TPS6591286 [TI]

TPS659128 PMU for Processor Power;
TPS6591286
型号: TPS6591286
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

TPS659128 PMU for Processor Power

文件: 总165页 (文件大小:4580K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
TPS659128 PMU for Processor Power  
1 Features  
3 Description  
Four step-down converters:  
The TPS659128x device provides four configurable  
step-down converters with up to 2.5-A output current  
and ten LDO regulators for external use. These  
LDOs can be supplied from either a battery or a  
preregulated supply. Each specific part number has  
a different factory programmed power-up and power-  
down sequence.  
– Input voltage (VIN) range from 2.7 V to 5.5 V  
– Power save mode at light load current  
– Output voltage accuracy in PWM mode ±2%  
– Typical 26-μA quiescent current per converter  
– Dynamic voltage scaling  
– 100% duty cycle for lowest dropout  
Ten LDOs:  
The TPS659128x device integrates a 32-kHz RC  
oscillator to sequence all resources during power up  
or power down. All LDOs and DC-DC converters  
can be controlled by an I2C or SPI interface or  
basic enable pins after boot. Additionally, a voltage-  
scaling interface allows for transitioning the DC-DC  
converters to a different voltage through I2C or basic  
roof-floor control. Three LED drivers with an advanced  
dimming feature are integrated inside the device.  
General-purpose input-output (GPIO) functionality is  
multiplexed with various pins, including LED pins,  
ENx pins, and SPI pins when not used. Each  
GPIO can be configured as part of the power-up  
sequence to control external resources. One SLEEP  
pin enables switching between the active mode and  
preprogrammed sleep mode for power optimization.  
The TPS659128x device comes in a 9-pin × 9-pin  
DSBGA package (3.6 mm × 3.6 mm) with a 0.4-mm  
pitch.  
– 8 general-purpose LDOs  
– Output voltage range from 0.8 V to 3.3 V  
– Typical 32-μA quiescent current per LDO  
– 2 low-noise RF-LDOs  
– Output voltage range from 1.6 V to 3.3 V  
– Preregulation support by separate power inputs  
– Eco-modecontrol scheme  
– VIN range of LDOs respective to the following  
voltage ranges:  
1.8 V to 3.6 V  
3 V to 5.5 V  
Three LED drivers:  
– Internal dimming using I2C  
– Up to 20 mA per current sink  
Thermal monitoring  
– High temperature warning  
– Thermal shutdown  
Bypass switch  
Device Information(1)  
– Used with DCDC4 in applications powering a  
Radio Frequency Power Amplifier (RF-PA)  
Interface  
PART NUMBER  
PACKAGE  
BODY SIZE  
TPS6591286  
TPS6591287  
– I2C interface  
DSBGA (81)  
3.60 mm × 3.60 mm  
– Power I2C interface for Dynamic Voltage  
Scaling (DVS)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
– Serial Peripheral Interface (SPI)  
32-kHz RC oscillator  
Undervoltage lockout, battery fault comparator,  
and long button-press detection  
3.6-mm × 3.6-mm DSBGA package with 0.4-mm  
pitch  
2 Applications  
Smart phones  
Wireless routers and switches  
Tablets  
Industrial applications  
LTE modem  
GPS  
Simplified Schematic  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 7  
6.1 Absolute Maximum Ratings........................................ 7  
6.2 ESD Ratings............................................................... 7  
6.3 Recommended Operating Conditions.........................8  
6.4 Thermal Characteristics..............................................9  
6.5 Electrical Characteristics – DCDC1, DCDC2,  
and DCDC3...................................................................9  
6.6 Electrical Characteristics – DCDC4.......................... 11  
6.7 Electrical Characteristics – LDOs............................. 12  
6.8 Electrical Characteristics – Digital Inputs, Digital  
Outputs........................................................................15  
6.9 Electrical Characteristics – VMON Voltage  
7 Parameter Measurement Information..........................24  
7.1 I2C Timing Diagrams.................................................24  
7.2 SPI Timing Diagram..................................................25  
8 Detailed Description......................................................26  
8.1 Overview...................................................................26  
8.2 Functional Block Diagram.........................................27  
8.3 Feature Description...................................................28  
8.4 Device Functional Modes..........................................31  
8.5 Register Maps...........................................................60  
9 Application and Implementation................................145  
9.1 Application Information........................................... 145  
9.2 Typical Application.................................................. 145  
10 Layout.........................................................................155  
10.1 Layout Guidelines................................................. 155  
10.2 Layout Example.................................................... 156  
11 Power Supply Recommendations............................157  
12 Device and Documentation Support........................158  
12.1 Device Support..................................................... 158  
12.2 Documentation Support........................................ 158  
12.3 Receiving Notification of Documentation Updates158  
12.4 Support Resources............................................... 158  
12.5 Trademarks...........................................................158  
12.6 Electrostatic Discharge Caution............................158  
12.7 Glossary................................................................158  
13 Mechanical, Packaging, and Orderable  
Monitor, VDDIO, Undervoltage Lockout (UVLO),  
and LDOAO.................................................................15  
6.10 Electrical Characteristics – Load Switch.................16  
6.11 Electrical Characteristics – LED Drivers................. 16  
6.12 Electrical Characteristics – Thermal Monitoring  
and Shutdown............................................................. 16  
6.13 Electrical Characteristics – 32-kHz RC Clock.........17  
6.14 SPI Timing Requirements....................................... 17  
6.15 I2C Interface Timing Requirements.........................17  
6.16 Typical Characteristics............................................19  
Information.................................................................. 159  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (May 2021) to Revision A (June 2021)  
Page  
Changed TPS6591287 from PREVIEW to ACTIVE........................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
5 Pin Configuration and Functions  
Figure 5-1 shows the 81-pin YFF Die-Size Ball-Grid Array pin assignments.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
VLDO7  
VINLDO67  
VLDO6  
VDCDC4  
PGND4  
SW4  
VINDCDC4  
LSO  
LSO  
LEDC/GPIO5 LEDB/GPIO4 LEDA/GPIO3 VDCDC4_GND  
PGND4  
SW4  
VINDCDC4  
LSI  
LSI  
VINDCDC2  
SW2  
EN4/DCDC4 EN3/DCDC3  
_SEL _SEL  
VINDCDC  
_ANA  
VINDCDC3  
EN_LS1  
CONFIG2  
CONFIG1  
VDCDC3  
EN_LS0  
nPWRON  
DGND  
GPIO2__CE  
GPIO1_MISO  
SDA_MOSI  
AGND  
EN2/DCDC2  
_SEL  
SW3  
SCL_SCK PWRHOLD_ON VDCDC2  
SCL_AVS  
/CLK_REQ1  
SDA_AVS  
/CLK_REQ2  
DEF_SPI  
_I2C-GPIO  
EN1/DCDC1  
_SEL  
PGND3  
VINLDO4  
VLDO4  
PGND2  
VLDO3  
VLDO5  
VLDO8  
OMAP_WDI  
_32k_OUT  
AGND  
VCON_PWM VCON_CLK  
VDDIO  
VINLDO3  
VINLDO5  
VINLDO8  
VINLDO9  
nRESPWRON/  
VSUP_OUT  
VCCS/VIN  
_MON  
SLEEP/PWR  
INT1  
G
H
J
LDOAO  
CPCAP_WDI  
VINDCDC1  
VINDCDC1  
_REQ  
VLDO2  
VCC  
VREF1V25 VDCDC1_GND  
PGND1  
PGND1  
SW1  
SW1  
VLDO10  
VINLDO1210  
VLDO1  
VDCDC1  
VLDO9  
Not to scale  
Figure 5-1. 81-Pin YFF DSBGA (Bottom View)  
Table 5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
REFERENCE  
ALT NAME  
NO.  
Internal reference voltage. Connect a 100-nF capacitor from this pin to  
AGND. Do not load this pin externally.  
VREF1V25  
H3  
O
Analog-ground (AGND) connection. Connect this pin to the power-  
ground (PGND) plane on the printed circuit board (PCB).  
AGND  
F3, C7  
DRIVERS AND LIGHTING  
LEDA/GPIO3  
B3  
I/O  
General-purpose I/O or LED driver output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
LEDB/GPIO4  
ALT NAME  
NO.  
B2  
B1  
I/O  
I/O  
General-purpose I/O or LED driver output  
General-purpose I/O or LED driver output  
LEDC/GPIO5  
STEP-DOWN CONVERTERS  
Analog supply input for the DC-DC converters. This pin must  
be connected to the VINDCDC1, VINDCDC2, VINDCDC3 and  
VINDCDC4 pins.  
VINDCDC_ANA  
C8  
I
Power input to the DCDC1 converter. Connect this pin to the  
VINDCDC2, VINDCDC3, VINDCDC4, and VINDCDC_ANA pins.  
VINDCDC1  
VDCDC1  
H7, J7  
J4  
I
I
Remote positive voltage sense (feedback) input for the DCDC1  
converter  
Remote negative voltage sense (feedback) input for DCDC1. Tie this  
pin to the GND plane or to the AGND plane. Alternatively, tie this pin  
to the GND pad of the output capacitor.  
VDCDC1_GND  
H4  
I
Switch node of the DCDC1 converter. Connect this pin to the output  
inductor.  
SW1  
H6, J6  
H5, J5  
F4  
O
I
PGND1  
Power GND connection for the DCDC1 converter  
Pulse-width modulation (PWM) period signal for dynamic voltage  
scaling on the DCDC1 converter if using VCON  
VCON_PWM  
Clock signal for dynamic voltage scaling on the DCDC1 converter if  
using VCON  
VCON_CLK  
F5  
I
Power input to the DCDC2 converter. Connect this pin to the  
VINDCDC1, VINDCDC3, VINDCDC4, and VINDCDC_ANA pins.  
VINDCDC2  
VDCDC2  
SW2  
C9  
D7  
I
I
Remote voltage sense (feedback) input for the DCDC2 converter  
Switch node of the DCDC2 converter. Connect this pin to the output  
inductor.  
D9  
O
I
PGND2  
E9  
Power GND connection for the DCDC2 converter  
Power input to the DCDC3 converter. Connect this pin to the  
VINDCDC1, VINDCDC2, VINDCDC4, and VINDCDC_ANA pins.  
VINDCDC3  
VDCDC3  
SW3  
C1  
F2  
I
Remote voltage sense (feedback) input for the DCDC3 converter  
Switch node of the DCDC3 converter. Connect this pin to the output  
inductor.  
D1  
O
I
PGND3  
E1  
Power GND connection for the DCDC3 converter  
Power input to the DCDC4 converter. Connect this pin to the  
VINDCDC1, VINDCDC2, VINDCDC3, and VINDCDC_ANA pins.  
VINDCDC4  
A7, B7  
Remote positive voltage sense (feedback) input for the DCDC4  
converter  
VDCDC4  
VDCDC4_GND  
SW4  
A4  
B4  
I
I
Remote negative voltage sense (feedback) input the DCDC4  
converter. Tie this pin to the GND plane or to the AGND plane.  
Alternatively, tie this pin to the GND-pad of the output capacitor.  
Switch node of the DCDC4 converter. Connect this pin to the output  
inductor.  
A6, B6  
A5, B5  
O
PGND4  
LOAD SWITCH  
LSI  
Power GND connection for the DCDC4 converter  
B8, B9  
A8, A9  
I
Input of the load switch  
Output of the load switch  
LSO  
O
Load switch enable pin. The status of this pin is copied to the  
ENABLE0 bit in the LOADSWITCH register in the CONFIG state.  
EN_LS0  
EN_LS1  
C3  
C2  
I
I
Load switch enable pin. The status of this pin is copied to the  
ENABLE1 bit in the LOADSWITCH register in the CONFIG state.  
LOW-DROPOUT REGULATORS  
VINLDO1210  
J2  
I
Power input for the LDO1, LDO2, and LDO10 regulators  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
ALT NAME  
NO.  
VINLDO3  
VINLDO4  
VINLDO5  
VINLDO67  
VINLDO8  
VINLDO9  
F8  
F1  
G8  
A2  
H8  
J8  
I
I
I
I
I
I
Power input for the LDO3 regulator  
Power input for the LDO4 regulator  
Power input for the LDO5 regulator  
Power input for the LDO6 and LDO7 regulators  
Power input for the LDO8 regulator  
Power input for the LDO9 regulator  
LDO always on internal supply. Connect this pin to the buffer  
capacitor.  
LDOAO  
G3  
O
VLDO1  
VLDO2  
J3  
H1  
F9  
G1  
G9  
A3  
A1  
H9  
J9  
O
O
O
O
O
O
O
O
O
O
LDO1 output  
LDO2 output  
LDO3 output  
LDO4 output  
LDO5 output  
LDO6 output  
LDO7 output  
LDO8 output  
LDO9 output  
LDO10 output  
VLDO3  
VLDO4  
VLDO5  
VLDO6  
VLDO7  
VLDO8  
VLDO9  
VLDO10  
J1  
STANDARD INTERFACE  
Digital input that defines whether SPI is available or I2C and GPIOs  
are available on the C4, D4, E4, D5 pins. Shorting this pin to GND  
selects SPI. Shorting this pin to LDOAO selects I2C, and GPIO1 and  
GPIO2  
DEF_SPI_I2C-GPIO  
E7  
I
SCL_SCK  
SCK  
D5  
E4  
I
I2C SCL or SPI SCK based on DEF_SPI_I2C-GPIO  
I2C SDA or SPI master-out slave-in device (MOSI) based on  
DEF_SPI_I2C-GPIO  
SDA_MOSI  
MOSI  
I/O  
GPIO1 or SPI master-out slave-in device (MISO) based on  
DEF_SPI_I2C-GPIO  
GPIO1_MISO  
GPIO2_ CE  
MISO  
CE  
D4  
C4  
I/O  
I/O  
GPIO2 or SPI chip enable (CE) active high based on DEF_SPI_I2C-  
GPIO  
ENABLE AND VOLTAGE SCALING  
Enable pin for EN1_SETx assigned resources or voltage-scaling pin  
that changes the output of a converter or a group of converters  
between two predefined values  
EN1/DCDC1_SEL(1)  
EN2/DCDC2_SEL(1)  
EN3/DCDC3_SEL(1)  
EN4/DCDC4_SEL(1)  
SCL_AVS/CLK_REQ1(2)  
DCDC1_SEL  
E8  
D8  
C6  
C5  
E5  
I
I
I
I
I
Enable pin for EN2_SETx assigned resources or voltage-scaling pin  
that changes the output of a converter or a group of converters  
between two predefined values  
DCDC2_SEL  
DCDC3_SEL  
DCDC4_SEL  
CLK_REQ1  
Enable pin for EN3_SETx assigned resources or voltage-scaling pin  
that changes the output of a converter or a group of converters  
between two predefined values  
Enable pin for EN4_SETx assigned resources or voltage-scaling pin  
that changes the output of a converter or a group of converters  
between two predefined values  
Clock pin of power I2C for dynamic voltage scaling or clock request  
input signal 1 used to enable and disable power resources using  
EN2_SETx registers.  
Data pin of power I2C for dynamic voltage scaling or clock request  
input signal 2 used to enable and disable power resources using  
EN3_SETx registers.  
SDA_AVS/CLK_REQ2(2)  
SLEEP/PWR_REQ(2)  
CLK_REQ2  
PWR_REQ  
E6  
G4  
I/O  
I
SLEEP state request input or power request input signal used to  
enable and disable power resources using EN1_SETx registers.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 5-1. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
ALT NAME  
NO.  
Active low reset output to disable processor until power-up sequence  
completes or the output of the input voltage monitor  
nRESPWRON/VSUP_OUT  
VSUP_OUT  
G6  
O
VCCS/VIN_MON  
PWRHOLD_ON  
INT1  
VIN_MON  
G2  
D6  
G5  
I
I
Voltage sense for input voltage monitoring  
POWERHOLD or ON. This pin is an enable input.  
Interrupt output  
ON  
O
Active-low, debounced power-on input or power-request input to start  
the power-up sequencing. Alternatively, this pin is the active-low reset  
input to the PMIC that is debounced by 10 ms (OTP option). Tie this  
pin to the LDOAO pin for a logic high if not used.  
nRESIN (OTP  
option)  
nPWRON  
D3  
I
Always used as 32KCLKOUT. Leave this pin floating if not using  
32KCLKOUT.  
OMAP_WDI_32k_OUT  
CPCAP_WDI  
32KCLKOUT  
F6  
O
G7  
No connect, leave this pin floating.  
Selects the predefined startup options and default voltages. Use this  
pin to choose from two internal OTP settings. Tie this pin to GND or  
the LDOAO pin.  
CONFIG1  
E2  
D2  
I
I
Selects between two device modes. With the CONFIG2 tied to  
LDOAO, the primary functions of the pins (ENx, SCL_AVS, SDA_AVS,  
and SLEEP) and SLEEP state is usable. With the CONFIG2 tied  
to GND, the alternate functions of the pins are used (DCDCx_SEL,  
CLK_REQx, and PWR_REQ) and SLEEP state is not used.  
CONFIG2  
VCC  
H2  
F7  
I
I
Digital supply input  
Supply voltage input for GPIOs and output stages that sets the high-  
level voltage (I/O voltage)  
VDDIO  
Digital GND connection. Tie this pin to the AGND and PGNDx on the  
PCB.  
DGND  
E3  
(1) The DCDCx_SEL pin function is selected by pulling the CONFIG2 pin to GND which also selects the CLK_REQx and PWR_REQ pin  
functions as enable resources.  
(2) The CLK_REQ1, CLK_REQ2, and PWR_REQ pin functions are selected by puling the CONFIG2 pin to GND.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
All pins except AGND pins, PGND pins, and pins listed below with respect  
to AGND  
–0.3  
6
VLDO1, VLDO2, VLDO3, VLDO4, VLDO5, VLDO6, VLDO7, VLDO8,  
VLDO9, VLDO10, VINLDO1210, VINLDO3, EN1/DCDC1_SEL, EN2/  
DCDC2_SEL, EN3/DCDC3_SEL, EN4/DCDC4_SEL, SLEEP/PWR_REQ,  
CLK_REQ1, CLK_REQ2, VDDIO, CONFIG1, CONFIG2, DEF_SPI_I2C-  
GPIO, EN_LS0, EN_LS1, OMAP_WDI, CPCAP_WDI, VCON_CLK with  
–0.3  
3.6  
Voltage  
V
respect to AGND  
VDCDC1, VDCDC2, VDCDC3, VDCDC4 with respect to AGND  
–0.3  
–0.3  
3.8  
SDA_SDI, SCL_CLK, GPIO1_MISO, GPIO1_CE, SDA_AVS, SCL_AVS,  
INT1, 32KCLKOUT, GPIO3 and GPIO4 and GPIO5 if defined as GPIOs with  
push-pull output (otherwise it is 6-V rated), nRESPWRON if nRESPWRON  
is push-pull output (otherwise it is 6-V rated) with respect to AGND  
VDDIO + 0.3  
VCC  
VDDIO  
6
5
All non-power pins  
Power pins (per pin)  
mA  
A
Current  
2
Operating free-air temperature, TA  
Maximum junction temperature, TJ  
Storage temperature, Tstg  
–40  
–65  
85  
125  
150  
°C  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions (Section 6.3) is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability.  
6.2 ESD Ratings  
VALUE  
1000  
250  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1)  
Charged device model (CDM), per JESD22-C101(2)  
VESD  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
www.ti.com  
MAX UNIT  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
DC-DC CONVERTERS  
VIN1, VIN2,  
Input voltage for step-down converter DCDC1, DCDC2, DCDC3, DCDC4  
VIN3, VIN4  
2.7  
5.5  
V
Output voltage for step-down converter DCDC1, DCDC2, DCDC3, DCDC4(1)  
0.5  
0.5  
10  
3.8  
1.3  
V
Inductance at L1, L2, L3, L4  
1
22  
10  
10  
22  
μH  
μF  
μF  
μF  
μF  
CIN1, CIN4  
CIN2, CIN3  
COUTDCDC1,2,3  
COUTDCDC4  
LDOs  
Input capacitance at VIN1 and VIN4 (on each pin)  
Input capacitance at VIN2 and VIN3 (on each pin)  
Output capacitance at DCDC1, DCDC2 and DCDC3  
Output capacitance at DCDC4  
4.7  
4.7  
10  
22  
47  
VINLDO1210  
VINLDO4  
Input voltage for LDO1, LDO2 and LDO10  
Input voltage for LDO4  
1.7  
1.9  
1.9  
3.6  
5.5  
5.5  
V
V
V
VINLDO5  
Input voltage for LDO5  
VLDO1, VLDO2,  
VLDO3  
VLDO6 ,  
VLDO7, VLDO8 ,  
VLDO9, VLDO10  
,
Output voltage for general purpose (GP) LDOs(1)  
Output voltage for RF-LDOs  
0.8  
1.6  
3.3  
3.3  
V
V
VLDO4, VLDO5,  
CINLDO1210  
CINLDO3,  
CINLDO4,  
CINLDO5,  
CINLDO67,  
CINLDO8,  
CINLDO8  
,
Input capacitance on LDO supply pins  
Output capacitance on LDO4 and LDO5  
0.5  
μF  
COUTDO4,  
COUTLDO5  
2.2  
0.5  
1
10  
10  
μF  
μF  
μF  
COUTLDO1,  
COUTLDO2,  
COUTLDO3,  
COUTLDO6,  
COUTLDO7,  
COUTLDO8  
Output capacitance LDO1, LDO2, LDO3, LDO6, LDO7, LDO8  
These LDOs are capless, the required capacitance can be placed at the load  
COUTLDO9,  
COUTLDO10  
Output capacitance LDO9 and LDO10  
These LDOs are capless, the required capacitance can be placed at the load  
10  
10  
COUTLDOAO  
CVINDCDC_ANA  
CVCC  
Output capacitance on LDOAO  
Input capacitance on VINDCDC_ANA  
Input capacitance on VCC  
0.5  
100  
100  
100  
100  
–40  
–40  
μF  
nF  
nF  
nF  
nF  
°C  
°C  
CVDDIO  
CVREF  
Input capacitance on VDDIO  
Output capacitance on VREF1V25  
Operating ambient temperature  
Operating junction temperature  
TA  
85  
TJ  
125  
(1) The maximum output voltage of DCDC1 to DCDC4 and LDO1 to LDO4 can be reduced by an OTP setting to adopt the maximum  
voltage to the requirements (or maximum ratings) of the load powered. This setting helps protect the processor from exceeding the  
maximum ratings for the core voltage. The value is set in nonvolatile memory (OTP) by TI upon customer request with sufficient  
business case.  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.4 Thermal Characteristics  
TPS659128  
THERMAL METRIC(1)  
YFF (DSBGA)  
UNIT  
81 PINS  
41.3  
0.1  
RθJA  
RθJCtop  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
5.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.7  
ψJB  
5.2  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics – DCDC1, DCDC2, and DCDC3  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
2.3  
0.5  
0.7  
0.5  
0.5  
TYP  
MAX UNIT  
VIN  
Input voltage range  
5.5  
1.2875  
1.4875  
2.075  
3.80  
V
V
V
V
V
Option1; in 12.5-mV steps; RANGE[1:0] = 00b  
Option2; in 12.5-mV steps; RANGE[1:0] = 01b  
Option3; in 25-mV steps; RANGE[1:0] = 10b  
Option4; in 50-mV steps; RANGE[1:0] = 11b  
DCDC1 (VINDCDC1 ≥ 2.8 V)  
VDCDC1  
VDCDC2  
VDCDC3  
DCDCx output  
voltage Range  
2500  
750  
DCDC2 (VINDCDC2 ≥ 2.8 V)  
Continuous output  
current  
IOUT(DCDCx)  
mA  
DCDC3 (VINDCDC3 ≥ 2.8 V)  
1200  
1600  
DCDC3 for 2.8 V ≤ VIN ≤ 4.5 V; VDCDC3(max) = 1.4875 V  
ILOAD = 0 mA, DCDCx_MODE = 0b, Device not switching,  
for DCDC1  
26  
8
55  
μA  
mA  
μA  
μA  
mA  
μA  
ILOAD = 0 mA, DCDCx_MODE = 1b, Device switching, for  
DCDC1  
ILOAD < 1 mA, Device not switching, ECO = 1b AND  
DCDCx_MODE = 0b, for DCDC1  
9
IQ  
Quiescent current  
ILOAD = 0 mA, DCDCx_MODE = 0b, Device not switching,  
for DCDC2 or DCDC3  
26  
8
40  
ILOAD = 0 mA, DCDCx_MODE = 1b, Device switching, for  
DCDC2 or DCDC3  
ILOAD < 1 mA, Device not switching; ECO = 1b AND  
DCDCx_MODE = 0b, for DCDC2 or DCDC3  
3
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS659128  
 
 
 
TPS659128  
www.ti.com  
MAX UNIT  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
6.5 Electrical Characteristics – DCDC1, DCDC2, and DCDC3 (continued)  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
DCDCx_MODE = 1b, VINDCDCx = 3.6 V, ILOAD = 0 mA,  
TA = 25°C, ECO = 0  
–2%  
DCDCx_MODE = 1b, VINDCDCx = 3.6 V, ILOAD = 0 mA,  
–40°C ≤ TA ≤ 85°C, ECO = 0  
Accuracy  
–2.5%  
–3%  
DCDCx_MODE = 0b, VINDCDCx = 3.6 V, ILOAD = 0 mA,  
TA = 25°C, ECO = 0  
VINDCDCx = 3.6 V, ILOAD = 0 mA, –40°C ≤ TA ≤ 85°C;  
ECO = 1b AND DCDCx_MODE = 0b  
ECO mode accuracy  
–5%  
5%  
DCDCx_MODE = 1b, VINDCDCx = 3.6 V, 120 mA ≤ ILOAD  
≤ 1080 mA, for DCDC1  
VDCDC1/2/3  
0.01  
0.01  
0.01  
0.01  
0.01  
DCDCx_MODE = 1b, VINDCDCx = 3.6 V, 120 mA ≤ ILOAD  
≤ to 1080 mA, for DCDC3  
Load regulation  
%/A  
DCDCx_MODE = 1b, VINDCDCx = 3.6 V, 50 mA ≤ ILOAD  
450 mA, for DCDC2  
DCDCx_MODE = 1b, 2.5 V ≤ VINDCDCx ≤ 5.5 V, ILOAD  
0 mA, for DCDC1  
=
Line regulation  
%/V  
DCDCx_MODE = 1b, 2.5 V ≤ VINDCDCx ≤ 5.5 V, ILOAD  
0 mA, for DCDC2 or DCDC3  
=
DCDCx_MODE = 0b  
3500 kHz  
kHz  
fSW  
Switching frequency  
DCDCx_MODE = 1b, VINDCDCx = 3.6 V, VDCDCx = 1.8  
V
2800  
60  
for DCDC1 with VINDCDCx = 3.6 V, D = 100%  
100  
190  
100  
160  
20  
mΩ  
mΩ  
mΩ  
mΩ  
High-side FET on-  
resistance  
RDS(ON)  
RDS(ON)  
ILK_HS  
ILK_LS  
for DCDC2 and DCDC3 with VINDCDCx = 3.6 V, D =  
100%  
120  
60  
for DCDC1 with VINDCDCx = 3.6 V, D = 100%  
Low-side FET on-  
resistance  
for DCDC2 and DCDC3 with VINDCDCx = 3.6 V, D =  
100%  
100  
TJ = 85°C, DCDC1, VINDCDC1 = 4.2 V  
High-side FET  
leakage current  
μA  
μA  
TJ = 85°C, DCDC2 or DCDC3, VINDCDC2 = VINDCDC3 =  
4.2 V  
3
TJ = 85°C, DCDC1, VINDCDC1 = 4.2 V  
20  
Low-side FET  
leakage current  
TJ = 85°C, DCDC2 or DCDC3, VINDCDC2 = VINDCDC3 =  
4.2 V  
1
VINDCDC1 = 3.6 V, DCDC1  
VINDCDC2 = 3.6 V, DCDC2  
VINDCDC3 = 3.6 V, DCDC3  
VINDCDC1 = 3.6 V, DCDC1  
VINDCDC2 = 3.6 V, DCDC2  
VINDCDC3 = 3.6 V, DCDC3  
3200  
1250  
2100  
3200  
1200  
1875  
4280  
1667  
2800  
4280  
1600  
2500  
5300  
2083  
3500  
5300  
2000  
3125  
High-side forward  
current limit  
IHS_LIMF  
mA  
Low-side forward  
current limit  
ILS_LIMF  
mA  
ns  
Minimum high-side  
FET off time  
tOFF(MIN)  
VINDCDCx = 3.6 V  
30  
VDCDCx falling  
VDCDCx rising  
86%  
90%  
94%  
98%  
Power-good  
threshold  
VDCDCPG  
Power-good  
threshold deglitch  
time  
tDCDCPG  
1
ms  
μs  
Time to start switching, measured from end of I2C  
command enabling converter  
tStart  
Start-up time  
32  
55  
100  
tRamp  
VOUT ramp up time  
Discharge resistor  
Time to ramp from 5% to 95% of VDCDCx  
100  
250  
160  
400  
250  
500  
μs  
RDischarge  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.5 Electrical Characteristics – DCDC1, DCDC2, and DCDC3 (continued)  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX UNIT  
PWM clock period for  
VCON_CLK  
Tpwm  
30  
300  
ns  
Tsu  
Thd  
VCON setup time  
VCON hold time  
VCON_PWM to rising edge of VCON_CLK  
VCON_PWM from rising edge of VCON_CLK  
7
7
ns  
ns  
6.6 Electrical Characteristics – DCDC4  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
2.3  
0.5  
0.7  
0.5  
0.5  
TYP  
MAX UNIT  
VIN  
Input voltage range  
5.5  
1.2875  
1.4875  
2.075  
3.80  
V
Option1, in 12.5-mV steps, RANGE[1:0] = 00b  
Option2, in 12.5-mV steps, RANGE[1:0] = 01b  
Option3, in 25-mV steps, RANGE[1:0] = 10b  
Option4, in 50-mV steps, RANGE[1:0] = 11b  
DCDC4 output voltage  
range  
VDCDC4  
V
IOUT(DCDC4) Continuous output current DCDC4 (VINDCDC4 ≥ 2.8 V)  
ILOAD = 0 mA, DCDC4_MODE = 0b, Device not switching  
2500  
55  
mA  
μA  
26  
8
ILOAD = 0 mA, DCDC4_MODE = 1b, Device switching,  
EN_LS[1:0] = 00 or 01  
mA  
μA  
IQ  
Quiescent current  
ILOAD < 1 mA, Device not switching, ECO = 1b AND  
DCDC4_MODE = 0b  
9
DCDC4_MODE = 1b, VINDCDC4 = 3.6 V, ILOAD = 0 mA,  
TA = 25°C, EN_LS[1:0] = 00b or 01b  
–2%  
–2.5%  
–3%  
2%  
2.5%  
3%  
DCDC4_MODE = 1b, VINDCDC4 = 3.6 V, ILOAD = 0 mA,  
–40°C ≤ TA ≤ 85°C, EN_LS[1:0] = 00b or 01b  
Accuracy  
DCDC4_MODE = 0b, VINDCDC4 = 3.6 V, ILOAD = 0 mA,  
TA = 25°C  
DCDC4_MODE = 0b, VINDCDC4 = 3.6 V, ILOAD = 0 mA,  
–40°C ≤ TA ≤ 85°C  
VDCDCx  
–3%  
3%  
ECO = 1b AND DCDCx_MODE = 0b, VINDCDC4 = 3.6  
V, ILOAD = 0 mA, –40°C ≤ TA ≤ 85°C  
ECO mode accuracy  
Load regulation  
Line regulation  
–5%  
5%  
DCDC4_MODE = 1b, VINDCDC4 = 3.6 V, EN_LS[1:0] =  
00b or 01b, 250 mA ≤ ILOAD ≤ 2250 mA  
0.01  
0.01  
%/A  
%/V  
DCDC4_MODE = 1b, 2.5 V ≤ VINDCDC4 ≤ 5.5 V, ILOAD  
0 mA, EN_LS[1:0] = 00b or 01b  
=
DCDC4_MODE = 0b  
3500 kHz  
kHz  
fSW  
Switching frequency  
DCDC4_MODE = 1b, VINDCDC4 = 3.6 V, VDCDC4 = 1.8  
V, EN_LS[1:0] = 00b or 01b  
2800  
60  
High-side MOSFET on-  
resistance  
VINDCDC4 = 3.6 V, 100% duty cycle  
VINDCDC4 = 3.6 V, 0% duty cycle  
100  
100  
mΩ  
mΩ  
RDS(ON)  
Low-side MOSFET on-  
resistance  
60  
ILK_HS  
ILK_LS  
ILIM  
High-side leakage current  
Low-side leakage current  
High-side current limit  
Low-side current limit  
TJ = 85°C, VINDCDC4 = 4.2 V  
TJ = 85°C, VINDCDC4 = 4.2 V  
2.9 V ≤ VINDCDC4 ≤ 5.5 V  
2.9 V ≤ VINDCDC4 ≤ 5.5 V  
20  
20  
μA  
μA  
3000  
3000  
4400  
3700  
5000  
4300  
mA  
mA  
ILIM  
Minimum high-side FET off  
time  
tOFF(MIN)  
VINDCDC4 = 3.6 V  
30  
ns  
VDCDC4 falling  
VDCDC4 rising  
86%  
90%  
94%  
98%  
VDCDCPG  
Power good threshold  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.6 Electrical Characteristics – DCDC4 (continued)  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tDCDCPG  
Power good deglitch time  
1
ms  
RAMP_TIME = 0b, Time to start switching, measured  
from end of I2C command enabling converter  
32  
4
55  
7
100  
μs  
tStart  
Start-up time  
RAMP_TIME = 1b, Time to start switching, measured  
from end of I2C command enabling converter  
14  
RAMP_TIME = 0b, Time to ramp from 5% to 95% of  
VDCDC4,  
VDCDC4 = 3.4 V  
106  
160  
250  
μs  
tRamp  
VOUT ramp-up time  
Discharge resistor  
RAMP_TIME = 1b, Time to ramp from 5% to 95% of  
VDCDC4,  
25  
40  
66  
VDCDC4 = 3.4 V  
RDischarge  
Vbyp-on  
250  
400  
500  
Bypass mode turnon duty  
cycle  
For ENABLE[1:0] = 10b, turnon is based on the duty  
cycle of the PWM signal of DCDC4  
90% 97.5% 99.5%  
Bypass mode turnoff output For ENABLE[1:0] = 10b, turnoff is based on output  
voltage threshold voltage above the nominal value  
Vbyp-off  
8%  
12%  
15%  
6.7 Electrical Characteristics – LDOs  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
1.7  
1.7  
1.7  
1.9  
1.9  
1.8  
1.8  
1.8  
1.8  
1.7  
TYP  
MAX UNIT  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
LDO6  
LDO7  
LDO8  
LDO9  
LDO10  
3.6  
3.6  
3.6  
5.5  
5.5  
V
5.5  
VIN  
Input voltage  
5.5  
5.5  
5.5  
3.6  
LDO output voltage for  
general-purpose LDOs(1)  
0.8  
1.6  
3.3  
3.3  
V
V
LDO output voltage for  
RF_LDOs  
VLDOx  
ECO = 0b  
ECO = 1b  
LDO1  
–2%  
–5%  
100  
100  
100  
250  
250  
100  
300  
100  
300  
300  
2.5%  
5%  
LDO voltage accuracy  
LDO2  
LDO3  
LDO4  
LDO5  
IOUT(LDOx  
LDO continuous output current  
mA  
)
LDO6  
LDO7  
LDO8  
LDO9  
LDO10  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.7 Electrical Characteristics – LDOs (continued)  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
LDO1, LDO2, LDO3, LDO6, LDO8  
LDO4, LDO5  
MIN  
100  
250  
300  
300  
TYP  
MAX UNIT  
420  
650  
mA  
750  
ISHORT(LD  
LDO current limit  
Ox)  
LDO7  
LDO9, LDO10  
750  
500  
500  
200  
200  
IOUT(LDO1) = 50 mA, VINLDO1 = 1.7 V  
IOUT(LDO2) = 100 mA, VINLDO2 = 1.7 V  
IOUT(LDO3) = 80 mA, VINLDO3 = 1.5 V  
IOUT(LDO4) = 200 mA, VINLDO4 = 2.0 V  
IOUT(LDO5) = 200 mA, VINLDO5 = 3.0 V  
IOUT(LDO6) = 100 mA, VINLDO6 = 3.2 V  
IOUT(LDO7) = 200 mA, VINLDO7 = 3.2 V  
IOUT(LDO8) = 100 mA, VINLDO8 = 2.9 V  
IOUT(LDO9) = 300 mA (LDO9), VINLDO9 = 3.1 V  
IOUT(LDO10) = 300 mA (LDO10), VINLDO10 = 2 V  
VIN = VLDO + 0.5 V and ILOAD = 50 mA  
300  
mV  
200  
VDO(LDOx  
Dropout voltage(2)  
)
200  
200  
200  
200  
1%  
Line regulation  
Load regulation;  
–1%  
LDO1, LDO2, LDO3, LDO6, LDO8: ECO = 0b, 1 mA ≤  
ILOAD ≤ 100 mA  
–0.5%  
0.5%  
LDO5, LDO7: ECO = 0b, 1 mA ≤ ILOAD ≤ 200 mA  
LDO4, LDO9, LDO10: ECO = 0b, 1 mA ≤ ILOAD ≤ 300 mA  
LDO1 to LDO10: ECO = 1b, 0 mA ≤ ILOAD ≤ 1 mA  
dV/dt = ±0.5 V/μs  
–1%  
–1.5%  
–5%  
1%  
1.5%  
5%  
Line transient response  
Load transient response  
–50  
50  
mV  
mV  
dI/dt = 100 mA/μs, 10% to 90% load step  
–110  
110  
LDO1 to LDO3 and LDO6 to LDO10: 10 Hz ≤ f ≤ 1 kHz,  
VINLDOx – VLDOx ≥ 0.5 V,  
10 mA ≤ ILOAD ≤ 0.75 × ILOAD(MAX)  
47  
63  
PSRR  
Power supply rejection ratio  
dB  
LDO4 and LDO5: 10 Hz ≤ f ≤ 1 kHz, VINLDOx – VLDOx ≥  
0.5 V,  
10 mA ≤ ILOAD ≤ 0.75 × ILOAD(MAX)  
LDO1 to LDO3 and LDO6 to LDO10: 10 Hz ≤ f ≤ 100 kHz,  
VINLDOx – VLDOx ≥ 0.5 V, ILOAD ≥ 10 mA  
150  
50  
LDO1 to LDO3 and LDO6 to LDO10: 10 Hz ≤ f ≤ 10 kHz,  
VINLDOx – VLDOx ≥ 0.5 V, ILOAD ≥ 10 mA  
Output voltage noise  
µVrms  
LDO4 and LDO5: 10 Hz ≤ f ≤ 100 kHz, VINLDOx – VLDOx  
≥ 0.5 V, ILOAD ≥ 10 mA  
30  
LDO4 and LDO5: 10 Hz ≤ f ≤ 10 kHz, VINLDOx – VLDOx  
≥ 0.5 V, ILOAD ≥ 10 mA  
15  
ECO = 1b, ILOAD ≤ 1 mA for LDO1, LDO2, LDO3, LDO6,  
LDO7, LDO8, LDO9, LDO10  
8
16  
ECO = 1b, ILOAD ≤ 1 mA for LDO4, LDO5  
Iq  
Quiescent current  
µA  
ECO = 0b, ILOAD ≤ 1 mA for LDO1, LDO2, LDO3, LDO6,  
LDO7, LDO8, LDO9, LDO10  
32  
ECO = 0b, ILOAD ≤ 1 mA for LDO4, LDO5  
40  
Minimum wait time before the full current can be drawn  
after ECO is set 0b  
ECO exit time  
50  
µs  
µs  
tRamp  
VOUT ramp-up time  
Time to ramp from 5% to 95% of VLDOx , IOUT = 100 mA  
VLDOx ≤ VTARGET, VLDOx falling  
VLDOx rising  
170  
87% 90.6% 94.5%  
VLDOPG PG trigger  
98%  
1
tLDOPG  
Power good deglitch time  
ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS659128  
TPS659128  
www.ti.com  
MAX UNIT  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
6.7 Electrical Characteristics – LDOs (continued)  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
Discharge resistance at LDO  
output  
RDischarge  
LDO disabled  
200  
325  
450  
(1) LDO Output voltages are programmed separately  
(2) VDO = VIN – VOUT, where VOUT = VOUT(NOM) – 2%  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.8 Electrical Characteristics – Digital Inputs, Digital Outputs  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
VIL  
Low-level input voltage  
0
0.4  
V
All pins except digital interfaces and  
configuration pins listed below  
1.1  
VCC  
For CONFIG1, CONFIG2, DEF_SPI_I2C-  
GPIO, EN_LS0, EN_LS1, EN1/DCDC1_SEL,  
EN2/DCDC2_SEL, EN3/DCDC3_SEL,  
EN4/DCDC4_SEL, SLEEP/PWR_REQ,  
CPCAP_WDI, VCON_CLK, CLK_REQ1,  
CLK_REQ2  
1.1  
3.3  
VIH  
High-level input voltage  
V
For SDA, SCL, SDA_AVS, SCL_AVS  
For MOSI  
0.7 × VDDIO  
1.1  
VDDIO  
VDDIO  
IOL= 1 mA, except SDA, SCL, SDA_AVS,  
SCL_AVS  
0
0.2  
0.2 × VDDIO  
0.4  
IOL= 3 mA, for SDA, SCL, SDA_AVS,  
SCL_AVS, for VDDIO = 1.8 V  
VOL  
Low-level output voltage  
0
0
V
IOL= 3 mA, for SDA, SCL, SDA_AVS,  
SCL_AVS, for 2 V < VDDIO ≤ 3.6 V  
For pins configured as push-pull output to  
VDDIO, IOH = 1 mA  
VDDIO – 0.2  
VDDIO  
VOH  
High-level output voltage  
Low-level output current  
V
For pins configured as open-drain output  
Except SCL, SDA, AVS_SCL, AVS_SDA  
For SCL, SDA, AVS_SCL, AVS_SDA  
VCC  
1
IOL  
mA  
5
IOH  
High-level output current  
Input-leakage current  
1
mA  
µA  
ILKG  
Input pins tied to VIL or VIH  
0.5  
6.9 Electrical Characteristics – VMON Voltage Monitor, VDDIO, Undervoltage Lockout (UVLO),  
and LDOAO  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Voltage monitor threshold for VMON_SEL[1:0] = 00b, rising  
voltage  
–2%  
3.1  
2%  
2%  
2%  
2%  
V
V
V
Voltage monitor threshold for VMON_SEL[1:0] = 01b, rising  
voltage  
–2%  
–2%  
–2%  
2.9  
2.8  
VMON  
Voltage monitor threshold for VMON_SEL[1:0] = 10b, rising  
voltage  
Voltage monitor threshold for VMON_SEL[1:0] = 11b, rising  
voltage  
2.7  
V
mV  
V
VMON hysteresis  
For falling voltage  
250  
Voltage applied to VDDIO pin to set the high level voltage of  
push-pull output stages  
VDDIO voltage range  
1.63  
1.4  
3.6  
VDDIO undervoltage lockout  
(UVLO) threshold  
1.625  
V
Internal undervoltage lockout threshold (supply voltage rising)  
Internal UVLO threshold hysteresis  
2.5  
200  
2.5  
V
mV  
V
UVLO  
VLDOAO  
Output voltage for LDOAO (LDO always on)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS659128  
 
 
TPS659128  
www.ti.com  
MAX UNIT  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
6.10 Electrical Characteristics – Load Switch  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Voltage between LSI and LSO  
5.5  
115  
100  
520  
V
ILIM[1:0] = 00b, 2.7 V ≤ V(LSI) ≤ 5.5 V  
75  
85  
90  
90  
mA  
mA  
mA  
ILIM[1:0] = 00b, 4.5 V ≤ V(LSI) ≤ 5.5 V, –10°C ≤ TA ≤ 85°C  
ILIM[1:0] = 01b, 2.7 V ≤ V(LSI) ≤ 5.5 V  
450  
485  
ILIM[1:0] = 01b, V(LSI) = 4.5 V ≤ V(LSI) ≤ 5.5 V, 10°C ≤ TA  
≤ 85°C  
460  
485  
500  
mA  
LSI input current limit  
ILIM[1:0] = 10b, 2.7 V ≤ V(LSI) ≤ 5.5 V  
720  
750  
820  
820  
920  
900  
mA  
mA  
ILIM[1:0] = 10b, 2.7 V ≤ V(LSI) ≤ 5.5 V, –10°C ≤ TA ≤ 85°C  
ILIM[1:0] = 11b, 2.7 V ≤ V(LSI) ≤ 5.5 V, not tested in  
production  
2000  
2500  
10  
3000  
mA  
µs  
Current-limit response time  
Resistance from LSI to LSO  
When switch closed and operated as load switch with  
ILIM[1:0] = 11b  
20  
40  
mΩ  
When switch closed and operated as load switch with  
ILIM[1:0] = 00b or 01b or 10b  
Resistance from LSI to LSO  
200  
20  
mΩ  
µA  
V
Leakage current from LSI to LSO  
When load switch is open  
Load switch over-voltage protection on  
the output (sensed at VDCDC4)  
For EN_LS[1:0] = 10b or 11b, when load switch is used as  
BYPASS switch  
4.18  
6.11 Electrical Characteristics – LED Drivers  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
V(LEDA) = V(LEDB) = V(LEDC) = 0.25 V  
Absolute accuracy  
MIN  
2
TYP  
MAX UNIT  
LEDx output sink  
current  
20  
9.5%  
0.25  
mA  
ISINK(LEDx)  
Accuracy  
–8%  
Low-level output  
voltage  
VLO(LEDx)  
ILKG(LEDx)  
Output low voltage at LEDx pins, 20 mA  
V
Output off leakage  
current  
Output voltage = 5 V, driver set to OFF  
1
μA  
6.12 Electrical Characteristics – Thermal Monitoring and Shutdown  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
113  
113  
113  
113  
TYP  
117  
121  
125  
130  
10  
MAX UNIT  
THERM_HDSEL[1:0] = 00b  
136  
THERM_HDSEL[1:0] = 01b  
THERM_HDSEL[1:0] = 10b  
THERM_HDSEL[1:0] = 11b  
Hot-die temperature rising threshold  
°C  
136  
°C  
Hot-die temperature hysteresis  
Thermal shutdown temperature rising  
threshold  
136  
148  
160  
°C  
Thermal shutdown temperature hysteresis  
Ground current  
10  
6
°C  
Device in ACTIVE state, TA = 27°C, VCCS = 3.8 V  
µA  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.13 Electrical Characteristics – 32-kHz RC Clock  
–40°C ≤ TA ≤ 85°C, typical values are at TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
32KCLKOUT rise and fall time  
CL = 35 pF  
10  
ns  
Output-frequency low-level output voltage 32KCLKOUT output  
32  
0%  
kHz  
Output-frequency accuracy  
Output duty cycle  
Settling time  
TA = 25°C  
–20%  
40%  
15%  
60%  
150  
50%  
µs  
6.14 SPI Timing Requirements  
For the SPI timing diagram, see Figure 7-3.  
MIN  
30  
30  
65  
20  
20  
5
MAX  
UNIT  
tcesu  
tcehld  
tckper  
tckhigh  
tcklow  
tsisu  
Chip select setup time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
Chip select hold time  
Clock cycle time  
Clock high typical pulse duration  
Clock low typical pulse duration  
Input data setup time, before clock active edge  
Input data hold time, after clock active edge  
Data retention time  
tsihld  
tdr  
5
15  
30  
tCE  
Time from CE going low to CE going high  
Capacitive load on pin GPIO1_MISO  
65  
6.15 I2C Interface Timing Requirements  
Specified by design. Not tested in production. For the high-speed mode timing diagram, see Figure 7-2.  
MIN  
MAX  
100  
UNIT  
kHz  
Standard mode  
Fast mode  
400  
kHz  
High-speed mode (write operation), CB – 100 pF  
maximum  
3.4  
3.4  
1.7  
1.7  
MHz  
MHz  
MHz  
MHz  
High-speed mode (read operation), CB – 100 pF  
maximum  
f(SCL)  
SCL clock frequency  
High-speed mode (write operation), CB – 400 pF  
maximum  
High-speed mode (read operation), CB – 400 pF  
maximum  
Standard mode  
4.7  
1.3  
4
μs  
μs  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
Bus free time between a STOP  
and START condition  
tBUF  
Fast mode  
Standard mode  
Hold time (repeated) START  
condition  
tHD, tSTA  
Fast mode  
600  
160  
4.7  
1.3  
160  
320  
High-speed mode  
Standard mode  
Fast mode  
tLOW  
LOW period of the SCL clock  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.15 I2C Interface Timing Requirements (continued)  
Specified by design. Not tested in production. For the high-speed mode timing diagram, see Figure 7-2.  
MIN  
MAX  
UNIT  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
pF  
Standard mode  
4
Fast mode  
600  
tHIGH  
HIGH period of the SCL clock  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
60  
120  
4.7  
Setup time for a repeated START  
condition  
tSU, tSTA  
Fast mode  
600  
High-speed mode  
160  
Standard mode  
250  
tSU, tDAT  
Data setup time  
Data hold time  
Fast mode  
100  
High-speed mode  
10  
Standard mode  
0
3.45  
0.9  
Fast mode  
0
tHD, tDAT  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
0
70  
0
150  
1000  
300  
40  
20 + 0.1 CB  
Fast mode  
20 + 0.1 CB  
tRCL  
Rise time of SCL signal  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
10  
20  
80  
20 + 0.1 CB  
1000  
300  
80  
Rise time of SCL signal after a  
repeated START condition and  
after an acknowledge bit  
Fast mode  
20 + 0.1 CB  
tRCL1  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
10  
20  
160  
300  
300  
40  
20 + 0.1 CB  
Fast mode  
20 + 0.1 CB  
tFCL  
Fall time of SCL signal  
Rise time of SDA signal  
Fall time of SDA signal  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
10  
20  
80  
20 + 0.1 CB  
1000  
300  
80  
Fast mode  
20 + 0.1 CB  
tRDA  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
10  
20  
160  
300  
300  
80  
20 + 0.1 CB  
Fast mode  
20 + 0.1 CB  
tFDA  
High-speed mode, CB – 100 pF maximum  
High-speed mode, CB – 400 pF maximum  
Standard mode  
10  
20  
160  
4
tSU, tSTO  
Setup time for STOP condition  
Capacitive load for SDA and SCL  
Fast mode  
600  
160  
High-speed mode  
CB  
400  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.16 Typical Characteristics  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 3 V  
I
V
= 3.6 V  
I
V
= 4.2 V  
I
V
= 3.6 V  
I
V
= 4.2 V  
V
= 5 V  
I
I
V
= 5 V  
I
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 0.9 V  
DFE252012P-1R0  
PFM Mode  
TA = 25°C  
VOUT = 0.9 V  
DFE252012P-1R0  
PWM Mode  
TA = 25°C  
Figure 6-1. DCDC1 Efficiency vs Output Current  
Figure 6-2. DCDC1 Efficiency vs Output Current  
100  
100  
V
= 3 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 3 V  
I
V
= 3.6 V  
I
V
I
= 3.6 V  
V
= 4.2 V  
I
V
= 4.2 V  
I
V
= 5 V  
I
V
= 5 V  
I
0
0.0001  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 1.1375 V  
PWM Mode  
TA = 25°C  
VOUT = 1.1375 V  
DFE252012P-1R0  
PFM Mode  
TA = 25°C  
DFE252012P-1R0  
Figure 6-4. DCDC1 Efficiency vs Output Current  
Figure 6-3. DCDC1 Efficiency vs Output Current  
100  
100  
V
= 3 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
V
= 3.6 V  
V
= 3 V  
I
I
70  
60  
50  
40  
30  
20  
10  
V
= 4.2 V  
I
V
= 5 V  
V
= 3.6 V  
I
I
V
= 4.2 V  
I
V
= 5 V  
I
0
0.0001  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 1.2 V  
PWM Mode  
TA = 25°C  
VOUT = 1.2 V  
PFM Mode  
TA = 25°C  
LQM2MPN-1R0  
LQM2MPN-1R0  
Figure 6-6. DCDC1 Efficiency vs Output Current  
Figure 6-5. DCDC1 Efficiency vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.16 Typical Characteristics (continued)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 3 V  
I
V
= 3.6 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.2 V  
I
V
= 3 V  
I
V
= 5 V  
V
= 3.6 V  
I
I
V
= 4.2 V  
I
V
= 5 V  
I
10  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A  
Output Current (A)  
VOUT = 1.8 V  
PFM Mode  
TA = 25°C  
VOUT = 1.8 V  
PWM Mode  
TA = 25°C  
LQM2MPN-1R0  
LQM2MPN-1R0  
Figure 6-7. DCDC2 Efficiency vs Output Current  
Figure 6-8. DCDC2 Efficiency vs Output Current  
100  
100  
90  
90  
V
= 3 V  
I
80  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 3 V  
I
V
= 3.6 V  
I
V
= 4.2 V  
I
V = 3.6 V  
I
70  
60  
50  
40  
30  
20  
10  
V
= 5 V  
I
V
= 4.2 V  
I
V
= 5 V  
I
0
0.0001  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 2.25 V  
VLS201612-1R0  
PFM Mode  
TA = 25°C  
VOUT = 2.25 V  
PWM Mode  
TA = 25°C  
VLS201612-1R0  
Figure 6-9. DCDC2 Efficiency vs Output Current  
Figure 6-10. DCDC2 Efficiency vs Output Current  
100  
90  
100  
V
= 3 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 3 V  
80  
70  
60  
50  
40  
30  
20  
10  
I
V
= 3.6 V  
I
V
= 4.2 V  
I
V
= 3.6 V  
I
V
= 5 V  
I
V
= 4.2 V  
I
V
= 5 V  
I
0
0.0001  
0
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
10  
10  
Output Current (A)  
Output Current (A)  
VOUT = 2.95 V  
PFM Mode  
TA = 25°C  
VOUT = 2.95 V  
VLS201612-1R0  
PWM Mode  
TA = 25°C  
VLS201612-1R0  
Figure 6-11. DCDC2 Efficiency vs Output Current  
Figure 6-12. DCDC2 Efficiency vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.16 Typical Characteristics (continued)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3 V  
I
V
= 3.6 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 4.2 V  
I
V
= 3 V  
I
V
= 3.6 V  
I
V
= 4.2 V  
I
V
= 5 V  
I
V
= 5 V  
I
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 1.1375 V  
DFE252012-1R0  
PFM Mode  
TA = 25°C  
VOUT = 1.1375 V  
DFE252012-1R0  
PWM Mode  
TA = 25°C  
Figure 6-13. DCDC3 Efficiency vs Output Current  
Figure 6-14. DCDC3 Efficiency vs Output Current  
100  
100  
V
= 3 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
90  
80  
V
= 3.6 V  
V
= 3 V  
I
I
V
= 4.2 V  
I
V
= 5 V  
70  
60  
50  
40  
30  
20  
10  
I
V
= 3.6 V  
I
V
= 4.2 V  
I
V
= 5 V  
I
0
0.0001  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 2.1 V  
PFM Mode  
TA = 25°C  
VOUT = 2.1 V  
PWM Mode  
TA = 25°C  
LQM2MPN-1R0  
LQM2MPN-1R0  
Figure 6-15. DCDC3 Efficiency vs Output Current  
Figure 6-16. DCDC3 Efficiency vs Output Current  
100  
100  
V
= 4.2 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
V
= 5 V  
70  
I
V
= 4.2 V  
I
60  
50  
40  
30  
20  
10  
V
= 5 V  
I
0
0.0001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 3.2 V  
PFM Mode  
TA = 25°C  
VOUT = 3.2 V  
PWM Mode  
TA = 25°C  
DFE25012-1R0  
DEF25012-1R0  
Figure 6-17. DCDC3 Efficiency vs Output Current  
Figure 6-18. DCDC3 Efficiency vs Output Current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.16 Typical Characteristics (continued)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
= 3 V  
I
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.6 V  
I
V
= 4.2 V  
V
= 3 V  
I
I
V
= 3.6 V  
I
V
= 4.2 V  
V
= 5 V  
I
I
V
= 5 V  
I
10  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 1.1375 V  
DEF322512-1R0  
PWM Mode  
TA = 25°C  
VOUT = 1.1375 V  
DEF25012-1R0  
PFM Mode  
TA = 25°C  
Figure 6-20. DCDC4 Efficiency vs Output Current  
Figure 6-19. DCDC4 Efficiency vs Output Current  
100  
100  
90  
90  
V
= 4.2 V  
I
V
= 3.8 V  
I
80  
70  
60  
50  
40  
30  
20  
10  
80  
V
= 5 V  
I
70  
V
= 3.8 V  
I
60  
50  
40  
30  
20  
10  
V
= 4.2 V  
I
V
= 5 V  
I
0
0.0001  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
VOUT = 3.3 V  
PFM Mode  
TA = 25°C  
VOUT = 3.3 V  
PWM Mode  
TA = 25°C  
DEF322512-1R0  
DEF322512-1R0  
Figure 6-21. DCDC4 Efficiency vs Output Current  
Figure 6-22. DCDC4 Efficiency vs Output Current  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
VIN_LDO = 1.8 V, VOUT = 1.2 V, IOUT = 10 mA  
80  
70  
60  
50  
40  
30  
VIN_LDO = 1.8 V, VOUT = 1.2 V, IOUT = 100 mA  
20  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 6-23. LDO1, LDO2, LDO3 PSRR vs Frequency  
VIN = 3.2 V  
IOUT = 225 mA  
Figure 6-24. LDO4 and LDO5 PSRR vs Frequency  
VOUT = 2.7 V  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
6.16 Typical Characteristics (continued)  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VIN_LDO = 5 V, VOUT = 3.3 V, IOUT = 10 mA  
90  
VIN_LDO = 3.3 V, VOUT = 1.8 V, IOUT = 10 mA  
80  
70  
60  
50  
VIN_LDO = 3.3 V, VOUT = 2.85 V, IOUT = 10 mA  
VIN_LDO = 3.3 V, VOUT = 1.8 V, IOUT = 100 mA  
VIN_LDO = 5 V, VOUT = 3.3 V, IOUT = 100 mA  
40  
30  
20  
VIN_LDO = 3.3 V, VOUT = 2.85 V, IOUT = 100 mA  
10  
0
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz  
Frequency (Hz)  
Figure 6-25. LDO4 PSRR vs Frequency  
Figure 6-26. LDO6 and LDO8 PSRR vs Frequency  
100  
90  
80  
VIN_LDO9 = 3.3 V, VOUT = 2.85 V, IOUT = 10 mA  
70  
60  
50  
40  
30  
20  
VIN_LDO9 = 3.3 V, VOUT = 2.85 V, IOUT = 300 mA  
10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Figure 6-27. LDO9 PSRR vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
7 Parameter Measurement Information  
7.1 I2C Timing Diagrams  
SDA  
tf  
tBUF  
tr  
tLOW  
Tsu:DAT  
tf  
thd:STA  
tr  
SCL  
thd:DAT  
tSU:STA  
S
P
Tsu:STO  
Thd:STA  
High  
Figure 7-1. Serial Interface Timing Diagram for FS-Mode  
Sr  
Sr  
P
tfDA  
trDA  
SDAH  
thd;DAT  
tsu;STA  
thd;STA  
Tsu;STO  
tsu;DAT  
SCLH  
tfCL  
trCL1  
trCL1  
trCL  
tLOW  
See Note A  
tHIGH  
tLOW  
tHIGH  
See Note A  
A. First rising edge of the SCLH signal after Sr and after each acknowledge bit.  
Figure 7-2. Serial Interface Timing Diagram for HS-Mode  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
7.2 SPI Timing Diagram  
SPI Chip Select  
tckper  
tckhigh  
tcehld  
tcklow  
tcesu  
SPI Clock Enable  
tsisu  
tsihld  
SPI Data Input  
R/W  
Address (8 bits)  
Unused bits (7 bits)  
tdr  
Data (8 bits)  
SPI Data Output  
ERROR (15 bits)  
Figure 7-3. SPI Timing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The TPS659128x device is an integrated power-management integrated circuit (PMIC), available in an 81-pin,  
0.4-mm pitch, 3.6-mm × 3.6-mm DSBGA package. The device is designed for applications including data  
cards, smart phones, wireless routers and switchers, LTE modems, industrial applications, GPS, and tablets.  
The device provides four, configurable step-down converter rails with a power save mode for light loads.  
The TPS659128x device also provides ten external LDO rails. Eight are general purpose LDOs and two are  
low-noise RF-LDOs. The device also comes with two I2C interface channels or one SPI channel, five GPIOs, a  
32-kHz RC oscillator, and a programmable power sequencer and control for supporting different processors and  
applications. The four, step-down converter rails are consisting of four, high-frequency switch-mode converters  
with integrated FETs. The rails are capable of synchronizing to an external clock input and supports a switching  
frequency from 2.8 MHz to 3.5 MHz. The DCDC4 rail also includes a bypass switch that can be used to turn  
on and turn off high current loads. In addition, the DCDC rails support dynamic voltage scaling with a dedicated  
I2C interface. The eight general LDOs support an output from 0.8 V to 3.3 V. The two low-noise LDOs support  
an output from 1.6 V to 3.3 V. All LDOs and step-down converters can be controlled by the SPI or I2C interface.  
The power-up and power-down controller is configurable and programmable through one-time programmable  
(OTP) memory. The TPS659128x device includes a 32-kHz RC oscillator to sequence all resources during  
power up and power down. Configurable GPIOs with a multiplexed feature are available on the TPS659128x  
device. The GPIOs can be configured and used as enable signals for external resources, which can be included  
in the power-up and power-down sequence. Lastly, the device includes a long button-press detection that allows  
startup of the device with the hold of a button.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.2 Functional Block Diagram  
TPS65912  
VCC  
VINDCDC1  
Digital Core  
DCDC1  
0.5to 1.2875 V  
CONFIG1  
SW1  
CONFIG2  
0.7to 1.4875 V  
0.5to 2.075V  
0.5to 3.8 V  
DEF_SPI_I2C-GPIO  
VDCDC1  
VDCDC1_GND  
PGND1  
2.5A  
SCL_SCK  
OTP Bank 0  
CONFIG1 = 0  
OTP Bank 1  
CONFIG1 = 1  
SDA_MOSI  
I2C and SPI  
GPIO1_MISO  
VINDCDC2  
DCDC2  
GPIO2_CE  
0.5to 1.2875 V  
0.7to 1.4875 V  
0.5to 2.075V  
0.5to 3.8 V  
SCL_AVS/CLK_REQ1  
SCL_SDA/CLK_REQ2  
EN1/DCDC1_SEL  
EN2/DCDC2_SEL  
EN3/DCDC3_SEL  
EN4/DCDC4_SEL  
nRESPWRON/VSUP_OUT  
INT1  
SW2  
VDCDC2  
PGND2  
0.75 A  
VINDCDC3  
DCDC3  
PG Monitor  
0.5to 1.2875 V  
0.7to 1.4875 V  
0.5to 2.075V  
0.5to 3.8 V  
SW3  
VDCDC3  
PGND3  
SLEEP/PWR_REQ1  
nPWRON (nResin)  
OMAP_WDI_32k_OUT  
VCON_PWM  
1.6A  
VINDCDC4  
SW4  
VCON_CLK  
Sequencer  
ENx, SLEEP  
DCDC4  
PWRHOLD_ON  
CPCAP_WDI  
0.5to 1.2875 V  
0.7to 1.4875 V  
0.5to 2.075V  
0.5to 3.8 V  
EN_LS0  
VDCDC4  
VDCDC4_GND  
PGND4  
EN_LS1  
2.5A  
VINDCDC_ANA  
VDDIO  
LSI  
VREF1V25  
AGND  
Interrupt  
Management  
BIAS  
Load Switch  
90to 2500mA  
LSO  
AGND  
DGND  
VINLDO1210  
VLDO1  
LDO1  
0.8to 3.3 V  
100 mA  
VCCS/VIN_MON  
+
LDO2  
0.8to 3.3 V  
100 mA  
VTH  
GPIO  
Controller  
VLDO2  
œ
LEDA/GPIO3  
LDO10  
0.8to 3.3 V  
300 mA  
VLDO10  
LEDB/GPIO4  
LED Driver  
VINLDO3  
VLDO3  
LEDC/GPIO5  
LDO3  
0.8to 3.3 V  
100 mA  
LED  
Controller  
VINLDO4  
VLDO4  
32-kHz RC  
Oscillator  
LDO4(Low Noise)  
1.6to 3.3 V  
250 mA  
VINLDO5  
VLDO5  
Thermal  
Warning and  
Shutdown  
LDO5(Low Noise)  
1.6to 3.3 V  
250 mA  
VINLDO67  
VLDO6  
LDO6  
0.8to 3.3 V  
100 mA  
LDO9  
0.8to 3.3 V  
300 mA  
LDO8  
0.8to 3.3 V  
100 mA  
LDO7  
0.8to 3.3 V  
300 mA  
Always-On  
Internal LDO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.3 Feature Description  
8.3.1 Linear Regulators  
The power-management core has 10 low-dropout (LDO) regulators with various output voltage and current  
capabilities. Each LDO output voltage can be set independently through the communication bus (see Table  
8-85). The transition occurs immediately if the LDO regulator is enabled.  
8.3.1.1 Low Quiescent Current Mode (Eco-mode™)  
Each LDO regulator is equipped with a low quiescent-current mode that can be enabled or disabled separately.  
When the ECO bit is set to 1b, the LDOx Eco-mode control scheme is enabled if the proper conditions are met.  
8.3.1.2 Output Discharge  
Each LDO regulator is equipped with an output discharge bit located in the DISCHARGEx registers. When the  
LDOx_DISCHARGE bit is set to 1b, the output of the LDO is discharged to ground with the equivalent of a 300-Ω  
resistor. If the LDO regulator is enabled, the discharge bit is ignored.  
8.3.1.3 Thermal Shutdown  
Global thermal-shutdown protection is available for all step-down converters and LDO regulators. The thermal  
sensor generates an early warning depending on the setting of the THRM_REG register. This can generate an  
interrupt on the INT pin if the HOTDIE interrupt is not masked in the INT_MSK register. If the temperature rises  
above the thermal shutdown threshold, the device is powered down to the OFF state.  
8.3.1.4 LDO Enable  
The LDO enable and disable is part of the flexible power-up and power-down state machine. Each LDO  
regulator can be factory programmed such that it is powered up automatically in one of the 15 time slots after  
a power-on condition occurs or is controlled by a dedicated pin. More details on the startup sequencing is  
available in Section 8.4.3. The EN1, EN2, EN3, EN4, CLK_REQ1, CLK_REQ2, and PWR_REQ (SLEEP) pins  
can be mapped to any resource (LDO, DC-DC converter, 32-kHz clock output, or GPIO) to enable or disable the  
resource if the proper conditions are met.  
8.3.1.5 LDO Voltage Range  
The output voltage range for the standard LDO regulators is 0.8 V to 3.3 V. For the RF-LDO regulators, LDO4  
and LDO5, the output voltage range is 1.6 V to 3.3 V. The most significant bit for the voltage settings (the SEL[5]  
bit) on LDO4 and LDO5 is ignored and is internally set to 1b.  
8.3.1.6 LDO Power-Good Comparator  
The output voltage of each LDO regulator is supervised by an internal power-good comparator. The output of the  
comparator is set and cleared by the power-good bits in the PGOOD and PGOOD2 registers. The power-good  
bits are not valid if the LDO regulator is enabled but the input voltage to the LDO is less than 1 V.  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.3.2 Step-Down Converters  
The synchronous step-down converter used in the power-management core includes a unique, hysteric PWM-  
controller scheme which enables switch frequencies over 3 MHz, excellent transient and AC load regulation, and  
operation with tiny and cost-competitive external components.  
The controller topology supports forced PWM mode as well as power save mode operation. Power save mode  
operation reduces the quiescent current consumption and ensures high conversion efficiency at light loads by  
skipping switch pulses.  
A significant advantage of this architecture compared to other hysteretic PWM-controller topologies is its  
excellent DC and AC load regulation capability in combination with low output-voltage ripple over the entire  
load range which makes this device well suited for audio and RF applications.  
When the output voltage falls below the threshold of the error comparator, a switch pulse is initiated and the  
high-side switch is turned on. The switch remains turned on until a minimum on time expires and the output  
voltage trips the threshold of the error comparator or the inductor current reaches the current limit of the  
high-side switch. When the high-side switch turns off, the low-side switch rectifier is turned on and the inductor  
current ramps down until the high-side switch turns on again or the inductor current reaches zero.  
8.3.2.1 PWM and PFM Mode  
In forced PWM mode, the device avoids pulse skipping and allows easy filtering of the switch noise by external  
filter components. PWM mode is forced by setting the DCDCx_MODE bit to 1b. If this bit is not set, the DCDCx  
outputs are in auto mode, which can switch to a low-current PFM mode when a light load occurs and sufficient  
headroom is present between the DCDCx input and output rails.  
8.3.2.2 Low Quiescent Current Mode  
Each step-down converter can be individually controlled to enter a low quiescent-current mode. This mode can  
be entered when the ECO bit is set to 1b and the proper conditions are met. In Eco-mode, the quiescent current  
is reduced and the output voltage is supervised by a comparator while most parts of the control circuitry are  
disabled to save power. Eco-mode should only be enabled when a converter has less than 2 mA of load current.  
In addition, the Eco-mode should be disabled prior to a load transient step to allow the converter to respond  
in a timely manner to the excess current draw. Setting the step-down converter into PWM mode by setting the  
DCDCx_MODE bit to 1b disables Eco-mode independently from the setting of the ECO bit.  
8.3.2.3 Output Voltage Monitoring  
Internal power-good comparators monitor the switching regulator outputs and detect when the output voltage is  
less than 90% of the programmed value. This information is used by the power-management core to generate  
interrupts depending on specific I2C register settings. For more information, see Section 8.4.8. An individual  
power-good comparator of the switching regulator is blanked when the regulator is disabled or when the voltage  
of the regulator is transitioning from one set point to another.  
8.3.2.4 Output Discharge  
Each switching regulator is equipped with an output discharge enable bit located in the DISCHARGE2 register.  
When the DCDCx_DISCHARGE bit is set to 1b, the output of the regulator is discharged to ground with the  
equivalent of a 400-Ω resistor. If the enable bit of the regulator is set, the discharge bit is ignored.  
8.3.2.5 Thermal Shutdown  
Global thermal-shutdown protection is available for all step-down converters and LDOs. The thermal sensor  
generates an early warning depending on the setting of the THRM_REG register. If the temperature rises above  
the thermal shutdown threshold, the device is powered down to the OFF state.  
8.3.2.6 Step-Down Converter Enable  
The step-down converter enable and disable is part of the flexible power-up and power-down state machine.  
Each converter can be factory programmed such that it is powered up automatically in one of the 15 time slots  
after a power-on condition occurs or is controlled by a dedicated pin. The EN1, EN2, EN3, EN4, CLK_REQ1,  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
CLK_REQ2, and PWR_REQ (SLEEP) pins can be mapped to any resource (LDO, DC-DC converter, 32 kHz  
clock output, or GPIO) to enable or disable the resource.  
8.3.2.7 Step-Down Converter Soft Start  
The step-down converters in the TPS659128x device have an internal soft-start circuit that controls the ramp-up  
of the output voltage. The output voltage ramps up from 5% to 95% of its nominal value within a time defined in  
Section 6. This ramp time limits the inrush current in the converter during start-up and prevents possible input  
voltage drops when a battery or high-impedance power source is used. The soft-start circuit is enabled after the  
start-up time, tStart, has expired. The DCDC4 converter has an option to set two different values for the start-up  
and ramp time. For applications that require a fast response, set the DCDC4_CTRL:RAMP_TIME bit to 1b.  
During soft start, the output voltage ramp up is controlled as shown in Figure 8-1.  
EN  
95%  
5%  
VOUT  
tStart  
tRAMP  
Figure 8-1. Soft Start  
8.3.3 GPIOs  
The TPS659128x device has five GPIOs. GPIO1 and GPIO2 are shared with the SPI and therefore they are  
not available if the SPI is used. GPIO3, GPIO4, and GPIO5 are for general-purpose use and are shared with  
the LED driver. The input and output stages of GPIO1 and GPIO2 are similar to GPIO3 however, they do not  
contain the LED current sink. If the output stage is programmed as a push-pull output, it pulls to the high-voltage  
set by the VDDIO pin. With the VDDIO supply voltage being less than the VDDIO UVLO threshold voltage, the  
high-side driver is disabled and the output is set to open drain.  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
VDDIO  
Output enable  
GPIO_CFG  
Open drain-enable  
GPIO_ODEN  
Backgate  
Switch  
GPIOx / LEDx  
DATA IN  
4.7 k  
LED  
current  
sink  
DATA OUT  
Pulldown enable  
GPIO_PDEN  
LED_PWM  
Figure 8-2. GPIO Block for GPIO3, GPIO4, and GPIO5  
8.4 Device Functional Modes  
8.4.1 Power State Machine  
The embedded power controller (EPC) manages the state of the device and controls the power-up sequence.  
The transitions for the state machine are shown in Figure 8-3 through Figure 8-8.  
The EPC supports the following states:  
NO  
SUPPLY  
The main battery-supply voltage is not high enough to power the LDOAO (LDO Always ON)  
regulator in this state. A global reset is asserted in this case. Everything on the device is off.  
CONFIG  
This state is entered either from the NO SUPPLY state automatically or from the ACTIVE or  
SLEEP state when the TPS659128x device is configured accordingly by the LOAD-OTP bit (bit 6)  
in the DEVCTRL register. When the CONFIG state is entered, all registers are set to their default  
value and the nRESPWRON pin is asserted.  
OFF  
The LDOAO regulator is on and internal logic is active in this state. All power supplies are off. The  
device can detect and execute a power-up sequence. The nRESPWRON pin is asserted.  
ACTIVE  
SLEEP  
Device POWER-ON enable conditions are met and regulated power supplies are ON or can be  
enabled with full current capability in this state. A reset is released and the interfaces are active.  
Device SLEEP enable conditions are met and selected regulated power supplies are in low-power  
or off mode in this state. Only used when CONFIG2 is shorted to GND.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.4.2 Transition Conditions  
The device transition conditions are:  
The device performs POWER ON transition when any of the following power on conditions are met:  
– nPWRON signal low level  
– PWRHOLD signal high level  
– PWRHLD bit in the DEVCTRL register set to 1b (OTP dependent default)  
– Interrupt flag active (default INT1 low) will generate a POWER ON enable condition for 5 seconds. During  
this time period, the processor or system is required to set PWRHOLD pin to high or set the PWRHLD  
bit in the DEVCTRL register to 1b to keep the device on. Interrupt sources generate POWER ON enable  
conditions only if they are not masked (OTP and register setting dependent).  
The device POWER ON transition will not occur if any of the following conditions are present:  
– nPWRON signal low level for more than the Long Press delay of 5 s. This can be disabled by  
setting the PWRON_LP_OFF and PWRON_LP_OFF_RST bits in the DEVCTRL2 register to 0b. The  
interrupt corresponding to this condition is the PWRON_LP_IT in INT_STS_REG register. The interrupt is  
generated after 4 s to allow processor to mask PWRON_LP_OFF if desired.  
– Die temperature has reached the thermal shutdown threshold (THERM_TS bit in THRM_REG register is  
1b)  
Device performs POWER OFF transition from ACTIVE state if none of the POWER ON conditions are met,  
if long key press takes priority, the DEV_OFF bit is set to 1b, or die temperature reaches thermal shutdown  
threshold.  
Device performs ACTIVE to SLEEP transition when all of the following happen:  
– The interrupt flag is inactive, meaning there are no unmasked interrupts pending  
– The SLEEP_ENABLE bit in the DEVCTRL2 register is set to 1b  
– The SLEEP pin is active (polarity depending on SLEEP_POL bit in the DEVCTRL2 register)  
Alternatively, as long as no interrupts are pending, the DEV_SLP bit can also put the device into the SLEEP  
state with higher priority than the SLEEP pin. When the DEV_SLP bit is used, there must be an unmasked  
interrupt to cause SLEEP to ACTIVE transition, otherwise device will remain in SLEEP until set to OFF state  
and the DEV_SLP bit is cleared. It is not recommended to use the DEV_SLP bit when the CONFIG2 pin is  
shorted to LDOAO.  
The device has two different reset scenarios:  
– Full reset: all digital of device is reset  
This reset is caused by a power-on reset (POR) when VCCS < UVLO.  
– General reset, where only OTP backed register bits are reloaded:  
This reset is caused by a turnoff event while the LOAD-OTP bit is set to 1b.  
A turnoff event happens when the PWRON_LP_OFF_RST bit is set to 1b.  
The nPWRON pin can also be set in OTP to cause reset when pulled low longer than 100 ms.  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
VCCS < UVLO  
NO SUPPLY  
UVLO: 2.6-V rising voltage  
POWER ON disabled  
OR  
VCCS < VMON_SEL[1:0] œ 200 mV  
AND LOAD-OTP = 1b  
OR  
Load default settings  
from OTP and pins.  
THERM_TS = 1b AND LOAD-OTP = 1b  
CONFIG < 200-µs  
delay  
POWER ON disabled  
OR  
VCCS < VMON_SEL[1:0] œ 200 mV AND  
LOAD-OTP = 0b  
OFF  
POWER ON disabled  
OR  
VCCS < VMON_SEL[1:0] œ 200 mV  
AND LOAD-OTP = 0b  
OR  
POWER ON enabled(1)(2)  
AND  
VCCS > VMON_SEL[1:0]  
THERM_TS = 1b AND LOAD-OTP = 0b  
ACTIVE  
SLEEP  
disabled  
SLEEP  
enabled  
POWER ON disabled  
OR  
VCSS < VMON_SEL[1:0] œ 200 mV  
AND LOAD-OTP = 1b  
SLEEP  
A. Alternatively, the PWRHLD bit in the DEVCTRL register can be factory programmed to 1b in OTP, causing immediate power up. In this  
case, the bit must be set to 0b to allow normal device shutdown.  
B. SLEEP state only applies when CONFIG2 is shorted to GND.  
Figure 8-3. EPC State Machine  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
VCCS < UVLO  
NO SUPPLY  
UVLO: 2.6-V rising voltage  
Load default settings from OTP load status of the CONFIG1,  
CONFIG2, DEF_SPI_12C_GPIO pins.  
Copy status of EN_LS0 and EN_LS1 pins to register.  
CONFIG < 200-µs  
delay  
SPI and I2C interfaces in reset  
Wait for power-on event by  
PWRON pulled low  
OR PWRHOLD = HIGH  
OFF  
SPI and I2C interfaces in reset  
Power-up primary resources as defined in OTP within 16  
timeslots of DEVCTRL2:TSLOTLENGTH[1:0]  
Run Start-Up  
Sequencing  
Example: DCDC2 - DCDC1 - DCDC4 - DCDC3 - LDO9 -  
release nRESPWRON  
SPI and I2C interfaces gated by nRESPWRON  
Continuously check the status of the enable pins to power-up  
the secondary resources driven by the pins  
Example:  
ACTIVE  
EN1 pin is mapped to LDO1 by EN1_SET1:LDO1_EN = 0x01  
EN2 is mapped to LDO2 and LDO4 by EN_SET2[7:0] = 0x0A  
SPI and I2C interfaces active  
Figure 8-4. STARTUP Flow for CONFIG2 Pin Shorted to LDOAO  
Figure 8-4 is valid when the CONFIG2 pin is shorted to LDOAO. The EN1, EN2, EN3, and EN4 pins are used  
as enable pins to enable one or several resources. The EN1_SET1 and EN1_SET2 registers define which  
converters or LDO regulators are controlled by the EN1 pin. The EN2, EN3, and EN4 are configured similarly.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
VCCS < UVLO  
NO SUPPLY  
UVLO: 2.6-V rising voltage  
Load default settings from OTP  
Load status of CONFIG1, CONFIG2, DEF_SPI_I2C_GPIO pins  
Copy status of EN_LS0 and EN_LS1 to register  
For CONFIG2 pin shorted to ground:  
Maps ENx pins to be DCDCx_SEL pin to define the output voltage of  
DC-DC converter x, LDOs, or both (defined by DEF_VOLT_MAPPING)  
Maps PWR_REQ1 pin to EN1_SET register  
CONFIG < 200-µs  
delay  
Maps CLK_REQ1 pin to EN2_SET register  
Maps CLK_REQ2 pin to EN3_SET register  
SPI and I2C interfaces in reset  
Wait for power-on event by  
PWRON pulled low  
OR PWRHOLD = HIGH  
OFF  
SPI and I2C interfaces in reset  
Power-up primary resources as defined in OTP within 16 timeslots of  
DEVCTRL2:TSLOTLENGTH[1:0]  
Output voltage is defined by DCDCx_SEL pins  
Run Start-Up  
Sequencing  
Example: DCDC3 œ DCDC2 œ LDO10 - wait for VSUP_OUT = HIGH œ delay  
rising VSUP_OUT signal to pin by 10 ms  
SPI and I2C interfaces gated by nRESPWRON (VSUP_OUT)  
Continuously check status of CLK_REQx, PWR_REQ and DCDCx_SEL pins  
to enable or disable resources or change the output voltage between the value  
defined by _OP and _AVS registers  
Example:  
DCDC1_SEL = 0b: Output voltage of DCDC1 is defined by DCDC1_OP  
register  
DCDC1_SEL = 1b: Output voltage of DCDC1 is defined by DCDC1_AVS  
register  
ACTIVE  
EN1_SET1:LDO1_EN = 1b: PWR_REQ pin is mapped to LDO1  
EN_SET2[7:0] = 0x0A: CLK_REQ1 pin is mapped to LDO2 and LDO4  
EN_SET3[7:0] = 0x0A: CLK_REQ2 pin is mapped to LDO2 and LDO4  
: LDO1 is enabled and disabled by pin PWR_REQ  
: LDO2 and LDO4 are enabled if pin CLK_REQ1 = 1 OR CLK_REQ2 = 1  
SPI and I2C interfaces active  
Figure 8-5. STARTUP Flow for CONFIG2 Pin Shorted to GND  
Figure 8-5 is valid when the CONFIG2 pin is shorted to GND. The EN1, EN2, EN3, and EN4 pins are remapped  
as DCDCx_SEL pins, defining which register is used to set the output voltage on a specific DC-DC converter.  
For example, connecting the DCDC1_SEL pin to GND sets the output voltage of the DCDC1 converter to what is  
defined by the DCDC1_OP register. Connecting the DCDC1_SEL pin to a logic level high sets the output voltage  
to what is defined by the DCDC1_AVS register. The DCDC2 voltage is defined by the DCDC2_SEL pin and so  
forth.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
The LDO1 to LDO4 regulators can be mapped to the DCDCx_SEL pins. The DEF_VOLT_MAPPING register  
defines which LDO regulator is controlled by which DCDCx_SEL pin.  
Additionally, shorting the CONFIG2 pin to GND also remaps the SCL_AVS, SDA_AVS, and SLEEP pins as  
CLK_REQ1, CLK_REQ2, and PWR_REQ pins. The functionality is similar to the ENx pins.  
The EN1_SET1 and EN1_SET2 registers define which resource is controlled by the PWR_REQ pins, the  
EN2_SETx register defines the resource controlled by the CLK_REQ1 pin, and the EN3_SETx register defines  
the resources controlled by the CLK_REQ2 pin.  
Define SLEEP pin polarity  
Define SLEEP state behavior with the following registers:  
KEEP_ON  
ACTIVE  
SET_OFF  
DEF_VOLT  
Process pending interrupts or mask interrupts  
Enable SLEEP function: Set SLEEP_ENABLE = 1b  
Activate the SLEEP state with the  
SLEEP pin (active HIGH or LOW)  
Mask the INT output (no interrupt possible in the SLEEP  
state)  
Set any of the following defined resources to SLEEP:  
Process  
Sleep sequence  
Set to Eco-mode  
Set OFF  
Keep ACTIVE  
Change voltage  
Disable interfaces and thermal monitor  
SLEEP  
Wait for the SLEEP signal to go inactive.  
1) Enable interfaces and thermal monitor  
2) Wake-up resources from Eco-mode  
3) Enable resources which were OFF according to the  
power-up sequence  
4) Wake-up of all resources that were enabled by software  
before entering the SLEEP state  
5) Unmask the interrupt output pin  
Process  
Exit sleep  
sequence  
Deactivate the SLEEP state with the  
SLEEP pin (active HIGH or LOW)  
ACTIVE  
Figure 8-6. SLEEP Flow for CONFIG2 Pin Shorted LDOAO  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
CONFIG2 pin shorted to LDOAO  
ACTIVE  
Turn-off event  
(PWRHOLD = 0b)  
1) Assert nRESPWRON  
2) Disable resources based on the  
PWR_OFF_SEQ bit in the DEVCTRL register  
3) Disable interfaces and thermal monitor  
Process  
turn-off sequence  
LOAD_OTP = 1b  
LOAD_OTP = 0b  
CONFIG < 200-µs  
delay  
Load settings from OTP and configuration pins.  
OFF  
Figure 8-7. SHUTDOWN Flow for CONFIG2 Pin Shorted to LDOAO  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
CONFIG2 shorted to GND  
Unmask VMON Interrupt (VMON_IT_MSK bit in  
register INT_MSK set to 0b)  
ACTIVE  
Turn-off event (VMON_IN  
below threshold)  
Generate Interrupt  
Set INT1 pin LOW  
Delay by VMON_DELAY[1:0]  
1) Assert nRESPWRON (VMON_OUT = LOW)  
2) Wait 2 ms  
3) Disable all resources based on the  
PWR_OFF_SEQ bit in the DEVCTRL register  
4) Disable interfaces and thermal monitor  
Process turn-off  
sequence  
LOAD_OTP = 0b  
LOAD_OTP = 1b  
nRESIN set low for > 10 ms if the nPWRON  
pin configured as nRESIN in OTP  
CONFIG < 200-µs  
delay  
Load settings from OTP and configuration pins  
OFF  
Figure 8-8. SHUTDOWN Flow for CONFIG2 Pin Shorted to GND  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.4.3 Implementation of Internal Power-Up and Power-Down Sequencing  
The TPS659128x can internally enable resources during power up (going to the ON state) and power down  
(going to the OFF state), and for entering and exiting the SLEEP state. The internal power sequencing is defined  
in the factory programmed OTP memory. The sequencing can enable resources in 15 time slots during power  
up and power down. A resource can be associated to any of these 15 time slots that will be processed in the  
opposite direction during power down. Four settings are programmable for the delay and are effective for all 15  
time slots:  
Table 8-1. TSLOT_LENGTH Delay Options  
Bits  
00b  
01b  
10b  
11b  
Delay  
30 µs  
200 µs  
500 µs  
2 ms  
Resources can include:  
Step-down converters  
LDO regulators  
32-kHz clock output  
nRESPWRON output  
Resources that are not part of the automatic sequencing can be configured such that they are enabled by  
external pins or by their enable bit in the register set once the device is in the ACTIVE or SLEEP states.  
Resources that are enabled automatically should not be assigned to an external enable pin. A break point  
can be defined which stops power-up sequencing and allows power-up sequencing to resume once voltage  
monitoring conditions are met. This break point prevents power up until the voltage of the voltage monitors  
exceeds a certain limit.  
As shown in Figure 8-9, resources can be mapped to any of the time slots with none, one, or multiple resources  
for any time slot.  
Note  
Figure 8-9 is an example of the programmability of the sequencing and does not match the settings  
for a particular OTP of the device. For individual part-number settings, refer to the application report  
specific for each orderable part number.  
For entry to the SLEEP state and exit from the SLEEP state, only three time slots are used with a 120-µs delay  
between time slots.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Power Up  
Power Down  
1
2
3
4
5
14  
15  
DCDC1 DCDC3  
DCDC2 LDO3  
nRES-  
PWRON  
DCDC4 LDO5  
PWRHOLD  
VDCDC1  
VDCDC2  
VDCDC3  
VLDO3  
TSLOT_LENGTH[1:0]  
VDCDC4  
VLDO5  
nRESPWRON  
Figure 8-9. Internal Power-Up Example  
8.4.4 Summary of CONFIG2, Device State, and Enable Pin Settings on Regulators  
The behavior of the regulators is impacted by the state of various settings which can be modified by hardware,  
software, and part number specific settings. The LDOs are more simplistic and are shown first. The DCDCs are  
shown second and include an additional resource mode (force PWM). Both cases also indicate which voltage  
setting register (xxx_OP or xxx_AVS) is used. The following tables assume the LDOx_ENABLE bit or DCDCx  
ENABLE bit is set to 1b. Setting this bit to 0b will cause the resource to be off in all cases.  
8.4.4.1 LDO Mode Summary  
The LDO regulators can be off, on in normal-mode, or on in Eco-mode. Which mode the regulator is in depends  
on several variables which can be defined by the part-number specific settings, the host processor software,  
and the hardware configuration. The configurations are best broken into two categories. The first configuration  
applies when a regulator has been assigned to an external pin by the host processor or by OTP in any of the  
ENx_SETx registers. This configuration has few dependencies. The second configuration applies to all other  
cases. A summary of these two can be found in the following tables.  
Table 8-2. LDO Mode Summary - Assigned LDO  
Assigned Pin(s)  
KEEP_ON Bit(2)  
SET_OFF Bit(2)  
Resource Mode  
State(1)  
Low  
0b  
1b  
Off  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-2. LDO Mode Summary - Assigned LDO (continued)  
Assigned Pin(s)  
KEEP_ON Bit(2)  
SET_OFF Bit(2)  
Resource Mode  
State(1)  
Low  
0b  
1b  
x
0b  
x
Eco  
Low  
Normal  
Normal  
High  
x
(1) This is an OR of all assigned pins. If any of the assigned pins goes high, the pin state is considered high.  
(2) There is a separate bit for each regulator.  
Table 8-3. LDO Mode Summary - Unassigned LDO  
KEEP_ON  
CONFIG2  
Device State  
SET_OFF Bit(1)  
ECO Bit(1)  
Resource Mode  
Bit(1)  
GND  
x
x
x
x
0
0
1
1
x
x
x
x
0
1
x
x
0
1
0
1
x
x
0
1
Normal  
Eco  
GND  
LDOAO  
LDOAO  
LDOAO  
LDOAO  
LDOAO  
LDOAO  
ACTIVE  
ACTIVE  
SLEEP  
SLEEP  
SLEEP  
SLEEP  
Normal  
Eco  
Eco  
Off  
Normal  
Eco  
(1) There is a separate bit for each regulator.  
8.4.4.2 DCDC Mode Summary  
The DCDC regulators are similar to the LDO regulators, but they have an additional on state option to choose  
between auto and force PWM modes.  
Table 8-4. DCDC Mode Summary - Assigned DCDC  
Assigned  
KEEP_ON  
Bit(2)  
DCDCx_MODE Bit(2)  
SET_OFF Bit(2)  
Resource Mode  
Pin(s) State(1)  
Low  
Low  
Low  
Low  
Low  
High  
High  
x
0
0
1
1
0
1
0
0
1
0
1
x
x
1
0
x
0
x
x
x
Off  
Eco  
Auto  
PWM  
PWM  
Auto  
PWM  
(1) This is an OR of all assigned pins. If any of the assigned pins goes high, the pin state is considered high.  
(2) There is a separate bit for each regulator.  
Table 8-5. DCDC Mode Summary - Unassigned DCDC  
KEEP_ON  
CONFIG2  
Device State  
SET_OFF Bit(1)  
DCDCx_MODE Bit(1) ECO Bit(1)  
Resource Mode  
Bit(1)  
GND  
GND  
x
x
x
x
x
x
0
0
0
x
x
x
x
x
x
0
0
1
0
0
1
0
0
1
0
1
x
0
1
x
0
1
x
x
x
x
Auto  
Eco  
GND  
PWM  
Auto  
Eco  
LDOAO  
LDOAO  
LDOAO  
LDOAO  
LDOAO  
LDOAO  
ACTIVE  
ACTIVE  
ACTIVE  
SLEEP  
SLEEP  
SLEEP  
PWM  
Eco  
PWM  
Off  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-5. DCDC Mode Summary - Unassigned DCDC (continued)  
KEEP_ON  
Bit(1)  
CONFIG2  
Device State  
SET_OFF Bit(1)  
DCDCx_MODE Bit(1) ECO Bit(1)  
Resource Mode  
LDOAO  
LDOAO  
LDOAO  
SLEEP  
SLEEP  
SLEEP  
1
1
1
x
x
x
0
0
1
0
1
x
Auto  
Eco  
PWM  
(1) There is a separate bit for each regulator.  
8.4.4.3 Voltage Selection Summary  
All four DCDC regulators have two voltage register options, one located in the DCDCx_OP register and one  
in the DCDCx_AVS register. The first four LDOs (LDO1, LDO2, LDO3, and LDO4) also have LDOx_OP and  
LDOx_AVS registers. The selection of which voltage is used can be summarized in the following table.  
Table 8-6. Voltage Selection Summary  
Assigned Pin(s) State or  
Device State(1)  
SELREG  
Bit(2)  
CONFIG2  
DEF_VOLT Bit(2)  
DCDCx_SEL Pin(3)  
Voltage  
GND  
x
x
1
0
1
0
0
x
x
x
x
x
1
0
1
_AVS  
_OP  
GND  
0
LDOAO  
LDOAO  
LDOAO  
LDOAO  
LDOAO  
High or ACTIVE  
High or ACTIVE  
0 or SLEEP  
0 or SLEEP  
0 or SLEEP  
_AVS  
_OP  
_AVS  
_AVS  
_OP  
(1) For any regulators which are set in an ENx_SETx register, this is an OR of all assigned pins. If any of the assigned pins goes high, the  
pin state is considered high. For any regulators which are not set in an ENx_SETx register, the device state is used.  
(2) There is a separate bit for each regulator.  
(3) For LDO1, LDO2, LDO3, and LDO4, this is based on the DEF_VOLT_MAPPING register.  
8.4.5 Details of CONFIG2, Device State, and Enable Pin Settings on Regulators  
The full details of the behavior of the device based on the above signals and settings is outlined below.  
8.4.5.1 EN1, EN2, EN3, and EN4 Resources Control  
The ENx control signals can turn resources on and off as well as setting them into Eco-mode or changing the  
output voltage register from _AVS to _OP. Assigning several resources to one ENx control signal is possible.  
Assigning a resource to several ENx control signals is also possible. The inputs are connected to an OR gate, so  
if any assigned ENx pin is high, the assigned resource is considered enabled. Default configuration of the ENx  
control signals is done in OTP memory; however, changing the ENx settings after power up is possible through  
the ENx_SETx registers. The ENx control signals are effective only in the ACTIVE or SLEEP state. For more  
information on how the pin status on the ENx pin is interpreted, see Section 8.4.5.4.  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
ENx_SET  
(EPROM)  
ENABLE RESx  
EN1  
RESx_REG  
ENx  
RESx_REG  
Figure 8-10. ENx Architecture  
8.4.5.2 Device SLEEP State Control  
The sleep control input on the SLEEP pin is used to move the device into the SLEEP state where the resources  
behavior (DC-DC converters, LDO regulators, 32-kHz clock output, and thermal monitor) are defined by the  
SET_OFF, KEEP_ON, and DEF_VOLT registers. The SLEEP pin is only active if the SLEEP_ENABLE bit in the  
DEVCTRL2 register is set to 1b and all unmasked interrupts are cleared. Otherwise, the state of the SLEEP  
pin is ignored. Additionally, the polarity of the SLEEP pin is controlled by the SLEEP_POL bit in the DEVCTRL2  
register.  
8.4.5.3 SET_OFF, KEEP_ON, and DEF_VOLT Registers Used in SLEEP State with CONFIG2 Pin Shorted  
to LDOAO  
The DCDC1, DCDC2, DCDC3, and DCDC4 converters and LDO1, LDO2, LDO3, and LDO4 regulators allow  
changing the output voltage depending on the ACTIVE state versus SLEEP state. To program the SET_OFF,  
KEEP_ON, and DEF_VOLT registers:  
Keep the resource enabled in the SLEEP state by setting the KEEP_ON bit to 1b. The SET_OFF bit is  
ignored in this case. The DEF_VOLT bit will determine whether _OP (0b) or _AVS (1b) voltage is used in this  
case.  
Set the resource to Eco-mode in the SLEEP state by setting the SET_OFF bit to 0b and the KEEP_ON bit to  
0b. The DEF_VOLT bit will determine whether _OP (0b) or _AVS (1b) voltage is used in this case.  
Turn the resource off in the SLEEP state by setting the SET_OFF bit to 1b and the KEEP_ON bit to 0b.  
8.4.5.4 SET_OFF, KEEP_ON, and DEF_VOLT Registers Used for Resources Assigned to an External  
Enable Pin with CONFIG2 Pin Shorted to LDOAO  
As described in Section 8.4.3, a resource can be assigned to an enable pin. In this case, the SLEEP state of  
the device has no effect on an assigned resource. Instead, the behavior of the resource is defined by the state  
of the enable pin. The SET_OFF, KEEP_ON, and DEF_VOLT registers are remapped and used to define how a  
resource functions when the enable pin is set low or is set high. When the resource's assigned ENx pin is high,  
the assigned resource behaves as if the device was in the ACTIVE state. When the resource's assigned ENx pin  
is low, the assigned resource behaves as if the device was in the SLEEP state. To control the resource:  
The resource is enabled when the ENx pin is set high. The SET_OFF and KEEP_OFF bits are ignored in this  
case.  
Enable the resource when the ENx pin is set low by setting the KEEP_ON bit to 1b. The SET_OFF bit is  
ignored in this case.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Disable the resource when the ENx pin is set low by setting the SET_OFF bit to 1b and the KEEP_ON bit to  
0b.  
Set the resource to Eco-mode when the ENx pin is set low by setting the SET_OFF bit to 0b and the  
KEEP_ON bit to 0b.  
Change the output voltage of a resource when the ENx pin is set low:  
– Set the DEF_VOLT bit to 0b and the voltage will be defined by the _OP register.  
– Set the DEF_VOLT bit to 1b and the voltage will be defined by the _AVS register.  
8.4.5.5 SET_OFF, KEEP_ON, and DEF_VOLT Registers Used for Resources Assigned to Pins PWR_REQ,  
CLK_REQ1 and CLK_REQ2 with CONFIG2 pin shorted to GND  
With the CONFIG2 pin tied to GND, the ENx pins are used as the voltage-select pins (DCDCx_SEL) for the  
DC-DC converters and LDO regulators assigned to these pins by the DEF_VOLT_MAPPING register. These  
pins are only used to switch the output voltage between two values as defined in the _OP (DCDCx_SEL pin set  
to 0) and _AVS (DCDCx_SEL pin set to 1) registers.  
The basic function of enabling or disabling resources is remapped to the PWR_REQ, CLK_REQ1, and  
CLK_REQ2 pins. The pin function is managed by the ENx_SETx registers in the following list.  
PWR_REQ: EN1_SETx  
CLK_REQ1: EN2_SETx  
CLK_REQ2: EN3_SETx  
The EN4_SETx register is not used and should be set 0h.  
8.4.5.6 Configuration Pins CONFIG1, CONFIG2, and DEF_SPI_I2C-GPIO  
The TPS659128x device contains two banks of OTP memory that define the programmed default settings. The  
CONFIG1 pin selects between these two banks of memory. The logic level at the CONFIG1 pin in the CONFIG  
state determines which of the OTP banks is used. The content of that OTP bank is then copied to the user  
registers to set all OTP configurable options, such as default voltages and power-up timing.  
The CONFIG2 bit is used to remap functions to pins. When the CONFIG2 pin is shorted to LDOAO, the EN1,  
EN2, EN3, EN4, SCL_AVS, SDA_AVS, and SLEEP pins are active. When the CONFIG2 pin is shorted to GND,  
these pins are used as DCDCx_SEL, CLK_REQ1, CLK_REQ2, and PWR_REQ pins. Table 8-7 lists the default  
and alternative pin functions.  
Table 8-7. Pin Configuration Based on CONFIG2 Pin  
CONFIG2  
PINSHORTED TO GND;  
CONFIG2 PIN  
SHORTED TO LDOAO;  
DEFAULT PIN USAGE  
DEFAULT FUNCTION  
ALTERNATE FUNCTION  
ALTERNATE PIN  
USAGE  
Enable pin for a set of DC-DC converters and LDOs  
defined by register EN1_SET1 and EN1_SET2 for  
resources that are mapped to a pin, SET_OFFx,  
KEEP_ONx and DEF_VOLT define behavior for the  
case when EN1=0  
DCDC1_SEL = 1b: output voltage is defined by  
DCDC1_AVS register  
DCDC1_SEL = 0b: output voltage is defined by  
DCDC1_OP register  
EN1  
EN2  
EN3  
DCDC1_SEL  
DCDC2_SEL  
DCDC3_SEL  
Enable pin for a set of DC-DC converters and LDOs  
defined by register EN2_SET1 and EN2_SET2 for  
resources that are mapped to a pin, SET_OFFx,  
KEEP_ONx and DEF_VOLT define behavior for the  
case when EN2=0  
DCDC2_SEL = 1b: output voltage is defined by  
DCDC2_AVS register  
DCDC2_SEL = 0b: output voltage is defined by  
DCDC2_OP register  
Enable pin for a set of DC-DC converters and LDOs  
defined by register EN3_SET1 and EN3_SET2 for  
resources that are mapped to a pin, SET_OFFx,  
KEEP_ONx and DEF_VOLT define behavior for the  
case when EN3=0  
DCDC3_SEL = 1b: output voltage is defined by  
DCDC3_AVS register  
DCDC3_SEL = 0b: output voltage is defined by  
DCDC3_OP register  
Enable pin for a set of DC-DC converters and LDOs  
defined by register EN4_SET1 and EN4_SET2 for  
resources that are mapped to a pin, SET_OFFx,  
KEEP_ONx and DEF_VOLT define behavior for the  
case when EN4=0  
DCDC4_SEL = 1b: output voltage is defined by  
DCDC4_AVS register  
DCDC4_SEL = 0b: output voltage is defined by  
DCDC4_OP register  
EN4  
DCDC4_SEL  
PWR_REQ  
Used to transition the device between the ACTIVE  
and SLEEP states when there are no pending  
interrupts and the SLEEP_ENABLE bit is set to 1b.  
Polarity controlled by the SLEEP_POL bit.  
Enable pin for a set of DC-DC converters and LDOs  
Defined by register EN1_SET1 and EN1_SET2  
SLEEP  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-7. Pin Configuration Based on CONFIG2 Pin (continued)  
CONFIG2  
PINSHORTED TO GND;  
ALTERNATE PIN  
USAGE  
CONFIG2 PIN  
SHORTED TO LDOAO;  
DEFAULT PIN USAGE  
DEFAULT FUNCTION  
ALTERNATE FUNCTION  
Clock input of the voltage scaling (AVS) I2C  
interface  
Enable pin for a set of DC-DC converters and LDOs  
Defined by register EN2_SET1 and EN2_SET2  
SCL_AVS  
SDA_AVS  
CLK_REQ1  
CLK_REQ2  
Data input/output of the voltage scaling (AVS) I2C  
interface  
Enable pin for a set of DC-DC converters and LDOs  
Defined by register EN3_SET1 and EN3_SET2  
The DEF_SPI_I2C-GPIO pin defines whether the SPI or the I2C interface is used as the standard  
communication interface. Setting the DEF_SPI_I2C-GPIO to 0 defines SPI as the standard interface  
associated to the SCL_SCK, SDA_MOSI, GPIO1_MISO, and GPIO2_CE pins. The CONFIG1, CONFIG2, and  
DEF_SPI_I2C-GPIO pins should be tied to GND for a low level and to the LDOAO pin for a logic high level.  
The CONFIG1, CONFIG2, and DEF_SPI_I2C-GPIO pins should not be switched in operation but hardwired to a  
logic-low level (GND) or a logic-high level by connecting the pins to the LDOAO voltage.  
8.4.6 Active Voltage Scaling Control  
The output voltage of all the DCDC regulators, LDO1, LDO2, LDO3, and LDO4 can be changed during operation  
to match the system requirements. For example, this feature is useful for processors looking to minimize power  
loss or maximize performance. Alternatively, it can be used to select between different voltages based on the  
system configuration. For example, if different DDR options are available, then voltage can be selected to match  
the requirement of the DDR. The voltage can be changed in two different ways, outlined below.  
8.4.6.1 Voltage-Scaling Interface Control Using _OP and _AVS Registers With SPI or I2C Interface  
Typically, the standard SPI or I2C interface is used to communicate with the part. If there is a potential that the  
added voltage scaling bus traffic would interfere with other operations, a dedicated I2C interface is available for  
voltage scaling functionality. Resources are assigned to this interface by setting the DCDCx_AVS bits in the  
I2C_SPI_CFG register. The interface works in three different modes.  
With CONFIG2 shorted to LDOAO, the standard I2C or SPI voltage scaling interface can be used where  
output voltage is set in the resource's AVS and OP registers and the SELREG and DEF_VOLT bits are used  
to switch between the two voltage values.  
With CONFIG2 shorted to LDOAO, the power-I2C voltage scaling interface can be used instead. It operates  
the same as standard I2C but access to the DCDCx_OP and DCDCx_AVS registers of the assigned  
regulators use an alternate I2C address and cannot be accessed through the standard I2C bus. This is  
enabled with the DCDCx_AVS bits in the I2C_SPI_CFG register.  
With CONFIG2 shorted to GND, DCDCx_SEL pins can be used as roof or floor configuration where the  
DC-DC voltage switches between the value defined in the DCDCx_OP register and the DCDCx_AVS register.  
The voltage slew rate of the DCDCx regulators reaching a new programmed value is programmable though the  
TSTEP bits located in the DCDCx_CTRL registers.  
Both I2C interfaces are compliant with HS-I2C specification (100 kbits/s, 400 kbits/s, or 3.4 Mbits/s)  
Shorting the CONFIG1 pin to GND selects OTP option A. Shorting the CONFIG1 pin to LDOAO selects the OTP  
option B. These values are loaded only during the device CONFIG state.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
AVS and GP  
I2C Select  
Step  
AVS I2C  
GP I2C  
AVS Voltage  
OP Voltage  
Dcdc_ctrl  
Discharge  
(check if needed)  
Current Voltage  
Ramp  
OTP Option B  
SLEEP or CMD  
OTP Option A  
CONFIG1  
Figure 8-11. DC-DC Voltage Scaling Architecture  
8.4.6.2 Voltage Scaling Using the VCON Decoder on VCON_PWM and VCON_CLK Pins  
For specific processors, there is an option to set the voltage using analog signals, rather than I2C or SPI. For  
such processors, the output voltage control for the DCDC1 converter can be controlled by the VCON pins when  
the VCON_ENABLE bit in the DCDC1_CTRLregister is set to 1b.  
When enabled, VCON sets the voltage based on the VCON_PWM signal duration during 32 cycles of the  
VCON_CLK signal. The VCON decoder validates that the generated output voltage does not exceed 1.1 V when  
a 25-mV step size is selected. For PWM ratios 0:32 to 7:32, the output voltage is fixed at 1.1 V. Four ranges can  
be selected by setting the VCON_RANGE[1:0] bits in the DCDC1_CTRL register.  
The VCON_CLK and VCON_PWM signal must be active and one complete frame (32 clock cycles) must  
be received by the TPS659128x device before it is enabled with the VCON_ENABLE bit. When the  
VCON_ENABLE bit is set to 0b, the voltage setting is reverted back to the DCDC1_AVS or DCDC1_OP register  
depending on the pins summarized in Table 8-6 and the range bits also revert back to the value set in the  
DCDC1_LIMIT register. For VCON mode, the RANGE bits and MAX_SEL bits in the DCDC1_LIMIT register are  
ignored.  
The function calculates the desired converter voltage based on the incoming PWM information. The maximum  
CLK frequency is 30 MHz. The period of the PWM signal is 1/32 of VCON_CLK. The decoding follows Equation  
1.  
VOUT = VRANGE_MAX – Count × Step Size  
(1)  
where  
VOUT is the resulting converter voltage.  
VRANGE_MAX is the maximum voltage from the voltage range selected in the VCON_RANGE bits.  
Count is the number of VCON_CLK cycles during which VCON_PWM is high within 32 clock cycles of  
VCON_CLK.  
Step Size is the step size from the voltage range selected in the VCON_RANGE bits  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
0
1
2
3
4
5
6
7
30  
31  
0
1
VCON_CLK  
VCON_PWM  
Count = 1  
VCON_PWM  
Count = 2  
VCON_PWM  
Count = 31  
Figure 8-12. VCON Voltage Scaling Architecture  
8.4.7 VDDIO Voltage for Push-Pull Output Stages  
A number of outputs are available that are push-pull outputs or can be configured as push-pull outputs. Any pin  
with a push-pull output stage generates its output high level by the voltage applied to the VDDIO pin. The input  
voltage range on the VDDIO pin is 1.6 V to 3.3 V with an UVLO threshold below 1.6 V. With a VDDIO voltage  
below the UVLO threshold, the high-side driver of the push-pull output stages is disabled and the output default  
goes back to open drain. The affected pins include:  
nRESPWRON / VSUP_OUT push-pull or open drain defined by the nRESPWRON_OUTPUT bit in the  
DEVCTRL register  
INT1 push-pull or open drain defined by the INT_OUTPUT bit in the DEVCTRL2 register  
GPIO1, GPIO2: push-pull only  
GPIO3, GPIO4, GPIO5: push-pull or open drain managed by the GPIOx registers  
OMAP_WDI_32k_OUT  
8.4.8 Digital Signal Summary  
The digital signals are defined as:  
SLEEP  
When all SLEEP conditions are met (the CONFIG2 pin is shorted to LDOAO, no pending  
interrupts, and SLEEP_ENABLE bit set to 1b), the SLEEP pin can be used to enter the  
SLEEP state which impacts LDO regulator and DC-DC converter behavior based on the  
settings defined in the SET_OFF, KEEP_ON, and DEF_VOLT registers. An interrupt or a  
change in the SLEEP pin level causes a transition back to the ACTIVE state. This input  
signal is level sensitive and no debouncing is applied. The SLEEP pin is configurable and  
is disabled by default, so at power up, its status is ignored. The SLEEP_ENABLE bit in the  
DEVCTRL2 register is used to make the SLEEP pin active and its active level is changed  
between active HIGH or active LOW using the SLEEP_POL bits. The SLEEP state can also  
be entered using the DEV_SLP bit in the DEVCTRL register as long as no interrupts are  
pending, however an interrupt must be unmasked to trigger a SLEEP-to-ACTIVE transition or  
else the device will stay in the SLEEP state until the device enters the OFF state.  
PWRHOLD  
The PWRHOLD pin can be used as ON/OFF signal input when the nPWRON pin and  
interrupt are not used or in parallel with these power-on conditions. The PWRHOLD pin can  
also be used as an acknowledge (maintain power) of a power-up sequence triggered by  
an interrupt or the falling edge of the nPWRON pin. The PWRHOLD input signal is level  
sensitive and no debouncing is applied. The rising edge, falling edge, or both edges of the  
PWRHOLD pin are highlighted through an associated interrupt if the interrupt is unmasked.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
NRESPWRON/ The NRESPWRON signal is used as the reset to the processor and is in the VDDIO domain.  
VSUP_OUT  
The signal is held low until the ACTIVE state is reached. For detailed timing, see the relevant  
application note for the part number specific settings.  
The VSUP_OUT signal is the output of the voltage monitor that can alternatively be used as  
a reset to a processor. It can be included in the power sequencing such that the power-up  
sequence is delayed until its output is HIGH or the device powers down when the output is  
LOW.  
32KCLKOUT  
nPWRON  
This signal is the output of the 32-kHz RC oscillator, which can be enabled during the power-  
on sequence. This signal can be enabled and disabled by setting the CLK32KOUT_EN bit in  
the CLK32KOUT register when the device is in the ACTIVE state.  
The nPWRON input is generally connected to an external button. A debounced falling edge  
on this signal causes a transition from the OFF state to the ACTIVE state. If the device is in  
the ACTIVE or SLEEP state, then a low level on this signal can generate an interrupt. If the  
nPWRON signal is low for more than 5 seconds, one of the PWRON_LP_OFF bits are set  
to 1b, and the corresponding PWRON_LP_IT interrupt is not acknowledged by the external  
processor in 1 second, then the device goes to the OFF state. An OTP option is available to  
have falling edge of nPWRON pin cause device reset. When used this way, it is described as  
nRESIN.  
INT1  
The INT1 signal (active low) warns the host processor of any event that occurred on the  
TPS659128x device. The host processor can then poll the interrupt from the interrupt status  
register through I2C to identify the interrupt source. If the INT_POL bit is set to 0b, a low  
level indicates an active interrupt, highlighted in the INT_STSx registers. An active Interrupt  
flag generates a POWER ON enable condition pulse of 5 seconds only when the device is  
in the OFF state (when the NRESPWRON signal is low). The POWER ON enable condition  
pulse will occur only if the interrupt status bit is initially inactive (no previous interrupt pending  
in the status register). The interrupt status register must be cleared first to allow device to  
power off during the 5 second pulse duration. Any of the interrupt sources can be masked  
programming INT_MSKx registers. The default setting is masking all interrupts. When an  
interrupt is masked, its corresponding interrupt status bit is still updated, but the INT1 flag is  
not activated. Interrupt source masking can be used to mask a device switch-on event. The  
INT output can be programmed as push-pull or open drain output stage with either active  
LOW or active HIGH output defined by two OTP settings.  
GPIO1, GPIO2, The GPIOx signals are muxed with the LED and SPI. The GPIOx signal can be used for  
GPIO3, GPIO4, event detection or control of external resources during power up.  
GPIO5  
VCCS/VIN_MON This signal is the input for the internal UVLO monitor. The block provides a selectable  
low-battery warning as well as a undervoltage shutdown.  
VCON_CLK,  
VCON_PWM  
These signals are the clock and data inputs for voltage scaling of the DCDC1 converter  
using a custom PWM type voltage scaling. The feature is enabled by the VCON_ENABLE bit  
in the DCDC1_CTRL register. When enabled, voltage scaling through the DCDC1_OP and  
DCDC1_AVS registers is blocked.  
CLK, MOSI,  
MISO, CE  
These signals are the clock, chip enable (CE), master-in slave-out (MISO), and master-out  
slave-in (MOSI) pins for the SPI . The pins are shared with the standard I2C interface SCL  
and SDA and GPIO1 and GPIO2.  
DEF_SPI_I2C-  
GPIO  
This signal defines whether multifunction pins are used for the SPI or for the I2C interface  
and GPIOs. When the DEF_SPI_I2C-GPIO pin is set to low, the function is assigned to the  
SPI on the CLK, MOSI, MISO, and CE pins. When the DEF_SPI_I2C-GPIO pin is set to  
high, the function is assigned to the I2C interface and GPIOs on the SCL, SDA, GPIO1, and  
GPIO2 pins.  
SCL_AVS,  
SDA_AVS  
These signals are used in the power I2C interface, typically used for DVS on the step-down  
converters. Each step-down converter has a bit to switch the voltage scaling registers from  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
the standard I2C interface or SPI to the power-I2C interface. When switched to the power-I2C,  
the register is blocked for access through the standard interface.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.4.9 Load Switch  
The load switch on the TPS659128x device can be used as the following:  
Bypass switch for the DCDC4 converter  
Current limited switch if the TPS659128x device is used in USB-powered applications  
A switch to turn on and off high current loads such as SD cards  
V(LDOAO)  
VCC  
nPWRON  
1 F  
V(LDOAO)  
PWRHOLD(1)  
LSI  
From USB  
(5 V)  
LSO  
Load Switch  
C(2)  
V(LDOAO)  
EN_LS0  
EN_LS1  
VINDCDC_ANA  
VINDCDC1,2,3,4  
(To force the  
load switch ON)  
CINx  
4x 10 µF  
Lx  
1 µH  
SWx  
DCDCx  
COUTDCDCx  
VDCDCx  
PGNDx  
A. Tie the PWRHOLD pin to LDOAO voltage to turn on automatically when 5 V is applied.  
B. The capacitor size is dependent on buffer requirements.  
Figure 8-13. Load Switch Connected as USB Input Current Limited Switch  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
VCC  
1 F  
VINDCDC_ANA  
LSI  
Input Voltage  
Battery  
LSO  
Load Switch  
EN_LS0(1)  
V(LDOAO)  
EN_LS1(1)  
VINDCDC1,2,3,4  
CINx  
4x 10 µF  
1 µH  
SW4  
DCDC4  
COUTDCDC4  
VDCDC4  
PGND4  
A. The EN_LS1 pin must be high and the EN_LS0 pin must be low to auto-enable the load switch based on the comparator in DCDC4.  
Figure 8-14. Load Switch Connected as BYPASS Switch for DCDC4  
The LOADSWITCH register allows the load switch to be used as a bypass switch on the DCDC4 converter or  
as a current limited switch. Four programmable current limits are available from 90 mA (typical) to 2.5 A with  
the default current defined by an OTP setting. The enable bits are mapped to the external pins, EN_LS0 and  
EN_LS1. The status of the pins is copied to the register in the CONFIG state and therefore the usage of the load  
switch can be externally predefined. In the ACTIVE state (or SLEEP state) the functionality of the load switch  
is controlled by the ENABLE0 and ENABLE1 bits only to turn the load switch on, turn it off, or assign it to a  
comparator as a bypass switch for the DCDC4 converter. When the enable function is set to the comparator, it is  
auto-enabled based on the voltage differential of VIN to VOUT on the DCDC4 step-down converter.  
Two additional features are available in case the load switch is used as a bypass switch for the DCDC4  
converter. The following features are enabled with the LOADSWITCH:ENABLE[1:0] bit by setting it to either 10b  
or 11b:  
Forced PWM mode of the DCDC4 converter is blocked if the bypass switch is closed  
The bypass switch is opened automatically when a overvoltage condition happens. The  
LOADSWITCH:ENABLE[1:0] bit is automatically set 00b in an overvoltage event so the switch is opened.  
In applications where the load switch is used as an USB-input current limited switch or as a load switch on  
the output of a DC-DC converter to LDO regulator, the previously listed features must be disabled. This case  
happens when the load switch is enabled by setting the LOADSWITCH:ENABLE[1:0] bit to 01b.  
For more information, see the LOADSWITCH register in Register Descriptions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
OVP threshold  
approximately 4.18 V  
Approximately 250-mV hysteresis  
LSI  
VDCDC4  
I2C or SPI  
LOADSWITCH:ENABLE[1:0]  
00b  
11b  
00b  
DCDC4_MODE = 1b  
Effective force PWM  
OVP  
Bypass switch enabled  
A. OVP enable = LOADSWITCH:ENABLE[1:0] = 10b or 11b LOADSWITCH:ENABLE[1] = 0b → OVP enable = OVP = 0 If OVP hysteresis  
< VDCDC4 < OVP when LOADSWITCH:ENABLE[1] goes high, OVP indicates VDCDC4 < OVP  
Figure 8-15. Load Switch Timing for LOADSWITCH:ENABLE[1:0] = 10b or 11b  
8.4.10 LED Driver  
The GPIO3, GPIO4, and GPIO5 resources can alternatively be configured to drive the LEDs by setting  
the GPIO_SEL bit to 1b in the GPIOx register. This setting switches the output stage to a current sink  
controlled by the LED control registers (LEDx_CTRLx, LED_RAMP_UP_TIME, LED_RAMP_DOWN_TIME, and  
LED_SEQ_EN). The LEDs are enabled in the LED_SEQ_EN register. The LED current sink is pulse-width  
modulated with the duty cycle defined by the LEDx_PWM[4:0] bit in the LEDx_CTRL7 register. All three GPIOs  
should either be assigned as an LED driver or as a standard GPIO.  
To turn on LEDA with a constant current of 10 mA:  
Set the GPIO as an LED current sink output by setting the GPIOA:GPIO_SEL bit to 1.  
Set the constant current to 10 mA by setting the LEDA_CTRL1:LEDA_CURRENT[3:0] bit to 0100b.  
Set the PWM duty cycle to 100% by setting the LEDA_CTRL7:LEDA_PWM[4:0] bit to 11111b.  
Enable the LEDA current sink by setting the LED_SEQ_EN:LEDA_EN bit to 1b.  
In addition to turning on and turning off an LED, the LED driver allows the user to set LED sequence to perform  
a flash sequence in the hardware by enabling the flash sequencer. Setting the LEDx_SEQ_EN bit enables the  
flash sequencer for each of the three LEDs.  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
LED Sequence  
T1  
T2  
T3  
T4  
TP  
Zoom  
Current = LED_CURRENT[3:0]  
Current = 1  
Current = 0  
LED_IOUT[3:0]  
Current = 0  
LED_ON  
Led_on_time  
Ramp_up_step_time  
Ramp_down_step_time  
T1, T2, T3, T4 : 0, 1 ...127 × 64 ms : reg ledx_t1, ledx_t2 .  
Tp  
: 0, 1 127 × 64 ms : reg ledx_tp  
Ramp step time : 0, 1 31 × 8 ms : reg led_ramp_up_time, led_ramp_down_time  
Figure 8-16. LED Sequencer  
The LED driver allows the user to set a DC current from 2 mA to 20 mA for each LED. In addition to this ability,  
an LED flash sequence is programmable and defined by the time slots T1, T2, T3, T4, and TP. Within these  
time slots, the LED can be turned on as defined by the LEDx_ON_TIME bit with a defined ramp-up slope set  
by the LED_RAMP_UP register and a defined ramp-down slope set by the LED_RAMP_DOWN register. The  
slopes are set to the same value for all three LEDs but other parameters are programmable independently.  
Figure 8-16 shows an LED flash cycle. The ramp enable bits define whether the current immediately steps to  
its defined value (set by the LEDx_CURRENT[3:0] bit) or ramps with a certain slope. If the LEDx_RAMP_EN bit  
is set to 0b during a sequence, the current immediately goes to the value defined by the LEDx_I[3:0] bit. If the  
LEDx_RAMP_EN bit is set to 1b during a sequence, the current steps up and down to the value defined by the  
LEDx_I[3:0] bit with a certain slope.  
In addition, the LED current is pulse-width modulated with a duty cycle defined in the LEDx_CTRL7 register.  
For the LED driver to operate properly, the time for RAMP_UP + LED_ON + RAMP_DOWN must be smaller  
than the sequence Tn (with n = 1, 2, 3, 4, P).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.4.11 Thermal Monitoring and Shutdown  
Two thermal-protection modules monitor the junction temperature of the device against the respective  
thresholds:  
Hot-die temperature threshold  
Thermal shutdown temperature thresholds  
When the hot-die temperature threshold is reached, an interrupt is sent to the software (SW) to close the  
noncritical running tasks.  
The output of both thermal protection modules is logically ORed. When the thermal shutdown temperature  
threshold is reached, the TPS659128x device is set under reset and a transition to the OFF state is initiated.  
Then the POWER ON enable conditions of the device are not taken into consideration until the die temperature  
has decreased below the hot-die threshold. A hysteresis is applied to the hot-die and shutdown threshold when  
detecting a falling edge of temperature, and both detections are debounced to avoid any parasitic detection. The  
TPS659128x device allows the user to program four hot-die temperature thresholds to increase the flexibility of  
the system.  
By default, the thermal protection is enabled in the ACTIVE state, but it can be disabled through programming  
the THRM_REG register. The thermal protection is automatically enabled during a transition from the OFF state  
to the ACTIVE state and is kept enabled in the OFF state after a switch-off sequence caused by a thermal  
shutdown event. A transition to the OFF state sequence caused by a thermal shutdown event is highlighted in  
the INT_STS_REG status register. Recovery from this OFF state is initiated (switch-on sequence) when the die  
temperature falls below the hot-die temperature threshold.  
The threshold detection state for the hot-die and thermal shutdown temperature can be monitored or masked  
by reading or programming the THRM_REG register. A hot-die interrupt can be masked by programming the  
INT_MSK_REG register.  
8.4.12 Interfaces  
The TPS659128x device has three available interfaces which are a high-speed I2C interface that has access  
to all register, a SPI that can optionally be used to access all registers, and a high-speed power I2C interface  
that can be used to dynamically change the output voltage of the DC-DC converters. The power I2C interface  
only has access to the voltage scaling registers of the DC-DC converters. If it is activated by a selection bit, the  
registers it is using are blocked for the general-purpose I2C or SPI. All interfaces are active only in the ACTIVE  
state. In all other states, the interfaces are held in a reset and cannot be used to access the device.  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.4.12.1 Serial Peripheral Interface  
The serial peripheral interface (SPI ) uses four signals: a chip enable (SPI_CE), the clock from the bus master  
(SPI_CLK), an input port (SPI_MOSI), and an output port (SPI_MISO). The read-write (R/W) bit is followed by an  
8-bit register address followed by 7 bits of unused bits followed by the data bits. The MISO output is set to high  
impedance when the TPS659128x device is not addressed by setting the CE pin LOW which allows multiple  
slaves on the SPI bus.  
Single Write  
SPI Chip  
Enable  
SPI Clock  
SPI Data Input  
(MOSI)  
W/nR  
Address (8 bits)  
Unused bits (7 bits)  
Data (8 bits)  
SPI Data Output  
(MISO)  
ERROR (15 bits)  
Single Read  
SPI Chip  
Enable  
SPI Clock  
SPI Data Input  
(MOSI)  
Address (8 bits)  
Unused bits (7 bits)  
ERROR (bits)  
Don‘t care  
W/nR  
SPI Data Output  
(MISO)  
Data (8 bits)  
Figure 8-17. SPI READ and WRITE Protocol  
Burst Write  
SPI Clock Chip  
Enable  
SPI Clock  
SPI Data Input  
(MOSI)  
Unused bit (7 bits)  
Data (8 bits)  
Address (8 bits)  
Data (8 bits)  
Data (8 bits)  
Data (8 bits)  
Data (8 bits)  
W/nR  
SPI Data Input  
(MISO)  
Don‘t care  
Burst Read  
SPI Clock Chip  
Enable  
SPI Clock  
SPI Data Input  
(MOSI)  
Address (8 bits)  
Unused bit (7 bits)  
Don‘t care  
Don‘t care  
Don‘t care  
Don‘t care  
Don‘t care  
Don‘t care  
W/nR  
SPI Data Input  
(MISO)  
Don‘t care  
Data (8 bits)  
Data (8 bits)  
Data (8 bits)  
Data (8 bits)  
Data (8 bits)  
Data (8 bits)  
Figure 8-18. SPI BURST READ and BURST WRITE Protocol  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.4.12.2 I2C Interface  
I2C is a 2-wire serial interface developed by NXP (formerly Philips Semiconductor) (see I2C-Bus Specification  
and user manual). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When  
the bus is idle, both the SDA and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C  
bus through open-drain I/O pins, the SDA pin, and the SCL pin. A master device, usually a microcontroller or  
a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device  
addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A  
slave device receives, transmits data, or does both on the bus under control of the master device.  
The TPS659128x device works as a slave and supports the following data transfer modes, as defined in the  
I2C-Bus Specification: standard mode (100 kbps), fast mode (400 kbps), and high-speed mode (up to 3.4  
Mbps in write mode). The interface adds flexibility to the power-supply solution, enabling most functions to be  
programmed to new values depending on the instantaneous application requirements. Register contents are  
loaded when voltage is applied to the TPS659128x device that is higher than the UVLO level of 2.4 V. When the  
device is in the ACTIVE state and is turned off, the LOAD-OTP bit [bit 6 in the DEVCONTROL register] forces  
a reload of the registers when the LOAD-OTP bit is set to 1b (default). When the LOAD-OTP bit is set to 0b,  
register content is not changed unless the supply voltage drops below the UVLO threshold. The I2C interface  
runs off of an internal oscillator that is automatically enabled when an access to the interface happens.  
The data transfer protocol for standard and fast modes is exactly the same, therefore, they are referred to as  
F/S-mode in this document. The protocol for high-speed mode is different from the F/S mode, and it is referred to  
as HS mode. The TPS659128x device supports 7-bit addressing; 10-bit addressing and general call address are  
not supported.  
8.4.12.2.1 I2C Implementation  
Two I2C interfaces are available on the TPS659128x device. One interface is for general purpose use and is  
referred to as the general-purpose or standard I2C interface. The other interface is exclusively used for voltage  
scaling on the DC-DC converters and is referred to as AVS- or power-I2C interface.  
The TPS659128x device has a 7-bit address with the LSB factory programmable.  
The device address for the STANDARD-I2C interface is typically set to 0101101b.  
The device address for the AVS-I2C interface is typically set to 0010011b.  
Other default addresses can be factory programmed.  
8.4.12.2.2 F/S-Mode Protocol  
The master device initiates data transfer by generating a start condition. The start condition is when a high-to-  
low transition occurs on the SDA line while the SCL pin is high (see Figure 8-19). All I2C-compatible devices  
should recognize a start condition.  
The master device then generates the SCL pulses, and transmits the 7-bit address followed by the read-write  
direction (R/W bit) on the SDA line. During all transmissions, the master device ensures that data is valid. A valid  
data condition requires the SDA line to be stable during the entire high period of the clock pulse (see  
Figure 8-20). All devices recognize the address sent by the master and compare it to their internal fixed  
addresses. Only the slave device with a matching address generates an acknowledge (see Figure 8-21) by  
pulling the SDA line low during the entire high period of the ninth SCL cycle. This acknowledge confirms to the  
master that the communication link with the slave has been established.  
The master device generates further SCL cycles to either transmit data to the slave device (R/W bit set to 0b) or  
receive data from the slave device (R/W bit set to 1b). In either case, the receiver must acknowledge the data  
sent by the transmitter. An acknowledge signal can either be generated by the master device or by the slave  
device, depending on which one is the receiver. Valid 9-bit data sequences consisting of 8-bit data and 1-bit  
acknowledge can continue for as long as necessary.  
To signal the end of the data transfer, the master device generates a stop condition by pulling the SDA line  
from low to high while the SCL line is high (see Figure 8-19). This process releases the bus and stops the  
communication link with the addressed slave. All I2C-compatible devices must recognize the stop condition.  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Upon the receipt of a stop condition, the bus is released, and all slave devices wait for a start condition followed  
by a matching address  
Attempting to read data from register addresses not listed in Register Descriptions results in a readout of FFh.  
8.4.12.2.3 H/S-Mode Protocol  
When the bus is idle, both the SDA and SCL lines are pulled high by the pullup devices.  
The master device generates a start condition followed by a valid serial byte containing the HS master code  
00001XXX. This transmission is made in F/S mode at no more than 400 Kbps. No device is allowed to  
acknowledge the HS master code, but all devices must recognize it and switch their internal setting to support  
3.4-Mbps operation.  
The master device then generates a repeated start condition (a repeated start condition has the same timing  
as the start condition). After this repeated start condition, the protocol is the same as F/S mode, except that  
transmission speeds up to 3.4 Mbps are allowed. A stop condition ends the HS mode and switches all the  
internal settings of the slave devices to support the F/S mode. Instead of using a stop condition, repeated start  
conditions are used to secure the bus in HS mode.  
Attempting to read data from register addresses not listed in Register Descriptions results in a readout of FFh.  
DATA  
CLK  
P
S
Stop  
Condition  
Start  
Condition  
Figure 8-19. START and STOP Conditions  
Start Condition  
DATA  
CLK  
Data Line Stable;  
Data Valid  
Change of Data Allowed  
Figure 8-20. Bit Transfer on the Serial Interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Data Output  
by Transmitter  
Not Acknowledge  
Acknowledge  
Data Output  
by Receiver  
SCL From  
Master  
1
2
8
9
S
Clock Pulse for  
Acknowledgement  
Start  
Condition  
Figure 8-21. Acknowledge on the I2C Bus  
Recognize START  
or REPEATED  
START Condition  
Recognize STOP  
or REPEATED  
START Condition  
Generate ACKNOWLEDGE  
Signal  
P
SDA  
MSB  
Acknowledgement  
Signal From Slave  
Sr  
Address  
R/W  
SCL  
1
2
7
8
9
1
2
3 - 8  
9
ACK  
ACK  
Sr  
Or  
Sr  
S
Or  
Sr  
Clock Line Held Low While  
Interrupts are Serviced  
START or  
Repeated START  
Condition  
STOP or  
REPEATED  
START Condition  
Figure 8-22. Bus Protocol  
. . .  
. . .  
. . .  
SCLK  
SDAT  
A5  
A4 . . .  
. . .  
. . .  
A6  
A0  
ACK  
0
R7  
ACK  
A6  
R0  
ACK  
0
D7  
D6  
D5  
D0  
ACK  
R/W  
0
1
0
Start  
Stop  
Data  
Slave Address  
Register Address  
NOTE: SLAVE=TPS65912x  
Figure 8-23. I2C Interface WRITE to TPS659128x; F/S Mode  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
. . .  
. . .  
. . .  
. . .  
SCLK  
SDAT  
. . .  
. . .  
A6  
A0  
R/W ACK  
R7  
R0  
ACK  
0
A6  
A0  
R/W ACK  
D7  
D0  
ACK  
. . .  
. . .  
0
0
1
0
Start  
Stop  
Master Drives  
ACK and  
Stop  
Slave Address  
Slave Drives  
the Data  
Slave Address  
Register Address  
Repeated  
Start  
NOTE: SLAVE=TPS65912x  
Figure 8-24. I2C Interface READ from TPS659128x; F/S Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5 Register Maps  
8.5.1 Register Descriptions  
8.5.1.1 DCDC Registers (00h to 0Fh)  
Table 8-8 lists the memory-mapped registers for the DCDC registers. All register offset addresses not listed in  
Table 8-8 should be considered as reserved locations and the register contents should not be modified.  
Table 8-8. DCDC Registers  
Offset  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Acronym  
Register Name  
Section  
DCDC1_CTRL  
DCDC2_CTRL  
DCDC3_CTRL  
DCDC4_CTRL  
DCDC1_OP  
DCDC1 Control Register  
DCDC2 Control Register  
DCDC3 Control Register  
DCDC4 Control Register  
DCDC1 OP Register  
DCDC1 AVS Register  
DCDC1 Limit Register  
DCDC2 OP Register  
DCDC2 AVS Register  
DCDC2 Limit Register  
DCDC3 OP Register  
DCDC3 AVS Register  
DCDC3 Limit Register  
DCDC4 OP Register  
DCDC4 AVS Register  
DCDC4 Limit Register  
Section 8.5.1.1.1  
Section 8.5.1.1.2  
Section 8.5.1.1.3  
Section 8.5.1.1.4  
Section 8.5.1.1.5  
Section 8.5.1.1.6  
Section 8.5.1.1.7  
Section 8.5.1.1.8  
Section 8.5.1.1.9  
Section 8.5.1.1.10  
Section 8.5.1.1.11  
Section 8.5.1.1.12  
Section 8.5.1.1.13  
Section 8.5.1.1.14  
Section 8.5.1.1.15  
Section 8.5.1.1.16  
DCDC1_AVS  
DCDC1_LIMIT  
DCDC2_OP  
DCDC2_AVS  
DCDC2_LIMIT  
DCDC3_OP  
DCDC3_AVS  
DCDC3_LIMIT  
DCDC4_OP  
DCDC4_AVS  
DCDC4_LIMIT  
Complex bit access types are encoded to fit into small table cells. Table 8-9 shows the codes that are used for  
access types in this section.  
Table 8-9. DCDC Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
-OTP  
-X  
Bit reset value is defined in the  
OTP memory  
Bit determined by external  
connection  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.1 DCDC1_CTRL Register (Offset = 00h) [reset = OTP]  
DCDC1_CTRL is shown in Table 8-10 and described in Table 8-11.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-10. DCDC1_CTRL Register  
7
6
5
4
3
2
1
0
VCON_ENABL  
E
VCON_RANGE[1:0]  
R/W-OTP  
TSTEP[2]  
R/W-000b  
DCDC1_MODE  
R/W-OTP  
RSVD  
R-0b  
R/W-OTP  
Table 8-11. DCDC1_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
0b = Voltage scaling is done by the I2C registers or DCDC1_SEL pin  
1b = Voltage scaling is done by the VCON pins, VCON_PWM and  
VCON_CLK; the voltage table is automatically forced to RANGE[1:0]  
= 00b; register contents in voltage scaling registers are ignored  
7
VCON_ENABLE  
R/W  
OTP  
6-5  
VCON_RANGE[1:0]  
R/W  
OTP  
00b = Sets output voltage range for VCON operation: 500 mV to  
1100 mV with 25 mV steps; 24 steps  
01b = Sets output voltage range for VCON operation: 700 mV to  
1100 mV with 12.5 mV steps; 32 steps  
10b = Sets output voltage range for VCON operation: 600 mV to  
1000 mV with 12.5 mV steps; 32 steps  
11b = Sets output voltage range for VCON operation: 500 mV to 900  
mV with 12.5 mV steps; 32 steps  
4-2  
TSTEP[2:0]  
R/W  
000b  
Time step: when changing the output voltage, the new value is  
reached through successive voltage steps (if not bypassed). Table  
8-18 shows the equivalent programmable slew rate of the output  
voltage.  
1
0
DCDC1_MODE  
RSVD  
R/W  
R
OTP  
0b  
0b = Auto mode or Eco mode  
1b = Force PWM mode  
Unused bit, should be written to 0b.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.2 DCDC2_CTRL (Offset = 01h) [reset = OTP]  
DCDC2_CTRL is shown in Table 8-12 and described in Table 8-13.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-12. DCDC2_CTRL Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
TSTEP[2:0]  
R/W-000b  
DCDC2_MODE  
R/W-1b  
RSVD  
R-0b  
Table 8-13. DCDC2_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
R
000b  
7-5  
4-2  
RSVD  
Unused bit, should be written to 0b.  
R/W  
000b  
Time step: when changing the output voltage, the new value is  
reached through successive voltage steps (if not bypassed). Table  
8-18 shows the equivalent programmable slew rate of the output  
voltage.  
TSTEP[2:0]  
R/W  
R
OTP  
0b  
0b = Auto mode or Eco mode  
1b = Force PWM  
1
0
DCDC2_MODE  
RSVD  
Unused bit, should be written to 0b.  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.3 DCDC3_CTRL Register (Offset = 02h) [reset = OTP]  
DCDC3_CTRL is shown in Table 8-14 and described in Table 8-15.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-14. DCDC3_CTRL Register  
7
6
5
4
3
2
1
0
RSVD  
TSTEP[2:0]  
R/W-000b  
DCDC3_MODE  
R/W-OTP  
RSVD  
R-0b  
R/W-000b  
Table 8-15. DCDC3_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-2  
RSVD  
R/W  
000b  
Unused bit, should be written to 0b.  
TSTEP[2:0]  
R/W  
000b  
Time step: when changing the output voltage, the new value is  
reached through successive voltage steps (if not bypassed). Table  
8-18 shows the equivalent programmable slew rate of the output  
voltage.  
1
0
DCDC3_MODE  
RSVD  
R/W  
R
OTP  
0b  
0b = Auto mode or Eco mode  
1b = Force PWM  
Unused bit, should be written to 0b.  
8.5.1.1.4 DCDC4_CTRL Register (Offset = 03h) [reset = OTP]  
DCDC4_CTRL is shown in Table 8-16 and described in Table 8-17.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-16. DCDC4_CTRL Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
TSTEP[2:0]  
R/W-000b  
DCDC4_MODE RAMP_TIME  
R/W-OTP R/W-OTP  
Table 8-17. DCDC4_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-2  
RSVD  
R
000b  
Unused bit, should be written to 0b.  
TSTEP[2:0]  
R/W  
000b  
Time step: when changing the output voltage, the new value is  
reached through successive voltage steps (if not bypassed). Table  
8-18 shows the equivalent programmable slew rate of the output  
voltage.  
1
0
DCDC4_MODE  
RAMP_TIME  
R/W  
R/W  
OTP  
OTP  
0b = Auto mode or Eco mode  
1b = Force PWM  
For additional options for DCDC4, see the SPARE register (address  
63h).  
0b = Ramp time for initial start up is 200-µs minimum  
1b = Ramp time for initial start up is 60-µs maximum  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-18. DCDCx TSTEP Settings  
TSTEP[2:0]  
Slew Rate (mV/µs)  
000b  
30  
12.5  
9.4  
001b  
010b  
011b  
7.5  
100b  
6.25  
4.7  
101b  
110b  
3.12  
2.5  
111b  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.5 DCDC1_OP Register (Offset = 04h) [reset = OTP]  
DCDC1_OP is shown in Table 8-19 and described in Table 8-20.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-19. DCDC1_OP Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SELREG  
R/W-0b  
SEL[5:0]  
R/W-OTP  
Table 8-20. DCDC1_OP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit, should be written to 0b.  
6
SELREG  
SEL[5:0]  
R/W  
R/W  
0b  
See Table 8-6  
5-0  
OTP  
DCDC1 output voltage selection based on the RANGE[1:0] bit in the  
DCDC1 register selections shown in Table 8-44 through Table 8-47.  
8.5.1.1.6 DCDC1_AVS Register (Offset = 05h) [reset = OTP]  
DCDC1_AVS is shown in Table 8-21 and described in Table 8-22.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-21. DCDC1_AVS Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-22. DCDC1_AVS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = DCDC1 disabled  
1b = DCDC1 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.4.4.2  
5-0  
SEL[5:0]  
OTP  
DCDC1 output voltage selection based on the RANGE[1:0] bit in the  
DCDC1 register selections shown in Table 8-44 through Table 8-47.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.7 DCDC1_LIMIT Register (Offset = 06h) [reset = OTP]  
DCDC1_LIMIT is shown in Table 8-23 and described in Table 8-24.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-23. DCDC1_LIMIT Register  
7
6
5
4
3
2
1
0
RANGE[1:0]  
R/W-OTP  
MAX_SEL[5:0]  
R/W-OTP  
Table 8-24. DCDC1_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RANGE[1:0]  
R/W  
OTP  
Selects the output range. For more information, see Table 8-43.  
5-0  
MAX_SEL[5:0]  
R/W  
OTP  
This bit defines the maximum value the output voltage in the  
DCDC1_AVS or DCDC1_OP register can be programmed to; values  
exceeding MAX_SEL will be replaced by the value defined in  
MAX_SEL.  
If the MAX_SEL bit is set by I2C or default OTP setting to any value  
other than 0x3F or 0x00, the RANGE bits and the MAX_SEL bits are  
locked until OTP is reloaded.  
8.5.1.1.8 DCDC2_OP Register (Offset = 07h) [reset = OTP]  
DCDC2_OP is shown in Table 8-25 and described in Table 8-26.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-25. DCDC2_OP Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SELREG  
R/W-0b  
SEL[5:0]  
R/W-OTP  
Table 8-26. DCDC2_OP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit, should be written to 0b.  
6
SELREG  
SEL[5:0]  
R/W  
R/W  
0b  
See Table 8-6  
5-0  
OTP  
DCDC2 output voltage selection based on the RANGE[1:0] bit in the  
DCDC2 register selections shown in Table 8-44 through Table 8-47.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.9 DCDC2_AVS Register (Offset = 08h) [reset = OTP]  
DCDC2_AVS is shown in Table 8-27 and described in Table 8-28.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-27. DCDC2_AVS Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-28. DCDC2_AVS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = DCDC2 disabled  
1b = DCDC2 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.4.4.2  
5-0  
SEL[5:0]  
OTP  
DCDC2 output voltage selection based on the RANGE[1:0] bit in the  
DCDC2 register selections shown in Table 8-44 through Table 8-47.  
8.5.1.1.10 DCDC2_LIMIT Register (Offset = 09h) [reset = OTP]  
DCDC2_LIMIT is shown in Table 8-29 and described in Table 8-30.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-29. DCDC2_LIMIT Register  
7
6
5
4
3
2
1
0
RANGE[1:0]  
R/W-OTP  
MAX_SEL[5:0]  
R/W-OTP  
Table 8-30. DCDC2_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RANGE[1:0]  
R/W  
OTP  
Selects the output range. For more information, see Table 8-43.  
MAX_SEL[5:0]  
R/W  
OTP  
This bit defines the maximum value the output voltage in the  
DCDC2_AVS or DCDC2_OP register can be programmed to; values  
exceeding MAX_SEL will be replaced by the value defined in  
MAX_SEL.  
If the MAX_SEL bit is set by I2C or default OTP setting to any value  
other than 0x3F or 0x00, the RANGE bits and the MAX_SEL bits are  
locked until OTP is reloaded.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.11 DCDC3_OP Register (Offset = 0Ah) [reset = OTP]  
DCDC3_OP is shown in Table 8-31 and described in Table 8-32.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-31. DCDC3_OP Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SELREG  
R/W-0b  
SEL[5:0]  
R/W-OTP  
Table 8-32. DCDC3_OP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit, should be written to 0b.  
6
SELREG  
SEL[5:0]  
R/W  
R/W  
0b  
See Table 8-6  
5-0  
OTP  
DCDC3 output voltage selection based on the RANGE[1:0] bit in the  
DCDC3 register selections shown in Table 8-44 through Table 8-47.  
8.5.1.1.12 DCDC3_AVS Register (Offset = 0Bh) [reset = OTP]  
DCDC3_AVS is shown in Table 8-33 and described in Table 8-34.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-33. DCDC3_AVS Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-34. DCDC3_AVS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = DCDC3 disabled  
1b = DCDC3 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.4.4.2  
5-0  
SEL[5:0]  
OTP  
DCDC3 output voltage selection based on the RANGE[1:0] bit in the  
DCDC3 register selections shown in Table 8-44 through Table 8-47.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.13 DCDC3_LIMIT Register (Offset = 0Ch) [reset = OTP]  
DCDC3_LIMIT is shown in Table 8-35 and described in Table 8-36.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-35. DCDC3_LIMIT Register  
7
6
5
4
3
2
1
0
RANGE[1:0]  
R/W-OTP  
MAX_SEL[5:0]  
R/W-OTP  
Table 8-36. DCDC3_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RANGE[1:0]  
R/W  
OTP  
Selects the output range. For more information, see Table 8-43.  
MAX_SEL[5:0]  
R/W  
OTP  
This bit defines the maximum value the output voltage in the  
DCDC3_AVS or DCDC3_OP register can be programmed to; values  
exceeding MAX_SEL will be replaced by the value defined in  
MAX_SEL.  
If the MAX_SEL bit is set by I2C or default OTP setting to any value  
other than 0x3F or 0x00, the RANGE bits and the MAX_SEL bits are  
locked until OTP is reloaded.  
8.5.1.1.14 DCDC4_OP Register (Offset = 0Dh) [reset = OTP]  
DCDC4_OP is shown in Table 8-37 and described in Table 8-38.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-37. DCDC4_OP Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SELREG  
R/W-0b  
SEL[5:0]  
R/W-OTP  
Table 8-38. DCDC4_OP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit, should be written to 0b.  
6
SELREG  
SEL[5:0]  
R/W  
R/W  
0b  
See Table 8-6  
5-0  
OTP  
This bit is for the DCDC4 output voltage selection based on the  
RANGE[1:0] bit in the DCDC4 register selections shown in Table  
8-44 through Table 8-47.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.15 DCDC4_AVS Register (Offset = 0Eh) [reset = OTP]  
DCDC4_AVS is shown in Table 8-39 and described in Table 8-40.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-39. DCDC4_AVS Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-40. DCDC4_AVS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = DCDC4 disabled  
1b = DCDC4 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.4.4.2  
5-0  
SEL[5:0]  
OTP  
This bit is for the DCDC4 output voltage selection based on the  
RANGE[1:0] bit in the DCDC4 register selections shown in Table  
8-44 through Table 8-47.  
8.5.1.1.16 DCDC4_LIMIT Register (Offset = 0Fh) [reset = OTP]  
DCDC4_LIMIT is shown in Table 8-41 and described in Table 8-42.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-41. DCDC4_LIMIT Register  
7
6
5
4
3
2
1
0
RANGE[1:0]  
R/W-OTP  
MAX_SEL[5:0]  
R/W-OTP  
Table 8-42. DCDC4_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RANGE[1:0]  
R/W  
OTP  
Selects the output range. For more information, see Table 8-43.  
MAX_SEL[5:0]  
R/W  
OTP  
This bit defines the maximum value the output voltage in the  
DCDC4_AVS or DCDC4_OP register can be programmed to; values  
exceeding MAX_SEL will be replaced by the value defined in  
MAX_SEL.  
If the MAX_SEL bit is set by I2C or default OTP setting to any value  
other than 0x3F or 0x00, the RANGE bits and the MAX_SEL bits are  
locked until OTP is reloaded.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.17 VDCDCx Range Settings  
Table 8-43. VDCDCx Range Settings  
RANGE[1:0]  
Output Voltage Range  
00b  
01b  
10b  
11b  
0.5 V to 1.2875 V in 12.5 mV steps (See Table 8-44)  
0.7 V to 1.4875 V in 12.5 mV steps (See Table 8-45)  
0.5 V to 2.075 V in 25 mV steps (See Table 8-46)  
0.5 V to 3.8 V in 50 mV steps (See Table 8-47)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.1.18 DCDCx Voltage Settings  
Table 8-44. DCDCx Voltage Settings (RANGE[1:0] = 00b)  
SEL(DCDCx)[5:0]  
000000b  
000001b  
000010b  
000011b  
000100b  
000101b  
000110bb  
000111b  
001000b  
001001b  
001010b  
001011b  
001100b  
001101b  
001110b  
001111b  
010000b  
010001b  
010010b  
010011b  
010100b  
010101b  
010110b  
010111b  
011000b  
011001b  
011010b  
011011b  
011100b  
011101b  
011110b  
011111b  
VDCDCx (V)  
0.5000  
0.5125  
0.5250  
0.5375  
0.5500  
0.5625  
0.5750  
0.5875  
0.6000  
0.6125  
0.6250  
0.6375  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.725  
SEL(DCDCx)[5:0]  
100000b  
100001b  
100010b  
100011b  
100100b  
100101b  
100110b  
100111b  
101000b  
101001b  
101010b  
101011b  
101100b  
101101b  
101110b  
101111b  
110000b  
110001b  
110010b  
110011b  
110100b  
110101b  
110110b  
110111b  
111000b  
111001b  
111010b  
111011b  
111100b  
111101b  
111110b  
111111b  
VDCDCx (V)  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.025  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-45. DCDCx Voltage Settings (RANGE[1:0] = 01b)  
SEL(DCDCx)[5:0]  
000000b  
000001b  
000010b  
000011b  
000100b  
000101b  
000110b  
000111b  
001000b  
001001b  
001010b  
001011b  
001100b  
001101b  
001110b  
001111b  
010000b  
010001b  
010010b  
010011b  
010100b  
010101b  
010110b  
010111b  
011000b  
011001b  
011010b  
011011b  
011100b  
011101b  
011110b  
011111b  
VDCDCx (V)  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.925  
SEL(DCDCx)[5:0]  
100000b  
100001b  
100010b  
100011b  
100100b  
100101b  
100110b  
100111b  
101000b  
101001b  
101010b  
101011b  
101100b  
101101b  
101110b  
101111b  
110000b  
110001b  
110010b  
110011b  
110100b  
110101b  
110110b  
110111b  
111000b  
111001b  
111010b  
111011b  
111100b  
111101b  
111110b  
111111b  
VDCDCx (V)  
1.1000  
1.1125  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.225  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-46. DCDCx Voltage Settings (RANGE[1:0] = 10b)  
SEL(DCDCx)[5:0]  
000000b  
000001b  
000010b  
000011b  
000100b  
000101b  
000110b  
000111b  
001000b  
001001b  
001010b  
001011b  
001100b  
001101b  
001110b  
001111b  
010000b  
010001b  
010010b  
010011b  
010100b  
010101b  
010110b  
010111b  
011000b  
011001b  
011010b  
011011b  
011100b  
011101b  
011110b  
011111b  
VDCDCx (V)  
0.500  
0.525  
0.550  
0.575  
0.600  
0.625  
0.650  
0.675  
0.700  
0.725  
0.750  
0.775  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
SEL(DCDCx)[5:0]  
100000b  
100001b  
100010b  
100011b  
100100b  
100101b  
100110b  
100111b  
101000b  
101001b  
101010b  
101011b  
101100b  
101101b  
101110b  
101111b  
110000b  
110001b  
110010b  
110011b  
110100b  
110101b  
110110b  
110111b  
111000b  
111001b  
111010b  
111011b  
111100b  
111101b  
111110b  
111111b  
VDCDCx (V)  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
1.900  
1.925  
1.950  
1.975  
2.000  
2.025  
2.050  
2.075  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-47. DCDCx Voltage Settings (RANGE[1:0] = 11b)  
SEL(DCDCx)[5:0]  
000000b  
000001b  
000010b  
000011b  
000100b  
000101b  
000110b  
000111b  
001000b  
001001b  
001010b  
001011b  
001100b  
001101b  
001110b  
001111b  
010000b  
010001b  
010010b  
010011b  
010100b  
010101b  
010110b  
010111b  
011000b  
011001b  
011010b  
011011b  
011100b  
011101b  
011110b  
011111b  
VDCDCx (V)  
0.50  
0.55  
0.60  
0.65  
0.70  
0.75  
0.80  
0.85  
0.90  
0.95  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
SEL(DCDCx)[5:0]  
100000b  
100001b  
100010b  
100011b  
100100b  
100101b  
100110b  
100111b  
101000b  
101001b  
101010b  
101011b  
101100b  
101101b  
101110b  
101111b  
110000b  
110001b  
110010b  
110011b  
110100b  
110101b  
110110b  
110111b  
111000b  
111001b  
111010b  
111011b  
111100b  
111101b  
111110b  
111111b  
VDCDCx (V)  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.35  
3.40  
3.45  
3.50  
3.55  
3.60  
3.80  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2 LDO Registers (10h to 21h)  
Table 8-48 lists the memory-mapped registers for the LDO registers. All register offset addresses not listed in  
Table 8-48 should be considered as reserved locations and the register contents should not be modified.  
Table 8-48. LDO Register Memory Map  
Offset  
10h  
11h  
Acronym  
LDO1_OP  
LDO1_AVS  
LDO1_LIMIT  
LDO2_OP  
LDO2_AVS  
LDO2_LIMIT  
LDO3_OP  
LDO3_AVS  
LDO3_LIMIT  
LDO4_OP  
LDO4_AVS  
LDO4_LIMIT  
LDO5  
Register Name  
Section  
LDO1 OP Register  
LDO1 AVS Register  
LDO1 Limit Register  
LDO2 OP Register  
LDO2 AVS Register  
LDO2 Limit Register  
LDO3 OP Register  
LDO3 AVS Register  
LDO3 Limit Register  
LDO4 OP Register  
LDO4 AVS Register  
LDO4 Limit Register  
LDO5 Register  
Section 8.5.1.2.1  
Section 8.5.1.2.2  
Section 8.5.1.2.3  
Section 8.5.1.2.4  
Section 8.5.1.2.5  
Section 8.5.1.2.6  
Section 8.5.1.2.7  
Section 8.5.1.2.8  
Section 8.5.1.2.9  
Section 8.5.1.2.10  
Section 8.5.1.2.11  
Section 8.5.1.2.12  
Section 8.5.1.2.13  
Section 8.5.1.2.14  
Section 8.5.1.2.15  
Section 8.5.1.2.16  
Section 8.5.1.2.17  
Section 8.5.1.2.18  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
LDO6  
LDO6 Register  
LDO7  
LDO7 Register  
LDO8  
LDO8 Register  
LDO9  
LDO9 Register  
LDO10  
LDO10 Register  
Complex bit access types are encoded to fit into small table cells. Table 8-49 shows the codes that are used for  
access types in this section.  
Table 8-49. LDO Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
-OTP  
-X  
Bit reset value is defined in the  
OTP memory  
Bit determined by external  
connection  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.1 LDO1_OP Register (Offset = 10h) [reset = OTP]  
LDO1_OP is shown in Table 8-50 and described in Table 8-51.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-50. LDO1_OP Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SELREG  
R/W-0b  
SEL[5:0]  
R/W-OTP  
Table 8-51. LDO1_OP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit, should be written to 0b  
6
SELREG  
SEL[5:0]  
R/W  
R/W  
0b  
See Table 8-6  
5-0  
OTP  
Table 8-85 shows the supply-voltage settings.  
8.5.1.2.2 LDO1_AVS Register (Offset = 11h) [reset = OTP]  
LDO1_AVS is shown in Table 8-52 and described in Table 8-53.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-52. LDO1_AVS Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-53. LDO1_AVS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO1 disabled  
1b = LDO1 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-85 shows the supply-voltage setting.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.3 LDO1_LIMIT Register (Offset = 12h) [reset = OTP]  
LDO1_LIMIT is shown in Figure 8-25 and described in Table 8-54.  
Return to Summary Table.  
Register is reset on a POR event.  
Figure 8-25. LDO1_LIMIT Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
MAX_SEL[5:0]  
R/W-OTP  
Table 8-54. LDO1_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RSVD  
R
00b  
Unused bit, should be written to 0b  
MAX_SEL[5:0]  
R/W  
OTP  
This bit defines the maximum value the output voltage in the  
LDO1_AVS or LDO1_OP register can be programmed to; values  
exceeding MAX_SEL will be replaced by the value defined in  
MAX_SEL.  
If the MAX_SEL bit is set by I2C or default OTP setting to any value  
other than 0x3F or 0x00, the RANGE bits and the MAX_SEL bits are  
locked until OTP is reloaded.  
8.5.1.2.4 LDO2_OP Register (Offset = 13h) [reset = OTP]  
LDO2_OP is shown in Table 8-55 and described in Table 8-56.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-55. LDO2_OP Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SELREG  
R/W-0b  
SEL[5:0]  
R/W-OTP  
Table 8-56. LDO2_OP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit, should be written to 0b  
6
SELREG  
SEL[5:0]  
R/W  
R/W  
0b  
See Table 8-6  
5-0  
OTP  
Table 8-85 shows the supply-voltage setting.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.5 LDO2_AVS Register (Offset = 14h) [reset = OTP]  
LDO2_AVS is shown in Table 8-57 and described in Table 8-58.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-57. LDO2_AVS Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-58. LDO2_AVS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO2 disabled  
1b = LDO2 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-85 shows the supply-voltage setting.  
8.5.1.2.6 LDO2_LIMIT Register (Offset = 15h) [reset = OTP]  
LDO2_LIMIT is shown in Table 8-59 and described in Table 8-60.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-59. LDO2_LIMIT Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
MAX_SEL[5:0]  
R/W-OTP  
Table 8-60. LDO2_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RSVD  
R
00b  
Unused bit, should be written to 0b  
MAX_SEL[5:0]  
R/W  
OTP  
This bit defines the maximum value the output voltage in the  
LDO2_AVS or LDO2_OP register can be programmed to; values  
exceeding MAX_SEL will be replaced by the value defined in  
MAX_SEL.  
If the MAX_SEL bit is set by I2C or default OTP setting to any value  
other than 0x3F or 0x00, the RANGE bits and the MAX_SEL bits are  
locked until OTP is reloaded.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.7 LDO3_OP Register (Offset = 16h) [reset = OTP]  
LDO3_OP is shown in Table 8-61 and described in Table 8-62.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-61. LDO3_OP Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SELREG  
R/W-0b  
SEL[5:0]  
R/W-OTP  
Table 8-62. LDO3_OP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit, should be written to 0b  
6
SELREG  
SEL[5:0]  
R/W  
R/W  
0b  
See Table 8-6  
5-0  
OTP  
Table 8-85 shows the supply-voltage setting.  
8.5.1.2.8 LDO3_AVS Register (Offset = 17h) [reset = OTP]  
LDO3_AVS is shown in Table 8-63 and described in Table 8-64.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-63. LDO3_AVS Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-64. LDO3_AVS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO3 disabled  
1b = LDO3 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-85 shows the supply-voltage setting.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.9 LDO3_LIMIT Register (Offset = 18h) [reset = OTP]  
LDO3_LIMIT is shown in Table 8-65 and described in Table 8-66.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-65. LDO3_LIMIT Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
MAX_SEL[5:0]  
R/W-OTP  
Table 8-66. LDO3_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RSVD  
R
00b  
Unused bit, should be written to 0b  
MAX_SEL[5:0]  
R/W  
OTP  
This bit defines the maximum value the output voltage in the  
LDO3_AVS or LDO3_OP register can be programmed to; values  
exceeding MAX_SEL will be replaced by the value defined in  
MAX_SEL.  
If the MAX_SEL bit is set by I2C or default OTP setting to any value  
other than 0x3F or 0x00, the RANGE bits and the MAX_SEL bits are  
locked until OTP is reloaded.  
8.5.1.2.10 LDO4_OP Register (Offset = 19h) [reset = OTP]  
LDO4_OP is shown in Table 8-67 and described in Table 8-68.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-67. LDO4_OP Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
SELREG  
R/W-0b  
SEL[5:0]  
R/W-OTP  
Table 8-68. LDO4_OP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit, should be written to 0b  
6
SELREG  
SEL[5:0]  
R/W  
R/W  
0b  
See Table 8-6  
5-0  
OTP  
Table 8-86 shows the supply-voltage setting. The SEL[5] bit is  
internally set to 1b on LDO4 to reflect the programmable output  
voltage range from 1.6 V to 3.3 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.11 LDO4_AVS Register (Offset = 1Ah) [reset = OTP]  
LDO4_AVS is shown in Table 8-69 and described in Table 8-70.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-69. LDO4_AVS Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-70. LDO4_AVS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO4 disabled  
1b = LDO4 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-86 shows the supply-voltage setting. The SEL[5] bit is  
internally set to 1b on LDO4 to reflect the programmable output  
voltage range from 1.6 V to 3.3 V.  
8.5.1.2.12 LDO4_LIMIT Register (Offset = 1Bh) [reset = OTP]  
LDO4_LIMIT is shown in Table 8-71 and described in Table 8-72.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-71. LDO4_LIMIT Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
MAX_SEL[5:0]  
R/W-OTP  
Table 8-72. LDO4_LIMIT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-0  
RSVD  
R
00b  
Unused bit, should be written to 0b  
MAX_SEL[5:0]  
R/W  
OTP  
This bit defines the maximum value the output voltage in the  
LDO4_AVS or LDO4_OP register can be programmed to; values  
exceeding MAX_SEL will be replaced by the value defined in  
MAX_SEL.  
If the MAX_SEL bit is set by I2C or default OTP setting to any value  
other than 0x3F or 0x00, the RANGE bits and the MAX_SEL bits are  
locked until OTP is reloaded.  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.13 LDO5 Register (Offset = 1Ch) [reset = OTP]  
LDO5 is shown in Table 8-73 and described in Table 8-74.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-73. LDO5 Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-74. LDO5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO5 disabled  
1b = LDO5 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-86 shows the supply-voltage setting. The SEL[5] bit is  
internally set to 1b on LDO5 to reflect the programmable output  
voltage range from 1.6 V to 3.3 V.  
8.5.1.2.14 LDO6 Register (Offset = 1Dh) [reset = OTP]  
LDO6 is shown in Table 8-75 and described in Table 8-76.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-75. LDO6 Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-OTP  
R/W-0b  
Table 8-76. LDO6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO6 disabled  
1b = LDO6 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-85 shows the supply-voltage setting.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.15 LDO7 Register (Offset = 1Eh) [reset = OTP]  
LDO7 is shown in Table 8-77 and described in Table 8-78.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-77. LDO7 Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-78. LDO7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO7 disabled  
1b = LDO7 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-85 shows the supply-voltage setting.  
8.5.1.2.16 LDO8 Register (Offset = 1Fh) [reset = OTP]  
LDO8 is shown in Table 8-79 and described in Table 8-80.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-79. LDO8 Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-OTP  
R/W-0b  
Table 8-80. LDO8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO8 disabled  
1b = LDO8 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-85 shows the supply-voltage setting.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.17 LDO9 Register (Offset = 20h) [reset = OTP]  
LDO9 is shown in Table 8-81 and described in Table 8-82.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-81. LDO9 Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-0b  
R/W-OTP  
Table 8-82. LDO9 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO9 disabled  
1b = LDO9 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-85 shows the supply-voltage setting.  
8.5.1.2.18 LDO10 Register (Offset = 21h) [reset = OTP]  
LDO10 is shown in Table 8-83 and described in Table 8-84.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-83. LDO10 Register  
7
6
5
4
3
2
1
0
ENABLE  
R/W-OTP  
ECO  
SEL[5:0]  
R/W-OTP  
R/W-0b  
Table 8-84. LDO10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ENABLE  
R/W  
OTP  
0b = LDO10 disabled  
1b = LDO10 enabled unless it is being disabled by SET_OFF mode  
6
ECO  
R/W  
R/W  
0b  
See Section 8.3.1.1  
5-0  
SEL[5:0]  
OTP  
Table 8-85 shows the supply-voltage setting.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.2.19 LDO Voltage Settings  
Table 8-85. LDO Voltage Settings; Except LDO4 and LDO5  
SEL[5:0]  
000000b  
000001b  
000010b  
000011b  
000100b  
000101b  
000110b  
000111b  
001000b  
001001b  
001010b  
001011b  
001100b  
001101b  
001110b  
001111b  
010000b  
010001b  
010010b  
010011b  
010100b  
010101b  
010110b  
010111b  
011000b  
011001b  
011010b  
011011b  
011100b  
011101b  
011110b  
011111b  
LDOx Output (V)  
0.800  
0.825  
0.850  
0.875  
0.900  
0.925  
0.950  
0.975  
1.000  
1.025  
1.050  
1.075  
1.100  
1.125  
1.150  
1.175  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
SEL[5:0]  
100000b  
100001b  
100010b  
100011b  
100100b  
100101b  
100110b  
100111b  
101000b  
101001b  
101010b  
101011b  
101100b  
101101b  
101110b  
101111b  
110000b  
110001b  
110010b  
110011b  
110100b  
110101b  
110110b  
110111b  
111000b  
111001b  
111010b  
111011b  
111100b  
111101b  
111110b  
111111b  
LDOx Output (V)  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.100  
2.150  
2.200  
2.250  
2.300  
2.350  
2.400  
2.450  
2.500  
2.550  
2.600  
2.650  
2.700  
2.750  
2.800  
2.850  
2.900  
2.950  
3.000  
3.100  
3.200  
3.300  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-86. LDO Voltage Settings for LDO4 and  
LDO5  
SEL[5:0]  
100000b  
100001b  
100010b  
100011b  
100100b  
100101b  
100110b  
100111b  
101000b  
101001b  
101010b  
101011b  
101100b  
101101b  
101110b  
101111b  
110000b  
110001b  
110010b  
110011b  
110100b  
110101b  
110110b  
110111b  
111000b  
111001b  
111010b  
111011b  
111100b  
111101b  
111110b  
111111b  
LDOx Output (V)  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.100  
2.150  
2.200  
2.250  
2.300  
2.350  
2.400  
2.450  
2.500  
2.550  
2.600  
2.650  
2.700  
2.750  
2.800  
2.850  
2.900  
2.950  
3.000  
3.100  
3.200  
3.300  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3 DEVCTRL Registers (22h to 64h)  
Table 8-87 lists the memory-mapped registers for the DEVCTRL registers. All register offset addresses not listed  
in Table 8-87 should be considered as reserved locations and the register contents should not be modified.  
Table 8-87. DEVCTRL Register Memory Map  
Offset  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
(2Bh)  
2Ch  
2Dh  
2Eh  
2Fh  
30h  
31h  
32h  
33h  
34h  
35h  
36h  
37h  
38h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
3Eh  
3Fh  
40h  
41h  
42h  
43h  
44h  
45h  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
Acronym  
Register Name  
Section  
THRM_REG  
CLK32KOUT  
DEVCTRL  
DEVCTRL2  
I2C_SPI_CFG  
KEEP_ON1  
KEEP_ON2  
SET_OFF1  
SET_OFF2  
DEF_VOLT  
DEF_VOLT_MAPPING  
DISCHARGE1  
DISCHARGE2  
EN1_SET1  
EN1_SET2  
EN2_SET1  
EN2_SET2  
EN3_SET1  
EN3_SET2  
EN4_SET1  
EN4_SET2  
PGOOD  
Thermal Register  
Section 8.5.1.3.1  
Section 8.5.1.3.2  
Section 8.5.1.3.3  
Section 8.5.1.3.4  
Section 8.5.1.3.5  
Section 8.5.1.3.6  
Section 8.5.1.3.7  
Section 8.5.1.3.8  
Section 8.5.1.3.9  
Section 8.5.1.3.10  
Section 8.5.1.3.12  
Section 8.5.1.3.13  
Section 8.5.1.3.14  
Section 8.5.1.3.15  
Section 8.5.1.3.16  
Section 8.5.1.3.17  
Section 8.5.1.3.18  
Section 8.5.1.3.19  
Section 8.5.1.3.20  
Section 8.5.1.3.21  
Section 8.5.1.3.22  
Section 8.5.1.3.23  
Section 8.5.1.3.24  
Section 8.5.1.3.25  
Section 8.5.1.3.26  
Section 8.5.1.3.27  
Section 8.5.1.3.28  
Section 8.5.1.3.29  
Section 8.5.1.3.30  
Section 8.5.1.3.31  
Section 8.5.1.3.32  
Section 8.5.1.3.33  
Section 8.5.1.3.34  
Section 8.5.1.3.35  
Section 8.5.1.3.36  
Section 8.5.1.3.37  
Section 8.5.1.3.38  
Section 8.5.1.3.39  
Section 8.5.1.3.40  
Section 8.5.1.3.41  
Section 8.5.1.3.42  
Section 8.5.1.3.43  
32-kHz Clock Output Register  
Device Control Register  
Device Control 2 Register  
I2C-SPI Configuration Register  
LDO Keep-On Register  
DCDC Keep-On Register  
LDO Set Off Register  
DCDC Set Off Register  
Default Voltage Register  
Default Voltage Mapping Register  
LDO Discharge Register  
DCDC Discharge Register  
LDO EN1 Pin Setting Register  
DCDC EN1 Pin Setting Register  
LDO EN2 Pin Setting Register  
DCDC EN2 Pin Setting Register  
LDO EN3 Pin Setting Register  
DCDC EN3 Pin Setting Register  
LDO EN4 Pin Setting Register  
DCDC EN4 Pin Setting Register  
Power Good Register  
PGOOD2  
Power Good 2 Register  
Interrupt Mask Register  
Interrupt Status Register  
Interrupt Status 2 Register  
Interrupt Mask 2 Register  
Interrupt Status 3 Register  
Interrupt Mask 3 Register  
Interrupt Status 4 Register  
Interrupt Mask 4 Register  
GPIO1 Register  
INT_STS  
INT_MSK  
INT_STS2  
INT_MSK2  
INT_STS3  
INT_MSK3  
INT_STS4  
INT_MSK4  
GPIO1  
GPIO2  
GPIO2 Register  
GPIO3  
GPIO3 Register  
GPIO4  
GPIO4 Register  
GPIO5  
GPIO5 Register  
VMON  
Voltage Monitor Register  
LEDA Control 1 Register  
LEDA Control 2 Register  
LEDA Control 3 Register  
LEDA Control 4 Register  
LEDA Control 5 Register  
LEDA_CTRL1  
LEDA_CTRL2  
LEDA_CTRL3  
LEDA_CTRL4  
LEDA_CTRL5  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-87. DEVCTRL Register Memory Map (continued)  
Offset  
4Ch  
4Dh  
4Eh  
4Fh  
50h  
51h  
52h  
53h  
54h  
55h  
56h  
57h  
58h  
59h  
5Ah  
5Bh  
5Ch  
5Dh  
5Eh  
5Fh  
60h  
61h  
62h  
63h  
64h  
Acronym  
Register Name  
Section  
LEDA_CTRL6  
LEDA_CTRL7  
LEDA_CTRL8  
LEDB_CTRL1  
LEDB_CTRL2  
LEDB_CTRL3  
LEDB_CTRL4  
LEDB_CTRL5  
LEDB_CTRL6  
LEDB_CTRL7  
LEDB_CTRL8  
LEDC_CTRL1  
LEDC_CTRL2  
LEDC_CTRL3  
LEDC_CTRL4  
LEDC_CTRL5  
LEDC_CTRL6  
LEDC_CTRL7  
LEDC_CTRL8  
LED_RAMP_UP_TIME  
LED_RAMP_DOWN_TIME  
LED_SEQ_EN  
LOADSWITCH  
SPARE  
LEDA Control 6 Register  
LEDA Control 7 Register  
LEDA Control 8 Register  
LEDB Control 1 Register  
LEDB Control 2 Register  
LEDB Control 3 Register  
LEDB Control 4 Register  
LEDB Control 5 Register  
LEDB Control 6 Register  
LEDB Control 7 Register  
LEDB Control 8 Register  
LEDC Control 1 Register  
LEDC Control 2 Register  
LEDC Control 3 Register  
LEDC Control 4 Register  
LEDC Control 5 Register  
LEDC Control 6 Register  
LEDC Control 7 Register  
LEDC Control 8 Register  
LED Ramp-Up Time Register  
LED Ramp-Down Time Register  
LED Sequence Enable Register  
Load Switch Register  
Section 8.5.1.3.44  
Section 8.5.1.3.45  
Section 8.5.1.3.46  
Section 8.5.1.3.47  
Section 8.5.1.3.48  
Section 8.5.1.3.49  
Section 8.5.1.3.50  
Section 8.5.1.3.51  
Section 8.5.1.3.52  
Section 8.5.1.3.53  
Section 8.5.1.3.54  
Section 8.5.1.3.55  
Section 8.5.1.3.56  
Section 8.5.1.3.57  
Section 8.5.1.3.58  
Section 8.5.1.3.59  
Section 8.5.1.3.60  
Section 8.5.1.3.61  
Section 8.5.1.3.62  
Section 8.5.1.3.63  
Section 8.5.1.3.64  
Section 8.5.1.3.65  
Section 8.5.1.3.67  
Section 8.5.1.3.68  
Section 8.5.1.3.69  
Spare Register  
VERNUM  
Version Number Register  
Complex bit access types are encoded to fit into small table cells. Table 8-88 shows the codes that are used for  
access types in this section.  
Table 8-88. DEVCTRL Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
-OTP  
-X  
Bit reset value is defined in the  
OTP memory  
Bit determined by external  
connection  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.1 THRM_REG Register (Offset = 22h) [reset = 0Dh]  
THRM_REG is shown in Table 8-89 and described in Table 8-90.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-89. THRM_REG Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
THERM_HD  
R-0b  
THERM_TS  
R-0b  
THERM_HDSEL[1:0]  
R/W-11b  
RSVD  
R-0b  
THERM_EN  
R/W-1b  
Table 8-90. THRM_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
THERM_HD  
R
0b  
0b = Hot die threshold is not reached  
1b = Hot die threshold is reached  
4
THERM_TS  
R
0b  
Thermal shutdown detector output  
0b = Indicates thermal shutdown not reached (typically 150°C)  
1b = Indicates thermal shutdown reached  
3-2  
THERM_HDSEL  
R/W  
11b  
Temperature selection for hot die detector  
00b = T = 117°C  
01b = T = 121°C  
10b = T = 125°C  
11b = T = 130°C  
1
0
RSVD  
R
0b  
1b  
Unused bit  
THERM_EN  
R/W  
Thermal shutdown module  
0b = Disabled  
1b = Enabled  
8.5.1.3.2 CLK32KOUT Register (Offset = 23h) [reset = OTP]  
CLK32KOUT is shown in Table 8-91 and described in Table 8-92.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-91. CLK32KOUT Register  
7
6
5
4
3
2
1
0
CLK32KOUT_E  
N
RSVD  
R-0000000b  
R/W-OTP  
Table 8-92. CLK32KOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
0
RSVD  
R
0000000b  
Unused bit read returns 0b.  
CLK32KOUT_EN  
R/W  
OTP  
0b = 32KCLKOUT disabled  
1b = 32KCLKOUT enabled  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.3 DEVCTRL Register (Offset = 24h) [reset = OTP]  
DEVCTRL is shown in Table 8-93 and described in Table 8-94.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-93. DEVCTRL Register  
7
6
5
4
3
2
1
0
PWR_OFF_SE  
Q
nRESPWRON_  
OUTPUT  
LOAD-OTP  
R/W-OTP  
LOCK_LDO9  
R-OTP  
RSVD  
R-0b  
PWRHLD  
R/W-OTP  
DEV_SLP  
R/W-0b  
DEV_OFF  
R/W-0b  
R/W-OTP  
R/W-OTP  
Table 8-94. DEVCTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PWR_OFF_SEQ  
LOAD-OTP  
LOCK_LDO9  
RSVD  
R/W  
OTP  
0b = All resources disabled at the same time  
1b = Power-off will be sequential, reverse of power-on sequence  
(first resource to power on will be the last to power off)  
6
5
R/W  
R
OTP  
OTP  
0b = Register contents are kept in the OFF state  
1b = Register default values are reloaded from OTP when in the OFF  
state  
0b = LDO9 bits are allowed to be changed  
1b = LDO9 bits are locked; LDO9 is enabled in the startup sequence  
and disabled in the OFF state; no further control allowed  
4
3
R
0b  
Unused bit read returns 0b.  
nRESPWRON_OUTPUT R/W  
OTP  
0b = NRESPWRON output is open drain  
1b = NRESPWRON output is push-pull to VDDIO  
2
PWRHLD  
DEV_SLP  
R/W  
R/W  
OTP  
0b  
0b = Cleared in the OFF state.  
1b = Writing 1b will maintain the device on (ACTIVE or SLEEP  
device state) unless one of the power off events occur (DEV_OFF,  
long key press if not masked, or thermal shutdown).  
1
0b = This bit is cleared in the OFF state.  
1b = Writing 1b will starts an ACTIVE-to-SLEEP transition as long  
as no unmasked interrupts are pending. If set to 1b, the device  
will require an unmasked interrupt to occur to perform SLEEP-to-  
ACTIVE transition or will need to transition to OFF to clear this bit.  
0
DEV_OFF  
R/W  
0b  
0b = This bit is cleared in the OFF state.  
1b = Writing 1b will start an ACTIVE-to-OFF or SLEEP-to-OFF  
device state transition (switch-off event). This event has priority over  
PWRHLD bit and PWRHOLD pin. Device will restart if either is high  
once transition to OFF state is complete.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.4 DEVCTRL2 Register (Offset = 25h) [reset = OTP]  
DEVCTRL2 is shown in Table 8-95 and described in Table 8-96.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-95. DEVCTRL2 Register  
7
6
5
4
3
2
1
0
SLEEP_ENABL  
E
PWRON_LP_O PWRON_LP_  
INT_OUTPUT  
R/W-OTP  
TSLOT_LENGTH[1:0]  
R/W-OTP  
SLEEP_POL  
R/W-0b  
INT_POL  
R/W-OTP  
FF  
OFF_RST  
R/W-0b  
R/W-OTP  
R/W-OTP  
Table 8-96. DEVCTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
SLEEP_ENABLE  
R/W  
0b  
0b = SLEEP signal is ignored; default for power-up and should  
remain this way for CONFIG2 shorted to GND.  
1b = SLEEP signal is unmasked and the device can enter SLEEP  
state if there are no pending interrupts and the SLEEP pin  
(CONFIG2 tied to LDOAO) is active as defined by the SLEEP_POL  
bit  
6
INT_OUTPUT  
R/W  
R/W  
OTP  
OTP  
0b = Interrupt output is open drain  
1b = Interrupt output is push-pull to VDDIO  
5-4  
TSLOT_LENGTH[1:0]  
Time slot duration programming; selects length of the timeslots for  
startup or shutdown timing  
00b = 30 µs  
01b = 200 µs  
10b = 500 µs  
11b = 2 ms  
3
2
SLEEP_POL  
R/W  
R/W  
0b  
0b = SLEEP signal active high  
1b = SLEEP signal active low  
PWRON_LP_OFF  
OTP  
0b = No effect  
1b = Allows device turnoff after an nPWRON long press (signal low).  
After the nPWRON pin is low for 4 s, an interrupt is generated. After  
1 additional second, the device performs the power-off sequence.  
1
PWRON_LP_OFF_RST  
R/W  
OTP  
0b = No effect  
1b = Allows device turnoff after an nPWRON long press (signal low).  
After the nPWRON pin is low for 4 s, an interrupt is generated. After  
1 additional second, the device performs the power-off sequence and  
registers are loaded with their default values, regardless of LOAD-  
OTP bit value. This bit has priority over the PWRON_LP_OFF bit and  
the LOAD-OTP bit.  
0
INT_POL  
R/W  
OTP  
0b = INT1 interrupt pad-polarity control signal is active low  
1b = INT1 interrupt pad-polarity control signal is active high  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.5 I2C_SPI_CFG Register (Offset = 26h) [reset = OTP]  
I2C_SPI_CFG is shown in Table 8-97 and described in Table 8-98.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-97. I2C_SPI_CFG Register  
7
6
5
4
3
2
1
0
I2CAVS_ID_SEL[1:0]  
R-OTP  
I2CGP_ID_SEL[1:0]  
R-OTP  
DCDC4_AVS  
R/W-OTP  
DCDC3_AVS  
R/W-OTP  
DCDC2_AVS  
R/W-OTP  
DCDC1_AVS  
R/W-OTP  
Table 8-98. I2C_SPI_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
I2CAVS_ID_SEL[1:0]  
R
OTP  
Device address for the AVS-I2C interface  
00b = 12h  
01b = 13h  
10b = 14h  
11b = 15h  
5-4  
I2CGP_ID_SEL1[1:0]  
R
OTP  
Device address for the standard-I2C interface  
00b = 2Dh  
01b = 2Eh  
10b = 2Fh  
11b = 30h  
3
2
1
0
DCDC4_AVS  
DCDC3_AVS  
DCDC2_AVS  
DCDC1_AVS  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
Interface assignment for the DCDC4_OP and DCDC4_AVS registers  
0b = Standard interface  
1b = AVS- interface  
Interface assignment for the DCDC3_OP and DCDC3_AVS registers  
0b = Standard interface  
1b = AVS- interface  
Interface assignment for the DCDC2_OP and DCDC2_AVS registers  
0b = Standard interface  
1b = AVS- interface  
Interface assignment for the DCDC1_OP and DCDC1_AVS registers  
0b = Standard interface  
1b = AVS- interface  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.6 KEEP_ON1 Register (Offset = 27h) [reset = OTP]  
KEEP_ON1 is shown in Table 8-99 and described in Table 8-100.  
Return to Summary Table.  
Register is reset on a POR event.  
Settings shown in Table 8-109  
Table 8-99. KEEP_ON1 Register  
7
6
5
4
3
2
1
0
LDO8_KEEPO LDO7_KEEPO LDO6_KEEPO LDO5_KEEPO LDO4_KEEPO LDO3_KEEPO LDO2_KEEPO LDO1_KEEPO  
N
N
N
N
N
N
N
N
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-100. KEEP_ON1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO8_KEEPON  
LDO7_KEEPON  
LDO6_KEEPON  
LDO5_KEEPON  
LDO4_KEEPON  
LDO3_KEEPON  
LDO2_KEEPON  
LDO1_KEEPON  
R/W  
OTP  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.7 KEEP_ON2 Register (Offset = 28h) [reset = OTP]  
KEEP_ON2 is shown in Table 8-101 and described in Table 8-102.  
Return to Summary Table.  
Register is reset on a POR event.  
Settings shown in Table 8-109  
Table 8-101. KEEP_ON2 Register  
7
6
5
4
3
2
1
0
DCDC4_  
KEEPON  
DCDC3_  
KEEPON  
DCDC2_  
KEEPON  
DCDC1_  
KEEPON  
LDO10_  
KEEPON  
LDO9_  
KEEPON  
RSVD  
R-00b  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-102. KEEP_ON2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bits  
DCDC4_KEEPON  
DCDC3_KEEPON  
DCDC2_KEEPON  
DCDC1_KEEPON  
R/W  
OTP  
0b = Set in Eco-mode in the SLEEP state, unless DCDC4_MODE =  
1b  
1b = Keep active in the SLEEP state  
4
3
2
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
0b = Set in Eco-mode in the SLEEP state, unless DCDC3_MODE =  
1b  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state, unless DCDC2_MODE =  
1b  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state, unless DCDC1_MODE =  
1b  
1b = Keep active in the SLEEP state  
1
0
LDO10_KEEPON  
LDO9_KEEPON  
R/W  
R/W  
OTP  
OTP  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
0b = Set in Eco-mode in the SLEEP state  
1b = Keep active in the SLEEP state  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.8 SET_OFF1 Register (Offset = 29h) [reset = OTP]  
SET_OFF1 is shown in Table 8-103 and described in Table 8-104.  
Return to Summary Table.  
Register is reset on a POR event.  
Settings shown in Table 8-109  
Table 8-103. SET_OFF1 Register  
7
6
5
4
3
2
1
0
LDO8_SET_OF LDO7_SET_OF LDO6_SET_OF LDO5_SET_OF LDO4_SET_OF LDO3_SET_OF LDO2_SET_OF LDO1_SET_OF  
F
F
F
F
F
F
F
F
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-104. SET_OFF1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO8_SET_OFF  
LDO7_SET_OFF  
LDO6_SET_OFF  
LDO5_SET_OFF  
LDO4_SET_OFF  
LDO3_SET_OFF  
LDO2_SET_OFF  
LDO1_SET_OFF  
R/W  
OTP  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.9 SET_OFF2 Register (Offset = 2Ah) [reset = OTP]  
SET_OFF2 is shown in Table 8-105 and described in Table 8-106.  
Return to Summary Table.  
Register is reset on a POR event.  
Settings shown in Section 8.5.1.3.11.  
Table 8-105. SET_OFF2 Register  
7
6
5
4
3
2
1
0
THERM_  
KEEP_ON  
CLK32KOUT_  
KEEPON  
DCDC4_  
SET_OFF  
DCDC3_  
SET_OFF  
DCDC2_  
SET_OFF  
DCDC1_  
SET_OFF  
LDO10_  
SET_OFF  
LDO9_  
SET_OFF  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-106. SET_OFF2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
THERM_KEEP_ON  
CLK32KOUT_KEEPON  
DCDC4_SET_OFF  
DCDC3_SET_OFF  
DCDC2_SET_OFF  
DCDC1_SET_OFF  
LDO10_SET_OFF  
LDO9_SET_OFF  
R/W  
OTP  
0b = Enabled in the SLEEP state  
1b = Set off in the SLEEP state  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = Enabled in the SLEEP state  
1b = Set off in the SLEEP state  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
0b = Defined by the KEEP_ON register  
1b = Set off in the SLEEP state if the KEEP_ON bit set to 0b  
8.5.1.3.10 DEF_VOLT Register (Offset = 2Bh) [reset = OTP]  
DEF_VOLT is shown in Table 8-107 and described in Table 8-108.  
Return to Summary Table.  
Register is reset on a POR event.  
Settings shown in Table 8-109  
Table 8-107. DEF_VOLT Register  
7
6
5
4
3
2
1
0
LDO4_DEF_VO LDO3_DEF_VO LDO2_DEF_VO LDO1_DEF_VO DCDC4_DEF_V DCDC3_DEF_V DCDC2_DEF_V DCDC1_DEF_V  
LT  
LT  
LT  
LT  
OLT  
OLT  
OLT  
OLT  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-108. DEF_VOLT Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
Description  
LDO4_DEF_VOLT  
LDO3_DEF_VOLT  
LDO2_DEF_VOLT  
LDO1_DEF_VOLT  
DCDC4_DEF_VOLT  
DCDC3_DEF_VOLT  
See Table 8-6  
See Table 8-6  
See Table 8-6  
See Table 8-6  
See Table 8-6  
See Table 8-6  
6
5
4
3
2
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-108. DEF_VOLT Register Field Descriptions (continued)  
Bit  
1
Field  
Type  
R/W  
R/W  
Reset  
Description  
See Table 8-6  
See Table 8-6  
DCDC2_DEF_VOLT  
DCDC1_DEF_VOLT  
OTP  
0
OTP  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.11 LDO Sleep Mode Behavior  
Table 8-109. LDO SLEEP MODE BEHAVIOR  
CONFIG BITS  
LDO IS SET TO Eco-mode  
LDO STAYS ACTIVE  
LDO IS SET TO OFF  
0b = Voltage defined by the _OP 0b = Voltage defined by the _OP  
0b = Voltage defined by the _OP register  
1b = Voltage defined by the _AVS register  
register  
register  
DEF_VOLT  
1b = Voltage defined by the _AVS 1b = Voltage defined by the _AVS  
register  
register  
0b  
KEEP ON  
SET OFF  
0b  
0b  
1b  
x
1b  
8.5.1.3.12 DEF_VOLT_MAPPING Register (Offset = 2Ch) [reset = OTP]  
DEF_VOLT_MAPPING is shown in Table 8-110 and described in Table 8-111.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-110. DEF_VOLT_MAPPING Register  
7
6
5
4
3
2
1
0
LDO4_VOLT_MAPPING[1:0]  
R/W-OTP  
LDO3_VOLT_MAPPING[1:0]  
R/W-OTP  
LDO2_VOLT_MAPPING[1:0]  
R/W-OTP  
LDO1_VOLT_MAPPING[1:0]  
R/W-OTP  
Table 8-111. DEF_VOLT_MAPPING Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LDO4_VOLT_MAPPING[1 R/W  
:0]  
OTP  
Maps a DCDCx_SEL pin to the voltage scaling function to select  
either LDO4_OP or LDO4_AVS as the register defining the output  
voltage for LDO4 for when CONFIG2 is tied to GND.  
DEF_VOLT bit set and cleared by the status of the:  
00b = DCDC1_SEL pin  
01b = DCDC2_SEL pin  
10b = DCDC3_SEL pin  
11b = DCDC4_SEL pin  
5-4  
LDO3_VOLT_MAPPING[1 R/W  
:0]  
OTP  
Maps a DCDCx_SEL pin to the voltage scaling function to select  
either LDO3_OP or LDO3_AVS as the register defining the output  
voltage for LDO3.  
DEF_VOLT bit set and cleared by the status of the:  
00b = DCDC1_SEL pin  
01b = DCDC2_SEL pin  
10b = DCDC3_SEL pin  
11b = DCDC4_SEL pin  
3-2  
LDO2_VOLT_MAPPING[1 R/W  
:0]  
OTP  
Maps a DCDCx_SEL pin to the voltage scaling function to select  
either LDO2_OP or LDO2_AVS as the register defining the output  
voltage for LDO2.  
DEF_VOLT bit set and cleared by the status of the:  
00b = DCDC1_SEL pin  
01b = DCDC2_SEL pin  
10b = DCDC3_SEL pin  
11b = DCDC4_SEL pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TPS659128  
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-111. DEF_VOLT_MAPPING Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1-0  
LDO1_VOLT_MAPPING[1 R/W  
:0]  
OTP  
Maps a DCDCx_SEL pin to the voltage scaling function to select  
either LDO1_OP or LDO1_AVS as the register defining the output  
voltage for LDO1.  
DEF_VOLT bit set and cleared by the status of the:  
00b = DCDC1_SEL pin  
01b = DCDC2_SEL pin  
10b = DCDC3_SEL pin  
11b = DCDC4_SEL pin  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.13 DISCHARGE1 Register (Offset = 2Dh) [reset = OTP]  
DISCHARGE1 is shown in Table 8-112 and described in Table 8-113.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-112. DISCHARGE1 Register  
7
6
5
4
3
2
1
0
LDO8_  
LDO7_  
LDO6_  
LDO5_  
LDO4_  
LDO3_  
LDO2_  
LDO1_  
DISCHARGE  
DISCHARGE  
DISCHARGE  
DISCHARGE  
DISCHARGE  
DISCHARGE  
DISCHARGE  
DISCHARGE  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-113. DISCHARGE1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO8_DISCHARGE  
LDO7_DISCHARGE  
LDO6_DISCHARGE  
LDO5_DISCHARGE  
LDO4_DISCHARGE  
LDO3_DISCHARGE  
LDO2_DISCHARGE  
LDO1_DISCHARGE  
R/W  
OTP  
0b = LDO8 output is not discharged when disabled  
1b = LDO8 output is discharged when disabled  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = LDO7 output is not discharged when disabled  
1b = LDO7 output is discharged when disabled  
0b = LDO6 output is not discharged when disabled  
1b = LDO6 output is discharged when disabled  
0b = LDO5 output is not discharged when disabled  
1b = LDO5 output is discharged when disabled  
0b = LDO4 output is not discharged when disabled  
1b = LDO4 output is discharged when disabled  
0b = LDO3 output is not discharged when disabled  
1b = LDO3 output is discharged when disabled  
0b = LDO2 output is not discharged when disabled  
1b = LDO2 output is discharged when disabled  
0b = LDO1 output is not discharged when disabled  
1b = LDO1 output is discharged when disabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.14 DISCHARGE2 Register (Offset = 2Eh) [reset = OTP]  
DISCHARGE2 is shown in Table 8-114 and described in Table 8-115.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-114. DISCHARGE2 Register  
7
6
5
4
3
2
1
0
DCDC4_  
DISCHARGE  
DCDC3_  
DISCHARGE  
DCDC2_  
DISCHARGE  
DCDC1_  
DISCHARGE  
LDO10_  
DISCHARGE  
LDO9_  
DISCHARGE  
RSVD  
R-00b  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-115. DISCHARGE2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
DCDC4_DISCHARGE  
DCDC3_DISCHARGE  
DCDC2_DISCHARGE  
DCDC1_DISCHARGE  
LDO10_DISCHARGE  
LDO9_DISCHARGE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = DCDC4 output is not discharged when disabled  
1b = DCDC4 output is discharged when disabled  
4
3
2
1
0
0b = DCDC3 output is not discharged when disabled  
1b = DCDC3 output is discharged when disabled  
0b = DCDC2 output is not discharged when disabled  
1b = DCDC2 output is discharged when disabled  
0b = DCDC1 output is not discharged when disabled  
1b = DCDC1 output is discharged when disabled  
0b = LDO10 output is not discharged when disabled  
1b = LDO10 output is discharged when disabled  
0b = LDO9 output is not discharged when disabled  
1b = LDO9 output is discharged when disabled  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.15 EN1_SET1 Register (Offset = 2Fh) [reset = OTP]  
EN1_SET1 is shown in Table 8-116 and described in Table 8-117.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-116. EN1_SET1 Register  
7
6
5
4
3
2
1
0
LDO8_EN1  
R/W-OTP  
LDO7_EN1  
R/W-OTP  
LDO6_EN1  
R/W-OTP  
LDO5_EN1  
R/W-OTP  
LDO4_EN1  
R/W-OTP  
LDO3_EN1  
R/W-OTP  
LDO2_EN1  
R/W-OTP  
LDO1_EN1  
R/W-OTP  
Table 8-117. EN1_SET1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO8_EN1  
LDO7_EN1  
LDO6_EN1  
LDO5_EN1  
LDO4_EN1  
LDO3_EN1  
LDO2_EN1  
LDO1_EN1  
R/W  
OTP  
0b = EN1 pin has no effect on LDO8 enable  
1b = EN1 pin is controlling LDO8  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = EN1 pin has no effect on LDO7 enable  
1b = EN1 pin is controlling LDO7  
0b = EN1 pin has no effect on LDO6 enable  
1b = EN1 pin is controlling LDO6  
0b = EN1 pin has no effect on LDO5 enable  
1b = EN1 pin is controlling LDO5  
0b = EN1 pin has no effect on LDO4 enable  
1b = EN1 pin is controlling LDO4  
0b = EN1 pin has no effect on LDO3 enable  
1b = EN1 pin is controlling LDO3  
0b = EN1 pin has no effect on LDO2 enable  
1b = EN1 pin is controlling LDO2  
0b = EN1 pin has no effect on LDO1 enable  
1b = EN1 pin is controlling LDO1  
8.5.1.3.16 EN1_SET2 Register (Offset = 30h) [reset = OTP]  
EN1_SET2 is shown in Table 8-118 and described in Table 8-119.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-118. EN1_SET2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
DCDC4_EN1  
R/W-OTP  
DCDC3_EN1  
R/W-OTP  
DCDC2_EN1  
R/W-OTP  
DCDC1_EN1  
R/W-OTP  
LDO10_EN1  
R/W-OTP  
LDO9_EN1  
R/W-OTP  
Table 8-119. EN1_SET2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
DCDC4_EN1  
R/W  
OTP  
0b = EN1 pin has no effect on DCDC4 enable  
1b = EN1 pin is controlling DCDC4  
4
DCDC3_EN1  
R/W  
OTP  
0b = EN1 pin has no effect on DCDC3 enable  
1b = EN1 pin is controlling DCDC3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-119. EN1_SET2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
DCDC2_EN1  
R/W  
OTP  
0b = EN1 pin has no effect on DCDC2 enable  
1b = EN1 pin is controlling DCDC2  
2
1
0
DCDC1_EN1  
LDO10_EN1  
LDO9_EN1  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
0b = EN1 pin has no effect on DCDC1 enable  
1b = EN1 pin is controlling DCDC1  
0b = EN1 pin has no effect on LDO10 enable  
1b = EN1 pin is controlling LDO10  
0b = EN1 pin has no effect on LDO9 enable  
1b = EN1 pin is controlling LDO9  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.17 EN2_SET1 Register (Offset = 31h) [reset = OTP]  
EN2_SET1 is shown in Table 8-120 and described in Table 8-121.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-120. EN2_SET1 Register  
7
6
5
4
3
2
1
0
LDO8_EN2  
R/W-OTP  
LDO7_EN2  
R/W-OTP  
LDO6_EN2  
R/W-OTP  
LDO5_EN2  
R/W-OTP  
LDO4_EN2  
R/W-OTP  
LDO3_EN2  
R/W-OTP  
LDO2_EN2  
R/W-OTP  
LDO1_EN2  
R/W-OTP  
Table 8-121. EN2_SET1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO8_EN2  
LDO7_EN2  
LDO6_EN2  
LDO5_EN2  
LDO4_EN2  
LDO3_EN2  
LDO2_EN2  
LDO1_EN2  
R/W  
OTP  
0b = EN2 pin has no effect on LDO8 enable  
1b = EN2 pin is controlling LDO8  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = EN2 pin has no effect on LDO7 enable  
1b = EN2 pin is controlling LDO7  
0b = EN2 pin has no effect on LDO6 enable  
1b = EN2 pin is controlling LDO6  
0b = EN2 pin has no effect on LDO5 enable  
1b = EN2 pin is controlling LDO5  
0b = EN2 pin has no effect on LDO4 enable  
1b = EN2 pin is controlling LDO4  
0b = EN2 pin has no effect on LDO3 enable  
1b = EN2 pin is controlling LDO3  
0b = EN2 pin has no effect on LDO2 enable  
1b = EN2 pin is controlling LDO2  
0b = EN2 pin has no effect on LDO1 enable  
1b = EN2 pin is controlling LDO1  
8.5.1.3.18 EN2_SET2 Register (Offset = 32h) [reset = OTP]  
EN2_SET2 is shown in Table 8-122 and described in Table 8-123.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-122. EN2_SET2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
DCDC4_EN2  
R/W-OTP  
DCDC3_EN2  
R/W-OTP  
DCDC2_EN2  
R/W-OTP  
DCDC1_EN2  
R/W-OTP  
LDO10_EN2  
R/W-OTP  
LDO9_EN2  
R/W-OTP  
Table 8-123. EN2_SET2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
DCDC4_EN2  
R/W  
OTP  
0b = EN2 pin has no effect on DCDC4 enable  
1b = EN2 pin is controlling DCDC4  
4
DCDC3_EN2  
R/W  
OTP  
0b = EN2 pin has no effect on DCDC3 enable  
1b = EN2 pin is controlling DCDC3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-123. EN2_SET2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
DCDC2_EN2  
R/W  
OTP  
0b = EN2 pin has no effect on DCDC2 enable  
1b = EN2 pin is controlling DCDC2  
2
1
0
DCDC1_EN2  
LDO10_EN2  
LDO9_EN2  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
0b = EN2 pin has no effect on DCDC1 enable  
1b = EN2 pin is controlling DCDC1  
0b = EN2 pin has no effect on LDO10 enable  
1b = EN2 pin is controlling LDO10  
0b = EN2 pin has no effect on LDO9 enable  
1b = EN2 pin is controlling LDO9  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.19 EN3_SET1 Register (Offset = 33h) [reset = OTP]  
EN3_SET1 is shown in Table 8-124 and described in Table 8-125.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-124. EN3_SET1 Register  
7
6
5
4
3
2
1
0
LDO8_EN3  
R/W-OTP  
LDO7_EN3  
R/W-OTP  
LDO6_EN3  
R/W-OTP  
LDO5_EN3  
R/W-OTP  
LDO4_EN3  
R/W-OTP  
LDO3_EN3  
R/W-OTP  
LDO2_EN3  
R/W-OTP  
LDO1_EN3  
R/W-OTP  
Table 8-125. EN3_SET1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO8_EN3  
LDO7_EN3  
LDO6_EN3  
LDO5_EN3  
LDO4_EN3  
LDO3_EN3  
LDO2_EN3  
LDO1_EN3  
R/W  
OTP  
0b = EN3 pin has no effect on LDO8 enable  
1b = EN3 pin is controlling LDO8  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = EN3 pin has no effect on LDO7 enable  
1b = EN3 pin is controlling LDO7  
0b = EN3 pin has no effect on LDO6 enable  
1b = EN3 pin is controlling LDO6  
0b = EN3 pin has no effect on LDO5 enable  
1b = EN3 pin is controlling LDO5  
0b = EN3 pin has no effect on LDO4 enable  
1b = EN3 pin is controlling LDO4  
0b = EN3 pin has no effect on LDO3 enable  
1b = EN3 pin is controlling LDO3  
0b = EN3 pin has no effect on LDO2 enable  
1b = EN3 pin is controlling LDO2  
0b = EN3 pin has no effect on LDO1 enable  
1b = EN3 pin is controlling LDO1  
8.5.1.3.20 EN3_SET2 Register (Offset = 34h) [reset = OTP]  
EN3_SET2 is shown in Table 8-126 and described in Table 8-127.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-126. EN3_SET2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
DCDC4_EN3  
R/W-OTP  
DCDC3_EN3  
R/W-OTP  
DCDC2_EN3  
R/W-OTP  
DCDC1_EN3  
R/W-OTP  
LDO10_EN3  
R/W-OTP  
LDO9_EN3  
R/W-OTP  
Table 8-127. EN3_SET2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
DCDC4_EN3  
R/W  
OTP  
0b = EN3 pin has no effect on DCDC4 enable  
1b = EN3 pin is controlling DCDC4  
4
DCDC3_EN3  
R/W  
OTP  
0b = EN3 pin has no effect on DCDC3 enable  
1b = EN3 pin is controlling DCDC3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-127. EN3_SET2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
DCDC2_EN3  
R/W  
OTP  
0b = EN3 pin has no effect on DCDC2 enable  
1b = EN3 pin is controlling DCDC2  
2
1
0
DCDC1_EN3  
LDO10_EN3  
LDO9_EN3  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
0b = EN3 pin has no effect on DCDC1 enable  
1b = EN3 pin is controlling DCDC1  
0b = EN3 pin has no effect on LDO10 enable  
1b = EN3 pin is controlling LDO10  
0b = EN3 pin has no effect on LDO9 enable  
1b = EN3 pin is controlling LDO9  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.21 EN4_SET1 Register (Offset = 35h) [reset = OTP]  
EN4_SET1 is shown in Table 8-128 and described in Table 8-129.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-128. EN4_SET1 Register  
7
6
5
4
3
2
1
0
LDO8_EN4  
R/W-OTP  
LDO7_EN4  
R/W-OTP  
LDO6_EN4  
R/W-OTP  
LDO5_EN4  
R/W-OTP  
LDO4_EN4  
R/W-OTP  
LDO3_EN4  
R/W-OTP  
LDO2_EN4  
R/W-OTP  
LDO1_EN4  
R/W-OTP  
Table 8-129. EN4_SET1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO8_EN4  
LDO7_EN4  
LDO6_EN4  
LDO5_EN4  
LDO4_EN4  
LDO3_EN4  
LDO2_EN4  
LDO1_EN4  
R/W  
OTP  
0b = EN4 pin has no effect on LDO8 enable  
1b = EN4 pin is controlling LDO8  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = EN4 pin has no effect on LDO7 enable  
1b = EN4 pin is controlling LDO7  
0b = EN4 pin has no effect on LDO6 enable  
1b = EN4 pin is controlling LDO6  
0b = EN4 pin has no effect on LDO5 enable  
1b = EN4 pin is controlling LDO5  
0b = EN4 pin has no effect on LDO4 enable  
1b = EN4 pin is controlling LDO4  
0b = EN4 pin has no effect on LDO3 enable  
1b = EN4 pin is controlling LDO3  
0b = EN4 pin has no effect on LDO2 enable  
1b = EN4 pin is controlling LDO2  
0b = EN4 pin has no effect on LDO1 enable  
1b = EN4 pin is controlling LDO1  
8.5.1.3.22 EN4_SET2 Register (Offset = 36h) [reset = OTP]  
EN4_SET2 is shown in Table 8-130 and described in Table 8-131.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-130. EN4_SET2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-00b  
DCDC4_EN4  
R/W-OTP  
DCDC3_EN4  
R/W-OTP  
DCDC2_EN4  
R/W-OTP  
DCDC1_EN4  
R/W-OTP  
LDO10_EN4  
R/W-OTP  
LDO9_EN4  
R/W-OTP  
Table 8-131. EN4_SET2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
DCDC4_EN4  
R/W  
OTP  
0b = EN4 pin has no effect on DCDC4 enable  
1b = EN4 pin is controlling DCDC4  
4
DCDC3_EN4  
R/W  
OTP  
0b = EN4 pin has no effect on DCDC3 enable  
1b = EN4 pin is controlling DCDC3  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-131. EN4_SET2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
DCDC2_EN4  
R/W  
OTP  
0b = EN4 pin has no effect on DCDC2 enable  
1b = EN4 pin is controlling DCDC2  
2
1
0
DCDC1_EN4  
LDO10_EN4  
LDO9_EN4  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
0b = EN4 pin has no effect on DCDC1 enable  
1b = EN4 pin is controlling DCDC1  
0b = EN4 pin has no effect on LDO10 enable  
1b = EN4 pin is controlling LDO10  
0b = EN4 pin has no effect on LDO9 enable  
1b = EN4 pin is controlling LDO9  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.23 PGOOD Register (Offset = 37h) [reset = OTP]  
PGOOD is shown in Table 8-132 and described in Table 8-133.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-132. PGOOD Register  
7
6
5
4
3
2
1
0
PGOOD_DCDC PGOOD_DCDC PGOOD_DCDC PGOOD_DCDC  
PGOOD_LDO4 PGOOD_LDO3 PGOOD_LDO2 PGOOD_LDO1  
R-0b R-0b R-0b R-0b  
4
3
2
1
R-0b  
R-0b  
R-0b  
R-0b  
Table 8-133. PGOOD Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
4
3
PGOOD_LDO4  
PGOOD_LDO3  
PGOOD_LDO2  
PGOOD_LDO1  
PGOOD_DCDC4  
R
0b  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
0b = LDO4 output voltage is below its target regulation voltage or  
disabled  
1b = LDO4 output voltage is in regulation  
R
R
R
R
0b  
0b  
0b  
0b  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
0b = LDO3 output voltage is below its target regulation voltage or  
disabled  
1b = LDO3 output voltage is in regulation  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
0b = LDO2 output voltage is below its target regulation voltage or  
disabled  
1b = LDO2 output voltage is in regulation  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
0b = LDO1 output voltage is below its target regulation voltage or  
disabled  
1b = LDO1 output voltage is in regulation  
The bit is set or cleared by the power-good comparator in the DC-DC  
converter block  
The PGOOD_LDO4 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = DCDC4 output voltage is below its target regulation voltage or  
disabled  
1b = DCDC4 output voltage is in regulation  
2
PGOOD_DCDC3  
R
0b  
The bit is set or cleared by the power-good comparator in the DC-DC  
converter block  
The PGOOD_LDO3 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = DCDC3 output voltage is below its target regulation voltage or  
disabled  
1b = DCDC3 output voltage is in regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-133. PGOOD Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
PGOOD_DCDC2  
R
0b  
The bit is set or cleared by the power-good comparator in the DC-DC  
converter block  
The PGOOD_LDO2 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = DCDC2 output voltage is below its target regulation voltage or  
disabled  
1b = DCDC2 output voltage is in regulation  
0
PGOOD_DCDC1  
R
0b  
The bit is set or cleared by the power-good comparator in the DC-DC  
converter block  
The PGOOD_LDO1 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = DCDC1 output voltage is below its target regulation voltage or  
disabled  
1b = DCDC1 output voltage is in regulation  
8.5.1.3.24 PGOOD2 Register (Offset = 38h) [reset = OTP]  
PGOOD2 is shown in Table 8-134 and described in Table 8-135.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-134. PGOOD2 Register  
7
6
5
4
3
2
1
0
PGOOD_LDO1  
0
RSVD  
R-00b  
PGOOD_LDO9 PGOOD_LDO8 PGOOD_LDO7 PGOOD_LDO6 PGOOD_LDO5  
R-0b R-0b R-0b R-0b R-0b  
R-0b  
Table 8-135. PGOOD2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
PGOOD_LDO10  
R
0b  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
The PGOOD_LDO10 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = LDO10 output voltage is below its target regulation voltage or  
disabled  
1b = LDO10 output voltage is in regulation  
4
PGOOD_LDO9  
R
0b  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
The PGOOD_LDO9 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = LDO9 output voltage is below its target regulation voltage or  
disabled  
1b = LDO9 output voltage is in regulation  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-135. PGOOD2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
PGOOD_LDO8  
R
0b  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
The PGOOD_LDO8 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = LDO8 output voltage is below its target regulation voltage or  
disabled  
1b = LDO8 output voltage is in regulation  
2
1
0
PGOOD_LDO7  
PGOOD_LDO6  
PGOOD_LDO5  
R
R
R
0b  
0b  
0b  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
The PGOOD_LDO7 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = LDO7 output voltage is below its target regulation voltage or  
disabled  
1b = LDO7 output voltage is in regulation  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
The PGOOD_LDO6 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = LDO6 output voltage is below its target regulation voltage or  
disabled  
1b = LDO6 output voltage is in regulation  
The bit is set or cleared by the power-good comparator in the LDO  
converter block  
The PGOOD_LDO5 bit is not valid if the LDO is enabled but the  
supply voltage to the LDO is below 1 V.  
0b = LDO5 output voltage is below its target regulation voltage or  
disabled  
1b = LDO5 output voltage is in regulation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.25 INT_STS Register (Offset = 39h) [reset = 00h]  
INT_STS is shown in Table 8-136 and described in Table 8-137.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-136. INT_STS Register  
7
6
5
4
3
2
1
0
PWRHOLD_R_I  
T
PWRHOLD_F_I  
T
GPIO1_F_IT  
R/W-0b  
GPIO1_R_IT  
R/W-0b  
HOTDIE_IT  
R/W-0b  
PWRON_LP_IT  
R/W-0b  
PWRON_IT  
R/W-0b  
VMON_IT  
R/W-0b  
R/W-0b  
R/W-0b  
Table 8-137. INT_STS Register Field Descriptions  
Bit  
Field  
GPIO1_F_IT  
Type  
Reset  
Description  
7
R/W  
0b  
0b = No falling edge occurred  
1b = GPIO1 falling edge detection interrupt status; write 1b to clear  
the interrupt flag  
6
GPIO1_R_IT  
R/W  
0b  
0b = No rising edge occurred  
1b = GPIO1 rising edge detection interrupt status; write 1b to clear  
the interrupt flag  
5
4
HOTDIE_IT  
R/W  
R/W  
0b  
0b  
0b = No hot die event occurred  
1b = Hot die event interrupt status; write 1b to clear the interrupt flag  
PWRHOLD_R_IT  
0b = No rising edge on the PWRHOLD pin is detected  
1b = Rising PWRHOLD event interrupt status; write 1b to clear the  
interrupt flag  
3
2
1
PWRON_LP_IT  
PWRON_IT  
VMON_IT  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b = No nPWRON long press key detected  
1b = nPWRON long press event interrupt status; write 1b to clear the  
interrupt flag  
0b = No nPWRON event detected  
1b = nPWRON event interrupt status; write 1b to clear the interrupt  
flag  
0b = No VMON event detected  
1b = falling edge detection for VMON; voltage at VMON is below the  
VMON_SEL[1:0] threshold; no delay; write 1b to clear the interrupt  
flag  
0
PWRHOLD_F_IT  
R/W  
0b  
0b = No PWRHOLD event detected  
1b = Falling PWRHOLD event interrupt status; write 1b to clear the  
interrupt flag  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.26 INT_MSK Register (Offset = 3Ah) [reset = FFh]  
INT_MSK is shown in Table 8-138 and described in Table 8-139.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-138. INT_MSK Register  
7
6
5
4
3
2
1
0
GPIO1_F_  
IT_MSK  
GPIO1_R_  
IT_MSK  
HOTDIE_  
IT_MSK  
PWRHOLD_R_ PWRON_LP_  
PWRON_  
IT_MSK  
VMON_  
IT_MSK  
PWRHOLD_F_  
IT_MSK  
IT_MSK  
IT_MSK  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-139. INT_MSK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO1_F_IT_MSK  
GPIO1_R_IT_MSK  
HOTDIE_IT_MSK  
R/W  
OTP  
0b = Interrupt not masked  
OTP = GPIO1 falling edge detection interrupt masked  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = Interrupt not masked  
OTP = GPIO1 rising edge detection interrupt masked  
0b = Interrupt not masked  
OTP = Hot die event interrupt masked  
PWRHOLD_R_IT_MSK  
PWRON_LP_IT_MSK  
PWRON_IT_MSK  
0b = Interrupt not masked  
OTP = Rising PWRHOLD event interrupt masked  
0b = Interrupt not masked  
OTP = nPWRON Long Press event interrupt masked  
0b = Interrupt not masked  
OTP = nPWRON event interrupt masked  
VMON_IT_MSK  
0b = Interrupt not masked  
OTP = VMON event interrupt masked.  
PWRHOLD_F_IT_MSK  
0b = Interrupt not masked  
OTP = PWRHOLD falling edge event interrupt masked  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.27 INT_STS2 Register (Offset = 3Bh) [reset = 00h]  
INT_STS2 is shown in Table 8-140 and described in Table 8-141.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-140. INT_STS2 Register  
7
6
5
4
3
2
1
0
GPIO5_F_IT  
R/W-0b  
GPIO5_R_IT  
R/W-0b  
GPIO4_F_IT  
R/W-0b  
GPIO4_R_IT  
R/W-0b  
GPIO3_F_IT  
R/W-0b  
GPIO3_R_IT  
R/W-0b  
GPIO2_F_IT  
R/W-0b  
GPIO2_R_IT  
R/W-0b  
Table 8-141. INT_STS2 Register Field Descriptions  
Bit  
Field  
GPIO5_F_IT  
Type  
Reset  
Description  
7
R/W  
0b  
0b = No falling edge occurred  
1b = GPIO5 falling edge detection interrupt status; write 1b to clear  
the interrupt flag  
6
5
4
3
2
1
0
GPIO5_R_IT  
GPIO4_F_IT  
GPIO4_R_IT  
GPIO3_F_IT  
GPIO3_R_IT  
GPIO2_F_IT  
GPIO2_R_IT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No rising edge occurred  
1b = GPIO5 rising edge detection interrupt status; write 1b to clear  
the interrupt flag  
0b = No falling edge occurred  
1b = GPIO4 falling edge detection interrupt status; write 1b to clear  
the interrupt flag  
0b = No rising edge occurred  
1b = GPIO4 rising edge detection interrupt status; write 1b to clear  
the interrupt flag  
0b = No falling edge occurred  
1b = GPIO3 falling edge detection interrupt status; write 1b to clear  
the interrupt flag  
0b = No rising edge occurred  
1b = GPIO3 rising edge detection interrupt status; write 1b to clear  
the interrupt flag  
0b = No falling edge occurred  
1b = GPIO2 falling edge detection interrupt status; write 1b to clear  
the interrupt flag  
0b = No rising edge occurred  
1b = GPIO2 rising edge detection interrupt status; write 1b to clear  
the interrupt flag  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.28 INT_MSK2 Register (Offset = 3Ch) [reset = OTP]  
INT_MSK2 is shown in Table 8-142 and described in Table 8-143.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-142. INT_MSK2 Register  
7
6
5
4
3
2
1
0
GPIO5_F_  
IT_MSK  
GPIO5_R_  
IT_MSK  
GPIO4_F_  
IT_MSK  
GPIO4_R_  
IT_MSK  
GPIO3_F_  
IT_MSK  
GPIO3_R_  
IT_MSK  
GPIO2_F_  
IT_MSK  
GPIO2_R_  
IT_MSK  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-143. INT_MSK2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO5_F_IT_MSK  
GPIO5_R_IT_MSK  
GPIO4_F_IT_MSK  
GPIO4_R_IT_MSK  
GPIO3_F_IT_MSK  
GPIO3_R_IT_MSK  
GPIO2_F_IT_MSK  
GPIO2_R_IT_MSK  
R/W  
OTP  
0b = Interrupt not masked  
1b = GPIO5 falling edge detection interrupt masked  
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
OTP  
0b = Interrupt not masked  
1b = GPIO5 rising edge detection interrupt masked  
0b = Interrupt not masked  
1b = GPIO4 falling edge detection interrupt masked  
0b = Interrupt not masked  
1b = GPIO4 rising edge detection interrupt masked  
0b = Interrupt not masked  
1b = GPIO3 falling edge detection interrupt masked  
0b = Interrupt not masked  
1b = GPIO3 rising edge detection interrupt masked  
0b = Interrupt not masked  
1b = GPIO2 falling edge detection interrupt masked  
0b = Interrupt not masked  
1b = GPIO2 rising edge detection interrupt masked  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.29 INT_STS3 Register (Offset = 3Dh) [reset = OTP]  
INT_STS3 is shown in Table 8-144 and described in Table 8-145.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-144. INT_STS3 Register  
7
6
5
4
3
2
1
0
PGOOD_LDO4 PGOOD_LDO3 PGOOD_LDO2 PGOOD_LDO1 PGOOD_DCDC PGOOD_DCDC PGOOD_DCDC PGOOD_DCDC  
_IT  
_IT  
_IT  
_IT  
4_IT  
3_IT  
2_IT  
1_IT  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 8-145. INT_STS3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGOOD_LDO4_IT  
PGOOD_LDO3_IT  
PGOOD_LDO2_IT  
PGOOD_LDO1_IT  
PGOOD_DCDC4_IT  
R/W  
0b  
0b = No status change occurred  
1b = PGOOD_LDO4 falling edge detection interrupt status; masked  
by the ENABLE bit, therefore not triggered if the output voltage drops  
when the LDO is disabled; write 1b to clear the interrupt flag  
6
5
4
3
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b = No status change occurred  
1b = PGOOD_LDO3 falling edge detection interrupt status; masked  
by the ENABLE bit, therefore not triggered if the output voltage drops  
when the LDO is disabled; write 1b to clear the interrupt flag  
0b = No status change occurred  
1b = PGOOD_LDO2 falling edge detection interrupt status; masked  
by the ENABLE bit, therefore not triggered if the output voltage drops  
when the LDO is disabled; write 1b to clear the interrupt flag  
0b = No status change occurred  
1b = PGOOD_LDO1 falling edge detection interrupt status; masked  
by the ENABLE bit, therefore not triggered if the output voltage drops  
when the LDO is disabled; write 1b to clear the interrupt flag  
0b = No status change occurred  
1b = PGOOD_DCDC4 falling edge detection interrupt status;  
masked by the ENABLE bit, therefore not triggered if the output  
voltage drops when the converter is disabled; write 1b to clear the  
interrupt flag  
2
1
0
PGOOD_DCDC3_IT  
PGOOD_DCDC2_IT  
PGOOD_DCDC1_IT  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b = No status change occurred  
1b = PGOOD_DCDC3 falling edge detection interrupt status;  
masked by the ENABLE bit, therefore not triggered if the output  
voltage drops when the converter is disabled; write 1b to clear the  
interrupt flag  
0b = No status change occurred  
1b = PGOOD_DCDC2 falling edge detection interrupt status;  
masked by the ENABLE bit, therefore not triggered if the output  
voltage drops when the converter is disabled; write 1b to clear the  
interrupt flag  
0b = No status change occurred  
1b = PGOOD_DCDC1 falling edge detection interrupt status;  
masked by the ENABLE bit, therefore not triggered if the output  
voltage drops when the converter is disabled; write 1b to clear the  
interrupt flag  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.30 INT_MSK3 Register (Offset = 3Eh) [reset = FFh]  
INT_MSK3 is shown in Table 8-146 and described in Table 8-147.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-146. INT_MSK3 Register  
7
6
5
4
3
2
1
0
PGOOD_LDO4 PGOOD_LDO3 PGOOD_LDO2 PGOOD_LDO1 PGOOD_DCDC PGOOD_DCDC PGOOD_DCDC PGOOD_DCDC  
_
_
_
_
4_  
3_  
2_  
1_  
IT_MSK  
IT_MSK  
IT_MSK  
IT_MSK  
IT_MSK  
IT_MSK  
IT_MSK  
IT_MSK  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
Table 8-147. INT_MSK3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGOOD_LDO4_IT_MSK R/W  
PGOOD_LDO3_IT_MSK R/W  
PGOOD_LDO2_IT_MSK R/W  
PGOOD_LDO1_IT_MSK R/W  
PGOOD_DCDC4_IT_MSK R/W  
PGOOD_DCDC3_IT_MSK R/W  
PGOOD_DCDC2_IT_MSK R/W  
PGOOD_DCDC1_IT_MSK R/W  
1b  
0b = Interrupt not masked  
1b = PGOOD_LDO4 falling edge detection interrupt status; masked  
by the ENABLE bit, therefore not triggered if the output voltage drops  
when the LDO is disabled  
6
5
4
3
2
1
0
1b  
1b  
1b  
1b  
1b  
1b  
1b  
0b = Interrupt not masked  
1b = PGOOD_LDO3 falling edge detection interrupt status; masked  
by the ENABLE bit, therefore not triggered if the output voltage drops  
when the LDO is disabled  
0b = Interrupt not masked  
1b = PGOOD_LDO2 falling edge detection interrupt status; masked  
by the ENABLE bit, therefore not triggered if the output voltage drops  
when the LDO is disabled  
0b = Interrupt not masked  
1b = PGOOD_LDO1 falling edge detection interrupt status; masked  
by the ENABLE bit, therefore not triggered if the output voltage drops  
when the LDO is disabled  
0b = Interrupt not masked  
1b = PGOOD_DCDC4 falling edge detection interrupt status;  
masked by the ENABLE bit, therefore not triggered if the output  
voltage drops when the LDO is disabled  
0b = Interrupt not masked  
1b = PGOOD_DCDC3 falling edge detection interrupt status;  
masked by the ENABLE bit, therefore not triggered if the output  
voltage drops when the LDO is disabled  
0b = Interrupt not masked  
1b = PGOOD_DCDC2 falling edge detection interrupt status;  
masked by the ENABLE bit, therefore not triggered if the output  
voltage drops when the LDO is disabled  
0b = Interrupt not masked  
1b = PGOOD_DCDC1 falling edge detection interrupt status;  
masked by the ENABLE bit, therefore not triggered if the output  
voltage drops when the LDO is disabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.31 INT_STS4 Register (Offset = 3Fh) [reset = 00h]  
INT_STS4 is shown in Table 8-148 and described in Table 8-149.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-148. INT_STS4 Register  
7
6
5
4
3
2
1
0
PGOOD_LDO1 PGOOD_LDO9 PGOOD_LDO8 PGOOD_LDO7 PGOOD_LDO6 PGOOD_LDO5  
RSVD  
0_IT  
_IT  
_IT  
_IT  
_IT  
_IT  
R/W-00b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 8-149. INT_STS4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R/W  
00b  
Unused bit read returns 0b.  
PGOOD_LDO10_IT  
PGOOD_LDO9_IT  
PGOOD_LDO8_IT  
PGOOD_LDO7_IT  
PGOOD_LDO6_IT  
PGOOD_LDO5_IT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b = No status change occurred  
1b = PGOOD_LDO10 falling or rising edge detection interrupt status;  
write 1b to clear the interrupt flag  
4
3
2
1
0
0b = No status change occurred  
1b = PGOOD_LDO9 falling or rising edge detection interrupt status;  
write 1b to clear the interrupt flag  
0b = No status change occurred  
1b = PGOOD_LDO8 falling or rising edge detection interrupt status;  
write 1b to clear the interrupt flag  
0b = No status change occurred  
1b = PGOOD_LDO7 falling or rising edge detection interrupt status;  
write 1b to clear the interrupt flag  
0b = No status change occurred  
1b = PGOOD_LDO6 falling or rising edge detection interrupt status;  
write 1b to clear the interrupt flag  
0b = No status change occurred  
1b = PGOOD_LDO5 falling or rising edge detection interrupt status;  
write 1b to clear the interrupt flag  
8.5.1.3.32 INT_MSK4 Register (Offset = 40h) [reset = FFh]  
INT_MSK4 is shown in Table 8-150 and described in Table 8-151.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-150. INT_MSK4 Register  
7
6
5
4
3
2
1
0
PGOOD_LDO1 PGOOD_LDO9 PGOOD_LDO8 PGOOD_LDO7 PGOOD_LDO6 PGOOD_LDO5  
RSVD  
0_  
_
_
_
_
_
IT_MSK  
IT_MSK  
IT_MSK  
IT_MSK  
IT_MSK  
IT_MSK  
R/W-11b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
Table 8-151. INT_MSK4 Register Field Descriptions  
Bit  
7-6  
Field  
Type  
Reset  
Description  
RSVD  
R/W  
11b  
Unused bit read returns 0b.  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-151. INT_MSK4 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
PGOOD_LDO10_IT_MSK R/W  
1b  
0b = Interrupt not masked  
1b = PGOOD_LDO10 falling or rising edge detection interrupt  
masked  
4
3
2
1
0
PGOOD_LDO9_IT_MSK R/W  
PGOOD_LDO8_IT_MSK R/W  
PGOOD_LDO7_IT_MSK R/W  
PGOOD_LDO6_IT_MSK R/W  
PGOOD_LDO5_IT_MSK R/W  
1b  
1b  
1b  
1b  
1b  
0b = Interrupt not masked  
1b = PGOOD_LDO9 falling or rising edge detection interrupt masked  
0b = Interrupt not masked  
1b = PGOOD_LDO8 falling or rising edge detection interrupt masked  
0b = Interrupt not masked  
1b = PGOOD_LDO7 falling or rising edge detection interrupt masked  
0b = Interrupt not masked  
1b = PGOOD_LDO6 falling or rising edge detection interrupt masked  
0b = Interrupt not masked  
1b = PGOOD_LDO5 falling or rising edge detection interrupt masked  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.33 GPIO1 Register (Offset = 41h) [reset = OTP]  
GPIO1 is shown in Table 8-152 and described in Table 8-153.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-152. GPIO1 Register  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
R/W-OTP  
RSVD  
R-00b  
GPIO_DEB  
R/W-OTP  
RSVD  
R-0b  
GPIO_CFG  
R/W-OTP  
GPIO_STS  
R-x  
GPIO_SET  
R/W-OTP  
Table 8-153. GPIO1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO_SLEEP  
R/W  
OTP  
0b = No impact, keep as in ACTIVE state  
1b = When in the SLEEP state and GPIO in output mode, force  
output low  
6-5  
4
RSVD  
R
00b  
Unused bit read returns 0b.  
GPIO_DEB  
R/W  
OTP  
GPIO input debouncing time  
0b = 94 µs  
1b = 156 µs  
3
2
RSVD  
R
0b  
Unused bit  
GPIO_CFG  
R/W  
OTP  
Configuration of the GPIO pad direction  
0b = The GPIO pad is configured as an input  
1b = The GPIO pad is configured as an output, GPIO assigned to  
power-up sequence  
1
0
GPIO_STS  
GPIO_SET  
R
x
This bit has no reset value, it is generated based on GPIO pad  
voltage in real-time  
0b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
1b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
R/W  
OTP  
0b = Value set to logic 0b on the GPIO output when configured in  
output mode  
1b = Value set to logic 1b on the GPIO output when configured in  
output mode  
8.5.1.3.34 GPIO2 Register (Offset = 42h) [reset = OTP]  
GPIO2 is shown in Table 8-154 and described in Table 8-155.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-154. GPIO2 Register  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
R/W-OTP  
RSVD  
R-00b  
GPIO_DEB  
R/W-OTP  
RSVD  
R-0b  
GPIO_CFG  
R/W-OTP  
GPIO_STS  
R-x  
GPIO_SET  
R/W-OTP  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-155. GPIO2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO_SLEEP  
R/W  
OTP  
0b = No impact, keep as in ACTIVE state  
1b = When in the SLEEP state and GPIO in output mode, force  
output low  
6-5  
4
RSVD  
R
00b  
Unused bit read returns 0b.  
GPIO_DEB  
R/W  
GPIO input debouncing time  
0b = 94 µs  
1b = 156 µs  
3
2
RSVD  
R
0b  
Unused bit  
GPIO_CFG  
R/W  
OTP  
Configuration of the GPIO pad direction  
0b = The GPIO pad is configured as an input  
1b = The GPIO pad is configured as an output, GPIO assigned to  
power-up sequence  
1
0
GPIO_STS  
GPIO_SET  
R
x
This bit has no reset value, it is generated based on GPIO pad  
voltage in real-time  
0b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
1b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
R/W  
OTP  
0b = Value set to logic 0b on the GPIO output when configured in  
output mode  
1b = Value set to logic 1b on the GPIO output when configured in  
output mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.35 GPIO3 Register (Offset = 43h) [reset = OTP]  
GPIO3 is shown in Table 8-156 and described in Table 8-157.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-156. GPIO3 Register  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
R/W-OTP  
GPIO_SEL  
R/W-OTP  
GPIO_ODEN  
R/W-OTP  
GPIO_DEB  
R/W-OTP  
GPIO_PDEN  
R/W-OTP  
GPIO_CFG  
R/W-OTP  
GPIO_STS  
R-x  
GPIO_SET  
R/W-OTP  
Table 8-157. GPIO3 Register Field Descriptions  
Bit  
Field  
GPIO_SLEEP  
Type  
Reset  
Description  
7
R/W  
OTP  
0b = No impact, keep as in ACTIVE state  
1b = When in the SLEEP state and GPIO in output mode, force  
output low  
6
GPIO_SEL  
R/W  
OTP  
0b = GPIO_SET to be available at the GPIO pin when configured as  
output  
1b = LEDA out to be available at the GPIO pin when configured as  
output  
5
4
GPIO_ODEN  
GPIO_DEB  
R/W  
R/W  
OTP  
OTP  
0b = Push-pull output mode, GPIO assigned to power-up sequence  
1b = Open drain output mode  
GPIO input debouncing time  
0b = 94 µs  
1b = 156 µs  
3
2
GPIO_PDEN  
GPIO_CFG  
R/W  
R/W  
OTP  
OTP  
GPIO pad pulldown control  
0b = Pulldown is disabled  
1b = Pulldown is enabled  
Configuration of the GPIO pad direction  
0b = The GPIO pad is configured as an input  
1b = The GPIO pad is configured as an output, GPIO assigned to  
power-up sequence  
1
0
GPIO_STS  
GPIO_SET  
R
x
This bit has no reset value, it is generated based on GPIO pad  
voltage in real-time  
0b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
1b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
R/W  
OTP  
0b = Value set to logic 0b on the GPIO output when configured in  
output mode  
1b = Value set to logic 1b on the GPIO output when configured in  
output mode  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.36 GPIO4 Register (Offset = 44h) [reset = OTP]  
GPIO4 is shown in Table 8-158 and described in Table 8-159.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-158. GPIO4 Register  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
R/W-OTP  
GPIO_SEL  
R/W-OTP  
GPIO_ODEN  
R/W-OTP  
GPIO_DEB  
R/W-OTP  
GPIO_PDEN  
R/W-OTP  
GPIO_CFG  
R/W-OTP  
GPIO_STS  
R-x  
GPIO_SET  
R/W-OTP  
Table 8-159. GPIO4 Register Field Descriptions  
Bit  
Field  
GPIO_SLEEP  
Type  
Reset  
Description  
7
R/W  
OTP  
0b = No impact, keep as in ACTIVE state  
1b = When in the SLEEP state and GPIO in output mode, force  
output low  
6
GPIO_SEL  
R/W  
OTP  
0b = GPIO_SET to be available at the GPIO pin when configured as  
output  
1b = LEDB out to be available at the GPIO pin when configured as  
output  
5
4
GPIO_ODEN  
GPIO_DEB  
R/W  
R/W  
OTP  
OTP  
0b = Push-pull output mode, GPIO assigned to power-up sequence  
1b = Open drain output mode  
GPIO input debouncing time  
0b = 94 µs  
1b = 156 µs  
3
2
GPIO_PDEN  
GPIO_CFG  
R/W  
R/W  
OTP  
OTP  
GPIO pad pulldown control  
0b = Pulldown is disabled  
1b = Pulldown is enabled  
Configuration of the GPIO pad direction  
0b = The pad is configured as an input  
1b = The GPIO pad is configured as an output, GPIO assigned to  
power-up sequence  
1
0
GPIO_STS  
GPIO_SET  
R
x
This bit has no reset value, it is generated based on GPIO pad  
voltage in real-time  
0b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
1b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
R/W  
OTP  
0b = Value set to logic 0b on the GPIO output when configured in  
output mode  
1b = Value set to logic 1b on the GPIO output when configured in  
output mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.37 GPIO5 Register (Offset = 45h) [reset = OTP]  
GPIO5 is shown in Table 8-160 and described in Table 8-161.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-160. GPIO5 Register  
7
6
5
4
3
2
1
0
GPIO_SLEEP  
R/W-OTP  
GPIO_SEL  
R/W-OTP  
GPIO_ODEN  
R/W-OTP  
GPIO_DEB  
R/W-OTP  
GPIO_PDEN  
R/W-OTP  
GPIO_CFG  
R/W-OTP  
GPIO_STS  
R-x  
GPIO_SET  
R/W-OTP  
Table 8-161. GPIO5 Register Field Descriptions  
Bit  
Field  
GPIO_SLEEP  
Type  
Reset  
Description  
7
R/W  
OTP  
0b = No impact, keep as in ACTIVE state  
1b = When in the SLEEP state and GPIO in output mode, force  
output low  
6
GPIO_SEL  
R/W  
OTP  
0b = GPIO_SET to be available at the GPIO pin when configured as  
output  
1b = LEDC out to be available at the GPIO pin when configured as  
output  
5
4
GPIO_ODEN  
GPIO_DEB  
R/W  
R/W  
OTP  
OTP  
0b = Push-pull output mode, GPIO assigned to power-up sequence  
1b = Open drain output mode  
GPIO input debouncing time  
0b = 94 µs  
1b = 156 µs  
3
2
GPIO_PDEN  
GPIO_CFG  
R/W  
R/W  
OTP  
OTP  
GPIO pad pulldown control  
0b = Pulldown is disabled  
1b = Pulldown is enabled  
Configuration of the GPIO pad direction  
0b = The pad is configured as an input  
1b = The GPIO pad is configured as an output, GPIO assigned to  
power-up sequence  
1
0
GPIO_STS  
GPIO_SET  
R
x
This bit has no reset value, it is generated based on GPIO pad  
voltage in real-time  
0b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
1b = Voltage on GPIO pad is greater than VIH if configured as an  
input, VOH if configured as an output  
R/W  
OTP  
0b = Value set to logic 0b on the GPIO output when configured in  
output mode  
1b = Value set to logic 1b on the GPIO output when configured in  
output mode  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.38 VMON Register (Offset = 46h) [reset = OTP]  
VMON is shown in Table 8-162 and described in Table 8-163.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-162. VMON Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
VMON_DELAY[1:0]  
R/W-OTP  
VSUP_MASK  
R/W-OTP  
RSVD  
R-0b  
VSUP_OUT  
R-x  
VMON_SEL[1:0]  
R/W-OTP  
Table 8-163. VMON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6
VMON_DELAY[1:0]  
R/W  
OTP  
Delays the output signal at the VSUP_OUT pin for a falling input  
voltage on the VMON_IN pin to allow an interrupt to be generated  
before the VSUP_OUT pin goes low  
00b = No falling edge delay  
01b = 50-µs falling edge delay  
10b = 100-µs falling edge delay  
11b = 250-µs falling edge delay  
5
VSUP_MASK  
R/W  
OTP  
0b = The output of the voltage monitor is not used as a switch-off  
event  
1b = The output of the voltage monitor is used as a switch-off event  
4
3
RSVD  
R
R
0b  
x
Unused bit  
VSUP_OUT  
This bit has no reset value, it is generated based on the status output  
of the voltage monitor:  
0b = The voltage at the VCCS/VIN_MON pin is below the VMON  
threshold  
1b = The voltage at the VCCS/VIN_MON pin is above the VMON  
threshold  
2
VMON_SEL[1:0]  
R/W  
OTP  
Battery voltage comparator threshold:  
00b = VMON threshold is 3.1 V (rising voltage)  
01b = VMON threshold is 2.9 V (rising voltage)  
10b = VMON threshold is 2.8 V (rising voltage)  
11b = VMON threshold is 2.7 V (rising voltage)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.39 LEDA_CTRL1 Register (Offset = 47h) [reset = 00h]  
LEDA_CTRL1 is shown in Table 8-164 and described in Table 8-165.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-164. LEDA_CTRL1 Register  
7
6
5
4
3
2
1
0
LEDA_RAMP_  
ENABLE  
RSVD  
R-00b  
RSVD  
R-0b  
LEDA_CURRENT[3:0]  
R/W-0000b  
R/W-0b  
Table 8-165. LEDA_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
LEDA_RAMP_ENABLE  
R/W  
0b  
0b = No ramp  
1b = Ramp enabled  
4
RSVD  
R
0b  
Unused bit  
3-0  
LEDA_CURRENT[3:0]  
R/W  
0000b  
LEDA DC current. See Table 8-218  
8.5.1.3.40 LEDA_CTRL2 Register (Offset = 48h) [reset = 00h]  
LEDA_CTRL2 is shown in Table 8-166 and described in Table 8-167.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-166. LEDA_CTRL2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDA_T1[6:0]  
R/W-0000000b  
Table 8-167. LEDA_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDA_T1[6:0]  
R/W  
0000000b  
LEDA T1 sequence length = LEDA_T1[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.41 LEDA_CTRL3 Register (Offset = 49h) [reset = 00h]  
LEDA_CTRL3 is shown in Table 8-168 and described in Table 8-169.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-168. LEDA_CTRL3 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDA_T2[6:0]  
R/W-0000000b  
Table 8-169. LEDA_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDA_T2[6:0]  
R/W  
0000000b  
LEDA T2 sequence length = LEDA_T2[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
8.5.1.3.42 LEDA_CTRL4 Register (Offset = 4Ah) [reset = 00h]  
LEDA_CTRL4 is shown in Table 8-170 and described in Table 8-171.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-170. LEDA_CTRL4 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDA_T3[6:0]  
R/W-0000000b  
Table 8-171. LEDA_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDA_T3[6:0]  
R/W  
0000000b  
LEDA T3 sequence length = LEDA_T3[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.43 LEDA_CTRL5 Register (Offset = 4Bh) [reset = 00h]  
LEDA_CTRL5 is shown in Table 8-172 and described in Table 8-173.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-172. LEDA_CTRL5 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDA_T4[6:0]  
R/W-0000000b  
Table 8-173. LEDA_CTRL5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDA_T4[6:0]  
R/W  
0000000b  
LEDA T4 sequence length = LEDA_T4[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
8.5.1.3.44 LEDA_CTRL6 Register (Offset = 4Ch) [reset = 00h]  
LEDA_CTRL6 is shown in Table 8-174 and described in Table 8-175.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-174. LEDA_CTRL6 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDA_TP[6:0]  
R/W-0000000b  
Table 8-175. LEDA_CTRL6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDA_TP[6:0]  
R/W  
0000000b  
LEDA TP sequence length = LEDA_TP[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.45 LEDA_CTRL7 Register (Offset = 4Dh) [reset = 00h]  
LEDA_CTRL7 is shown in Table 8-176 and described in Table 8-177.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-176. LEDA_CTRL7 Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
LEDA_PWM[4:0]  
R/W-00000b  
Table 8-177. LEDA_CTRL7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RSVD  
R
000b  
Unused bit read returns 0b.  
LEDA_PWM[4:0]  
R/W  
00000b  
LEDA_ON duty-cycle: ([LEDA_PWM] +1) × 1 / 32 × 8-ms period  
00000b = 1 / 2 × 8 ms (LEDA_ON is high for 250 µs, low for 7.75 ms)  
11111b = 32 / 32 × 8 ms (LEDA_ON is always high)  
8.5.1.3.46 LEDA_CTRL8 Register (Offset = 4Eh) [reset = 00h]  
LEDA_CTRL8 is shown in Table 8-178 and described in Table 8-179.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-178. LEDA_CTRL8 Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
LEDA_ON_TIME[4:0]  
R/W-00000b  
Table 8-179. LEDA_CTRL8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RSVD  
R
000b  
Unused bit read returns 0b.  
LEDA_ON_TIME[4:0]  
R/W  
00000b  
LEDA ON-TIME: LEDA_ON_TME[4:0] × 64 ms  
00000b = 0 × 64 ms  
11111b = 31 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.47 LEDB_CTRL1 Register (Offset = 4Fh) [reset = 00h]  
LEDB_CTRL1 is shown in Table 8-180 and described in Table 8-181.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-180. LEDB_CTRL1 Register  
7
6
5
4
3
2
1
0
LEDB_RAMP_  
ENABLE  
RSVD  
R-00b  
RSVD  
R-0b  
LEDB_CURRENT[3:0]  
R/W-0000b  
R/W-0b  
Table 8-181. LEDB_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
LEDB_RAMP_ENABLE  
R/W  
0b  
0b = No ramp  
1b = Ramp enabled  
4
RSVD  
R
0b  
Unused bit  
3-0  
LEDBA_CURRENT[3:0]  
R/W  
0000b  
LEDB DC current. See Table 8-218  
8.5.1.3.48 LEDB_CTRL2 Register (Offset = 50h) [reset = 00h]  
LEDB_CTRL2 is shown in Table 8-182 and described in Table 8-183.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-182. LEDB_CTRL2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDB_T1[6:0]  
R/W-0000000b  
Table 8-183. LEDB_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDB_T1[6:0]  
R/W  
0000000b  
LEDB T1 sequence length = LEDB_T1[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.49 LEDB_CTRL3 Register (Offset = 51h) [reset = 00h]  
LEDB_CTRL3 is shown in Table 8-184 and described in Table 8-185.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-184. LEDB_CTRL3 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDB_T2[6:0]  
R/W-0000000b  
Table 8-185. LEDB_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
000b  
Unused bit read returns 0b.  
6-0  
LEDB_T2[6:0]  
R/W  
0000000b  
LEDB T2 sequence length = LEDB_T2[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
8.5.1.3.50 LEDB_CTRL4 Register (Offset = 52h) [reset = 00h]  
LEDB_CTRL4 is shown in Table 8-186 and described in Table 8-187.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-186. LEDB_CTRL4 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDB_T3[6:0]  
R/W-0000000b  
Table 8-187. LEDB_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDB_T3[6:0]  
R/W  
0000000b  
LEDB T3 sequence length = LEDB_T3[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.51 LEDB_CTRL5 Register (Offset = 53h) [reset = 00h]  
LEDB_CTRL5 is shown in Table 8-188 and described in Table 8-189.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-188. LEDB_CTRL5 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDB_T4[6:0]  
R/W-0000000b  
Table 8-189. LEDB_CTRL5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
000b  
Unused bit read returns 0b.  
6-0  
LEDB_T4[6:0]  
R/W  
0000000b  
LEDB T4 sequence length = LEDB_T4[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
8.5.1.3.52 LEDB_CTRL6 Register (Offset = 54h) [reset = 00h]  
LEDB_CTRL6 is shown in Table 8-190 and described in Table 8-191.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-190. LEDB_CTRL6 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDB_TP[6:0]  
R/W-0000000b  
Table 8-191. LEDB_CTRL6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDB_TP[6:0]  
R/W  
0000000b  
LEDB TP sequence length = LEDB_TP[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.53 LEDB_CTRL7 Register (Offset = 55h) [reset = 00h]  
LEDB_CTRL7 is shown in Table 8-192 and described in Table 8-193.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-192. LEDB_CTRL7 Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
LEDB_PWM[4:0]  
R/W-00000b  
Table 8-193. LEDB_CTRL7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RSVD  
R
000b  
Unused bit read returns 0b.  
LEDB_PWM[4:0]  
R/W  
00000b  
LEDB_ON duty-cycle: ([LEDB_PWM] +1) × 1 / 32 × 8-ms period  
00000b = 1 / 32 × 8 ms (LEDB_ON is high for 250 µs, low for 7.75  
ms)  
11111b = 32 / 32 × 8 ms (LEDB_ON is always high)  
8.5.1.3.54 LEDB_CTRL8 Register (Offset = 56h) [reset = 00h]  
LEDB_CTRL8 is shown in Table 8-194 and described in Table 8-195.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-194. LEDB_CTRL8 Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
LEDB_ON_TIME[4:0]  
R/W-00000b  
Table 8-195. LEDB_CTRL8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RSVD  
R
000b  
Unused bit read returns 0b.  
LEDB_ON_TIME[4:0]  
R/W  
00000b  
LEDB ON-TIME: LEDB_ON_TME[4:0] × 64 ms  
00000b = 0 × 64 ms  
11111b = 31 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.55 LEDC_CTRL1 Register (Offset = 57h) [reset = 00h]  
LEDC_CTRL1 is shown in Table 8-196 and described in Table 8-197.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-196. LEDC_CTRL1 Register  
7
6
5
4
3
2
1
0
LEDC_RAMP_  
ENABLE  
RSVD  
R-00b  
RSVD  
R-0b  
LEDC_CURRENT[3:0]  
R/W-0000b  
R/W-0b  
Table 8-197. LEDC_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
00b  
Unused bit read returns 0b.  
LEDC_RAMP_ENABLE  
R/W  
0b  
0b = No ramp  
1b = Ramp enabled  
4
RSVD  
R
0b  
Unused bit  
3-0  
LEDCA_CURRENT[3:0]  
R/W  
0000b  
LEDC DC current. See Table 8-218  
8.5.1.3.56 LEDC_CTRL2 Register (Offset = 58h) [reset = 00h]  
LEDC_CTRL2 is shown in Table 8-198 and described in Table 8-199.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-198. LEDC_CTRL2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDC_T1[6:0]  
R/W-0000000b  
Table 8-199. LEDC_CTRL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDC_T1[6:0]  
R/W  
0000000b  
LEDC T1 sequence length = LEDC_T1[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.57 LEDC_CTRL3 Register (Offset = 59h) [reset = 00h]  
LEDC_CTRL3 is shown in Table 8-200 and described in Table 8-201.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-200. LEDC_CTRL3 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDC_T2[6:0]  
R/W-0000000b  
Table 8-201. LEDC_CTRL3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDC_T2[6:0]  
R/W  
0000000b  
LEDC T2 sequence length = LEDC_T2[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
8.5.1.3.58 LEDC_CTRL4 Register (Offset = 5Ah) [reset = 00h]  
LEDC_CTRL4 is shown in Table 8-202 and described in Table 8-203.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-202. LEDC_CTRL4 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDC_T3[6:0]  
R/W-0000000b  
Table 8-203. LEDC_CTRL4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDC_T3[6:0]  
R/W  
0000000b  
LEDC T3 sequence length = LEDC_T3[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.59 LEDC_CTRL5 Register (Offset = 5Bh) [reset = 00h]  
LEDC_CTRL5 is shown in Table 8-204 and described in Table 8-205.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-204. LEDC_CTRL5 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDC_T4[6:0]  
R/W-0000000b  
Table 8-205. LEDC_CTRL5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDC_T4[6:0]  
R/W  
0000000b  
LEDC T4 sequence length = LEDC_T4[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
8.5.1.3.60 LEDC_CTRL6 Register (Offset = 5Ch) [reset = 00h]  
LEDC_CTRL6 is shown in Table 8-206 and described in Table 8-207.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-206. LEDC_CTRL6 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
LEDC_TP[6:0]  
R/W-0000000b  
Table 8-207. LEDC_CTRL6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6-0  
LEDC_TP[6:0]  
R/W  
0000000b  
LEDC TP sequence length = LEDC_TP[6:0] × 64 ms  
0000000b = 0 × 64 ms  
1111111b = 127 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.61 LEDC_CTRL7 Register (Offset = 5Dh) [reset = 00h]  
LEDC_CTRL7 is shown in Table 8-208 and described in Table 8-209.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-208. LEDC_CTRL7 Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
LEDC_PWM[4:0]  
R/W-00000b  
Table 8-209. LEDC_CTRL7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RSVD  
R
000b  
Unused bit read returns 0b.  
LEDC_PWM[4:0]  
R/W  
00000b  
LEDC_ON duty-cycle: ([LEDC_PWM] +1) × 1 / 32 × 8-ms period  
00000b = 1 / 32 × 8 ms (LEDC_ON is high for 250 µs, low for 7.75  
ms)  
11111b = 32 / 32 × 8 ms (LEDC_ON is always high)  
8.5.1.3.62 LEDC_CTRL8 Register (Offset = 5Eh) [reset = 00h]  
LEDC_CTRL8 is shown in Table 8-210 and described in Table 8-211.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-210. LEDC_CTRL8 Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
LEDC_ON_TIME[4:0]  
R/W-00000b  
Table 8-211. LEDC_CTRL8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RSVD  
R
000b  
Unused bit read returns 0b.  
LEDC_ON_TIME[4:0]  
R/W  
00000b  
LEDC ON-TIME: LEDC_ON_TME[4:0] × 64 ms  
00000b = 0 × 64 ms  
11111b = 31 × 64 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.63 LED_RAMP_UP_TIME Register (Offset = 5Fh) [reset = 00h]  
LED_RAMP_UP_TIME is shown in Table 8-212 and described in Table 8-213.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-212. LED_RAMP_UP_TIME Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
LED_RAMP_UP[4:0]  
R/W-00000b  
Table 8-213. LED_RAMP_UP_TIME Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RSVD  
R
000b  
Unused bit read returns 0b.  
LED_RAMP_UP[4:0]  
R/W  
00000b  
LED ramp up time for LEDA, LEDB and LEDC: LED_RAMP_UP[4:0]  
× 8 ms  
00000b = 0 × 8 ms  
11111b = 31 × 8 ms  
8.5.1.3.64 LED_RAMP_DOWN_TIME Register (Offset = 60h) [reset = 00h]  
LED_RAMP_DOWN_TIME is shown in Table 8-214 and described in Table 8-215.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-214. LED_RAMP_DOWN_TIME Register  
7
6
5
4
3
2
1
0
RSVD  
R-000b  
LED_RAMP_DOWN[4:0]  
R/W-00000b  
Table 8-215. LED_RAMP_DOWN_TIME Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
4-0  
RSVD  
R
000b  
Unused bit read returns 0b.  
LED_RAMP_DOWN[4:0] R/W  
00000b  
LED ramp-down time for LEDA, LEDB and LEDC:  
LED_RAMP_DOWN[4:0] × 8 ms  
00000b = 0 × 8 ms  
11111b = 31 × 8 ms  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.65 LED_SEQ_EN Register (Offset = 61h) [reset = 00h]  
LED_SEQ_EN is shown in Table 8-216 and described in Table 8-217.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-216. LED_SEQ_EN Register  
7
6
5
4
3
2
1
0
LEDC_SEQ_E  
N
RSVD  
R-0b  
LEDA_EN  
R/W-0b  
LEDB_EN  
R/W-0b  
LEDC_EN  
R/W-0b  
RSVD  
R-0b  
LEDA_SEQ_EN LEDB_SEQ_EN  
R/W-0b R/W-0b  
R/W-0b  
Table 8-217. LED_SEQ_EN Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RSVD  
R
0b  
Unused bit read returns 0b.  
6
5
4
LEDA_EN  
LEDB_EN  
LEDC_EN  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b = LEDA is disabled  
1b = LEDA is enabled  
0b = LEDB is disabled  
1b = LEDB is enabled  
0b = LEDC is disabled  
1b = LEDC is enabled  
3
2
RSVD  
R
0b  
0b  
Unused bit  
LEDA_SEQ_EN  
R/W  
0b = LEDA sequencer is disabled  
1b = LEDA sequencer is enabled  
1
0
LEDB_SEQ_EN  
LEDC_SEQ_EN  
R/W  
R/W  
0b  
0b  
0b = LEDB sequencer is disabled  
1b = LEDB sequencer is enabled  
0b = LEDC sequencer is disabled  
1b = LEDC sequencer is enabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.66 LEDx DC current  
Table 8-218. LEDx DC current  
LEDx_CURRENT[3:0]  
LED CURRENT (mA)  
0000b  
2
0001b  
0010b  
4
6
0011b  
8
0100b  
10  
12  
14  
16  
18  
20  
20  
0101b  
0110b  
0111b  
1000b  
1001b  
1010b to 1111b  
8.5.1.3.67 LOADSWITCH (Offset = 62h) [reset = OTP]  
LOADSWITCH is shown in Table 8-219 and described in Table 8-220.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-219. LOADSWITCH Register  
7
6
5
4
3
2
1
0
RSVD  
ILIM[1:0]  
ENABLE[1:0]  
R/W-X  
R-0000b  
R/W-OTP  
Table 8-220. LOADSWITCH Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3-2  
RSVD  
R
0000b  
Unused bit read returns 0b.  
ENABLE[1:0]  
R/W  
OTP  
00b = Load switch is OFF  
01b = Load switch is forced ON  
10b = Load switch in bypass switch operation: It is automatically  
enabled by comparators in DCDC4; forced PWM mode of DCDC4  
is blocked and the bypass switch is disabled (ENABLE[1:0] is set to  
00b) if the voltage on the VDCDC4 pin exceeds typically 4.18 V  
11b = Load switch in bypass switch operation: Switch is forced ON;  
forced PWM mode of DCDC4 is blocked and the bypass switch is  
disabled (ENABLE[1:0] is set to 00b) if the voltage on the VDCDC4  
pin exceeds typically 4.18 V  
1-0  
ILIM[1:0]  
R/W  
X
ENABLE[1] reset value is set by the EN_LS1 pin. ENABLE[0] reset  
value is set by the EN_LS0 pin.  
00b = Current limit is 100 mA maximum  
01b = Current limit is 500 mA maximum  
10b = Current limit is 750 mA ±10%  
11b = Current limit is 2.5 A ±20%  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
8.5.1.3.68 SPARE Register (Offset = 63h) [reset = OTP]  
SPARE is shown in Table 8-221 and described in Table 8-222.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-221. SPARE Register  
7
6
5
4
3
2
1
0
9MHZ OSC  
OFF  
DCDC4_  
SEL DELAY  
DCDC4_  
IMMEDIATE  
CLK32k_  
OD_EN  
SPARE[3:0]  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
R/W-OTP  
Table 8-222. SPARE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
3
SPARE[3:0]  
R/W  
OTP  
Unused bit read returns 0b.  
9 MHz OSC OFF  
R/W  
OTP  
0b = 9-MHz oscillator enabled in ON state  
1b = 9-MHz oscillator is disabled based on the PWR_REQ and  
CLK_REQ1 pins as listed below:  
PWR_REQ = 0b and CLK_REQ1 = 0b: oscillator OFF  
PWR_REQ = 0b and CLK_REQ1 = 1b: oscillator ON  
PWR_REQ = 1b and CLK_REQ1 = 0b: oscillator ON  
PWR_REQ = 1b and CLK_REQ1 = 1b: oscillator ON  
2
1
DCDC4_SEL DELAY  
DCDC4_IMMEDIATE  
R/W  
R/W  
OTP  
OTP  
0b = DELAY is (0.5 to 1.5) × (1 / 32 kHz) for a falling output voltage  
1b = NO DELAY on the DCDC4_SELbit  
0b = A voltage change in registers DCDC4_OP or DCDC4_AVS is  
done with the slew rate defined in DCDC4_CTRL:TSTEP[2:0]  
1b = A voltage change in registers DCDC4_OP or DCDC4_AVS is  
done immediately without limiting it by the slew rate control  
0
CLK32K_OD_EN  
R/W  
OTP  
0b = 32KCLKOUT is configured as a push-pull output to VDDIO  
1b = 32KCLKOUT is configured as an open drain output  
8.5.1.3.69 VERNUM (Offset = 64h) [reset = OTP]  
VERNUM is shown in Table 8-223 and described in Table 8-224.  
Return to Summary Table.  
Register is reset on a POR event.  
Table 8-223. VERNUM Register  
7
6
5
4
3
2
1
0
OTP_VERSION[7:4]  
R-OTP  
VERNUM[3:0]  
R-OTP  
Table 8-224. VERNUM Register Field Descriptions  
Bit  
7-4  
Field  
Type  
Reset  
Description  
OTP_VERSION[7:4]  
R
OTP  
Value varies based on OTP.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TPS659128  
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 8-224. VERNUM Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
VERNUM[3:0]  
R
OTP  
Value depending on silicon revision  
00000000b = Revision 1.0  
00000001b = Revision 1.1  
00000010b = Revision 1.2  
00000011b = Revision 1.3  
00000100b = Revision 1.4  
00000101b = Revision 1.5  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The TPS659128x device is an integrated power-management integrated circuit (PMIC) that comes in an  
81-pin, 0.4-mm pitch, DSBGA package. This device was designed for personal electronics, industrial, and  
communication applications and is typically powered from a 5-V input supply. The device provides four step-  
down converters along with an interface to control ten external LDO regulators. The device can support a variety  
of different processors and applications. The step-down converters can also support dynamic voltage scaling  
(DVS) through a dedicated I2C interface to provide optimum power savings. In addition to the power resources,  
the device contains an embedded power controller (EPC) to manage the power sequencing requirements  
of systems. The power sequencing is programmable through OTP memory. The device also contains five  
configurable GPIOs and three LED drivers. The following sections provide the typical application use-case with  
the recommended external components and layout guidelines.  
9.2 Typical Application  
The first item to evaluate is the use of the CONFIG1 and CONFIG2 pins. For more information on implementing  
a device in a given system, refer to the application report for a specific orderable part number.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TPS659128  
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Figure 9-1. Typical Application Schematic  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
9.2.1 Design Requirements  
For a typical application shown in Figure 9-1, Table 9-1 lists sample key design parameters of the power  
resources. Voltages and currents will vary based on the application use case, the provided values are just an  
example.  
Table 9-1. Design Parameters  
DESIGN PARAMETER  
VALUE  
2.7 V to 5.5 V  
Up to 3.5 MHz  
1.1 V  
Supply voltage  
Switching frequency  
DCDC1 voltage  
DCDC1 current  
DCDC2 voltage  
DCDC2 current  
DCDC3 voltage  
DCDC3 current  
DCDC4 voltage  
DCDC4 current  
LDO1 voltage  
LDO1 current  
LDO2 voltage  
LDO2 current  
LDO3 voltage  
LDO3 current  
LDO4 voltage  
LDO4 current  
LDO5 voltage  
LDO5 current  
LDO6 voltage  
LDO6 current  
LDO7 voltage  
LDO7 current  
LDO8 voltage  
LDO8 current  
LDO9 voltage  
LDO9 current  
LDO10 voltage  
LDO10 current  
Up to 2.5 A  
2.0 V  
Up to 0.75 A  
3.2 V  
Up to 1.6 A  
3.6 V  
Up to 2.5 A  
850 mV or 900 mV  
Up to 100 mA  
850 mV or 900 mV  
Up to 100 mA  
1.2 V  
Up to 100 mA  
1.7 V or 1.8 V  
Up to 250 mA  
2.7 V  
Up to 250 mA  
1.8 V or 3.0 V  
Up to 100 mA  
3.0 V  
Up to 300 mA  
3.1 V  
Up to 100 mA  
3.0 V  
Up to 300 mA  
1.8 V  
Up to 300 mA  
9.2.2 Detailed Design Procedure  
Table 9-2 lists the recommended external components.  
Table 9-2. Recommended External Components  
REFERENCE  
COMPONENTS  
EIA SIZE  
MASS  
COMPONENT(1)  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
CODE(4)  
PRODUCTION(2)  
INPUT POWER SUPPLIES EXTERNAL COMPONENTS  
GRM188R71A225  
KE15  
1.6 × 0.8 ×  
0.8  
CVCC, CVINDCDC_ANA Power input capacitors  
CVDDIO I/O input capacitor  
Murata  
Murata  
2.2 µF, 10 V  
4.7 µF, 6.3 V  
0603  
0603  
Available(3)  
Available(3)  
GRM188R60J475K  
E19  
1.6 × 0.8 ×  
0.8  
RGB LED EXTERNAL COMPONENTS  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
Table 9-2. Recommended External Components (continued)  
REFERENCE  
COMPONENTS  
EIA SIZE  
MASS  
COMPONENT(1)  
Yellow LED  
Green LED  
Red LED  
MANUFACTURER  
PART NUMBER  
LTST-C190YKT  
LTST-C190GKT  
LTST-C190CKT  
VALUE  
SIZE (mm)  
CODE(4)  
PRODUCTION(2)  
1.6 × 0.8 ×  
0.8  
LEDA  
LEDB  
LEDC  
Lite On  
20mA, 2.1 V  
20mA, 2.1 V  
20mA, 2.1 V  
0603  
0603  
0603  
Available (3)  
Available (3)  
Available (3)  
1.6 × 0.8 ×  
0.8  
Lite On  
1.6 × 0.8 ×  
0.8  
Lite On  
DCDC EXTERNAL COMPONENTS  
CIN1, CIN2, CIN3  
CIN4  
,
GRM188R60J106  
ME47  
1.6 × 0.8 ×  
0.8  
Input capacitor  
Murata  
Murata  
10 µF, 6.3 V  
10 µF, 6.3 V  
0603  
0603  
0603  
Available (3)  
Available (3)  
GCM32ER70J476  
KE19 (Two  
capacitors per rail)  
COUTDCDC1  
COUTDCDC4  
,
,
1.6 × 0.8 ×  
0.8  
Output capacitor  
COUTDCDC2  
COUTDCDC3  
GRM188R60J106  
ME47  
1.6 × 0.8 ×  
0.8  
Output capacitor  
Inductor  
Murata  
Toko  
10 µF, 6.3 V  
1 µH  
Available (3)  
Available(3)  
1239AS-  
H-1R0N=P2  
L1, L2, L3, L4  
2 × 2.5  
LDO EXTERNAL COMPONENTS  
CINLDO1210, CINLDO3  
,
GRM188R71A225  
KE15  
1.6 × 0.8 ×  
0.8  
CINLDO67, CINLDO8  
,
Input capacitor  
Murata  
Murata  
2.2 µF, 10 V  
4.7 µF, 6.3 V  
0603  
0603  
Available(3)  
Available(3)  
CINLDO9  
GRM188R60J475K  
E19  
1.6 × 0.8 ×  
0.8  
CINLDO4, CINLDO5  
Input capacitor  
COUTLDO3  
COUTLDO1  
COUTLDO2  
COUTLDO6  
COUTLDO7  
COUTLDO8  
COUTLDO9  
,
,
,
,
,
,
,
GRM188R71A225  
KE15  
1.6 × 0.8 ×  
0.8  
Output capacitor  
Murata  
2.2 µF, 10 V  
0603  
Available(3)  
COUTLDO10  
,
COUTLDOAO  
GRM188R60J475K  
E19  
1.6 × 0.8 ×  
0.8  
COUTLDO4, COUTLDO5 Output capacitor  
CVREF Output capacitor  
Murata  
Murata  
4.7 µF, 6.3 V  
220 nF, 6.3 V  
0603  
0201  
Available(3)  
Available  
GRM033R60J224  
ME15D  
0.6 × 0.3 ×  
0.33  
(1) Component minimum and maximum tolerance values are specified in the electrical parameters section of each IP.  
(2) This column refers to the criteria.  
(3) Component used on the validation boards.  
(4) The PACK column describes the external component package type.  
9.2.2.1 Output Filter Design (Inductor and Output Capacitor)  
9.2.2.1.1 Inductor Selection  
The step-down converters are designed to operate with small external components such as 1-μH output  
inductors. The values given in the Recommended Operating Conditions (see Section 6.3) include tolerances  
and saturation effects and must not be violated for stable operation. The selected inductor must be rated for its  
DC resistance and saturation current. The DC resistance of the inductor will directly influence the efficiency of  
the converter. Therefore an inductor with lowest DC resistance should be selected for highest efficiency.  
Use Equation 3 to calculate the maximum inductor current under static load conditions. The saturation current  
of the inductor should be rated higher than the maximum inductor current as calculated with Equation 3. This  
recommendation is because during heavy load transients, the inductor current rises above the calculated value.  
VOUT  
1-  
V
IN  
DIL = VOUT  
where  
ì
L ì f  
(2)  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
ΔIL is the peak-to-peak inductor ripple current.  
L is the inductor value.  
f is the switching frequency.  
DIL  
2
ILmax = IOUTmax  
ì
(3)  
where  
ILmax is the maximum inductor current.  
The highest inductor current will occur at the maximum input voltage, VIN.  
Open-core inductors have a soft saturation characteristic and they can usually support higher inductor currents  
versus a comparable shielded inductor.  
A more conservative approach is to select the inductor-current rating just for the maximum switch current of  
the corresponding converter. The core material from inductor to inductor differs and will have an impact on the  
efficiency especially at high switching frequencies, and therefore the core material must be considered when  
selecting an inductor.  
For possible inductors, refer to Table 9-3 and Table 9-2.  
Table 9-3. Tested Inductors  
INDUCTOR TYPE  
DFE252012  
NOMINAL INDUCTANCE  
SUPPLIER  
Toko  
1 μH  
1 μH  
1 μH  
1 μH  
1 μH  
DFE322510  
Toko  
DFE322512  
Toko  
VLS201612ET-1R0  
SPM3012T-1R0  
TDK  
TDK  
9.2.2.1.2 Output Capacitor Selection  
The control scheme of the DC-DC converters allow the use of small ceramic capacitors with a typical value as  
given in the Recommended Operating Conditions (see Section 6.3), without having a large output voltage under  
and overshoots during heavy load transients. Ceramic capacitors having low ESR values which result in the  
lowest output voltage ripple and are therefore recommended.  
If ceramic output capacitors are used, the RMS ripple-current rating of the capacitor (IRMSCOUT) always meets  
the application requirements. Use Equation 4 to calculat the RMS ripple current.  
VOUT  
1-  
V
1
IN  
IRMSCout = VOUT  
ì
ì
L ì f  
2 ì  
3
(4)  
At the nominal load current, the inductive converters operate in PWM mode and the overall output-voltage ripple  
is the sum of the voltage spike caused by the ESR of the output capacitor plus the voltage ripple caused by  
charging and discharging the output capacitor. Use Equation 5 to calculate the output-voltage ripple (ΔVOUT).  
VOUT  
1-  
«
÷
V
1
IN  
DVOUT = VOUT  
ì
ì
+ ESR  
L ì f  
8 ì COUT ì f  
(5)  
The highest output voltage ripple occurs at the highest input voltage, VIN.  
At light load currents, the converters operate in power save mode and the output-voltage ripple is dependent  
on the value of the output capacitor. The output-voltage ripple is set by the internal comparator delay and the  
external capacitor. The typical output-voltage ripple is less than 1% of the nominal output voltage.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TPS659128  
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
9.2.2.1.3 Input Capacitor Selection and Input Voltage  
Because of the nature of the step-down converter having a pulsating input current, a low-ESR input capacitor  
is required for best input voltage filtering and minimizing the interference with other circuits caused by high  
input-voltage spikes. The converters require a ceramic input capacitor of 10 μF. The value of the input capacitor  
can be increased without any limit for better input voltage filtering. Ceramic capacitors suffer from the so-called  
DC bias effect. A DC voltage applied at a ceramic capacitor will change the effective capacitance to a value  
lower than the nominal value. Curves about that behavior are available from the capacitor manufacturers and  
must be considered when using the capacitors in applications where a DC voltage is applied and a minimum  
capacitance must be maintained for proper functionality of the circuit. The values given in the Recommended  
Operating Conditions for the TPS659128x device are for the capacitance; however, the actual capacitor used  
may have a larger nominal value that drops with the voltage applied to what is recommended. The capacitance  
drop depends on the voltage applied, therefore, higher voltages, such as the output voltage of a DC-DC  
converter or LDO, must be considered when choosing a proper capacitor.  
The input voltage for the step-down converters must be connected to the VINDCDC1, VINDCDC2, VINDCDC3,  
and VINDCDC4 pins. These pins must be tied together with the VINDCDC_ANA pin to the power source. The  
VCC pin must be tied to the highest voltage in the system. If the load switch is used as a switch on the output,  
the VCC pin must be tied to the input voltage of the VINDCDCx and VINDCDC_ANA pins. If the load switch is  
used as a current limited switch on the input, the VCC pin must be connected to the LSI pin while the LSO pin  
is connected to the VINDCDCx and VINDCDC_ANA pins. The four step-down converters must not be supplied  
from different input voltages.  
9.2.2.1.4 Output Capacitor Table  
The DC-DC converters are designed for an output capacitance as given in the Recommended Operating  
Conditions (see Section 6.3). A ceramic capacitor, such as a X5R or X7R type, is required at the output. Table  
9-4 lists capacitors used for the TPS659128x device.  
Table 9-4. Example Capacitors  
MATERIAL AND  
VALUE  
SIZE  
SUPPLIER  
RATING  
47 µF / 6.3 V  
22 µF / 6.3 V  
10 µF / 10 V  
4.7 µF / 6.3 V  
4.7 µF / 6.3 V  
0805  
0805  
0603  
0603  
0402  
Murata GRM21BR60J476ME15  
Murata GRM21BR60J226M  
Ceramic X5R  
Ceramic X5R  
Ceramic X5R  
Ceramic X5R  
Ceramic X5R  
Murata GRM188R61A106ME69  
Murata GRM188R60J475KE19  
Murata GRM155R60J475ME87  
9.2.2.1.5 Voltage Change on DCDC1 to DCDC4  
The output voltage of the DC-DC converters can be changed during operation by either the digital interfaces,  
by toggling the DCDCx_SEL pin, or by entering SLEEP state if the resources are configured to change voltage  
based on the device state.  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
9.2.3 Application Curves  
IOUT = 250 mA to 2250 mA  
IOUT = 75 mA to 675 mA  
VDCDC2 (Offset:VOUT)  
VDCDC1 (Offset: VOUT)  
VIN = 3.6 V  
VO = 1.1375 V  
VIN = 3.6 V  
VO = 2.25 V  
Figure 9-2. DCDC1 Load Transient Response  
Figure 9-3. DCDC2 Load Transient Response  
IOUT = 300 mA to 2700 mA  
IOUT = 150 mA to 1350 mA  
VDCDC4 (Offset: VOUT)  
VDCDC3 (Offset: VOUT)  
VIN = 3.6 V  
VO = 1.1375 V  
VIN = 3.6 V  
VO = 1.1375 V  
Figure 9-4. DCDC3 Load Transient Response  
Figure 9-5. DCDC4 Load Transient Response  
VIN = 3.6 V to 5 V to 3.6 V  
VIN = 3.6 V to 5 V to 3.6 V  
VDCDC2 (Offset: VOUT)  
VDCDC1 (Offset: VOUT)  
VO = 1.8 V  
IO = 750 mA  
VO = 1.1375 V  
IO = 2500 mA  
Figure 9-7. DCDC2 Line Transient Response  
Figure 9-6. DCDC1 Line Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
VIN = 3.6 V to 5 V to 3.6 V  
VIN = 3.6 V to 5 V to 3.6 V  
VDCDC3 (Offset: VOUT)  
VDCDC4 (Offset: VOUT)  
VO = 1.1375 V  
IO = 1500 mA  
VO = 1.1375 V  
IO = 3000 mA  
Figure 9-8. DCDC3 Line Transient Response  
Figure 9-9. DCDC4 Line Transient Response  
IO = 10 mA to 90 mA to 10 mA  
IO = 10 mA to 90 mA to 10 mA  
VLDO (Offset: VOUT)  
VLDO (Offset: VOUT)  
VIN = 3.3 V  
VO = 3 V  
VIN = 1.8 V  
VO = 1.2 V  
Figure 9-10. LDO1, LDO2, LDO3 Load Transient  
Response  
Figure 9-11. LDO1, LDO2, LDO3 Load Transient  
Response  
VIN = 1.7 V to 3.6 V to 1.7 V  
IO = 20 mA to 180 mA to 20 mA  
VLDO (Offset: VOUT)  
VLDO (Offset: VOUT)  
IO = 100 mA  
VO = 1.2 V  
VIN = 2 V  
VO = 1.7 V  
Figure 9-12. LDO1, LDO2, LDO3 Line Transient  
Response  
Figure 9-13. LDO4, LDO5 Load Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
IO = 20 mA to 180 mA to 20 mA  
VIN = 3.6 V to 5 V to 3.6 V  
VLDO (Offset: VOUT)  
VLDO (Offset: VOUT)  
IO = 100 mA  
VO = 1.7 V  
VIN = 3.2 V  
VO = 2.7 V  
Figure 9-15. LDO4, LDO5 Line Transient Response  
Figure 9-14. LDO4, LDO5 Load Transient Response  
IO = 10 mA to 90 mA to 10 mA  
VIN = 3.6 V to 5 V to 3.6 V  
VLDO (Offset: VOUT)  
VLDO (Offset: VOUT)  
IO = 100 mA  
VO = 3 V  
VIN = 3.3 V  
VO = 1.8 V  
Figure 9-16. LDO4, LDO5 Line Transient Response Figure 9-17. LDO6, LDO8 Load Transient Response  
IO = 10 mA to 90 mA to 10 mA  
VIN = 3.6 V to 5 V to 3.6 V  
VLDO (Offset: VOUT)  
VLDO (Offset: VOUT)  
VIN = 3.3 V  
VO = 2.85 V  
IO = 100 mA  
VO = 1.8 V  
Figure 9-18. LDO6, LDO8 Load Transient Response  
Figure 9-19. LDO6, LDO8 Line Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
IO = 20 mA to 180 mA to 20 mA  
VIN = 3.6 V to 5 V to 3.6 V  
VLDO (Offset: VOUT)  
VLDO (Offset: VOUT)  
IO = 100 mA  
VO = 2.85 V  
VIN = 3.2 V  
VO = 3 V  
Figure 9-20. LDO6, LDO8 Line Transient Response  
Figure 9-21. LDO7 Load Transient Response  
IO = 30 mA to 270 mA to 30 mA  
IO = 30 mA to 270 mA to 30 mA  
VLDO (Offset: VOUT)  
VLDO (Offset: VOUT)  
VIN = 3.3 V  
VO = 2.85 V  
VIN = 3.3 V  
VO = 1.8 V  
Figure 9-22. LDO9 Load Transient Response  
Figure 9-23. LDO10 Load Transient Response  
VIN = 2.2 V to 3.6 V to 2.2 V  
VLDO (Offset: VOUT)  
IO = 300 mA  
VO = 1.8 V  
Figure 9-24. LDO10 Line Transient Response  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TPS659128  
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
As for all switching power supplies, the layout is an important step in the design. Proper functionality of the  
device demands careful attention to PCB layout. Care must be taken in board layout to get the specified  
performance. If the layout is not carefully done, the regulators may show poor line regulation, load regulation, or  
both and stability issues, as well as EMI problems. Providing a low-impedance ground path is critical. Therefore,  
use wide and short traces for the main current paths. The input capacitors must be placed as close as possible  
to the device pins as well as the inductor and output capacitor.  
Keep the common path to the GND pins, which returns the small signal components, and the high current of the  
output capacitors as short as possible to avoid ground noise. The VDCDCx trace should be connected directly  
to the output capacitor and routed away from noisy components and traces (for example, the L1, L2, L3, and L4  
traces).  
The most critical connections are:  
PGNDx  
VDCDCx (positive output-voltage sense connection)  
VDCDCx_GND (ground-sense connection)  
AGND  
VINDCDCx, VINDCDC_ANA, VCC  
The PGNDx pins are the ground connections of the power stages, so they will carry high DC-peak and AC-peak  
currents. A low impedance connection to the GND plane is required, which must be independent from other pins  
to not couple noise into other pins. Other pins must not be connected to PGNDx pins.  
The VDCDCx pins are the positive-sense connections for the feedback loop. The connection must be made  
directly to the positive terminal pad of the output capacitor. Do not tie the pin to the pad of the output inductor or  
anywhere in between the inductor and capacitor. Shielding the connection by GND traces or a GND plane is a  
best practice.  
The VDCDCx_GND pin is a sense connection for GND and is only available for the DCDC1 and DCDC4  
convertors. The connection can be made either to the GND pad of the output capacitor (preferred) or to the  
GND plane directly if a solid connection of the GND-plane to the output capacitor exists. The pin must not be  
connected to the PGNDx pins as this will couple switching noise into the feedback loop.  
The AGND (analog ground) pin is the main GND connection for internal analog circuitry. A proper connection  
must be made to a GND plane directly by a via. The AGND and DGND pins (located next to each other) can be  
connected and a via each be used to the GND plane.  
The VINDCDCx, VINDCDC_ANA, and VCC pins are supply-voltage-input terminals and must be properly  
bypassed by their input capacitors. The required capacitance is given in the Recommended Operating  
Conditions (see Section 6.3). As ceramic capacitors will change their capacitance based on the voltage applied,  
temperature and age, the influence of these parameters must be considered when choosing the value of a  
capacitor. The input capacitors are ideally placed on the same layer as the device, so the connection can be  
made short and directly on the same layer with multiple vias used from the GND terminal to the GND-plane.  
For more information about the layout for the TPS659128x device, refer to the TPS65912xEVM-081 User's  
Guide.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TPS659128  
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
10.2 Layout Example  
Figure 10-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
11 Power Supply Recommendations  
The TPS659128x device is designed to work with an analog supply voltage range from 2.7 V to 5.5 V. The input  
supply should be well regulated and connected to the VCC pin, as well as the DCDC and LDO input pins. If  
the input supply is located more than a few inches from the device, additional capacitance may be required in  
addition to the recommended input capacitors at the VCC pin and the DCDC and LDO input pins.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TPS659128  
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Development Support  
TI offers an extensive line of development tools, including tools to evaluate the performance of the processors,  
generate code, develop algorithm implementations, and fully integrate and debug software and hardware  
modules. The tool's support documentation is electronically available within the Code Composer Studio™  
Integrated Development Environment (IDE).  
The following products support development of the TPS659128x device applications:  
Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including  
Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time  
Foundation Software ( DSP/BIOS), which provides the basic run-time target software needed to support any  
TPS659128x device application.  
Hardware Development Tools: Extended Development System ( XDS) Emulator  
For a complete listing of development-support tools for the TPS659128x platform, visit the Texas Instruments  
website at www.ti.com. For information on pricing and availability, contact the nearest TI field sales office or  
authorized distributor.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Basic Calculation of a Buck Converter's Power Stage  
Texas Instruments, Empowering Designs With Power Management IC (PMIC) for Processor Applications  
application report  
Texas Instruments, TPS65912xEVM-081 User's Guide  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
Eco-mode, Code Composer Studio, DSP/BIOS, and XDSare trademarks of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TPS659128  
 
 
 
 
 
 
 
 
TPS659128  
SLVSGB7A – MAY 2021 – REVISED JUNE 2021  
www.ti.com  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TPS659128  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS6591286YFFR  
TPS6591287YFFR  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFF  
YFF  
81  
81  
3000 RoHS & Green  
3000 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 105  
-40 to 105  
659128-6  
659128-7  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jun-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jun-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS6591286YFFR  
TPS6591287YFFR  
DSBGA  
DSBGA  
YFF  
YFF  
81  
81  
3000  
3000  
330.0  
330.0  
12.4  
12.4  
3.79  
3.79  
3.79  
3.79  
0.71  
0.71  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
13-Jun-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS6591286YFFR  
TPS6591287YFFR  
DSBGA  
DSBGA  
YFF  
YFF  
81  
81  
3000  
3000  
335.0  
335.0  
335.0  
335.0  
25.0  
25.0  
Pack Materials-Page 2  
D: Max = 3.684 mm, Min =3.624 mm  
E: Max = 3.628 mm, Min =3.568 mm  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

TPS6591286YFFR

TPS659128 PMU for Processor Power
TI

TPS6591287

TPS659128 PMU for Processor Power
TI

TPS6591287YFFR

TPS659128 PMU for Processor Power
TI

TPS659128_V01

TPS659128 PMU for Processor Power
TI

TPS65916

用于处理器的电源管理单元 (PMU)
TI

TPS659161RGZR

用于处理器的电源管理单元 (PMU) | RGZ | 48 | -40 to 105
TI

TPS659162RGZR

用于处理器的电源管理单元 (PMU) | RGZ | 48 | -40 to 105
TI

TPS659162RGZT

用于处理器的电源管理单元 (PMU) | RGZ | 48 | -40 to 105
TI

TPS659163RGZR

用于处理器的电源管理单元 (PMU) | RGZ | 48 | -40 to 105
TI

TPS659163RGZT

用于处理器的电源管理单元 (PMU) | RGZ | 48 | -40 to 105
TI

TPS65917-Q1

具有 5 个降压转换器和 5 个 LDO 的汽车类 3.15V 至 5.25V 电源管理 IC (PMIC)
TI

TPS65919-Q1

具有 4 个降压转换器和 4 个 LDO 的汽车类 3.15V 至 5.25V 电源管理 IC (PMIC)
TI