  
Oscillator  
SMPS6_GND  
C22  
OSC16MCAP  
Output  
Buffers  
EN  
VSEL  
RAMP  
SMPS8_IN  
VSYS  
L10  
CLK32KGO  
SYNCDCDC  
SMPS8  
1 A  
(DVS)  
SMPS8_SW  
C18  
SMPS8_FDBK  
C43  
C42  
SMPS8_GND  
SMPS8_IN  
GPADC_IN0  
GPADC_IN1  
GPADC_IN2  
GPADC_VREF  
12-bit  
SD-  
ADC  
VSYS  
L11  
EN  
VSEL  
SMPS8_SW  
SMPS8_FDBK  
SMPS8_GND  
SMPS9  
1 A  
(Optional)  
C45  
C44  
VBG  
Bypass  
LDO9  
50 mA  
Reference  
and bias  
LDOLN  
50 mA  
LDO1  
300 mA  
LDO2  
300 mA  
LDOUSB  
100 mA  
LDO3  
200 mA  
LDO4  
200 mA  
C9  
REFGND1  
Grounds  
VSYS/  
Preregulated  
(VPRE)  
C31  
C29  
C30  
C32  
C33  
C41  
C34  
C1 C2 C3 C4 C5  
Copyright © 2017, Texas Instruments Incorporated  
6-2. Typical Application Schematic  
78  
Application and Implementation  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
6.2.1 Design Requirements  
For this design example, use the parameters listed in 6-1.  
6-1. Design Parameters  
DESIGN PARAMETER  
Supply voltage  
Switching frequency  
SMPS12 voltage  
SMPS12 current  
SMPS3 voltage  
SMPS3 current  
SMPS45 voltage  
SMPS45 current  
SMPS6 voltage  
SMPS6 current  
SMPS7 voltage  
SMPS7 current  
SMPS8 voltage  
SMPS8 current  
SMPS9 voltage  
SMPS9 current  
LDO1 voltage  
TPS6590378ZWSR  
3.3 V to 5 V  
2.2 MHz  
1.15 V  
TPS6590379ZWSR  
3.8 V to 5 V  
2.2 MHz  
1.15 V  
6 A  
6 A  
1.35 V or 1.5 V  
3 A  
1.35 V or 1.5 V  
3 A  
1.06 V  
1.06 V  
4 A  
4 A  
1.15 V  
1.06 V  
3 A  
3 A  
0.7 V to 3.3 V  
2 A  
1.15 V  
2 A  
1.06 V  
1.06 V  
1 A  
1 A  
0.7 V to 3.3 V  
1 A  
3.3 V  
1 A  
3.3 V  
3.3 V  
LDO1 current  
300 mA  
3.3 V  
300 mA  
1.8 V  
LDO2 voltage  
LDO2 current  
300 mA  
1.8 V  
300 mA  
1.8 V  
LDO3 voltage  
LDO3 current  
200 mA  
1.8 V  
200 mA  
1.8 V  
LDO4 voltage  
LDO4 current  
200 mA  
1.05 V  
200 mA  
1.05 V  
50 mA  
1.8 V  
LDO9 voltage  
LDO9 current  
50 mA  
LDOLN voltage  
LDOLN current  
LDOUSB voltage  
LDOUSB current  
1.8 V  
50 mA  
50 mA  
3.3 V  
3.3 V  
100 mA  
100 mA  
版权 © 2014–2019, Texas Instruments Incorporated  
Application and Implementation  
79  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
6.2.2 Detailed Design Procedure  
6.2.2.1 Recommended External Components  
6-2. Recommended External Components for Commercial Usage  
REFERENCE COMPONENTS  
COMPONENT(1)  
MANUFACTURER  
PART NUMBER  
VALUE  
EIA SIZE CODE  
SIZE (mm)  
INPUT POWER SUPPLIES EXTERNAL COMPONENTS  
C7, C8  
VSYS (VCC1) tank capacitor(2)  
Decoupling capacitor  
Murata  
Murata  
GRM188R60J106ME84  
GRM155R61C104KA88  
10 µF, 6V3  
0603  
0402  
1.6 × 0.8 × 0.8  
1 × 0.5 × 0.5  
C6  
100 nF, 6V3  
CRYSTAL OSCILLATOR EXTERNAL COMPONENTS  
Y1  
Crystal  
Epson  
TXC  
FA-238  
16.384 MHz  
16.384 MHz  
10 pF, 50V  
2.2 µF, 6V3  
2.2 µF, 6V3  
-
3.2 × 2.5 × 0.6  
3.2 × 2.5 × 0.8  
1 × 0.5 × 0.5  
1 × 0.5 × 0.5  
1 × 0.5 × 0.5  
7V-16.384MAAE-T  
GRM1555C1H100JA01  
GRM155R60J225ME15  
C1005X5R0J225M  
-
C21, C22  
C18  
Crystal decoupling  
Murata  
Murata  
TDK  
0402  
0402  
0402  
Crystal supply decoupling  
BANDGAP EXTERNAL COMPONENTS  
C9  
Capacitor  
Murata  
GRM155R61C104KA88  
100 nF, 6V3  
0402  
1 × 0.5 × 0.5  
SMPS EXTERNAL COMPONENTS  
C10, C12, C14, C19, C23, C26, C27, C43, C45  
C11, C13, C16, C20, C24, C25, C28, C42, C44  
Input capacitor  
Murata  
Murata  
TOKO  
Vishay  
GRM155R60J475ME47  
GRM21BR60J476ME15  
DFE252010C-1RON  
4.7 µF, 6V3  
47 µF, 6V3  
1 µH  
0402  
0805  
2520  
1 × 0.5 × 0.5  
2 × 1.25 × 1.25  
2.5 × 2 × 1  
Output Capacitance for all SMPS  
L2, L3, L4, L6, L7, L8, L9, L10, L11  
LDO EXTERNAL COMPONENTS  
C1, C2, C3, C4, C5  
Inductor (BUCK)  
IHLP1616ABER1R0M11  
1 µH  
4 × 4.4 × 1.2  
Murata  
TDK  
GRM155R60J225ME15  
C1005X5R0J225M  
2.2 µF, 6V3  
2.2 µF, 6V3  
2.2 µF, 6V3  
2.2 µF, 6V3  
0402  
0402  
0402  
0402  
1 × 0.5 × 0.5  
1 × 0.5 × 0.5  
1 × 0.5 × 0.5  
1 × 0.5 × 0.5  
Input capacitor  
Murata  
TDK  
GRM155R60J225ME15  
C1005X5R0J225M  
C29, C30, C31, C32, C33, C34, C37, C40, C41  
VBUS EXTERNAL COMPONENTS  
C17  
Output capacitor  
Murata  
Murata  
GRM188R71C104KA01  
GRM155R61C104KA88  
100 nF 16 V  
100 nF 16 V  
0603  
0402  
1.6 × 0.8 × 0.8  
1 × 0.5 × 0.5  
VBUS decoupling capacitor  
(1) Component minimum and maximum tolerance values are specified in the electrical parameters section of each IP.  
(2) The tank capacitors filter the VSYS/VCC1 input voltage of the LDO and SMPS core architectures.  
80  
Application and Implementation  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
6.2.2.2 SMPS Input Capacitors  
All SMPS inputs require an input decoupling capacitor to minimize input ripple voltage. TI recommends  
using a 10-V, 4.7-µF capacitor for each SMPS. Depending on the input voltage of the SMPS, a 6.3-V or  
10-V capacitor can be used. See 6-2 for the specific part number of the input capacitor that is  
recommended.  
For optimal performance, the input capacitors should be placed as close to the SMPS input pins as  
possible. See 8.1 for more information about component placement.  
6.2.2.3 SMPS Output Capacitors  
All SMPS outputs require an output capacitor to hold up the output voltage during a load step or changes  
to the input voltage. To ensure stability across the entire switching frequency range, the TPS659037  
device requires an output capacitance value between 33 µF and 57 µF. To meet this requirement across  
temperature and DC bias voltage, TI recommends using a 47-µF capacitor for each SMPS. It is important  
to remember that each SMPS requires an output capacitor, not just each output rail. For example,  
SMPS12 is a dual phase regulator and an output capacitor is required for the SMPS1 output and the  
SMPS2 output. Note, this requirement excludes any capacitance seen at the load and only refers to the  
capacitance seen close to the device. Additional capacitance placed near the load can be supported, but  
the end application or system should be evaluated for stability. See 6-2 for the specific part number of  
the recommended output capacitor.  
6.2.2.4 SMPS Inductors  
Again, to ensure stability across the entire switching frequency range, TI recommends using a 1-µH  
inductor on each SMPS. It is important to remember that each SMPS requires an inductor, not just each  
output rail. For example, SMPS12 is a dual phase regulator and an inductor is required for the  
SMPS1_SW pins and the SMPS2_SW pins. See 6-2 for the specific part number of the recommended  
inductor.  
6.2.2.5 LDO Input Capacitors  
All LDO inputs require an input decoupling capacitor to minimize input ripple voltage. TI recommends  
using a 2.2-µF capacitor for each LDO. Depending on the input voltage of the LDO, a 6.3-V or 10-V  
capacitor can be used. See 6-2 for the specific part number of the input capacitor that is recommended.  
For optimal performance, the input capacitors should be placed as close to the LDO input pins as  
possible. See 8.1 for more information about component placement.  
6.2.2.6 LDO Output Capacitors  
All LDO outputs need an output capacitor to hold up the output voltage during a load step or changes to  
the input voltage. Using a 2.2-µF capacitor for each LDO output is recommended. Note, this requirement  
excludes any capacitance seen at the load and only refers to the capacitance seen close to the device.  
Additional capacitance placed near the load can be supported, but the end application or system should  
be evaluated for stability. See 6-2 for the specific part number of the recommended output capacitor.  
6.2.2.7 VCC1  
VCC1 is the supply for the analog input voltage of the device. This pin requires a 10-µF decoupling  
capacitor.  
Texas Instruments recommends to always power down the TPS659037 before removing power from  
VCC1. If the input voltage to the device is removed while the device is ACTIVE, the device will shut off  
when VCC1 reaches the VSYS_LO threshold. As mentioned in the 5.4.11 section, once VCC1 reaches  
VSYS_LO, there is about 180 us delay before all the output rails are disabled simultaneously.  
There are two scenarios to consider in the system-level design in the event of unexpected loss of power.  
版权 © 2014–2019, Texas Instruments Incorporated  
Application and Implementation  
81  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
6.2.2.7.1 Meeting the Power Down Sequence  
To prevent a sequencing violation, it is important to block reverse current and implement a disable signal  
to the PMIC. A Schottky diode can block reverse current when the input is removed. Additionally,  
capacitors can help maintain the input voltage level while the power-down sequence occurs. Depending  
on the system design, there are a couple ways to implement a disable signal.  
For a system where the TPS659037 is powered by the system input voltage, a supervisor can be used to  
create a logic signal, indicating if the power is at a good level. An example of this solution is shown in 图  
6-3.  
VIN  
(5 V)  
VCC  
PMIC  
GND  
Supervisor  
ENABLE  
6-3. Supporting Uncontrolled Power Down When the PMIC is Supplied by the System Input Voltage  
An alternative solution is possible when a pre-regulator is present. In the case of the pre-regulator, the  
pre-regulator output capacitance can also act as the energy storage to maintain VCC1 for the necessary  
time. The total supply capacitance should be calculated to support the worst-case leakage current during  
power down so that the voltage is maintained until the power-down sequence completes. 6-4 shows an  
example of this configuration.  
VIN  
(12 V)  
5 V  
Buck  
VCC  
PGOOD  
PMIC  
GND  
ENABLE  
6-4. Supporting Uncontrolled Power Down when the PMIC is Supplied by a Preregulator  
To determine the capacitance needed at the output of the pre-regulator, use 公式 10. This equation is  
used to ensure that the power down sequence is complete before the device is disabled.  
C = I × ΔT / (VCC1 – VSYS_LO)  
where  
C is total capacitance on VCC1, including pre-regulator output capacitance and PMIC input  
capacitance  
I is the total current on the PMIC input supply  
ΔT is the time it takes the power-down sequence to complete  
VCC1 is the voltage at the VCC1 pin  
VSYS_LO is the threshold where the device is disabled  
(10)  
6.2.2.7.2 Maintaining Sufficient Input Voltage  
In the event of high loading during loss of input voltage, there is a risk to go below the voltage level  
necessary for the internal logic of the device to work properly before the device is disabled. This means  
that when the VCC1 voltage supply level becomes lower than the VSYS_LO threshold, the input voltage  
may continue dropping to very low voltages during the 180 us ±10% delay before the device is disabled.  
82  
Application and Implementation  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
If a large input voltage drop occurs before the device is disabled, the internal logic can no longer properly  
drive the FETs of the SMPS, and it is possible that the high-side FET and low-side FET of the SMPS are  
on at the same time. In the event that the high-side and low-side FETs for an SMPS are on at the same  
time, there is a direct path from SMPSx_IN to SMPSx_GND, allowing cross-conduction and possible  
damage of the device.  
In order to prevent damage or irregular switching behavior, it is important that the voltage at the  
SMPSx_IN pin stays above 1.8 V, including negative transients, before the device is disabled. The  
minimum voltage seen at the SMPSx_IN pin is dependent on VCC1 and the PCB inductance between the  
SMPSx_IN pin and the input capacitor. Use 公式 11 to determine the minimum capacitance needed on  
VCC1 to ensure that the device continues switching properly before it is disabled.  
C = I × ΔT / (VSYS_LO – VCC1MIN  
)
where  
C is total capacitance on VCC1, including pre-regulator output capacitance and PMIC input  
capacitance  
I is the total current on the PMIC input supply  
ΔT is the maximum debounce time after VCC1 = VSYS_LO before the device switches off (198us)  
VSYS_LO is the threshold where the device is disabled  
VCC1MIN is the minimum VCC1 voltage to keep the SMPSx_IN transients above 1.8 V  
(11)  
When measuring the SMPSx_IN and VCC1 during power down, use active differential probes and a high  
resolution oscilloscope (4GS/sec or more). VCC1 can be measured over the 10uF input capacitor.  
However, SMPSx_IN must be measured at the pin in order to measure the transients on this rail  
accurately. To measure SMPSx_IN, place the negative lead of the differential probe at a nearby GND,  
such as the GND of the SMPSx_IN input capacitor. Place the positive lead of the differential probe as  
close as possible to the SMPSx_IN pin. With this set up, verify that SMPSx_IN, including the ripple on this  
signal, does not drop below 1.8V before the SMPS stops switching. See 6-5 for an example of how to  
take this measurement. For ways to decrease the amplitude of the transient spikes, see 8-1 for  
recommended parasitic inductance requirements.  
SMPSx_IN  
VCCA  
1.8 V minimum  
SMPSx_SW  
6-5. Waveform of SMPSx_IN Transients  
6.2.2.8 VIO_IN  
VIO_IN is the supply for the digital circuits inside the TPS659037 device. This pin requires a 0.1-µF  
decoupling capacitor.  
版权 © 2014–2019, Texas Instruments Incorporated  
Application and Implementation  
83  
提交文档反馈意见  
产品主页链接: TPS659037  
 
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
6.2.2.9 16-MHz Crystal  
The TPS659037 device has the ability to accept a 16-MHz crystal input. Providing the 16-MHz crystal  
input to the device allows the output of a stable and accurate 32-kHz clock to be used by the applications  
processor. The crystal input is divided down by 500 internally to produce the 32-kHz output clock. The  
crystal should be connected to the TPS659037 device as shown in 6-6.  
6.3 V  
C1  
OSC16MCAP  
GND  
2.2 µF  
A3  
A2  
OSC16MIN  
V1  
OSC16MOUT  
16.384 MHz  
10 pF  
10 pF  
GND  
GND  
6-6. Crystal Input Configuration  
As shown in 6-6, the OSC16MCAP pin requires a 2.2-µF 6.3-V filtering capacitor near the pin. Also, the  
crystal requires between 9 pF and 11 pF of load capacitance on both pins. To meet this requirement,  
using two 10-pF capacitors is recommended. See 6-2 for the specific load capacitors that are  
recommended.  
The 16-MHz crystal is not required for operation of the TPS659037 device. The OSC16M_CFG OTP bit  
can be set to disable the 16MHz crystal completely, and enable one of the following two alternative  
options for system clock generation:  
A 32-kHz square wave can be supplied to the OSC16MIN pin. This option is typically used in  
applications where the processor requires an accurate system clock and there is one already available  
in the system. In that case, the available 32-kHz clock can be provided to the PMIC and added to the  
boot sequence as an output. In this configuration, the OSC16MOUT and OSC16MCAP pins can be left  
floating, and the internal 16-MHz oscillator is bypassed. Bypassing the 16-MHz oscillator results in a  
lower quiescent current.  
If the application does not require an accurate system clock for the processor, then providing one to  
the PMIC is not required. This option produces a lower quiescent current as seen in Section 4. In this  
configuration, the OSC16MIN pin should be grounded, while the OSC16MOUT and OSCMCAP pins  
can be left floating. Lastly, the GATE_RESET_OUT OTP bit should be used to allow the TPS659037  
device to power up without the presence of the 16.384-MHz crystal nor the 32-kHz clock input.  
Please note that if the OSC16M_CFG OTP bit is set to 0, a 16-MHz crystal must be present for the proper  
operation of the device.  
6.2.2.10 GPADC  
Instructions on how to perform a software conversion with the GPADC:  
1. Enable software conversion mode – GPADC_SW_SELECT.SW_CONV_EN  
2. Select the channel to convert – GPADC_SW_SELECT.SW_CONV0_SEL  
For channel 0, set up the current source in the GPADC_CTRL1 register if needed.  
3. For minimum latency, the GPADC can be set to always on (instead of default enabled from conversion  
request) by GPADC_CTRL1.GPADC_FORCE.  
4. Unmask software conversion interrupt – INT3_MASK.GPADC_EOC_SW  
5. Start conversion – GPADC_SW_SELECT.SW_START_CONV0.  
6. An interrupt is generated at the end of the conversion INT3_STATUS.GPADC_EOC_SW.  
7. Read conversion result – GPADC_SW_CONV0_MSB and GPADC_SW_CONV0_LSB  
8. Expected result = dec(GPADC_SW_CONV0_MSB[3:0].GPADC_SW_CONV0_LSB[7:0])/ 4096 × 1.25  
84  
Application and Implementation  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
× scalar  
Instructions on how to perform an auto conversion with the GPADC:  
1. Select the channel to convert – GPADC_AUTO_SELECT.AUTO_CONV0_SEL  
2. Configure auto conversion frequency – GPADC_AUTO_CTRL.COUNTER_CONV  
3. Set the threshold level for comparison – GPADC_THRESH_CONV0_MSB.THRESH_CONV0_MSB,  
GPADC_THRESH_CONV0_LSB.THRESH_CONV0_LSB  
Level = expected voltage threshold / (1.25 × scalar) × 4096 (in hexadecimal)  
4. Set if the interrupt is triggered when conversion is above or below threshold –  
GPADC_THRESH_CONV0_MSB.THRESH_CONV0_POL  
5. Triggering the threshold level can also be programmed to generate shutdown –  
GPADC_AUTO_CTRL.SHUTDOWN_CONV0  
6. Unmask AUTO_CONV_0 interrupt – INT3_MASK.GPADC_AUTO_0  
7. Enable AUTO CONV0 – GPADC_AUTO_CTRL.AUTO_CONV0_EN  
8. When selected channel crosses programmed threshold, interrupt is generated –  
INT3_STATUS.GPADC_AUTO_0  
9. Conversion results are available – GPADC_AUTO_CONV0_MSB, GPADC_AUTO_CONV0_LSB  
10. If shutdown was enabled, chip switches off after SWOFF_DLY, unless interrupt is cleared  
The example above is for CONV0; a similar procedure applies to CONV1.  
6.2.3 Application Curves  
0.2  
0.16  
0.12  
0.08  
0.04  
0
0.2  
0.16  
0.12  
0.08  
0.04  
0
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.05 V  
VO = 1.2 V  
0
1.5  
3
4.5  
6
7.5  
9
0
1
2
3
4
5
6
Output Current (A)  
Output Current (A)  
D011  
D0112  
VI = 3.8 V  
ƒSW = 2.2 MHz  
VI = 3.8 V  
ƒSW = 2.2 MHz  
6-7. SMPS Load Regulation for 9-A Triple Phase  
6-8. SMPS Load Regulation for 6-A Dual Phase  
版权 © 2014–2019, Texas Instruments Incorporated  
Application and Implementation  
85  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
0.2  
0.16  
0.12  
0.08  
0.04  
0
0.2  
0.16  
0.12  
0.08  
0.04  
0
-0.04  
-0.08  
-0.12  
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 1.05 V  
VO = 1.2 V  
-0.16  
-0.2  
0
0.8  
1.6  
2.4  
3.2  
4
0
0.5  
1
1.5  
2
2.5  
3
Output Current (A)  
Output Current (A)  
D013  
D014  
VI = 3.8 V  
ƒSW = 2.2 MHz  
VI = 3.8 V  
ƒSW = 2.2 MHz  
6-9. SMPS Load Regulation for 4-A Dual Phase  
6-10. SMPS Load Regulation for 3-A Single Phase  
0.2  
0.2  
0.16  
0.12  
0.08  
0.04  
0
0.16  
0.12  
0.08  
0.04  
0
-0.04  
-0.08  
-0.12  
-0.16  
-0.2  
-0.04  
-0.08  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
VO = 1.05 V  
VO = 1.2 V  
VO = 1.8 V  
VO = 2.5 V  
-0.12  
-0.16  
-0.2  
0
0.4  
0.8  
1.2  
1.6  
2
0
0.2  
0.4  
0.6  
0.8  
1
Output Current (A)  
Output Current (A)  
D015  
D016  
VI = 3.8 V  
ƒSW = 2.2 MHz  
VI = 3.8 V  
ƒSW = 2.2 MHz  
6-11. SMPS Regulation for 2-A Single Phase  
6-12. SMPS Load Regulation for 1-A Single Phase  
VO (10 mV/div, AC coupled)  
VO (20 mV/div, AC coupled)  
IO (500 mA/div)  
IO (500 mA/div)  
0.5 mA to 500 mA  
load step,  
0.5 mA to 500 mA load step,  
tr = tf = 1 µs  
tr = tf = 100 ns  
Time = 2.5 ms/div  
Time = 5 ms/div  
VI = 3.5 V  
VO = 1.05 V  
ƒSW = 2.2 Hz  
VI = 3.5 V  
VO = 1.05 V  
ƒSW = 2.2 Hz  
6-13. Typical SMPS Load Transient Response for SMPS8 and  
SMPS9  
6-14. Typical SMPS Load Transient Response for SMPS12,  
SMPS3, SMPS45, SMPS6, and SMPS7  
86  
Application and Implementation  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
7 Power Supply Recommendations  
The TPS659037 device is designed to work with an analog supply voltage range of 3.135 V to 5.25 V. The  
input supply should be well regulated and connected to the VCC1 pin, as well as SMPS and LDO input  
pins with appropriate bypass capacitors as recommended in 6-1. If the input supply is located more  
than a few inches from the TPS659037 device, additional capacitance may be required in addition to the  
recommended input capacitors at the VCC1 pin and the SMPS and LDO input pins.  
8 Layout  
8.1 Layout Guidelines  
As in every switch-mode-supply design, the following general layout rules apply:  
Use a solid ground-plane for power-ground (PGND)  
Use an independent ground for Logic, LDOs and Analog (AGND)  
Connect those Grounds at a star-point ideally underneath the device.  
Place input capacitors as close as possible to the input-pins of the device. This is paramount and more  
important than the output-loop!  
Place the inductor and output capacitor as close as possible to the phase node (or switch-node) of the  
device.  
Keep the loop-area formed by Phase-node, Inductor, output-capacitor and PGND as small as possible.  
For traces and vias on power-lines, keep inductance and resistance as small as possible by using wide  
traces, avoid switching layers but if needed, use plenty of vias.  
The goal of the previously listed guidelines is a layout that minimizes emissions, maximizes EMI-immunity,  
and maintains a safe operating area for the device.  
To minimize the spiking at the phase-node for both, high-side (VIN – SWx) as well as low-side (SWx –  
PGND), the decoupling of VIN is paramount. Appropriate decoupling and thorough layout should ensure  
that the spikes never exceed 7V across the high-side and low-side FETs.  
TI recommends the guidelines shown in 8-1 regarding parasitic inductance and resistance.  
Parasitic Inductance: < 1 nH  
Parasitic resistance: < 3 mΩ  
Parasitic resistance:  
As small as possible to  
get best efficiency  
Parasitic inductance: < 1 nH  
Parasitic resistance: < 2 mΩ  
SMPSx_SW  
SMPSx_IN  
SMPSx_SW  
SMPSx_GND  
Connection to power plane  
Parasitic resistance:  
As small as possible to get best  
efficiency  
For multiple  
capacitors, keep the  
parasitic resistance as  
small as possible  
among capacitors  
Parasitic inductance: < 1 nH  
Parasitic resistance: < 2 mΩ  
8-1. Parasitic Inductance and Resistance  
版权 © 2014–2019, Texas Instruments Incorporated  
Layout  
87  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
8-1 lists the maximum allowable parasitic (inductance measured at 100 MHz) and the achievable  
values in an optimized layout.  
8-1. Maximum Allowable Parasitic  
CONNECTION  
PowerPlane – CIN  
CIN – SMPSx_IN  
MAXIMUM ALLOWABLE  
INDUCTANCE  
MAXIMUM ALLOWABLE  
RESISTANCE  
OPTIMIZED LAYOUT  
(EVM) INDUCTANCE  
OPTIMIZED LAYOUT (EVM)  
RESISTANCE  
N/A  
N/A for SOA, keep small for  
efficiency  
N/A  
N/A for SOA, keep small for  
efficiency  
1 nH  
3 m  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS6  
SMPS7  
SMPS8  
SMPS9  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS6  
SMPS7  
SMPS8  
SMPS9  
N/A  
0.533 nH  
0.465 nH  
0.494 nH  
0.472 nH  
0.517 nH  
0.518 nH  
0.501 nH  
0.509 nH  
0.491 nH  
0.552 nH  
0.583 nH  
0.668 nH  
0.57 nH  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS6  
SMPS7  
SMPS8  
SMPS9  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS6  
SMPS7  
SMPS8  
SMPS9  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS6  
SMPS7  
SMPS8  
SMPS9  
1.77 mΩ  
1.22 mΩ  
1.37 mΩ  
1.23 mΩ  
1.27 mΩ  
1.69 mΩ  
1.27 mΩ  
1.42 mΩ  
1.4 mΩ  
CIN – SMPSx_GND  
1 nH  
N/A  
N/A  
2 mΩ  
1.21 mΩ  
0.8 mΩ  
0.93 mΩ  
0.81 mΩ  
0.76 mΩ  
1.13 mΩ  
0.83 mΩ  
0.73 mΩ  
0.82 mΩ  
1.9 mΩ  
0.577 nH  
0.608 nH  
0.646 nH  
0.67 nH  
0.622 nH  
SMPSx_SW – Inductor  
N/A for SOA, keep small for  
efficiency  
0.89 mΩ  
1.99 mΩ  
0.93 mΩ  
1.37 mΩ  
1.11 mΩ  
1.17 mΩ  
1.35 mΩ  
0.88 mΩ  
Inductor – COUT  
COUT – GND  
N/A for SOA, keep small for  
efficiency  
N/A  
N/A for SOA, keep small for  
efficiency  
Use dedicated GND plane to  
keep inductance low  
mΩ  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS6  
SMPS7  
SMPS8  
SMPS9  
0.552 nH  
0.583 nH  
0.668 nH  
0.57 nH  
SMPS1  
SMPS2  
SMPS3  
SMPS4  
SMPS5  
SMPS6  
SMPS7  
SMPS8  
SMPS9  
1.21 mΩ  
0.8 mΩ  
0.93 mΩ  
0.81 mΩ  
0.76 mΩ  
1.13 mΩ  
0.83 mΩ  
0.73 mΩ  
0.82 mΩ  
0.577 nH  
0.608 nH  
0.646 nH  
0.67 nH  
0.622 nH  
GND(CIN) – GND(COUT  
)
Use dedicated GND plane to  
keep inductance low  
mΩ  
Use dedicated GND plane to mΩ  
keep inductance low  
88  
Layout  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
TI recommends to measure the voltages across the high-side FET (voltage at SMPSx_IN vs. SMPSx_SW)  
and the low-side FET (SMPSx_SW vs. SMPSx_GND) with a high-bandwidth high-sampling rate scope  
with a low-capacitance probe (ideally a differential probe). Measure the voltages as close as possible to  
the device-pins and verify the amplitude of the spikes. A small-loop-GND-connection to the closest  
accessible SMPSx_GND (of the particular rail) is essential. Ideally, this measurement should be  
performed during start-up of the respective SMPS-rail (to take in account the inrush-current) and at high  
temperature.  
When measuring the voltage difference between the SMPSx_IN and SMPSx_SW pins, there should be a  
maximum of 7V when measuring at the pins. Similarly, when measuring the voltage difference between  
the SMPSx_SW and SMPSx_GND pins, there should be a maximum of 7V when measuring at the pins.  
For more information on cursor-positioning, see 8-2 and 8-3.  
7 V maximum  
SMPSx_IN - SMPSx_SW  
Measure across the high-side FET (SMPSx_IN – SMPSx_SW) as close to the IC as possible. The preferred  
measurement is with a differential probe. The negative side of the probe should be at SMPSx_SW and the positive  
side of the probe should measure SMPSx_IN. As shown in this image, the voltage across the high-side FET should  
not exceed 7V. Repeat the measurement for all SMPSs in use.  
8-2. Measuring the High-side FET (Differentially)  
版权 © 2014–2019, Texas Instruments Incorporated  
Layout  
89  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
7 V maximum  
SMPSx_SW - SMPSx_GND  
Measure across the low-side FET (SMPSx_SW – SMPSx_GND) as close to the IC as possible. The preferred  
measurement is with a differential probe. The negative side of the probe should be at SMPSx_GND and the positive  
side of the probe should measure SMPSx_SW. As shown in this image, the voltage across the low-side FET should  
not exceed 7V.Repeat the measurement for all SMPSs in use.  
8-3. Measuring the Low-side FET (Differentially)  
8.2 Layout Example  
8-4, 8-5, 8-6, and 8-7 show the actual placement and routing on the EVM.  
8-4. Top-Layer Overview of Inductor Placement  
90  
Layout  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
 
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
COUT  
COUT  
CIN  
CIN  
COUT  
8-5. Bottom-Layer Overview of Input and Output Capacitor Placement  
8-6. Top-Layer Zoomed-In View of SMPS123 SW Connections to Inductors  
版权 © 2014–2019, Texas Instruments Incorporated  
Layout  
91  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
8-7. Bottom-Layer Zoomed-In View of SMPS123 Input and Output Capacitor Layout  
92  
Layout  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
TPS659037  
www.ti.com.cn  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
9 器件和文档支持  
9.1 器件支持  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构  
成此类产品或服务单独或与任何 TI 产品或服务一起的表示或认可。  
9.2 文档支持  
9.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)TPS65903x TPS6591x 器件中的 GPADC 使用指南》  
德州仪器 (TI)《使用 TI AM57x 处理器的电源设计和热设计注意事项》设计指南  
德州仪器 (TI)TPS65903x TPS6591x 器件中的 POR 生成》  
德州仪器 (TI)TPS659037 设计检查清单》  
德州仪器 (TI)TPS659037 设计指南》  
德州仪器 (TI)TPS659037 寄存器映射》  
德州仪器 (TI)《为 AM572x AM571x 供电的 TPS659037 用户指南》  
德州仪器 (TI)TPS659037EVM 用户指南》  
9.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周  
接收产品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
9.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the  
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;  
see TI's Terms of Use.  
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster  
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,  
explore ideas and help solve problems with fellow engineers.  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信  
息。  
9.5 商标  
Eco-mode, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
9.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
9.7 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
器件和文档支持  
93  
产品主页链接: TPS659037  
TPS659037  
ZHCSEF7G DECEMBER 2014REVISED FEBRUARY 2019  
www.ti.com.cn  
10 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通  
知,且不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
94  
机械、封装和可订购信息  
版权 © 2014–2019, Texas Instruments Incorporated  
提交文档反馈意见  
产品主页链接: TPS659037  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6590376ZWSR  
TPS6590376ZWST  
TPS6590377ZWSR  
TPS6590377ZWST  
TPS6590378ZWSR  
TPS6590378ZWST  
TPS6590379ZWSR  
TPS6590379ZWST  
NRND  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
169  
169  
169  
169  
169  
169  
169  
169  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
1000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
TPS659037  
OTP 8A 1.3  
NRND  
NRND  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
TPS659037  
OTP 8A 1.3  
TPS659037  
OTP 8B 1.3  
NRND  
TPS659037  
OTP 8B 1.3  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TPS659037  
OTP 96 1.3  
TPS659037  
OTP 96 1.3  
TPS659037  
OTP 97 1.3  
TPS659037  
OTP 97 1.3  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Sep-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6590376ZWSR  
TPS6590376ZWST  
TPS6590377ZWSR  
TPS6590377ZWST  
TPS6590378ZWSR  
TPS6590378ZWST  
TPS6590379ZWSR  
TPS6590379ZWST  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
169  
169  
169  
169  
169  
169  
169  
169  
1000  
250  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
24.4  
12.35 12.35  
12.35 12.35  
12.35 12.35  
12.35 12.35  
12.35 12.35  
12.35 12.35  
12.35 12.35  
12.35 12.35  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
2.3  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
24.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
1000  
250  
1000  
250  
1000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Sep-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6590376ZWSR  
TPS6590376ZWST  
TPS6590377ZWSR  
TPS6590377ZWST  
TPS6590378ZWSR  
TPS6590378ZWST  
TPS6590379ZWSR  
TPS6590379ZWST  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
NFBGA  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
ZWS  
169  
169  
169  
169  
169  
169  
169  
169  
1000  
250  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
336.6  
41.3  
41.3  
41.3  
41.3  
41.3  
41.3  
41.3  
41.3  
1000  
250  
1000  
250  
1000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
ZWS0169A  
NFBGA - 1.4 mm max height  
SCALE 1.100  
PLASTIC BALL GRID ARRAY  
12.1  
11.9  
B
A
BALL A1 CORNER  
12.1  
11.9  
(0.9)  
0.45  
1.4 MAX  
C
SEATING PLANE  
0.12 C  
BALL TYP  
TYP  
0.35  
9.6 TYP  
SYMM  
(1.2) TYP  
(1.2) TYP  
N
M
L
K
J
H
G
F
SYMM  
9.6  
TYP  
E
D
C
0.55  
169X  
0.45  
0.15  
0.05  
C A B  
C
B
A
0.8 TYP  
1
2
3
4
5
6
7
8
9 10 11 12 13  
0.8 TYP  
BALL A1 CORNER  
4221886/C 05/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZWS0169A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(0.8) TYP  
169X ( 0.4)  
1
2
5
6
8
9
12 13  
3
4
7
10 11  
A
B
C
(0.8) TYP  
D
E
F
SYMM  
G
H
J
K
L
M
N
SYMM  
LAND PATTERN EXAMPLE  
SCALE:8X  
METAL UNDER  
SOLDER MASK  
0.05 MAX  
0.05 MIN  
(
0.4)  
METAL  
(
0.4)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221886/C 05/2021  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SSZA002 (www.ti.com/lit/ssza002).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZWS0169A  
NFBGA - 1.4 mm max height  
PLASTIC BALL GRID ARRAY  
(
0.4) TYP  
(0.8) TYP  
1
2
5
6
8
9
12 13  
3
4
7
10 11  
A
B
C
(0.8) TYP  
D
E
F
SYMM  
G
H
J
K
L
M
N
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.15 mm THICK STENCIL  
SCALE:8X  
4221886/C 05/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS6590379ZWST

适用于 ARM Cortex A15 处理器的电源管理 IC (PMIC) | ZWS | 169 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659038-Q1

具有 7 个降压转换器和 11 个 LDO、适用于 ARM Cortex-A15 处理器的汽车类 3.135V 至 5.25V PMIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659039-Q1

具有 7 个降压转换器和 6 个 LDO、适用于 ARM Cortex-A15 处理器的汽车类 3.135V 至 5.25V PMIC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65910

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659101

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659101A1RSL

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659101A1RSLR

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659102

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659102A1RSL

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659102A1RSLR

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659103

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS659103A1RSL

Integrated Power Management Unit Top Specification

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI