TPS65940400RWERQ1 [TI]

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125;
TPS65940400RWERQ1
型号: TPS65940400RWERQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125

集成电源管理电路 稳压器
文件: 总383页 (文件大小:9699K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-  
Relevant Automotive Applications  
– 0.6 V to 3.3 V Output Range with 50 mV Steps  
1 Features  
in Linear Regulation Mode  
Qualified for Automotive Applications  
AEC-Q100 Qualified with the Following Results:  
– Device Operates from 3 V to 5.5 V Input Supply  
– Device Temperature Grade 1: –40°C to +125°C  
Ambient Operating Temperature Range  
– Device HBM Classification Level 2  
– Device CDM Classification Level C4A  
SafeTI Semiconductor Component  
– Designed for Functional Safety Applications  
– Documentation Available to Aid ISO 26262  
System Design up to ASIL D  
– 1.7 V to 3.3 V Output Range in Bypass Mode  
– 500 mA Capability With Short-Circuit and Over-  
Current Protection  
One Low-Dropout (LDO) Linear Regulator with  
Low-Noise Performance  
– 1.2 V to 3.3 V Output Range in 25 mV Steps  
– 300 mA Capability With Short-Circuit and Over-  
Current Protection  
Power Sequence Control:  
– Configurable Power-Up and Power-Down  
Sequences between Power States (NVM)  
– Digital Output Signals can be Included in the  
Power Sequences  
– Systematic Capability and Hardware Integrity  
up to ASIL D  
– Input Supply Monitor and Over-Voltage  
Protection  
– Digital Input Signals can be used to trigger  
Power Seqence Transitions  
– Windowed Voltage and Over-Current Monitors  
– Integrated Q&A or Trigger Mode Watchdog  
Module  
– Dual Channel Level or PWM Error Signal  
Monitoring (ESM) Supporting Processors with  
Integrated Safety-MCU  
32 kHz Crystal Oscillator with Option to Output a  
Buffered 32-kHz Clock Output  
Real-Time Clock (RTC) with Alarm and Periodic  
Wake-Up Mechanism  
One SPI or Two I2C Control Interfaces, with  
Second I2C Interface Dedicated for Q&A Watchdog  
Communication  
– Thermal Monitoring With High Temperature  
Warning and Thermal Shutdown  
Package Option:  
– NVM Bit-Integrity Error Detection With Options  
to Proceed or Hold Power-Up Sequence and  
Reset Release  
– 8-mm × 8-mm 56-pin VQFNP With 0.5-mm  
Pitch  
2 Applications  
Low-Power Consumption  
– 2 μA Typical Shutdown Current  
– 7 μA Typical in Back Up Supply Only Mode  
– 20 μA Typical in Low Power Standby Mode  
Five Step-Down Switched-Mode Power Supply  
(BUCK) Regulators:  
– 0.3 V to 3.34 V Output Range in 5, 10, or 20  
mV Steps  
– One with 4 A, Three with 3.5 A, and One with 2  
A Capability  
Automotive Infotainment and Digital Cluster  
Automotive Advanced Driver Assistance System  
(ADAS)  
Automotive Navigation Systems  
Automotive Telematics  
Automotive Body Electronics & Lighting  
3 Description  
The TPS6594-Q1 device provides four flexible multi-  
phase configurable step-down converters with 3.5 A  
per phase, and one additional step-down converter  
with 2 A capability.  
– Four of the Bucks with Flexible Multi-Phase  
Capability which can Source up to 14 A from  
a Single Rail  
– Short-Circuit Protection and Over-Current  
Protection  
– Internal Soft-Start for In-Rush Current  
Limitation  
Table 3-1. Device Information Table (1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
TPS6594-Q1  
VQFNP (56)  
8.00 mm × 8.00 mm  
– 2.2 MHz / 4.4 MHz Switching Frequency  
– Ability to Synchronize to External Clock Input  
Three Low-Dropout (LDO) Linear Regulators With  
Configurable Bypass Mode  
(1) See the orderable addendum at the end of the data sheet for  
all available packages.  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
4 Functional Diagram  
OVPGDRV  
nINT  
I2C and SPI  
VSYS Monitor  
VSYS_SENSE  
128-kHz RC Oscillator  
OSC32KCAP  
OSC32KIN  
nPWRON/ENABLE  
Interrupt Handler  
Real-Time Clock  
(RTC) With Calendar  
32-kHz Crystal Oscillator  
VBACKUP  
OSC32KOUT  
Backup Supply  
Management  
VCCA  
WAKEn  
nSLEEPn  
SYNCCLKOUT/CLK32KOUT  
VOUT_LDOVRTC  
LDO  
RTC  
Bandgap  
VRTC  
20-MHz Monitor Oscillator  
20-MHz RC Oscillator  
Clock Controller  
& Monitor  
Fixed  
State Machine  
(FFSM)  
VDIG  
LDO  
INT  
Bandgap  
VINT  
VOUT_LDOVINT  
Trigger Mode or  
Question and Answer  
(Q&A) Watchdog  
FSD  
Clock  
DPLL with  
Dividers and  
SSM  
SYNCCLKIN  
(GPIO10)  
Pre-  
Configurable  
State  
Machine  
(PFSM)  
Mux  
VIN Monitor  
GPIO3,7  
Level or PWM Mode  
Error Signal Monitors  
OVP  
UVLO  
Bandgap  
Single or Multiphase  
BUCK1  
PVIN_B1  
SW_B1  
FB_B1  
Power-Good Monitor  
for Buck and LDO  
Regulators  
Resource Controller  
3.5 A  
SRAM  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
PVIN_B5  
Power Good  
Controller & Monitor  
VIN Monitor  
OVP  
Bandgap  
UVLO  
Registers  
CRC  
BUCK2  
PVIN_B2  
SW_B2  
FB_B2  
3.5 A  
I2C/SPI/  
GPIO/  
SPMI  
Thermal Monitor  
LDO1, Bypass  
Thermal  
Controller  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
Register Map  
VOUT_LDO1  
PVIN_LDO12  
Nonvolatile Memory  
(NVM)  
LBIST  
ABIST  
Over-Current Monitor,  
Short Circuit Monitor  
BUCK3  
PVIN_B3  
SW_B3  
FB_B3  
SPMI  
I2C and SPI  
CRC  
3.5 A  
LDO2, Bypass  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
BIST and CRC  
Over-Current Monitor,  
Short Circuit Monitor  
VOUT_LDO2  
Slave  
Master  
I2C1 I2C2  
SPI  
LDO3, Bypass  
PVIN_LDO3  
VOUT_LDO3  
BUCK4  
PVIN_B4  
SW_B4  
FB_B4  
Over-Current Monitor,  
Short Circuit Monitor  
4 A (Single-Phase)  
or 3.5 A  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
LDO4  
(Low Noise)  
Over-Current Monitor,  
Short Circuit Monitor  
PVIN_LDO4  
VOUT_LDO4  
BUCK5  
PVIN_B5  
SW_B5  
FB_B5  
2 A  
GPIO Control  
Over-Current Monitor,  
Short Circuit Monitor,  
SW Short Monitor  
VIO_IN  
Safety  
Bandgap  
AMUXOUT  
nRST_OUT  
EN_DRV  
VCCA  
Copyright © 2019, Texas Instruments Incorporated  
Functional Diagram  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Functional Diagram.........................................................2  
5 Revision History.............................................................. 3  
6 Description (continued).................................................. 4  
7 Pin Configuration and Functions...................................5  
7.1 Digital Signal Descriptions........................................ 10  
8 Specifications................................................................ 17  
8.1 Absolute Maximum Ratings ..................................... 17  
8.2 ESD Ratings ............................................................ 18  
8.3 Recommended Operating Conditions ......................18  
8.4 Thermal Information .................................................19  
8.5 General Purpose Low Drop-Out Regulators  
(LDO1, LDO2, LDO3) .................................................20  
8.6 Low Noise Low Drop-Out Regulator (LDO4) ........... 21  
8.7 Internal Low Drop-Out Regulators (LDOVRTC,  
LDOVINT) ...................................................................23  
8.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5  
Regulators ..................................................................23  
8.9 Reference Generator (BandGap) .............................29  
8.10 Monitoring Functions ..............................................30  
8.11 Clocks, Oscillators, and PLL .................................. 32  
8.12 Thermal Monitoring and Shutdown ........................34  
8.13 System Control Thresholds ....................................34  
8.14 Current Consumption .............................................35  
8.15 Backup Battery Charger .........................................36  
8.16 Digital Input Signal Parameters ............................. 37  
8.17 Digital Output Signal Parameters ...........................38  
8.18 I/O Pullup and Pulldown Resistance ......................39  
8.19 I2C Interface ...........................................................39  
8.20 Serial Peripheral Interface (SPI) ............................ 40  
9 Typical Characteristics................................................. 41  
10 Detailed Description....................................................45  
10.1 Overview.................................................................45  
10.2 Functional Block Diagram.......................................46  
10.3 Feature Description.................................................47  
10.4 Device Functional Modes......................................115  
10.5 Control Interfaces..................................................144  
10.6 Configurable Registers......................................... 150  
10.7 Register Maps.......................................................152  
11 Application and Implementation.............................. 351  
11.1 Application Information..........................................351  
11.2 Typical Application................................................ 351  
11.3 Power Supply Recommendations.........................370  
11.4 Layout................................................................... 370  
12 Device and Documentation Support........................372  
12.1 Third-Party Products Disclaimer........................... 372  
12.2 Device Support..................................................... 372  
12.3 Documentation Support........................................ 372  
12.4 Receiving Notification of Documentation Updates372  
12.5 Support Resources............................................... 372  
12.6 Trademarks...........................................................372  
12.7 Electrostatic Discharge Caution............................373  
12.8 Glossary................................................................373  
13 Mechanical, Packaging, and Orderable  
Information.................................................................. 373  
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (December 2019) to Revision A (April 2021)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document .................1  
Changed the status of the document from: advanced information to: publication data .....................................1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
6 Description (continued)  
All of the bucks can be synchronized to an internal 2.2 MHz or 4.4 MHz or an external 1 MHz, 2 MHz, or 4 MHz  
clock signal. An integrated spread-spectrum modulation can be added to the synchronized buck switching clock  
signal to improve the device's EMC performance, which can also be made available to external devices through  
a GPIO output pin. The device provides four LDOs: three with 500 mA capability, which can be configured as  
load switches; one with 300 mA capability and low-noise performance.  
Non-volatile memory (NVM) is used to control the default power sequences and default configurations, such  
as output voltage and GPIO configurations. The NVM is pre-programmed to allow start-up without external  
programming. Most static configurations can be changed from the default through SPI or I2C registers to  
configure the device to meet many different system needs. As a safety feature, the NVM contains a bit-integrity-  
error detection feature to stop the power-up sequence if an error is detected, preventing the system from starting  
in an unknown state.  
The TPS6594-Q1 includes a 32 kHz crystal oscillator, which generates an accurate 32 kHz clock for the  
integrated RTC module. A backup-battery management provides power to the crystal oscillator and the RTC  
module from a coin cell battery or a super-cap in the event of power loss from the main supply.  
The TPS6594-Q1 device includes protection and diagnostic mechanisms such as register and interface CRC,  
short-circuit protection, thermal monitoring, and shutdown. The device also includes a Q&A or trigger mode  
watchdog to monitor for software lockup, and 2 system error monitoring inputs with fault injection options to  
monitor the error signals from the attached SoC or MCU. The TPS6594-Q1 can notify the processor of these  
events through the interrupt handler, allowing the processor to take action in response.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
7 Pin Configuration and Functions  
Figure 7-1 shows the 56-pin RWE plastic quad-flatpack no-lead (VQFNP) pin assignments and thermal pad.  
GPIO10  
AMUXOUT  
VOUT_LDOVINT  
VOUT_LDOVRTC  
VCCA  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
GPIO8  
2
OSC32KCAP  
OSC32KOUT  
OSC32KIN  
FB_B5  
3
4
REFGND1  
5
REFGND2  
6
VBACKUP  
PVIN_B5  
VOUT_LDO4  
PVIN_LDO4  
VOUT_LDO3  
PVIN_LDO3  
VOUT_LDO2  
PVIN_LDO12  
VOUT_LDO1  
nINT  
7
Thermal  
Pad  
(GND)  
8
SW_B5  
9
GPIO2  
10  
11  
12  
13  
14  
GPIO1  
SCL_I2C1/SCK_SPI  
SDA_I2C1/SDI_SPI  
EN_DRV  
Not to scale  
Figure 7-1. 56-Pin RWE (VQFNP) Package, 0.5-mm Pitch, With Thermal Pad (Top View)  
Table 7-1. Pin Attributes  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NAME  
NO.  
STEP-DOWN CONVERTERS (BUCKs)  
Output voltage-sense (feedback) input for BUCK1 or differential voltage-  
sense (feedback) positive input for BUCK12/123/1234 in multi-phase  
configuration.  
FB_B1  
FB_B2  
22  
21  
I
I
Ground  
Ground  
Output voltage-sense (feedback) input for BUCK2 or differential voltage-  
sense (feedback) negative input for BUCK12/123/1234 in multi-phase  
configuration.  
Output voltage-sense (feedback) input for BUCK3 or differential voltage-  
sense (feedback) positive input for BUCK34 in dual-phase configuration.  
FB_B3  
FB_B4  
49  
50  
I
I
Ground  
Ground  
Output voltage-sense (feedback) input for BUCK4 or differential voltage-  
sense (feedback) negative input for BUCK34 in dual-phase configuration.  
FB_B5  
37  
26  
17  
45  
54  
I
I
I
I
I
Output voltage-sense (feedback) input for BUCK5  
Power input for BUCK1  
Ground  
VCCA  
VCCA  
VCCA  
VCCA  
PVIN_B1  
PVIN_B2  
PVIN_B3  
PVIN_B4  
Power input for BUCK2  
Power input for BUCK3  
Power input for BUCK4  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NAME  
NO.  
35  
27  
28  
15  
16  
43  
44  
55  
56  
34  
PVIN_B5  
SW_B1  
SW_B1  
SW_B2  
SW_B2  
SW_B3  
SW_B3  
SW_B4  
SW_B4  
SW_B5  
I
Power input for BUCK5  
Switch node of BUCK1  
Switch node of BUCK1  
Switch node of BUCK2  
Switch node of BUCK2  
Switch node of BUCK3  
Switch node of BUCK3  
Switch node of BUCK4  
Switch node of BUCK4  
Switch node of BUCK5  
VCCA  
O
O
O
O
O
O
O
O
O
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
Floating  
LOW-DROPOUT REGULATORS  
PVIN_LDO3  
PVIN_LDO4  
PVIN_LDO12  
VOUT_LDO1  
VOUT_LDO2  
VOUT_LDO3  
VOUT_LDO4  
10  
8
I
Power input voltage for LDO3 regulator  
Power input voltage for LDO4 regulator  
Power input voltage for LDO1 and LDO2 regulator  
LDO1 output voltage  
VCCA  
VCCA  
I
12  
13  
11  
9
I
VCCA  
O
O
O
O
Floating  
Floating  
Floating  
Floating  
LDO2 output voltage  
LDO3 output voltage  
7
LDO4 output voltage  
LOW-DROPOUT REGULATORS (INTERNAL)  
LDOVINT output for connecting to the filtering capacitor. Not for external  
loading.  
VOUT_LDOVINT  
2
3
O
O
LDOVRTC output for connecting to the filtering capacitor. Not for external  
loading.  
VOUT_LDOVRTC  
CRYSTAL OSCILLATOR  
OSC32KCAP  
Filtering capacitor for the 32 KHz crystal Oscillator, connected to VRTC  
through an internal 100 Ω resistor.  
40  
O
Floating  
OSC32KIN  
38  
39  
I
32-KHz crystal oscillator input  
32-KHz crystal oscillator output  
Ground  
Floating  
OSC32KOUT  
SYSTEM CONTROL  
AMUXOUT  
O
1
O
O
Buffered bandgap output  
Floating  
Floating  
Enable Drive output pin to indicate the device entering safe state (set low  
when ENABLE_DRV bit is '0').  
EN_DRV  
29  
Primary function: General-purpose input(1) and output  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SCL_I2C2, which is the Q&A WatchDog I2C serial  
clock (external pull-up).  
I
Ground  
Ground  
Floating  
I
Alternative function: CS_SPI, which is the SPI chip enable signal.  
GPIO1  
32  
Alternative function: nRSTOUT_SoC, which is the SoC reset or power on  
output (Active Low).  
O
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
I
Ground  
Ground  
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
www.ti.com  
NAME  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
Table 7-1. Pin Attributes (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NO.  
Primary function: General-purpose input(1) and output  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SDA_I2C2, which is the Q&A WatchDog I2C serial  
bidirectional data (external pull-up).  
I/O  
Ground  
Floating  
Ground  
O
I
Alternative function: SDO_SPI, which is the SPI output data signal.  
GPIO2  
33  
Alternative function: TRIG_WDOG, which is the watchdog trigger input  
signal for Watchdog Trigger mode.  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
I
Ground  
Ground  
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: nERR_SoC, which is the system error count down  
input signal from the SoC (Active Low).  
I
Floating  
Floating  
Ground  
Alternative function: CLK32KOUT, which is the output of the 32 KHz  
crystal oscillator clock.  
O
GPIO3  
46  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: LP_WKUP1 or LP_WKUP2, which are capable of  
processing a wake-up request for the device to go to higher power states  
while the device is in LP STANDBY state. They can also be used as  
I
Ground  
regular WKUP1 or WKUP2 pins while the device is in mission states.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: CLK32KOUT, which is the output of the 32 KHz  
crystal oscillator clock.  
O
Floating  
Ground  
GPIO4  
47  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: LP_WKUP1 or LP_WKUP2, which are capable of  
processing a wake-up request for the device to go to higher power states  
while the device is in LP STANDBY state. They can also be used as  
I
Ground  
regular WKUP1 or WKUP2 pins while the device is in mission states.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SCLK_SPMI, which is the Multi-PMIC SPMI serial  
I/O interface clock signal. It's an output pin for the master SPMI device, and  
an input pin for the slave SPMI device.  
Floating  
GPIO5  
23  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Ground  
Ground  
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 7-1. Pin Attributes (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NAME  
NO.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SDATA_SPMI, which is the Multi-PMIC SPMI serial  
interface bidirectional data signal.  
I/O  
Floating  
Ground  
Ground  
GPIO6  
24  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Primary function: General-purpose input (1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: nERR_MCU, which is the system error count down  
input signal from the MCU (Active Low).  
I
Floating  
Ground  
Ground  
GPIO7  
18  
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SYNCCLKOUT, which is a clock output synchronized  
to the switching clock signals for the bucks in the device.  
O
Floating  
Floating  
Floating  
Ground  
Ground  
Alternative function: DISABLE_WDOG, which is the input to disable the  
watchdog monitoring function.  
I
GPIO8  
41  
Alternative function: CLK32KOUT, which is the output of the 32 KHz  
crystal oscillator clock.  
O
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: PGOOD, which is the indication signal for valid  
regulator output voltages and currents  
O
Floating  
Floating  
Floating  
Ground  
Ground  
Alternative function: SYNCCLKOUT, which is the internal fallback  
switching clock for BUCK.  
O
GPIO9  
19  
Alternative function: DISABLE_WDOG, which is the input to disable the  
watchdog monitoring function.  
I
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
www.ti.com  
NAME  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
Table 7-1. Pin Attributes (continued)  
PIN  
CONNECTION IF  
NOT USED  
I/O  
DESCRIPTION  
NO.  
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: SYNCCLKIN, which is the external switching clock  
input for BUCK.  
I
Floating  
Floating  
Floating  
Ground  
Ground  
Alternative function: SYNCCLKOUT, which is the internal fallback  
switching clock for BUCK.  
O
GPIO10  
42  
Alternative function: CLK32KOUT, which is the output of the 32 KHz  
crystal oscillator clock.  
O
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Primary function: General-purpose input(1) and output.  
I/O When configured as an output pin, it can be included as part of the power  
sequencer output signal to enable an external regulator.  
Input: Ground  
Output: Floating  
Alternative function: TRIG_WDOG, which is the watchdog trigger input  
signal for Watchdog Trigger mode.  
I
Ground  
Floating  
Ground  
GPIO11  
53  
Alternative function: nRSTOUT_SoC, which is the SoC reset or power on  
output (Active Low).  
O
Alternative function: nSLEEP1 or nSLEEP2, which are the sleep request  
signals for the device to go to lower power states (Active Low).  
I
Alternative function: WKUP1 or WKUP2, which are the wake-up request  
signals for the device to go to higher power states.  
I
Ground  
Floating  
Floating  
nINT  
14  
20  
O
I
Maskable interrupt output request to the host processor (Active Low)  
NPWRON_SEL = '0': ENABLE- Level sensitive input pin to power up the  
device, with configurable polarity  
nPWRON/ENABLE  
NPWRON_SEL = '1': nPWRON - Active low edge sensitive button press  
pin to power up the device  
I
Ground  
OVPGDRV  
nRSTOUT  
52  
25  
O
O
I
Gate drive output for input over voltage protection FET  
Floating  
Floating  
Ground  
Ground  
MCU reset or power on reset output (Active Low)  
If SPI is the default interface: SCL_I2C1 - I2C serial clock (external pullup)  
If I2C is the default interface: CLK_SPI - SPI clock signal  
SCL_I2C1/SCK_SPI  
SDA_I2C1/SDI_SPI  
31  
30  
I
If SPI is the default interface: SDA_I2C1 - I2C serial bidirectional data  
(external pullup)  
I/O  
I
Ground  
Ground  
If I2C is the default interface: SDI_SPI - SPI input data signal  
POWER SUPPLIES AND REFERENCE GROUNDS  
Power Ground, which is also the thermal pad of the package. Connect to  
PCB ground planes with multiple vias.  
PGND/ThermalPad  
REFGND1  
REFGND2  
VBACKUP  
VCCA  
5
6
System reference ground  
System reference ground  
36  
4
I
I
I
I
Backup power source input pin  
Ground  
Analog input voltage for the internal LDOs and other internal blocks  
Digital supply input for GPIOs and I/O supply voltage  
Analog input sense pin  
VIO_IN  
48  
51  
VSYS_SENSE  
Ground  
(1) Default option before NVM settings are loaded into the device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
7.1 Digital Signal Descriptions  
Table 7-2. Signal Descriptions  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
SIGNAL  
NAME  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Bits  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
nPWRON  
(Selectable  
function of  
nPWRON/  
VIL(VCCA),  
VIH(VCCA)  
400 kΩ PU to  
VCCA  
Input  
VRTC  
VRTC  
50 ms  
None  
None  
NPWRON_SEL  
ENABLE pin)  
(1)  
NPWRON_SEL  
ENABLE_POL  
ENABLE_DEGLITCH  
_EN  
ENABLE_PU_PD_E  
N
ENABLE  
(Selectable  
function of  
nPWRON/  
400 kΩ SPU to  
VCCA, or  
400 kΩ SPD to  
GND  
VIL(VCCA),  
VIH(VCCA)  
Input  
8 µs  
ENABLE pin)  
(1)  
ENABLE_PU_SEL  
VCCA/  
PVIN_B1  
10 kΩ High-side  
to VCCA  
EN_DRV  
Output  
Input  
VOL(EN_DRV)  
PP  
None  
ENABLE_DRV  
SCL_I2C1  
(Selectable  
function of  
SCL_I2C1/  
SCK_SPI  
pin)(1)  
High-speed mode:  
10 ns  
All other modes:  
50 ns  
VIL(DIG),  
VIH(DIG)  
I2C_SPI_SEL(6)  
I2C1_HS  
VINT  
VINT  
None  
None  
PU to VIO  
SDA_I2C1  
(Selectable  
function of  
SDA_I2C1/  
High-speed mode:  
10 ns  
All other modes:  
50 ns  
VIL(DIG),  
VIH(DIG),  
VOL(VIO)_20mA  
I2C_SPI_SEL(6)  
I2C1_HS  
Input/output  
VIO  
OD  
PU to VIO  
SDI_SPI pin)  
(1)  
SCL_I2C2  
(Selectable  
function of  
GPIO1)(1)  
High-speed mode:  
10 ns  
All other modes:  
50 ns  
I2C_SPI_SEL(6)  
I2C2_HS  
GPIO1_SEL  
VIL(DIG),  
VIH(DIG)  
Input  
VINT  
VINT  
None  
None  
PU to VIO  
PU to VIO  
SDA_I2C2  
(Selectable  
function of  
GPIO2)(1)  
High-speed mode:  
10 ns  
All other modes:  
50 ns  
VIL(DIG),  
VIH(DIG),  
VOL(VIO)_20mA  
I2C_SPI_SEL(6)  
I2C2_HS  
GPIO2_SEL  
Input/output  
VIO  
OD  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
SIGNAL  
NAME  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
SCK_SPI  
(Selectable  
function of  
SCL_I2C1/  
SCK_SPI  
pin)(1)  
VIL(DIG),  
VIH(DIG)  
Input  
VINT  
None  
None  
None  
None  
None  
I2C_SPI_SEL(6)  
I2C_SPI_SEL(6)  
SDI_SPI  
(Selectable  
function of  
SDA_I2C1/  
VIL(DIG),  
VIH(DIG)  
Input  
VINT  
VINT  
None  
None  
SDI_SPI pin)  
(1)  
CS_SPI  
(Selectable  
function of  
GPIO1)(1)  
VIL(DIG),  
VIH(DIG)  
I2C_SPI_SEL(6)  
GPIO1_SEL  
Input  
None  
None  
None  
None  
None  
SDO_SPI  
(Selectable  
function of  
GPIO2)(1)  
VOL(VIO)_20mA,  
VOH(VIO)  
I2C_SPI_SEL(6)  
GPIO2_SEL  
Output  
VIO  
PP(3) / HiZ  
SCLK_SPMI  
(Configurable  
function of  
Input in Slave  
Mode  
Output in  
VIL(DIG),  
VIH(DIG),  
VOL(DIG)_20mA,  
VOH(DIG)  
400 kΩ PD to  
GND  
GPIO5_SEL  
GPIO5_PU_PD_EN  
VINT  
VINT  
None  
None  
VINT  
PP  
GPIO5)(1)  
Master Mode  
SDATA_SPM  
I
(Configurable  
function of  
GPIO6)(1)  
VIL(DIG),  
VIH(DIG),  
VOL(DIG)_20mA,  
VOH(DIG)  
400 kΩ PD to  
GND  
GPIO6_SEL  
GPIO6_PU_PD_EN  
Input/output  
VINT  
PP / HiZ  
OD  
None  
nINT  
Output  
Output  
VOL(nINT)  
VCCA  
None  
PU to VCCA  
10 kΩ Pull-Up to  
VCCA/  
VIO  
PU to VIO if Open-drain  
(driven low if no VINT)  
nRSTOUT  
VOL(nRSTOUT)  
PP(3) or OD VIO if configured  
as Push-Pull  
NRSTOUT_OD  
nRSTOUT_S  
oC  
(Configurable  
function of  
GPIO1 and  
GPIO11)(1)  
GPIO1_SEL  
GPIO1_OD  
GPIO11_SEL  
GPIO11_OD  
10 kΩ Pull-Up to  
PP(3) or OD VIO if configured  
as Push-Pull  
VCCA/  
VIO  
PU to VIO if Open-drain  
(driven low if no VINT)  
Output  
VOL(nRSTOUT)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
SIGNAL  
NAME  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Bits  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
GPIO9_SEL  
GPIO9_OD  
PGOOD_POL  
PGOOD_WINDOW  
PGOOD_SEL_x  
PGOOD  
(Configurable  
function of  
GPIO9)(1)  
VOL(VIO),  
VOH(VIO)  
Output  
VIO  
PP(3) or OD  
None  
PU to VIO if Open-drain  
nERR_MCU  
(Configurable  
function of  
VIL(DIG),  
VIH(DIG)  
400 kΩ PD to  
GND  
Input  
Input  
VINT  
8 µs  
None  
None  
GPIO7_SEL  
GPIO3_SEL  
GPIO7)(1)  
nERR_SoC  
(Configurable  
function of  
GPIO3)(1)  
VIL(DIG),  
VIH(DIG)  
400 kΩ PD to  
GND  
VRTC  
15 µs  
DISABLE_W  
DOG  
(Configurable  
function of  
GPIO8 and  
GPIO9)(1)  
VIL(DIG),  
VIH(DIG)  
400 kΩ PD to  
GND  
GPIO8_SEL  
GPIO9_SEL  
Input  
Input  
VINT  
VINT  
30 µs  
30 µs  
PU to VIO  
TRIG_WDOG  
(Configurable  
function of  
GPIO2_SEL  
GPIO2_PU_PD_EN  
GPIO11_SEL  
VIL(DIG),  
VIH(DIG)  
400 kΩ SPD to  
GND  
None  
GPIO2 and  
GPIO11_PU_PD_EN  
GPIO11)(1)  
GPIO3 or 4:  
400 kΩ SPU to  
VRTC  
GPIO5 or 6:  
400 kΩ SPU to  
VINT  
all other GPIOs:  
400 kΩ SPU to  
VIO  
GPIO3 or  
4:  
VRTC  
other  
GPIOs:  
VINT  
nSLEEP1  
GPIOn_SEL  
(Configurable  
function of all  
GPIO pins)(1)  
VIL(DIG),  
VIH(DIG)  
Input  
8 µs  
None  
GPIOn_PU_PD_EN  
NSLEEP1B  
GPIO3 or 4:  
400 kΩ SPU to  
VRTC  
GPIO5 or 6:  
400 kΩ SPU to  
VINT  
all other GPIOs:  
400 kΩ SPU to  
VIO  
GPIO3 or  
4:  
VRTC  
other  
GPIOs:  
VINT  
nSLEEP2  
GPIOn_SEL  
(Configurable  
function of all  
GPIO pins)(1)  
VIL(DIG),  
VIH(DIG)  
Input  
8 µs  
None  
GPIOn_PU_PD_EN  
NSLEEP2B  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
SIGNAL  
NAME  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
GPIO5 or 6:  
400 kΩ SPU to  
VINT or  
400 kΩ SPD to  
GND  
all other GPIOs:  
400 kΩ SPU to  
VIO or  
400 kΩ SPD to  
GND  
WKUP1  
(Configurable  
function of all  
GPIO pins  
except  
GPIOn_SEL  
GPIOn_DEGLITCH_  
EN  
GPIOn_PU_PD_EN  
GPIOn_PU_SEL  
VIL(DIG),  
VIH(DIG)  
Input  
VINT  
8 µs  
None  
GPIO3 and  
GPIO4)(1)  
GPIO5 or 6:  
400 kΩ SPU to  
VINT or  
400 kΩ SPD to  
GND  
all other GPIOs:  
400 kΩ SPU to  
VIO or  
400 kΩ SPD to  
GND  
WKUP2  
(Configurable  
function of all  
GPIO pins  
except  
GPIOn_SEL  
GPIOn_DEGLITCH_  
EN  
GPIOn_PU_PD_EN  
GPIOn_PU_SEL  
VIL(DIG),  
VIH(DIG)  
Input  
VINT  
8 µs  
None  
GPIO3 and  
GPIO4)(1)  
GPIO3,4_SEL  
GPIO3,4_DEGLITCH  
_EN  
GPIO3,4_PU_PD_E  
N
LP_WKUP1  
(Configurable  
function of  
GPIO3 and  
GPIO4)(1)  
400 kΩ SPU to  
VRTC, or  
400 kΩ SPD to  
GND  
8 µs,  
no degltch in  
LP_STANDBY state  
VIL(DIG),  
VIH(DIG)  
Input  
Input  
VRTC  
VRTC  
None  
None  
GPIO3,4_PU_SEL  
GPIO3,4_SEL  
GPIO3,4_DEGLITCH  
_EN  
GPIO3,4_PU_PD_E  
N
LP_WKUP2  
(Configurable  
function of  
GPIO3 and  
GPIO4)(1)  
400 kΩ SPU to  
VRTC, or  
400 kΩ SPD to  
GND  
8 µs,  
no degltch in  
LP_STANDBY state  
VIL(DIG),  
VIH(DIG)  
GPIO3,4_PU_SEL  
GPIO1_DIR  
Input:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO)_20mA,  
VOH(VIO)  
400 kΩ SPU to  
VIO, or  
400 kΩ SPD to  
GND  
GPIO1_DEGLITCH_  
EN  
GPIO1_PU_PD_EN  
GPIO1_PU_SEL  
Output:  
PU to VIO  
if Open-drain  
GPIO1  
Input/output  
VINT  
8 µs  
VIO  
PP(3) or OD  
GPIO1_OD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
SIGNAL  
NAME  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Bits  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
GPIO2_DIR  
Input:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO)_20mA,  
VOH(VIO)  
400 kΩ SPU to  
VIO, or  
400 kΩ SPD to  
GND  
GPIO2_DEGLITCH_  
EN  
GPIO2_PU_PD_EN  
GPIO2_PU_SEL  
Output:  
PU to VIO  
if Open-drain  
GPIO2  
Input/output  
VINT  
VRTC  
VRTC  
VINT  
VINT  
8 µs  
VIO  
PP(3) or OD  
PP or OD  
PP or OD  
PP or OD  
PP or OD  
GPIO2_OD  
GPIO3_DIR  
Input:  
GPIO3_DEGLITCH_  
EN  
GPIO3_PU_PD_EN  
GPIO3_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(DIG),  
VOH(DIG)  
400 kΩ SPU to  
VINT, or  
400 kΩ SPD to  
GND  
PU to VIO  
if Open-drain  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
Input/output  
Input/output  
Input/output  
Input/output  
8 µs  
8 µs  
8 µs  
8 µs  
VINT  
VINT  
VINT  
VINT  
GPIO3_OD  
GPIO4_DIR  
Input:  
GPIO4_DEGLITCH_  
EN  
GPIO4_PU_PD_EN  
GPIO4_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(DIG),  
VOH(DIG)  
400 kΩ SPU to  
VINT, or  
400 kΩ SPD to  
GND  
PU to VIO  
if Open-drain  
GPIO4_OD  
GPIO5_DIR  
Input:  
GPIO5_DEGLITCH_  
EN  
GPIO5_PU_PD_EN  
GPIO5_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(DIG)_20mA,  
VOH(DIG)  
400 kΩ SPU to  
VINT, or  
400 kΩ SPD to  
GND  
PU to VIO  
if Open-drain  
GPIO5_OD  
GPIO6_DIR  
Input:  
GPIO6_DEGLITCH_  
EN  
GPIO6_PU_PD_EN  
GPIO6_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(DIG)_20mA,  
VOH(DIG)  
400 kΩ SPU to  
VINT, or  
400 kΩ SPD to  
GND  
PU to VIO  
if Open-drain  
GPIO6_OD  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
SIGNAL  
NAME  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
Bits  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
GPIO7_DIR  
Input:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩ SPU to  
VIO, or  
400 kΩ SPD to  
GND  
GPIO7_DEGLITCH_  
EN  
GPIO7_PU_PD_EN  
GPIO7_PU_SEL  
Output:  
PU to VIO  
if Open-drain  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
Input/output  
VINT  
VINT  
VINT  
VINT  
VINT  
8 µs  
VIO  
VIO  
VIO  
VIO  
VIO  
PP(3) or OD  
PP(3) or OD  
P(3)P or OD  
PP(3) or OD  
PP(3) or OD  
GPIO7_OD  
GPIO8_DIR  
Input:  
GPIO8_DEGLITCH_  
EN  
GPIO8_PU_PD_EN  
GPIO8_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩ SPU to  
VIO, or  
400 kΩ SPD to  
GND  
PU to VIO  
if Open-drain  
Input/output  
Input/output  
Input/output  
Input/output  
8 µs  
8 µs  
8 µs  
8 µs  
GPIO8_OD  
GPIO9_DIR  
Input:  
GPIO9_DEGLITCH_  
EN  
GPIO9_PU_PD_EN  
GPIO9_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩ SPU to  
VIO, or  
400 kΩ SPD to  
GND  
PU to VIO  
if Open-drain  
GPIO9_OD  
GPIO10_DIR  
Input:  
GPIO10_DEGLITCH  
_EN  
GPIO10_PU_PD_EN  
GPIO10_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩ SPU to  
VIO, or  
400 kΩ SPD to  
GND  
PU to VIO  
if Open-drain  
GPIO10_OD  
GPIO11_DIR  
Input:  
GPIO11_DEGLITCH_  
EN  
GPIO11_PU_PD_EN  
GPIO11_PU_SEL  
Output:  
VIL(DIG),  
VIH(DIG),  
VOL(VIO),  
VOH(VIO)  
400 kΩ SPU to  
VIO, or  
400 kΩ SPD to  
GND  
PU to VIO  
if Open-drain  
GPIO11_OD  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 7-2. Signal Descriptions (continued)  
INPUT TYPE SELECTION  
OUTPUT TYPE SELECTION  
SIGNAL  
NAME  
Internal PU/  
PD(2)  
RECOMMENDED  
Control Register  
I/O  
Threshold Level  
EXTERNAL PU/PD(2)  
Bits  
Power  
Power  
Push-pull/  
DEGLITCH TIME(5)  
Domain  
Domain  
Open-drain(4)  
SYNCCLKIN  
(Configurable  
function of  
VIL(DIG),  
VIH(DIG)  
400 kΩ SPD to  
GND  
GPIO10_SEL  
GPIO10_PU_PD_EN  
Input  
VINT  
None  
None  
None  
GPIO10)(1)  
SYNCCLKO  
UT  
(Configurable  
function of  
GPIO8,  
GPIO8_SEL  
GPIO9_SEL  
GPIO10_SEL  
VOL(VIO),  
VOH(VIO)  
Output  
Output  
VIO  
PP(3)  
None  
None  
GPIO9, and  
GPIO10)(1)  
CLK32KOUT  
(Configurable  
function of  
GPIO3,  
GPIO3 or 4:  
VOL(DIG),  
VOH(DIG)  
GPIO8 or 10:  
VOL(VIO),  
VOH(VIO)  
GPIO3 or 4:  
VRTC  
GPIO8 or 10:  
VIO  
GPIO3_SEL  
GPIO4_SEL  
GPIO8_SEL  
GPIO10_SEL  
PP(3)  
None  
GPIO4,  
GPIO8, and  
GPIO10)(1)  
(1) Configurable function through NVM register setting.  
(2) PU = Pullup, PD = Pulldown, SPU = Software-configurable pullup, SPD = Software-configurable pulldown.  
(3) When VIO is not available, the push-pull pin should be configured as low output to minimize current leakage from the IO cell.  
(4) PP = Push-pull, OD = Open-drain.  
(5) Deglitch time is only applicable when option is enabled.  
(6) I2C_SPI_SEL refers to NVM setting and cannot be override during operation.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8 Specifications  
8.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted). Voltage level is with reference to the thermal/ground  
pad of the device.(1)  
POS  
MIN  
–0.3  
–0.3  
–0.3  
MAX UNIT  
M1.1  
Voltage on power supply sense pin  
Voltage on overvoltage (OV) gate drive  
Voltage on OV protected supply input pin  
VSYS_SENSE  
OVPGDRV(2)  
VCCA(3)  
12.5  
12.5  
6
V
V
V
M1.2  
M1.3  
Voltage on all buck supply voltage input  
pins  
M1.4  
PVIN_Bx(3)  
–0.3  
–0.5  
–0.3  
6
V
V
V
Voltage difference between supply input  
pins  
M1.4a  
M1.5a  
Between VCCA and each PVIN_Bx  
SW_Bx pins  
0.5  
PVIN_Bx + 0.3  
V, up to 6 V  
Voltage on all buck switch nodes  
M1.5b  
M1.6  
M1.7  
SW_Bx pins, 10-ns transient  
FB_Bx  
–2  
–0.3  
–0.3  
10  
4
V
V
V
Voltage on all buck voltage sense nodes  
Voltage on all LDO supply voltage input pins PVIN_LDOx(3)  
6
PVIN_LDOx +  
0.3 V, up to 6 V  
M1.8  
M1.9  
M1.10  
Voltage on all LDO output pins  
Voltage on internal LDO output pins  
Voltage on I/O supply pin  
VOUT_LDOx  
–0.3  
–0.3  
–0.3  
V
V
V
VOUT_LDOVINT, VOUT_LDOVRTC  
VIO_IN with respect to ground pad  
2
VCCA + 0.3 V,  
up to 6 V  
Voltage on logic pins (input or output) in VIO I2C and SPI pins, nRSTOUT, and nINT pins, and all  
M1.11  
M1.12  
M1.13  
M1.14  
M1.15  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
6
6
6
6
V
V
V
V
V
domain  
GPIO output buffers except GPO5 & GPO6  
Voltage on logic pins (input or output) in  
LDOVINT domain  
GPO5 & GPO6, and all GPIO input buffers except  
GPI3 & GPI4  
Voltage on logic pins (input) in LDOVRTC  
domain  
GPI3 & GPI4  
Voltage on logic pins (input or output) in  
VCCA domain  
nPWRON/ENABLE & EN_DRV  
AMUXOUT  
VCCA + 0.3 V,  
up to 6 V  
Voltage on analog mux output pin  
M1.16  
M1.17  
M1.18  
M2.1a  
M2.1b  
M2.2  
Voltage on back-up power supply input  
Voltage on crystal oscillator pins  
Voltage on REFGND pins  
VBACKUP  
–0.3  
–0.3  
–0.3  
6
2
V
V
V
OSC32KIN, OSC32KOUT, & OSC32KCAP  
REFGND1 & REFGND2  
0.3  
VCCA, PVIN_Bx (voltage below 2.7 V)  
VIO (only when VCCA < 2 V)  
Between VSYS_SENSE & VCCA  
All pins other than power resources  
60 mV/µs  
60 mV/µs  
Voltage rise slew-rate on input supply pins  
Current through input protection FET  
15  
20  
A
M2.3a  
mA  
Buck1/2/3/4 regulators: PVIN_Bx and SW_Bx per  
phase  
M2.3b  
Peak output current  
5
A
M2.3c  
M2.4a  
Buck5 regulator: PVIN_B5 and SW_B5  
GPIOx pins, source current  
3
3
A
mA  
GPIO1/2/5/6, SDA_I2C1/SDI_SPI, EN_DRV, nINT,  
and nRSTOUT pins, sink current  
M2.4b  
8
mA  
Average output current, 100 k hour, TJ =  
M2.4c  
M2.4d  
M2.4e  
M3  
125  
GPIO3/4/7/8/9/10/11 pins, sink current  
LDO1/2/3 regulators  
3
350  
210  
160  
150  
mA  
mA  
mA  
°C  
LDO4 regulators  
Junction temperature, TJ  
Storage temperature, Tstg  
–45  
–65  
M4  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at conditions beyond those indicated under Recommended Operating  
Conditions. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.  
(2) The voltage at OVPGDRV can exceed the 12 V absolute max condition for a short period of time in the case of steep rising of the  
voltage at the VSYS_SENSE pin, but must remain less than 14 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS6594-Q1  
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
(3) The voltage at VCCA and PVIN pins can exceed the 6 V absolute max condition for a short period of time, but must remain less than 8  
V. VCCA at 8 V for a 100 ms duration is equivalent to approximately 8 hours of aging for the device at room temperature.  
8.2 ESD Ratings  
POS  
M5  
M6  
VALUE  
UNIT  
Electrostatic  
discharge  
V(ESD)  
V(ESD)  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
±2000  
V
Electrostatic  
discharge  
±500  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordancewith the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted). Voltage leve is in reference to the thermal/ground pad of  
the device.  
POS  
MIN  
VCCA_UV  
0
NOM  
MAX UNIT  
R1.1  
Voltage on power supply sense pin  
Voltage on OV gate drive  
VSYS_SENSE  
OVPGDRV  
5.5  
12  
V
V
V
V
V
V
V
V
V
V
V
V
R1.2  
R1.3  
Voltage on OV protected supply input pin  
Voltage on all buck supply input pins  
Voltage difference between supply input pins  
Voltage on all buck switch nodes  
VCCA  
VCCA_UV  
2.8  
5.5  
R1.4  
PVIN_Bx  
5.5  
R1.4a  
R1.5  
Between VCCA and each PVIN_Bx  
SW_Bx pins  
–0.2  
0.2  
3.3  
5.5  
R1.6  
Voltage on all buck voltage sense nodes(1)  
FB_Bx  
0
1.2  
2.2  
0
VOUT_Bn,max  
VCCA  
VCCA  
3.3  
R1.7a  
R1.7b  
R1.8  
PVIN_LDO12, PVIN_LDO3  
PVIN_LDO4  
3.3  
3.3  
Voltage on all LDO supply voltage input pins  
Voltage on all LDO output pins(1)  
Voltage on internal LDO output pins  
Voltage on reference ground pins  
VOUT_LDOx  
R1.9  
VOUT_LDOVINT, VOUT_LDOVRTC  
REFGNDx  
1.65  
–0.3  
1.7  
1.95  
R1.10  
R1.11  
0.3  
VVIO_IN = 1.8 V  
1.8  
3.3  
1.9  
Voltage on I/O supply pin  
V
V
VCCA, up to  
3.465V  
R1.12  
R1.13  
VVIO_IN = 3.3 V  
3.135  
0
I2C and SPI pins, nRSTOUT & nRSTOUT_SoC  
pins, GPIO1, GPIO2, GPIO7, GPIO8, GPIO9,  
GPIO10, and GPIO11 pins  
Voltage on logic pins (input or output) in VIO  
domain  
VVIO_IN  
VVIO_IN,max  
Full Battery, up  
to 5.5V  
R1.14  
R1.15  
R1.16  
R1.17  
R1.18  
Voltage on backup supply pin  
Voltage on crystal oscillator pins  
VBACKUP  
0
0
0
0
0
V
V
V
V
V
VOUT_LDOVRTC,  
OSC32KIN, OSC32KOUT, OSC32KCAP  
With fail-safe(3): GPIO3 & GPIO4  
With fail-safe(3): GPIO5 & GPIO6  
nPWRON/ENABLE, EN_DRV  
max  
Voltage on logic pins (input or output) in  
LDOVRTC domain  
VOUT_LDOVRTC,  
1.8  
1.8  
max  
Voltage on logic pins (input or output) in  
LDOVINT domain  
VOUT_LDOVINT,m  
ax  
Voltage on logic pins (input or output) in VCCA  
domain  
VVCCA  
R1.19  
R1.20  
Operating free-air temperature(2)  
Junction temperature, TJ  
–40  
–40  
25  
25  
125  
150  
°C  
°C  
Operational  
(1) The maximum output voltage of BUCK1 to BUCK5 and LDO1 to LDO4 can be reduced by an NVM setting to adopt the maximum  
voltage to the requirements (or maximum ratings) of the load. This protects the processor from exceeding the maximum ratings of the  
core voltage. The default value is defined in the nonvolatile memory (NVM) and can be updated by software through I2C/SPI interface  
after device startup.  
(2) Additional cooling strategies may be necessary to keep junction temperature at recommended limits.  
(3) The input buffer of a fail-safe GPIO pin is isolated from its input signal. Therefore the input voltage to a fail-safe pin can be as high as  
5.5 V.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.4 Thermal Information  
TPS6594-Q1  
THERMAL METRIC(1)  
RWE (VQFNP)  
UNIT  
56 PINS  
21.5  
9.5  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
6.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
6.2  
RθJC(bot)  
0.7  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.5 General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad  
of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
Connected from PVIN_LDOn to GND, Shared input  
tank capacitance (depending on platform requirements)  
1.1a  
CIN(LDOn)  
Input filtering capacitance(1)  
1
1
2.2  
2.2  
µF  
Output filtering effective  
capacitance(2)  
1.1b  
1.1c  
1.1d  
1.2a  
1.2b  
COUT(LDOn)  
Connected from VOUT_LDOn to GND  
1 MHz ≤ f ≤ 10 MHz  
1 MHz ≤ f ≤ 10 MHz  
LDO mode  
4
20  
µF  
mΩ  
µF  
V
CESR (LDOn) Filtering capacitor ESR(3)  
COUT_TOTAL (L Total capacitance at output  
DOn)  
20  
(Local + POL)(5)  
VIN(LDOn)  
LDO Input voltage  
1.2  
1.7  
VCCA  
VIN(LDOn)_bypas LDO Input voltage in bypass  
VCCA,  
upto 3.6 V  
Bypass mode  
V
mode  
s
LDO output voltage  
VOUT(LDOn)  
1.3  
LDO mode, with 50-mV steps  
0.6  
3.3  
1%  
V
configurable range  
Total DC output voltage  
accuracy, including voltage  
LDO mode, VIN(LDOn) - VOUT(LDOn) > 300 mV,  
VOUT(LDOn) ≥ 1V  
1.4a  
–1%  
TDCOV(LDOn)  
references, DC load and  
line regulations, process and  
temperation variations  
LDO mode, VIN(LDOn) - VOUT(LDOn) > 300 mV, VOUT(LDOn)  
< 1V  
1.4b  
–10  
700  
10  
mV  
1.6  
1.7  
IOUT(LDOn)  
Output current  
VIN(LDOn)min ≤ VIN(LDOn) ≤ VIN(LDOn)max  
LDO mode and bypass mode  
LDOn_BYPASS = 0  
500  
1800  
1500  
mA  
mA  
ISHORT(LDOn)  
LDO current limitation  
1.8a  
IIN_RUSH(LDOn) LDO inrush current  
mA  
LDOx_BYPASS = 1, with maximum 50-µF load  
connected to VOUT_LDOn  
1500  
65  
Pulldown discharge resistance Active only when converter is disabled. Also applies to  
at LDO output bypass mode. LDOn_PLDN = '00'  
1.11a RDIS(LDOn)  
1.11b RDIS(LDOn)  
1.11c RDIS(LDOn)  
1.11d RDIS(LDOn)  
1.12a  
35  
60  
50  
125  
250  
500  
60  
kΩ  
Ω
Pulldown discharge resistance Active only when converter is disabled. Also applies to  
at LDO output bypass mode. LDOn_PLDN = '01'  
200  
400  
800  
Pulldown discharge resistance Active only when converter is disabled. Also applies to  
at LDO output bypass mode. LDOn_PLDN = '10'  
120  
240  
Ω
Pulldown discharge resistance Active only when converter is disabled. Also applies to  
at LDO output  
Ω
bypass mode. LDOn_PLDN = '11'  
f = 1 kHz, VIN(LDOx) = 3.3 V, VOUT = 2.8 V, IOUT = 500  
mA  
f = 10 kHz, VIN(LDOx) = 3.3 V, VOUT = 2.8 V, IOUT = 500  
mA  
1.12b  
50  
Power supply ripple rejection  
from VIN(LDOn)  
PSRRVIN(LDOn)  
dB  
f = 100 kHz, VIN(LDOx) = 3.3 V, VOUT = 2.8 V, IOUT = 500  
mA  
1.12c  
1.12d  
1.13  
35  
f = 1 MHz, VIN(LDOx) = 3.3 V, VOUT = 2.8 V, IOUT = 500  
mA  
24  
For LDO1, LDO2, & LDO3, VCCA = VIN(LDOn) = 3.3 V,  
TJ = 25°C  
IQoff(LDOn)  
IQon(LDOn)  
TLDR(LDOn)  
Quiescent current, off mode  
2
µA  
µA  
1.14a  
1.14b  
LDOn_BYPASS = 0, ILOAD = 0 mA , TJ = 25°C  
LDOn_BYPASS = 1, ILOAD = 0 mA , TJ = 25°C  
78  
68  
Quiescent current, on mode  
Transient load regulation,  
LDOn_BYPASS = 0, IOUT = 20% to 80% of IOUTmax, tr =  
tf = 1 µs  
1.15  
1.16  
25  
-2  
mV  
(4)  
ΔVOUT  
Transient regulation due to  
Bypass Mode to Linear Mode  
Transition  
TBYPASS_to_LD  
VIN(LDOn) = 3.3V, IOUT=IOUT(LDOn)max, LDOn_BYPASS bit  
switches between 1 and 0  
mV  
O(LDOn)  
100 Hz < f ≤ 100 kHz, VIN = 3.3 V, VOUT = 1.8 V, IOUT  
300 mA  
=
1.17  
1.18  
1.19a  
VNOISE(LDOn)  
RMS Noise  
Ripple  
250  
µVRMS  
mVPP  
From the internal charge pump  
5
3.1 V ≤ VIN(LDOn) ≤ 3.5 V, PVIN_LDOx ≤ VCCA, IOUT  
500 mA, LDOx_BYPASS = 1  
=
200  
RBYPASS(LDOn) Bypass resistance  
mΩ  
1.7 V ≤ VIN(LDOn) ≤ 1.9 V, IOUT = 500 mA,  
LDOn_BYPASS = 1  
1.19c  
250  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.5 General Purpose Low Drop-Out Regulators (LDO1, LDO2, LDO3) (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad  
of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Threshold voltage for Short  
Circuit and Residual Voltage  
Detection  
VTH_SC_RV(LDO  
1.20  
LDOn_EN = 0 and LDOn_RV_SEL = 1  
140  
150  
160  
mV  
n)  
Timing Requirements  
Time between enable of the LDOn to within OV/UV  
monitor level  
19.1  
ton(LDOn)  
Turnon time  
500  
µs  
VOUT from 0.3 V to 90% of LDOn_VSET.  
LDOn_SLOW_RAMP = 0  
19.2a  
19.2b  
25 mV/µs  
tramp(LDOn)  
Ramp up slew rate  
VOUT from 0.3 V to 90% of LDOn_VSET.  
LDOn_SLOW_RAMP = 1  
3
35  
44  
mV/µs  
µs  
19.3a tdelay_OC(LDOn) Over-current detection delay  
Detection singal delay when IOUT > ILIM  
tdeglitch_OC(LDOn Over-current detection signal  
19.3b  
Digital deglitch time for the over-current detection signal  
38  
µs  
deglitch time  
)
tlatency_OC(LDOn Over-current signal total  
19.4  
Total delay from Iout > ILIM to interrupt or PFSM trigger  
79  
µs  
latency time  
)
(1) Input capacitors must be placed as close as possible to the device pins.  
(2) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of  
the capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the outputs of  
regulators.  
(3) Ceramic capacitors recommended  
(4) Load transient voltage must be considered when selecting UV/OV threshold levels for the LDO output  
(5) Additional capacitance, including local and POL, beyond the specifiied value can cause the LDO to become unstable  
8.6 Low Noise Low Drop-Out Regulator (LDO4)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
Connected from PVIN_LDO4 to GND, Shared input  
tank capacitance (depending on platform requirements)  
2.1a  
2.1b  
2.1c  
CIN(LDO4)  
Input filtering capacitance(1)  
Output filtering capacitance(2)  
1
1
2.2  
2.2  
µF  
COUT(LDO4)  
CESR(LDO4)  
Connected from VOUT_LDO4 to GND  
1 MHz ≤ f ≤ 10 MHz  
4
µF  
Input and output capacitor  
ESR(3)  
20  
mΩ  
2.1d  
2.1e  
2.2  
1 MHz ≤ f ≤ 10 MHz, fast ramp  
1 MHz ≤ f ≤ 10 MHz, slow ramp  
15  
30  
µF  
µF  
V
COUT_TOTAL  
Total capacitance at output  
(Local + POL)(4)  
(LDO4)  
VIN(LDO4)  
LDO Input voltage  
2.2  
1.2  
5.5  
LDO output voltage  
configurable range  
2.3  
VOUT(LDO4)  
with 25-mV steps  
3.3  
1%  
V
Total DC output voltage  
accuracy, including voltage  
references, DC load and  
line regulations, process and  
temperature  
2.5  
TDCOV(LDO4)  
VIN(LDO4) - VOUT(LDO4) > 300 mV  
–1%  
400  
2.7  
2.8  
2.9  
IOUT(LDO4)  
Output current  
VIN(LDO4)min ≤ VIN(LDO4) ≤ VIN(LDO4)max  
VIN = 3.3V when LDO is enabled  
300  
900  
650  
mA  
mA  
mA  
ISHORT(LDO4)  
LDO current limit  
IIN_RUSH(LDO4) LDO inrush current  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.6 Low Noise Low Drop-Out Regulator (LDO4) (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
f = 1 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300  
mA  
2.13a  
70  
f = 10 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300  
mA  
2.13b  
2.13c  
2.13d  
2.12a  
2.12b  
2.12c  
2.12d  
2.14  
70  
62  
PSRR(LDO4)  
Power supply ripple rejection  
dB  
f = 100 kHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300  
mA  
f = 1 MHz, VIN(LDO4) = 3.3 V, VOUT = 2.8 V, IOUT = 300  
mA  
15  
Active only when converter is disabled, LDO4_PLDN =  
'00'  
35  
60  
50  
65  
200  
400  
800  
2
kΩ  
Ω
Active only when converter is disabled, LDO4_PLDN =  
'01'  
125  
250  
500  
Pulldown discharge resistance  
at LDO output  
RDIS(LDO4)  
Active only when converter is disabled, LDO4_PLDN =  
'10'  
120  
240  
Ω
Active only when converter is disabled, LDO4_PLDN=  
'11'  
Ω
For all LDO regulators, VCCA = VIN(LDO4) = 3.8 V, TJ =  
25℃  
IQoff(LDO4)  
Leakage current in off mode  
Quiescent current  
µA  
ILOAD = 0 mA ,LDO4 under valid operating condition, TJ  
= 25℃  
2.15  
IQon(LDO4)  
40  
µA  
Transient load regulation,  
ΔVOUT  
VIN(LDO4) = 3.3V, VOUT(LDO4) = 2.80V, IOUT = 20% of  
IOUT_MAX to 80% of IOUT_MAX in 1us, COUT(LDO4) = 2.2uF  
2.16  
TLDR(LDO4)  
TLNR(LDO4)  
VNOISE(LDO4)  
–25  
-25  
25  
mV  
mV  
µVRMS  
Transient line regulation,  
ΔVOUT / VOUT  
On mode, not under dropout condition, VIN step = 600  
mVPP, tr = tf = 10 µs  
2.17  
25  
100 Hz < f ≤ 100 kHz, VIN = 3.3 V, VOUT = 1.8 V, IOUT  
300 mA  
=
2.18  
RMS Noise  
15  
Threshold voltage for Short  
Circuit and Residual Voltage  
Detection  
VTH_SC_RV(LDO  
2.19  
LDO4_EN = 0 and LDO4_RV_SEL = 1  
140  
150  
160  
mV  
4)  
Timing Requirements  
19.11a tSTART(LDO4)  
19.12  
Time from completion of enable command to output  
voltage at 0.5 V  
Start Time  
150  
350  
2.3  
µs  
µs  
Measured from 0.5 V to 90% of  
LDO4_VSET. LDO4_SLOW_RAMP = 0  
a1  
tRAMP(LDO4)  
Ramp Time  
19.12  
Measured from 0.5 V to 90% of  
LDO4_VSET. LDO4_SLOW_RAMP = 1  
ms  
a2  
19.12  
b
VOUT from 0.5 V to 90% of LDO4_VSET.  
LDO4_SLOW_RAMP = 0  
27 mV/µs  
tRAMP_SLEW(LD  
Ramp up slew rate  
O4)  
VOUT from 0.5 V to 90% of LDO4_VSET.  
LDO4_SLOW_RAMP = 1  
19.12c  
3
35  
44  
79  
mV/µs  
µs  
19.13  
a
tdelay_OC(LDO4) Over-current detection delay  
Detection singal delay when IOUT > ILIM  
19.13 tdeglitch_OC(LDO4 Over-current detection signal  
b
Digital deglitch time for the over-current detection signal  
Total delay from Iout > ILIM to interrupt or PFSM trigger  
38  
µs  
deglitch time  
)
tlatency_OC(LDO4 Over-current signal total  
19.14  
µs  
latency time  
)
(1) Input capacitors must be placed as close as possible to the device pins.  
(2) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of  
the capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given dc voltage at the outputs of  
regulators.  
(3) Ceramic capacitors recommended  
(4) Additional capacitance, including local and POL, beyond the specifiied value can cause the LDO to become unstable  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.7 Internal Low Drop-Out Regulators (LDOVRTC, LDOVINT)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
COUT(LDOinternal  
3.1  
Output filtering capacitance(1)  
Connected from VOUT_LDOx to GND  
1
2.2  
4
µF  
)
3.3a  
3.3b  
3.7a  
3.7b  
VOUT(LDOVRTC)  
LDOVRTC  
1.8  
1.8  
V
V
LDO output voltage  
VOUT(LDOVINT)  
LDOVINT  
LDOVRTC, VCCA = 3.3 V, TJ = 25℃  
LDOVINT, VCCA = 3.3 V, TJ = 25℃  
2
2
IQoff(LDOinternal) Leakage current, off mode  
IQon(LDOinternal) Quiescent current, on mode  
µA  
LDOVRTC under valid operating condition, ILOAD = 0  
mA  
3.8a  
3.8b  
3.9  
3
3
10  
10  
µA  
Ω
LDOVINT under valid operating condition, ILOAD = 0 mA  
LDOx disabled  
Pulldown discharge resistance  
RDIS(LDOinterna;)  
60  
125  
190  
at LDO output  
(1) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of  
the capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given DC voltage at the outputs of  
regulators.  
8.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics - Output Voltage  
4.1a  
1-phase output  
0.3  
0.3  
3.34  
1.9  
V
VVOUT_Bn  
Output voltage configurable range  
4.1b  
4.2a  
4.2b  
4.2c  
4.2d  
Multi-phase output  
V
0.3 V ≤ VVOUT_Bn < 0.6 V  
0.6 V ≤ VVOUT_Bn < 1.1 V  
1.1 V ≤ VVOUT_Bn < 1.66 V  
1.66 V ≤ VVOUT_Bn < 3.34 V  
20  
5
mV  
mV  
mV  
mV  
VVOUT_Bn_Step Output voltage configurable step size  
VDROPOUT_Bn Input and output voltage difference  
10  
20  
Minimum voltage between PVIN_Bn and  
VOUT_Bn to fulfill the electrical characteristics  
4.4  
0.7  
V
4.5a  
4.5b  
4.5c  
4.5d  
4.5e  
4.5f  
BUCKn_SLEW_RATE[2:0] = 000b  
BUCKn_SLEW_RATE[2:0] = 001b  
BUCKn_SLEW_RATE[2:0] = 010b  
BUCKn_SLEW_RATE[2:0] = 011b  
BUCKn_SLEW_RATE[2:0] = 100b  
BUCKn_SLEW_RATE[2:0] = 101b  
BUCKn_SLEW_RATE[2:0] = 110b  
BUCKn_SLEW_RATE[2:0] = 111b  
26.6  
17  
33.3  
20  
36.6 mV/µs  
22 mV/µs  
9
10  
11 mV/µs  
4.5  
5
5.5 mV/µs  
2.75 mV/µs  
1.38 mV/µs  
0.69 mV/µs  
0.344 mV/µs  
Output voltage slew-rate configurable  
VOUT_SR_Bn  
range(5) (8)  
2.25  
1.12  
0.56  
2.5  
1.25  
0.625  
4.5g  
4.5h  
0.281 0.3125  
Electrical Characteristics - Output Current, Limits and Thresholds  
4.7a  
4.7b  
4.7c  
1-phase, BUCK5  
1-phase, BUCK4  
1-phase, BUCK1, BUCK2, BUCK3  
2-phase  
2
4
A
A
A
A
A
A
3.5  
7
IOUT_Bn  
Output current(3) (4)  
4.7d  
4.7e  
4.7f  
3-phase  
10.5  
14  
4-phase  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Mismatch between phase current and average  
phase current, 1A/phase < IOUT_Bn ≤ 2A / phase  
4.8a  
4.8b  
20%  
Current balancing for multi-phase  
output  
IOUT_MP_Bal  
Mismatch between phase current and average  
phase current, IOUT_Bn > 2 A / phase  
10%  
4.9a  
4.9b  
Forward current limit (peak during  
each switching cycle) configurable  
range  
BUCK5  
2.5  
2.5  
3.5  
5.5  
A
A
ILIM_FWD_PEAK  
_ Range  
BUCK1, BUCK2, BUCK3, BUCK4  
ILIM_FWD_PEAK  
4.10  
Forward current limit step Size  
1
A
A
A
_Step  
ILIM_FWD = 2.5 A or 3.5 A, 3.0 V ≤ VPVIN_Bn ≤ 5.5  
V
4.11a  
4.11b  
4.11c  
4.11d  
4.12  
-0.55  
-0.55  
–15%  
–10%  
1.5  
0.55  
0.55  
10%  
10%  
2.8  
ILIM_FWD = 4.5 A, 3.0 V ≤ VPVIN_Bn ≤ 5.5 V V,  
BUCK1, BUCK2, BUCK3, BUCK4  
ILIM_FWD_PEAK  
Forward current limit accuracy  
_Accuracy  
ILIM_FWD = 5.5 A, 3.0 V ≤ VPVIN_Bn ≤ 4.5 V,  
BUCK1, BUCK2, BUCK3, BUCK4  
ILIM_FWD = 5.5 A, 4.5 V ≤ VPVIN_Bn ≤ 5.5 V,  
BUCK1, BUCK2, BUCK3, BUCK4  
Negative current limit (peak during  
each switching cycle)  
ILIM_NEG  
2
A
4.15a  
4.15b  
4.15c  
4.16a  
4.16b  
4.16c  
4.16d  
4.16e  
4.16f  
From 1-phase to 2-phase  
2.0  
4.0  
6.0  
1.3  
2.7  
3.5  
0.7  
1.3  
2.5  
A
A
A
A
A
A
A
A
A
IADD  
Phase adding level (multi-phase rails) From 2-phase to 3-phase  
From 3-phase to 4-phase  
From 2-phase to 1-phase  
Phase shedding level (multi-phase  
From 3-phase to 2-phase  
rails)  
ISHED  
From 4-phase to 3-phase  
Hysteresis from 2-phase to 1-phase  
Phase shedding hysteresis (multi-  
phase rails)  
ISHED_Hyst  
Hysteresis from 3-phase to 2-phase  
Hysteresis from 4-phase to 3-phase  
Electrical Characteristics - Current Consumption, On-Resistance, and Output Pulldown Resistance  
4.17  
Ioff  
Shutdown current, BUCKn disabled  
Auto mode quiescent current  
VCCA = VPVIN_Bn = 3.3 V. TJ = 25°C  
1
µA  
µA  
IOUT_Bn = 0 mA, not switching, first single phase  
or master phase, TJ = 25°C  
4.18a  
80  
IOUT_Bn = 0 mA, not switching, secondary single  
phase or master phase, TJ = 25°C  
4.18b  
IQ_AUTO  
60  
µA  
IOUT_Bn = 0 mA, not switching, slave phase, TJ =  
25°C  
4.18c  
4.19a  
4.19b  
4.20a  
4.20b  
30  
55  
52  
41  
30  
µA  
mΩ  
mΩ  
mΩ  
mΩ  
IOUT_Bn = 1 A, BUCK5  
110  
100  
70  
RDS(ON) HS FET On-resistance, high-side FET  
RDS(ON) LS FET On-resistance, low-side FET  
IOUT_Bn = 1 A, BUCK1, BUCK2, BUCK3,  
BUCK4  
IOUT_Bn = 1 A, BUCK5  
IOUT_Bn = 1 A, BUCK1, BUCK2, BUCK3,  
BUCK4  
55  
Regulator disabled, per phase, BUCKn_PLDN =  
1
4.21  
4.22  
RDIS_Bn  
RSW_SC  
Output pulldown discharge resistance  
50  
2
100  
4.5  
150  
20  
Ω
Ω
Short circuit detection resistance  
threshold at the SW pin  
Electrical Characteristics - 4.4 MHz VOUT Less than 1.9 V, Multiphase or High COUT Single Phase  
4.31  
4.32  
4.33a  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
3.0  
0.3  
3
3.3  
5.5  
1.9  
V
V
Output voltage configurable range  
Input filtering capacitance(1)  
22  
22  
µF  
COUT-  
4.33b  
Output capacitance, local(2)  
Per phase  
10  
µF  
Local(Buckn)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output capacitance, total (local and  
POL)(2)  
4.33c  
COUT-TOTAL_Bn  
Per phase  
70  
250  
286  
µF  
4.34a  
4.34b  
4.35  
Inductance  
DCR  
154  
220  
10  
nH  
mΩ  
mA  
mV  
LBn  
Power inductor  
IQ_PWM  
PWM mode Quiescent current  
Per phase, IOUT_Bn = 0 mA  
VVOUT_Bx < 1 V, PWM mode  
VVOUT_Bx ≥ 1 V, PWM mode  
VVOUT_Bx < 1 V, PFM mode  
19  
4.160a  
4.160b  
4.160c  
–10  
–1%  
–20  
10  
1%  
25  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
mV  
-1% - 10  
mV  
1% + 15  
mV  
4.160d  
4.37a  
VVOUT_Bx ≥ 1 V, PFM mode  
0.3 V ≤ VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to 400  
mA / phase, tr = tf = 1 µs, PWM mode  
10  
15  
mV  
mV  
mV  
0.6 V ≤ VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA  
to 1.75A / phase, tr = tf = 1 µs, PWM mode,  
BUCK1, BUCK2, BUCK3, BUCK4  
4.37ba  
4.37bb  
4.37ca  
0.6 V ≤ VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to 1  
A / phase, tr = tf = 1 µs, PWM mode, BUCK5  
TLDSR_MP  
Transient load step response(7)  
15  
1.5 V ≤ VVOUT_Bn ≤ 1.9 V, IOUT_Bn = 1 mA to  
1.75 A / phase, tr = tf = 1 µs, PWM mode,  
BUCK1, BUCK2, BUCK3, BUCK4  
1.2%  
1.5 V ≤ VVOUT_Bn ≤ 1.9 V, IOUT_Bn = 1 mA to 1  
A / phase, tr = tf = 1 µs, PWM mode, BUCK5  
4.37cb  
4.38  
1.0%  
±5  
VPVIN_Bn stepping from 3 V to 3.5 V, tr = tf = 10  
µs, IOUT_Bn = IOUT(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
mV  
4.39a  
4.39b  
PWM mode, 1-phase  
PFM mode  
3
mVPP  
VOUT_Ripple  
15  
25 mVPP  
Threshold voltage for Short Circuit  
and Residual Voltage Detection  
4.40  
VTH_SC_RV(Bn)  
IPWM-PFM  
Bn_EN = 0 and BUCKn_RV_SEL = 1  
140  
150  
400  
500  
100  
160  
mV  
mA  
mA  
mA  
PWM to PFM switch current  
threshold(6)  
4.102  
4.101  
4.103  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
PFM to PWM switch current  
threshold(6)  
IPFM-PWM  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - DDR VTT Termination, 2.2 MHz Single Phase Only  
4.41  
VPVIN_Bn  
IOUT_Bn_SINK  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
2.8  
–1  
0.5  
3
3.3  
5.5  
0.7  
V
A
4.42  
Current sink  
4.43  
Output voltage programmable range  
Input filtering capacitance(1)  
V
4.44a  
4.44b  
22  
22  
µF  
µF  
COUT-TOTAL_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.44c  
COUT-TOTAL_Bn  
35  
65  
µF  
POL)(2)  
4.45a  
4.45b  
4.46a  
4.161a  
Inductance  
DCR  
329  
470  
10  
611  
nH  
mΩ  
mA  
mV  
LBn  
Power inductor  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bn = 0 mA  
19  
DC output voltage accuracy, includes VVOUT_Bx < 1 V, PWM mode  
voltage reference, DC load and line  
VVOUT_Bx ≥ 1 V, PWM mode  
regulations and temperature  
–10  
10  
VOUT_DC_Bx  
4.161b  
4.48  
–1%  
1%  
0.5 V ≤ VVOUT_Bn ≤ 0.7 V, IOUT_Bn = -1 mA to  
-1000 mA, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(7)  
15  
mV  
VPVIN_Bn stepping from 3 V to 3.5 V, tr = tf = 10  
µs, IOUT_Bn = IOUT_Bn(max)  
4.49  
4.50  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
±5  
3
20  
5
mV  
VOUT_Ripple  
PWM mode  
mVPP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics - 4.4 MHz VOUT Less than 1.9 V, Low COUT, Single Phase Only  
4.51  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
3.0  
0.3  
3
3.3  
5.5  
1.9  
V
V
4.52  
Output voltage configurable range  
Input filtering capacitance(1)  
4.53a  
4.53b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.53c  
COUT-TOTAL_Bn  
25  
100  
286  
µF  
POL)(2)  
4.54a  
4.54b  
Inductance  
DCR  
154  
220  
10  
nH  
LBn  
Power inductor  
mΩ  
IOUT_Bn = 0 mA, BUCK1, BUCK2, BUCK3,  
BUCK4  
4.55a  
19  
19  
mA  
IQ_PWM  
PWM mode Quiescent current  
4.55b  
IOUT_Bn = 0 mA, BUCK5  
mA  
mV  
4.162a  
4.162b  
4.162c  
VVOUT_Bx < 1 V, PWM mode  
VVOUT_Bx ≥ 1 V, PWM mode  
VVOUT_Bx < 1 V, PFM mode  
–10  
–1%  
–20  
10  
1%  
35  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
mV  
-1% - 10  
mV  
1% + 25  
mV  
4.162d  
4.57a  
4.57b  
4.57c  
4.58  
VVOUT_Bx ≥ 1 V, PFM mode  
0.3 V ≤ VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to 200  
mA / phase, tr = tf = 1 µs, PWM mode  
15  
15  
mV  
mV  
0.6 V ≤ VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to 1  
A / phase, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(7)  
1.5 V ≤ VVOUT_Bn ≤ 1.9 V, IOUT_Bn = 1 mA to 1  
A / phase, tr = tf = 1 µs, PWM mode  
1.5%  
±5  
VPVIN_Bn stepping from 3 V to 3.5 V, tr = tf = 10  
µs, IOUT_Bn= IOUT_Bn(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
8
mV  
4.59a  
4.59b  
PWM mode  
PFM mode  
5
mVPP  
VOUT_Ripple  
15  
50 mVPP  
mA  
PFM to PWM switch current  
threshold(6)  
4.111  
4.112  
4.113  
IPFM-PWM  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0 V  
500  
300  
200  
PWM to PFM switch current  
threshold(6)  
IPWM-PFM  
mA  
mA  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - 4.4 MHz VOUT Greater than 1.7 V, Single Phase Only  
4.61  
4.62  
VPVIN_Bn  
Input voltage range  
Output current  
4.5  
5
5.5  
2.5  
V
A
IOUT_Bn_4.4_HV  
OUT  
4.63  
VVOUT_Bn  
CIN_Bn  
Output voltage configurable range  
Input filtering capacitance(1)  
1.7  
3
3.34  
V
4.64a  
4.64b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.64c  
COUT-TOTAL_Bn  
50  
150  
611  
µF  
POL)(2)  
4.65a  
Inductance  
329  
470  
10  
nH  
mΩ  
mA  
mV  
LBn  
Power inductor  
4.65b  
DCR  
4.66a  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bn = 0 mA  
19  
4.163a  
4.163b  
4.163c  
VVOUT_Bx < 1 V, PWM mode  
VVOUT_Bx ≥ 1 V, PWM mode  
VVOUT_Bx < 1 V, PFM mode  
–10  
–1%  
–20  
10  
1%  
25  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
mV  
-1% - 10  
mV  
1% + 15  
mV  
4.163d  
4.68  
VVOUT_Bx ≥ 1 V, PFM mode  
1.7 V ≤ VVOUT_Bn ≤ 3.34 V, IOUT_Bn = 1 mA to 1  
A/phase, tr = tf = 1 µs, PWM mode  
TLDSR_SP  
Transient load step response(7)  
1.5%  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VPVIN_Bn stepping from 4.7 V to 5.2 V, tr = tf = 10  
µs, IOUT_Bn = IOUT_Bn(max)  
4.69  
TLNSR  
Transient line response  
-20  
±5  
20  
7
mV  
4.70a  
4.70b  
PWM mode  
PFM mode  
3
mVPP  
VOUT_Ripple  
Ripple voltage(7)  
15  
25 mVPP  
mA  
PFM to PWM switch current  
threshold(6)  
4.121  
4.122  
4.123  
IPFM-PWM  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.8 V  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.8 V  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.8 V  
400  
250  
150  
PWM to PFM switch current  
threshold(6)  
IPWM-PFM  
mA  
mA  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - 2.2 MHz Full VOUT Range and VIN Greater than 4.5 V, Single Phase Only  
4.71  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
4.5  
0.3  
3
5
5.5  
V
V
4.72  
Output voltage configurable range  
Input filtering capacitance(1)  
3.34  
4.73a  
4.73b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.73c  
COUT-TOTAL_Bn  
100  
700  
1000  
1300  
µF  
POL)(2)  
4.74a  
4.74b  
4.75  
Inductance  
1000  
10  
nH  
mΩ  
mA  
mV  
LBn  
Power inductor  
DCR  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bn = 0 mA  
13  
4.164a  
4.164b  
4.164c  
VVOUT_Bx < 1 V, PWM mode  
VVOUT_Bx ≥ 1 V, PWM mode  
VVOUT_Bx < 1 V, PFM mode  
–10  
–1%  
–20  
10  
1%  
25  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
mV  
-1% - 10  
mV  
1% + 15  
mV  
4.164d  
4.77a  
4.77b  
4.77c  
4.78  
VVOUT_Bx ≥ 1 V, PFM mode  
0.3 V ≤ VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to 400  
mA / phase, tr = tf = 1 µs, PWM mode  
15  
15  
mV  
mV  
0.6 V ≤ VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(7)  
1.5 V ≤ VVOUT_Bn ≤ 3.34 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
1.5%  
±5  
VPVIN_Bn stepping from 4.7 V to 5.2 V, tr = tf = 10  
µs, IOUT_Bn= IOUT_Bn(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
5
mV  
4.79a  
4.79b  
PWM mode  
PFM mode  
3
mVPP  
VOUT_Ripple  
15  
25 mVPP  
mA  
PFM to PWM switch current  
threshold(6)  
4.131  
4.132  
4.133  
IPFM-PWM  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 5 V, VVOUT_Bn = 1.0V  
400  
170  
230  
PWM to PFM switch current  
threshold(6)  
IPWM-PFM  
mA  
mA  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - 2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase  
4.81  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
3.0  
0.3  
3
3.3  
5.5  
1.9  
V
V
4.82  
Output voltage configurable range  
Input filtering capacitance(1)  
4.83a  
4.83b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
Per phase  
Per phase  
10  
Output capacitance, total (local and  
4.83c  
COUT-TOTAL_Bn  
100  
329  
1000  
611  
µF  
POL)(2)  
4.84a  
4.84b  
4.85  
Inductance  
DCR  
470  
10  
nH  
mΩ  
mA  
LBn  
Power inductor  
IQ_PWM  
PWM mode Quiescent current  
IOUT_Bn = 0 mA  
13  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
–10  
–1%  
–20  
TYP  
MAX UNIT  
4.165a  
VVOUT_Bx < 1 V, PWM mode  
10  
1%  
25  
mV  
4.165b  
4.165c  
VVOUT_Bx ≥ 1 V, PWM mode  
VVOUT_Bx < 1 V, PFM mode  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
mV  
-1% - 10  
mV  
1% + 15  
mV  
4.165d  
4.87a  
4.87b  
4.87c  
4.88  
VVOUT_Bx ≥ 1 V, PFM mode  
0.3 V ≤ VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to 400  
mA / phase, tr = tf = 1 µs, PWM mode  
5
15  
mV  
mV  
0.6 V ≤ VVOUT_Bn < 1.5 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
TLDSR_MP  
Transient load step response(7)  
1.5 V ≤ VVOUT_Bn ≤ 1.9 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
1.0%  
±5  
VPVIN_Bn stepping from 4.7 V to 5.2 V, tr = tf = 10  
µs, IOUT_Bn= IOUT_Bn(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
5
mV  
4.89a  
4.89b  
PWM mode, 1-phase  
PFM mode  
3
mVPP  
VOUT_Ripple  
15  
25 mVPP  
mA  
PFM to PWM switch current  
threshold(6)  
4.141  
4.142  
4.143  
IPFM-PWM  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
500  
400  
100  
PWM to PFM switch current  
threshold(6)  
IPWM-PFM  
mA  
mA  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Electrical Characteristics - 2.2 MHz Full VOUT and Full VIN Range, Single Phase Only  
4.91  
VPVIN_Bn  
VVOUT_Bn  
CIN_Bn  
Input voltage range  
2.8  
0.3  
3
3.3  
5.5  
V
V
4.92  
Output voltage configurable range  
Input filtering capacitance(1)  
3.34  
4.93a  
4.93b  
22  
22  
µF  
µF  
COUT-Local_Bn Output capacitance, local(2)  
10  
Output capacitance, total (local and  
4.93c  
COUT-TOTAL_Bn  
100  
700  
500  
µF  
POL)(2)  
4.94a  
4.94b  
Inductance  
DCR  
1000  
10  
1300  
nH  
LBn  
Power inductor  
mΩ  
IOUT_Bn = 0 mA, BUCK1, BUCK2, BUCK3,  
BUCK4  
4.95  
IQ_PWM  
PWM mode Quiescent current  
13  
mA  
mV  
4.166a  
4.166b  
VVOUT_Bx < 1 V, PWM mode  
VVOUT_Bx ≥ 1 V, PWM mode  
–10  
10  
–1%  
1%  
DC output voltage accuracy, includes  
voltage reference, DC load and line  
regulations and temperature  
VOUT_DC_Bx  
-1% - 10  
mV  
1% + 15  
mV  
4.166d  
4.166c  
4.97a  
VVOUT_Bx ≥ 1 V, PFM mode  
VVOUT_Bx < 1 V, PFM mode  
–20  
25  
mV  
mV  
0.3 V ≤ VVOUT_Bn < 0.6 V, IOUT_Bn = 1 mA to 400  
mA / phase, tr = tf = 1 µs, PWM mode  
35  
17  
0.6 V ≤ VVOUT_Bn < 1.0 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
4.97b  
4.97c  
4.98  
TLDSR_SP  
Transient load step response(7)  
mV  
1.0 V ≤ VVOUT_Bn ≤ 3.34 V, IOUT_Bn = 1 mA to 2  
A / phase, tr = tf = 1 µs, PWM mode  
3.5%  
±5  
VPVIN_Bn stepping from 3 V to 3.5 V, tr = tf = 10  
µs, IOUT_Bn = IOUT_Bn(max)  
TLNSR  
Transient line response  
Ripple voltage(7)  
-20  
20  
5
mV  
4.99a  
4.99b  
PWM mode  
PFM mode  
3
mVPP  
VOUT_Ripple  
15  
25 mVPP  
mA  
PFM to PWM switch current  
threshold(6)  
4.151  
4.152  
4.153  
IPFM-PWM  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
Auto mode, VPVIN_Bn = 3.3 V, VVOUT_Bn = 1.0V  
335  
150  
185  
PWM to PFM switch current  
threshold(6)  
IPWM-PFM  
mA  
mA  
PWM to PFM switch current  
hysteresis  
IPWM-PFM_HYST  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.8 BUCK1, BUCK2, BUCK3, BUCK4 and BUCK5 Regulators (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level are referenced to the thermal/ground pad  
of the device except for VOUT_Bn in multiphase configurations, in which case, the voltage level is referenced to the negative  
FB_Bn pin of the differential pair.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Switching Characteristics  
20.1a  
20.1b  
2.2 MHz setting, internal clock  
2
4
2.2  
4.4  
2.2  
4.4  
2.2  
4.4  
4.4  
2.2  
2.4 MHz  
4.8 MHz  
2.64 MHz  
5.3 MHz  
2.64 MHz  
5.3 MHz  
MHz  
4.4 MHz setting, internal clock  
20.1d  
2.2 MHz setting, internal clock, spread spectrum  
4.4 MHz setting, internal clock, spread spectrum  
2.2 MHz setting, synchronized to external clock  
4.4 MHz setting, synchronized to external clock  
0.6 V ≤ VVOUT_Bn  
1.76  
3.5  
1.76  
3.5  
Steady state switching frequency in  
PWM mode (NVM configurable)  
fSW  
20.1e  
20.1f  
20.1g  
20.2a  
Automatic maximum switching  
frequency scaling in PWM mode  
fSW_max  
20.2b  
0.3 V ≤ VVOUT_Bn < 0.6 V  
MHz  
Timing Requirements  
From end of voltage ramp to within 15mV from  
target VOUT_DC_Bx  
20.3  
20.4  
20.5a  
tsettle_Bn  
tstartup_Bn  
tdelay_OC  
Settling time after voltage scaling  
Start-up delay  
105  
218  
7
µs  
µs  
µs  
From enable to start of output voltage rise  
100  
19  
150  
Peak current limit triggering during every  
switching cycle  
Over-current detection delay  
Digital deglitch time for detected signal.  
Time duration to filter out short positive  
and negative pulses  
Over-current detection signal deglitch  
time  
20.5b  
20.6  
tdeglitch_OC  
23  
30  
µs  
µs  
Over-current signal latency time from Total delay from over-current detection to  
detection interrupt or PFSM trigger  
tlatency_OC  
(1) Input capacitors must be placed as close as possible to the device pins.  
(2) When DC voltage is applied to a ceramic capacitor, the effective capacitance is reduced due to DC bias effect. The table above  
therefore lists the minimum value as CAPACITANCE. In order to meet the minimum capacitance requirement, the nominal value of  
the capacitor may have to be scaled accordingly to take the drop of capacitance into account for a given DC voltage at the outputs of  
regulators.  
(3) The maximum output current can be limited by the forward current limit. The maximum output current is also limited by the junction  
temperature and maximum average current over lifetime. The power dissipation inside the die increases the junction temperature and  
limits the maximum current depending on the length of the current pulse, efficiency, board and ambient temperature.  
(4) Additional cooling strategies may be necessary to keep the device junction temperature at recommended limits with large output  
current.  
(5) SLEW_RATEx[2:0] register default comes from NVM memory, and can be re-configured by the MCU. Output capacitance, forward and  
negative current limits and load current may limit the maximum and minimum slew rates.  
(6) The final PFM-to-PWM and PWM-to-PFM switchover current varies slightly and is dependent on the output voltage, input voltage, and  
the inductor current level.  
(7) Please refer to the applications section of the datasheet regarding the power delivery network (PDN) used for the transient load step  
and output ripple test conditions. All ripple specs are defined across POL capacitor in the described PDN.  
(8) The 33.3 mV/µs slew-rate setting is not recommended for LBx ≥ 1 µH, as this may may trigger OV detection due to larger overshoot at  
the buck output.  
8.9 Reference Generator (BandGap)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
Capacitance between AMUXOUT pin and thernal/  
ground pad  
5.1  
Max capacitance at AMUX pin  
Output voltage  
100  
pF  
V
5.2  
Measured at the AMUXOUT pin  
1.17  
1.2  
1.23  
Timing Requirements  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.9 Reference Generator (BandGap) (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
From AMUXOUT_EN=1 to the time bandgap voltage  
settles  
21.1  
tSU_REF  
Start-up time  
30  
µs  
8.10 Monitoring Functions  
Over operating free-air temperature range (unless otherwise noted). Voltage level is measured with reference to the thermal/  
ground pad of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: BUCK REGULATORS OUTPUT  
7.1a  
7.1b  
7.1c  
BUCKn_OV_THR = 0x0  
2%  
2.5%  
3%  
4%  
5%  
6%  
7%  
9%  
20  
3%  
3.5%  
4%  
5%  
6%  
7%  
8%  
10%  
30  
4%  
4.5%  
5%  
6%  
7%  
8%  
9%  
11%  
40  
BUCKn_OV_THR = 0x1  
BUCKn_OV_THR = 0x2  
BUCKn_OV_THR = 0x3  
BUCKn_OV_THR = 0x4  
BUCKn_OV_THR = 0x5  
BUCKn_OV_THR = 0x6  
BUCKn_OV_THR = 0x7  
BUCKn_OV_THR = 0x0  
BUCKn_OV_THR = 0x1  
BUCKn_OV_THR = 0x2  
BUCKn_OV_THR = 0x3  
BUCKn_OV_THR = 0x4  
BUCKn_OV_THR = 0x5  
BUCKn_OV_THR = 0x6  
BUCKn_OV_THR = 0x7  
BUCKn_UV_THR = 0x0  
BUCKn_UV_THR = 0x1  
BUCKn_UV_THR = 0x2  
BUCKn_UV_THR = 0x3  
BUCKn_UV_THR = 0x4  
BUCKn_UV_THR = 0x5  
BUCKn_UV_THR = 0x6  
BUCKn_UV_THR = 0x7  
BUCKn_UV_THR = 0x0  
BUCKn_UV_THR = 0x1  
BUCKn_UV_THR = 0x2  
BUCKn_UV_THR = 0x3  
BUCKn_UV_THR = 0x4  
BUCKn_UV_THR = 0x5  
BUCKn_UV_THR = 0x6  
BUCKn_UV_THR = 0x7  
Overvoltage monitoring for buck  
7.1d  
VBUCK_OV_TH  
output, threshold accuracy,  
VOUT_Bn ≥ 1 V(1)  
7.1e  
7.1f  
7.1g  
7.1h  
7.2a  
7.2b  
7.2c  
7.2d  
7.2e  
7.2f  
25  
35  
45  
30  
40  
50  
Overvoltage monitoring for buck  
40  
50  
60  
mV  
70  
VBUCK_OV_TH_mv output, threshold accuracy,  
VOUT_Bn < 1 V(1)  
50  
60  
60  
70  
80  
90  
7.2g  
7.2h  
7.3a  
7.3b  
7.3c  
7.3d  
7.3e  
7.3f  
70  
80  
90  
100  
–3%  
110  
–2%  
–4%  
–4.5% –3.5% –2.5%  
–5%  
–6%  
–7%  
–8%  
–9%  
–4%  
–5%  
–6%  
–7%  
–8%  
–3%  
–4%  
–5%  
–6%  
–7%  
–9%  
–20  
–25  
–30  
–40  
–50  
–60  
–70  
–90  
Undervoltage monitoring for  
VBUCK_UV_TH  
buck output, threshold accuracy,  
VOUT_Bn ≥ 1 V(1)  
7.3g  
7.3h  
7.4a  
7.4b  
7.4c  
7.4d  
7.4e  
7.4f  
–11% –10%  
–40  
–45  
–50  
–60  
–70  
–80  
–90  
–110  
–30  
–35  
–40  
–50  
–60  
–70  
–80  
–100  
Undervoltage monitoring for  
VBUCK_UV_TH_mv buck output, threshold accuracy,  
mV  
VOUT_Bn < 1 V(1)  
7.4g  
7.4h  
Electrical Characteristics: LDO REGULATOR OUTPUTS  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.10 Monitoring Functions (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is measured with reference to the thermal/  
ground pad of the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
2%  
2.5%  
3%  
4%  
5%  
6%  
7%  
9%  
20  
TYP  
3%  
3.5%  
4%  
5%  
6%  
7%  
8%  
10%  
30  
MAX UNIT  
7.5a  
LDOn_OV_THR = 0x0  
4%  
4.5%  
5%  
6%  
7%  
8%  
9%  
11%  
40  
7.5b  
7.5c  
7.5d  
7.5e  
7.5f  
LDOn_OV_THR = 0x1  
LDOn_OV_THR = 0x2  
LDOn_OV_THR = 0x3  
LDOn_OV_THR = 0x4  
LDOn_OV_THR = 0x5  
LDOn_OV_THR = 0x6  
LDOn_OV_THR = 0x7  
LDOn_OV_THR = 0x0  
LDOn_OV_THR = 0x1  
LDOn_OV_THR = 0x2  
LDOn_OV_THR = 0x3  
LDOn_OV_THR = 0x4  
LDOn_OV_THR = 0x5  
LDOn_OV_THR = 0x6  
LDOn_OV_THR = 0x7  
LDOn_UV_THR = 0x0  
LDOn_UV_THR = 0x1  
LDOn_UV_THR = 0x2  
LDOn_UV_THR = 0x3  
LDOn_UV_THR = 0x4  
LDOn_UV_THR = 0x5  
LDOn_UV_THR = 0x6  
LDOn_UV_THR = 0x7  
LDOn_UV_THR = 0x0  
LDOn_UV_THR = 0x1  
LDOn_UV_THR = 0x2  
LDOn_UV_THR = 0x3  
LDOn_UV_THR = 0x4  
LDOn_UV_THR = 0x5  
LDOn_UV_THR = 0x6  
LDOn_UV_THR = 0x7  
Overvoltage monitoring for LDO  
output, threshold accuracy,  
VOUT_LDOn ≥ 1 V(2)  
VLDO_OV_TH  
7.5g  
7.5h  
7.6a  
7.6b  
7.6c  
7.6d  
7.6e  
7.6f  
25  
35  
45  
30  
40  
50  
Overvoltage monitoring for LDO  
40  
50  
60  
mV  
70  
VLDO_OV_TH_mv output, threshold accuracy,  
VOUT_LDOn < 1 V(2)  
50  
60  
60  
70  
80  
90  
7.6g  
7.6h  
7.7a  
7.7b  
7.7c  
7.7d  
7.7e  
7.7f  
70  
80  
90  
100  
–3%  
110  
–2%  
–4%  
–4.5% –3.5% –2.5%  
–5%  
–6%  
–7%  
–8%  
–9%  
–4%  
–5%  
–6%  
–7%  
–8%  
–3%  
–4%  
–5%  
–6%  
–7%  
–9%  
–20  
–25  
–30  
–40  
–50  
–60  
–70  
–90  
Undervoltage monitoring for  
VLDO_UV_TH  
LDO output, threshold accuracy,  
VOUT_LDOn ≥ 1 V(2)  
7.7g  
7.7h  
7.8a  
7.8b  
7.8c  
7.8d  
7.8e  
7.8f  
–11% –10%  
–40  
–45  
–50  
–60  
–70  
–80  
–90  
–110  
–30  
–35  
–40  
–50  
–60  
–70  
–80  
–100  
Undervoltage monitoring for  
VLDO_UV_TH_mv LDO output, threshold accuracy,  
mV  
VOUT_LDOn < 1 V(2)  
7.8g  
7.8h  
Electrical Characteristics: VCCA INPUT  
7.9a  
7.9b  
7.9c  
7.9d  
VCCA_OV_THR = 0x0  
VCCA_OV_THR = 0x1  
VCCA_OV_THR = 0x2  
VCCA_OV_THR = 0x3  
VCCA_OV_THR = 0x4  
VCCA_OV_THR = 0x5  
VCCA_OV_THR = 0x6  
VCCA_OV_THR = 0x7  
2%  
2.5%  
3%  
3%  
3.5%  
4%  
4%  
4.5%  
5%  
4%  
5%  
6%  
Overvoltage monitoring for VCCA  
input, threshold accuracy(3)  
VCCAOV_TH  
7.9e  
7.9f  
5%  
6%  
7%  
6%  
7%  
8%  
7.9g  
7.9h  
7%  
8%  
9%  
9%  
10%  
11%  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.10 Monitoring Functions (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is measured with reference to the thermal/  
ground pad of the device.  
POS  
7.10a  
7.10b  
7.10c  
7.10d  
7.10e  
7.10f  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VCCA_UV_THR = 0x0  
-4%  
-3%  
-2%  
VCCA_UV_THR = 0x1  
VCCA_UV_THR = 0x2  
VCCA_UV_THR = 0x3  
VCCA_UV_THR = 0x4  
VCCA_UV_THR = 0x5  
VCCA_UV_THR = 0x6  
VCCA_UV_THR = 0x7  
-4.5% -3.5% -2.5%  
-5%  
-6%  
-7%  
-8%  
-9%  
-11%  
-4%  
-5%  
-3%  
-4%  
-5%  
-6%  
-7%  
-9%  
Undervoltage monitoring for  
VCCAUV_TH  
VCCA input, threshold accuracy(3)  
-6%  
-7%  
7.10g  
7.10h  
-8%  
-10%  
Timing Requirements  
26.30a tdelay_OV_UV  
26.30b tdelay_OV_UV  
26.31a tdeglitch1_OV_UV  
BUCK and LDO OV/UV detection Detection delay with 5 mV (Vin < 1 V) or 0.5% (Vin ≥ 1 V)  
8
12  
µs  
µs  
µs  
delay  
over/underdrive  
VCCA OV/UV detection delay  
Detection delay with 30 mV over/underdrive  
VMON_DEGLITCH_SEL = 0: Digital deglitch time for  
detected signal  
3.4  
18  
3.8  
20  
4.2  
VCCA, BUCK, and LDO OV/UV  
signal deglitch time  
VMON_DEGLITCH_SEL = 1: Digital deglitch time for  
detected signal  
26.31b tdeglitch2_OV_UV  
22  
13  
µs  
µs  
VMON_DEGLITCH_SEL = 0: Total delay from 5mV (Vin < 1  
V) or 0.5% (Vin ≥ 1 V) over/underdrive to interrupt or PFSM  
trigger  
26.32a tlatency1_OV_UV  
BUCK and LDO OV/UV signal  
latency time  
VMON_DEGLITCH_SEL = 1: Total delay from 5mV (Vin < 1  
V) or 0.5% (Vin ≥ 1 V) over/underdrive to interrupt or PFSM  
trigger  
26.32b tlatency2_OV_UV  
30  
µs  
tlatency1_VCCA_OV  
VMON_DEGLITCH_SEL = 0: Total delay from 30 mV over/  
underdrive to interrupt or PFSM trigger  
26.32b  
13  
30  
µs  
µs  
µs  
µs  
_UV  
VCCA OV/UV signal latency time  
PGOOD signal degltich time  
tlatency2_VCCA_OV  
VMON_DEGLITCH_SEL = 1: Total delay from 30 mV over/  
underdrive to interrupt or PFSM trigger  
26.32b  
_UV  
tdeglitch_PGOOD_ris  
26.33a  
Internal logic signal transitions from invalid to valid(4)  
Internal logic signal transitions from valid to invalid(4)  
9.5  
10.5  
e
tdeglitch_PGOOD_fal  
26.33b  
0
l
(1) The default values of BUCKn_OV_THR & BUCKn_UV_THR registers come from the NVM memory, and can be re-configured by  
software.  
(2) The default values of LDOn_OV_THR & LDOn_UV_THR registers come from the NVM memory, and can be re-configured by software.  
(3) The default values of VCCA_OV_THR & VCCA_UV_THR registers come from the NVM memory, and can be re-configured by  
software.  
(4) Interrupt status signal is input signal for PGOOD deglitch logic.  
8.11 Clocks, Oscillators, and PLL  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: CRYSTAL  
6.1  
6.2  
6.4  
Crystal frequency  
32768  
Hz  
Crystal frequency tolerance  
Crystal series resistance  
Parameter of crystal, TJ = 25°C  
–20  
20 ppm  
At fundamental frequency  
90  
kΩ  
The power dissipated in the crystal during oscillator  
operation  
6.5  
Oscillator drive power  
0.1  
1.4  
0.5  
μW  
Corresponding to crystal frequency, including parasitic  
capacitances  
6.6  
6.7  
Crystal Load capacitance(1)  
Crystal shunt capacitance  
6
12.5  
2.6  
pF  
pF  
Parameter of crystal  
ELectrical Characteristics: 32-kHz CRYSTAL OSCILLATOR EXTERNAL COMPONENTS  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.11 Clocks, Oscillators, and PLL (continued)  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
6.7a  
Load capacitance on  
External Capacitors  
0
13  
pF  
OSC32KIN and OSC32KOUT  
(parallel mode, including  
parasitic of PCB for external  
capacitor)(2)  
6.7b  
Internal Capacitors  
9.5  
12  
14.5  
pF  
Switching Characteristics: 32-kHz CRYSTAL OSCILLATOR CLOCK  
Crystal Oscillator output  
frequency  
23.1  
23.2  
23.3  
23.4  
Typical with specified load capacitors  
32768  
50%  
10  
Hz  
Crystal Oscillator Output duty  
cycle  
Parameter of crystal, TJ = 25°C  
40%  
60%  
20  
Crystal Oscillator rise and fall  
time  
10% to 90%, with 10 pF load capacitance  
ns  
From Oscillator enable to reaching ±1% of final output  
frequency  
Crystal Oscillator Settling time  
200  
ms  
Switching Characteristics: 20-MHz and 128-kHz RC OSCILLATOR CLOCK  
20 MHz RC Oscillator output  
frequency  
23.10  
19  
20  
21 MHz  
135 kHz  
128 kHz RC Oscillator output  
frequency  
23.12  
121  
128  
Switching Characteristics: DPLL, SYNCCLKIN, and SYNCCLKOUT  
22.1a  
22.1b  
22.1c  
22.2a  
22.2b  
22.2c  
EXT_CLK_FREQ = 0x0  
EXT_CLK_FREQ = 0x1  
EXT_CLK_FREQ = 0x2  
SS_DEPTH = 0x0  
1.1  
2.2  
4.4  
External input clock nominal  
frequency  
MHz  
–18%  
–12%  
–10%  
18%  
12%  
10%  
External input clock required  
accuracy from nominal  
frequency  
SS_DEPTH = 0x1  
SS_DEPTH = 0x2  
22.13  
a
Logic low time for SYNCCLKIN  
clock  
40  
40  
ns  
ns  
22.13  
b
Logic high time for  
SYNCCLKIN clock  
External clock detection delay  
for missing clock detection  
22.3  
22.4  
22.5  
1.8  
20  
µs  
µs  
µs  
External clock input debounce  
time for clock detection  
Clock change delay (internal to  
external)  
From valid clock detection to use of external clock  
600  
22.7a  
22.7b  
22.7c  
22.8  
SYNCCLKOUT_FREQ_SEL = 0x1  
SYNCCLKOUT_FREQ_SEL = 0x2  
SYNCCLKOUT_FREQ_SEL = 0x3  
Cycle-to-cycle  
1.1  
2.2  
MHz  
MHz  
MHz  
SYNCCLKOUT clock nominal  
frequency  
4.4  
SYNCCLKOUT duty-cycle  
40%  
5
50%  
60%  
50  
SYNCCLKOUT output buffer  
external load  
22.9  
35  
pF  
22.11a  
22.11b  
Spread spectrum variation  
for nominal switching  
frequency  
SS_DEPTH = 0x1  
SS_DEPTH = 0x2  
6.3%  
8.4%  
Timing Requirements: Clock Monitors  
26.7a  
Failure on 20MHz system clock  
10  
40  
µs  
µs  
Clock Monitor Failure signal  
latency from occurance of error  
tlatency_CLKfail  
26.7b  
26.8  
26.9  
Failure on 128KHz monitoring clock  
Clock Monitor Drift signal  
latency from detection  
tlatency_CLKdrift  
fsysclk  
115  
µs  
Internal system clock  
19  
20  
21 MHz  
20%  
Threshold for internal system  
clock frequency drift detection  
26.10 CLKdrift_TH  
-20%  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.11 Clocks, Oscillators, and PLL (continued)  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Threshold for internal system  
clock stuck at high or stuck at  
low detection  
26.11 CLKfail_TH  
10 MHz  
(1) Customer must use the XTAL_SEL bit to select the corresponding crystal based on its load capacitance.  
(2) External capacitors must be used if cyrstal load capacitance > 6 pF.  
8.12 Thermal Monitoring and Shutdown  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
8.1a  
8.1b  
8.2a  
8.2b  
TWARN_0  
TWARN_LEVEL = 0  
120  
130  
130  
135  
130  
140  
140  
145  
140  
150  
150  
155  
°C  
°C  
°C  
°C  
TWARN_INT thermal warning  
threshold (no hysteresis)  
TWARN_1  
TWARN_LEVEL = 1  
TSD_ORD_LEVEL = 0  
TSD_ORD_LEVEL = 1  
TSD_orderly_0  
TSD_orderly_1  
TSD_ORD_INT thermal  
shutdown rising threshold  
TSD_orderly_hys_  
8.2c  
8.2d  
8.3a  
8.3b  
TSD_ORD_LEVEL = 0  
TSD_ORD_LEVEL = 1  
10  
5
°C  
°C  
°C  
°C  
0
TSD_ORD_INT thermal  
shutdown hysteresis  
TSD_orderly_hys_  
1
TSD_IMM_INT thermal  
shutdown rising threshold  
TSD_imm  
140  
150  
5
160  
425  
TSD_IMM_INT  
thernal shutdown hysteresis  
TSD_imm_hys  
Timing Requirements  
TSD signal latency from  
detection  
26.6  
tlatancy_TSD  
µs  
8.13 System Control Thresholds  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
VCCA UVLO/POR falling  
threshold  
9.1  
9.2  
VPOR_Falling  
Measured on VCCA pin  
2.7  
2.7  
2.75  
2.8  
3
V
V
VCCA UVLO/POR rising  
threshold  
VPOR_Rising  
VPOR_Hyst  
Measured on VCCA pin  
9.3  
VCCA UVLO/POR hysteresis  
100  
4.0  
5.7  
mV  
V
9.5aa  
9.5ab  
Measured on VCCA pin. VCCA_PG_SET = 0b  
Measured on VCCA pin. VCCA_PG_SET = 1b  
3.9  
5.6  
4.1  
5.8  
VVCCA_OVP_Risi  
VCCA OVP rising threshold  
ng  
V
VVCCA_OVP_Hys  
9.5b  
9.7  
VCCA OVP hysteresis  
50  
5.9  
5.9  
mV  
V
t
VVSYS_OVP_Risi  
VSYS OVP rising threshold  
Measured on VSYS_SENSE pin, untrimmed  
Measured on VSYS_SENSE pin, trimmed  
5.6  
5.8  
6.2  
6
ng  
VVSYS_OVP_Risi VSYS OVP rising threshold,  
9.8  
V
trimmed  
ng_Trim  
Output voltage at OVPGDRV  
VOVPGDRV_OFF pin when external FET is  
switched off  
Measured after OVPGDRV pin has reached steady  
state voltage  
9.9  
0.4  
V
Output voltage at OVPGDRV  
VOVPGDRV_On pin when external FET is  
switched on  
Measured after OVPGDRV pin has reached steady  
state voltage  
9.10  
9.11  
12  
4
V
Gate capacitance of external  
Ciss_extFET  
External NMOS FET: VDS = 12V, VGS = 0V  
nF  
NMOS FET  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.13 System Control Thresholds (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Over-voltage threshold level at  
OVPGDRV pin when external  
FET is switched on  
VOVPGDRV_OV_  
9.12  
12.5  
140  
V
TH  
Active pull down resistance  
RVCCA_OVP_PD between VCCA and GND in  
case of VSYS OVP detection  
9.13  
50  
100  
Measured at VSYS_SENSE pin as voltage rises from  
0V to VPOR_Rising  
9.14  
9.15  
9.16  
VVSYS_SR  
Input slew rate of VSYS supply  
30 mV/µs  
60 mV/µs  
60 mV/µs  
60 mV/µs  
Input slew rate of VCCA and  
PVIN_x supplies  
Measured at VCCA and PVIN_x pins as voltage rises  
from 0V to VPOR_Rising  
VVCCA_PVIN_SR  
VVIO_SR  
VVBACKUP_SR  
VVSYS_RC_TH  
Measured at VIO pin as voltage rises from 0V  
to VPOR_Rising  
Input slew rate of VIO supply  
Input slew rate of VBACKUP  
supply  
9.17  
9.18  
9.19  
Measured at VBACKUP pin  
VSYS reset recovery threshold Measured on VSYS_SENSE pin  
50  
mV  
V
VVSYS_UVLO  
VSYS UVLO recovery  
Measured on VSYS_SENSE pin  
threshold  
2.4  
0.3  
30  
2.7  
Rising_TH  
VOVP_FET_Short VSYS OVP FET-fail short test  
9.20  
9.21  
Measured on VCCA pin  
Measured on VCCA pin  
0.42  
60  
V
threshold  
_TH  
VOVP_FET_Short VSYS OVP FET fail-short test  
mV  
hysteresis  
_Hyst  
Timing Requirements  
26.1 tVSYS_RC_TH  
Minimum time VSYS_SENSE stays below VVSYS_RC_TH  
before device recovers from VSYS power cycle  
VSYS reset recovery time  
5
ms  
ms  
Total startup time for OVPDGRV to rise from 0V  
to VVSYS_SENSE, including OVP circuit startup, FET  
fault detection, and OVPGDRV ramp time. 200 µF  
capacitance at VCCA  
Startup time for OVPGDRV  
output  
26.20 tVSYSOVP_INIT  
6
20  
15  
10  
Voltage at VSYS_SENSE pin rises from 6 V to 8 V in  
7 µs. Measured from the time VSYS_SENSE = 6 V to  
the time OVPGDRV = VCCA  
tlatency_VSYSOV OVPGDRV latency from VSYS  
26.2  
µs  
µs  
OVP detection  
P
VCCA_PG_SEL = 0b, Voltage at VSYS_SENSE pin  
rises from 4 V to 8 V in 7 µs. Measured from the  
time VCCA = VVCCA_OVP_Rising to the time OVPGDRV  
= VCCA  
26.3a  
tlatency_VCCAOV OVPGDRV latency from VCCA  
OVP detection  
P
VCCA_PG_SEL = 1b, Voltage at VSYS_SENSE pin  
rises from 6 V to 8 V in 7 µs. Measured from the  
time VCCA = VVCCA_OVP_Rising to the time OVPGDRV =  
VCCA  
26.3b  
10  
µs  
Measured time between VVCCA falling from 3.3 V to  
2.7 V with ≤ 100mv/µs slope, to the detection of  
VCCA_UVLO signal  
tlatency_VCCAUVL VCCA_UVLO signal latency  
26.4  
26.5  
10  
12  
µs  
µs  
from detection  
O
LDOVINT OVP and UVLO  
tlatency_VINT  
With 25-mV overdrive  
signal latency from detection  
26.14 tABISTrun  
26.15 tLBISTrun  
Run time for ABIST  
0.25  
1.8  
ms  
ms  
Run time for LBIST  
Device initialization time to  
tINIT_NVM_ANAL load default values for NVM  
26.16  
26.17  
2
1
ms  
ms  
registers, and start up analog  
OG  
circuits  
Device initialization time for  
tINIT_REF_CLK_L  
reference bandgaps, system  
clock, and internal LDOs  
DO  
8.14 Current Consumption  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
www.ti.com  
MAX UNIT  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
8.14 Current Consumption (continued)  
Over operating free-air temperature range (unless otherwise noted).  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
From VBACKUP pin. PWRON/ENABLE deactivated.  
Device powered by the backup battery source.  
VSYS_SENSE = VCCA = 0V. VIO = 0V. VBACKUP  
= 3.3V. Only 32-kHz crystal oscillator and RTC  
counters are functioning. TJ = 25. VSYS_OVP  
function deactivated.  
Backup current consumption,  
regulators disabled  
10.2  
IBACKUP_RTC  
7
10  
24  
µA  
µA  
Combined current from VCCA and PVIN_x pins.  
VSYS_SENSE is grounded. VCCA = PVIN_Bx  
= PVIN_LDOx = 3.3 V. VIO = 0V. 32-kHz crystal  
oscillator and RTC digital is functioning. GPI pins in  
LDOVRTC domain are active. All monitors are off. TJ =  
25. VSYS OVP function deactivated  
Low Power Standby current  
consumption, regulators  
disabled  
10.3a ILP_STANDBY  
11  
26  
Combined current from VSYS_SENSE, VCCA and  
PVIN_x pins, with protection FET in place connecting  
the VSYS_SENSE pin with VCCA pin. VSYS_SENSE  
= VCCA = PVIN_Bx = PVIN_LDOx = 3.3 V. VIO = 0V.  
32-kHz crystal oscillator and RTC digital is functioning.  
GPI pins in LDOVRTC domain are active. All Monitors  
are off. TJ = 25. VSYS_OVP function activated  
ILP_STANDBY_OV Low Power Standby current  
10.3b  
34  
µA  
consumption, OVP activated  
P
Combined current from VCCA, and PVIN_x.  
VSYS_SENSE is grounded. VCCA = PVIN_Bx =  
PVIN_LDOx = 3.3 V. VIO = 0V. TJ = 25.  
10.5a ISTANDBY  
Standby current consumption  
50  
66  
62  
83  
µA  
µA  
VCCA_VMON_EN=0. VSYS_OVP function deactivated  
Combined current from VSYS_SENSE, VCCA and  
PVIN_x pins, with protection FET in place connecting  
Standby current consumption, the VSYS_SENSE pin with VCCA pin. VSYS_SENSE  
10.5b ISTANDBY_OVP  
OVP activated  
= VCCA = PVIN_Bx = PVIN_LDOx = 3.3 V. VIO = 0V.  
TJ = 25. VCCA_VMON_EN=0. VSYS_OVP function  
activated  
Combined current from VSYS_SENSE, VCCA and  
PVIN_x pins, with protection FET in place connecting  
the VSYS_SENSE pin with VCCA pin. VSYS_SENSE  
= VCCA = PVIN_Bx = PVIN_LDOx = 3.3 V. VIO = 0V.  
TJ = 25. VCCA_VMON_EN=1. VSYS_OVP function  
activated  
ISTANDBY_OVP_  
10.5c  
Standby current consumption  
250  
290  
315  
363  
µA  
µA  
VCCAmon  
Combined current from VSYS_SENSE, VCCA and  
PVIN_x pins, with protection FET in place connecting  
the VSYS_SENSE pin with VCCA pin. VSYS_SENSE  
= VCCA = PVIN_Bx = PVIN_LDOx = 3.3 V. VIO = 0V.  
TJ = 25. One buck regulator enabled in PFS/PWM  
mode, no load. Buck and VCCA OV/UV monitoring  
enabled. VSYS_OVP function activated  
10.6a ISLEEP_3V3  
Sleep current consumption  
Sleep current consumption  
Combined current from VSYS_SENSE, VCCA and  
PVIN_x pins, with protection FET in place connecting  
the VSYS_SENSE pin with VCCA pin. VSYS_SENSE =  
VCCA = PVIN_Bx = PVIN_LDOx = 5 V. VIO = 0V. TJ =  
25. One buck regulator enabled in PFS/PWM mode,  
no load. Buck and VCCA OV/UV monitoring enabled.  
VSYS_OVP function activated  
10.6b ISLEEP_5V  
300  
375  
µA  
8.15 Backup Battery Charger  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
27.1a  
VBACKUP = 1 V, BB_ICHR = 0x0  
VBACKUP = 1 V, BB_ICHR = 0x1  
BB_VEOC = 0x0  
100  
500  
2.5  
2.8  
3
Icharge  
Charging current  
µA  
27.1b  
27.2a  
27.2b  
27.2c  
27.2d  
2.4  
2.7  
2.9  
3.2  
2.6  
BB_VEOC = 0x1  
2.9  
V
VEOC  
End of charge voltage(1)  
BB_VEOC = 0x2  
3.1  
BB_VEOC = 0x3  
3.3  
3.4  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.15 Backup Battery Charger (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
End of charge, charger  
27.3  
Iq_CHGR Quiescent current of backup battery charger  
enabled, VCCA - VBACKUP > 200  
mV. Measured from VCCA pin  
5
9
µA  
VCCA - VBACKUP > 200 mV. Charger  
disabled. Device not in BACKUP state.  
Tj < 125°C  
27.4a  
10  
100  
Iq_CHGR_  
Off current of backup battery charger  
nA  
OFF  
VCCA - VBACKUP > 200 mV. Charger  
disabled. Device not in BACKUP state.  
125°C < Tj < 150°C  
27.4b  
27.5  
250  
4
Additional capacitor added when  
backup battery ESR > 20 Ω  
CBKUP  
Backup battery capacitance with additional capacitor  
Backup battery sereies resistance  
1
2.2  
µF  
Ω
27.6a  
27.6b  
Without additional capacitor in parallel  
With additional capacitor in parallel  
20  
RBKUP_E  
SR  
1000  
(1) End Of Charge Voltage measured when VCCA-VBACKUP > 200mV. When VCCA-VBACKUP is ≤ 200mV, the charger will remain fully  
functional, although the EOC voltage measurement will not be based on final voltage, but on charger dropout.  
8.16 Digital Input Signal Parameters  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device. VIO refers to the VIO_IN pin, VCCA refers to the VCCA pin.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: nPWRON/ENABLE  
11.1  
11.2  
11.3  
VIL(VCCA)  
VIH(VCCA)  
Low-level input voltage  
High-level input voltage  
Hysteresis  
-0.3  
1.26  
150  
0
0.54  
V
V
mV  
Electrical Characteristics: I2C/SPI Pins and Input Signals through all GPIO pins  
11.4  
11.5  
11.6  
VIL(DIG)  
VIH(DIG)  
Low-level input voltage  
High-level input voltage  
Hysteresis  
-0.3  
1.26  
150  
0
0.54  
V
V
mV  
Timing Requirements: nPWRON/ENABLE  
24.1a tLPK_TIME  
nPWRON Long Press Key time  
nPWRON button deglitch time ENABLE_DEGLITCH_EN = 1  
8
s
24.1b tdegl_PWRON  
48  
6
50  
52  
10  
ms  
ENABLE_EGLITCH_EN = 1, exclude when activated  
24.2  
tdegl_ENABLE  
ENABLE signal deglitch time(1) under LP_STANDBY state while the system clock is not  
available  
8
µs  
Timing Requirements: GPIx, nSLEEPx, nERRx, and other digital input signals  
24.3a  
Time from valid GPIx assertion FAST_BOOT_BIST=0  
until device wakes up from  
10  
5
ms  
ms  
tWKUP_LP  
LP_STANDBY state to ACTIVE  
24.3b  
FAST_BOOT_BIST=1  
or MCU ONLY states  
GPIx and nSLEEPx signal  
GPIOn_DEGLITCH_EN = 1  
deglitch time  
25.1a tdegl_GPIx  
25.1b tdegl_ESMx  
6
8
10  
18  
µs  
µs  
nERRn signal deglitch time  
GPIOn_DEGLITCH_EN = 1  
12  
15  
Time from receiving nPWRON/  
ENABLE trigger in STANDBY  
state to nRSTOUT assertion  
25.2a  
5
ms  
ms  
tSTARTUP  
Time from a valid GPIx  
assertion until device starts  
power-up seqeunce from a low  
power state  
25.2b  
LDOVINT = 1.8V  
LDOVINT = 1.8V  
1.5  
Time from nSLEEPx assertion  
until device starts power-down  
sequence to enter a low power  
state  
25.3  
tSLEEP  
1.5  
ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.16 Digital Input Signal Parameters (continued)  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device. VIO refers to the VIO_IN pin, VCCA refers to the VCCA pin.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
input through LP_WKUP1 and LP_WKUP2 (GPIO3 or  
GPIO4) pins while the device is in LP_STANDBY state  
25.4a  
40  
ns  
Minimum valid input pulse  
width for the WKUP input  
signals  
tWK_PW_MIN  
input through WKUP1, WKUP2, LP_WKUP1 and  
LP_WKUP2 pins while the device is in mission states  
25.4b  
200  
24  
ns  
DISABLE_WDOG input signal  
deglitch time  
25.5a tWD_DIS  
25.5b tWD_pulse  
30  
30  
36  
36  
µs  
µs  
TRIG_WDOG input signal  
deglitch time  
24  
(1) ENABLE signal deglitch is not available when device is activated from the LP_STANDBY state while the deglitching clock is not  
available.  
8.17 Digital Output Signal Parameters  
Over operating free-air temperature range (unless otherwise noted). Voltage level is in reference to the thermal/ground pad of  
the device. VIO refers to the VIO_IN pin, VCCA refers to the VCCA pin.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics: SDA_I2C1, and Output Signals through GPO1 and GPO2 pins  
Low-level output voltage, push-  
pull and open-drain  
12.11 VOL(VIO)_20mA  
12.12 VOH(VIO)  
IOL = 20 mA  
IOH = 3 mA  
0.4  
0.4  
0.4  
V
V
High-level output voltage,  
push-pull  
VIO – 0.4  
Electrical Characteristics: Output Signals through GPO3 and GPO4 pins  
Low-level output voltage, push-  
pull  
12.13 VOL(DIG)  
12.14 VOH(DIG)  
IOL = 3 mA  
IOH = 3 mA  
V
V
High-level output voltage,  
push-pull  
1.4  
1.4  
Electrical Characteristics: Output Signals through GPO5 and GPO6 pins  
Low-level output voltage, push-  
pull  
12.4  
12.5  
VOL(DIG)_20mA  
VOH(DIG)  
IOL = 20 mA  
IOH = 3 mA  
V
V
High-level output voltage,  
push-pull  
Electrical Characteristics: Output Signals through GPO7, GPO8, GPO9, GPO10, and GPO11 pins  
Low-level output voltage, push-  
pull and open-drain  
12.1  
12.2  
12.3  
VOL(VIO)  
VOH(VIO)  
IOL = 3 mA  
IOH = 3 mA  
0.4  
V
V
V
High-level output voltage,  
push-pull  
VIO – 0.4  
Supply for external pullup  
resistor, open drain  
VIO  
Electrical Characteristics: EN_DRV, nINT, nRSTOUT  
Low-level output voltage for  
EN_DRV pin  
12.6  
12.7  
VOL(EN_DRV)  
VOL(nINT)  
IOL =20 mA  
IOL = 20 mA  
0.4  
0.4  
V
V
Low-level output voltage for  
nINT pin  
Low-level output voltage  
for nRSTOUT and  
nRSTOUT_SoC pin  
12.8  
VOL(nRSTOUT)  
IOL = 20 mA  
0.4  
9.6  
V
Timing Requirements  
Gating time for readback  
monitor  
12.10 tgate_readback  
Signal level change or GPIO selection (GPIOn_SEL)  
8.8  
µs  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.18 I/O Pullup and Pulldown Resistance  
Over operating free-air temperature range, VIO refers to the VIO_IN pin, VCCA refers the VCCA pin.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Electrical Characteristics  
13.1a nPWRON pullup resistance  
nPWRON IO buffer internal pull up to VCCA supply  
280  
280  
280  
280  
400  
400  
400  
400  
520  
520  
520  
520  
kΩ  
kΩ  
kΩ  
kΩ  
ENABLE IO buffer internal pull up to VCCA supply and  
pull down to ground  
13.1b ENABLE pullup and pulldown resistance  
13.2  
13.3  
IO signals pullup resistance  
GPIO1 -11 pins configured as input with internal pullup  
GPIO1 - 11 pins configured as inputs with internal  
pulldown  
IO signals pulldown resistance  
nRSTOUT and nRSTOUT_SoC pullup  
resistance  
13.4  
13.5  
Internal pullup to VIO supply when output driven high  
Internal pullup to VCCA supply when output driven high  
8
8
10  
10  
12  
12  
kΩ  
kΩ  
EN_DRV pullup resistance  
8.19 I2C Interface  
Over operating free-air temperature range (unless otherwise noted). Device supports standard mode (100 kHz), fast mode  
(400 kHz), and fast mode+ (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode (3.4 MHz) only when VIO is 1.8 V.  
POS  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Electrical Characteristics  
Capacitive load for SDA  
and SCL  
14.1  
CB  
400  
pF  
Timing Requirements  
16.1a  
16.1b  
Standard mode  
100  
400  
1
kHz  
Fast mode  
16.1c ƒSCL  
16.1d  
Serial clock frequency  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
3.4  
1.7  
MHz  
16.1e  
16.2a  
4.7  
1.3  
0.5  
160  
320  
4
16.2b  
Fast mode  
µs  
ns  
µs  
ns  
16.2c tLOW  
16.2d  
SCL low time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
16.2e  
16.3a  
16.3b  
Fast mode  
0.6  
0.26  
60  
16.3c tHIGH  
16.3d  
SCL high time  
Data setup time  
Data hold time  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
16.3e  
120  
250  
100  
50  
16.4a  
16.4b  
Fast mode  
tSU;DAT  
ns  
16.4c  
Fast mode+  
16.4d  
High-speed mode  
Standard mode  
10  
16.5a  
10  
3450  
900  
16.5b  
Fast mode  
10  
ns  
ns  
16.5c tHD;DAT  
16.5d  
Fast mode+  
10  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
10  
70  
16.5e  
10  
150  
16.6a  
4.7  
0.6  
0.26  
160  
Setup time for a start  
or a REPEATED START  
condition  
16.6b  
tSU;STA  
16.6c  
Fast mode  
µs  
ns  
Fast mode+  
16.6d  
High-speed mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
8.19 I2C Interface (continued)  
Over operating free-air temperature range (unless otherwise noted). Device supports standard mode (100 kHz), fast mode  
(400 kHz), and fast mode+ (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode (3.4 MHz) only when VIO is 1.8 V.  
POS  
16.7a  
16.7b  
16.7c  
16.7d  
16.8a  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Standard mode  
4
Hold time for a start or  
a REPEATED START  
condition  
Fast mode  
0.6  
0.26  
160  
4.7  
1.3  
0.5  
4
µs  
tHD;STA  
Fast mode+  
High-speed mode  
Standard mode  
Fast mode  
ns  
Bus free time between  
a STOP and START  
condition  
16.8b tBUF  
16.8c  
µs  
Fast mode+  
16.9a  
Standard mode  
Fast mode  
16.9b  
0.6  
0.26  
160  
µs  
ns  
Setup time for a STOP  
condition  
tSU;STO  
16.9c  
Fast mode+  
16.9d  
High-speed mode  
Standard mode  
Fast mode  
16.10a  
16.10b  
16.10c trDA  
16.10d  
16.10e  
16.11a  
1000  
300  
120  
80  
20  
Rise time of SDA signal Fast mode+  
High-speed mode, Cb = 100 pF  
ns  
ns  
10  
20  
High-speed mode, Cb = 400 pF  
Standard mode  
160  
300  
300  
120  
80  
16.11b  
Fast mode  
6.5  
6.5  
10  
16.11c tfDA  
16.11d  
Fall time of SDA signal Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
Standard mode  
16.11e  
13  
160  
1000  
300  
120  
40  
16.12a  
16.12b  
16.12c trCL  
16.12d  
16.12e  
16.13a  
Fast mode  
20  
Rise time of SCL signal Fast mode+  
ns  
ns  
ns  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
10  
20  
10  
80  
Rise time of SCL signal High-speed mode, Cb = 100 pF  
after a repeated start  
condition and after an  
acknowledge bit  
Standard mode  
Fast mode  
80  
trCL1  
16.13b  
High-speed mode, Cb = 400 pF  
20  
160  
16.14a  
300  
300  
120  
40  
16.14b  
6.5  
6.5  
10  
16.14c tfCL  
16.14d  
Fall time of SCL signal  
Fast mode+  
High-speed mode, Cb = 100 pF  
High-speed mode, Cb = 400 pF  
16.14e  
20  
80  
Pulse width of spike  
suppressed (SCL and  
SDA spikes that are less  
than the indicated width  
are suppressed)  
Standard mode, fast mode, and fast  
mode+  
16.15a  
50  
10  
tSP  
ns  
16.15b  
High-speed mode  
8.20 Serial Peripheral Interface (SPI)  
These specifications are ensured by design, VIO = 1.8 V(unless otherwise noted).  
POS  
PARAMETERS  
TEST CONDITIONS  
MIN  
NOM  
MAX UNIT  
Electrical Characteristics  
15.1  
Capacitive load on pin SDO  
30  
pF  
Timing Requirements  
17.1  
17.2  
17.3  
1
2
3
Cycle time  
200  
150  
150  
ns  
ns  
ns  
Enable lead time  
Enable lag time  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
These specifications are ensured by design, VIO = 1.8 V(unless otherwise noted).  
POS  
17.4  
17.5  
17.6  
17.7  
17.8  
17.9  
PARAMETERS  
TEST CONDITIONS  
MIN  
60  
60  
15  
15  
4
NOM  
MAX UNIT  
4
5
6
7
8
9
Clock low time  
ns  
ns  
ns  
ns  
ns  
Clock high time  
Data setup time  
Data hold time  
Output data valid after SCLK falling  
New output data valid after SCLK falling  
60  
30  
ns  
ns  
17.1  
0
10  
11  
Disable time  
17.1  
1
CS inactive time  
100  
ns  
9 Typical Characteristics  
65  
60  
55  
260  
VCCA_PG_SET = 3.3 V  
VCCA_PG_SET = 5 V  
255  
250  
245  
240  
235  
230  
225  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
LP STANDBY, no OVP  
LP STANDBY  
STANDBY  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VCCA (V)  
5
5.25 5.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
VCCA (V)  
5
5.25 5.5  
TA = 25°C  
TA = 25°C  
Figure 9-1. Quiescent Current vs Input Voltage  
Figure 9-2. Standby Current with VCCA Monitor  
1.5  
4
1.3  
3
2
1.1  
SR = 33.3 V/ms  
SR = 20 V/ms  
0.9  
SR = 10 V/ms  
SR = 5 V/ms  
SR = 2.5 V/ms  
1
0
2.2 MHz, Adding  
2.2 MHz, Shedding  
4.4 MHz, Adding  
4.4 MHz, Shedding  
0.7  
SR = 1.25 V/ms  
SR = 0.625 V/ms  
SR = 0.3125 V/ms  
0.5  
0.5  
1
1.5  
2
2.5  
3
3.5 4  
0
1
2
3
4
5
6
Time (ms)  
IOUT_Bn (A)  
VPVIN_Bn = 3.3 V  
Buck VSET = 0.6 V  
to 1.4 V  
TA = 25°C  
VPVIN_Bn = 3.3 V  
Buck VSET = 1.0 V  
TA = 25°C  
Figure 9-3. Buck Phase Adding and Shedding  
Figure 9-4. Buck Ramp Up Slew Rate  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
9 Typical Characteristics (continued)  
1.5  
1.2  
1
SR = 33.3 V/ms  
SR = 20 V/ms  
SR = 10 V/ms  
1.3  
SR = 5 V/ms  
0.8  
0.6  
0.4  
0.2  
0
SR = 2.5 V/ms  
SR = 1.25 V/ms  
SR = 0.625 V/ms  
SR = 0.3125 V/ms  
1.1  
0.9  
0.7  
0.5  
2.2MHz, 1-phase  
2.2MHz, 2-phase  
2.2MHz, 3-phase  
2.2MHz, 4-phase  
4.4MHz, 1-phase  
4.4MHz, 2-phase  
4.4MHz, 3-phase  
4.4MHz, 4-phase  
-0.2  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.05  
0.1  
0.15  
0.2  
Time (ms)  
0.25  
0.3  
0.35  
0.4  
Time (ms)  
VPVIN_Bn = 3.3 Buck VSET = 1.4 V to  
0.6 V  
TA = 25°C  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V Slew Rate = 5 V/ms  
V
Figure 9-6. Buck Start Up with no Load, Auto Mode  
Figure 9-5. Buck Ramp Down Slew Rate  
1.2  
1
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
2.2MHz, 1-phase  
2.2MHz, 1-phase  
0.4  
0.2  
0
2.2MHz, 2-phase  
2.2MHz, 3-phase  
2.2MHz, 4-phase  
4.4MHz, 1-phase  
4.4MHz, 2-phase  
4.4MHz, 3-phase  
4.4MHz, 4-phase  
2.2MHz, 2-phase  
2.2MHz, 3-phase  
2.2MHz, 4-phase  
4.4MHz, 1-phase  
4.4MHz, 2-phase  
4.4MHz, 3-phase  
4.4MHz, 4-phase  
-0.2  
-0.2  
0
0.05  
0.1  
0.15  
0.2  
Time (ms)  
0.25  
0.3  
0.35  
0.4  
0
0.05  
0.1  
0.15  
0.2  
Time (ms)  
0.25  
0.3  
0.35  
0.4  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V Slew Rate = 5 V/ms  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V Slew Rate = 5 V/ms  
Figure 9-7. Buck Start Up with 1A Load, Auto Mode  
Figure 9-8. Buck Shutdown with no Load, Auto Mode  
1.2  
1.6  
1
1.4  
1.2  
1
0.8  
0.6  
2.2MHz, 1-phase  
0.4  
0.2  
0
2.2MHz, 2-phase  
2.2MHz, 3-phase  
2.2MHz, 4-phase  
4.4MHz, 1-phase  
4.4MHz, 2-phase  
4.4MHz, 3-phase  
4.4MHz, 4-phase  
0.8  
No Load  
with 1A load  
-0.2  
0.6  
0
0.05  
0.1  
0.15  
0.2  
Time (ms)  
0.25  
0.3  
0.35  
0.4  
0
5
10  
15  
20  
25  
30 35  
Time (us)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V Slew Rate = 5 V/ms  
VPVIN_Bn = 3.3 V  
Buck VSET = 0.6 V  
to 1.4 V  
Slew Rate = 33.3  
V/ms  
Figure 9-9. Buck Shutdown with 1A Load, Auto Mode  
Figure 9-10. Buck Ramp Up with and without Load  
Copyright © 2021 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
9 Typical Characteristics (continued)  
1.5  
3.5  
3
No Load  
with 1A load  
3.3 V to 0.8 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
Bypass Mode  
1.4  
1.3  
1.2  
1.1  
1
2.5  
2
1.5  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0
-0.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Time (us)  
Time (ms)  
VPVIN_Bn = 3.3 Buck VSET = 1.4 V to  
0.6 V  
Slew Rate = 33.3  
V/ms  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
V
Figure 9-12. GPLDO Start Up with LDOn_SLOW_RAMP = 0  
Figure 9-11. Buck Ramp Down with and without Load  
3.5  
3.5  
3.3 V to 0.8 V  
3.3 V to 0.8 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
Bypass Mode  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
3
2.5  
2
3
2.5  
2
Bypass Mode  
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Time (ms)  
Time (ms)  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
VIN(LDOn) = 3.3 V or LDOn_PLDN = 500  
5 V  
TA = 25°C  
Ω
Figure 9-13. GPLDO Start Up with LDOn_SLOW_RAMP = 1  
Figure 9-14. GPLDO Shut Down  
3.5  
3.5  
3
3.3 V to 0.8 V  
3.3 V to 0.8 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
-0.5  
-0.5  
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
0
0.4 0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6  
4
Time (ms)  
Time (ms)  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
VIN(LDOn) = 3.3 V or 5 V  
TA = 25°C  
Figure 9-15. LNLDO Start Up with LDOn_SLOW_RAMP = 0  
Figure 9-16. LNLDO Start Up with LDOn_SLOW_RAMP = 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
9 Typical Characteristics (continued)  
3.5  
3.3 V to 0.8 V  
3.3 V to 1.8 V  
5 V to 0.8 V  
5 V to 1.8 V  
5 V to 3.3 V  
3
2.5  
2
1.5  
1
0.5  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Time (ms)  
VIN(LDOn) = 3.3 V or 5 V  
LDOn_PLDN = 500 Ω  
TA = 25°C  
Figure 9-17. LNLDO Shut Down  
Copyright © 2021 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10 Detailed Description  
10.1 Overview  
The TPS6594-Q1 device is a power-management integrated circuit (PMIC), available in a 56-pin, 0.5-mm pitch,  
8-mm × 8-mm QFN package. It is designed for powering embedded systems or system on chip (SoC) in  
automotive or industrial applications. It provides five configurable buck converter rails, with four of the rails  
having the ability to combine outputs in multi-phase mode. BUCK4 has the ability to supply up to 4 A in  
single-phase mode, while BUCK1, BUCK2, and BUCK3 have the ability to supply up to 3.5 A in single-phase  
mode. When working in multi-phase mode, each BUCK1, BUCK2, BUCK3, and BUCK4 can supply up to 3.5 A  
per phase, adding up to 14 A in four-phase configuration. BUCK5 is a single-phase only buck converter, which  
supports up to 2 A current load. All five of the BUCK converters have the capability to sink up to 1 A, and support  
dynamic voltage scaling. Double buffered voltage scaling registers enable each BUCK to transition to a different  
voltage during operation by SPI or I2C. A DPLL enables the BUCK converters to synchronize to an external  
clock input, with phase delays between the outputs rails.  
The TPS6594-Q1 device also provides three LDO rails, which can supply up to 500 mA per rail and can be  
configured in bypass mode and used as a load switch. One additional low-noise LDO rail can supply up to 300  
mA. The 500 mA LDOs support 0.6 V to 3.3 V output with 50 mV step. The 300 mA low-noise LDO supports 1.2  
V to 3.3 V output with 25 mV step. The output voltages of the LDOs can be pre-configured through the SPI or  
I2C interfaces, which are used to configure the power rails and the power states of the TPS6594-Q1 device.  
I2C channel 1 (I2C1) is the main channel with access to the registers, which control the configurable power  
sequencer, the states and the outputs of power rails, the device operating states, and the RTC registers. I2C  
channel 2 (I2C2), which is available through the GPIO1 and GPIO2 pins, is dedicated for accessing the Q&A  
Watchdog communication registers. If GPIO1 and GPIO2 are not configured as I2C2 pins, I2C1 can access all  
of the registers, including the Q&A Watchdog registers. If I2C_SPI_SEL = 1, SPI is the selected interface for the  
device and can be used to access all registers as well.  
The TPS6594-Q1 device includes an internal RC oscillator to sequence all resources during power up and  
power down. Two internal LDOs (LDOVINT and LDOVRTC) generate the supply for the entire digital circuitry of  
the device as soon as the external input supply is available through the VCCA input. A backup battery supply  
input can also be used to power the RTC block and a 32 kHz Crystal Oscillator clock generator in the event of  
main supply power loss.  
TPS6594-Q1 device has eleven GPIOs each with multiple functions and configurable features. All of the GPIOs,  
when configured as general purpose output pins, can be included in the power-up and power-down sequence  
and used as enable signals for external resources. In addition, each GPIO can be configured as a wake-up input  
or a sleep mode trigger. The default configuration of the GPIO port comes from the NVM memory, and can be  
re-programmed by system software if the external connection permits.  
The TPS6594-Q1 device includes a watchdog with trigger or Q&A modes to monitor software lockup, and two  
system error monitoring inputs with fault injection options to monitor the lock-step signal of the attached SoC  
or MCU. TPS6594-Q1 includes protection and diagnostic mechanisms such as short-circuit protection, thermal  
monitoring, and thermal shutdown. The PMIC device can notify the processor of these events through the  
interrupt signal open-drain output, allowing the processor to take action in response.  
An SPMI interface is included in the TPS6594-Q1 device to distribute power state information to at most 5  
satellite PMICs on the same network, thus enabling synchronous power state transition across multiple PMICs in  
the application system. This feature allows the consolidation of IO control signals from up to 6 PMICs powering  
the system into a primary TPS6594-Q1 device.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.2 Functional Block Diagram  
VSYS  
VIO  
nPWRON/ENABLE  
Control  
Interface  
VSYS OVP  
EN_DRV  
Windowed  
Power-Good  
Monitor  
Grounds  
PGOOD  
SCL_I2C1/CLK_SPI  
LDOVINT  
VINT  
BSM  
LDOVRTC  
VRTC  
SDA_I2C1/SDI_SPI  
I2C2_SCL_CS  
I2C CNTRL,  
or SPI  
SYNCCLKOUT  
Single or  
Multi-Phase  
I2C2_SDA_SDO  
VCC internal  
supply  
nRSTOUT  
nINT  
PVIN_B1  
SW_B1  
FB_B1  
VCCA  
VCCA  
VCCA  
Internal  
Interrupt  
events  
EN  
VSEL  
RAMP  
CLK1  
BUCK1  
3.5 A  
RC  
Oscillator  
DPLL  
(Phase  
synchronization  
and dither)  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
OSC32KIN  
(AVS)  
<GND_B1>  
SYNCCLKIN  
PVIN_B2  
SW_B2  
FB_B2  
EN  
VSEL  
RAMP  
CLK2  
BUCK2  
3.5 A  
DFT  
NVM Controller  
NVM Memory  
(AVS)  
<GND_B2>  
Registers  
VCCA  
Pre-Configurable  
Power Sequencer  
Controller  
PVIN_B3  
SW_B3  
FB_B3  
EN  
VSEL  
RAMP  
CLK3  
BUCK3  
3.5 A  
VCCA_UVLO  
VCCA  
VCCA_OVP  
(AVS)  
ECO  
PWM  
DVS  
<GND_B3>  
WAKEn  
NSLEEPn  
Default NVM Settings  
PVIN_B4  
SW_B4  
FB_B4  
VCCA  
VCCA  
EN  
VSEL  
RAMP  
CLK4  
BUCK4  
4 A (1N)  
3.5A (multiN)  
Thermal  
Monitoring and  
Shutdown  
(AVS)  
<GND_B4>  
Hot die detection  
I2C2  
SPI  
PVIN_B5  
SW_B5  
FB_B5  
Q&A WDT  
EN  
VSEL  
RAMP  
CLK5  
BUCK5  
2 A  
NERRORn  
Error Monitor  
Single-Phase  
32-kHz Crystal  
Oscillator  
<GND_B5>  
RTC  
OSC32KOUT  
OSC32KCAP  
100Ω  
VRTC  
Internal supply  
REFGND1  
Bypass  
LDO1  
500 mA  
Bypass  
LDO2  
500 mA  
Bypass  
LDO3  
500 mA  
LDO4  
300 mA  
Low Noise  
Quiet Ground  
AMUX_OUT  
Reference  
and Bias  
REFGND2  
VCCA  
* These red squares are internal pads for down-bonds to the package thermal/ground pad.  
Copyright © 2021 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3 Feature Description  
10.3.1 System Supply Voltage Monitor and Over-Voltage Protection  
The TPS6594-Q1 device includes an over-voltage protection mechanism through a 12 V compliant input monitor  
at the VSYS_SENSE pin. When an over-voltage is detected at the VSYS_SENSE pin, OVPGDRV pin is pulled  
low to disable the external high voltage load switch, which connects the VSYS supply to the VCCA pin. After  
the over-voltage condition is cleared, the voltage at the OVPGDRV pin will recover after the voltage at the  
VSYS_SENSE pin stays below VVSYS_RC_TH for at least VSYS_RC_TH  
.
TI recommends connecting a 10 V zener diode to ground at the VSYS_SENSE pin and one or more series  
resistors between the VSYS_SENSE pin and the pre-regulator output to limit the current surge and protect the  
VSYS_SENSE pin from an over-voltage condition due to possible short at the pre-regulator output. The voltage  
slew rate at the VSYS_SENSE pin must be limited to ≤ VVSYS_SR to prevent possible damage to the device.  
In case the TPS6594-Q1 device detects a VCCA over voltage condition, then the VCCA domain will be  
unpowered and will not signal the over voltage condition to the VSYS over-voltage protection module. Therefore,  
a dead-lock mechanism is implemented in the VSYS domain by setting a latch to keep the external high voltage  
load switch (between VSYS and VCCA) open once the TPS6594-Q1 device has detected a VCCA over voltage  
condition.  
The TPS6594-Q1 will first check for possible fail-short condition of the external FET at initial power up. The  
diagnostic mechanism will pull OVPDGRV pin low when VCCA reaches VOVP_FET_Short_TH, and wait to make  
sure VCCA decreases by VOVP_FET_Short_Hyst before pulling the OVPGDRV pin high again. This mechanism will  
effectively disconnect the VCCA pin from VSYS in case of a FET fail-short condition; with the addition of the  
diagnostic comparator, however, it will also cause a non-monotonic power up behavior with an RC delay at the  
VCCA pin. The RC delay is associated with the input capacitance at the VCCA pin and the internal pull-down  
resistor value RVCCA_OVP_PD  
.
The comparator module in TPS6594-Q1, which monitors the voltage on the VCCA pins, controls the power state  
machine of the device. VCCA voltage detection outputs determine the power states of the device as following:  
VCCA_UVLO When the supply at the VCCA pin falls below the VCCA_UVLO threshold, TPS6594-Q1 returns  
to the BACKUP state. LDOVRTC is powered by the output of the Backup Supply Management  
(BSM) module during the BACKUP state. The device returns to the NO SUPPLY state and is  
completely shutdown when the input supply of the LDOVRTC falls below the operating range.  
The device will not return to the BACKUP state from the NO SUPPLY state.  
VCCA_UV  
TPS6594-Q1 transitions from the NO SUPPLY state to the INIT state when the voltage on the  
VCCA pin rises above VCCA_UV during initial power up.  
VCCA_OVP If the voltage on VCCA pin rises above the VCCA_OVP threshold while TPS6594-Q1 is in  
operation ,despite the OVPGDRV mechanism, then the device will clear the ENABLE_DRV bit  
and start the immediate shutdown sequence to protect itself from an over-voltage input condition.  
A separate voltage comparator can be enabled to monitor whether or not the VCCA voltage is within the  
expected PGOOD range when VCCA is expected to be 5 V or 3.3 V. Refer to Section 10.3.4 for additional detail  
on the operation of the PGOOD monitor function.  
LDOVINT, which is the internal supply to the digital core of the device, may attempt to restart the device when  
the input voltage at VCCA pin falls or stays between VCCA_UVLO and VCCA_UV voltage levels; the voltage at  
the VCCA pin, however, must be above the VCCA_UV voltage level for the device to power up properly.  
The Figure 10-1 shows a block diagram of the system input monitoring and over-voltage protection mechanism,  
and the generation of the VCCA_UVLO and VCCA_OVP power state control signals.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
VCCA  
VSYS  
Preregulator  
High-Voltage  
Load Switch  
500Ω  
Zener 1  
(10 V)  
VSYS Clamp  
Regulator  
VCCA_SENSE  
Error  
Amplifier  
Safety  
Bandgap  
POWER_UP  
Bandgap  
Charge Pump  
(×3)  
EN  
-
+
+
VCCA_UVLO  
OVPGDRV  
Monitor  
œ
œ
œ
VCCA_OVP  
VSYS_SENSE_OVP  
Q
Q
+
+
1
D
D
1
VSYS OVP  
Monitor  
VCCA OV and UVLO  
Monitor  
Figure 10-1. VSYS Monitor and OVPGDRV Output Generation  
10.3.2 Power Resources (Bucks and LDOs)  
The power resources provided by the TPS6594-Q1 device includes synchronous, current mode control bucks  
and linear LDOs. These supply resources provide power to the external processors, components, and modules  
inside the TPS6594-Q1 device. The supply of the bucks, the PVIN_Bx pins, must connect to the VCCA pin  
externally. The supply of the LDOs, the PVIN_LDOx pins, may connect to the VCCA pin or a buck output which  
is at a lower voltage level than the VCCA.  
The voltage output of each power resource is continuously monitored by a dedicated analog monitor on an  
independent reference voltage domain. An unused regulator can also be used as a voltage monitor for an  
external rail by connecting the external rail to the FB_Bn the VOUT_LDOn pin. A residual voltage checking  
option is also available for each power resource to ensure the output voltage has dropped below 150 mV before  
it can be powered up again.  
Table 10-1 lists the power resources provided by the TPS6594-Q1 device.  
Table 10-1. Power Resources  
RESOURCE  
TYPE  
VOLTAGE  
CURRENT CAPABILITY  
COMMENTS  
0.3 to 0.6 V, 20-mV steps  
0.6 to 1.1 V, 5-mV steps  
1.1 to 1.66 V, 10-mV steps  
1.66 to 3.34 V, 20-mV steps  
BUCK1, BUCK2,  
BUCK3  
Can be configured in multi-phase mode  
or stand-alone in single-phase mode  
BUCK  
3.5 A  
Copyright © 2021 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-1. Power Resources (continued)  
RESOURCE  
TYPE  
VOLTAGE  
CURRENT CAPABILITY  
COMMENTS  
0.3 to 0.6 V, 20-mV steps  
0.6 to 1.1 V, 5-mV steps  
1.1 to 1.66 V, 10-mV steps  
1.66 to 3.34 V, 20-mV steps  
4 A in single-phase mode Can be configured in multi-phase mode  
3.5 A in multi-phase mode or stand-alone in single-phase mode  
BUCK4  
BUCK5  
BUCK  
0.3 to 0.6 V, 20-mV steps  
0.6 to 1.1 V, 5-mV steps  
1.1 to 1.66 V, 10-mV steps  
1.66 to 3.34 V , 20-mV steps  
BUCK  
2 A  
Only in single-phase mode  
LDO1, LDO2,  
LDO3  
LDO  
LDO  
0.6 V to 3.3 V, 50-mV steps  
1.2 V to 3.3 V, 25-mV steps  
500 mA  
300 mA  
Bypass mode configurable  
Low-noise  
LDO4  
10.3.2.1 Buck Regulators  
10.3.2.1.1 Overview  
The TPS6594-Q1 includes five synchronous buck converters, four of which can be combined in multi-phase  
configuration. All of the buck converters support the following features:  
Automatic mode control based on the loading (PFM or PWM mode) or Forced-PWM mode operation  
External clock synchronization option to minimize crosstalk  
Optional spread spectrum technique to reduce EMI  
Soft start  
AVS support with configurable slew-rate  
Windowed undervoltage and overvoltage monitors with configurable threshold  
Windowed voltage monitor for external supply when the buck converter is disabled  
When the converters' outputs are combined in multi-phase configuration, it also supports the following features:  
Current balancing between the phases of the converter  
Differential voltage sensing from point of the load  
Phase shifted outputs for EMI reduction  
Optional dynamic phase shedding or adding  
There are two modes of operation for the converter, depending on the output current required: pulse-width  
modulation (PWM) and pulse-frequency modulation (PFM). The converter operates in PWM mode at high load  
currents of approximately 600 mA or higher. Lighter output current loads cause the converter to automatically  
switch into PFM mode for reduced current consumption. The device avoids pulse skipping and allows easy  
filtering of the switch noise by external filter components when forced-PWM mode is selected (BUCKn_FPWM  
= 1). This is the recommended mode of operation for the buck converter to achieve better ripple and transient  
performance. The drawback of this mode is the higher quiescent current at low output current levels.  
When operating in PWM mode the phases of a multi-phase regulator are automatically added or shed based on  
the load current level. The forced multi-phase mode can be enabled for lower ripple at the output.  
A multi-phase synchronous BUCK converter offers several advantages over a single power stage converter.  
Lower ripple on the input and output currents and faster transient response to load steps are the most significant  
advantages for application processor power delivery. The heat generated is greatly reduced for each channel  
due to the fact that power loss is proportional to the square of current with the even distribution of the load  
current in a multi-phase output configuration. The physical size of the output inductor shrinks significantly due to  
this heat reduction.  
Figure 10-2 shows a block diagram of a single core.  
Figure 10-3 shows the interleaving switching action of the multi-phase converters.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
PVIN  
High-Side  
Current Limit  
Loop  
Comparator  
FBP  
Feedback Network  
FBN  
PDN  
Gate  
Driver  
PWM  
Generator  
œ
Low-Side  
Current Limit  
DAC  
+
Error  
Amplifier  
CLK  
Figure 10-2. Buck Core Block Diagram  
IL_TOT_4PH  
IL1  
IL2  
IL4  
IL3  
0
90  
180  
270  
360  
450  
540  
630  
720  
PWM1  
PWM2  
PWM4  
PWM3  
Switching Cycle 360º  
0
90  
180  
270  
360  
450  
540  
630  
720  
Phase (Degrees)  
Figure 10-3. Example of PWM Timings, Inductor Current Waveforms, and Total Output Current in 4-Phase  
Configuration. 1  
10.3.2.1.2 Multi-Phase Operation and Phase-Adding or Shedding  
The 4-phase converters (Buck1, Buck2, Buck3, and Buck4) switches each channel 90° apart under heavy load  
conditions. As a result, the 4-phase converter has an effective ripple frequency four times greater than the  
switching frequency of any one phase. In the same way, 3-phase converter has an effective ripple frequency  
three times greater and 2-phase converter has an effective ripple frequency two times greater than the switching  
frequency of any one phase; the parallel operation, however, decreases the efficiency at light load conditions.  
The TPS6594-Q1 can change the number of active phases to optimize efficiency for the variations of the load in  
order to overcome this operational inefficiency. This is called phase adding or shedding. The concept is shown in  
Figure 10-4.  
The converter can be forced to multi-phase operation by the BUCKn_FPWM_MP bit in BUCKn_CTRL1 register.  
If the regulator operates in forced multi-phase mode (two phases in the dual-phase configuration, three phases  
1
Graph is not in scale and is for illustrative purposes only.  
Copyright © 2021 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
in three-phase configuration, and four phases in a four-phase configuration) the forced-PWM operation is  
automatically used. If the multi-phase operation is not forced, the number of phases are added and shed  
automatically to follow the required output current.  
Best efficiency obtained with  
N=1  
N=2  
N=3  
N=4  
Load Current  
Figure 10-4. Multiphase Buck Converter Efficiency vs Number of Phases (Converters in PWM Mode) 2  
10.3.2.1.3 Transition Between PWM and PFM Modes  
Force PWM mode operation with phase-adding or shedding optimizes efficiency at mid-to-full load. The  
TPS6594-Q1 converter operates in PWM mode at load current of about 600 mA or higher. The device  
automatically switches into PFM mode for reduced current consumption when forced-PWM mode is disabled  
(BUCKn_FPWM = 0) at lighter load-current levels. A high efficiency is achieved over a wide output-load-current  
range by combining the PFM and the PWM modes.  
10.3.2.1.4 Multi-Phase Buck Regulator Configurations  
The control of the multi-phase regulator settings is done using the control registers of the master buck in the  
multi-phase configuration. The following slave registers are ignored:  
BUCKn_CTRL register, except BUCKn_VMON_EN and BUCKn_RV_SEL  
BUCKn_CONF register  
BUCKn_VOUT_1 and BUCKn_VOUT_2 registers  
BUCKn_PG_WINDOW register  
Interrupt bits related to the slave buck, except BUCKn_ILIM_INT, BUCKn_ILIM_MASK and  
BUCKn_ILIM_STAT  
Table 10-2 shows the supported Multi-Phase buck regulator configurations and the assigned master buck in  
each configuration.  
Table 10-2. Master Buck Assignment for Supported Multi-phase Configuration  
Supported Multi-Phase Buck Regulator Configuration  
Master Buck Assignment  
4-Phase: BUCK1 + BUCK2 + BUCK3 + BUCK4  
BUCK1  
BUCK1  
BUCK1  
3-Phase: BUCK1 + BUCK2 + BUCK3  
2-Phase: BUCK1 + BUCK2  
2
Graph is not in scale and is for illustrative purposes only.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TPS6594-Q1  
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-2. Master Buck Assignment for Supported Multi-phase Configuration (continued)  
Supported Multi-Phase Buck Regulator Configuration  
Master Buck Assignment  
2-Phase: BUCK3 + BUCK4  
BUCK3  
When the bucks are configured in 3-phase or 4-phase configurations, there are exceptions to the above list  
of slave registers which are ignored. The configuration registers are user configurable for the voltage monitor  
function on Buck3 and Buck4 in a 4-phase configuration and Buck3 in a 3-phase configuration. This is because  
the FB_Bn pins of these bucks can be used as voltage monitor pins for external supplies. The following list of  
registers and register bits for Buck3 and Buck4 can be used to enable and set the target voltage for the external  
voltage monitoring function under such configuration:  
BUCKn_VMON_EN bit  
BUCKn_RV_SEL bit  
BUCKn_VSEL bit  
BUCKn_SLEW_RATE  
BUCKn_VOUT_1 and BUCKn_VOUT_2 registers  
BUCKn_PG_WINDOW register  
Customers are responsible for the values set in these registers when using Buck3 or Buck4 to monitor an  
external supply under the 3-phase or 4-phase configuration. If the voltage monitor function is not used under  
such a scenario, the FB_Bn pins must be connected to the reference ground, and the BUCKn_VMON_EN and  
BUCKn_RV_SEL bits must be set to '0'.  
10.3.2.1.5 Spread-Spectrum Mode  
The TPS6594-Q1 device supports spread-spectrum modulation of the buck regulators' switching clocks. Three  
factory-selectable modulation modes are available: the first mode is modulation from external input clock at the  
SYNCCLKIN pin; the second mode is modulating the input clock at the SYNCCLKIN pin using the DPLL; the  
third mode is modulating the internal 20 MHz RC Oscillator clock using the DPLL.  
This is a fixed NVM option and changing modulation setting during operation is not supported.  
The modulation frequency range is limited by the DPLL bandwidth. The max frequency spread for the input clock  
to the DPLL is ±18% to secure parametric compliance of the buck output performance.  
The internal modulation is disabled by default and can be enabled and configured after power up. Internal  
modulation is activated by setting the SS_EN control bit. The internal modulation must be disabled (SS_EN = 0)  
when changing the following parameter:  
SS_DEPTH[1:0] – Spread Spectrum modulation depth  
When internal modulation is enabled and configured, it can be disabled by the system MCU during operation.  
The device transition to different mission states does not impact internal modulation when it is enabled and  
configured.  
10.3.2.1.6 Adaptive Voltage Scaling (AVS) and Dynamic Voltage Scaling (DVS) Support  
An AVS or a DVS voltage value can be configured by the attached MCU after the buck regulator is powered up  
to the default output voltage selected in register BUCKn_VSET1, which loads its default value from NVM. The  
purpose of the AVS/DVS voltage is to set the buck output voltage to enable optimal efficiency and performance  
of the attached SoC.  
All of bucks on the TPS6594-Q1 device support AVS and DVS voltage scaling changes. Once the  
AVS/DVS voltage value is written into the BUCKn_VSET1 or BUCKn_VSET2 register, and the MCU sets the  
BUCKn_VSEL register to select the AVS/DVS voltage, the output of the buck will maintain at the AVS/DVS  
voltage level instead of the default voltage from NVM until any one of the following event occurs:  
Error that causes the device to re-initialize itself through a power cycle after reaching the SAFE RECOVERY  
state  
Error that causes the device to execute warm reset  
MCU configures the device to enter the LP STANDBY state  
Copyright © 2021 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Figure 10-5 shows the arbitration scheme for loading the buck output level from the AVS register using the  
BUCKn_VSET control registers.  
I2C/SPI  
REGULATOR ENABLE  
I2C/SPI  
AVS/DVS ENABLE REG  
BUCKn_EN  
BUCKn_VSEL  
I2C/SPI  
I2C/SPI  
BUCKn_VSET1  
BUCKn_VSET2  
DCDC  
Regulator  
MUX  
Figure 10-5. AVS/DVS Configuration Register Arbitration Diagram  
The OV and UV threshold of the buck output voltage monitor will be updated automatically by the digital control  
block during the AVS or DVS voltage change. When the output voltage is increased, the OV threshold is updated  
at the same time the BUCKn_VSETx is updated to the AVS voltage level, while the UV threshold is updated after  
a delay calculated by Equation 1.  
When the output voltage is decreased, the UV threshold is updated at the same time the BUCKn_VSETx is  
updated to the AVS voltage level, while the OV threshold is updated after a delay calculated by Equation 1.  
tPG_OV_UV_DELAY = (dV / BUCKn_SLEW_RATE) + tsettle_Bx  
(1)  
In order to prevent erroneous voltage monitoring, the digital block also temporarily masks the results of the  
OV and UV monitor from the regulator output when the buck is enabled and the voltage is rising to the  
BUCKn_VSETx level. The duration of the mask starts from the time the buck is enabled. The buck OV monitor  
output is masked for a fixed delay time of tPG_OV_GATE, which is approximately 115 µs – 128 µs. The UV monitor  
output is masked for the time duration calculated by Equation 2. The 370 µs additional delay time in the formula  
includes the start-up delay of the buck, the fixed delay after the ramp, and the time for the BIST operation of the  
OV and UV monitors.  
tPG_UV_GATE = (BUCKn_VSEL / BUCKn_SLEW_RATE) + 370 µs  
(2)  
Note  
Because output capacitance, forward and negative current limits and load current of the buck may  
affect the slew rate of the buck output, the delay time of tPG_UV_GATE may not be sufficient long for the  
slower slew rate setting when the target buck output voltage is higher. Please refer to the PMIC User's  
Guide for detail information about the supported voltage level and slew rate setting combinations of a  
particular orderable part number.  
Figure 10-6 and Figure 10-7 are timing diagrams illustrating the voltage change for AVS and DVS enabled bucks  
and the corresponding OV and UV monitor threshold changes.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Initial voltage  
AVS_VNOM  
OV limit  
OV limit  
UV limit  
UV limit  
Default from NVM  
BUCKn VOUT  
I2C/SPI write  
State control (or I2C/SPI write)  
State control (or I2C/SPI write)  
State control (or I2C/SPI write)  
0x00  
0x00  
0
0x5F  
0x5A  
BUCKn_VSET1  
BUCKn_VSET2  
BUCKn_EN  
Automatic control  
by digital  
0x5F  
1
0
1
0 us  
Register bits  
0x00  
0x00  
0
0x5F  
0x5F  
0x5A  
BUCKn_OV_SET  
BUCKn_UV_SET  
BUCKn_VSEL  
tPG_OV_UV_DELAY  
0x5A  
0
1
0
1
BUCKn_OV_UV_EN  
Automatic control  
by digital  
Automatic control  
by digital  
0 us  
Automatic control  
by digital  
BUCKn_OV Monitor Output  
BUCKn_OV Gating  
tPG_OV_GATE  
tPG_OV_GATE  
Automatic control  
by digital  
0 us  
BUCKn_UV Monitor Output  
BUCKn_UV Gating  
tPG_UV_GATE  
tPG_UV_GATE  
Figure 10-6. AVS Voltage and OV UV Threshold Level Change Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
OPP_OD  
(or OPP_TURBO)  
OPP_OD  
(or OPP_TURBO)  
OV limit  
OPP_NOM  
OV limit  
UV limit  
UV limit  
BUCKn VOUT  
I2C/SPI write (DVFS control)  
State control (or I2C/SPI write)  
State control (or I2C/SPI write)  
0x5F  
0x5F  
1
0x73  
BUCKn_VSET1  
BUCKn_VSET2  
Automatic control  
by digital  
0
1
BUCKn_EN  
0 us  
0x5F  
0x73  
Register bits  
BUCKn_OV_SET  
BUCKn_UV_SET  
BUCKn_VSEL  
tPG_OV_UV_DELAY  
0x5F  
0x73  
0
1
0
1
BUCK1n_OV_UV_EN  
0 us  
Automatic control  
by digital  
Automatic control  
by digital  
BUCKn_OV Monitor Output  
BUCKn_OV Gating  
tPG_OV_GATE  
0 us  
BUCKn_UV Monitor Output  
BUCKn_UV Gating  
tPG_UV_GATE  
Figure 10-7. DVS Voltage and OV UV Threshold Level Change Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.2.1.7 Buck Output Voltage Setting  
Table 10-3 shows the coding used to select the buck output voltage.  
Table 10-3. Output Voltage Selection for Buck Regulators  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
10 mV steps  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
20 mV steps  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0.3  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0.6  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0.85  
0.855  
0.86  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
1.1  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
1.66  
1.68  
1.7  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
2.52  
2.54  
2.56  
2.58  
2.6  
0.32  
0.34  
0.36  
0.38  
0.4  
0.605  
0.61  
1.11  
1.12  
1.13  
1.14  
1.15  
1.16  
1.17  
1.18  
1.19  
1.2  
0.615  
0.62  
0.865  
0.87  
1.72  
1.74  
1.76  
1.78  
1.8  
0.625  
0.63  
0.875  
0.88  
2.62  
2.64  
2.66  
2.68  
2.7  
0.42  
0.44  
0.46  
0.48  
0.5  
0.635  
0.64  
0.885  
0.89  
1.82  
1.84  
1.86  
1.88  
1.9  
0.645  
0.65  
0.895  
0.9  
2.72  
2.74  
2.76  
2.78  
2.8  
0.52  
0.54  
0.56  
0.58  
0.655  
0.66  
0.905  
0.91  
1.21  
1.22  
1.23  
1.24  
1.25  
1.26  
1.27  
1.28  
1.29  
1.3  
0.665  
0.67  
0.915  
0.92  
1.92  
1.94  
1.96  
1.98  
2
0.675  
0.68  
0.925  
0.93  
2.82  
2.84  
2.86  
2.88  
2.9  
0.685  
0.69  
0.935  
0.94  
2.02  
2.04  
2.06  
2.08  
2.1  
0.695  
0.7  
0.945  
0.95  
2.92  
2.94  
2.96  
2.98  
3.0  
0.705  
0.71  
0.955  
0.96  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
0.715  
0.72  
0.965  
0.97  
2.12  
2.14  
2.16  
2.18  
2.2  
0.725  
0.73  
0.975  
0.98  
3.02  
3.04  
3.06  
0.735  
0.985  
Copyright © 2021 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-3. Output Voltage Selection for Buck Regulators (continued)  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
5 mV steps  
Output  
Voltage [V]  
10 mV steps  
Output  
Voltage [V]  
20 mV steps  
Output  
Voltage [V]  
20 mV steps  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
BUCKn_VSE  
Tn  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0.74  
0.745  
0.75  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0.99  
0.995  
1.0  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
0xAA  
1.38  
1.39  
1.4  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
2.22  
2.24  
2.26  
2.28  
2.3  
0xF2  
0xF3  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
3.08  
3.1  
3.12  
3.14  
3.16  
3.18  
3.2  
0.755  
0.76  
1.005  
1.01  
1.41  
1.42  
1.43  
1.44  
1.45  
1.46  
1.47  
1.48  
1.49  
1.5  
0.765  
0.77  
1.015  
1.02  
2.32  
2.34  
2.36  
2.38  
2.4  
0.775  
0.78  
1.025  
1.03  
3.22  
3.24  
3.26  
3.28  
3.3  
0.785  
0.79  
1.035  
1.04  
2.42  
2.44  
2.46  
2.48  
2.5  
0.795  
0.8  
1.045  
1.05  
3.32  
3.34  
0.805  
0.81  
1.055  
1.06  
1.51  
1.52  
1.53  
1.54  
1.55  
1.56  
1.57  
1.58  
1.59  
1.6  
0.815  
0.82  
1.065  
1.07  
0.825  
0.83  
1.075  
1.08  
0.835  
0.84  
1.085  
1.09  
0.845  
1.095  
1.61  
1.62  
1.63  
1.64  
1.65  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.2.2 Sync Clock Functionality  
The TPS6594-Q1 device contains a SYNCCLKIN (GPIO10) input to synchronize switching clock of the buck  
regulator with the external clock. The block diagram of the clocking and PLL module is shown in Figure 10-8.  
The external clock is selected when the external clock is available, and SEL_EXT_CLK = '1'. The nominal  
frequency of the external input clock is set by EXT_CLK_FREQ[1:0] bits in the NVM and it can be 1.1 MHz, 2.2  
MHz, or 4.4 MHz. The external SYNCCLKIN clock must be inside accuracy limits (–18%/+18%) of the typical  
input frequency for valid clock detection.  
The EXT_CLK_INT interrupt is generated in case the external clock is expected (SEL_EXT_CLK = 1), but it is  
not available or the clock frequency is not within the valid range.  
The TPS6594-Q1 device can also generate  
a clock signal, SYNCCLKOUT, for external device  
use. The SYNCCLKOUT_FREQ_SEL[1:0] selects the frequency of the SYNCCLKOUT. Note:  
SYNCCLKOUT_FREQ_SEL[1:0] must stay static while SYNCCLKOUT is used, as changing the output  
frequency selection may cause glitches on the clock output. The SYNCCLKOUT is available through GPIO8,  
GPIO9, or GPIO10.  
Copyright © 2021 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
20 MHz  
RC  
Oscillator  
Main CLK  
Detector  
RESET  
Main Digital Clock  
Buck1  
Buck2  
20 MHz  
RC  
Oscillator  
÷ 18  
Phase and  
freq control  
DPLL  
/N  
52.8MHz +/- 20%  
SYNCCLKIN  
Detector  
Divider  
SYNCCLKOUT  
_FREQ_SEL  
SYNCCLKOUT  
Divider  
“EXT_CLK_  
FREQ“  
Clock Select  
Logic  
Spread-spec  
Control  
SYNCCLKIN  
SEL_EXT_CLK  
Figure 10-8. Sync Clock and DPLL Module  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.2.3 Low Dropout Regulators (LDOs)  
All of the LDO regulators in the TPS6594-Q1 device can be supplied by the system supply or another pre-  
regulated voltage source which are within the specified VIN range. The PVIN_LDOn voltage level must be equal  
or less than the VCCA voltage level to ensure proper operation of the LDOs. The default output voltages of all  
LDOs are loaded from the NVM memory and can be configured by the LDOn_VSET[7:0]. There is no hardware  
protection to prevent software from selecting an improper output voltage if the minimum level of PVIN_LDOn is  
lower than the dropout voltage of the LDO regulator in addition to the configured LDO output voltage. In such  
conditions, the output voltage will droop to near the PVIN_LDOn level.  
Note  
Writing a RESERVED value to the LDOn_VSET[7:0] register bits will trigger a LDOn_OV_INT or  
LDOn_UV_INT interrupt.  
LDO regulators do not have slew rate control for voltage ramp; by setting the LDOn_SLOW_RAMP bit to '1',  
however, will slow down the ramp up speed of the regulator output voltage to < 3 V/ms.  
If an LDO is not needed, it can be used as a voltage monitor for an external rail by connecting the external rail  
to the VOUT_LDOn pin. The voltage output level to be monitored must be within the PGOOD monitor range of  
the LDOn_VSET[7:0] of the LDO. If an external resistor divider is necessary in this case, the user must take into  
account the input impedance at the VOUT_LDOn pin (as shown in Figure 10-9), and adjust the resistor values to  
compensate for the voltage shift.  
External Supply  
Output  
PVIN_LDOn  
VOUT_LDOn  
LDO  
50 k  
Pull-Down resistor  
512 kΩ  
when LDOs are  
Disabled  
LDOn_UV_THR  
+
UV  
œ
DAC  
œ
OV  
+
LDOnOV_THR  
Figure 10-9. Impedance at the VOUT_LDOn Pins  
10.3.2.3.1 LDOVINT  
The LDOVINT voltage regulator is dedicated to supply the digital and analog functions of the TPS6594-Q1  
device, which are not required to be always-on and can be turned-off when the device is in low power states.  
The LDOVINT regulator is automatically enabled and disabled as needed if LP_STANDBY_SEL = '1'. The  
automatic control optimizes the overall current consumption when the device is in low power LP_STANDBY  
state.  
The TPS6594-Q1 device's LDOVINT is dedicated for internal use only, and cannot be used to support external  
loads. The VOUT_LDOVINT pin should only be connected to the output filtering capacitor for the regulator and  
nothing else.  
10.3.2.3.2 LDOVRTC  
The LDOVRTC regulator supplies always-on functions, such as wake-up functions. This power resource is active  
as soon as a valid VCCA is present. The TPS6594-Q1 device's LDOVRTC is dedicated for internal use only,  
Copyright © 2021 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
and cannot be used to support external loads. The VOUT_LDOVRTC pin should only be connected to the output  
filtering capacitor for the regulator and nothing else.  
This resource runs in normal mode or backup mode. The LDOVRTC regulator functions in normal mode when  
supplied from the main system power rail and is able to supply the input buffers of GPIO3 and GPIO4, the digital  
components, the crystal, and the RTC calendar module of the TPS6594-Q1 device. The LDOVRTC regulator  
remains on in BACKUP state when VCCA is below the VCCA_UVLO level, and the backup power source is  
above the LDOVRTC_UVLO level.  
Only the 32 kHz crystal and the RTC counter are activated in the BACKUP state. The RTC calendar function  
will remain active in the LP STANDBY state, but the interrupt functions are reduced to maintaining the wake up  
functions only. The RTC calendar and interrupt functions are fully activated in the mission states.  
The customer has the option to enable the shelf mode by setting the LDORTC_DIS bit to 1 while the device is in  
the MISSION state and the I2C bus is in operation and ramp down VCCA to 0 V immediately after the I2C write  
has completed. This bit will force the device to skip the BACKUP state and enters the NO SUPPLY state under  
VCCA_UVLO condition. This mode is useful to prevent the continual draining of the back up power source when  
the 32 KHz crystal and RTC counter functions are no longer needed.  
10.3.2.3.3 LDO1, LDO2, and LDO3  
The LDO1, LDO2 and LDO3 regulators can deliver up to 500 mA of current, with a configurable output range  
of 0.6 V to 3.3 V in 50 mV steps. These 3 LDO regulators also support bypass mode, which allows an input  
voltage at the PVIN_LDOn to show up at the VOUT_LDOn pin. This feature allows the LDOs to be configured as  
load switches with power sequencing control. Similar to the buck regulatros mentioned in Section 10.3.2.1.4, an  
un-used regulator can also be used as a voltage monitor for an external rail by connected the external rail to the  
VOUT_LDOn pin.  
The bypass capability to connect the input voltage to the output in bypass mode is supported when the input  
voltage is within the 1.7 V to 3.5 V range. This bypass capability also allows the LDO to switch from 3.3 V in  
bypass mode to 1.8 V in LDO mode or from 1.8 V in LDO mode to 3.3 V in bypass mode for an SD card I/O  
supply.  
It is important to wait until the LDO has settled on the target voltage from the previous change when changing  
the LDO output voltage setting. The worst case voltage scaling time for LDO1, LDO2, and LDO3 is 63 µs x (7 +  
the number of 50 mV steps to the new target voltage).  
Table 10-4 shows the coding used to select the output voltage for LDO1, LDO2, and LDO3.  
Table 10-4. Output Voltage Selection for LDO1, LDO2, and LDO3  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
LDOx_VSET  
LDOx_VSET  
LDOx_VSET  
LDOx_VSET  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
Reserved  
Reserved  
Reserved  
Reserved  
0.60  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
2.80  
2.85  
2.90  
2.95  
3.00  
0.65  
3.05  
0.70  
3.10  
0.75  
3.15  
0.80  
3.20  
0.85  
3.25  
0.90  
3.30  
0.95  
Reserved  
Reserved  
Reserved  
Reserved  
1.00  
1.05  
1.10  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-4. Output Voltage Selection for LDO1, LDO2, and LDO3 (continued)  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
LDOx_VSET  
LDOx_VSET  
LDOx_VSET  
LDOx_VSET  
0x0F  
1.15  
0x1F  
1.95  
0x2F  
2.75  
0x3F  
Reserved  
10.3.2.3.4 Low-Noise LDO (LDO4)  
The LDO4 regulator can deliver up to 300 mA of current, with a configurable output range of 1.2 V to 3.3 V in 25  
mV steps. This LDO is specifically designed to supply noise sensitive circuits. This supply can be used to power  
circuits such as PLLs, oscillators, or other analog modules that require low noise on the supply. LDO4 does not  
support bypass mode. However it can also be used as a external voltage monitor if its regulator function is not  
needed.  
Table 10-5 shows the coding used to select the output voltage for LDO4.  
Table 10-5. Output Voltage Selection for LDO4  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
Output Voltage  
[V]  
LDO4_VSET  
LDO4_VSET  
LDO4_VSET  
LDO4_VSET  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
1.200  
1.225  
1.250  
1.275  
1.300  
1.325  
1.350  
1.375  
1.400  
1.425  
1.450  
1.475  
1.500  
1.525  
1.550  
1.575  
1.600  
1.625  
1.650  
1.675  
1.700  
1.725  
1.750  
1.775  
1.800  
1.825  
1.850  
1.875  
1.900  
1.925  
1.950  
1.975  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
2.000  
2.025  
2.050  
2.075  
2.100  
2.125  
2.150  
2.175  
2.200  
2.225  
2.250  
2.275  
2.300  
2.325  
2.350  
2.375  
2.400  
2.425  
2.450  
2.475  
2.500  
2.525  
2.550  
2.575  
2.600  
2.625  
2.650  
2.675  
2.700  
2.725  
2.750  
2.775  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
2.800  
2.825  
2.850  
2.875  
2.900  
2.925  
2.950  
2.975  
3.000  
3.025  
3.050  
3.075  
3.100  
3.125  
3.150  
3.175  
3.200  
3.225  
3.250  
3.275  
3.300  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Copyright © 2021 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.3 Residual Voltage Checking  
The residual voltage (RV) checking feature ensures the voltage level at the buck or LDO regulators is below  
VTH_SC_RV before it can be ramped up to the target output voltage. If BUCKn/LDOn_RV_SEL=1 by default, then  
the residual voltage is also checked before the device enters the BOOT_BIST state. If the residual voltage at  
the output of the regulators is greater than VTH_SC_RV, then the device waits until voltage goes below VTH_SC_RV  
before starting BOOT_BIST or the voltage ramp up.  
This feature is enabled by the BUCKn_VMON_EN and BUCKn_RV_SEL bits for each buck regulator, and by the  
LDOn_VMON_EN and LDOn_RV_SEL bits for each LDO regulator. The VMON of the corresponding regulator  
will remain on after the regulator is disabled and for the RV_TIMEOUT period when the RV checking feature  
is enabled. After the RV_TIMEOUT period elapses, the output voltage of the regulator will be compared to  
the short circuit (SC) threshold of VTH_SC_RV and assert the corresponding BUCKn_SC_INT or LDOn_SC_INT  
interrupt bits, if the residual voltage is still higher than the threshold voltage. The RV_TIMEOUT period for the  
BUCK regulators is automatically calculated by the digital controller inside the device by Equation 3. The RV  
timeout period of the LDO regulator is configured by the LDOn_RV_TIMEOUT[3:0].  
tBUCK_RV_TIMEOUT = BUCKn_VSET / BUCKn_SLEW_RATE + 100 µs  
(3)  
The residual voltage check can also be performed on external rails when they are connected to unused LDO  
regulator outputs.  
Figure 10-10 shows the timing diagram of the residual voltage checking operation which results in pass or fail  
results.  
RV Check Passing Case:  
RV Check Failing Case:  
OV limit  
OV limit  
Buck ramp time:  
Vout/SR  
Ramp time slower than expected  
UV limit  
UV limit  
BUCK/LDO VOUT  
SC Threshold  
SC Threshold  
BUCKn/LDOn_sc_out  
(internal signal)  
BUCKn/LDOn_EN  
BUCKn/LDOn_VMON_EN  
BUCKn/LDOn_RV_SEL  
RV Timeout  
RV Timeout  
BUCKn/LDOn_vmon_en  
(internal signal)  
Disabled by digital after  
RV Timeout  
Disabled by digital after  
RV Timeout  
BUCKn/LDOn_SC_INT  
Interrupt set if buckx/ldox_sc_out = 0  
Interrupt set if buckx/ldox_sc_out = 0  
Figure 10-10. Residual Voltage Check Timing Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.4 Output Voltage Monitor and PGOOD Generation  
The TPS6594-Q1 device monitors the under-voltage (UV) and over-voltage (OV) conditions of the bucks' and  
LDOs', output voltage and VCCA (when it is expected to be 5 V or 3.3 V), and has the option to indicate the  
result with a PGOOD signal. Thermal warning can also be included in the result of the PGOOD monitor if it is not  
masked. Either voltage and current monitoring or only voltage monitoring can be selected for PGOOD indication.  
This selection is set by the PGOOD_SEL_BUCKn register bits for each buck regulator (select master phase  
for multi-phase regulator), and is set by the PGOOD_SEL_LDOn register bits for each LDO regulator. When  
voltage and current are monitored, an active PGOOD signal active indicates that the regulator output is inside  
the Power-Good voltage window and that load current is below the current limit. If only voltage is monitored, then  
the current monitoring is ignored for the PGOOD signal.  
The BUCKn_VMON_EN bit enables the OV and UV, Short-circuit and current limit comparators. For LDO  
regulators, the LDOn_VMON_EN bit enables the OV and UV, Short-circuit and current limit comparators. When  
a buck or an LDO is not needed as a regulated output, it can be used as a voltage monitor for an external rail.  
For buck converters, if the BUCKn_VMON_EN bit remains '1' while the BUCKn_EN bit is '0', it can be used as  
a voltage monitor for an external rail which is connected to the buck converter's FB_Bn pin. For LDO regulators,  
if the LDOn_VMON_EN bit remains '1' while the LDOn_EN bit is '0', it can be used as a voltage monitor for an  
external rail which is connected to the VOUT_LDOn pin.  
When the monitor for a buck or LDO regulator is disabled, the output of the corresponding monitor is  
automatically masked to prevent it from forcing PGOOD inactive. This allows PGOOD to be connected to other  
open-drain power good signals in the system.  
The VCCA_VMON_EN bit enables the monitoring of the VCCA input voltage. It can be enabled as an NVM  
default setting, which will start the monitoring of the VCCA voltage after the voltage monitor passes ABIST  
during the BOOT BIST state. The reference voltage for the VCCA monitor can be set by the VCCA_PG_SET  
bit to either 3.3 V or 5 V. The PGOOD_SEL_VCCA register bit selects whether or not the result of the VCCA  
monitor will be included in the PGOOD monitor output signal.  
An NVM option is available to gate the PGOOD output with the nRSTOUT and the nRSTOUT_SoC signals, the  
intended reset signals for the safety MCU and the SoC respectively. When PGOOD_SEL_NRSTOUT = '1', the  
PGOOD pin is gated by the nRSTOUT signal. When PGOOD_SEL_NRSTOUT_SOC = '1', the PGOOD pin is  
gated by the nRSTOUT_SoC signal. This option allows the PGOOD output to be used as an enable signal for  
external peripherals.  
The monitoring from all the output rails are combined, and PGOOD is active only if all the sources shows active  
status.  
The type of output voltage monitoring for PGOOD signal is selected by PGOOD_WINDOW bit. If the bit is 0, only  
undervoltage is monitored; if the bit is 1, then undervoltage and over-voltage are monitored.  
The polarity and the output type (push-pull or open-drain) are selected by PGOOD_POL and GPIO9_OD bits.  
Figure 10-11 shows the Power-Good generation block diagram, and Figure 10-12 shows the Power-Good  
waveforms.  
Copyright © 2021 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Die  
Temperature  
Monitor  
TJ < TWARN  
TWARN_LEVEL  
PGOOD_SEL_TDIE_WARN  
PGOOD_BUCKn  
BUCKn  
PGOOD_WINDOW  
Monitor  
BUCKn_ILIM  
BUCKn_VSETn  
BUCKn_UV_THR  
BUCKn_OV_THR  
BUCKn_VMON_EN  
PGOOD_SEL_BUCKn  
Monitor  
PGOOD_LDOn  
LDOn  
PGOOD_WINDOW  
PGOOD (GPIO9)  
LDOn_VSET  
LDOn_UV_THR  
LDOn_OV_THR  
PGOOD_POL  
LDOn_VMON_EN  
PGOOD_SEL_LDOn  
PGOOD_VCCA  
VCCA  
Monitor  
PGOOD_WINDOW  
VCCA_PG_SET  
VCCA_UV_THR  
VCCA_OV_THR  
VCCA_VMON_EN  
PGOOD_SEL_VCCA  
NRSTOUT  
PGOOD_SEL_NRSTOUT  
NRSTOUT_SoC  
PGOOD_SEL_NRSTOUT_SOC  
Figure 10-11. PGOOD Block Diagram  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Voltage  
Powergood window  
BUCKn_VSETn or  
LDOn_VSET (1)  
Power-good  
window  
BUCKn_VSETn or  
LDOn_VSET (2)  
Time  
On Request  
VIO  
BUCKn_VMON_EN  
or LDOn_VMON_EN  
NRSTOUT  
or NRSTOUT_SoC  
tlatency  
tlatency  
_PGOOD  
_PGOOD  
PGOOD  
(PGOOD_SEL_NRSTOUT =1  
or PGOOD_SEL_NRSTOUT_SOC = 1)  
tlatency  
tlatency  
_PGOOD  
_PGOOD  
PGOOD  
(PGOOD_SEL_NRSTOUT = 0  
and PGOOD_SEL_NRSTOUT_SOC = 0)  
BUCKn_VSETn or LDOn_VSET (1)  
BUCKn_VSETn or LDOn_VSET (2)  
Regulator VSET  
Figure 10-12. PGOOD Waveforms  
The OV and UV threshold of the buck and LDO output voltage monitor are updated automatically by the digital  
control block when the output voltage setting changes. When the output voltage is increased, the OV threshold  
is updated at the same time the VSET of the regulator is changed. The UV threshold is updated after a delay  
calculated by the delta voltage change and the slew rate setting. When the output voltage is decreased, the UV  
threshold is updated at the same time the VSET of the regulator is changed. The OV threshold is updated after  
a delay calculated by the delta voltage change and the slew rate setting. The OV and UV threshold of the buck  
and LDO output voltage monitors are calculated based on the target output voltage set by the corresponding  
BUCKn_VSET1, BUCKn_VSET2, or LDOn_VSET registers, and the deviation from the target output voltage set  
by the corresponding BUCKn_UV_THR, BUCKn_OV_THR, LDOn_UV_THR, and the LDOn_OV_THR registers.  
For the OV and UV threshold of buck and LDO output monitors to update with the correct timing, the following  
operating procedures must be followed when updating the VSET values of the regulators to avoid detection of  
OV/UV fault:  
Buck and LDO regulators must be enabled at the same time as or earlier than as their VMON so that the  
voltage will reach target value before OV/UV self test (BIST) is done  
New voltage level must not be set before the startup has finished and OV/UV self test (BIST) is completed  
New voltage level must not be set before the previous voltage change (ramp plus settling time) has  
completed  
It is important to note: when a regulator is enabled, a voltage monitor self test is performed to ensure proper  
operation. The monitoring function is disabled and gated during this time. Figure 10-13 shows the timing diagram  
of the buck regulator UV/OV self test. Figure 10-14 shows the timing diagram of the LDO UV/OV self test. The  
monitoring function will become effective after the gating period.  
The self test for VCCA, Buck and LDO voltage monitors is done every time when the monitoring function is  
enabled and VMON_ABIST_EN=1. The self test checks that OV and UV comparators are changing their output  
when the input thresholds are swapped. The self test assumes that the input voltage is inside OV/UV threshold  
limits. If the voltage is outside the limits, the self test will fail and BIST_FAIL_INT interrupt is set. In addition, a  
failed self test for over-voltage comparator will set the over-voltage interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
OV/UV test 1 & 2:  
25µs + 25µs  
OV limit  
UV limit  
Settling time  
BUCKx VOUT  
Ramp time  
Vout/SR  
Start-up delay  
BUCKx_VMON_EN  
BUCKx_EN  
buckx_ov_gating  
buckx_uv_gating  
50µs  
tPG_OV_GATE  
Total time: tPG_UV_GATE  
Figure 10-13. Timing of Buck Regulator UV/OV Self Test  
OV/UV test 1 & 2:  
25µs + 25µs  
OV limit  
UV limit  
LDOx VOUT  
LDOx_VMON_EN  
LDOx_EN  
ldox_ov_gating  
ldox_uv_gating  
Typ 102 ~ 109µs  
50µs  
Total time:  
Typ 601 ~ 608µs  
Figure 10-14. Timing of LDO Regulator UV/OV Self Test  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.5 Thermal Monitoring  
The TPS6594-Q1 device includes several thermal monitoring functions for internal thermal protection of the  
PMIC.  
The TPS6594-Q1 device integrates thermal detection modules to monitor the temperature of the die. These  
modules are placed on opposite sides of the device and close to the LDO and BUCK modules. An over-  
temperature condition at either module first generates a warning to the system, and if the temperature continues  
to rise, then a switch-off of the PMIC device can occur before damage to the die.  
Three thermal protection levels are available. One of these protections is a thermal warning function described  
in Section 10.3.5.1, which sends an interrupt to software. Software is expected to close any noncritical running  
tasks to reduce power. The second and third protections are the thermal shutdown (TS) function described in  
Section 10.3.5.2, which begins device shutdown orderly or immediately.  
Thermal monitoring is automatically enabled when any one of the buck or LDO outputs is enabled within the  
mission states. It is disabled in low power states, including the LP_STANDBY state, when only the internal  
regulators are enabled, to minimize the device power consumption. Indication of a thermal warning event is  
written to the TWARN_INT register.  
The current consumption of the thermal monitoring can be decreased in the mission states when the low power  
dissipation is important. If LPM_EN bit is set and the temperature is below thermal warning level in all thermal  
detection modules, only one thermal detection module is monitored. If the temperature rises in this module,  
monitoring in all thermal detection modules is started.  
If the die temperature of the TPS6594-Q1 device continues to rise while the device is in mission state, an  
TSD_ORD_INT or TSD_IMM_INT interrupt is generated, causing a SEVERE or MODERATE error trigger  
(respectively) in the state machine. While the sequencing and error handling is NVM memory dependent,  
TI recommends a sequenced shutdown for MODERATE errors, and an immediate shutdown, using resistive  
discharging, for SEVERE errors to prevent damage to the device. The system cannot restart until the  
temperature falls below the thermal warning threshold.  
10.3.5.1 Thermal Warning Function  
The thermal monitor provides a warning to the host processor through the interrupt system when the  
temperature reaches within a cautionary range. The threshold value must be set to less than the thermal  
shutdown threshold.  
The integrated thermal warning function provides the MCU an early warning of over-temperature condition. This  
monitoring system is connected to the interrupt controller and can send an TWARN_INT interrupt when the  
temperature is higher than the preset threshold. The TPS6594-Q1 device uses the TWARN_LEVEL register  
bit to set the thermal warning threshold temperature at 130°C or 140°C. There is no hysterisis for the thermal  
warning level.  
When the power-management software triggers an interrupt, immediate action must be taken to reduce the  
amount of power drawn from the PMIC device (for example, noncritical applications must be closed).  
10.3.5.2 Thermal Shutdown  
The thermal shutdown detector monitors the temperature on the die. If the junction reaches a temperature at  
which damage can occur, a switch-off transition is initiated and a thermal shutdown event is written into a status  
register. There are two levels of thermal shutdown threshold. When the die temperature reaches the TSD_orderly  
level, an orderly shutdown of the TPS6594-Q1 device will take place. If the die temperature raises rapidly and  
reaches the TSD_imm level before the orderly shutdown process completes, an immediate shutdown of the device  
will take place to turn off all of the power resources as rapidly as possible. After the thermal shutdown takes  
place, the system cannot restart until the die temperature falls below the thermal warning threshold.  
Copyright © 2021 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.6 Backup Supply Power-Path  
LDOVRTC is supplied from either the VBACKUP (backup supply from either coin-cell or super-cap) input or  
VCCA. The power-path is designed to prioritize VCCA to maximize the life of the backup supply.  
When VCCA drops below the VCCA_UVLO threshold, the device shuts down all rails except LDOVRTC and  
enters BACKUP mode. At this point, the Backup Supply Power-Path switches to the VBACKUP as the input of  
LDOVRTC. When the voltage of VCCA returns to level above the VCCA_UVLO threshold level, the power-path  
switches the input of LDOVRTC back to VCCA.  
When both the VCCA voltage drop below the VCCA_UVLO threshold, and the VBACKUP voltage drops below  
the RTC_LDO_UVLO threshold, LDOVRTC is turned OFF and the digital core is reset, forcing the device into  
NO SUPPLY state.  
Note: backup supply is not required for the device to operate. The device will skip BACKUP state if the  
VBACKUP pin is grounded.  
10.3.7 General-Purpose I/Os (GPIO Pins)  
The TPS6594-Q1 device integrates eleven configurable general-purpose I/Os that are multiplexed with  
alternative features as listed in Section 7  
For GPIOs characteristics, refer to Electrical Characteristics tables for Digital Input Signal Parameters and Digital  
Output Signal Parameters.  
When configured as primary functions, all GPIOs are controlled through the following set of registers bits under  
the individual GPIOn_CONF register.  
GPIOn_DEGLITCH_EN: Enables the 8 µs deglitch time for each GPIO pin (input)  
GPIOn_PU_PD_EN: Enables the internal pull up or pull down resistor connected to each GPIO pin  
GPIOn_PU_SEL: Selects the pull up or the pull down resistor to be connected when GPIOn_PU_PD_EN =  
'1'. '1' = pull-up resistor selected, '0' = pull-down resistor selected  
GPIOn_OD: Configures the GPIO pin (output) as: '1' = open drain, '0' = push-pull  
GPIOn_DIR: Configures the input or output direction of each GPIO pin  
Each GPIO event can generate an interrupt on a rising edge, falling edge, or both, configured through the  
GPIOn_FALL_MASK and the GPIOn_RISE_MASK register bits. A GPIO-interrupt applies when the primary  
function (general-purpose I/O) has been selected and also for the following alternative functions:  
nRSTOUT_SOC  
PGOOD  
nERR_MCU  
nERR_SoC  
TRIG_WDOG  
DISABLE_WDOG  
NSLEEP1, NSLEEP2  
WKUP1, WKUP2  
LP_WKUP1, LP_WKUP2  
The GPIOn_SEL[2:0] register bits under the GPIOn_CONF registers control the selection between a primary and  
an alternative function. When a pre-defined function is selected, some predetermined IO characteristics (such as  
pullup, pulldown, push-pull or open drain) for the pin will be enforced regardless of the settings of the associated  
GPIO configuration register. Please note that if the GPIOn_SEL[2:0] is changed during device operation, a signal  
glitch may occur which may cause digital malfunction, especially if it involves a clock signal such as SCL_I2C2,  
CLK32KOUT, SCL_SPMI, SYNCCLKIN, or SYNCCLKOUT. Please refer to Section 7.1 for more detail on the  
predetermined IO characteristics for each pre-defined digital interface function.  
All GPIOs can be configured as a wake-up input when it is configured as a WKUP1 or a WKUP2 signal. Only  
GPIO3 and GPIO4 can be configured as LP_WKUP1 or LP_WKUP2 signal so that they can be used to wake  
up the device from LP_STANDBY state. All GPIOs can also be configured as a NSLEEP1 or a NSLEEP2 input.  
For more information regarding the usage of the NSLEEPx pins and the WKUPx pins, please refer to Section  
10.4.1.2.4.3 and Section 10.4.1.2.4.4.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Any of the GPIO pin can also be configured as part of the power-up sequence to enable external devices such  
as external BUCKs when it is configured as a general-purpose output port.  
The nINT , EN_DRV, nRSTOUT pins and nRSTOUT_SOC signals have readback monitoring to detect errors on  
the signals. The monitoring of the EN_DRV signal checks for mismatch in both low and high levels. For nINT,  
nRSTOUT and nRSTOUT_SOC signals, the readback monitoring checks for mismatches only in the low level,  
therefore allow the signals to be combined with other signals externally. The readback mismatch is continuously  
monitored without deglitch circuitry during operation, and the monitoring is gated for tgate_readback period when the  
signal state is changed or when a new function is selected for the GPIO pin with the GPIOn_SEL bits.  
Note  
All GPIOs defaults to generic input pins before NVM memory is loaded during device power up.  
Therefore if any GPIOs has external pull-up resistros connecting to a voltage domin which is  
energized before the NVM memory is loaded, the GPIO pin will be pulled high before the configuration  
for the pin is loaded from the NVM.  
Note  
For GPIO pins with internal pull down enabled, pulling the voltage at the pin higher than the voltage  
level of its output power domain, will result in additional leackage. If the internal pull down must  
be enabled, please use resistor divder to divide down the input voltage, or use a series resistor to  
connect to the input source and ensure the voltage level at the GPIO pin is below the voltage level of  
its output power domain.  
10.3.8 nINT, EN_DRV, and nRSTOUT Pins  
The nINT, EN_DRV, nRSTOUT, and nRSTOUT_SoC pins are IO pins with dedicated functions.  
The nINT pin is the open drain interrupt output pin. More description regarding the function of this pin can be  
found under Section 1.  
The nRSTOUT pin, together with the nRSTOUT_SoC configured IO pin, are the system reset pins which can be  
configured as open-drain or push-pull outputs. They stay in the default low state until they are pulled up by the  
PFSM of the device, typically after the end of a power up sequence, and are the first to be pulled low during a  
power down sequence.  
The purpose of the EN_DRV pin is to indicate when the device enters safe state. It has an internal 10kΩ  
high-side pull up to the VCCA supply. The TPS6594-Q1 pulls this pin to the default low state, and releases the  
pull down when the device arrives at a safe operating state. The MCU can pull this output pin high by setting the  
ENABLE_DRV bit to '1' when TPS6594-Q1 releases the pull down.  
The nINT, EN_DRV, nRSTOUT and nRSTOUT_SOC pins have readback monitoring to detect errors on the  
signals. The monitoring of the EN_DRV signal checks for mismatch in both low and high levels. For nINT,  
nRSTOUT and nRSTOUT_SOC signals, the readback monitoring checks for mismatches only in the low  
level, therefore allow the signals to be combined with other signals externally. The readback mismatch is  
continuously monitored without deglitch circuitry during operation, and the monitoring is gated for tgate_readback  
period when the signal state is changed or when a new function is selected for the GPIO pin with  
the GPIOn_SEL bits. NINT_READBACK_INT, EN_DRV_READBACK_INT, NRSTOUT_READBACK_INT, and  
NRSTOUT_SOC_READBACK_INT are the interrupt bits which will be asserted in an event of a readback  
mismatch for these pins, respectively.  
Copyright © 2021 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.9 Interrupts  
The interrupt registers in the device are organized in hierarchical fashion. The interrupts are grouped into the  
following categories:  
BUCK ERROR  
These interrupts indicate over-voltage (OV), under-voltage (UV), short-circuit (SC),  
residual voltage (SC) and over-current (ILIM) error conditions found on the Buck  
regulators.  
LDO ERROR  
These interrupts indicate OV, UV, and SC error conditions found on the LDO  
regulators, as well as OV and UV error conditions found on the VCCA supply.  
SEVERE ERROR  
These errors indicate severe device error conditions, such as thermal shutdown,  
PFSM sequencing and execution error and pre-regulator over-voltage failure, which  
causes the device to trigger the PFSM to execute immediate shutdown of all digital  
outputs, external voltage rails and monitors, and proceed to the Safe Recovery State.  
MODERATE ERROR  
These interrupts provide warnings to the system to indicate detection of multiple  
WDOG Errors or ESM errors exceeding the allowed recovery count, detection of long  
press nPWRON button, SPMI communication error, register CRC error, BIST failure,  
or thermal reaching orderly shutdown level. These warning causes the device to  
trigger the PFSM to execute orderly shutdown of all digital outputs, external voltage  
rails and monitors, and proceed to the Safe Recovery State.3  
MISCELLANEOUS  
WARNING  
These interrupts provide information to the system to indicate detection of WDOG or  
ESM errors, die temperature crossing thermal warning threshold, device passing BIST  
test, or external sync clock availability.  
STARTUP SOURCE  
GPIO DETECTION  
These interrupts provides information to the system on the mechanism which caused  
the device to start up, which includes FSD, RTC alarm or timer interrupts, the  
activation of the ENABLE pin or the nPRWON pin button detection.  
These interrupts indicate the High/Rising-Edge or the Low/Falling-Edge detection at  
the GPIO1 through GPIO11 pins.  
FSM ERROR  
INTERRUPT  
These interrupts indicate the detection of an error which causes the device mission  
state changes.  
All interrupts are logically combined on a single output pin, nINT (active low). The host processor can read  
the INT_TOP register to find the interrupt registers to find out the source of the interrupt, and write '1' to the  
corresponding interrupt register bit to clear the interrupt. This mechanism ensures when a new interrupt occurs  
while the nINT pin is still active, all of the corresponding interrupt register bit will retain the interrupt source  
information until it is cleared by the host.  
Some of the interrupts and EN_DRV status are also sent to host during SPI communication. See Section 10.5.3  
for more information on SPI status signals.  
Any interrupt source can be masked by setting the corresponding mask register to '1'. When an interrupt is  
masked, the interrupt bit is not updated when the associated event occurs, the nINT line will not be affected, and  
the event is not recorded. If an interrupt is masked after the event occurred, the interrupt register bit will reflect  
the event until the bit is cleared. While the event is masked, the interrupt register bit will not be over-written when  
a new event occurs.  
Figure 10-15 shows the hierarchical structure of the interrupt registers according to the categories described  
above. The purpose of this register structure is to reduce the number of interrupt register read cycles the host  
has to perform in order to identify the source of the interrupt. Table 10-6 summarizes the trigger and the clearing  
mechanism for all of the interrupt signals. More detail descriptions of each interrupt registers can be found in  
Section 10.7.  
3
The SEVERE ERROR and the MODERATE ERROR are handled in NVM memory but TI requires that the NVM pre-configurable finite  
state machine (PFSM) settings always follow this described error handling to meet device specifications.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
INT_FSM_ERR[7:0]  
READBACK  
_ERR_INT  
SOC_PWR  
_ERR_INT  
MCU_PWR  
_ERR_INT  
ORD_  
SHUTDOWN_INT  
IMM_  
SHUTDOWN_INT  
WD_INT  
ESM_INT  
COMM_ERR_INT  
INT_COMM_ERR[7:0]  
I2C2_ADR  
_ERR_INT  
I2C2_CRC  
_ERR_INT  
COMM_ADR  
_ERR_INT  
COMM_CRC  
_ERR_INT  
COMM_FRM  
_ERR_INT  
INT_READBACK_ERR[7:0]  
INT_ESM[7:0]  
NRSTOUT_SOC  
_READBACK_INT  
EN_DRV  
_READBACK_INT  
ESM_MCU  
_RST_INT  
ESM_MCU  
_FAIL_INT  
ESM_MCU  
_PIN_INT  
ESM_SOC  
_RST_INT  
ESM_SOC  
_FAIL_INT  
ESM_SOC  
_PIN_INT  
INT_SEVERE_ERR[7:0]  
VCCA_OVP_INT  
BIST_FAIL  
TSD_IMM_INT  
TSD_ORD_INT  
BIST_PASS_INT  
PFSM_ERR_INT  
INT_MODERATE_ERR[7:0]  
NRSTOUT  
_READBACK_INT  
NINT_READBACK  
_INT  
NPWRON_LONG  
_INT  
SPMI_ERR_INT  
RECOV_CNT_INT  
TWARN_INT  
REG_CRC_ERR_INT  
INT_MISC[7:0]  
EXT_CLK_INT  
ENABLE_INT  
INT_STARTUP[7:0]  
NPWRON  
_START_INT  
FSD_INT  
RTC_INT  
INT_GPIO[7:0]  
GPIO1_8_INT  
GPIO4_INT  
GPIO11_INT  
GPIO3_INT  
GPIO10_INT  
GPIO2_INT  
GPIO9_INT  
GPIO1_INT  
INT_GPIO1_8[7:0]  
GPIO8_INT  
GPIO7_INT  
GPIO6_INT  
GPIO5_INT  
INT_LDO_VMON[7:0]  
INT_VMON[7:0]  
VCCA_INT  
LDO3_4_INT  
LDO1_2_INT  
VCCA_UV_INT  
LDO3_UV_INT  
LDO1_UV_INT  
VCCA_OV_INT  
LDO3_OV_INT  
LDO1_OV_INT  
INT_LDO3_4[7:0]  
LDO4_ILIM_INT  
LDO4_SC_INT  
LDO2_SC_INT  
LDO4_UV_INT  
LDO2_UV_INT  
LDO4_OV_INT  
LDO2_OV_INT  
LDO3_ILIM_INT  
LDO1_ILIM_INT  
LDO3_SC_INT  
LDO1_SC_INT  
INT_LDO1_2[7:0]  
LDO2_ILIM_INT  
INT_BUCK[7:0]  
INT_BUCK5[7:0]  
BUCK5_INT  
BUCK3_4_INT  
BUCK1_2_INT  
BUCK5_ILIM_INT  
BUCK3_ILIM_INT  
BUCK1_ILIM_INT  
BUCK5_SC_INT  
BUCK3_SC_INT  
BUCK1_SC_INT  
BUCK5_UV_INT  
BUCK3_UV_INT  
BUCK1_UV_INT  
BUCK5_OV_INT  
BUCK3_OV_INT  
BUCK1_OV_INT  
INT_BUCK3_4[7:0]  
BUCK4_ILIM_INT  
BUCK4_SC_INT  
BUCK2_SC_INT  
BUCK4_UV_INT  
BUCK2_UV_INT  
BUCK4_OV_INT  
BUCK2_OV_INT  
INT_BUCK1_2[7:0]  
BUCK2_ILIM_INT  
Figure 10-15. Hierarchical Structure of Interrupt Registers  
Copyright © 2021 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-6. Summary of Interrupt Signals  
MASK FOR  
INTERRUPT  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
EN_ILIM_FSM_CTR  
L=1:  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
EN_ILIM_FSM_CTR  
L=0:  
N/A  
EN_ILIM_FSM_CT  
RL=1:  
Transition according Depends on FSM  
to FSM trigger and configuration, see  
interrupt  
EN_ILIM_FSM_CT diagram  
RL=0:  
Write 1 to  
BUCKn_ILIM_INT  
bit  
Buck regulator forward  
current limit triggered  
BUCKn_ILIM_INT =  
1
BUCKn_ILIM_MASK  
BUCKn_ILIM_STAT Interrupt is not  
cleared if current  
FSM transition  
limit violation is  
active  
Interrupt only  
EN_ILIM_FSM_CTR  
L=1:  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
EN_ILIM_FSM_CTR  
L=0:  
N/A  
EN_ILIM_FSM_CT  
RL=1:  
Transition according Depends on FSM  
to FSM trigger and configuration, see  
interrupt  
EN_ILIM_FSM_CT diagram  
RL=0:  
Interrupt only  
Write 1 to  
LDOn_ILIM_INT bit  
Interrupt is not  
cleared if current  
limit violation is  
active  
LDO regulator current  
limit triggered  
LDOn_ILIM_INT = 1 LDOn_ILIM_MASK  
LDOn_ILIM_STAT  
FSM transition  
According to  
Buck output or switch BUCKn_GRP_SEL  
Regulator disable  
and transition  
according to FSM  
Depends on FSM  
configuration, see  
FSM transition  
Write 1 to  
N/A  
BUCKn_SC_INT = 1 N/A  
short circuit detected  
and x_RAIL_TRIG  
bits  
BUCKn_SC_INT bit  
trigger and interrupt diagram  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Regulator disable  
and transition  
according to FSM  
Depends on FSM  
configuration, see  
FSM transition  
LDO output short  
circuit detected  
Write 1 to  
N/A  
LDOn_SC_INT = 1  
N/A  
LDOn_SC_INT bit  
trigger and interrupt diagram  
BUCKn_RV_SEL =  
1
BUCKn_RV_SEL =  
1
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
BUCKn_RV_SEL =  
0
Regulator disable  
Depends on FSM  
and transition  
according to FSM  
trigger and interrupt  
BUCKn_RV_SEL =  
0
Buck output residual  
voltage violation  
configuration, see  
FSM transition  
diagram  
Write 1 to  
N/A  
BUCKn_SC_INT = 1 N/A  
BUCKn_SC_INT bit  
N/A  
N/A  
LDOn_RV_SEL = 1 LDOn_RV_SEL = 1  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Regulator disable  
and transition  
according to FSM  
trigger and interrupt  
Depends on FSM  
configuration, see  
FSM transition  
diagram  
LDO output residual  
voltage violation  
Write 1 to  
N/A  
LDOn_SC_INT = 1  
N/A  
LDOn_SC_INT bit  
LDOn_RV_SEL = 0 LDOn_RV_SEL = 0  
N/A  
N/A  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on FSM  
configuration, see  
FSM transition  
diagram  
Write 1 to  
BUCKn_OV_INT bit  
Interrupt is not  
cleared if it is active  
Transition according  
to FSM trigger and  
interrupt  
Buck regulator  
overvoltage  
BUCKn_OV_INT = 1 BUCKn_OV_MASK  
BUCKn_UV_INT = 1 BUCKn_UV_MASK  
LDOn_OV_INT = 1 LDOn_OV_MASK  
BUCKn_OV_STAT  
According to  
BUCKn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on FSM  
configuration, see  
FSM transition  
diagram  
Write 1 to  
Transition according  
to FSM trigger and  
interrupt  
Buck regulator  
undervoltage  
BUCKn_UV_INT bit  
BUCKn_UV_STAT  
Interrupt is not  
cleared if it is active  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on FSM  
configuration, see  
FSM transition  
diagram  
Write 1 to  
Transition according  
to FSM trigger and  
interrupt  
LDO regulator  
overvoltage  
LDOn_OV_INT bit  
LDOn_OV_STAT  
Interrupt is not  
cleared if it is active  
According to  
LDOn_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on FSM  
configuration, see  
FSM transition  
diagram  
Write 1 to  
Transition according  
to FSM trigger and  
interrupt  
LDO regulator  
undervoltage  
LDOn_UV_INT bit  
LDOn_UV_STAT  
LDOn_UV_INT = 1  
LDOn_UV_MASK  
Interrupt is not  
cleared if it is active  
According to  
VCCA_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on FSM  
configuration, see  
FSM transition  
diagram  
Write 1 to  
VCCA input  
overvoltage  
monitoring  
Transition according  
to FSM trigger and  
interrupt  
VCCA_OV_INT bit  
VCCA_OV_STAT  
VCCA_OV_INT = 1 VCCA_OV_MASK  
VCCA_UV_INT = 1 VCCA_UV_MASK  
Interrupt is not  
cleared if it is active  
According to  
VCCA_GRP_SEL  
and x_RAIL_TRIG  
bits  
Depends on FSM  
configuration, see  
FSM transition  
diagram  
Write 1 to  
VCCA input  
undervoltage  
monitoring  
Transition according  
to FSM trigger and  
interrupt  
VCCA_UV_INT bit  
VCCA_UV_STAT  
Interrupt is not  
cleared if it is active  
Write 1 to  
TWARN_INT bit  
Interrupt is  
Thermal warning  
N/A  
Interrupt only  
Not valid  
TWARN_INT = 1  
TWARN_MASK  
TWARN_STAT  
not cleared if  
temperature is  
above thermal  
warning level  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-6. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
Write 1 to  
All regulators  
disabled and Output STARTUP_DEST[1:0]  
GPIOx set to low  
in a sequence and  
interrupt(1)  
Automatic startup to  
TSD_ORD_INT bit  
Interrupt is  
not cleared if  
temperature is  
above thermal  
shutdown level  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Thermal shutdown,  
orderly sequenced  
state after  
temperature is below  
TWARN level  
TSD_ORD_INT = 1 N/A  
TSD_ORD_STAT  
Write 1 to  
TSD_IMM_INT bit  
Interrupt is  
not cleared if  
temperature is  
above thermal  
shutdown level  
All regulators  
Automatic startup to  
STARTUP_DEST[1:0]  
state after  
temperature is below  
TWARN level  
disabled with pull-  
down resistors and  
Output GPIOx set  
to low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
Thermal shutdown,  
immediate  
TSD_IMM_INT = 1  
N/A  
TSD_IMM_STAT  
All regulators  
disabled and Output Automatic startup to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Write 1 to  
BIST_FAIL_INT bit  
BIST error  
STARTUP_DEST[1:0] BIST_FAIL_INT = 1 BIST_FAIL_MASK  
state  
N/A  
All regulators  
disabled and Output Automatic startup to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
WN  
(MODERATE_ERR_I  
NT)  
Write 1 to  
REG_CRC_ERR_IN  
T bit  
REG_CRC_ERR_IN  
T = 1  
Register CRC error  
STARTUP_DEST[1:0]  
state  
REG_CRC_ERR_MASK N/A  
All regulators  
disabled and Output Automatic startup to  
GPIOx set to low  
immediately and  
interrupt(1)  
ORDERLY_SHUTDO  
SPMI communication WN  
Write 1 to  
SPMI_ERR_INT bit  
STARTUP_DEST[1:0] SPMI_ERR_INT = 1 SPMI_ERR_MASK  
state  
N/A  
error  
(MODERATE_ERR_I  
NT)  
Write 1 to  
COMM_FRM_ERR_  
INT bit  
COMM_FRM_ERR_ COMM_FRM_ERR_MA  
Not valid  
SPI frame error  
N/A  
Interrupt only  
Interrupt only  
Interrupt only  
Interrupt only  
Interrupt only  
N/A  
N/A  
N/A  
INT = 1(4)  
SK  
Write 1 to  
COMM_CRC_ERR_  
INT bit  
COMM_CRC_ERR_ COMM_CRC_ERR_MA  
INT = 1 SK  
I2C1 or SPI CRC error N/A  
Not valid  
Not valid  
Not valid  
Not valid  
Write 1 to  
COMM_ADR_ERR_  
INT bit  
I2C1 or SPI address  
COMM_ADR_ERR_ COMM_ADR_ERR_MA  
N/A  
error(5)  
INT = 1  
SK  
Write 1 to  
I2C2_CRC_ERR_IN  
T bit  
I2C2_CRC_ERR_IN  
T = 1  
I2C2 CRC error  
N/A  
N/A  
I2C2_CRC_ERR_MASK N/A  
I2C2_ADR_ERR_MASK N/A  
Write 1 to  
I2C2_ADR_ERR_IN  
T bit  
I2C2_ADR_ERR_IN  
T = 1  
I2C2 address error(5)  
Automatic startup to  
STARTUP_DEST[1:0]  
state. If previous  
PFSM_ERR_INT is  
pending, VCCA power  
cycle needed for  
recovery.  
All regulators  
disabled with pull-  
down resistors and  
Output GPIOx set  
to low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
PFSM_ERR_INT =  
1
Write 1 to  
PFSM_ERR_INT bit  
PFSM error  
N/A  
Write 1 to  
EN_DRV pin readback  
error (monitoring high N/A  
and low states)  
EN_DRV_READBA  
CK_INT bit  
Interrupt is not  
cleared if it is active  
Interrupt and  
EN_DRV = 0  
EN_DRV_READBA EN_DRV_READBACK_ EN_DRV_READBA  
CK_INT = 1 MASK CK_STAT  
Not valid  
All regulators  
Write 1 to  
NINT_READBACK_I  
NT bit  
Interrupt is not  
cleared if it is active  
ORDERLY_SHUTDO disabled with pull-  
WN down resistors and  
(MODERATE_ERR_I Output GPIOx set  
NINT pin readback  
error (monitoring low  
state)  
Automatic startup to  
STARTUP_DEST[1:0]  
state  
NINT_READBACK_I NINT_READBACK_MA NINT_READBACK  
NT = 1 SK _STAT  
NT)  
to low immediately  
and interrupt(1)  
All regulators  
Write 1 to  
NRSTOUT_READB  
ACK_INT bit  
Interrupt is not  
cleared if it is active  
ORDERLY_SHUTDO disabled with pull-  
WN down resistors and  
(MODERATE_ERR_I Output GPIOx set  
NRSTOUT pin  
readback error  
(monitoring low state)  
Automatic startup to  
STARTUP_DEST[1:0]  
state  
NRSTOUT_READB NRSTOUT_READBACK NRSTOUT_READB  
ACK_INT = 1 _MASK ACK_STAT  
NT)  
to low immediately  
and interrupt(1)  
Write 1 to  
NRSTOUT_SOC pin  
readback error  
(monitoring low state)  
NRSTOUT_SOC_R  
EADBACK_INT bit  
Interrupt is not  
NRSTOUT_SOC_R NRSTOUT_SOC_READ NRSTOUT_SOC_R  
EADBACK_INT = 1 BACK_MASK EADBACK_STAT  
N/A  
Interrupt only  
Not valid  
cleared if it is active  
Copyright © 2021 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-6. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
Fault detected by  
SOC ESM (level  
mode: low level  
detected, PWM mode:  
PWM signal timing  
violation)  
Write 1 to  
ESM_SOC_PIN_IN  
T bit  
ESM_SOC_PIN_IN  
T = 1  
N/A  
Interrupt only  
Not valid  
ESM_SOC_PIN_MASK N/A  
ESM_SOC_FAIL_MASK N/A  
Fault detected by  
SOC ESM (level  
mode: low level  
longer than DELAY1  
time, PWM mode:  
ESM error counter >  
FAIL_THR longer than  
DELAY1time)  
Interrupt and  
EN_DRV = 0  
(configurable)  
Write 1 to  
ESM_SOC_FAIL_IN  
T bit  
ESM_SOC_FAIL_IN  
T = 1  
N/A  
Not valid  
Fault detected  
by SOC ESM  
(level mode: low  
level longer than  
DELAY1+DELAY2  
time, PWM mode:  
ESM error counter >  
FAIL_THR longer than  
DELAY1+DELAY2  
time)  
Automatically returns  
to the current  
operating state after  
the completion of SoC  
warm reset  
Interrupt, and  
NRSTOUT_SOC  
toggle(1)  
Write 1 to  
ESM_SOC_RST_IN  
T bit  
ESM_SOC_RST_IN  
T = 1  
ESM_SOC_RST  
ESM_SOC_RST_MASK N/A  
Fault detected by  
MCU ESM (level  
mode: low level  
detected, PWM mode:  
PWM signal timing  
violation  
Write 1 to  
ESM_MCU_PIN_IN  
T bit  
ESM_MCU_PIN_IN  
T = 1  
N/A  
N/A  
Interrupt only  
Not valid  
Not valid  
ESM_MCU_PIN_MASK N/A  
ESM_MCU_FAIL_MASK N/A  
Fault detected by  
MCU ESM (level  
mode: low level  
longer than DELAY1  
time, PWM mode:  
ESM error counter >  
FAIL_THR longer than  
DELAY1 time)  
Interrupt and  
EN_DRV = 0  
(configurable)  
Write 1 to  
ESM_MCU_FAIL_IN  
T bit  
ESM_MCU_FAIL_IN  
T = 1  
Fault detected  
by MCU ESM  
(level mode: low  
level longer than  
DELAY1+DELAY2  
time, PWM mode:  
ESM error counter >  
FAIL_THR longer than  
DELAY1+DELAY2  
time)  
Interrupt and Warm Automatically returns  
Reset (EN_DRV = 0 to the current  
and NRSTOUT and operating state after  
Write 1 to  
ESM_MCU_RST_IN  
T bit  
ESM_MCU_RST_IN  
T = 1  
ESM_MCU_RST  
ESM_MCU_RST_MASK N/A  
NRSTOUT_SOC  
the completion of  
warm reset  
toggle)(1)  
External clock is  
expected, but it is  
not available or the  
frequency is not in the  
valid range  
Write 1 to  
EXT_CLK_INT bit  
N/A  
Interrupt only  
Interrupt only  
Not valid  
Not valid  
EXT_CLK_INT = 1(2) EXT_CLK_MASK  
EXT_CLK_STAT  
BIST completed  
successfully  
BIST_PASS_INT =  
BIST_PASS_MASK  
1
Write 1 to  
BIST_PASS_INT bit  
N/A  
N/A  
N/A  
N/A  
Clear interrupt and  
WD_FAIL_CNT <  
WD_FAIL_TH  
Watchdog fail counter  
above fail threshold  
Interrrupt and  
EN_DRV = 0  
Write 1 to  
WD_FAIL_INT bit  
WD_FAIL_INT = 1  
N/A  
Interrupt and  
Warm Reset if  
WD_RST_EN = 1  
(EN_DRV = 0  
Automatically returns  
to the current  
operating state after  
Watchdog fail counter WD_RST (if  
above reset threshold WD_RST_EN = 1)  
Write 1 to  
WD_RST_INT bit  
WD_RST_INT = 1  
N/A  
N/A  
N/A  
and NRSTOUT and the completion of  
NRSTOUT_SOC  
warm reset  
toggle)(1)  
Interrupt and Warm Automatically returns  
Reset (EN_DRV = 0 to the current  
and NRSTOUT and operating state after  
Write 1 to  
WD_LONGWIN_TI  
MEOUT_INT bit  
Watchdog long  
WD_RST  
WD_LONGWIN_TI  
MEOUT_INT = 1  
N/A  
window timeout  
NRSTOUT_SOC  
the completion of  
warm reset  
toggle)(1)  
Startup to  
STARTUP_DEST[1:  
0] state and  
Write 1 to ALARM  
bit  
RTC alarm wake-up  
RTC timer wake-up  
TRIGGER_SU_x  
TRIGGER_SU_x  
Not valid  
Not valid  
ALARM = 1  
TIMER = 1  
IT_ALARM = 0  
IT_TIMER = 0  
N/A  
N/A  
interrupt(1)  
Startup to  
STARTUP_DEST[1:  
0] state and  
Write 1 to TIMER bit  
interrupt(1)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-6. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
Startup to  
Write 1 to  
NPWRON_START_I  
NT bit  
Low state in  
NPWRON pin  
STARTUP_DEST[1:  
0] state and  
NPWRON_START_I NPWRON_START_MAS  
TRIGGER_SU_x  
Not valid  
NPWRON_IN  
NT = 1  
K
interrupt(1)  
All regulators  
disabled and Output  
GPIOx set to low  
in a sequence and  
interrupt(1)  
Write 1 to  
NPWRON_LONG_I  
NT bit  
Long low state in  
NPWRON pin  
ORDERLY_SHUTDO  
WN  
Valid power-on  
request  
NPWRON_LONG_I NPWRON_LONG_MAS  
NPWRON_IN  
NT = 1  
K
Transition to  
TRIGGER_FORCE_ STANDBY or  
Low state in ENABLE STANDBY/ LP_STANDBY  
TRIGGER_FORCE_ depending on the  
ENABLE pin rise  
Not valid  
N/A  
N/A  
N/A  
N/A  
pin  
LP_STANDBY  
LP_STANDBY_SEL  
bit setting(1)  
(1)  
Write 1 to  
ENABLE_INT bit  
ENABLE pin rise  
TRIGGER_SU_x  
ENABLE_INT = 1  
ENABLE_MASK  
ENABLE_STAT  
N/A  
All regulators  
disabled and Output Automatic startup to  
Write 1 to  
ORD_SHUTDOWN_  
INT  
Fault causing orderly  
shutdown  
ORDERLY_SHUTDO  
WN  
ORD_SHUTDOWN_ ORD_SHUTDOWN_MA  
INT SK  
GPIOx set to low  
in a sequence and  
interrupt(1)  
STARTUP_DEST[1:0]  
state  
All regulators  
disabled with pull-  
IMMEDIATE_SHUTD down resistors and  
Automatic startup to  
STARTUP_DEST[1:0]  
state  
Write 1 to  
IMM_SHUTDOWN_I  
NT  
Fault causing  
immediate shutdown  
IMM_SHUTDOWN_I IMM_SHUTDOWN_MA  
NT SK  
N/A  
OWN  
Output GPIOx set  
to low immediately  
and interrupt(1)  
Depends on FSM  
configuration, see  
FSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
Write 1 to  
MCU_PWR_ERR_I  
NT  
Power supply error for MCU_POWER_ERR  
MCU OR  
MCU_PWR_ERR_I MCU_PWR_ERR_MAS  
NT  
N/A  
N/A  
K
Depends on FSM  
configuration, see  
FSM transition  
diagram  
Transition according  
to FSM trigger and  
interrupt  
Write 1 to  
SOC_PWR_ERR_I  
NT  
Power supply error for SOC_POWER_ERR  
SOC_PWR_ERR_I SOC_PWR_ERR_MAS  
SOC  
OR  
NT  
K
All regulators  
Write 1 to INT_OVP  
_INT bit  
Interrupt is not  
cleared if VCCA  
voltage is above  
VCCAOVP level  
Automatic startup to  
STARTUP_DEST[1:0]  
state after VCCA  
voltage is below  
VCCAOVP  
disabled with pull-  
down resistors and  
Output GPIOx set  
to low immediately  
and interrupt(1)  
IMMEDIATE_SHUTD  
OWN  
(SEVERE_ERR_INT)  
VCCA over-voltage  
VCCA_OVP_INT =  
1
N/A  
VCCA_OVP_STAT  
GPIOx_IN  
(VCCAOVP  
)
According to  
GPIOx_FSM_MASK Transition according  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
GPIO interrupt  
and  
to FSM trigger and Not valid  
GPIOx_FSM_MASK_ interrupt  
POL bits  
GPIOx_INT = 1  
Transition to  
WKUP1 and  
LP_WKUP1 signals  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
WKUP1  
WKUP2  
ACTIVE state and  
Not valid  
Not valid  
N/A  
N/A  
N/A  
N/A  
GPIOx_IN  
GPIOx_IN  
GPIOx_IN  
GPIOx_IN  
interrupt(1)  
Transition to MCU  
ONLY state and  
interrupt(1)  
WKUP2 and  
LP_WKUP2 signals  
GPIOx_RISE_MASK  
GPIOx_FALL_MASK  
Write 1 to  
GPIOx_INT bit  
According to  
NSLEEP1 and  
NSLEEP2  
State transition  
based on NSLEEP1 Not valid  
and NSLEEP2  
NSLEEP1 signal,  
NSLEEP1B bit  
NSLEEP1_MASK  
NSLEEP2_MASK  
N/A  
N/A  
According to  
NSLEEP1 and  
NSLEEP2  
State transition  
based on NSLEEP1 Not valid  
and NSLEEP2  
NSLEEP2 signal,  
NSLEEP2B bit  
All regulators  
disabled with pull-  
LDOVINT over- or  
undervoltage  
IMMEDIATE_SHUTD  
OWN  
Valid LDOVINT  
voltage  
down resistors and  
Output GPIOx set to  
low immediately(1)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
All regulators  
disabled with pull-  
Main clock outside  
valid frequency  
IMMEDIATE_SHUTD  
OWN  
down resistors and VCCA power cycle  
Output GPIOx set to  
low immediately(1)  
All regulators  
Recovery counter limit ORDERLY_SHUTDO disabled and Output  
VCCA power cycle  
VCCA voltage rising  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
exceeded(3)  
WN  
GPIOx set to low in  
a sequence(1)  
VCCA supply falling  
below VCCAUVLO  
IMMEDIATE_SHUTD Immediate  
OWN  
shutdown(1)  
Copyright © 2021 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-6. Summary of Interrupt Signals (continued)  
MASK FOR  
INTERRUPT  
INTERRUPT  
CLEAR  
EVENT  
TRIGGER FOR FSM  
RESULT (1)  
RECOVERY  
INTERRUPT BIT  
LIVE STATUS BIT  
Startup to  
First supply detection,  
VCCA supply rising  
above VCCAUVLO  
STARTUP_DEST[1:  
0] state and  
Write 1 to FSD_INT  
bit  
TRIGGER_SU_x  
Not valid  
FSD_INT = 1  
FSD_MASK  
N/A  
interrupt(1)  
(1) The results shown in this column are selected to meet functional safety assumptions and device specifications. The actual results  
can be configured differently in NVM memory. TI recommends reviewing of the system and device funcational safety goal and  
documentation before deviating from these recommendations.  
(2) Interrupt is generated during clock detector operation and in case clock is not available when clock detector is enabled.  
(3) This event will not occur if RECOV_CNT_THR = 0, even though RECOV_CNT will continue to accumulate and increase, and will  
eventually saturate when it reaches the maximum count of 15.  
(4) Due to a digital logic errata in the device, a write or read SPI command which coincide with the rising edge of the CS signal may not  
cause the COMM_FRM_ERR_INT interrupt.  
(5) I2C1, I2C2, or SPI address error will only occur in safety applications if the interface CRC feature is enabled, when both  
I2C1_SPI_CRC_EN and I2C2_CRC_EN are set to '1'.  
10.3.10 RTC  
10.3.10.1 General Description  
The RTC is driven by the 32-kHz oscillator and it provides the alarm and time-keeping functions.  
The main functions of the RTC block are:  
Time information (seconds, minutes, and hours) in binary-coded decimal (BCD) code  
Calendar information (day, month, year, and day of the week) in BCD code up to year 2099  
Configurable interrupts generation; the RTC can generate two types interrupts which can be enabled and  
masked individually:  
– Timer interrupts periodically (1-second, 1-minute, 1-hour, or 1-day periods)  
– Alarm interrupt at a precise time of the day (alarm function)  
Oscillator frequency calibration and time correction with 1/32768 resolution  
Figure 10-16 shows the RTC block diagram.  
32-kHz  
clock input  
32-kHz  
counter  
Frequency  
compensation  
Week days  
Control  
Seconds  
Minutes  
Hours  
Days  
Months  
Years  
Interrupt  
Alarm  
INT_ALARM  
INT_TIMER  
Figure 10-16. RTC Block Diagram  
10.3.10.2 Time Calendar Registers  
All the time and calendar information is available in the time calendar (TC) dedicated registers:  
SECONDS_REG, MINUTES_REG, HOURS_REG, DAYS_REG, WEEKS_REG, MONTHS_REG, and  
YEARS_REG. The TC register values are written in BCD code.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Year data ranges from 00 to 99.  
– Leap Year = Year divisible by four (2000, 2004, 2008, 2012, and so on)  
– Common Year = Other years  
Month data ranges from 01 to 12.  
Day value ranges:  
– 1 to 31 when months are 1, 3, 5, 7, 8, 10, 12  
– 1 to 30 when months are 4, 6, 9, 11  
– 1 to 29 when month is 2 and year is a leap year  
– 1 to 28 when month is 2 and year is a common year  
Weekday value ranges from 0 to 6.  
Hour value ranges from 0 to 23 in 24-hour mode and ranges from 1 to 12 in AM or PM mode.  
Minutes value ranges from 0 to 59.  
Seconds value ranges from 0 to 59.  
Example: Time is 10H54M36S PM (PM_AM mode set), 2008 September 5; previous registers values are listed  
in Table 10-7:  
Table 10-7. RTC Time Calendar Registers Example  
REGISTER  
CONTENT  
RTC_SECONDS  
RTC_MINTURES  
RTC_HOURS  
RTC_DAYS  
0x36  
0x54  
0x10  
0x05  
RTC_MONTHS  
RTC_YEARS  
RTC_WEEKS  
0x09  
0x08  
0x06  
The user can round to the closest minute, by setting the ROUND_30S register bit in the RTC_CTRL_REG  
register. TC values are set to the closest minute value at the next second. The ROUND_30S bit is automatically  
cleared when the rounding time is performed.  
Example:  
If current time is 10H59M45S, round operation changes time to 11H00M00S  
If current time is 10H59M29S, round operation changes time to 10H59M00S  
10.3.10.2.1 TC Registers Read Access  
TC register read access can be done in two ways:  
A direct read to the TC registers. In this case, there can be a discrepancy between the final time read and  
the real time because the RTC keeps running because some of the registers can toggle in between register  
accesses. Software must manage the register change during the reading.  
Read access to shadowed TC registers. These registers are at the same addresses as the normal TC  
registers. They are selected by setting the GET_TIME bit in the RTC_CTRL_REG register. When this bit  
is set, the content of all TC registers is transferred into shadow registers so they represent a coherent  
timestamp, avoiding any possible discrepancy between them. When processing the read accesses to the  
TC registers, the value of the shadowed TC registers is returned so it is completely transparent in terms of  
register access.  
10.3.10.2.2 TC Registers Write Access  
TC registers write accesses can be done while RTC is stopped. MCU can stop the RTC by the clearing the  
STOP_RTC bit of the control register and checking the RUN bit of the status to be sure that RTC is frozen. MCU  
then updates the TC values and restarts the RTC by setting the STOP_RTC bit, which ensures that the final  
written values are aligned with the targeted values.  
Copyright © 2021 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.10.3 RTC Alarm  
RTC alarm registers (ALARM_SECONDS_REG, ALARM_MINUTES_REG, ALARM_HOURS_REG,  
ALARM_DAYS_REG, ALARM_MONTHS_REG, and ALARM_YEARS_REG) are used to set the alarm time or  
date to the corresponding generated ALARM interrupts. See Section 10.3.10.2 for how these register values are  
written in BCD code, with the same data range as described for the TC registers.  
10.3.10.4 RTC Interrupts  
The RTC supports two types of interrupts:  
ALARM interrupt. This interrupt is generated when the configured date or time in the corresponding ALARM  
registers is reached. This interrupt is enabled and disabled by setting the IT_ALARM bit. It is important to  
set the IT_ALARM = 0 to disable the alarm interrupt prior to configuring the ALARM registers to prevent the  
interrupt from mis-firing.  
TIMER interrupt. This interrupt is generated when the periodic time (day, hour, minute, second) set in the  
EVERY bits of the RTC_INTERRUPTS register is reached. The first of the periodic interrupt will occur when  
the RTC counter reaches the next day, hour, minute, or second counter value. For example, if a timer  
interrupt is set for every hour at 2:59 AM, the first interrupt will occur at 3:00 AM instead of 3:59 AM. This  
interrupt is enabled and disabled by setting the IT_TIMER bit. It is important to set the IT_TIMER = 0 to  
disable the timer interrupt prior to configuring the periodic time value to prevent the interrupt from mis-firing.  
Both types of the RTC interrupts can be used to wake up the device from the STANDBY state or the  
LP_STANDBY state when they are not masked.  
10.3.10.5 RTC 32-kHz Oscillator Drift Compensation  
The RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers are used to compensate for any inaccuracy  
of the 32-kHz clock output from the 32-kHz crystal oscillator. To compensate for any inaccuracy, MCU must  
perform an external calibration of the oscillator frequency, calculate the drift compensation needed versus one  
time hour period, and load the compensation registers with the drift compensation value.  
The compensation mechanism is enabled by the AUTO_COMP_EN bit in the RTC_CTRL_REG register. The  
process happens after the first second of each hour. The time between second 1 to second 2 (T_ADJ) is  
adjusted based on the settings of the two RTC_COMP_MSB_REG and RTC_COMP_LSB_REG registers.  
These two registers form a 16-bit, 2 s complement value COMP_REG (from –32767 to 32767) that is subtracted  
from the 32-kHz counter as per the following formula to adjust the length of T_ADJ: (32768 - COMP_REG) /  
32768. It is therefore possible to adjust the compensation with a 1/32768-second time unit accuracy per hour  
and up to 1 second per hour.  
Software must ensure that these registers are updated before each compensation process (there is no hardware  
protection). For example, software can load the compensation value into these registers after each hour event,  
during second 0 to second 1, just before the compensation period, happening from second 1 to second 2.  
It is also possible to preload the internal 32-kHz counter with the content of the RTC_COMP_MSB_REG and  
RTC_COMP_LSB_REG registers when setting the SET_32_COUNTER bit in the RTC_CTRL_REG register.  
This must be done when the RTC is stopped.  
Figure 10-17 shows the RTC compensation scheduling.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
HOURS_REG  
3
4
5
6
0
1
...  
58  
59  
0
1
...  
58  
59  
0
1
...  
58  
59  
0
1
...  
58  
59  
SECONDS_REG  
HOURS_REG  
SECONDS_REG  
3
4
59  
0
58  
2
3
Compensation Value Frozen  
New Compensation Value  
RTC_COMP_xxx_REG  
Register  
Update  
Compensation  
Event  
Figure 10-17. RTC Compensation Scheduling  
10.3.11 Watchdog (WD)  
The watchdog monitors the correct operation of the MCU. This watchdog requires specific messages from the  
MCU in specific time intervals to detect correct operation of the MCU. The MCU can control the logic-level of the  
EN_DRV pin when the watchdog detects correct operation of the MCU. When the watchdog detects an incorrect  
operation of the MCU, the TPS6594-Q1 device pulls the EN_DRV pin low . This EN_DRV pin can be used in  
the application as a control-signal to deactivate the power output stages, for example a motor driver, in case of  
incorrect operation of the MCU.  
The watchdog has two different modes which are defined as follows:  
Trigger mode  
In trigger mode, the MCU applies a pulse signal with a minimum pulse width of tWD_pulse on  
the pre-assigned GPIO input pin to send the required watchdog trigger. To select this mode,  
the MCU must clear bit WD_MODE_SELECT. Section 10.3.11.6 provides more details.  
Q&A (question In Q&A mode, the MCU sends watchdog answers through the I2C bus or SPI bus. To select  
and  
answer) this mode, the MCU must set bit WD_MODE_SELECT. Section 10.3.11.8.1 provides more  
mode  
details.  
10.3.11.1 Watchdog Fail Counter and Status  
The watchdog includes a watchdog fail counter WD_FAIL_CNT[3:0] that increments because of bad events or  
decrements because of good events. Furthermore, the watchdog includes two configurable thresholds:  
1. Fail-threshold (configurable through bits WD_FAIL_TH[2:0])  
2. Reset-threshold (configurable through bits WD_RST_TH[2:0])  
When the WD_FAIL_CNT[3:0] counter value is less than or equal to the configured Watchdog-Fail threshold  
(WD_FAIL_TH[2:0]) and bit WD_FIRST_OK=1, the MCU can set the ENABLE_DRV bit when no other error-  
flags are set.  
When the WD_FAIL_CNT[3:0] counter value is greater than the configured Watchdog-Fail threshold  
(WD_FAIL_CNT[3:0] > WD_FAIL_TH[2:0]), the device clears the ENABLE_DRV bit, sets the error-flag  
WD_FAIL_INT, and pulls the nINT pin low.  
When the WD_FAIL_CNT[3:0] counter value is greater than the configured Watchdog-Fail plus Watchdog-Reset  
threshold (WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] + WD_RST_TH[2:0])) and the watchdog-reset function is  
enabled (configuration bit WD_RST_EN=1), the device generates a WD_ERROR trigger in the state machine  
and sets the error-flag WD_RST_INT, and pulls the nINT pin low.  
The device clears the WD_FAIL_CNT[3:0] each time the watchdog enters the Long Window. The status bits  
WD_FAIL_INT and WD_RST_INT are latched until the MCU writes a ‘1’ to these bits.  
Table 10-8 gives an overview of the Watchdog Fail Counter value ranges and the corresponding device status.  
Copyright © 2021 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-8. Overview of Watchdog Fail Counter value ranges and corresponding device status  
Watchdog Fail Counter value  
Device Status  
WD_FAIL_CNT[3:0]  
MCU can set the ENABLE_DRV bit if WD_FIRST_OK=1 and no  
WD_FAIL_CNT[3:0] ≤ WD_FAIL_TH[2:0]  
other error-flags are set  
WD_FAIL_TH[2:0] < WD_FAIL_CNT[3:0] ≤ (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
The device clears the ENABLE_DRV bit, sets error-flag  
WD_FAIL_INT and pulls the nINT pin low  
If configuration bit WD_RST_EN=1, device generates WD_ERROR  
trigger in the state machine and reacts as defined in the PFSM, sets  
the error-flag WD_RST_INT, and pulls the nINT pin low. See Table  
1-1 for the interrupt handling of WD_RTS.  
WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] + WD_RST_TH[2:0])  
The WD_FAIL_CNT[3:0] counter responds as follows:  
When the Watchdog is in the Long-Window, the WD_FAIL_CNT[3:0] is cleared to 4’b0000  
A good event decrements the WD_FAIL_CNT[3:0] by one before the start of the next Window-1  
A bad event increments the WD_FAIL_CNT[3:0] by one before the start of the next Window-1  
Refer to Section 10.3.11.6 and Section 10.3.11.8.1 respectively for definitions of good events and bad events.  
10.3.11.2 Watchdog Start-Up and Configuration  
When the device releases the nRSTOUT pin, the watchdog starts with the Long Window. This Long Window has  
a time interval (tLONG_WINDOW) with a default value set in bits WD_LONGWIN[7:0].  
As long as the watchdog is in the Long Window, the MCU can configure the watchdog through the following  
register bits:  
WD_EN to enable or disable the watchdog  
WD_LONGWIN[7:0] to increase the duration of the Long-Window time-interval  
WD_MODE_SELECT to select the Watchdog mode (Trigger mode or Q&A Mode)  
WD_PWRHOLD to activate the Watchdog Disable function (more detail in Section 10.3.11.4)  
WD_RETURN_LONGWIN to configure wheter to return to Long-Window or continue to the next seqeunce  
after the completion of the current watchdog sequence (more detail in Section 10.3.11.4)  
WD_WIN1[6:0] to configure the duration of the Window-1 time-interval  
WD_WIN2[6:0] to configure the duration of the Window-2 time-interval  
WD_RST_EN to enable or disable the watchdog-reset function  
WD_FAIL_TH[2:0] to configure the Watchdog-Fail threshold  
WD_RST_TH[2:0] to configure the Watchdog-Reset threshold  
WD_QA_FDBK[1:0] to configure the settings for the reference answer-generation  
WD_QA_LFSR[1:0] to configure the settings for the question-generation  
WD_QUESTION_SEED[3:0] to configure the starting-point for the 1st question-generation  
WD_QA_CFG for watchdog in Q&A Mode  
The device will keep the above register bit values configured by the MCU as long as the device is powered.  
The MCU can configure the time interval of the Long Window (tLONG_WINDOW) with the WD_LONGWIN[7:0] bits.  
The WD_LONGWIN[7:0] bits are defined as:  
0x00: 80 ms  
0x01 - 0x40: 125 ms to 8 sec, in 125 ms steps  
0x41 - 0xFF: 12 sec to 772 sec, in 4 sec steps  
Use Equation 4 and Equation 5 to calculate the minimum and maximum values for the Long Window  
(tLONG_WINDOW) time interval when WD_LONGWIN[7:0] > 0x00:  
tLONG_WINDOW_MIN = WD_LONGWIN[7:0] × 0.95  
tLONG_WINDOW_MAX = WD_LONGWIN[7:0] × 1.05  
(4)  
(5)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: TPS6594-Q1  
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Note  
If the MCU software changes the duration of the Long-Window to an interval shorter than the time in  
which the watchdog has been in the Long-Window, the time-out function of the Long-Window will no  
longer operate.  
When the MCU clears bit WD_EN, the watchdog goes out of the Long Window and disables the watchdog.  
When the watchdog is disabled in this way, the MCU can set bit WD_EN back to ‘1’ to enable the watchdog  
again, and the MCU can control the ENABLE_DRV bit when no other error-flags are set. The MCU must clear bit  
WD_PWRHOLD before setting bit WD_EN back to ‘1’ to start the watchdog in Long Window.  
The watchdog locks the following configuration register bits when it goes out of the Long Window and starts the  
first watchdog sequence:  
WD_WIN1[6:0]  
WD_WIN2[6:0]  
WD_LONGWIN[7:0]  
WD_MODE_SELECT  
WD_QA_FDBK[1:0], WD_QA_LFSR[1:0] and WD_QUESTION_SEED[3:0]  
WD_RST_EN, WD_EN, WD_FAIL_TH[2:0] and WD_RST_TH[2:0]  
10.3.11.3 MCU to Watchdog Synchronization  
In order to go out of the Long Window and start the first watchdog sequence, the MCU must do the following:  
Clear bits WD_PWRHOLD (more detail in Section 10.3.11.4)  
Apply a pulse signal with a minimum pulse-width tWD_pulse on the pre-assigned GPIO pin in the case the  
watchdog is configured for Trigger mode, or  
Write four times to WD_ANSWER[7:0] in the case the watchdog is configured for Q&A mode  
When the MCU fails to get the watchdog out of the Long Window before the configured Long  
Window time interval (tLONG_WINDOW) elapses, the device goes through a warm reset, and sets the  
WD_LONGWIN_TIMEOUT_INT. This bit latched until the MCU writes a ‘0’ to it ‘1’ to clear it.  
10.3.11.4 Watchdog Disable Function  
The watchdog in the TPS6594-Q1 device has a Watchdog Disable function to prevent an unwanted MCU  
reset in case the MCU is un-programmed or needs to be reprogrammed. In order to activate this Watchdog  
Disable function for an un-programmed MCU, DISABLE_WDOG pin must be asserted to a logic-high level for  
a time-interval longer than tWD_DIS prior to the moment the device releases the nRSTOUT pin. If the Watchdog  
Disable function is activated in this way, the device sets bit WD_PWRHOLD to keep the watchdog in the Long  
Window. The watchdog stays in the Long Window until the MCU clears the WD_PWRHOLD bit.  
In case the MCU needs to be reprogrammed while the watchdog monitors the correct operation of the MCU,  
the MCU can set bit WD_RETURN_LONGWIN to put the watchdog back in the Long Window. When the MCU  
set this bit, the watchdog returns to the Long Window after the current Watchdog Sequence completes. In order  
to make the watchdog stay in the Long Window as long as needed the MCU can either re-configure the Long  
Window (tLONG_WINDOW) time interval, or set the WD_PWRHOLD bit. Once the MCU starts the first watchdog  
sequence (as described in Section 10.3.11.3), the MCU must clear bit WD_RETURN_LONGWIN before the end  
of the first watchdog sequence in order to continue the watchdog sequnece operation.  
10.3.11.5 Watchdog Sequence  
Once the watchdog is out of the Long Window, each watchdog sequence starts with a Window-1 followed by a  
Window-2. The watchdog ends the current sequence and starts a next sequence when one of the events below  
occurs:  
The configured Window-2 time period elapses  
The watchdog detects a pulse signal with a minimum pulse-width tWD_pulse on the pre-assigned GPIO pin if  
the watchdog is used in Trigger mode  
The watchdog detects four times a write access to WD_ANSWER[7:0] in case the watchdog is used in Q&A  
mode  
Copyright © 2021 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
The MCU can configure the time periods of the Window-1 (tWINDOW1) and Window-2 (tWINDOW2) with the bits  
WD_WIN1[6:0] and WD_WIN2[6:0] respectively, before starting the sequence.  
Use Equation 6 and Equation 7 to calculate the minimum and maximum values for the tWINDOW1 time interval.  
tWINDOW1_MIN = (WD_WIN1[6:0] + 1) × 0.55 × 0.95 ms  
tWINDOW1_MAX = (WD_WIN1[6:0] + 1) × 0.55 × 1.05 ms  
(6)  
(7)  
Use Equation 8 and Equation 9 to calculate the minimum and maximum values for the tWINDOW-2 time interval.  
tWINDOW2_MIN = (WD_WIN2[6:0] + 1) × 0.55 × 0.95 ms  
tWINDOW2_MAX = (WD_WIN2[6:0] + 1) × 0.55 × 1.05 ms  
10.3.11.6 Watchdog Trigger Mode  
(8)  
(9)  
When the TPS6594-Q1 device is configured to use the Watchdog Trigger Mode, the watchdog receives the  
watchdog-triggers from the MCU on the pre-assigned GPIO pin. A rising edge on this GPIO pin, followed by a  
stable logic-high level on that pin for more than the maximum pulse time, tWD_pulse(max) , is a watchdog-trigger.  
The watchdog uses a deglitch filter with a tWD_pulse filter time and an internal system clock to create the  
internally-generated trigger pulse from the watchdog-trigger on the pre-assigned GPIO pin.  
The watchdog detects a good event when the watchdog-trigger comes in Window-2. The rising edge of the  
watchdog-trigger on the pre-assigned GPIO pin must occur for at least the tWD_pulse time before the end of  
Window-2 to generate such a good event.  
The watchdog detects a bad event when one of the following events occurs:  
The watchdog-trigger comes in Window-1. The rising edge of the watchdog-trigger on the pre-assigned GPIO  
pin must occur for at least the tWD_pulse time before the end of Window-1 to generate such a bad event. In  
case of this bad event, the device sets bits WD_TRIG_EARLY and WD_BAD_EVENT.  
No watchdog-trigger comes in Window-2. In case of this bad event (also referred to as time-out event), the  
device sets bits WD_TIMEOUT and WD_BAD_EVENT.  
Please consider that the minimum WD-pulse duration needs to meet the maximum deglitch time tWD_pulse (max)  
.
The status bit WD_BAD_EVENT is read-only. The watchdog clears the WD_BAD_EVENT status bit at the end of  
the watchdog-sequence.  
Figure 10-18 shows the flow-chart of the watchdog in Trigger mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.11.7 WatchDog Flow Chart and Timing Diagrams in Trigger Mode  
NO SUPPLY  
Device sets WD_RST_EN=1 per default  
Device sets WD_EN=1 per default.  
Wake-up  
NO  
request?  
YES  
Device sets  
WD_PWRHOLD bit  
DISABLE_WDOG  
hardware condition  
applied?  
YES  
NO  
RESTART  
from all  
states except  
NO SUPPLY  
Reset-Extension  
time-interval  
elapsed?  
NO  
YES  
WD_RETURN_  
LONGWIN=1?  
YES  
WATCHDOG LONG WINDOW  
NO  
- MCU reset inactive  
- Device forces ENABLE_DRV= 0  
- MCU clears error-flags  
- Device releases nINT pin if no other error-flags are set  
- Device unlocks Watchdog-Configuration registers  
- Device sets WD_FAIL_CNT[3:0]=4'b0000 and sets WD_FIRST_OK=0  
MCU either clears WD_EN, or:  
WINDOW-1  
1) MCU configures watchdog in Trigger mode  
2) MCU configures Window-1 and Window-2 time-intervals  
3) MCU configures WD_FAIL_TH, WD_RST_TH and WD_RST_EN  
4) MCU sends trigger pulse  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not change  
ENABLE_DRV bit  
- Device waits until WINDOW-1 time elapses  
NO  
- Device sets  
WD_TRG_EARLY  
error-flag  
- Device sets  
WD_BAD_EVENT  
error-flag  
Device has  
Received trigger-  
NO  
WD_PWRHOLD=0?  
YES  
WINDOW-1  
NO  
YES  
time-interval  
elapsed?  
pulse  
?
YES  
WD_EN=0?  
YES  
NO  
WINDOW-2  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
YES  
- MCU sends trigger-pulse  
NO  
NORMAL t NO Watchdog  
- MCU reset inactive  
- MCU can set  
ENABLE_DRV=1 if no other  
error-flags are set  
NO  
WD_EN=0?  
Device sets  
WD_TIMEOUT error-  
flag  
Device has  
Received trigger-  
WINDOW-2  
time-interval  
elapsed?  
YES  
NO  
Device clears  
WD_BAD_EVENT  
error-flag  
- Device sets  
WD_BAD_EVENT  
error-flag  
pulse  
?
- Interrupt inactive if no  
other error-flag set  
YES  
- Device decrements WD_FAIL_CNT  
- Device sets WD_FIRST_OK=1  
- MCU can set ENABLE_DRV=1 if no other error-flags are set  
Device locks all Watchdog  
configuration registers and bits,  
except WD_RETURN_LONGWIN bit  
Device has  
received trigger  
pulse?  
YES  
NO  
Device Increments WD_FAIL_CNT[3:0]  
MCU configred LONG-WINDOW  
time-interval shorter than time in which  
Wathcdog has been in the  
YES  
Long-Window?  
NO  
WD_FAIL_CNT[3:0] >  
WD_FAIL_TH  
[2:0]  
NO  
LONG-WINDOW  
time-interval  
elapsed?  
NO  
YES  
- Device forces ENABLE_DRV=0  
- Device sets WD_FAIL_INT  
error-flag  
YES  
- Interrupt active  
Device sets  
WD_LONGWIN_TIMEOUT  
error-flag  
- Device sets WD_RST_INT  
error-flag  
- Interrupt active  
- Device clears  
WD_BAD_EVENT error-flag  
WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
&
WATCHDOG-RESET  
-WD_RST trigger to FSM  
YES  
NO  
WD_RST_EN=1  
Figure 10-18. Flow Chart for WatchDog Monitor in Trigger Mode  
Figure 10-19, Figure 10-20, Figure 10-21, Figure 10-22, and Figure 10-23 give examples of watchdog is trigger  
mode with good and bad events after device startup.  
Copyright © 2021 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
RESET Extension Time  
nRSTOUT  
(Reset to MCU, controlled by  
internal RSTOUT-control signal  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt <  
tWINDOW-2  
tt < tLONG_WINDOW  
t
tt = tWINDOW-1  
t
tt < tWINDOW-2  
t
tt = tWINDOW-1  
t
t
Window-1  
Watchdog Windows  
WD_FAIL_CNT[3:0]  
LongWindow  
Window-1  
Window-2  
Window-1  
Window-2  
xxxx  
0000  
0000  
0000  
x
0
1
WD_FIRST_OK  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
x
0
0
0
x
x
WD_LONGWIN_TIMEOUT  
_INT  
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
x
x
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
1
x
0
ENABLE_DRV  
Device State  
ACTIVE or MCU_ONLY  
x
000  
RECOV_CNT[2:0]  
Figure 10-19. Watchdog in Trigger mode – Normal MCU Startup with Correct Watchdog-Triggers  
RESET Extension Time  
RESET Extension Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
Watchdog-Triggeron  
GPIOpin  
InternallyGenerated  
TriggerPulse  
tt = tLONG_WINDOW  
t
tt = tLONG_WINDOW  
t
Watchdog Windows  
WD_FAIL_CNT[3:0]  
LongWindow  
LongWindow  
LongWindow  
0000  
xxxx  
x
0000  
0
0000  
0
0
WD_FIRST_OK  
MCU clears watchdog error-flags  
x
0
0
WD_FAIL_INT  
WD_RST_INT  
x
x
WD_LONGWIN_  
TIMEOUT_INT  
0
1
1
1
WD_TRG_EARLY  
WD_TIMEOUT  
x
x
0
0
0
0
0
x
ENABLE_DRV  
0
ACTIVE or MCU_ONLY  
(same state as previously)  
ACTIVE or MCU_ONLY  
(same state as previously)  
x
ACTIVE or MCU_ONLY  
Warm Reset  
Warm Reset  
Warm Reset  
SHUTDOWN  
Device State  
RECOV_CNT[2:0]  
000  
001  
010  
110  
111  
000  
Figure 10-20. Watchdog in Trigger Mode – MCU Does Not Send Watchdog-Triggers After Startup  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
RESET Extension  
Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt < tLONG_WINDOW  
t
tt < tWINDOW-1  
t
tt = tWINDOW-1  
t
tt < tWINDOW-2  
t
tt < tWINDOW-1  
t
Watchdog  
Windows  
Long  
Window  
LongWindow  
Window-1  
Window-2  
Window-1  
Window-1  
WD_FAIL_CNT[3:0]  
xxxx  
0000  
0000  
0001  
0010  
0000  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
WD_FAIL_CNT  
> WD_FAIL_TH  
WD_FAIL_CNT >  
WD_FAIL_TH + WD_RST_TH  
x
0
1
0
WD_FIRST_OK  
WD_FAIL_INT  
WD_RST_INT  
MCU clears watchdog error-flags  
1
x
x
0
1
0
0
WD_LONGWIN  
_TIMEOUT_INT  
x
x
x
1
1
WD_TRG_EARLY  
WD_TIMEOUT  
0
0
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
x
1
0
ENABLE_DRV  
Device State  
0
Warm  
Reset  
ACTIVE or MCU_ONLY  
(same state as previously)  
x
ACTIVE or MCU_ONLY  
001  
RECOV_CNT[2:0]  
000  
Figure 10-21. Watchdog in Trigger Mode – Bad Event (Watchdog-Triggers in Window-1) After Startup  
RESET  
Extension Time  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t < tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt < tLONG_WINDOW  
t
tt = tWINDOW-1  
t
tt < tWINDOW-2  
t
tt = tWINDOW-1  
t
tt = tWINDOW-2  
t
tt = tWINDOW-1  
t
tt = tWINDOW-2  
t
LongWindow  
Window-1  
Window-2  
Window-1  
Window-2  
Window-1  
Window-2  
Watchdog Windows  
WD_FAIL_CNT[3:0]  
LongWindow  
0000  
xxxx  
0000  
0000  
0001  
WD_FAIL_CNT > WD_FAIL_TH  
0010  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
WD_FAIL_CNT >  
WD_FAIL_TH + WD_RST_TH  
x
0
1
0
FIRST_WD_OK  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
1
x
x
0
0
1
WD_LONGWIN_  
TIMEOUT_INT  
x
0
x
x
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
1
MCU sets ENABLE_DRV (only possible when FIRST_WD_OK=1)  
x
x
1
0
ENABLE_DRV  
Device State  
0
Warm  
ACTIVE or MCU_ONLY  
(same state as previously)  
ACTIVE or MCU_ONLY  
Reset  
001  
RECOV_CNT[2:0]  
000  
Figure 10-22. Watchdog in Trigger Mode – Bad Events (Too Short or no Trigger in Window-2) After  
Startup  
Copyright © 2021 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
RESET Extension Time  
nRSTOUT  
(Reset to MCU)  
t > tWD_pulse  
t > tWD_pulse  
t < tWD_pulse  
t > tWD_pulse  
Watchdog-Trigger  
onGPIOpin  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
tWD_pulse  
InternallyGenerated  
TriggerPulse  
tt <  
tLONG_WINDOW  
t
tt <  
tWINDOW-2  
tt <  
tWINDOW-2  
tt <  
tWINDOW-2  
tt = tWINDOW-1  
t
tt = tWINDOW-1  
t
tt = tWINDOW-2  
t
tt = tWINDOW-1  
t
tt = tWINDOW-1  
t
t
t
t
LongWindow  
Window-1  
Window-1  
Window-2  
Window-1  
Window-2  
Window-1  
Window-2  
Window-1  
Window-2  
Watchdog Windows  
WD_FAIL_CNT[3:0]  
WD_FAIL_TH[2:0]=000  
WD_RST_TH[2:0]=001  
00  
00  
xxxx  
0000  
0000  
0001  
0000  
WD_FAIL_CNT > WD_FAIL_TH  
x
0
1
FIRST_WD_OK  
MCU clears WD_FAIL_TH error-flag (only  
possible when WD_FAIL_CNT =< WD_FAIL_TH)  
MCU clears watchdog error-flags  
WD_FAIL_INT  
WD_RST_INT  
x
x
1
0
0
0
WD_LONGWIN_  
TIMEOUT_INT  
x
0
x
x
WD_TRIG_EARLY  
WD_TIMEOUT  
0
0
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
MCU sets ENABLE_DRV (only possible when  
FIRST_WD_OK=1)  
x
1
1
ENABLE_DRV  
0
0
ACTIVE or MCU_ONLY  
x
Device State  
000  
RECOV_CNT[2:0]  
Figure 10-23. Watchdog in Trigger Mode – Good Events (Correct Watchdog-Triggers) After Startup,  
Followed by a Bad-Event (No Watchdog-Trigger in Window-2) and After That Followed by a Good Event.  
10.3.11.8 Watchdog Question-Answer Mode  
When the TPS6594-Q1 device is configured to use the Watchdog Question Answer mode, the watchdog  
requires specific messages from the MCU in specific time intervals to detect correct operation of the MCU.  
The device provides a question for the MCU in WD_QUESTION[3:0] during operation. The MCU performs a  
fixed series of arithmetic operations on this question to calculate the required 32-bit answer. This answer is split  
into four answer bytes: Answer-3, Answer-2, Answer-1, and Answer-0. The MCU writes these answer bytes  
one byte at a time into WD_ANSWER[7:0] from the SPI or the dedicated I2C2 interface, mapped to GPIO1 and  
GPIO2 pins.  
A good event occurs when the MCU sends the correct answer-bytes calculated for the current question in the  
correct watchdog window and in the correct sequence.  
A bad event occurs when one of the events that follows occur:  
The MCU sends the correct answer-bytes, but not in the correct watchdog window.  
The MCU sends incorrect answer-bytes.  
The MCU returns correct answer-bytes, but in the incorrect sequence.  
If the MCU stops providing answer-bytes for the duration of the watchdog time-period, the watchdog detects  
a time-out event. This time-out event sets the WD_TIMEOUT status bit, increments the WD_FAIL_CNT[3:0]  
counter, and starts a new watchdog sequence.  
10.3.11.8.1 Watchdog Q&A Related Definitions  
A question and answer are defined as follows:  
Question A question is a 4-bit word (see Section 10.3.11.8.2).  
The watchdog provides the question to the MCU when the MCU reads the WD_QUESTION[3:0] bits.  
The MCU can request each new question at the start of the watchdog sequence, but this is  
not required to calculate the answer. The MCU can also have a software implementation, which  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
generates the question according the circuit shown in Figure 10-26. Nevertheless, the answer and  
therefore the answer-bytes are always based on the question generated inside the watchdog of the  
device. So, if the MCU generates an incorrect question and gives answer-bytes calculated from this  
incorrect question, the watchdog detects a bad event  
Answer An answer is a 32-bit word that is split into four answer bytes: Answer-3, Answer-2, Answer-1, and  
Answer-0.  
The watchdog receives an answer-byte when the MCU writes to the WD_ANSWER[7:0] bits. For  
each question, the watchdog requires four correct answer-bytes from the MCU in the correct timing  
and order (Answer-3, Answer-2, and Answer-1 in Window 1 in the correct sequence, and Answer-0  
in Window 2) to detect a good event.  
The watchdog sequence in Q&A mode ends after the MCU writes the fourth answer byte (Answer-0), or after a  
time-out event when the Window-2 time-interval elapses.  
Window-1  
t = tWINDOW-1  
Window-2  
t = tWINDOW-2  
Three correct answer-bytes must be provided in Window-1 and  
in the correct order:  
The fourth answer-byte, Answer-0, must be provided  
in Window-2.  
ñ
ñ
ñ
Answer-3  
Answer-2  
Answer-1  
After the MCU writes the fourth Answer-0 to  
WD_ANSWER[7:0], the Watchdog generates the  
next question within 1 Internal System Clock Cycle,  
after which the next Watchdog Sequence  
(Q&A [n + 1]) begins  
After the Window-1 time elapses, Window 2 begins.  
The MCU needs to write the answer-bytes to the WD_ANSWER[7:0] bits.  
Question  
Answer  
MCU reads question(1)  
MCU provides answer(2)  
Write to  
Write to  
Write to  
WD_ANSWER[7:0]  
-> Answer-1  
Read bits WD_  
QUESTION[3:0]  
Write to  
WD_ANSWER[7:0]  
-> Answer-0  
WD_ANSWER[7:0] WD_ANSWER[7:0]  
-> Answer-3  
I2C2/SPI  
Commands  
-> Answer-2  
NCS Pin (for  
SPI only)  
1 Internal System Clock Cycle  
to Generate a new question for the next watchdog  
sequence Q&A [n + 1]  
Q&A [n]  
Q&A [n + 1]  
Watchdog Sequence  
(1) The MCU is not required to read the question. The MCU can give correct answer-bytes Answer-3, Answer-2, Answer-1 as soon as  
Window-1 starts. The next watchdog sequence always starts in 1 system clock cycle after the watchdog receives the final Answer-0.  
(2) The MCU can put other I2C or SPI commands in-between the write-commands to WD_ANSWER[7:0] (even re-requesting the  
question). This has no influence on the detection of a good event, as long as the three correct answer-bytes in Window-1 are in the  
correct sequence, and the fourth correct answer-byte is provided before the configured Window-2 time-interval elapses.  
Figure 10-24. Watchdog Sequence in Q&A Mode  
10.3.11.8.2 Question Generation  
The watchdog uses a 4-bit question counter (QST_CNT[3:0] bits in Figure 10-25), and a 4-bit Markov chain  
to generate a 4-bit question. The MCU can read this question in the WD_QUESTION[3:0] bits. The watchdog  
generates a new question when the question counter increments, which only occurs when the watchdog detects  
a good event. The watchdog does not generate a new question when it detects a bad event or a time-out event.  
The question-counter provides a clock pulse to the Markov chain when it transitions from 4’b1111 to 4’b0000.  
The question counter and the Markov chain are set to the default value of 4’b0000 when the watchdog goes out  
of the Long Window.  
Copyright © 2021 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Note  
The Question-Generator is only re-initialized (starting with question 0000) at device power-up. In  
following situations, the MCU software needs to read the current question in order to synchronize with  
the Question-Generator:  
After MCU re-boot from a warm-reset  
After MCU software sets bit WD_RETURN_LONGWIN=1 to put the Watchdog back into Long  
Window  
After MCU wrote WD_EN=0, then reenable Watchdog again with WD_EN=1  
Figure 10-25 shows the logic combination for the WD_QUESTION[3:0] generation.  
Figure 10-26 shows how the logic combination of the question-counter with the WD_ANSW_CNT[1:0] status bits  
generates the reference answer-bytes.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
4-Bit LFSR Polynomial Equation(1)  
WD_QA_LFSR[1:0] = 0x00:  
WD_QA_LFSR[1:0] = 0x01:  
WD_QA_LFSR[1:0] = 0x10:  
WD_QA_LFSR[1:0] = 0x11:  
y = x4 + x3 + 1 (Default Value)  
y = x4 + x2 + 1  
y = x3 + x2 + 1  
y = x4 + x3 + x2 +1  
x3  
x1  
x2  
x4  
Bit 0  
Bit 3  
Bit 1  
Bit 2  
4-bit SEED Value Loaded when the device goes to the RESET state  
(Configurable Through WD_QUESTION_SEED[3:0])  
(Default Value 4'b1010)  
x1  
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
x2  
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
x3  
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
x4  
0
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
x2  
x1  
x4  
x3  
00  
01  
10  
11  
WD_QUESTION[0]  
SEED  
1
QST_CNT[1]  
QST_CNT[0]  
QST_CNT[3]  
QST_CNT[2]  
00  
01  
10  
11  
2
3
4
x4  
x3  
x2  
x1  
00  
01  
10  
11  
5
WD_QUESTION[1]  
6
7
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
QST_CNT[0]  
00  
01  
10  
11  
8
9
10  
11  
12  
13  
14  
15  
00  
01  
10  
11  
x1  
x4  
x3  
x2  
WD_QUESTION[2]  
00  
01  
10  
11  
QST_CNT[0]  
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
The default question-sequence order with the default  
WD_QUESTION_SEED[3:0] and WD_QA_LFSR[1:0] values  
x3  
x2  
x1  
x4  
00  
01  
10  
11  
WD_QUESTION[3]  
”Question‘ Counter  
CNT [0]  
QST_CNT[0]  
QST_CNT[1]  
QST_CNT[2]  
QST_CNT[3]  
QST_CNT[2]  
QST_CNT[1]  
QST_CNT[0]  
QST_CNT[3]  
00  
01  
10  
11  
CNT [1]  
—good event“  
INCR + 1  
trigger  
CNT [2]  
CNT [3]  
Feedback settings are controllable through the bits  
WD_QA_FDBK[1:0]  
(Default value is 2'b00; the selected signals are in red)  
(1) If current, the y value is 0000, the next y value will be 0001, and any further question generation begins from this value.  
Figure 10-25. Watchdog Question Generation  
Copyright © 2021 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[0]  
X = 3, 2,1, 0  
WD_ANSW_CNT[1]  
WD_QUESTION[3]  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
00  
01  
10  
11  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[1]  
X = 3, 2,1, 0  
WD_QUESTION[2]  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[3]  
00  
01  
10  
11  
WD_QUESTION[1]  
WD_ANSW_CNT[1]  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[2]  
X = 3, 2,1, 0  
WD_QUESTION[3]  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
00  
01  
10  
11  
WD_QUESTION[1]  
WD_ANSW_CNT[1]  
WD_QUESTION[2]  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[3]  
X = 3, 2,1, 0  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
WD_QUESTION[3]  
WD_ANSW_CNT[1]  
WD_QUESTION[1]  
WD_QUESTION[0]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[4]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[3]  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
00  
01  
10  
11  
Reference-Answer-X[5]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
WD_QUESTION[3]  
00  
01  
10  
11  
Reference-Answer-X[6]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
WD_QUESTION[2]  
WD_QUESTION[0]  
WD_QUESTION[1]  
WD_QUESTION[2]  
00  
01  
10  
11  
Reference-Answer-X[7]  
X = 3, 2,1, 0  
WD_ANSW_CNT[0]  
Feedback settings are controllable through the bits WD_QA_FDBK[1:0]  
(Default value is 2'b00; the selected signals are in red)  
Calculated Reference-Answer-X byte  
Figure 10-26. Watchdog Reference Answer Calculation  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.11.8.3 Answer Comparison  
The 2-bit, watchdog-answer counter, WD_ANSW_CNT[1:0], counts the number of received answer-bytes and  
controls the generation of the reference answer-byte as shown in Figure 10-26. At the start of each watchdog  
sequence, the default value of the WD_ANSW_CNT[1:0] counter is 2’b11 to indicate that the watchdog expects  
the MCU to write the correct Answer-3 in WD_ANSWER[7:0].  
The device sets the WD_ANSW_ERR status bit as soon as one answer byte is not correct. The device clears  
this status bit only if the MCU writes a ‘1’ to this bit.  
10.3.11.8.3.1 Sequence of the 2-bit Watchdog Answer Counter  
The sequence of the 2-bit, watchdog answer-counter is as follows for each counter value:  
WD_ANSW_CNT[1:0] = 2‘b11:  
1. The watchdog calculates the reference Answer-3.  
2. A write access occurs. The MCU writes the Answer-3 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-3 with the Answer-3 byte in WD_ANSWER[7:0].  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b‘10 and sets the WD_ANSW_ERR status  
bit to 1 if the Answer-3 byte was incorrect.  
WD_ANSW_CNT[1:0] = 2b‘10:  
1. The watchdog calculates the reference Answer-2.  
2. A write access occurs. The MCU writes the Answer-2 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-2 with the Answer-2 byte in WD_ANSWER[7:0]..  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b‘01 and sets the WD_ANSW_ERR status  
bit to 1 if the Answer-2 byte was incorrect.  
WD_ANSW_CNT[1:0] = 2b‘01:  
1. The watchdog calculates the reference Answer-1.  
2. A write access occurs. The MCU writes the Answer-1 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-1 with the Answer-1 byte in WD_ANSWER[7:0]..  
4. The watchdog decrements the WD_ANSW_CNT[1:0] bits to 2b‘00 and sets the WD_ANSW_ERR status  
bit to 1 if the Answer-1 byte was incorrect.  
WD_ANSW_CNT[1:0] = 2b‘00:  
1. The watchdog calculates the reference Answer-0.  
2. A write access occurs. The MCU writes the Answer-0 byte in WD_ANSWER[7:0].  
3. The watchdog compares the reference Answer-0 with the Answer-0 byte in WD_ANSWER[7:0].  
4. The watchdog sets the WD_ANSW_ERR status bit to 1 if the Answer-0 byte was incorrect.  
5. The watchdog starts a new watchdog sequence and sets the WD_ANSW_CNT[1:0] to 2‘b11’.  
The MCU needs to clear the bit by writing a '1' to the WD_ANSW_ERR bit.  
Copyright © 2021 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-9. Set of Questions and Corresponding Answer-Bytes Using the Default Setting of WD_QA_CFG  
Register  
ANSWER-BYTES (EACH BYTE TO BE WRITTEN INTO WD_ANSWER[7:0])  
WD QUESTION  
ANSWER-3  
ANSWER-2  
ANSWER-1  
ANSWER-0  
WD_ANSW_CNT [1:0] =  
2’b11  
WD_ANSW_CNT [1:0] =  
2’b10  
WD_ANSW_CNT [1:0] =  
2’b01  
WD_ANSW_CNT [1:0] =  
2’b00  
WD_QUESTION[3:0]  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
FF  
B0  
E9  
A6  
75  
3A  
63  
2C  
D2  
9D  
C4  
8B  
58  
17  
4E  
01  
0F  
40  
19  
56  
85  
CA  
93  
DC  
22  
6D  
34  
7B  
A8  
E7  
BE  
F1  
F0  
BF  
E6  
A9  
7A  
35  
6C  
23  
DD  
92  
CB  
84  
57  
18  
41  
0E  
00  
4F  
16  
59  
8A  
C5  
9C  
D3  
2D  
62  
3B  
74  
A7  
E8  
B1  
FE  
10.3.11.8.3.2 Watchdog Sequence Events and Status Updates  
The watchdog sequence events are as follows for the different scenarios listed:  
A good event occurs when all answer bytes are correct in value and timing. After such a good event,  
following events will occur:  
1. The WD_FAIL_CNT[2:0] counter decrements by one at the end of the watchdog-sequence.  
2. The question-counter increments by one and the watchdog generates a new question.  
A bad event occurs when all answer-bytes are correct in value but not in correct timing. After such a bad  
event, following events will occur:  
1. The WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
2. The WD_ANSW_EARLY and WD_BAD_EVENT status bits are set if watchdog receives all four answers  
in Window-1.  
3. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
4. The question-counter does not change, and hence the watchdog does not generate a new question.  
A bad event occurs when one or more of the answer-bytes are not correct in value but in correct timing. After  
such a bad event, following events will occur:  
1. The WD_ANSW_ERR and WD_BAD_EVENT status bits are set as soon as the watchdog detects an  
incorrect answer-byte.  
2. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
3. The question-counter does not change, and hence the watchdog does not generate a new question.  
A bad event occurs when one or more of the answer-bytes are not correct in value and not in correct timing.  
After such a bad event, following events will occur:  
1. The WD_ANSW_ERR and WD_BAD_EVENT status bits are set as soon as the watchdog detects an  
incorrect answer-byte.  
2. The WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
3. The WD_ANSW_EARLY and WD_BAD_EVENT status bits are set if watchdog receives all four answer-  
bytes in Window-1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
4. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
5. The question-counter does not change, and hence the watchdog does not generate a new question.  
A time-out event occurs when the device receives less than 4 answer-bytes before Window-2 time-interval  
elapses. After a time-out event occurs, following events will occur:  
1. WD_SEQ_ERR and WD_BAD_EVENT status bits are set if Window-1 time-interval elapses before  
watchdog has received Answer-3, Answer-2 and Answer-1.  
2. The WD_TIMEOUT and WD_BAD_EVENT status bits are set at the end of the watchdog-sequence.  
3. The WD_FAIL_CNT[2:0] counter increments by one at the end of the watchdog-sequence.  
4. The question-counter does not change, and hence the watchdog does not generate a new question.  
The status bit WD_BAD_EVENT is read-only. The watchdog clears the WD_BAD_EVENT status bit at the end of  
the watchdog-sequence.  
The status bits WD_SEQ_ERR, WD_ANSW_EARLY, and WD_TIMEOUT are latched until the MCU writes a ‘1’  
to these bits. If one or more of these status bits are set, the watchdog can still detect a good event in the next  
watchdog-sequence. These status bits are read-only. The watchdog clears the WD_BAD_EVENT status bit at  
the end of the watchdog-sequence.  
Note  
The WD_FIRST_OK bit is set after receiving 4 answers in the correct time frames, regardless of the  
correctness of the answers. In order to not clear the bit in case of incorrect answers, the following  
procedure is recommended:  
When WD_FIRST_OK bit is set, the MCU shall read the WD_FAIL_CNT (address 0x40).  
If WD_FAIL_CNT is zero, the MCU shall clear the WD_FIRST_OK bit.  
If WD_FAIL_CNT is not zero, the MCU shall continue sending frames until WD_FAIL_CNT  
decrements before clearing WD_FIRST_OK.  
Figure 10-27 shows the flow-chart of the watchdog in Q&A mode.  
Copyright © 2021 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
NO SUPPLY  
WD_RETURN_  
LONGWIN=1?  
YES  
Device sets WD_RST_EN=1 per default  
Device sets WD_EN=1 per default.  
Wake-up  
request?  
NO  
NO  
ANSWER-3  
YES  
- Device sets WD_ANSW_CNT[2:0]=2'b11  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
Device sets  
WD_PWRHOLD bit  
DISABLE_WDOG  
hardware condition  
applied?  
NO  
NO  
YES  
- MCU sends ANSWER-3  
- Device sets  
WD_SEQ_ERR  
error-flag  
NO  
Device has  
WINDOW-1  
- Device sets  
WD_BAD  
_EVENT  
WINDOW-2  
time-interval  
elapsed?  
YES  
NO  
received  
time-interval  
elapsed?  
ANSWER-3 ?  
error-flag  
RESTART  
from all  
states except  
NO SUPPLY  
YES  
Reset-Extension  
time-interval  
elapsed?  
NO  
YES  
- Device sets  
WD_ANSW_ERR error-flag  
- Device sets  
ANSWER-3  
correct?  
NO  
YES  
WD_BAD_EVENT error-flag  
YES  
ANSWER-2  
WATCHDOG LONG WINDOW  
- Device sets WD_ANSW_CNT[2:0]=2'b10  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
- Device releases MCU reset pin  
- Device forces ENABLE_DRV= 0  
- MCU clears error-flags  
NO  
- Device releases nINT pin if no other error-flags are set  
- Device unlocks Watchdog-Configuration registers  
- Device sets WD_ANSW_CNT[2:0]=2'b11  
- Device sets WD_FAIL_CNT[3:0]=4'b0000 and sets WD_FIRST_OK=0  
MCU either clears WD_EN, or:  
1) MCU configures watchdog in Q&A mode  
2) MCU configures Window-1 and Window-2 time-intervals  
3) MCU configures WD_FAIL_TH, WD_RST_TH and WD_RST_EN  
4) MCU sends 4 answers  
NO  
- MCU sends ANSWER-2  
- Device sets  
WD_SEQ_ERR  
error-flag  
- Device sets  
WD_BAD  
_EVENT  
Device has  
received  
WINDOW-2  
time-interval  
elapsed?  
WINDOW-1  
time-interval  
elapsed?  
NO  
YES  
ANSWER-2?  
YES  
error-flag  
YES  
- Device sets  
ANSWER-2  
correct?  
WD_ANSW_ERR error-flag  
- Device sets  
WD_BAD_EVENT error-flag  
NO  
NO  
WD_PWRHOLD=0?  
YES  
YES  
ANSWER-1  
- Device sets WD_ANSW_CNT[2:0]=2'b01  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
WD_EN=0?  
YES  
NO  
NO  
NO  
- MCU sends ANSWER-1  
- Device sets  
WD_SEQ_ERR  
error-flag  
- Device sets  
WD_BAD  
_EVENT  
YES  
Device has  
WINDOW-2  
time-interval  
elapsed?  
WINDOW-1  
time-interval  
elapsed?  
NORMAL t NO Watchdog  
- MCU reset inactive  
- MCU can set  
ENABLE_DRV=1 if no other  
error-flags are set  
YES  
NO  
received  
NO  
WD_EN=0?  
ANSWER-1?  
error-flag  
YES  
- Device released nINT pin if  
no other error-flag set  
YES  
- Device sets  
WD_ANSW_ERR error-flag  
- -Device sets  
NO  
ANSWER-1  
correct?  
WD_BAD_EVENT error-flag  
YES  
Device generates 1st  
QUESTION  
Device has  
received 4  
answers ?  
YES  
ANSWER-0  
- Device locks all Watchdog  
configuration registers and  
bits, except  
- Device sets WD_ANSW_CNT[2:0]=2'b00  
- If FIRST_WD_OK=0, device forces  
ENABLE_DRV=0, else device does not  
change ENABLE_DRV bit  
WD_RETURN_LONGWIN bit  
NO  
NO  
- MCU sends ANSWER-0  
Device sets  
WD_TIMEOUT  
error-flag  
- Device sets  
WD_BAD_EVENT  
error-flag  
MCU configred  
LONG-WINDOW  
time-interval shorter than  
time in which Wathcdog has  
been in the  
Device has  
received  
ANSWER-0?  
WINDOW-2  
time-interval  
elapsed?  
YES  
NO  
Device  
Increments  
WD_FAIL_CNT  
[3:0]  
YES  
YES  
Long-Window?  
Device sets  
WD_ANSW_EARLY error-flag  
- Device sets  
WINDOW-1  
time-interval  
not elapsed?  
NO  
YES  
WD_FAIL_CNT[3:0] >  
WD_FAIL_TH  
[2:0]  
NO  
WD_BAD_EVENT error-flag  
LONG-WINDOW  
time-interval  
elapsed?  
NO  
NO  
YES  
- Device sets  
Device clears  
WD_BAD_EVENT  
error-flag  
WD_ANSW_ERR error-flag  
- Device sets  
WD_BAD_EVENT error-flag  
NO  
ANSWER-0  
correct?  
YES  
- Device forces ENABLE_DRV=0  
- Device sets WD_FAIL_INT  
error-flag  
Device sets  
YES  
- Interrupt active  
WD_LONGWIN_TIMEOUT  
error-flag  
YES  
WD_BAD_EVENT  
=1?  
WATCHDOG-RESET  
-WD_RST trigger to FSM  
NO  
WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0])  
&
- Device sets WD_RST_INT  
error-flag  
- Interrupt active  
- Device clears  
WD_BAD_EVENT error-flag  
- Device decrements WD_FAIL_CNT  
- Device generates next QUESTION  
- Device sets WD_FIRST_OK=1  
YES  
NO  
- MCU can set ENABLE_DRV=1 if no other error-flags are set  
WD_RST_EN=1  
Figure 10-27. Flow Chart for WatchDog in Q&A Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.11.8.3.3 Watchdog Q&A Sequence Scenarios  
Table 10-10. Correct and Incorrect WD Q&A Sequence Run Scenarios  
NUMBER OF WD ANSWERS  
WD STATUS BITS IN WDT_STATUS REGISTER  
ACTION  
COMMENTS  
RESPONSE  
WINDOW 1  
RESPONSE  
WINDOW 2  
ANSW_ERR ANSW_EARLY  
SEQ_ERR  
TIME_OUT  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
0 answers  
0 answers  
0 answers  
0b  
1b  
0b  
0b  
0b  
0b  
1b  
1b  
0b  
0b  
No answers  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 INCORRECT  
answers  
1b  
1b  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] = 3  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 CORRECT  
answers  
0 answers  
0 answers  
1 CORRECT answer  
Less than 3 CORRECT  
ANSWER in RESPONSE  
WINDOW 1 and 1  
CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 CORRECT answer 1 CORRECT answer  
0b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
2 CORRECT answer 1 CORRECT answer  
1 INCORRECT  
0 answers  
answer  
Less than 3 CORRECT  
ANSWER in RESPONSE  
WINDOW 1 and 1  
INCORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
1 CORRECT answer  
answer  
2 CORRECT  
answers  
1 INCORRECT  
answer  
4 CORRECT  
answers  
0 answers  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
Less than 3 CORRECT  
ANSWER in WIN1 and more  
than 1 CORRECT ANSWER  
in RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
3 CORRECT  
answers  
1 CORRECT answer  
0b  
1b  
0b  
0b  
1b  
1b  
0b  
0b  
2 CORRECT  
answers  
2 CORRECT  
answers  
4 INCORRECT  
answers  
0 answers  
Less than 3 CORRECT  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
ANSWER in RESPONSE  
WINDOW 1 and more than  
1 INCORRECT ANSWER  
in RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
3 INCORRECT  
answers  
1 CORRECT answer  
2 CORRECT  
answers  
2 INCORRECT  
answers  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
3 CORRECT  
answers  
0 answers  
0b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than  
1 CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
1 INCORRECT  
answer  
2 CORRECT  
answers  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
2 INCORRECT  
answers  
1 CORRECT answer  
3 INCORRECT  
answers  
0 answers  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than  
1 INCORRECT ANSWER  
in RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
2 INCORRECT  
answer  
1b  
0b  
1b  
1b  
2 INCORRECT  
answer  
1 INCORRECT  
answer  
4 CORRECT  
answers  
0 answers  
0b  
1b  
0b  
0b  
1b  
1b  
0b  
0b  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than  
1 CORRECT ANSWER in  
RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
3 CORRECT  
answers  
2 INCORRECT  
answers  
2 CORRECT  
answers  
4 INCORRECT  
answers  
0 answers  
Less than 3 INCORRECT  
ANSWER in RESPONSE  
WINDOW 1 and more than  
1 INCORRECT ANSWER  
in RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] = 3)  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
1 INCORRECT  
answer  
3 INCORRECT  
answers  
1b  
0b  
1b  
0b  
2 INCORRECT  
answers  
2 INCORRECT  
answers  
Copyright © 2021 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-10. Correct and Incorrect WD Q&A Sequence Run Scenarios (continued)  
NUMBER OF WD ANSWERS  
WD STATUS BITS IN WDT_STATUS REGISTER  
ACTION  
COMMENTS  
RESPONSE  
WINDOW 1  
RESPONSE  
WINDOW 2  
ANSW_ERR ANSW_EARLY  
SEQ_ERR  
TIME_OUT  
3 CORRECT  
answers  
0 answers  
0 answers  
0 answers  
0b  
0b  
0b  
0b  
0b  
1b  
1b  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD Question  
Less than 4 CORRECT ANSW  
in RESPONSE WINDOW 1  
and more than 0 ANSWER  
in RESPONSE WINDOW 2  
(WD_ANSW_CNT[1:0] < 3)  
2 CORRECT  
answers  
1b  
0b  
1 CORRECT  
answers  
-New WD cycle starts after the  
4th WD answer  
3 CORRECT  
answers  
1 CORRECT answer -Decrement WD failure counter  
-New WD cycle starts with a new  
WD question  
0b  
1b  
1b  
1b  
1b  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
0b  
0b  
1b  
0b  
0b  
0b  
CORRECT SEQUENCE  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] < 3  
WD_ANSW_CNT[1:0] = 3  
WD_ANSW_CNT[1:0] = 3  
-New WD cycle starts after the  
4th WD answer  
3 CORRECT  
answers  
1 INCORRECT  
-Increment WD failure counter  
answers  
0b  
0b  
0b  
0b  
0b  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
end of RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
3 INCORRECT  
answers  
0 answers  
-New WD cycle starts after the  
4th WD answer  
3 INCORRECT  
answers  
1 CORRECT answer -Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
4th WD answer  
3 INCORRECT  
answers  
1 INCORRECT  
-Increment WD failure counter  
answer  
-New WD cycle starts with the  
same WD question  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
4 CORRECT  
answers  
Not applicable  
3 CORRECT  
answers + 1  
INCORRECT answer  
Not applicable  
Not applicable  
Not applicable  
4 CORRECT or INCORRECT  
ANSWER in RESPONSE  
WINDOW 1  
-New WD cycle starts after the  
4th WD answer  
-Increment WD failure counter  
-New WD cycle starts with the  
same WD question  
2 CORRECT  
answers +  
2 INCORRECT  
answers  
1b  
1b  
0b  
0b  
1 CORRECT answer  
+ 3 INCORRECT  
answers  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.12 Error Signal Monitor (ESM)  
The TPS6594-Q1 device has two Error Signal Monitor (ESMs): one ESM_MCU to monitor the MCU error output  
signal at the nERR_MCU input pin, and one ESM_SoC to monitor the SoC error output signal at the nERR_SoC  
input pin.  
At device start-up, the ESM_MCU and ESM_SoC can be enabled or disabled through configuration bits  
ESM_MCU_EN and ESM_SOC_EN. The values for these configuration bits are stored in the device EEPROM.  
To start the enabled ESM, the MCU sets the start bits ESM_MCU_START or ESM_SOC_START for the  
respective ESM through software after the system is powered up and the initial software configuration is  
completed. If the MCU clears a start bit, the ESM stops monitoring its input pin. The MCU can set the  
ENABLE_DRV bit only when the MCU has either started or disabled the ESM. When the prospective ESM  
is started, the following configuration registers are write protected and can only be read:  
Configuration registers write-protected by the ESM_MCU_START register bit:  
ESM_MCU_DELAY1_REG  
ESM_MCU_DELAY2_REG  
ESM_MCU_MODE_CFG  
ESM_MCU_HMAX_REG  
ESM_MCU_HMIN_REG  
ESM_MCU_LMAX_REG  
ESM_MCU_LMIN_REG  
Configuration registers write-protected by the ESM_SOC_START register bit:  
ESM_SOC_DELAY1_REG  
ESM_SOC_DELAY2_REG  
ESM_SOC_MODE_CFG  
ESM_SOC_HMAX_REG  
ESM_SOC_HMIN_REG  
ESM_SOC_LMAX_REG  
ESM_SOC_LMIN_REG  
ESM uses a deglitch-filter with deglitch-time tdegl_ESMx to monitor its related input pin.  
The MCU can configure the ESM in two different modes which are defined as follows:  
Level the ESM detects an ESM-error when the input pin remains low for a time equal to or longer than the  
Mode deglitch-time tdegl_ESMx  
.
To select this mode for the ESM_MCU, the MCU must clear bit ESM_MCU_MODE. To select this  
mode for the ESM_SoC, the MCU must clear bit ESM_SOC_MODE. See Section 10.3.12.1.1 for  
further detail  
PWM the ESM monitors a PWM signal at its input pin. The ESM detects a bad-event when the frequency or  
Mode duty cycle of the PWM input signal deviates from the expected signal. The ESM detects a good-event  
when the frequency and duty cycle of the PWM signal match with the expected signal for one signal  
period.  
The ESM has an error-counter (ESM_MCU_ERR_CNT[4:0] or ESM_SOC_ERR_CNT[4:0]), which  
increments with +2 after each bad-event, and decrements with -1 after each good-event. The ESM  
detects an ESM-error when the error-counter value is more than its related threshold value.  
To select this mode for the ESM_MCU, the MCU must set bit ESM_MCU_MODE. To select this  
mode for the ESM_SoC, the MCU must set bit ESM_SOC_MODE. See Section 10.3.12.1.2 for further  
details.  
The MCU can configure each ESM as long as its related start bit is cleared to 0 (bit ESM_MCU_START or  
ESM_SOC_START). As soon as the MCU sets a start bit, the device sets a write-protection on the configuration  
registers of the related ESM except the related start bits ESM_MCU_START and ESM_SOC_START.  
Copyright © 2021 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.12.1 ESM Error-Handling Procedure  
Each ESM has two of its own configurable delay-timers, which are reset when the device clears the respective  
ESM_x_START bit. Below steps describe the procedure through which ESM goes in case it detects an ESM-  
error:  
1. If the respective mask bit ESM_x_PIN_MASK=0, the device sets interrupt bit ESM_MCU_PIN_INT or  
ESM_SOC_PIN_INT, and pulls the nINT pin low.  
2. The ESM starts the delay-1 timer (configurable through related ESM_MCU_DELAY1[7:0] or  
ESM_SOC_DELAY1[7:0] bits).  
3. If the ESM-error is no longer present and MCU has cleared the related interrupt bit ESM_MCU_PIN_INT  
or ESM_SOC_PIN_INT before the delay-1 timer elapses, the device will release the nINTpin, the ESM will  
reset the delay-1 and delay-2 timers and continues to monitor its input pin.  
4. If the ESM-error is still present and the delay-1 timer elapses, then the ESM clears the ENABLE_DRV bit if  
bit ESM_MCU_ENDRV=1 or if bit ESM_SOC_ENDRV=1.  
5. If the delay-2 timer (configurable through related ESM_MCU_DELAY2[7:0] or ESM_SOC_DELAY2[7:0] bits)  
is set to 0, then the ESM skips steps 6 of this list, and performs step 7.  
6. If the delay-2 timer is not set to 0, then:  
a. ESM starts the delay-2 timer,  
b. If EMS_MCU_FAIL_MASK = 0, the device sets interrupt bit ESM_MCU_FAIL_INT and pulls the nINT pin  
low and starts the delay-2 timer.  
c. If EMS_SOC_FAIL_MASK = 0, the device sets interrupt bit ESM_SOC_FAIL_INT, pulls the nINT pin low  
and starts the delay-2 timer.  
7. If the ESM-error is no longer present and the MCU has cleared the related interrupt bits listed below before  
the delay-2 timer elapses, the device will release the nINTpin, the ESM will reset the delay-1 and delay-2  
timers and continues to monitor its input pin:  
ESM_MCU_PIN_INT (and ESM_MCU_FAIL_INT if set in step 6), or  
ESM_SOC_PIN_INT (and ESM_SOC_FAIL_INT if set in step 6)  
8. If the ESM-error is still present and the delay-2 timer elapses, then:  
a. For ESM_MCU, the device:  
i. clears the ESM_MCU_START BIT  
ii. sets interrupt bit ESM_MCU_RST_INT, which the device handles as an ESM_MCU_RST trigger for  
FSM, described in Table 1-1  
iii. After this trigger handling completes, the device re-initializes the ESM_MCU  
b. For ESM_SoC, the device:  
i. clears the ESM_SOC_START bit  
ii. sets interrupt bit ESM_SOC_RST_INT, which the device handles as an ESM_SOC_RST trigger for  
FSM, described in Table 1-1  
iii. After this trigger handling completes, the device re-initializes the ESM_SoC  
ESM_MCU_DELAY1[7:0] and ESM_SOC_DELAY1[7:0] set the delay-1 time-interval (tDELAY-1) for the related  
ESM_MCU or ESM_SoC. Use Equation 10 and Equation 11 to calculate the worst-case values for the tDELAY-1  
:
Min. tDELAY-1 = (ESM_x_DELAY1[7:0] × 2.048 ms) × 0.95  
Max. tDELAY-1 = (ESM _x_DELAY1[7:0] × 2.048 ms) × 1.05  
(10)  
(11)  
In which x stands for either MCU or SoC.  
ESM_MCU_DELAY2[7:0] or ESM_SOC_DELAY2[7:0] bits set the delay-2 time-interval (tDELAY-2) for the related  
ESM_MCU or ESM_SoC. Use Equation 12 and Equation 13 to calculate the worst-case values for the tDELAY-2  
:
Min. tDELAY-2 = (ESM_x_DELAY2[7:0] × 2.048 ms) × 0.95  
Max. tDELAY-2 = (ESM _x_DELAY2[7:0] × 2.048 ms) × 1.05  
(12)  
(13)  
In which x stands for either MCU or SoC.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.12.1.1 Level Mode  
In Level Mode, after MCU has set the start bit (bit ESM_MCU_START or bit ESM_SOC_START), the ESM  
monitors its nERR_MCU or nERR_SoC input pin. Each ESM detects an ESM-error when the voltage level on  
its input pin remains low for a time equal or longer than the deglitch-time tdegl_ESMx. When an ESM detects  
an ESM-error, it starts the ESM Error-Handling procedure as described in Section 10.3.12.1. Section 10.3.12.1  
describes how if the voltage level on its input pin remains high for a time equal or longer than the deglitch-time  
tdegl_ESMx, before the elapse of the configured delay-1 or delay-2 time-intervals, and the MCU software clears  
all ESM related interrupt bits, then the ESM-error is no longer present and the ESM stops the Error-Handling  
Procedure. If the ESM-error persists such that the configured delay-1 and delay-2 times elapse, the ESM  
sends a ESM_x_RST trigger to the FSM and the device clear the ESM_x_START bit. After FSM completes the  
handling of the ESM_x_RST trigger, the device re-initializes the ESM.  
For a complete overview on how the ESM works in Level Mode, please refer to the flow-chart in Figure 10-28.  
Figure 10-29, Figure 10-30, Figure 10-31, and Figure 10-32 show example wave forms for several error-cases  
for the ESM in Level Mode. In these examples, only the ESM_MCU is shown.  
Copyright © 2021 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Global Reset Conditions:  
START  
ESM_x Level Mode  
Procedure  
- Warm-Reset from Watchdog or ESM_x  
- Immediate or Orderly Shutdown  
ESM_x in Level-Mode  
- Device releases MCU/SoC reset pin  
- MCU can set ENABLE_DRV bit  
- Device releases nINT pin  
- Device Power-On-Reset  
NO  
ESM_x_EN=1  
?
- no ESM_x interrupt bit set  
YES  
ESM_x pin  
level  
= 0?  
- Device clears ESM_x_START=0  
- Device resets the ESM_x_DELAY1  
and ESM_x_DELAY2 timers  
YES  
ESM_x-INTERRUPT  
- If ESM_x_PIN_MASK=0, device sets  
ESM_x_PIN_INT interrupt bit And pulls nINT  
pin low  
- Device starts ESM_x_DELAY1 timer, or  
continues to run this timer if already started  
- Device does not change ENABLE_DRV bit  
- Device does not change the level of the  
MCU/SoC reset pins  
Note: the procedures ^Check  
ESM_x_START=1" and ^ESM_x Level  
a}ꢀꢁ tŒ}ꢂꢁꢀµŒꢁ^ Œµv ]v ‰ꢃŒꢃooꢁo.  
If ESM_x_START=0, the device stops  
the ^ESM_x Level Mode  
- Device releases  
nINT pin if all  
interrupt bits are  
cleared  
- ESM resets  
ESM_x_DELAY1 and  
ESM_x_DELAY2  
timers  
Reset-Extension  
time-interval  
elapsed?  
NO  
tŒ}ꢂꢁꢀµŒꢁ^  
Check ESM_x_START=1  
YES  
- Device stops ESM_x  
Level Mode Procedure  
- Device resets the  
ESM_x_DELAY1 and  
ESM_x_DELAY2 timers  
ESM_x pin  
level =1 &  
ESM_x_PIN_INT=0  
?
NO  
YES  
ESM_x_START  
=1?  
YES  
NO  
ESM_x-CONFIGURE  
- Device releases MCU/SoC reset pin  
- For ESM_MCU: Device forces ENABLE_DRV = 0  
- For ESM_SoC: Device forces ENABLE_DRV = 0 if ESM_SoC_ENDRV = 1  
- MCU clears all interrupt bits  
ESM_x_DELAY1  
NO  
time-interval  
elapsed?  
- Device releases nINT pin if no other interrupt bits are set  
YES  
-
ESM_x configuration registers unlocked  
- MCU either clears ESM_x_EN, or  
1) MCU configures ESM_x in Level-Mode (bit ESM_x_MODE)  
2) MCU configures ESM_x_DELAY1, ESM_x_DELAY2 and ESM_x_ENDRV  
3) MCU sets ESM_x_START  
Configuration bit  
ESM_x_ENDRV =1?  
Device forces  
ENABLE_DRV= 0  
YES  
Device locks all  
ESM_x  
NO  
ESM_x_START  
=1?  
YES  
configuration  
registers  
NO  
ESM_x_DELAY2  
set to 0?  
YES  
NO  
ESM_x_EN  
=0?  
NO  
- If ESM_x_FAIL_MASK=0, device sets  
ESM_x_FAIL_INT interrupt bit And pulls  
nINT pin low  
YES  
- Device starts ESM_x_DELAY2 timer, or  
continues to run this timer if already started  
NO ESM_x  
- MCU/SoC reset inactive  
- MCU can set ENABLE_DRV bit (if  
no other interrupt bits are set)  
- nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
YES  
ESM_x pin level =1  
& ESM_x_PIN_INT=0 &  
ESM_x_FAIL_INT=0  
?
ESM_x Level-Mode  
Error-Handling  
Procedure  
NO  
NO  
ESM_x_EN  
=0?  
YES  
ESM_x_DELAY2  
time-interval  
elapsed?  
NO  
YES  
-
If ESM_x_FAIL_MASK=0, device sets  
ESM_x_FAIL_INT interrupt bIt and pulls nINT  
pin low  
ESM_x-RESET  
- ESM_x_RST trigger send to to FSM  
- If ESM_x_RST_MASK=0, device sets  
ESM_x_RST_INT interrupt bit and  
pulls nINT pin low  
Figure 10-28. Flow Chart for Error Detection in Level Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets  
ESM_MCU_START  
ESM_MCU_START  
x
0
1
tdegl_ESMx 15 s  
tLOW_ERROR <  
ESM_MCU_DELAY1  
ESM_MCU Input  
Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 timer reset after  
MCU clears ESM_MCU_PIN_INT  
ESM_MCU_DELAY1  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT  
nINT Pin  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
x
0
1
ENABLE_DRV  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Device State  
x
ACTIVE or MCU_ONLY  
t
0
Case Number 1:  
MCU initiated a fault-injection, and MCU clears the ESM_MCU_PIN_INT interrupt bit before elapse of ESM_MCU_DELAY1 time-interval  
Figure 10-29. Example Waveform for ESMx in Level Mode - Case Number 1: ESM_MCU Signal Recovers  
Before Elapse of Delay-1 time-interval  
Copyright © 2021 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
MCU Reset-Extension Time  
MCU sets  
nRSTOUT Pin  
ESM_MCU_START  
x
0
1
ESM_MCU_START  
tESM_DEGLITCH 15 s  
tLOW_ERROR < (ESM_MCU_DELAY1 +  
ESM_MCU_DELAY2)  
ESM_MCU Input Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2 timers reset after  
MCU clears ESM_MCU_PIN_INT and  
ESM_MCU_FAIL_INT  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
1
0
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
0
x
0
1
ENABLE_DRV  
1
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV  
x
ACTIVE or MCU_ONLY  
Device State  
t
0
Case Number 2: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, but the MCU recovers and clears the interrupt bits before elapse of the ESM_MCU_DELAY2 time-interval  
Figure 10-30. Example Waveform for ESM in Level Mode – Case Number 2: Delay-2 Not Set To 0 and  
ESM_MCU_ENDRV=1, ESM_MCU Signal Recovers Elapse of Delay-2 Time-Interval  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
MCU Reset-Extension Time  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets  
ESM_MCU_START after all  
interrupt bits are cleared  
MCU sets  
ESM_MCU_START  
ESM_MCU_START  
0
x
0
1
1
tdegl_ESMx 15 s  
tLOW_ERROR  
ESM_MCU Input  
Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Deglitched ESM_MCU  
Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 timer  
reset when ESM resets the  
MCU  
ESM_MCU_DELAY1  
MCU clears  
ESM_MCU_PIN_INT  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN_MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_RST_INT  
nINT Pin  
&
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
1
0
x
0
1
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3a: ESM_MCU_DELAY2 = 0  
An error event occurred in the MCU, and the MCU is unable to correct the error before elapse of the ESM_MCU_DELAY1 time-interval. Hence the PMIC resets the MCU  
Figure 10-31. Example Waveform for ESM in Level Mode – Case Number 3a: Delay-2 Set To 0 and  
ESM_MCU_ENDRV=1, ESM_MCU Input Signal Recovers Too Late and MCU-Reset Occurs  
Copyright © 2021 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
MCU Reset-Extension Time  
MCU sets  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets ESM_MCU_START  
after all interrupt bits are cleared  
ESM_MCU_START  
ESM_MCU_START  
0
x
0
1
1
tdegl_ESMx 15 s  
tLOW_ERROR  
ESM_MCU Input Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Internally Deglitched  
ESM_MCU Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2  
timers reset when ESM  
resets the MCU  
MCU clears  
ESM_MCU_PIN_INT  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
&
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_PIN_INT  
(ESM_MCU_PIN__MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
and ESM_MCU_RST_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
1
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
1
0
0
x
0
1
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3b: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, and the MCU is unable to correct the error before elapse of the ESM_MCU_DELAY1 and ESM_MCU_DELAY2 time-intervals. Hence the PMIC resets the MCU  
Figure 10-32. Example Waveform for ESM in Level Mode – Case Number 3b: Delay-2 Not Set to 0 and  
ESM_MCU_ENDRV=1, ESM_MCU Input Signal Recovers Too Late and MCU-Reset Occurs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
MCU Reset-Extension Time  
MCU Reset-Extension Time  
nRSTOUT Pin  
MCU sets  
ESM_MCU_START  
MCU sets ESM_MCU_START  
after all interrupt bits are cleared  
ESM_MCU_START  
0
x
0
1
1
tdegl_ESMx 15 s  
tLOW_ERROR  
ESM_MCU Input Pin  
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
Internally Deglitched  
ESM_MCU Input Signal  
tdegl_ESMx 15 s  
ESM_MCU_DELAY1 and  
ESM_MCU_DELAY2  
timers reset when ESM  
resets the MCU  
MCU clears  
ESM_MCU_PIN_INT  
Deglitched ESM_MCU Input Signal = high  
ESM_MCU_DELAY1  
ESM_MCU_DELAY2  
&
ESM_MCU_PIN_INT  
(ESM_MCU_PIN__MASK=0)  
0
1
0
nINT goes immediately low,  
MCU needs to check  
whether it initiated the  
fault-injection or not  
nINT goes high after MCU clears  
ESM_MCU_PIN_INT and ESM_MCU_FAIL_INT  
and ESM_MCU_RST_INT  
&
nINT Pin  
MCU clears  
ESM_MCU_FAIL_INT  
MCU clears  
ESM_MCU_FAIL_INT  
ESM_MCU_FAIL_INT  
(ESM_MCU_FAIL_MASK=0)  
0
1
0
1
0
MCU clears  
ESM_MCU_RST_INT  
ESM_MCU_RST_INT  
(ESM_MCU_RST_MASK=0)  
0
1
0
0
x
0
1
1
ENABLE_DRV  
Device State  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
MCU sets ENABLE_DRV (only  
possible when  
ESM_MCU_START=1)  
Warm  
Reset  
x
ACTIVE or MCU_ONLY  
ACTIVE or MCU_ONLY (same as previous)  
t
0
Case Number 3c: ESM_MCU_DELAY2 > 0  
An error event occurred in the MCU, the MCU recovers and clears ESM_MCU_FAIL_INT, but fails to clear ESM_MCU_PIN_INT before elapse of the ESM_MCU_DELAY2 time-interval.  
Hence the PMIC resets the MCU and sets ESM_FAIL_INT (if ESM_MCU_FAIL_MASK=0).  
Figure 10-33. Example Waveform for ESM in Level Mode – Case Number 3c: Delay-2 Not Set to 0 and  
ESM_MCU_ENDRV=1, MCU Fails to Clear ESM_MCU_PIN_INT Before Elapse of the ESM_MCU_DELAY2  
Copyright © 2021 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.3.12.1.2 PWM Mode  
10.3.12.1.2.1 Good-Events and Bad-Events  
In PWM mode, each ESM monitors the high-pulse and low-pulse duration times its PWM inputs signal as  
follows:  
After a falling edge, the ESM starts monitoring the low-pulse time-duration. If the input signal remains low  
after exceeding the maximum low-pulse time-threshold (tLOW_MAX_TH), the ESM detects a bad event and  
the low-pulse duration counter reinitializes. Each time the signal further exceeds the maximum threshold,  
the ESM detects a bad event. On the next rising edge on the input signal, the ESM starts the high-pulse  
time-duration monitoring  
After a rising edge, the ESM starts monitoring the high-pulse time-duration. If the input signal remains high  
after exceeding the maximum high-pulse time-threshold (tHIGH_MAX_TH), the ESM detects a bad event and  
the high-pulse duration counter reinitializes. Each time the signal further exceeds the maximum threshold,  
the ESM detects a bad event. On the next falling edge on the input signal, the ESM starts the low-pulse  
time-duration monitoring.  
In addition, each ESM detects a bad-event in PWM mode if one of the events that follow occurs on the  
deglitched signal of the related input pin nERR_MCU or nERR_SoC:  
A high-pulse time-duration which is longer than the maximum high-pulse time-threshold (tHIGH_MAX_TH) that is  
configured in corresponding ESM_MCU_HMAX[7:0] or ESM_SOC_HMAX[7:0].  
A high-pulse time-duration which is shorter than the minimum high-pulse time-threshold (tHIGH_MIN_TH) that is  
configured in corresponding ESM_MCU_HMIN[7:0] or ESM_SOC_HMIN[7:0].  
A low-pulse time-duration which is longer than the maximum low-pulse time-threshold (tLOW_MAX_TH) that is  
configured in corresponding ESM_MCU_LMAX[7:0] or ESM_SOC_LMAX[7:0].  
A low-pulse time-duration which is less than the minimum low-pulse time-threshold (tLOW_MIN_TH) that is  
configured in corresponding ESM_MCU_LMIN[7:0] or ESM_SOC_LMIN[7:0].  
The ESM detects a good-event in PWM mode if one of the events that follow occurs on the deglitched signal of  
the related input pin nERR_MCU or nERR_SoC:  
A low-pulse time-duration within the minimum and maximum low-pulse time-thresholds is followed by a  
high-pulse time-duration within the minimum and maximum high-pulse time-thresholds, or  
A high-pulse duration within the minimum and maximum high-pulse time-thresholds is followed by a low-  
pulse duration within the minimum and maximum low-pulse time-thresholds  
ESM_MCU_HMAX[7:0] and ESM_SOC_HMAX[7:0] set the maximum high-pulse time-threshold (tHIGH_MAX_TH  
)
for the related ESM. Use Equation 14 and Equation 15 to calculate the worst-case values for the tHIGH_MAX_TH  
:
Min. tHIGH_MAX_TH = (15 µs +ESM_x_HMAX[7:0] × 15 µs) × 0.95  
Max. tHIGH_MAX_TH = (15 µs +ESM_x_HMAX[7:0] × 15 µs) × 1.05  
(14)  
(15)  
In which x stands for either MCU or SoC.  
ESM_MCU_HMIN[7:0] and ESM_SOC_HMIN[7:0] set the minimum high-pulse time-threshold (tHIGH_MIN_TH) for  
the related ESM. Use Equation 16 and Equation 17 to calculate the worst-case values for the tHIGH_MIN_TH  
:
Min. tHIGH_MIN_TH = (15 µs +ESM_x_HMIN[7:0] × 15 µs) × 0.95  
Max. tHIGH_MIN_TH = (15 µs +ESM_x_HMIN[7:0] × 15 µs) × 1.05  
(16)  
(17)  
In which x stands for either MCU or SoC.  
ESM_MCU_LMAX[7:0] and ESM_SOC_LMAX[7:0] set the maximum low-pulse time-threshold (tLOW_MAX_TH) for  
the related ESM. Use Equation 18 and Equation 19 to calculate the worst-case values for the tLOW_MAX_TH  
:
Min. tLOW_MAX_TH = (15 µs +ESM_x_LMAX[7:0] × 15 µs) × 0.95  
Max. tLOW_MAX_TH = (15 µs +ESM_x_LMAX[7:0] × 15 µs) × 1.05  
(18)  
(19)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 107  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
In which x stands for either MCUor SoC.  
ESM_MCU_LMIN[7:0] and ESM_SOC_LMIN[7:0] set the minimum low-pulse time-threshold (tLOW_MIN_TH) for  
the related ESM. Use Equation 20 and Equation 21 to calculate the worst-case values for the tLOW_MIN_TH  
:
Min. tLOW_MIN_TH = (15 µs +ESM_x_LMIN[7:0] × 15 µs) × 0.95  
Max. tLOW_MIN_TH = (15 µs +ESM_x_LMIN[7:0] × 15 µs) × 1.05  
(20)  
(21)  
In which x stands for either MCU or SoC.  
Please note that when setting up the minimum and the maximum low/high-pulse time-thresholds need to be  
configured such that clock tolerances from the TPS6594-Q1 and from the processor are incorporated. Equation  
22, Equation 23, Equation 24, and Equation 25 are a guideline on how to incorporate these clock-tolerances:  
ESM_x_HMIN[7:0] < 0.5 × (ESM_x_HMAX[7:0] + ESM_x_HMIN[7:0]) × 0.95 × (1 - MCU/SoC clock tolerance)  
ESM_x_HMAX[7:0] > 0.5 × (ESM_x_HMAX[7:0] + ESM_x_HMIN[7:0]) × 1.05 × (1 + MCU/SoC clock tolerance)  
ESM_x_LMIN[7:0] < 0.5 × (ESM_x_LMAX[7:0] + ESM_x_LMIN[7:0]) × 0.95 × (1 - MCU/SoC clock tolerance)  
(22)  
(23)  
(24)  
(25)  
ESM_x_LMAX[7:0] > 0.5 × (ESM_x_LMAX[7:0] + ESM_x_LMIN[7:0]) × 1.05 × (1 + MCU/SoC clock tolerance)  
10.3.12.1.2.2 ESM Error-Counter  
If an ESM detects a bad-event, it increments its related error-counter (bits ESM_MCU_ERR_CNT[4:0] or bits  
ESM_SOC_ERR_CNT[4:0]) by 2. If an ESM detects a good-event, it decrements its related error-counter (bits  
ESM_MCU_ERR_CNT[4:0] or bits ESM_SOC_ERR_CNT[4:0]) by 1.  
The device clears each error counter when ESM_x_START=0. Furthermore, the device clears the error-counter  
ESM_SOC_ERR[4:0] when it resets the SoC.  
Each  
error-counter  
has  
a
related  
threshold  
(bits  
ESM_MCU_ERR_CNT_TH[3:0]  
or  
bits  
ESM_SOC_ERR_CNT_TH[3:0]) which the MCU can configure if the related ESM start-bit is 0. If the error-  
counter value is above its configured threshold, the related ESM has detected a so-called ESM-error and  
starts the Error-Handling Procedure as described in Section 10.3.12.1. If the error-counter reached a value  
equal or less its configured threshold before the elapse of the configured delay-1 or delay-2 intervals and the  
MCU software clears all ESM related interrupt bits, the ESM-error is no longer present and the ESM stops the  
Error-Handling Procedure as described in Section 10.3.12.1. If the ESM-error persists such that the configured  
delay-1 and delay-2 times elapse, the ESM sends a ESM_x_RST trigger to the FSM and the device clear the  
ESM_x_START bit. After FSM completes the handling of the ESM_x_RST trigger, the device re-initializes the  
ESM.  
10.3.12.1.2.3 ESM Start-Up in PWM Mode  
After MCU has set the start bit of an ESM (bit ESM_MCU_START or bit ESM_SOC_START), there are two  
possible scenarios:  
1. The deglitched signal of the monitored input pin has a low level at the moment the MCU sets the start bit. In  
this scenario, the related ESM starts the following procedure:  
a. Start a timer with a time-length according the value configured in correspondig ESM_MCU_LMAX[7:0] or  
ESM_SOC_LMAX[7:0].  
b. Wait for a first rising edge on its deglitched input signal.  
c. If the rising edge comes before the configured time-length elapses, the ESM skips the next step and  
starts to monitor the high-pulse duration time. Hereafter, the ESM detects good-events or bad-events as  
described in Section 10.3.12.1.2.1. Figure 10-35 shows an example this scenario as Case Number 1.  
d. If the configured time-length (configured in corresponding ESM_MCU_LMAX[7:0] or  
ESM_SOC_LMAX[7:0]) elapses, the ESM detects a bad-event and increments the related error-counter  
with +2. Hereafter, the ESM detects good-events or bad-events as described in Section 10.3.12.1.2.1.  
Figure 10-37 shows an example this scenario as Case Number 3.  
Copyright © 2021 Texas Instruments Incorporated  
108 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
e. If the error-counter value is above its configured threshold, the related ESM has detected a so-called  
ESM-error and starts the Error-Handling Procedure as described in Section 10.3.12.1.2.1.  
f. During this Error-Handling Procedure, the ESM continues to monitor its related input pin, and updates  
the error-counter accordingly when it detects good-events or bad-events, until the Error-Handling  
Procedure reaches the step in which the device causes an ESM ERROR trigger in the state machine,  
which may reset the MCU or SoC according to the PFSM definition. Figure 10-38 shows a scenario in  
which the device resets the MCU or SoC as Case Number 4.  
g. If the error-counter reaches a value equal or less its configured threshold before the elapse of the  
configured delay-1 or delay-2 time-intervals and the MCU software clears all ESM related interrupt bits,  
the ESM-error is no longer present and the ESM stops the Error-Handling Procedure as described in  
Section 10.3.12.1.2.1.  
2. The deglitched signal monitored input pin has a high level at the moment the MCU sets the start bit. In this  
scenario, the related ESM starts the following procedure:  
a. Start a timer with a time-length according the value configured in corresponding ESM_MCU_HMAX[7:0]  
or ESM_SOC_HMAX[7:0].  
b. Wait for a first falling edge on its deglitched input signal.  
c. If the falling edge comes before the configured time-length elapses, the ESM skips the next step and  
starts to monitor the low-pulse duration time. Hereafter, the ESM detects good-events or bad-events as  
described in Section 10.3.12.1.2.1. Figure 10-36 shows an example this scenario as Case Number 2.  
d. If the configured time-length (configured in corresponding ESM_MCU_HMAX[7:0] or  
ESM_SOC_HMAX[7:0]) elapses, the ESM detects a bad-event and increments the related error-counter  
with +2. Hereafter, the ESM detects good-events or bad-events as described in Section 10.3.12.1.2.1.  
e. If the error-counter value is above its configured threshold, the related ESM has detected a so-called  
ESM-error and starts the Error-Handling Procedure as described in Section 10.3.12.1.2.1.  
f. During this Error-Handling Procedure, the ESM continues to monitor its related input pin, and updates  
the error-counter accordingly when it detects good-events or bad-events, until the Error-Handling  
Procedure reaches the step in which the device causes an ESM ERROR trigger in the state machine,  
which may reset the MCU or SoC according to the PFSM definition, as Case Number 4.  
g. If the error-counter reaches a value equal or less its configured threshold before the elapse of the  
configured delay-1 or delay-2 time-intervals and the MCU software clears all ESM related interrupt bits,  
the ESM-error is no longer present and the ESM stops the Error-Handling Procedure as described in  
Section 10.3.12.1.2.1.  
10.3.12.1.2.4 ESM Flow Chart and Timing Diagrams in PWM Mode  
For a complete overview on how the ESM works in PWM Mode, please refer to the flow-chart in Figure 10-34.  
Figure 10-35, Figure 10-36, Figure 10-37, and Figure 10-38 show example waveforms for several error-cases for  
the ESM in PWM Mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 109  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Global Reset Conditions:  
- Warm-Reset from Watchdog or ESM_x  
- Immediate or Orderly Shutdown  
NO  
ESM_x-CONFIGURE  
- Device releases MCU/SoC reset pins  
- Device forces ENABLE_DRV= 0  
- MCU clears all interrupt bits  
- Device releases nINT pin if no other interrupt bits are set  
NO ESM_x  
NO  
- MCU/SoC reset inactive  
- MCU can set ENABLE_DRV bit -  
nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
YES  
ESM_x_EN  
=0?  
- Device Power-On-Reset  
ESM_x_START  
=1?  
NO  
ESM_x_EN  
=0?  
-
ESM_x configuration registers unlocked  
YES  
START  
- MCU either clears ESM_x_EN, or  
1) MCU configures ESM in PWM-Mode +  
ESM_x_H/L_MAX/MIN times  
2) MCU configures ESM_x_DELAY1, ESM_x_DELAY2 and  
ESM_x_ENDRV  
YES  
Device locks all  
ESM_x  
- Device stops  
YES  
configuration  
registers  
ESM_x_PWM Mode  
Procedure and ESM_x  
PWM Error-Handling  
Procedure  
- Device resets the  
ESM_x_DELAY1 and  
ESM_x_DELAY2 timers  
NO  
ESM_x_EN=1  
?
3) MCU sets ESM_x_START  
ESM_x_  
START=1?  
NO  
YES  
Note: šZꢀ ‰Œ}ꢁꢀꢂµŒꢀ• c/Zꢀꢁl 9{a_x_START=1", c9{a_Æ tía a}ꢂꢀ tŒ}ꢁꢀꢂµŒꢀ^ ꢃvꢂ c9{a_x  
PWM Error-Iꢃvꢂo]vP tŒ}ꢁꢀꢂµŒꢀ^ Œµv ]v ‰ꢃŒꢃooꢀo. If ESM_x_START=0, the device stops the  
c9{a_Æ tía a}ꢂꢀ tŒ}ꢁꢀꢂµŒꢀ^ ꢃvꢂ šZꢀ c9{a_x PWM Error-Iꢃvꢂo]vP tŒ}ꢁꢀꢂµŒꢀ^  
Check  
ESM_x_START=1  
- Device clears  
ESM_x_START=0  
- Device resets the  
ESM_x_DELAY1  
and ESM_x_DELAY2  
timers  
ESM_x_ PWM Mode Procedure  
NO  
YES  
NO  
ESM_x  
ESM_x  
detects  
Falling Edge  
?
ESM_x_  
LMAX time  
elapsed?  
ESM_x_  
HMAX time  
elapsed?  
ESM_x pin  
level  
= 0?  
detects  
Rising Edge  
?
YES  
NO  
NO  
NO  
NO  
YES  
YES  
- MCU/SoC reset inactive  
Reset-Extension  
time-interval  
elapsed?  
YES  
YES  
ESM_x  
PWM Error-  
Handling  
- MCU can set ENABLE_DRV bit  
- nINT pin released  
(if no other interrupt bits are set)  
- no ESM_x interrupt bit set  
ESM_x  
PWM Error-  
Handling  
Device increase  
ESM_x  
Error-Counter  
with +2  
Device increase  
ESM_x  
Error-Counter  
with +2  
Procedure  
Procedure  
NO  
NO  
ESM_x  
detects  
Falling Edge  
?
ESM_x  
detects  
Rising Edge  
?
ESM_x_  
HMAX time  
elapsed?  
ESM_x_  
LMAX time  
elapsed?  
YES  
NO  
NO  
YES  
YES  
YES  
Device increase  
ESM_x  
Error-Counter  
with +2  
Device increase  
ESM_x_  
HMIN time  
elapsed?  
ESM_x_  
LMIN time  
elapsed?  
ESM_x  
Error-Counter  
with +2  
NO  
NO  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
Device decrease  
ESM_x  
Error-Counter  
with -1  
NO  
NO  
ESM_x  
detects  
Rising Edge  
?
ESM_x  
detects  
Falling Edge  
?
ESM_x_  
LMAX time  
elapsed?  
ESM_x_  
HMAX time  
elapsed?  
NO  
NO  
Device decrease  
ESM_x  
YES  
YES  
Error-Counter  
with -1  
Device increase ESM_x  
Error-Counter with +2  
Device increase ESM_x  
Error-Counter with +2  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
ESM_x_  
LMIN time  
elapsed?  
ESM_x_  
HMIN time  
elapsed?  
Device increase ESM_x  
Error-Counter with +2  
Device increase ESM_x  
Error-Counter with +2  
NO  
NO  
YES  
YES  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-  
Handling Procedure  
ESM_x PWM Error-Handling Procedure  
Note: until step ESM_x-RESET, the  
ESM_x_PWM Mode Procedure runs  
NO  
ESM_x  
Error-Counter  
≤ Threshold &  
ESM_x_PIN_INT=  
ESM_x-INTERRUPT  
in parallel  
Configuration  
- If ESM_x_PIN_MASK=0, device sets  
ESM_x_PIN_INT interrupt bit and pulls nINT  
pin low  
- Device starts ESM_x_DELAY1 timer, or  
continues to run this timer if already started  
- Device does not change ENABLE_DRV bit  
- Device does not change the level of the  
MCU/SoC reset pins  
ESM_x_DELAY1  
time-interval  
elapsed?  
NO  
YES  
bit  
ESM_x_ENDRV  
=1?  
YES  
ESM_x  
Error-Counter  
>Threshold  
0?  
YES  
START  
END  
Device forces  
ENABLE_DRV= 0  
NO  
YES  
NO  
- Device releases nINT pin if  
all interrupt bits are cleared  
- ESM resets ESM_x_DELAY1  
and ESM_x_DELAY2 timers  
ESM_x_DELAY2  
set to 0?  
YES  
YES  
NO  
ESM_x-RESET  
ESM_x  
Error-Counter  
< Threshold &  
ESM_x_PIN_INT=0 &  
ESM_x_FAIL_INT  
=0?  
- ESM_x_RST trigger send  
to to FSM  
- If ESM_x_RST_MASK=0,  
device sets ESM_x_RST_INT  
interrupt bit and pulls nINT  
pin low  
-
If ESM_x_FAIL_MASK=0,  
- If ESM_x_FAIL_MASK=0, device sets  
ESM_x_FAIL_INT interrupt bit and pulls nINT pin  
low  
- Device starts ESM_x_DELAY2 timer, or continues  
to run this timer if already started  
ESM_x_DELAY2  
time-interval  
elapsed?  
device sets ESM_x_FAIL_INT  
interrupt bit and pulls nINT  
pin low  
YES  
NO  
NO  
Figure 10-34. Flow-Chart for ESM_MCU and ESM_SoC in PWM Mode  
Copyright © 2021 Texas Instruments Incorporated  
110  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets ESM_x_START  
x
0
1
ESM_x_START  
tdegl_ESMx 15 s  
tHIGH_MAX_TH  
=
tHIGH_MAX_TH  
=
(ESM_x_HMAX [7:0] + 1) × 15 s  
(ESM_x_HMAX [7:0] + 1) × 15 s  
tHIGH_MIN_TH =  
(ESM_x_HMIN [7:0] + 1)  
tHIGH_MIN_TH =  
(ESM_x_HMIN [7:0] + 1)  
× 15 s  
× 15 s  
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1) × 15 s  
(ESM_x_LMAX[7:0] + 1) × 15 s  
(ESM_x_LMAX[7:0] + 1) × 15 s  
tLOW_MIN_TH  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:0] + 1) × 15 s  
(ESM_x_LMIN[7:0] + 1) × 15 s  
High-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Reset and  
Started  
Deglitched ESM_x  
Input Signal  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
no bad event trigger as  
long as rising edge on  
ESM_x signal comes  
before elapse of  
tPWM_LOW  
tPWM_LOW  
tPWM_HIGH  
tPWM_HIGH  
1 ESM_x good-event  
1 ESM_x good-event  
tLOW_MAX_TH  
InternalESM_x  
badeventTrigger  
InternalESM_x  
goodeventTrigger  
ESM_x_ERR_CNT[4:0]  
x
00000  
ESM_x_PIN_INT  
(ESM_x_PIN_MASK=0)  
0
nINT Pin  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK=0)  
0
ESM_x_RST_INT  
(ESM_x_RST_MASK=0)  
0
0
ENABLE_DRV  
x
1
MCU sets ENABLE_DRV (ESM_MCU, only possible if  
ESM_MCU_START=1. ESM_SOC possible if ESM_SOC_ENDRV=0  
or if ESM_SOC_ENDRV=1 and ESM_SOC_START=1)  
Case Number 1:  
PWM signal has a low level at the moment the MCU sets bit ESM_x_start, and the PMIC receives a PWM Error Signal with Correct Timing afterwards  
Figure 10-35. Example Waveform for ESM in PWM Mode – Case Number 1: ESM Starts with Low-Level at  
Deglitched Input signal, and Receives Correct PWM Signal Afterwards  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
111  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
ESM_x_START  
MCU sets ESM_x_START  
x
0
1
tdegl_ESMx 15 s  
tHIGH_MAX_TH  
=
tHIGH_MAX_TH  
=
tHIGH_MAX_TH  
=
(ESM_x_HMAX [7:0] + 1) × 15 s  
(ESM_x_HMAX [7:0] + 1) × 15 s  
(ESM_x_HMAX [7:0] + 1) × 15 s  
tHIGH_MIN_TH =  
(ESM_x_HMIN [7:0] + 1)  
tHIGH_MIN_TH =  
(ESM_x_HMIN [7:0] + 1)  
× 15 s  
× 15 s  
tLOW_MAX_TH  
=
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1) × 15 s  
(ESM_x_LMAX[7:0] + 1) × 15 s  
tLOW_MIN_TH  
(ESM_x_LMIN[7:0] + 1) × 15 s  
=
tLOW_MIN_TH  
(ESM_x_LMIN[7:0] + 1) × 15 s  
=
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Stopped,  
High-Pulse Timer  
Stopped,  
High-Pulse Timer  
Stopped,  
Deglitched ESM_x  
Input Signal  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Reset and Started  
Low-Pulse Timer  
Stopped,  
Low-Pulse Timer  
Stopped,  
High-Pulse Timer  
Reset and Started  
High-Pulse Timer  
Reset and Started  
no bad event trigger as  
long as falling edge on  
ESM_x signal comes  
before elapse of  
tPWM_HIGH  
tPWM_HIGH  
tPWM_LOW  
tPWM_LOW  
1 ESM_x good-event  
1 ESM_x good-event  
tHIGH_MAX_TH  
InternalESM_x  
badeventTrigger  
InternalESM_x  
goodeventTrigger  
x
00000  
ESM_x_ERR_CNT[4:0]  
ESM_x_PIN_INT  
(ESM_x_PIN_MASK=0)  
0
nINT Pin  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK=0)  
0
ESM_x_RST_INT  
(ESM_x_RST_MASK=0)  
0
0
ENABLE_DRV  
x
1
MCU sets ENABLE_DRV (ESM_MCU, only possible if  
ESM_MCU_START=1. ESM_SOC possible if ESM_SOC_ENDRV=0  
or if ESM_SOC_ENDRV=1 and ESM_SOC_START=1)  
Case Number 2:  
PWM signal has a high level at the moment the MCU sets bit ESM_x_start, and the PMIC receives a PWM Error Signal with Correct Timing afterwards  
Figure 10-36. Example Waveform for ESM in PWM Mode – Case Number 2: ESM Starts with High-Level at  
Deglitched Input Signal, and Receives Correct PWM Signal Afterwards  
Copyright © 2021 Texas Instruments Incorporated  
112  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
MCU sets ESM_x_START  
x
0
1
ESM_x_START  
tdegl_ESMx 15 s  
tHIGH_MAX_TH =  
(ESM_x_HMAX [7:0] + 1) ×  
tHIGH_MAX_TH =  
(ESM_x_HMAX [7:0] + 1) ×  
tHIGH_MAX_TH =  
(ESM_x_HMAX [7:0] + 1) ×  
15 s  
15 s  
15 s  
tHIGH_MIN_TH =  
(ESM_x_HMIN  
tHIGH_MIN_TH =  
(ESM_x_HMIN  
tHIGH_MIN_TH =  
(ESM_x_HMIN  
[7:0] + 1) × 15 s  
[7:0] + 1) × 15 s  
[7:0] + 1) × 15 s  
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1)  
× 15 s  
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
=
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
× 15 s  
× 15 s  
× 15 s  
× 15 s  
tLOW_MIN_TH  
(ESM_x_LMIN[7:0]  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:0]  
tLOW_MIN_TH =  
(ESM_x_LMIN[7:0]  
+ 1) × 15 s  
+ 1) × 15 s  
+ 1) × 15 s  
Deglitched ESM_x  
Input Signal  
tPWM_LOW  
tPWM_LOW  
tPWM_LOW  
tPWM_HIGH  
tPWM_HIGH  
tPWM_HIGH  
1 ESM_x good event  
1 ESM_x good event  
1 ESM_x good event  
InternalESM_xbad  
eventTrigger  
InternalESM_xgood  
eventTrigger  
ESM_x_ERR_CNT[4:0]  
00010  
00001  
00000  
ESM_x_DELAY2  
00000  
ESM_x_DELAY1 and  
x
00000  
ESM_x_ERR_CNT_  
TH[3:0] = 0001  
ESM_x_DELAY1  
ESM_x_DELAY2 timers reset after  
MCU clears ESM_x_PIN_INT and  
ESM_x_FAIL_INT  
MCU clears ESM_x_PIN_INT  
ESM_x_ERR_CNT[4:0] ≤  
ESM_x_ERR_CNT_TH[3:0]  
&
ESM_x_PIN_INT  
0
1
0
&
nINT Pin  
MCU clears  
ESM_x_FAIL_INT  
1
0
0
ESM_x_FAIL_INT  
0
0
ESM_x_RST_INT  
ENABLE_DRV  
x
1
0
1
MCU sets ENABLE_DRV (ESM_MCU,  
only possible if ESM_MCU_START=1.  
ESM_SOC possible if  
MCU sets ENABLE_DRV (ESM_MCU, only possible if  
ESM_MCU_START=1. ESM_SOC possible if ESM_SOC_ENDRV=0  
or if ESM_SOC_ENDRV=1 and ESM_SOC_START=1)  
Note: PMIC clears ENABLE_DRV  
only when configuration bit  
ESM_x_ENDRV=1  
ESM_SOC_ENDRV=0 or if  
ESM_SOC_ENDRV=1 and  
ESM_SOC_START=1)  
Case Number 3: ESM_DELAY2 > 0  
PWM signal has a low level at the moment the MCU sets bit ESM_x_start, but the PMIC receives the PWM Error Signal too late. Afterwards PWM Error Signal recovers with Correct Timing and  
ESM_x_ERR_CNT[4:0] reaches a value less than the configured ESM_x_ERR_CNT_TH[3:0] before elapse of the ESM_x_DELAY2 time-interval  
Figure 10-37. Example Waveform for ESM in PWM Mode – Case Number 3: ESM Starts with Low-Level at  
Deglitched Input Signal, but Receives Too Late a Correct PWM Signal Afterwards  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
113  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Reset-Extension  
Time  
Reset-Extension Time  
nRSTOUT /  
nRSTOUT_SoC Pin  
ESM_x_START  
MCU sets  
ESM_x_START after all  
interrupt bits are cleared  
MCU sets ESM_x_START  
x
0
0
1
1
tdegl_ESMx 15 s  
tdegl_ESMx 15 s  
tHIGH_MAX_TH =  
(ESM_x_HMAX  
tHIGH_MAX_TH  
(ESM_x_HMAX  
=
tHIGH_MAX_TH  
(ESM_x_HMA(ESM_x_HMAX  
=
tHIGH_MAX_TH =  
[7:0] + 1) × 15 s  
[7:0] + 1) × 15 s  
[7:0] + 1) × 15 [7:0] + 1) × 15 s  
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
=
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
=
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
=
tHIGH_MIN_TH  
(ESM_x_  
HMIN [7:0] +  
=
1) × 15 s  
1) x 15 s  
1) x 15 s  
1) x 15 s  
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1)  
× 15 s  
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
tLOW_MAX_TH  
=
(ESM_x_LMAX[7:0] + 1)  
× 15 s  
tLOW_MAX_TH  
(ESM_x_LMAX[7:0] + 1)  
=
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0] + 1)  
tLOW_MAX_TH =  
(ESM_x_LMAX[7:0]  
+ 1) × 15 s  
× 15 s  
× 15 s  
× 15 s  
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15 s  
=
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15 s  
=
tLOW_MIN_TH  
(ESM_x_LMIN[7:  
0] + 1) × 15 s  
=
tLOW_MIN_TH =  
(ESM_x_LMIN[7:  
0] + 1) × 15 s  
Deglitched ESM_x  
Input Signal  
t
t
tPWM_HIGH  
tPWM_LOW  
tPWM_HIGH  
tPWM_LOW  
tPWM_HIGH  
tPWM_LOW  
P
W
M
_
H
I
G
H
P
W
M
_
L
O
W
1 ESM_x good event  
1 ESM_x good event  
InternalESM_xbad  
eventTrigger  
InternalESM_xgood  
eventTrigger  
ESM_x_ERR_  
CNT[4:0]  
00100  
00101  
00000  
x
00000  
00110  
00010  
ESM_x_ERR_CNT_  
TH[3:0] = 0011  
ESM_x_DELAY1 and ESM_x_DELAY2 timers  
reset when ESM_x resets the MCU or SoC  
ESM_x_DELAY1  
ESM_x_DELAY2  
MCU clears ESM_x_PIN_INT  
ESM_x_ERR_CNT[4:0] ≤  
ESM_x_ERR_CNT_TH[3:0]  
&
ESM_x_PIN_INT  
(ESM_x_PIN_MASK  
=0)  
0
1
0
&
nINT Pin  
MCU clears  
ESM_x_FAIL_INT  
ESM_x_FAIL_INT  
(ESM_x_FAIL_MASK  
=0)  
1
0
0
MCU clears  
ESM_x_RST_INT  
ESM_x_RST_INT  
(ESM_x_RST_MASK  
=0)  
0
0
0
1
ENABLE_DRV  
x
1
0
1
MCU sets ENABLE_DRV (ESM_MCU, only possible if  
ESM_MCU_START=1. ESM_SOC possible if  
ESM_SOC_ENDRV=0 or if ESM_SOC_ENDRV=1 and  
ESM_SOC_START=1)  
Note: PMIC clears ENABLE_DRV  
only when configuration bit  
ESM_x_ENDRV=1  
MCU sets ENABLE_DRV (ESM_MCU, only  
possible if ESM_MCU_START=1. ESM_SOC  
possible if ESM_SOC_ENDRV=0 or if  
ESM_SOC_ENDRV=1 and ESM_SOC_START=1)  
Case Number 4: _DELAY2 > 0  
PWM signal has an error after start-up, and the ESM_x_ERR_CNT[4:0] > ESM_x_ERR_CNT_TH[3:0] during the elapse of ESM_x_DELAY1 and ESM_x_DELAY2. Hence the PMIC  
pulls the nRSTOUT / nRSOUT_SoC pin low, and releases this pin after the reset-extension time. After this, MCU clears all errors and restarts the ESM_x  
Figure 10-38. Example Waveform for ESM in PWM Mode – Case Number 4: ESM Starts with Low-Level  
at Deglitched Input Signal and Receives a Correct PWM Signal. Afterwards the ESM Detects Bad Events,  
and the PWM Signal Recovers Too Late which Leads to an ESM ERROR Trigger in the State Machine  
Copyright © 2021 Texas Instruments Incorporated  
114  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.4 Device Functional Modes  
10.4.1 Device State Machine  
The TPS6594-Q1 device integrates a finite state machine (FSM) engine, which manages the state of the device  
during operating state transitions. It supports EEPROM configurable mission states with configurable input  
triggers for transitions between states. Any resources, including the 5 bucks, 4 LDOs, and all of the digital IO  
pins including the 11 GPIO pins on the device, can be controlled during power sequencing. When a resource is  
not controlled or configured through a power sequence, the resource is left in the default state as pre-configured  
by the NVM.  
Each resource can be pre-configured through the NVM configuration, or re-configured through register bits.  
Therefore, the user can statically control the resource through the control interfaces (I2C or SPI), or the FSM can  
automatically control the resource during state sequences.  
The FSM is powered by an internal LDO which is automatically enabled when VCCA supply is available to the  
device. Ensuring that the VCCA supply is the first supply available to the device is important to ensure proper  
operation of all the power resources as well as the control interface and device IOs.  
There are 3 parts of the FSM which control the operational modes of the TPS6594-Q1 device:  
Fixed Device Power Finite State Machine (FFSM)  
Pre-Configurable Mission Finite State Machine (PFSM)  
Error Handling Operations  
The PFSM works in complimentry to the traditional FFSM in order to draw from the strengths of both designs  
and to reduce the high cost of a completely configurable FSM. The PFSM provides configurable rail sequencing  
utilizing instructions in configuration memory. This flexibility enables customers to alter power-up sequences on a  
platform basis. The FFSM handles the majority of fixed functionality that is internally mandated and common to  
all platforms.  
10.4.1.1 Fixed Device Power FSM  
The Fixed Device Power portion of the FSM engine manages the power up of the device before the power rails  
are fully enabled and ready to power external loadings, and the power down of the device when in the event of  
insufficient power supply or device or system error conditions. While the device is in one of the Hardware Device  
Powers states, the ENABLE_DRV bit remains low.  
The definitions and transition triggers of the Device Power States are fixed and cannot be reconfigured.  
Following are the definitions of the Device Power states:  
NO SUPPLY  
The device is not powered by a valid energy source on the system power rail. The device is  
completely powered off.  
BACKUP (RTC The device is not powered by a valid supply on the system power rail (VCCA < VCCA_UVLO);  
backup  
battery)  
a backup power source, however, is present and is within the operating range of the  
LDOVRTC. The RTC clock counter remains active in this state if it has been previously  
activated by appropriate register enable bit. The calendar function of the RTC block is  
activated, but not accessible in this state. Customer has the option to enable the shelf mode  
by disconnecting the VCCA supply completely, even while the backup battery is connected  
to the VBACKUP pin. This will force the device to skip the BACKUP state and enters the  
NO SUPPLY state under VCCA_UVLO condition to reduce current draining from the backup  
battery.  
LP_STANDBY The device can enter this state from a mission state after receiving a valid OFF request or  
an I2C trigger, and the LP_STANDBY_SEL= 1. When the device is in this state, the RTC  
clock counter and the RTC Alarm or Timer Wake up functions are active if they have been  
previously activated by appropriate register enable bit. Low Power Wake-up input monitor in  
the LDOVRTC domain (LP_WKUP secondary function through GPIO3 or GPIO4) and the on  
request monitors are also enabled in this state. When a logic level transition from high-to-low  
or low-to-high with a minimum pulse length of tLP_WKUP is detected on the assigned LP_WKUP  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
115  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
pin, or if the device detects a valid on-request or a wake up signal from the RTC block, the  
device will proceed to power up the device and reach the default mission state. More details  
regarding the LP_WAKE function can be found in Section 10.4.1.2.4.5.  
INIT  
The device is powered by a valid supply on the system power rail (VCCA ≥ VCCA_UV). If  
the device was previously in LP_STANDBY state, it has received an external wake-up signal  
at the LP_WKUP1/2 pins, the RTC alarm or timer wake-up signal, or an On Request from  
the nPWRON/ENABLE pin. Device digital and monitor circuits are powered up. The PMIC  
reads its internal NVM memory in this state and configures default values to registers, IO  
configuration and FSM accordingly.  
BOOT BIST  
The device is running the built-in self test routine which includes both the LBIST and the  
ABIST/CRC. An option is available to shorten the device power up time from the NO_SUPPLY  
state by setting the NVM bit FAST_BOOT_BIST = '1' to skip the LBIST. Software can also  
set the FAST_BIST = '1' to skip LBIST after the device wakes up from the LP STANDBY  
state. When the device arrives at this state from the SAFE_RECOVERY state, LBIST is  
automatically skipped if it has not previously failed. If LBIST failed, but passed after multiple  
re-tries before exceeding the recovery counter limit, the device will be powered up normally.  
The following NVM bits are additional options which can be set to disable parts of the  
ABIST/CRC tests if further sequence time reduction is required. Note: the BIST tests are  
executed as parallel processes, and the longest process determines the total BIST duration.  
Therefore, the following options does not guarantee a certain amount of time saving from the  
total BIST duration:  
REG_CRC_EN = '0': disables the register map and SRAM CRC check  
VMON_ABIST_EN = '0': disables the ABIST for the VMON OV/UV function  
RUNTIME BIST A request was received from the MCU to exercise runtime BIST on the device. No rails  
are modified and all external signals, including all I2C or SPI interface communications, are  
ignored during BIST. If the device passed BIST, it will resume the previous operation. if the  
device failed BIST, it will shut down all of the regulator outputs and proceed to the SAFE  
RECOVERY state. In order to avoid a register CRC error, all register writes must be avoided  
after the request for the BIST operation until an interrupt is asserted to indicate the completion  
of BIST. The results of the BIST are indicated by the BIST_PASS_INT or the BIST_FAIL_INT  
bits.  
SAFE  
RECOVERY  
The device meets the qualified error condition for immediate or ordered shutdown request.  
If the error is recovered within the recovery time interval or meets the restart condition, the  
device will increment the recovery count, and return to INIT state if the recovery count does  
not exceeded the threshold of the counter. If the recovery count exceeded the threshold or if  
the error cannot be recovered, such as the die temperature cannot be reduced to < TWARN  
,
or if VCCA stays above OVP threshold, the device will stay in SAFE RECOVERY state until  
supply power cycle occurs.  
When multiple system conditions occur simultaneously which demands power state arbitration, the device will go  
to the higher priority state according to the following priority order:  
1. NO SUPPLY  
2. BACKUP  
3. SAFE_RECOVERY  
4. LP_STANDBY  
5. MISSION STATES  
Figure 10-39 shows the power transition states of the FSM engine.  
Copyright © 2021 Texas Instruments Incorporated  
116  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
NO  
SUPPLY  
LDOVRTC UVLO Condition or  
Shelf Mode enabled  
VCCA < VCCA_UVLO  
BACKUP  
All States  
Except NO SUPPLY  
VCCA > VCCA_UV  
LP STANDBY  
VCCA > VCCA_UV  
LP_STANDBY_SEL = 1 and  
no valid WAKE request1  
Valid WAKE Request1  
INIT  
INIT done and  
no error detected and  
no residual voltage detected  
Error recovered or  
meets restart condition  
Off request and  
LP_STANDBY_SEL = 1  
All States  
Recovery  
counter exceeded  
Thermal Shutdown or  
VCCA OVP  
Error Conditions  
(recovery cnt +1)  
SAFE  
RECOVERY  
BOOT  
BIST  
BOOT BIST error  
(recovery cnt +1)  
Orderly shutdown  
Condition  
(recovery cnt +1)  
BOOT BIST success  
Severe or Moderate  
PFSM Errors  
(recovery cnt +1)  
Mission States  
RUNTIME BIST request  
RUNTIME BIST complete  
RUNTIME  
BIST  
1 A valid WAKE request consist of:  
ñ nPWRON/ENABLE on request detection if the device arrived the LP_STANDBY state through  
the long key-press of the nPWRON pin or by disabling the ENABLE pin, or  
ñ RTC Alarm, RTC Timer, LP_WKUP1 or LP_WKUP2 detection if the device arrived the  
LP_STANDBY state through writing to a TRIGGER_I2C_0 bit.  
Figure 10-39. State Diagram for Device Power States  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
117  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.4.1.1.1 Register Resets and EEPROM read at INIT state  
When the device transitions from the LP_STANDBY or the SAFE_RECOVERY to the INIT state, the registers  
are reset and EEPROM is read based on FIRST_STARTUP_DONE bit. When the FIRST_STARTUP_DONE is  
'0', registers which are not in the RTC domain are reset, and all of the EEPROM registers, including the ones in  
the RTC domains, will be loaded from the EEPROM. Once the FIRST_STARTUP_DONE bit is set to '1', typically  
after the initial power up from a supply power cycle, the registers in the RTC domain will not be reset, and the  
EEPROM registers in the RTC comain will no longer be loaded from the EEPROM. This prevents the control and  
status bits stored in the RTC domain registers from being over written.  
Table 10-11. Register resets and EEPROM read at INIT state  
FIRST  
_STARTUP_DONE  
EEPROM Registers in  
RTC Domain  
Non-EEPROM Registers in  
RTC Domain  
Other Non-EEPROM  
Registers  
Other EEPROM Registers  
Defaults read from  
EEPROM  
Reset and defaults read  
from EEPROM  
0
1
No changes  
No changes  
Reset  
Reset  
Reset and defaults read  
from EEPROM  
No changes  
Below are the EEPROM register bits in the RTC domain:  
GPIO3_CONF and GPIO4_CONF registers, except the GPIOn_DEGLITCH_EN bits  
GPIO3_RISE_MASK, GPIO3_FALL_MASK, GPIO4_RISE_MASK, and GPIO4_FALL_MASK bits  
NPWRON_CONF register except ENALBE_DEGLITCH_EN and NRSTOUT_OD bits  
FSD_MASK, ENABLE_MASK, NPWRON, START_MASK, and NPWRON_LONG_MASK bits  
STARTUP_DEST, FAST_BIST, LP_STANDBY_SEL, XTAL_SEL, and XTAL_EN bits  
PFSM_DELAYn, and RTC_SPARE_n bits  
Below are the non-EEPROM register bits in the RTC domain:  
FIRST_STARTUP_DONE bit  
SCRATCH_PAD_n bits  
All of RTC control and configuration registers  
10.4.1.2 Pre-Configurable Mission States  
When the device arrives at a mission state, all rail sequencing is controlled by the pre-configurable FSM engine  
(PFSM) through the configuration memory. The configuration memory allows configurations of the triggers and  
the operation states which together form the configurable sub state machine within the scope of mission states.  
This sub state machine could be used to control and sequence the different voltage outputs as well as any  
GPIO outputs that can be used as enable for external rails. When the device is in a mission state, it has the  
capacity to supply the processor and other platform modules depending on the power rail configuration. The  
definitions and transition triggers of the mission states are configurable through the NVM configuration. Unlike  
the user registers, the PFSM defintion stored in the NVM cannot be modified during normal operation. When the  
PMIC determines that a transition to another operation state is necessary, it will read the configuration memory  
to determine what sequencing is needed for the state transition.  
Table 10-15 shows how the trigger signals for each state transition can come from a variety of interface or GPIO  
inputs, or potential error sources. Figure 10-40 shows how the device processes all of the possible error sources  
inside the PFSM engine, a hierarchical mask system is applied to filter out the common errors which can be  
handled by interrupt only, and categorize the other error sources as Severe Global Error, Moderate Global Error,  
and so forth. The filtered and categorized triggers are sent into the PFSM engine, which then determines the  
entry and exit condition for each configured mission state.  
Copyright © 2021 Texas Instruments Incorporated  
118  
Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
All Potential Error (Interrupt) Sources  
INTERRUPT  
is given  
First level mask to filter out non-error interrupts vs. interrupts which require error handling  
External Voltage Monitors  
(for pre-regulator or external  
power rails)  
VCCA BUCK1 BUCK2 BUCK3 BUCK4 BUCK5 LDO1  
LDO2  
LDO3  
LDO4  
Recovery Counter Limit to FSM  
OR  
function  
WD error N or Long Window to FSM  
Severe Global  
Error  
MCU Rail Group  
SoC Rail Group  
Other Rail Group  
WD error M (M>N) to FSM  
SoC Error Monitor to FSM  
MCU Error Monitor to FSM  
Mask  
Moderate Global  
Error  
IMMEDIATE  
SHUTDOWN trigger  
input to FSM  
Immediate Shutdown Trigger Mask  
Orderly Shutdown Trigger Mask  
MCU Power Error Trigger Mask  
SoC Power Error Trigger Mask  
ORDERLY  
SHUTDOWN trigger  
input to FSM  
MCU Power  
Error Signal  
SoC Power  
Error Signal  
Figure 10-40. Error Source Hierarchical Mask System  
Figure 10-42 shows an example of how the PFSM engine utilizes instructions to execute the configured device  
state and sequence transitions of the mission state-machine. Table 10-12 provides the instruction set and usage  
description of each instruction in the following sections. Section 10.4.1.2.2 describes how the instructions are  
stored in the NVM memory.  
Table 10-12. Configurable FSM Instruction set  
Command Opcode  
"0000"  
Command  
REG_WRITE_MASK_PAGE0_IMM  
REG_WRITE_IMM  
Command Description  
Write the specified data, except the masked bits, to the specified  
page 0 register address.  
"0001"  
Write the specified data to the specified register address.  
Write the specified data, except the masked bits, to the specified  
register address.  
"0010"  
REG_WRITE_MASK_IMM  
Write the target voltage of a specified regulator after a specified  
delay.  
"0011"  
"0100"  
"0101"  
"0110"  
REG_WRITE_VOUT_IMM  
REG_WRITE_VCTRL_IMM  
REG_WRITE_MASK_SREG  
SREG_READ_REG  
Write the operation mode of a specified regulator after a specified  
delay.  
Write the data from a scratch register, except the masked bits, to  
the specified register address.  
Write scratch register (REG0-3) with data from a specified  
address.  
Execution is paused until the specified type of the condition is met  
or timed out.  
"0111"  
"1000"  
"1001"  
WAIT  
DELAY_IMM  
DELAY_SREG  
Delay the execution by a specified time.  
Delay the execution by a time value stored in the specified scratch  
register.  
Set a trigger destination address for a given input signal or  
condition.  
"1010"  
TRIG_SET  
"1011"  
"1100"  
TRIG_MASK  
END  
Sets a trigger mask that determines which triggers are active.  
Mark the final instruction in a sequential task.  
Write the specified data to the BIT_SEL location of the specified  
page 0 register address.  
"1101"  
"1110"  
REG_WRITE_BIT_PAGE0_IMM  
REG_WRITE_WIN_PAGE0_IMM  
Write the specified data to the SHIFT location of the specified  
page 0 register address.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
119  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-12. Configurable FSM Instruction set (continued)  
Command Opcode  
Command  
Command Description  
"1111"  
SREG_WRITE_IMM  
Write the specified data to the scratch register (REG0-3).  
10.4.1.2.1 PFSM Commands  
Following section describes each PFSM command in detail and provides example usage codes. More  
information on example NVM configuration, available device options and documentations can be found at Fully  
Customizable Integrated Power.  
10.4.1.2.1.1 REG_WRITE_IMM Command  
Description: Write the specified data to the specified register address  
Assembly command: REG_WRITE_IMM [ADDR=]<Address> [DATA=]<Data>  
Address and Data can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=' and 'DATA=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_IMM 0x1D 0x55 — Write value 0x55 to address 0x1D  
REG_WRITE_IMM ADDR=0x10 DATA=0xFF — Write value 0xFF to address 0x10  
REG_WRITE_IMM DATA=0xFF ADDR=0x10 — Write value 0xFF to address 0x10  
10.4.1.2.1.2 REG_WRITE_MASK_IMM Command  
Description: Write the specified data, except the masked bits, to the specified register address  
Assembly command: REG_WRITE_MASK_IMM [ADDR=]<Address> [DATA=]<Data> [MASK=]<Mask>  
Address, Data, and Mask can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', and 'MASK=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_MASK_IMM 0x1D 0x80 0xF0 — Write 0b1000 to the upper 4 bits of the register at address  
0x1D  
REG_WRITE_MASK_IMM ADDR=0x10 DATA=0x0F MASK=0xF0 — Write 0b1111 to the lower 4 bits of the  
register at address 0x10  
REG_WRITE_MASK_IMM DATA=0x0F MASK=0xF0 ADDR=0x10 — Write 0b1111 to the lower 4 bits of the  
register at address 0x10  
10.4.1.2.1.3 REG_WRITE_MASK_PAGE0_IMM Command  
Description: Write the specified data, except the masked bits, to the specified page 0 register address  
Assembly  
command:  
REG_WRITE_MASK_PAGE0_IMM  
[ADDR=]<Address>  
[DATA=]<Data>  
[MASK=]<Mask>  
Address, Data, and Mask can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', and 'MASK=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_MASK_PAGE0_IMM 0x1D 0x80 0xF0 — Write 0b1000 to the upper 4 bits of the register at  
address 0x1D  
REG_WRITE_MASK_PAGE0_IMM ADDR=0x10 DATA=0x0F MASK=0xF0 — Write 0b1111 to the lower 4  
bits of the register at address 0x10  
REG_WRITE_MASK_PAGE0_IMM DATA=0x0F MASK=0xF0 ADDR=0x10 — Write 0b1111 to the lower 4  
bits of the register at address 0x10  
10.4.1.2.1.4 REG_WRITE_BIT_PAGE0_IMM Command  
Description: Write the specified data to the BIT_SEL location of the specified page 0 register address  
Copyright © 2021 Texas Instruments Incorporated  
120 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Assembly command: REG_WRITE_BIT_PAGE0_IMM [ADDR=]<Address> [BIT=]<Bit> [DATA=]<Data>  
Address, Bit, and Data can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'BIT=', and 'DATA=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_BIT_PAGE0_IMM 0x1D 7 0 — Write '0' to bit 7 of the register at address 0x1D  
REG_WRITE_BIT_PAGE0_IMM ADDR=0x10 BIT=3 DATA=1 — Write 0b1 to bit 3 of the register at address  
0x10  
10.4.1.2.1.5 REG_WRITE_WIN_PAGE0_IMM Command  
Description: Write the specified data to the SHIFT location of the specified page 0 register address  
Assembly command: REG_WRITE_WIN_PAGE0_IMM [ADDR=]<Address> [DATA=]<Data> [MASK=]<Mask>  
[SHIFT=]<Shift>  
Address, Data, Mask, and Shift can be in any literal integer format (decimal, hex, and so forth).  
'ADDR=', 'DATA=', 'MASK=', and 'SHIFT=' are optional. When included, the parameters can be in any order.  
Examples:  
REG_WRITE_WIN_PAGE0_IMM ADDR=0x1D DATA=0x8 MASK=0x13 SHIFT=2 — Write bits 5:4 to 0b10  
to the register at address 0x1D. Data and mask give 5-bit value 0bx10xx. This is then left shifted 2 bits to give  
full byte value of 0bxx10xxxx, hence sets bits 5:4 to 0b10.  
10.4.1.2.1.6 REG_WRITE_VOUT_IMM Command  
Description: Write the target voltage of a specified regulator after a specified delay. This is a spin-off of the  
REG_WRITE_IMM command with the intention to save instruction bits.  
Assembly  
command:  
REG_WRITE_VOUT_IMM  
[REGULATOR=]<Regulator  
ID>  
[SEL=]<VSEL>  
[VOUT=]<Vout> [DELAY=]<Delay>  
'REGULATOR=', ''SEL=', 'VOUT=', and 'DELAY=' are options. When included, the parameters can be in any  
order.  
Regulator ID = BUCK1, BUCK2, BUCK3, BUCK4, BUCK5, LDO1, LDO2, LDO3, or LDO4.  
VSEL selects the BUCKn_VSET1 or BUCKn_VSET2 bits which the command will write to if Regulator ID is  
BUCK1-5. It is defined as: '0': BUCKn_VSET1, '1': BUCKn_VSET2, '2': Currently Active BUCKn_VSET, '3':  
Currently Inactive BUCKn_VSET. If Regulator ID is LDO1-4, VSEL value is ignored.  
VOUT = output voltage in mV or V. Unit must be listed.  
DELAY = delay time in ns, µs, ms, or s. If there are no units, it must be an integer value between 0-63, which will  
become the threshold count for the counter running a step size specified in the register PFSM_DELAY_STEP.  
Delay value will be rounded to the nearest achievable delay time based on the current step size. Current step  
size will default to the NVM setting or a SET_DELAY value from a previous command in the same sequence.  
Assembler will report an error if the step size is too large or too small to meet the delay.  
Examples:  
REG_WRITE_VOUT_IMM BUCK3 2 1.05 V 100 µs — Sets BUCK3 to 1.05 V by updating the active  
BUCK3_VSET register after 100 µs  
REG_WRITE_VOUT_IMM REGULATOR=LDO1 SEL=0 VOUT=700 mV DELAY=6 ms — Sets LDO1 to 700  
mV after 6 ms.  
10.4.1.2.1.7 REG_WRITE_VCTRL_IMM Command  
Description: Write the operation mode of a specified regulator after a specified delay. This is a spin-off of the  
REG_WRITE_IMM command with the intention to save instruction bits.  
Assembly command: REG_WRITE_VCTRL_IMM [REGULATOR=]<Regulator ID> [VCTRL=]<VCTRL>  
[MASK=]<Mask> [DELAY=]<Delay> [DELAY_MODE=]<Delay Mode>  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 121  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
'REGULATOR=', 'VCTRL=', 'MASK=', and 'DELAY=' are options. When included, the parameters can be in any  
order.  
Regulator ID = BUCK1, BUCK2, BUCK3, BUCK4, BUCK5, LDO1, LDO2, LDO3, or LDO4.  
VCTRL = 0-15, in hex, decimal, or binary format. Data to write to the following regulator control fields: BUCKs:  
BUCKn_PLDN, BUCKn_VMON_EN, BUCKn_VSEL, BUCKn_FPWM_MP, BUCKn_FPWM, and BUCKn_EN.  
LDOs: LDOn_PLDN, LDOn_VMON_EN, 0, 0, LDOn_EN.  
DELAY = delay time in ns, µs, ms, or s. If there is no units, it must be an integer value between 0-63, which will  
become the threshold count for the counter running a step size specified in the register PFSM_DELAY_STEP.  
Delay value will be rounded to the nearest achievable delay time based on the current step size. Current step  
size will default to the NVM setting or a SET_DELAY value from a previous command in the same sequence.  
Assembler will report an error if the step size is too large or too small to meet the delay.  
Delay Mode must be one of the below options: MATCH_EN = 0 (Delay if VCTRL enable bit mismatches)  
MATCH_ALL = 1 (Delay if any VCTRL bits mismatch) ALWAYS = 2 (Delay always)  
Examples:  
REG_WRITE_VCTRL_IMM BUCK3 0x00 0xE0 100 µs — Sets BUCK3 to OFF (VCTRL bits = 0b00000)  
after 100 µs  
REG_WRITE_VCTRL_IMM REGULATOR=LDO1 VCTRL=0x09 MASK=0x36 DELAY=10 ms — Set  
LDO1_VMON and LDO1_EN to '1' after 10 ms  
10.4.1.2.1.8 REG_WRITE_MASK_SREG Command  
Description: Write the data from a scratch register, except the masked bits, to the specified register address  
Assembly command: REG_WRITE_MASK_SREG [REG=]<Scratch Register> [ADDR=]<Address>  
[MASK=]<Mask>  
'REG=', 'ADDR=', and 'MASK=' are options. When included, the parameters can be in any order.  
Scratch Register can be R0, R1, R2, or R3.  
Address and Mask can be in any literal integer format (decimal, hex, and so forth).  
Examples:  
REG_WRITE_MASK_SREG R2 0x22 0x00 — Write the content of scratch register 2 to address 0x22  
REG_WRITE_MASK_SREG REG=R0 ADDR=0x054 MASK=0xF0 — Write the lower 4 bits of scratch  
register 0 to address 0x54  
10.4.1.2.1.9 SREG_READ_REG Command  
Description: Write scratch register (REG0-3) with data from a specified address  
Assembly command: SREG_READ_REG [REG=]<Scratch Register> [ADDR=]<Address>  
'REG=' and 'ADDR=' are options. When included, the parameters can be in any order.  
Scratch Register can be R0, R1, R2, or R3.  
Address can be in any literal integer format (decimal, hex, and so forth).  
Examples:  
SREG_READ_REG R2 0x15 — Read the content of address 0x15 and write the data to scratch register 2  
SREG_READ_REG ADDR=0x077 REG=R3 — Read the content of address 0x77 and write the data to  
scratch register 3  
10.4.1.2.1.10 SREG_WRITE_IMM Command  
Description: Write the specified data to the scratch register (REG0-3)  
Assembly command: SREG_WRITE_IMM [REG=]<Register> [DATA=]<Data>  
Data can be in any literal integer format (decimal, hex, and so forth).  
Copyright © 2021 Texas Instruments Incorporated  
122 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Register can be R0, R1, R2, or R3.  
'REG=' and 'DATA=' are options. When included, the parameters can be in any order.  
Examples:  
SREG_WRITE_IMM R2 0x15 — Write 0x15 to scratch register 2  
SREG_WRITE_IMM ADDR=0x077 REG=R3 — Read 0x77 to scratch register 3  
10.4.1.2.1.11 WAIT Command  
Description: Wait upon a condition of a given type. Execution is paused until the specified type of the condition is  
met or timed out  
Assembly  
command:  
WAIT  
[COND=]<Condition>  
[TYPE=]<Type>  
[TIMEOUT=]<Timeout>  
[DEST=]<Destination>  
Alternative assembly command: JUMP [DEST=]<Destination>  
'COND=', 'TYPE=', 'TIMEOUT=', and 'DEST=' are options. When included, the parameters can be in any order.  
Condition are listed in Table 10-13. Examples: GPIO1, BUCK1_PG, I2C_1  
Type = LOW, HIGH, RISE, or FALL  
Timeout = timeout value in ns, µs, ms, or s. If there is no units, it must be an integer value between 0-63.  
Timeout value will be rounded to the nearest achievable time based on the current step size. Current step  
size will default to the NVM setting or a SET_DELAY value from a previous command in the same sequence.  
Assembler will report an error if the step size is too large or too small to meet the delay.  
Destination = Label to jump to if when timeout occurs. Destination must be after the WAIT statement in memory.  
Memory space can be either '0' or '1'. '0' indicates the destination address is in the PFSM memory space. '1'  
indicates the destination address is external and represents a FSM state ID.  
When using the jump command, this will be an unconditional jump. The command will be compiled as "WAIT  
COND=63 TYPE=LOW TIMEOUT=0 DEST=<Destination>". Condition 63 is a hardcoded 1, so the condition is  
never satisfied and will always timeout. Therefore the command will always jump to the destination.  
Examples:  
WAIT GPIO4 RISE 1 s <Destination> 0 — Wait to execute the command at the specified SRAM address  
when a rise edge is detected at GPIO4, or after 1 second  
WAIT COND=BUCK1_PG TYPE=HIGH TIMEOUT=500 µs DEST=<mcu2act_seq> — Wait to execute the  
commands at <mcu2act_seq> address as soon as BUCK1 output is within power_good range, or after 500  
µs  
Table 10-13. WAIT Command Conditions  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
0
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
BUCK1_PG  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
LDO1_PG  
LDO2_PG  
LDO3_PG  
LDO4_PG  
PGOOD  
TWARN_EVENT  
INTERRUPT_PIN  
N/A  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
I2C_0  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
LP_STANDBY_SEL  
1
I2C_1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
2
I2C_2  
3
I2C_3  
4
I2C_4  
5
I2C_5  
6
I2C_6  
7
I2C_7  
8
N/A  
SREG0_0  
SREG0_1  
SREG0_2  
SREG0_3  
9
N/A  
10  
11  
N/A  
N/A  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 123  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-13. WAIT Command Conditions (continued)  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
COND_ Condition Name  
SEL  
12  
13  
14  
15  
BUCK2_PG  
BUCK3_PG  
BUCK4_PG  
BUCK5_PG  
28  
29  
30  
31  
N/A  
N/A  
N/A  
N/A  
44  
45  
46  
47  
SREG0_4  
SREG0_5  
SREG0_6  
SREG0_7  
60  
N/A  
N/A  
0
61  
62  
63  
1
10.4.1.2.1.12 DELAY_IMM Command  
Description: Delay the execution by a specified time  
Assembly command: DELAY_IMM <Delay>  
Delay = delay time in ns, µs, ms, or s. If there is no units, it must be an integer value between 0-63. Delay value  
will be rounded to the nearest achievable time based on the current step size. Current step size will default to the  
NVM setting or a SET_DELAY value from a previous command in the same sequence. Assembler will report an  
error if the step size is too large or too small to meet the delay.  
Examples:  
DELAY_IMM 100 µs — Delay execution by 100 µs  
DELAY_IMM 10 ms — Delay execution by 10 ms  
DELAY_IMM 8 — Delay execution by 8 ticks of the current PFSM time step  
10.4.1.2.1.13 DELAY_SREG Command  
Description: Delay the execution by a time value stored in the specified scratch register.  
Assembly command: DELAY_SREG <Register>  
Register can be R0, R1, R2, or R3.  
Examples:  
DELAY_SREG R0 — Delay execution by the time value stored in scratch register0  
10.4.1.2.1.14 TRIG_SET Command  
Description: Set a trigger destination address for a given input signal or condition. These commands must be  
defined at the beginning of PFSM configuration memory.  
Assembly  
command:  
TRIG_SET  
[DEST=]<Destination>  
[ID=]<Trig_ID>  
[SEL=]<Trig_sel>  
[TYPE=]<Trig_type> [IMM=]<IMM> [EXT=]<Memory space>  
'DEST=', 'ID=', 'SEL='. 'TYPE=', 'IMM=', and 'EXT=' are options. When included, the parameters can be in any  
order.  
Destination is the label where this trigger should start executing.  
Trig_ID is the ID of the hardware trigger module to be configured (value range 0-27). They must be defined in  
numeric order based on the priority of the trigger.  
Trig_Sel is the 'Trigger Name' from the Table 10-15. This is the trigger signal to be associated with the specified  
TRIG_ID.  
Trig_type = LOW, HIGH, RISE, or FALL.  
IMM can be either '0' or '1'. = '0' if the trigger is not activated until the END command of a given task; '1' if the  
trigger is activated immediately and can abort a sequence.  
REENTRANT can be either '0' or '1'. '1' permits a trigger to return to the current state, which allows a self-  
branching trigger to execute the current sequence again.  
Memory space can be either '0' or '1'. '0' indicates the destination address is in the PFSM memory space. '1'  
indicates the destination address is external and represents a FSM state ID.  
Copyright © 2021 Texas Instruments Incorporated  
124 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Examples:  
TRIG_SET seq1 20 GPIO_1 LOW 0 0 — Set trigger 20 to be GPIO_1=Low, not immediate. When triggered,  
start executing at ‘seq1’ label.  
TRIG_SET DEST=seq2 ID=15 SEL=WD_ERROR TYPE=RISE IMM=0 EXT=0 — Set trigger 15 to be rising  
WD_ERROR trigger, not immediate. When triggered, start executing at ‘seq2’ label.  
10.4.1.2.1.15 TRIG_MASK Command  
Description: Sets a trigger mask that determines which triggers are active. Setting a ‘0’ enables the trigger,  
setting a ‘1’ disables (masks) the trigger.  
Assembly command: TRIG_MASK <Mask value>  
Mask Value = 28-bit mask in any literal integer format (decimal, hex, and so forth).  
Examples:  
TRIG_MASK 0x5FF82F0 — Set the trigger mask to 0x5FF82F0  
10.4.1.2.1.16 END Command  
Table 10-14 shows the format of the END commands.  
Table 10-14. END Command Format  
Bit[3:0]  
CMD  
4 bits  
Description: Marks the final instruction in a sequential task  
Fields:  
CMD: Command opcode (0xC)  
Assembly command: END  
10.4.1.2.2 Configuration Memory Organization and Sequence Execution  
The configuration memory is loaded from EEPROM into an SRAM. Figure 10-41 shows an example  
configuration memory with only two configured sequences.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 125  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
pfsm_start:  
TRIG_SET DEST=sequence_name1 ID=0 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name2 ID=1 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name3 ID=2 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name4 ID=4 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
TRIG_SET DEST=sequence_name5 ID=4 SEL=trigger_name TYPE=high/low/rise/fall IMM=0/1 EXT=0/1  
……  
TRIG_MASK 0xFFFFFF0  
END  
sequence_name1  
These TRIG_SET instructions are used to  
define the trigger types which initiates each  
power state sequence. There are a total of  
28 TRIG_SET available for each PMIC. TYPE  
parameter defines the type of trigger as:  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
DELAY_IMM delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
TRIG_MASK 0xFC00EDF  
END  
……  
sequence_name4  
High: active high (level sensitive)  
Low: active low (level sensitive)  
Rise: active high (edge sensitive)  
Fall: active low (edge sensitive)  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
DELAY_IMM delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
DELAY_IMM delay_time  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
REG_WRITE_VCTRL_IMM REGULATOR=regulator VCTRL=ctrl_setting MASK=mask_setting DELAY=delay_time  
REG_WRITE_MASK_IMM ADDR=register_addr DATA=data MASK=mask_setting  
TRIG_MASK 0xFEF6EDC  
END  
Figure 10-41. Configuration Memory Script Example  
As soon as the PMIC state reaches the mission states, it will start reading from the configuration memory until  
it hits the first END command. Setting up the triggers (1-28) should be the first section of the configuration  
memory, as well as the first set of trigger configurations. The trigger configurations are read and mapped to  
an internal lookup table, which contains the starting address associated with each trigger in the configuration  
memory. If the trigger destination is an FFSM state then the address contains the fixed state value. After the  
trigger configurations are read and mapped into the SRAM, these triggers control the execution flow of the state  
transitions. The signal source of each trigger is listed under Table 10-15.  
When a trigger or multiple triggers are activated, the PFSM execution engine looks up the starting address  
associated with the highest priority trigger which is unmasked, and starts executing commands until it hits an  
END command. The last commands before END statement will generally be the TRIG_MASK command, which  
directs the PFSM to a new set of unmasked trigger configurations, and the trigger with the highest priority in the  
new set will be serviced next. Trigger priority is determined by the Trigger ID associated with each trigger. The  
priority of the trigger decreases as the associated trigger ID increases. As a result the critical error triggers are  
usually located at the lowest trigger IDs.  
The TRIG_SET commands specify if a trigger is immediate or non-immediate. Immediate triggers are serviced  
immediately, which involves branching from the current sequence of commands to reach a new target  
destination. The non-immediate triggers are accumulated and serviced in the order of priority through the  
execution of each given sequence until the END command in reached. Therefore the trigger ID assignment for  
each trigger can be arranged to produce the desired PFSM behavior.  
The TRIG_MASK command determines which triggers are active at the end of each sequence, and is usually  
placed just before the END instruction. The TRIG_MASK takes a 28 bit input to allow any combination of  
triggers to be enabled with a single command. Through the definition of the active triggers after each seqeunce  
execution the TRIG_MASK command can be conceptualized as establishing a power state.  
Copyright © 2021 Texas Instruments Incorporated  
126 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
The above sequence of waiting for triggers and executing the sequence associated with an activated trigger  
is the normal operating condition of the PFSM execution engine when the PMIC is in the MISSION state. The  
FFSM state machine will take over control from the execution engine any time an event occurs that requires a  
transition from the MISSION state of the PMIC to a fixed device state.  
Table 10-15. PFSM Trigger Selections  
Trigger Name  
Trigger Source  
An error event causes one of the triggers defined in the FSM_TRIG_SEL_1/2 register to activate, and  
the inteded action for the activated trigger is to immediate shutdown the device  
IMMEDIATE_SHUTDOWN  
MCU_POWER_ERROR  
ORDERLY_SHUTDOWN  
Output failure detection from a regulator which is assigned to the MCU rail group (x_GRP_SEL = '01')  
An event which causes MODERATE_ERR_INT = '1'  
nPWRON long-press event when NPOWRON_SEL = '01', or ENABLE = '0' when NPOWERON_SEL =  
'00'  
FORCE_STANDBY  
SPMI_WD_BIST_DONE  
ESM_MCU_ERROR  
WD_ERROR  
Completion of SPMI WatchDog BIST  
An event which causes ESM_MCU_FAIL_INT  
An event which causes WD_INT  
SOC_POWER_ERROR  
ESM_SOC_ERROR  
Output failure detection from a regulator which is assigned to the SOC rail group (x_GRP_SEL = '10')  
An event which causes ESM_SOC_FAIL_INT  
NSLEEP2 and NSLEEP1 = '11'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under Section 10.4.1.2.4.3  
A
WKUP1  
A rising or falling edge detection on a GPIO pin which is configured as WKUP1 or LP_WKUP1  
A valid On-Request detection when STARTUP_DEST = '11'  
SU_ACTIVE  
NSLEEP2 and NSLEEP1 = '10'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under Section 10.4.1.2.4.3  
B
WKUP2  
A rising or falling edge detection on a GPIO pin which is configured as WKUP2 or LP_WKUP2  
A valid On-Request detection when STARTUP_DEST = '10'  
SU_MCU_ONLY  
NSLEEP2 and NSLEEP1 = '01', More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under Section 10.4.1.2.4.3  
C
D
NSLEEP2 and NSLEEP1 = '00'. More information regarding the NSLEEP1 and NSLEEP2 functions  
can be found under Section 10.4.1.2.4.3  
SU_STANDBY  
SU_X  
A valid On-Request detection when STARTUP_DEST = '00'  
A valid On-Request detection when STARTUP_DEST = '01'  
PFSM WAIT command condition timed out. More information regarding the WAIT command can be  
found under Section 10.4.1.2.1.11  
WAIT_TIMEOUT  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
I2C_0  
Input detection at GPIO1 pin  
Input detection at GPIO2 pin  
Input detection at GPIO3 pin  
Input detection at GPIO4 pin  
Input detection at GPIO5 pin  
Input detection at GPIO6 pin  
Input detection at GPIO7 pin  
Input detection at GPIO8 pin  
Input detection at GPIO9 pin  
Input detection at GPIO10 pin  
Input detection at GPIO11 pin  
Input detection of TRIGGER_I2C_0 bit  
Input detection of TRIGGER_I2C_1 bit  
Input detection of TRIGGER_I2C_2 bit  
Input detection of TRIGGER_I2C_3 bit  
Input detection of TRIGGER_I2C_4 bit  
Input detection of TRIGGER_I2C_5 bit  
I2C_1  
I2C_2  
I2C_3  
I2C_4  
I2C_5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 127  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-15. PFSM Trigger Selections (continued)  
Trigger Name  
Trigger Source  
I2C_6  
Input detection of TRIGGER_I2C_6 bit  
Input detection of TRIGGER_I2C_7 bit  
I2C_7  
SREG0_0  
SREG0_1  
SREG0_2  
SREG0_3  
SREG0_4  
SREG0_5  
SREG0_6  
SREG0_7  
0
Input detection of SCRATCH_PAD_REG_0 bit 0  
Input detection of SCRATCH_PAD_REG_0 bit 1  
Input detection of SCRATCH_PAD_REG_0 bit 2  
Input detection of SCRATCH_PAD_REG_0 bit 3  
Input detection of SCRATCH_PAD_REG_0 bit 4  
Input detection of SCRATCH_PAD_REG_0 bit 5  
Input detection of SCRATCH_PAD_REG_0 bit 6  
Input detection of SCRATCH_PAD_REG_0 bit 7  
Always '0'  
1
Always '1'  
10.4.1.2.3 Mission State Configuration  
The Mission States portion of the FSM engine manages the sequencing of power rails and external outputs in  
the user defined states. The rest of Section 10.4.1 will use Figure 10-42 as an example state machine which is  
defined through the configuration memory using the configuration FSM instructions.  
To LP_STANDBY  
To Safe Recovery  
State  
State  
Severe or  
Moderate PFSM  
Errors  
From any  
Operation States  
LP_STAND  
=1  
BY_SEL  
Immediate or Orderly  
Shutdown Condition  
Detected  
Valid On Request and  
STANDBY  
STARTUP_DEST[1:0] = 0x00  
Valid On Request and  
OFF request  
STARTUP_DEST[1:0] = 0x03  
Warm Reset triggered by  
ESM or WDOG error  
Valid On Request and  
STARTUP_DEST[1:0] = 0x02  
OFF request  
ACTIVE  
OFF request  
WKUP1 0W1 or  
NSLEEP1  
NSLEEP2&NSLEEP1  
11W10  
0W1  
NSLEEP2  
1:0  
WKUP1 0W 1 or  
NSLEEP2&NSLEEP1  
00W11  
MCU ONLY  
WKUP2 0W 1 or  
NSLEEP2&NSLEEP1  
00W10  
NSLEEP2  
1:0  
Warm Reset triggered by  
ESM or WDOG error  
DEEP SLEEP  
/S2R  
Figure 10-42. Example of a Mission State-Machine  
Copyright © 2021 Texas Instruments Incorporated  
128 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Each power state (light blue bubbles in Figure 10-42) defines the ON or OFF state and the sequencing timing  
of the external regulators and GPIO outputs. This example defines 4 power states: STANDBY, ACTIVE, MCU  
ONLY, and DEEP_SLEEP/S2R states. The priority order of these states will be the following:  
1. ACTIVE  
2. MCU ONLY  
3. DEEP SLEEP/S2R  
4. STANDBY  
The transitions between each power state is determined by the trigger signals source pre-selected from Table  
10-15. These triggers are then placed in the order of priority through the trigger ID assignment of each trigger  
source. The critical error triggers are placed first, some specified as immediate triggers that can interrupt an  
on-going sequence. The non-error triggers, which are used to enable state transtions during normal device  
operation, are then placed according to the priority order of the state the device is transitioning to. Table 10-16  
list the trigger signal sources, in the order of priority, used to define the power states and transitions of the  
example mission state machine shown in Figure 10-42. This table also helps to determine which triggers should  
be masked by the TRIG_MASK command upon arriving a pre-defined power state to produce the desired PFSM  
behavior.  
Table 10-16. List of Trigger Used in Example Mission State Machine  
Trigger ID  
Trigger Masked In Each User Defined Power State  
Trigger Signal  
State Transitions  
DEEP  
SLEEP / S2R  
STANDBY  
ACTIVE  
MCU ONLY  
0
1
2
3
IMMEDIATE_SHUTDOWN (1)  
MCU_POWER_ERROR (1)  
ORDERLY_SHUTDOWN (1)  
TRIGGER_FORCE_STANDBY  
From any state to SAFE  
RECOVERY  
From any state to SAFE  
RECOVERY  
From any state to SAFE  
RECOVERY  
From any state  
to STANDBY or  
LP_STANDBY  
Masked  
Masked  
Masked  
4
5
6
WD_ERROR  
Perform warm reset of all  
power rails and return to  
ACTIVE  
Masked  
Masked  
Masked  
Masked  
ESM_MCU_ERROR  
ESM_SOC_ERROR  
Perform warm reset of all  
power rails and return to  
ACTIVE  
Perform warm reset of  
power rails in SOC  
domain and return to  
ACTIVE  
Masked  
Masked  
Masked  
7
8
WD_ERROR  
Perform warm reset of all  
power rails and return to  
MCU ONLY  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
ESM_MCU_ERROR  
Perform warm reset of all  
power rails and return to  
MCU ONLY  
9
SOC_POWER_ERROR  
ACTIVE to MCU ONLY  
Start RUNTIME_BIST  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
10  
11  
TRIGGER _I2C_1 (self-cleared)  
TRIGGER_I2C_2 (self-cleared)  
Enable I2C CRC  
Function  
Masked  
Masked  
Masked  
12  
13  
14  
TRIGGER_SU_ACTIVE  
TRIGGER_WKUP1  
STANDBY to ACTIVE  
Any State to ACTIVE  
TRIGGER_A (NSLEEP2&NSLEEP1 MCU ONLY or DEEP  
= '11')  
Masked  
SLEEP/S2R to ACTIVE  
15  
TRIGGER_SU_MCU_ONLY  
STANDBY to MCU ONLY  
Masked  
Masked  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 129  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-16. List of Trigger Used in Example Mission State Machine (continued)  
Trigger ID  
Trigger Masked In Each User Defined Power State  
Trigger Signal  
State Transitions  
DEEP  
SLEEP / S2R  
STANDBY  
ACTIVE  
MCU ONLY  
16  
17  
18  
TRIGGER_WKUP2  
STANDBY or DEEP  
SLEEP/S2R to MCU  
ONLY  
Masked  
TRIGGER_B (NSLEEP2&NSLEEP1 ACTIVE or DEEP  
= '10')  
SLEEP/S2R to MCU  
ONLY  
Masked  
TRIGGER_D or TRIGGER_C  
(NSLEEP2 = '0' )  
ACTIVE or MCU ONLY  
to DEEP SLEEP/S2R  
Masked  
Masked  
Mask  
Masked  
Masked  
Masked  
19  
20  
TRIGGER_I2C_0 (self-cleared)  
Always '1' (2)  
Any state to STANDBY  
STANDBY to SAFE  
RECOVERY  
Masked  
Masked  
21  
22  
23  
24  
25  
26  
27  
Not Used  
Mask  
Mask  
Mask  
Mask  
Mask  
Mask  
Mask  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
0xFF01270  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
Masked  
0xFFC9FF0  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
Not Used  
28-bit TRIG_MASK Value in Hex format: 0xFFE4FF8 0xFF18180  
(1) This is an immediate trigger.  
(2) When an error occurs, which requires the device to enter directly to the SAFE RECOVERY state, the mask for this trigger must be  
removed while all other non-immediate triggers are masked. The device will leave mission states and the FFSM state machine will take  
over control of the device power states once this trigger is executed.  
10.4.1.2.4 Pre-Configured Hardware Transitions  
There are some pre-defined trigger sources, such as on-requests and off-requests, which are constructed with  
the combination of hardware input signals and register bits settings. This section provides more detail to these  
pre-defined trigger sources and shows how they can be utilized in the PFSM configuration to initiate state to  
state transitions.  
10.4.1.2.4.1 ON Requests  
ON requests are used to switch on the device, which transitions the device from the STANDBY or the  
LP_STANDBY to the state specified by STARTUP_DEST[1:0].  
After the device arrives at the corresponding STARTUP_DEST[1:0] operation state, the MCU must setup the  
NSLEEP1 and NSLEEP2 signals accordingly before clearing the STARTUP_INT interrupt. Once the interrupt is  
cleared, the device will stay or move to the next state corresponding to the NSLEEP signals state assignment as  
specified in Table 10-20.  
Table 10-17 lists the available ON requests.  
Table 10-17. ON Requests  
EVENT  
MASKABLE  
COMMENT  
Edge sensitive  
Level sensitive  
DEBOUNCE  
50 ms  
nPWRON (pin)  
ENABLE (pin)  
Yes  
Yes  
8 µs  
VCCA > VCCA_UV and FSD  
unmasked  
First Supply Detection (FSD)  
Yes  
N/A  
RTC ALARM Interrupt  
RTC TIMER Interrupt  
Yes  
Yes  
Yes  
N/A  
N/A  
8 µs  
WKUP1 or WKUP2 Detection  
Edge sensitive  
Copyright © 2021 Texas Instruments Incorporated  
130 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-17. ON Requests (continued)  
EVENT  
MASKABLE  
COMMENT  
DEBOUNCE  
LP_WKUP1 or LP_WKUP2  
Detection  
Yes  
Edge sensitive  
N/A  
Recover from system errors  
which caused immediate or  
orderly shut down of the  
device  
Recovery from Immediate and  
Orderly Shutdown  
Yes  
N/A  
If one of the events listed in Table 10-17 occurs, then the event powers on the device unless one of the gating  
conditions listed in Table 10-18 is present.  
Table 10-18. ON Requests Gating Conditions  
EVENT  
MASKABLE  
COMMENT  
VCCA_SENSE > VCCA_OVP, VSYS_DEAD_LOCK_EN = 1  
VCCA < VCCA_UVLO  
VCCA_OVP (event)  
VCCA_UVLO (event)  
VINT_OVP (event)  
VINT_UVLO (event)  
No  
No  
No  
No  
LDOVINT > 1.98 V  
LDOVINT < 1.62 V  
Device stays in SAFE RECOVERY until temperature decreases  
below TWARN level  
TSD (event)  
No  
The NPWRON_SEL NVM register bit determines whether the nPWRON/ENABLE pin should be treated as a  
power on press button or a level sensitive enable switch. When this pin is configured as the nPWRON button, a  
short button press detection will be latched internally as a device enable signal until the NPWRON_START_INT  
is cleared, or a long press key event is detected. The short button press detection occurs when an falling edge is  
detected at the nPWRON pin. When the NPWRON_START_MASK bit is set to '1', the device will no longer react  
to the changing state of the pin as the nPWRON press button.  
The nPWRON/ENABLE pin is a level sensitive pin when it is configured as an ENABLE pin, and an assertion will  
enable the device until the pin is released. When the ENABLE_MASK bit is set to '1', the device will no longer  
react to the changing state of the pin as the ENALBE switch.  
10.4.1.2.4.2 OFF Requests  
An OFF request is used to orderly switch off the device. OFF requests initiate transition from any other mission  
state to the STANDBY state or the LP_STANDBY state depending on the setting of the LP_STANDBY_SEL bit.  
Table 10-19 lists the conditions to generate the OFF requests and the corresponding destination state.  
Table 10-19. OFF Requests  
LP_STANDBY_SEL BIT  
EVENT  
DEBOUNCE  
DESTINATION STATE  
SETTING  
LP_STANDBY_SEL = 0  
LP_STANDBY_SEL = 1  
LP_STANDBY_SEL = 0  
LP_STANDBY_SEL = 1  
LP_STANDBY_SEL = 0  
LP_STANDBY_SEL = 1  
STANDBY  
LP_STANDBY  
STANDBY  
nPWRON (pin)  
(long press key event)  
8 s  
ENABLE (pin)  
8 µs  
NA  
LP_STANDBY  
STANDBY  
I2C_TRIGGER_0  
LP_STANDBY  
The long press key event occurs when the nPWRON pin stays low for longer than tLPK_TIME while the device is in  
a mission state.  
When the nPWRON or ENABLE pin is used as the OFF request, the device must wake up from the STANDBY  
or the LP_STANDBY state through the ON request initiated by the same pin. The NPWRON_START_MASK or  
the ENABLE_MASK must remain low in this case to allow the detection of the ON request initiated by the pin.  
If the device should enter the LP_STANDBY state through the OFF request, it is important that the state of the  
nPWRON or ENABLE pin must remain the same until the state transition is completed. Failure to do so may  
result in unsuccessful wake up from the LP_STANDBY state when the pin re-initiates On request.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 131  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Using the I2C_TRIGGER_0 bit as the OFF request will enable the device to wake up from the STANDBY or  
the LP_STANDBY states through the detection of LP_WKUPn/WKUPn pins, as well as RTC alarm or timer  
interrupts. To enable this feature, the device must set the I2C_TRIGGER_0 bit to '1' while the NSLEEPn signals  
are masked, and the ON request (initialized by the nPWRON or ENABLE pins) must remain active.  
10.4.1.2.4.3 NSLEEP1 and NSLEEP2 Functions  
The SLEEP requests are activated through the assertion of nSLEEP1 or nSLEEP2 pins, which are the  
secondary functions of the 11 GPIO pins and can be selected through GPIO configuration using the GPIOx_SEL  
register bits. If the nSLEEP1 or nSLEEP2 pins are not available, the NSLEEP1B and NSLEEP2B register bits  
can be configured in place for their functions. The input of nSLEEP1 pin and the state of the NSLEEP1B register  
bit are combined to create the NSLEEP1 signal through an OR function. Similarly for the input of the nSLEEP2  
pin and the NSLEEP2B register bit as they are combined to create the NSLEEP2 signal.  
A 1 → 0 logic level transition of the NSLEEP signal generates a sleep request, while a 0 → 1 logic level  
transition reverses the sleep request in the example PFSM from Figure 10-42. When a NSLEEPn signal  
transitions from 1 → 0, it generates a sleep request to go from a higher power state to a lower power state.  
When the signal transitions from 0 → 1, it reverses the sleep request and returns the device to the higher power  
state.  
The NSLEEPn_MASK bit can be used to mask the sleep request associated with the corresponding NSLEEPn  
signal. When the NSLEEPn_MASK = 1, the corresponding NSLEEPn signal will be ignored. Table 10-20shows  
how the combination of the NSLEEPn signals and NSLEEPn_MASK bits creates triggers A/B/C/D to the FSM to  
control the power state of the device.  
The states of the resources during ACTIVE, SLEEP, and DEEP SLEEP/S2R states are defined in the  
LDOn_CTRL and BUCKn_CTRL registers. For each resource, a transition to the MCU ONLY or the DEEP  
SLEEP/S2R states is controlled by the FSM when the resource is associated to the SLEEP or DEEP  
SLEEP/S2R states.  
Table 10-20 shows the corresponding state assignment based on the state of the NSLEEPn and their  
corresponding mask signals using the example PFSM from Figure 10-42.  
Table 10-20. NSLEEPn Transitions and Mission State Assignments  
Current State  
NSLEEP1  
NSLEEP2  
NSLEEP1 MASK NSLEEP2 MASK  
Trigger to FSM  
TRIGGER B  
TRIGGER A  
TRIGGER A  
Next State  
MCU ONLY  
ACTIVE  
DEEP SLEEP/S2R  
DEEP SLEEP/S2R  
DEEP SLEEP/S2R  
0
0 → 1  
0
0
1
0
0
0
0
1
0 → 1  
0 → 1  
Don't care  
0 → 1  
0 → 1  
ACTIVE  
DEEP SLEEP/S2R  
or MCU ONLY  
Don't care  
TRIGGER A  
TRIGGER A  
TRIGGER D  
ACTIVE  
ACTIVE  
MCU ONLY  
MCU ONLY  
0 → 1  
0
1
0
0
0
0
1 → 0  
DEEP SLEEP  
or S2R  
MCU ONLY  
Don't care  
1 → 0  
1
0
DEEP SLEEP  
or S2R  
TRIGGER D  
TRIGGER B  
TRIGGER D  
ACTIVE  
ACTIVE  
1 → 0  
1 → 0  
1
0
0
0
0
MCU ONLY  
1 → 0  
DEEP SLEEP  
or S2R  
ACTIVE  
ACTIVE  
Don't care  
1 → 0  
1 → 0  
1
0
0
1
DEEP SLEEP  
or S2R  
TRIGGER D  
TRIGGER B  
Don't care  
MCU ONLY  
10.4.1.2.4.4 WKUP1 and WKUP2 Functions  
The WKUP1 and WKUP2 functions are activated through the edge detection on all GPIO pins. Any one of these  
GPIO pins when configured as an input pin can be configured to wake up the device by setting GPIOn_SEL  
bit to select the WKUP1 or WKUP2 functions. In the example PFSM depicted in Figure 10-42, when a GPIO  
pin is configured as a WKUP1 pin, a rising or falling edge detected at the input of this pin (configurable by the  
Copyright © 2021 Texas Instruments Incorporated  
132 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
GPIOn_FALL_MASK and the GPIOn_RISE_MASK bits) will wake up the device to the ACTIVE state. Likewise  
if a GPIO pin is configured as a WKUP2 pin, a detected edge will wake up the device to the MCU ONLY state.  
If multiple edge detections of WKUP signals occur simultaneous, the device will go to the state in the following  
priority order:  
1. ACTIVE  
2. MCU ONLY  
When a valid edge is detected at a WKUP pin, an interrupt will be generated by the nINT pin to signal the MCU  
of the wake-up event, and the GPIOx_INT interrupt bit will be set. The wake request will remain active until the  
GPIOx_INT bit is cleared by the MCU. While the wake request is executing, the device will ignore any sleep  
request to go to a lower power state until the corresponding GPIOx_INT interrupt bit is cleared to deactivate the  
wake request. After the wake request is deactivated, the device will return to the state indicated by the NSLEEP1  
and NSLEEP2 signals as shown in Table 10-20.  
10.4.1.2.4.5 LP_WKUP Pins for Waking Up from LP STANDBY  
The LP_WKUP functions are activated through the edge detection of LP_WKUP pins, configurable as secondary  
functions of GPIO3 and GPIO4. They are specially designed to wake the device up from the LP STANDBY state  
when a high speed wake up signal is detected. Similar to the WKUP1 and WKUP2 pins, when GPIO3 or GPIO4  
pin is configured as an LP_WKUP1 pin, a rising or falling edge detected at the input of this pin (configurable  
by the GPIOn_FALL_MASK and the GPIOn_RISE_MASK bits) will wake up the device to the ACTIVE state.  
Likewise, if the pin is configured as an LP_WKUP2 pin, a detected edge will wake up the device to the MCU  
ONLY state. If multiple edge detections of LP_WKUP signals occur simultaneously, the device will go to the state  
in the following priority order:  
1. ACTIVE  
2. MCU ONLY  
Note  
Due to a digital control errata in the device, the ENABLE_MASK/NPWRON_START_MASK bit much  
be set to '1' before the device enters LP_STANDBY state in order for the LP_WKUP2 pin to correctly  
wake up the device to the MCU_ONLY state.  
The TPS6594-Q1 device supports limited CAN wake-up capability through the LP_WKUP1/2 pins. When an  
input signal (without deglitch) with logic level transition from high-to-low or low-to-high with a minimum pulse  
width of tWK_PW_MIN is detected on the assigned LP_WKUP1/2 pins, the device will wake up asynchronously and  
execute the power up sequence. CAN-transceiver RXD- or INH-outputs can be connected to the LP_WKUP pin.  
If RXD-output is used, it is assumed that the transceiver RXD-pin IO is powered by the transceiver itself from an  
external supply when TPS6594-Q1 is in the LP_STANDBY state. If INH-signal is used it has to be scaled down  
to the recommenced GPIO input voltage level specified in the electrical characteristics table.  
In this PFSM example, the device can wake up from the LP_STANDBY state through the detection of LP_WKUP  
pins only if it enters the LP_STANDBY state through the TRIGGER_I2C_0 OFF request while the NSLEEPn  
signals are masked, and the on request initialized by the nPWRON/ENABLE pin remains active. Once a valid  
wake-up signal is detected at the LP_WKUP pin, it is handled as a WAKE request. An interrupt will be generated  
by the nINT pin to signal the MCU of the wake-up event, and the corresponding GPIOx_INT interrupt bit will be  
set. The wake request will remain active until the interrupt bit is cleared by the MCU. Table 10-20 shows how  
the device will return to the state indicated by the NSLEEP1 and NSLEEP2 signals after the wake request is  
deactivated.  
Figure 10-43 illustrates the valid wake-up signal at the LP_WKUP1/2 pins, and the generation and clearing of the  
internal wake-up signal.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 133  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
> tWK_PW_MIN  
High Pulse Input at LP_WKUP pin  
(GPIO3 or GPIO4)  
(e.g. INH-signal)  
Wake Signal Latched  
on rising edge  
MCU clears the  
Wake interrupt  
> tWK_PW_MIN  
Low Pulse Input at LP_WKUP pin  
(GPIO3 or GPIO4)  
(e.g. RXD-signal)  
Wake Signal Latched  
on falling edge  
MCU clears the  
Wake interrupt  
Figure 10-43. CAN Wake-Up Timing Diagram  
10.4.1.3 Error Handling Operations  
The FSM engine of the TPS6594-Q1 device is designed to handle the following types of errors throughout the  
operation:  
Power Rail Output Error  
Boot BIST Error  
Runtime BIST Error  
Catastrophic Error  
Watchdog Error  
Error Signal Monitor (ESM) Error  
Warnings  
10.4.1.3.1 Power Rail Output Error  
A power rail output error occurs when an error condition is detected from the output rails of the device, which are  
used to power the attached MCU or SoC. These errors include the following:  
Rails not reaching or maintaining within the power good voltage level threshold.  
A short condition that is detected at a regulator output.  
The load current that exceedes the forward current limit.  
The BUCKn_GRP_SEL, LDOn_GRP_SEL, and VCCA_GRP_SEL registers are used to configure the rail group  
for all of the Bucks, LDOs, and the voltage monitors, which are available for external rails. The selectable rail  
groups are MCU rail group, SoC rail group, or other rail group. The TPS6594-Q1 device is designed to react  
differently when an error is detected from a power resource assigned to the different rail groups.  
Figure 10-40 shows how the SOC_RAIL_TRIG[1:0], MCU_RAIL_TRIG[1:0], and OTHER_RAIL_TRIG[1:0]  
registers are used as the Immediate Shutdown Trigger Mask, Orderly Shutdown Trigger Mask, MCU Power  
Error Trigger Mask, or the SoC Power Error Trigger Mask. The settings of these register bits determine the error  
handling sequence which the assigned groups of rails should take in an event of an output error. The PFSM  
engine can be configured to execute the appropriate error handling sequence for the following error handling  
sequence options: immediate shutdown, orderly shutdown, MCU power error, or SOC power error. For example,  
if an immediate shutdown sequence is assigned to the MCU rail group through the MCU_RAIL_TRIG[1:0],  
any failure detected in this group of rails will cause the IMMEDIATE_SHUTDOWN trigger to be executed.  
This trigger is expected to start the immediate shutdown sequence and cause the device to enter the SAFE  
RECOVERY state. The device will immediately reset the attached MCU and SoC by de-asserting the nRSTOUT  
and nRSTOUT_SoC (GPO1) pins. All of the power resources assigned to the MCU and SOC will shutdown  
immediately without a sequencing order. The nINT pin will signal a MCU_PWR_ERR_INT interrupt event has  
occurred and the EN_DRV pin will be forced low. If the error is recoverable within the recovery time interval,  
the device will increment the recovery count, return to INIT state, and reattempt the power up sequence (if  
the recovery count has not exceeded the counter threshold). If the recovery count has already exceeded the  
Copyright © 2021 Texas Instruments Incorporated  
134 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
threshold, the device will stay in the SAFE RECOVERY state until VCCA voltage is below the VCCA_UVLO  
threshold and the device is power cycled.  
The power resources assigned to the SoC rail group are typically assigned to the SOC power error handling  
sequence. In this PFSM example depicted in Figure 10-42, when a power resource in this group is detected,  
the PFSM will typically cause the device to execute the shutdown of all the resources assigned to the SoC  
rail group, and the device will enter the MCU ONLY state. The device will immediately reset the attached SoC  
by toggling the nRSTOUT_SoC (GPO1) pin. The reset output to the MCU and the resources assigned to the  
MCU rail group will remain unchanged. The EN_DRV pin will also remain unchanged, and the nINT pin will  
signal that an SOC_PWR_ERR_INT interrupt event has occurred. To recover from the MCU_ONLY state after  
a SOC power error, the MCU software must set NSLEEP1 signal to '0' while NSLEEP2 signal remains '1'. This  
action signals TPS6594-Q1 that MCU has acknowleged the SOC power error, and is ready to return to normal  
operation. MCU can then set the NSLEEP1 signal back to '1' for the device to return to ACTIVE state and  
reattempt the SoC power up. Refer to Section 10.4.1.2.4.3 for information regarding the setting of the NSLEEP1  
and NSLEEP2 signals.  
10.4.1.3.2 Boot BIST Error  
Boot BIST error occurs when the device is not able to pass the BOOT BIST during device power up. Every  
failure of the BOOT BIST attempt will cause the recovery count to increment as the device enters the SAFE  
RECOVERY state. If the count value is smaller than the counter threshold, the device will attempt to enter the  
INIT state again and reattempt the BOOT BIST until the recovery count reaches the maximum threshold. When  
this occurs the device will stay in the SAFE RECOVERY state until VCCA voltage is below the VCCA_UVLO  
threshold and the device is power cycled.  
10.4.1.3.3 Runtime BIST Error  
Runtime BIST error occurs when the device is not able to pass the Runtime BIST while the device is in an  
operation state. This error creates an immediate shutdown condition, which will cause the device to execute the  
immediate shutdown sequence and enter the SAFE RECOVERY state. The device will immediately reset the  
attached MCU and SoC by de-asserting the nRSTOUT and nRSTOUT_SoC (GPO1 or GPIO11)) pins. All of the  
power resources assigned to the MCU and SOC will be immediately shutdown. The EN_DRV pin will be forced  
low, and the nINT pin will be de-asserted to signal an interrupt event has occurred.  
10.4.1.3.4 Catastrophic Error  
Catastrophic errors are errors that affect multiple power resources such as errors detected in supply voltage,  
LDOVINT supply for control logic, clocks monitors, and device temperature passing the thermal shutdown  
threshold, or error detected in the SPMI communication network. These errors are grouped as the severe errors.  
By setting the SEVERE_ERR_TRIG[1:0] to create an immediate or orderly shutdown condition, the PFSM will  
execute the corresponding sequence for the IMMEDIATE_SHUTDOWN trigger or the ORDERLY_SHUTDOWN  
trigger and enter the SAFE RECOVERY state. The device will reset the attached MCU and SoC by de-asserting  
the nRSTOUT and nRSTOUT_SoC (GPO1 or GPIO11) pins. All of the power resources assigned to the MCU  
and SOC will be shutdown. The nINT pin will be de-asserting to signal an interrupt event has occurred, and the  
EN_DRV pin will be forced low.  
10.4.1.3.5 Watchdog (WDOG) Error  
Section 10.3.11 describes details about the Watchdog (WDOG) errors detection mechanisms.  
10.4.1.3.6 Error Signal Monitor (ESM) Error  
There are two Error Signal Monitors (ESM) available for the TPS6594-Q1 device, one designed to detect and  
handle the error signals received from the attached SoC, while the other one for the attached MCU. Section  
10.3.12 describes the error detection mechanisms for both monitors in detail.  
10.4.1.3.7 Warnings  
Warning are non-catastrophic errors. When such an error occurs while the device is in the operating states, the  
device detects the error and handles the error through the interrupt handler. These are errors such as thermal  
warnings, I2C, or SPI communication errors, or power resource over current limit detection while the output  
voltage still maintains within the power good threshold. When these errors occur, the PFSM will pull the nINT pin  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 135  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
low to signal an interrupt event has occurred. The device will remain in the operation state and no changes will  
be applied to the state of the EN_DRV pin, the power resources, nor the reset outputs.  
10.4.1.4 Device Startup Timing  
Figure 10-44 shows the timing diagram of the TPS6594-Q1 after the first supply detection.  
~2V  
VSYS_SENSE  
tVSYSOVP_INIT  
OVPGDRV  
VCCA  
VCCA_UVLO  
tINIT_REF_CLK_LDO  
Reference Block &  
System Clock Ready  
VINT & VRTC  
tINIT_NVM_ANALOG  
NVM  
Initialization  
tBOOT_BIST  
Boot BIST  
Completion  
Valid On Request  
Power Sequence Time  
Power Up Rail  
Sequencing  
Reset delay  
nRSTOUT  
NO SUPPLY  
INIT  
BOOT BIST  
STANDBY  
ACTIVE  
Figure 10-44. Device Startup Timing Diagram  
tVSYSOVP_INIT is the time between VSYS detection and when the VSYS Over Voltage Protection Module is in  
operation and the external protection FET connects the VSYS_SENSE to VCCA and the PVINx pins.  
tINIT_REFCLK_LDO is the start up time for the reference block. tINIT_NVM_ANALOG is the time for the device to load  
the default values of the NVM configurable registers from the NVM memory, and the start up time for the analog  
circuits in the device. tINIT_REFCLK_LDO and tINIT_NVM_ANALOG are defined in the electrical characteristics table.  
tBOOT_BIST is the sum of tABISTrun and tLBISTrun, which are defined in the electrical characterization tables.  
The Power Sequence time is the total time for the device to complete the power up sequence. Please refer to  
Section 10.4.1.5 for more details.  
The reset delay time is a configurable wait time for the nRSTOUT and the nRSTOUT_SoC release after the  
power up sequence is completed.  
10.4.1.5 Power Sequences  
A power sequence is an automatic preconfigured sequence the TPS6594-Q1 device applies to its resources,  
which include the states of the BUCKs, LDOs, 32-kHz clock, and the GPIO output signals. For a detailed  
description of the GPIOs signals, please refer to Section 10.3.7.  
Copyright © 2021 Texas Instruments Incorporated  
136 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Figure 10-45 shows an example of a power up transition followed by a power down transition. The power up  
sequence is triggered through a valid on request, and the power down sequence is trigger by a valid off request.  
The resources controlled (for this example) are: BUCK3, LDO1, BUCK2, LDO2, GPIO1, LDO4, and LDO3. The  
time between each resource enable and disable (TinstX) is also part of the preconfigured sequence definition.  
When a resource is not assigned to any power sequence, it remains in off mode. The MCU can enable and  
configure this resource independently when the power sequence completes.  
Power Up Sequence  
Power Down Sequence  
Valid On  
Request  
X
X
Valid Off  
Request  
X
X
BUCK3  
LDO1  
t(inst16)  
t(inst1)  
t(inst15)  
t(inst14)  
t(inst2)  
BUCK2  
t(inst3)  
t(inst4)  
t(inst5)  
t(inst6)  
LDO2  
REGEN1  
LDO4  
t(inst13)  
t(inst12)  
t(inst11)  
LDO3  
t(inst7)  
t(inst8)  
t(inst10)  
t(inst9)  
GPIO7  
nRSTOUT/  
nRSTOUT_SoC  
Figure 10-45. Power Sequence Example  
As the power sequences of the TPS6594-Q1 device are defined according to the processor requirements, the  
total time for the completion of the power sequence will vary across various system definitions.  
10.4.1.6 First Supply Detection  
The TPS6594-Q1 device can be configured to automatically start up from a first supply-detection (FSD)  
event detection. This feature is enabled by setting the FSD_MASK register bit to '0', and setting the  
NPWRON_SEL[1:0] registers bits to '10' or '11' to mask the functionality of the nPWRON/ENABLE pin. When the  
device is powered up from the NO SUPPLY state, the FSD detection is validated after the NVM default for this  
feature is loaded into the device memory.  
When the FSD feature is enabled, the PMIC immediately powers up from the NO SUPPLY state to an operation  
state, configured by the STARTUP_DEST[1:0] bits when VCCA > VCCA_UV, while VCCA_UV gating is  
performed, and only when VCCA voltage monitoring is enabled (VCCA_VMON_EN = 1). After the device arrives  
the corresponding STARTUP_DEST[1:0] operation state, the MCU must setup the NSLEEP1 and NSLEEP2  
signals accordingly before clearing the FSD_INT interrupt. Once the interrupt is cleared, the device will stay or  
move to the destination state according to the state of the NSLEEP1/2 signals as specified in Table 10-20.  
10.4.1.7 Register Power Domains and Reset Levels  
The TPS6594-Q1 registers are defined by the following categories:  
LDOVINT registers  
LDOVRTC registers  
LDOVINT The LDOVINT registers are powered by the internal LDOVINT, and retain their values until the  
registers  
device enters the LP_STANDBY state or the BACKUP state after the device was fully powered  
up and in operation. When this occurs, LDOVINT is powered off, and the content of all LDOVINT  
registers will be lost (including the VSET registers), which stores the default output voltage levels  
for all of the external power rails. As the device re-enters the INIT state from a wake up signal or  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 137  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
an On-request, the registers powered by the LDOVINT will be re-written with the default values. All  
registers in the device, except the LDOVRTC registers, are powered by LDOVINT.  
LDOVRTC The LDOVRTC registers retains their values until a Power-On-Reset (POR) occurs. POR occurs  
registers  
when the device loses supply power and enters the NO SUPPLY state. When this occurs,  
LDOVRTC is powered off, and the content of all LDOVRTC registers will be lost.  
Following are the LDOVRTC registers:  
All RTC registers  
RTC and Crystal Oscillator bits  
Status registers for the following events: TSD and RTC reset  
Control registers for PWRON/ENABLE, GPIO3, and GPIO4 pins (for wake signal monitor  
during LP_STANDBY state)  
Following interrupt registers:  
– FSD_INT  
– RECOV_CNT_INT  
– TSD_ORD_INT  
– TSD_IMM_INT  
– PFSM_ERR_INT  
– VCCA_OVP_INT  
– ESM_MCU_RST_INT  
– ESM_SOC_RST_INT  
– WD_RST_INT  
– WD_LONGWIN_TIMEOUT_INT  
– NPWRON_LONG_INT  
10.4.2 Multi-PMIC Synchronization  
A multi-PMIC synchronization scheme is implemented in the TPS6594-Q1 device to synchronize the power  
state changes with other PMIC devices. This feature consolidates and simplifies the IO control signals required  
between the application processor or the microcontroller and multiple PMICs in the system. The control interface  
consists of an SPMI protocol which communicates the next power state information from the primary TPS6594-  
Q1 device to up to 5 secondary PMICs, and receives feedback signal from the secondary PMICs to indicate any  
error condition. Figure 10-46 is the block diagram of the power state synchronization scheme. The TPS6594-Q1  
is represented as the primary PMIC in this block diagram, which is responsible for broadcasting the synchronous  
system power state data, and processing the error feedback signals from the secondary PMICs. It is the primary  
device in the SPMI interface bus.  
Copyright © 2021 Texas Instruments Incorporated  
138 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Synchronous-System Power-State Data  
Error Feedback  
Primary PMIC  
Secondary PMIC  
Secondary PMIC  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Sequencing and Power  
State Configurations in  
Nonvolatile Memory  
Power-State  
Sequencer  
Controller  
Power-State  
Sequencer  
Controller  
Power-State  
Sequencer Controller  
Power supply  
configuration  
STATE  
1
Exit Condition 1  
Signal list  
Internal condition list  
Error Conditions  
Timeout on PGOOD  
Thermal  
Power supply  
configuration  
Power supply  
configuration  
Current  
Voltage  
STATE  
1
Exit Condition  
Signal list  
Internal condition list  
1
STATE  
1
Exit Condition 1  
Signal list  
Internal condition list  
STATE_1  
Error Conditions  
Timeout on PGOOD  
Thermal  
Error Conditions  
Timeout on PGOOD  
Thermal  
...  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
Current  
Voltage  
Current  
Voltage  
STATE_1  
STATE_1  
Effective  
...  
...  
Effective  
power  
state  
Effective  
power  
state  
OFF  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
1
2
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE_2  
OFF  
OFF  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE  
2
Exit Condition  
Signal list  
Internal condition list  
STATE_2  
STATE_2  
power  
state  
ERROR  
(SAFE STATE)  
ERROR  
(SAFE STATE)  
ERROR  
(SAFE STATE)  
STATE_3  
Controller for  
Output Power  
Supply Rails  
STATE_3  
STATE_3  
Controller for  
Output Power  
Supply Rails  
Controller for  
Output Power  
Supply Rails  
STATE_N  
STATE_N  
STATE_N  
Power  
supply  
error  
Power  
supply  
error  
Power  
supply  
error  
Signal Arbitration  
Logic  
ENABLE or WAKE  
signals from  
external hardware  
Power-State Control  
Signals such as:  
ACTIVE, SLEEP, RESET,  
ERROR, TRACKING  
Scalable Microprocessor and System on Chip  
Figure 10-46. Multi-PMIC Power State Synchronization Block Diagram  
In this scheme each primary and secondary PMIC runs on its own system clock, and maintains its own I2C  
register set. Each PMIC will monitor its own activities and pull down the open-drain output of nINT or PGOOD  
pin when errors are detected. The microprocessor will need to read the status bits on each PMIC device to find  
out the source of error being reported.  
To synchronize the timing when entering and exiting from the LP_STANDBY state, the VOUT_LDOVINT of  
the TPS6594-Q1 device must be connected to the ENABLE input of the secondary PMICs, which are the  
slave devices in the SPMI interface bus. Figure 10-47 illustrates the pin connections between the primary, the  
secondary, and the application processor or the System-on-Chip.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 139  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
VIO  
Secondary PMIC  
I2C_SCL  
I2C_SDA  
SDATA  
SCLK  
Interrupt  
Handler  
Power  
Sequencer  
nINT  
Power Good  
Monitor  
ENABLE  
PGOOD  
Secondary PMIC  
I2C_SCL  
I2C_SDA  
SDATA  
SCLK  
Power  
nINT  
Sequencer  
µProcessor  
&
PGOOD  
ENABLE  
System  
on  
Primary PMIC  
Chip  
I2C1_SCL  
I2C1_SDA  
VOUT_LDOVINT  
nPWRON/ENABLE  
nINT  
nERRORx  
nSLEEPx  
Power  
Sequencer  
GPIO  
nRSTOUTx  
WAKEn  
PG  
SCLK  
SDATA  
I2C2_SCL  
I2C2_SDA  
Q&A  
WDOG  
Figure 10-47. Multi-PIMC Pin Connections  
The power sequencer of the multiple PMICs are synchronized at the beginning of each power up and power  
down sequence; a variation in the sequence timing, however, is still possible due to the ±5% clock accuracy of  
the independent system clocks on the primary and secondary PMICs. The worst case sequence timing variation  
from different PMIC rails is up to ±10% of the target delay time. Figure 10-48 illustrates the creation of this timing  
variation between PMICs.  
Primary PMIC  
System clock  
(+/-5% accuracy)  
...  
...  
Primary PMIC  
Rail X  
Sequence delay between rails in Primary PMIC  
Primary PMIC  
Rail Y  
Secondary PMIC  
System clock  
(+/-5% accuracy)  
...  
...  
Sequence delay between rails in secondary PMIC  
Secondary PMIC  
Rail Z  
Sequencing timing variation between PMIC rails  
Figure 10-48. Multi-PMIC Rail Sequencing Timing Variation  
Copyright © 2021 Texas Instruments Incorporated  
140 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.4.2.1 SPMI Interface System Setup  
An SPMI interface in the TPS6594-Q1 device is utilized to communicate the power state transition across  
multiple PMICs in the system. The interface block contains an SPMI master block and an SPMI slave block.  
There is only one SPMI master device in any given system. The TPS6594-Q1 device is generally the SPMI  
master in the system with master and slave blocks enabled. As the SPMI master it initiates SPMI interface BIST  
and executes periodic checking of the SPMI bus health.  
The SPMI master ID (MID) of the TPS6594-Q1 device is 1. TPS6594-Q1 will also contain a logical SPMI slave  
interface in order to receive SPMI communications from the SPMI slave devices. The TPS6594-Q1 as the SPMI  
master device will contain the slave (SID) = 0101.  
All of the slave devices on this SPMI network will only have the slave interface enabled. There cannot be more  
than 5 slave devices in the system. The SIDs for the five slave devices are:  
1st slave device: 0011  
2nd slave device: 1100  
3rd slave device: 1001  
4th slave device: 0110  
5th slave device: 1010  
All devices in the SPMI network will listen to Group Slave ID (GSID): 1111. This address is used to communicate  
all power state transition information in broadcast mode to all connected devices in parallel.  
10.4.2.2 Transmission Protocol and CRC  
The communication between the devices on the network utilizes Extended Register Write command to GSID  
address 1111 with byte length of 2. Sequence format complies with MIPI SPMI 2.0 specification. First data frame  
carries the data payload of 5 bits and 3 filler bits.  
Communication over the SPMI interface may contain information regarding the power state transition or the  
unique SID of one or more slave devices. In the case of power state information, the data payload contains 5 bits  
of Trigger ID information and 3 trigger state bits. In the case of SID information, all 8 bits contain the SID of the  
slave device.  
Second data frame carries 8 bits of CRC information. CRC polynomial used is X8 + X2 + X + 1. CRC is  
calculated over the SPMI command frame, the address frame, and the first data frame (which contains the  
payload and excludes the parity bits in these three frames).  
Figure 10-49 shows the data format of the SPMI Extended Register Write Command.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 141  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
SCLK  
SDATA  
SA3  
SA2  
SA1  
SA0  
0
0
0
0
BC3  
BC2  
BC1  
BC0  
P
Extended register-write command frame  
SSC  
SCLK  
SDATA  
P
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
P
Register address (data frame) for first register  
SCLK  
SDATA  
P
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
First data frame  
... Intermediate Data Frames ...  
SCLK  
SDATA  
P
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
P
0
Last data frame  
Bus park ACK or Bus park  
NAK  
Signal driven by BOM or request-capable slave device  
(SCLK always driven by BOM only)  
Signal not driven; pulldown only.  
Response by slave devices  
For reference only  
Figure 10-49. SPMI Extended Register Write Command  
10.4.2.3 SPMI Slave Communication to SPMI Master  
An SPMI slave device communicates to the SPMI master device and any other SPMI slave devices, only if  
there is an internal error, which is not SPMI related. The slave device initiates the error communication using  
Slave Arbitration Request with A-bit as defined in the SPMI 2.0 specification. SPMI 2.0 protocol manages the  
situation with multiple slave devices requesting error communication at the same time. This is resolved using the  
slave arbitration process as described in SPMI 2.0 specification. Once the SPMI slave device wins the Slave  
Arbitration using A-bit protocol, it will perform Extended Register Write command to Group Slave ID address  
1111 with using the protocol described earlier in this document for communicating PFSM trigger ID.  
10.4.2.3.1 Incomplete Communication from SPMI Slave to SPMI Master  
In case the TPS6594-Q1 device as the SPMI master detects Slave Arbitration Request on the SPMI interface,  
but the received sequence has an error or is incomplete, it will immediately perform SPMI interface BIST. If  
Copyright © 2021 Texas Instruments Incorporated  
142 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
this fails, SPMI master will execute error handling for the SPMI error. If the SPMI interface BIST is successfully  
executed, TPS6594-Q1 will resume normal operation.  
10.4.2.4 SPMI BIST Overview  
The BIST operation is implemented during BIST state and regularly during runtime operation. Figure 10-50  
below illustrates how SPMI BIST operates during device power-up.  
PMIC internal sequencing  
PWRON/ENABLE causes transition  
to active mode  
ñ
ñ
ñ
read NVM  
initialization  
Etc.  
Power sequence  
FTTI >> SPMI BIST interval  
VIN  
PWRON/ENABLE  
PMIC State  
BOOT BIST  
STANDBY  
ACTIVE/MISSION  
SPMI  
SPMI BIST patterns  
SPMI BIST pattern as part of BOOT  
BIST sequence  
SPMI messaging to secondary PMIC  
to go to ACTIVE state  
Figure 10-50. SPMI BIST Operation  
TPS6594-Q1 will initialize itself by reading NVM and performing any actions needed to prepare for operation  
after the input power is detected and verified to be at the correct level. TPS6594-Q1 will then enter the BOOT  
BIST state, in which the internal logic will sequence a series of tests to verify that TPS6594-Q1 and the system  
are OK. As part of this test, the SPMI interface BIST is performed. After it is completed successfully, the device  
goes to the standby state and waits for further signals from the system to initiate the power-up sequence of the  
processor.  
A valid on request initiates the processor power-up sequence. TPS6594-Q1 (as the SPMI master) will  
communicate this event through the SPMI to all of the slave devices in the system. Then the power-up sequence  
will be executed and TPS6594-Q1 will enter the active state or any mission states.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 143  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.5 Control Interfaces  
The device has two, exclusive selectable (from factory settings) interfaces. The first selection is up to two  
high-speed I2C interfaces (I2C_SPI_SEL=0). The second selection is one SPI interface (I2C_SPI_SEL=1). The  
SPI and I2C1 interfaces are used to fully control and configure the device, and have access to all of the  
configuration registers and Watchdog registers. During normal operating mode, when the I2C configuration is  
selected, and GPIO1 and GPIO2 pins can be configured as the SCL_I2C2 and SDA_I2C2 pins, I2C2 interface  
will become the dedicated interface for the Q&A Watchdog communication channel, while I2C1 interface will no  
longer have access to the Watchdog registers. The I2C2 interface is automatically disabled and will have access  
to all of the registers, including the Watchdog registers, when the device enters the EEPROM programing mode.  
10.5.1 CRC Calculation for I2C and SPI Interface Protocols  
For safety applications, the TPS6594-Q1 device supports read and write protocols with embedded CRC data  
fields. The master and slave devices use a standard CRC-8 polynomial to calculate the checksum value: X8 + X2  
+ X + 1. The CRC algorithm details are as follows:  
Initial value for the remainder is all 1s  
Big-endian bit stream order  
Result inversion is enabled  
For I2C Interface, the TPS6594-Q1 device uses this polynomial to calculate the checksum value on every bit  
except the ACK and NACK bits it receives from the MCU during a write protocol. The device compares this  
calculated checksum with the MCRC checksum value which the device receives from the MCU. The device also  
uses this polynomial to calculate the SCRC checksum value based on every bit except the ACK and NACK bits,  
which the device transmits to the MCU during a read protocol. The master device (MCU) must use this same  
polynomial to calculate the checksum value based on the bits, which the MCU receives from the device. The  
MCU must compare this calculated checksum with the SCRC checksum value which it receives from the device.  
For the SPI interface, the TPS6594-Q1 device uses this polynomial to calculate the checksum value on every bit  
it receives from the MCU during a write protocol. The device compares this calculated checksum with the MCRC  
checksum value, which the device receives from the master device (MCU). During a read protocol, the device  
also uses this polynomial to calculate the SCRC checksum value based on the first 16 bits sent by the master  
device, and the next 8 bits the device transmits to the master device. The master device must use this same  
polynomial to calculate the checksum value based on the bits which the master device sends to and receives  
from the device, and compare it with the SCRC checksum value which it receives from the device.  
Figure 10-51 and Figure 10-52 are examples for the 4-bit MCRC and the SCRC calculation from 16-bit databus.  
16-bit bus ordering value:  
15  
0
CMD[7] CMD[6] CMD[5] CMD[4] CMD[3] CMD[2] CMD[1] CMD[0] DATA[7] DATA[6] DATA[5] DATA[4] DATA[3] DATA[2] DATA[1] DATA[0]  
Flip-Flop the Preload Value  
(Seed Value)  
1
1
1
1
1
1
1
1
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
MCRC[3]  
MCRC[2]  
MCRC[1]  
MCRC[0]  
Figure 10-51. Calculation of 4-Bit Master CRC (MCRC) Output  
Copyright © 2021 Texas Instruments Incorporated  
144 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
16-bit bus ordering value:  
15  
0
STAT[7] STAT[6] STAT[5] STAT[4] STAT[3] STAT[2] STAT[1] STAT[0]  
R[7]  
R[6]  
R[5]  
R[4]  
R[3]  
R[2]  
R[1]  
R[0]  
Flip-Flop the Preload Value  
(Seed Value)  
1
1
1
1
1
1
1
1
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
Flip Flop  
SCRC[3]  
SCRC[2]  
SCRC[1]  
SCRC[0]  
Figure 10-52. Calculation of 4-Bit Slave CRC (SCRC) Input  
10.5.2 I2C-Compatible Interface  
The default I2C1 7-bit slave device address of the TPS6594-Q1 device is set to 0x48 (0b1001000 in binary),  
while the two least-significant bits can be changed for alternative page selection listed under Section 10.6.1.  
The default 7-bit slave device address for the Q&A WatchDog I2C2 interface is set to 0x12. The I2C1_ID and  
I2C2_ID register bits can be used to reconfigure the 7-bit default slave address for the corresponding I2C  
interface.  
The I2C-compatible synchronous serial interface provides access to the configurable functions and registers  
on the device. This protocol uses a two-wire interface for bidirectional communications between the devices  
connected to the bus. The two interface lines are the serial data line (SDA), and the serial clock line (SCL).  
Every device on the bus is assigned a unique address and acts as either a master or a slave depending on  
whether it generates or receives the serial clock SCL. The SCL and SDA lines must each have a pullup resistor  
placed somewhere on the line and remain HIGH even when the bus is idle. The device supports standard mode  
(100 kHz), fast mode (400 kHz), and fast mode plus (1 MHz) when VIO is 3.3 V or 1.8 V, and high-speed mode  
(3.4 MHz) only when VIO is 1.8 V.  
10.5.2.1 Data Validity  
The data on the SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, the  
state of the data line can only be changed when clock signal is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
valid  
Figure 10-53. Data Validity Diagram  
10.5.2.2 Start and Stop Conditions  
The device is controlled through an I2C-compatible interface. START and STOP conditions classify the beginning  
and end of the I2C session. A START condition is defined as the SDA signal going from HIGH to LOW while the  
SCL signal is HIGH. A STOP condition is defined as the SDA signal going from LOW to HIGH while the SCL  
signal is HIGH. The I2C master device always generates the START and STOP conditions.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 145  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
SDA  
SCL  
S
P
START  
STOP  
Condition  
Condition  
Figure 10-54. Start and Stop Sequences  
The I2C bus is considered busy after a START condition and free after a STOP condition. The I2C master can  
generate repeated START conditions during data transmission. A START and a repeated START condition are  
equivalent function-wise. Figure 10-55 shows the SDA and SCL signal timing for the I2C-compatible bus. For  
timing values, see the Specification section.  
tBUF  
SDA  
tHD;STA  
trCL  
tfDA  
trDA  
tSP  
tLOW  
tfCL  
SCL  
tHD;STA  
tSU;STA  
tSU;STO  
tHIGH  
tHD;DAT  
S
tSU;DAT  
S
RS  
P
START  
REPEATED  
START  
STOP  
START  
Figure 10-55. I2C-Compatible Timing  
10.5.2.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.  
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated  
by the master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The device pulls  
down the SDA line during the 9th clock pulse, signifying an acknowledge. The device generates an acknowledge  
after each byte has been received.  
There is one exception to the acknowledge after every byte rule. When the master is the receiver, it must  
indicate to the transmitter an end of data by not-acknowledging (negative acknowledge) the last byte clocked out  
of the slave. This negative acknowledge still includes the acknowledge clock pulse (generated by the master),  
but the SDA line is not pulled down.  
After the START condition, the bus master sends a chip address. This address is seven bits long followed by  
an eighth bit which is a data direction bit (READ or WRITE). For the eighth bit, a 0 indicates a WRITE and a 1  
indicates a READ. The second byte selects the register to which the data will be written. The third byte contains  
data to write to the selected register. Figure 10-56 shows an example bit format of device address 110000-Bin =  
60Hex.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
R/W  
Bit 0  
I2C Slave Address (chip address)  
Figure 10-56. Example Device Address  
Copyright © 2021 Texas Instruments Incorporated  
146 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
For safety applications, the device supports read and write protocols with embedded CRC data fields. In a write  
cycle, the I2C master should provide the 8-bit CRC value after sending the write data bits and receiving the ACK  
from the slave. The CRC value should be calculated from every bit included in the write protocol except the ACK  
bits from the slave. In a read cycle, the I2C slave should provide the 8-bit CRC value after sending the read data  
bits and the ACK bit, and expect to receive the NACK from the master at the end of the protocol. The CRC value  
should be calculated from every bit included in the read protocol except the ACK and NACK bits.  
The embedded CRC field can be enabled or disabled from the protocol by setting the I2C1_SPI_CRC_EN (for  
I2C1) or I2C2_CRC_EN (for I2C2) register bit to '1' - enabled, '0' - disabled. The default of this bit is configurable  
through the NVM.  
In case the calculated CRC-value does not match the received CRC-check-sum, an I2C-CRC-error is detected,  
the COMM_CRC_ERR_INT (for I2C1) or I2C2_CRC_ERR_INT (for I2C2) bit is set, unless it is masked by the  
COMM_CRC_ERR_MASK or I2C2_CRC_ERR_MASK bit. The MCU must clear this bit by writing a ‘1’ to the  
COMM_CRC_ERR_INT (for I2C1) or I2C2_CRC_ERR_INT (for I2C2) bit.  
When the CRC field is enabled, in the case when MCU attempts to write to a read-only register or a register-  
address that does not exist, the device sets the COMM_ADR_ERR_INT (for I2C1) or I2C2_ADR_ERR_INT (for  
I2C2) bit, unless the COMM_ADR_ERR_MASK or I2C2_ADR_ERR_MASK bit is set. The MCU must clear this  
bit by writing a ‘1’ to the COMM_ADR_ERR_INT (for I2C1) or I2C2_ADR_ERR_INT (for I2C2) bit.  
START  
ACK  
ACK  
ACK STOP  
I2C_ID[6:0]  
0
ADDR[7:0]  
WDATA[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x16  
Figure 10-57. I2C Write Cycle without CRC  
START  
ACK  
ACK  
ACK  
ACK STOP  
I2C_ID[6:0]  
0
ADDR[7:0]  
WDATA[7:0]  
MCRC[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x16  
0x43  
Master provides MCRC[7:0], which is calculated from the I2C_ID, R/W, ADDR, and the WDATA bits (24 bits).  
Figure 10-58. I2C Write Cycle with CRC  
REPEATED  
START  
STOP  
START  
ACK  
ACK  
ACK  
NCK  
I2C_ID[6:0]  
0
ADDR[7:0]  
I2C_ID[6:0]  
1
RDATA[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x60  
0x16  
When READ function is to be accomplished, a WRITE function must precede the READ function as shown above.  
Figure 10-59. I2C Read Cycle without CRC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 147  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
REPEATED  
START  
STOP  
START  
ACK  
ACK  
ACK  
ACK  
NCK  
I2C_ID[6:0]  
0
ADDR[7:0]  
I2C_ID[6:0]  
1
RDATA[7:0]  
SCRC[7:0]  
STOP  
SCL  
SDA  
0x60  
0x36  
0x60  
0x16  
0x7D  
Slave provides SCRC[7:0], which is calculated from the I2C_ID, R/W, ADDR, I2C_ID, R/W, and the RDATA bits (32 bits).  
Figure 10-60. I2C READ Cycle with CRC  
10.5.2.4 Auto-Increment Feature  
The auto-increment feature allows writing several consecutive registers within one transmission. Every time an  
8-bit word is sent to the device, the internal address index counter is incremented by one and the next register  
is written. Table 10-21 lists the writing sequence to two consecutive registers. Note that auto increment feature  
does not support CRC protocol.  
Table 10-21. Auto-Increment Example  
DEVICE  
ADDRESS =  
0x60  
MASTER  
ACTION  
REGISTER  
ADDRESS  
START  
WRITE  
DATA  
DATA  
STOP  
PMIC device  
ACK  
ACK  
ACK  
ACK  
10.5.3 Serial Peripheral Interface (SPI)  
The device supports SPI serial-bus interface and it operates as a slave. A single read and write transmission  
consists of 24-bit write and read cycles (32-bit if CRC is enabled) in the following order:  
Bits 1-8: ADDR[7:0], Register address  
Bits 9-11: PAGE[2:0], Page address for register  
Bit 12: Read/Write definition, 0 = WRITE, 1 = READ.  
Bits 13-16: RESERVED[4:0], Reserved, use all zeros.  
For Write: Bits 17-24: WDATA[7:0], write data  
For Write with CRC enabled: Bits 25-32: MCRC[7:0], CRC error code calculated from bits 1-24, sent by  
master  
For Read: Bits 17-24: RDATA[7:0], read data  
For Read with CRC enabled: Bits 25-32: SCRC[7:0], CRC error code calculated from bits 1-16, sent by  
master, and bits 17-24, sent by slave  
The embedded CRC filed can be enabled or disabled from the protocol by setting the I2C1_SPI_CRC_EN  
register bit to '1' - enabled, '0' - disabled. The default of this bit is configurable through the NVM.  
The SDO output is in a high-impedance state when the CS pin is high. When the CS pin is low, the SDO output  
is always driven low except when the RDATA or SCRC bits are sent. When the RDATA or SCRC bits are sent,  
the SDO output is driven accordingly.  
The address, page, data, and CRC are transmitted MSB first. The slave-select signal (CS) must be low during  
the cycle transmission. The CS signal resets the interface when it is high, and must be taken high between  
successive cycles. Data is clocked in on the rising edge of the SCLK clock signal and it is clocked out on the  
falling edge of SCLK clock signal.  
The SPI Timing diagram shows the timing information for these signals.  
Copyright © 2021 Texas Instruments Incorporated  
148 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
0
WDATA[7:0]  
ADDR[7:0]  
SDO_SPI Hi-Z  
Hi-Z  
Figure 10-61. SPI Write Cycle  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
ADDR[7:0]  
0
WDATA[7:0]  
MCRC[7:0]  
SDO_SPI Hi-Z  
Hi-Z  
Figure 10-62. SPI Write Cycle with Master CRC  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
1
ADDR[7:0]  
Hi-Z  
RDATA[7:0]  
Hi-Z  
SDO_SPI  
Figure 10-63. SPI Read Cycle  
CS_SPI  
SCLK_SPI  
SDI_SPI  
PAGE  
[2:0]  
Reserved[3:0]  
1
ADDR[7:0]  
SDO_SPI Hi-Z  
RDATA[7:0]  
SCRC[7:0]  
Hi-Z  
Figure 10-64. SPI Read Cycle with Slave CRC  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 149  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.6 Configurable Registers  
10.6.1 Register Page Partitioning  
The registers in the TPS6594-Q1 device are organized into five internal pages. Below is a list of the pages which  
the each type of the registers belongs to:  
Page 0: User Registers  
Page 1: NVM Control, Configuration, and Test Registers  
Page 2: Trim Registers  
Page 3: SRAM for PFSM Registers  
Page 4: WatchDog Registers  
10.6.2 CRC Protection for Configuration, Control, and Test Registers  
A static CRC-16 engine exist to protect all the static registers in the design. Static registers are registers in Page  
1, 2, and 3, with values that do not change once loaded from NVM. The CRC-16 engine continuously checks  
the control registers on the device. The expected CRC-16 value is stored in the NVM. Anytime a mismatch  
between the calculated and expected CRC-16 values is detected, the interrupt bit REG_CRC_ERR_INT is set  
and the device will force a orderly shutdown sequence to return to the SAFE RECOVERY state. The device  
NVM control, configuration, and test registers in page 1 are protected against read or write access when the  
device is in normal functional mode. The CRC-16 protection for the NVM registers is configured and enabled  
only when the device is in DFT/DEBUG operating mode.  
The CRC-16 engine uses a standard CRC-16 polynomial to calculate the internal known-good checksum-value,  
which is X16 + X14 + X13 + X12 + X10 + X8 + X6 + X4 + X3 + X + 1.  
The initial value for the remainder of the polynomial is all 1s and is in big-endian bit-stream order. The inversion  
of the calculated result is enabled.  
Note  
The CRC-16 engine assume the value of '0' for all undefined or reserved bits in all control registers.  
Therefore, the software MUST NOT write the value of '1' to any of these undefined or reserved bits. If  
the value of '1 is written to any undefined or reserved bit of a writeable register, a mismatch between  
the calculated and expected CRC-16 values will be detected, a REG_CRC_ERR interrupt will be set,  
and the device will force a orderly shutdown sequence to return to the SAFE RECOVERY state.  
10.6.3 CRC Protection for User Registers  
A dynamic CRC-8 engine exists to protect registers that have values which can change during operation. These  
are registers in Page 1 and 4. When writes occur to these pages, the dynamic CRC-8 is checked, computed,  
and updated. Continuously during operation the CRC-8 are evaluated and verified in a round-robin fashion.  
The CRC-8 engine utilizes the Polynomial(0xA6) = X8 + X6 + X3 + X2 + 1, which provides a H4 hamming  
distance.  
10.6.4 Register Write Protection  
For safety application, in order to prevent unintentional writes to the control registers, the TPS6594-Q1 device  
implements locking and unlocking mechanisms to many of its configuration/control registers described in the  
following subsections.  
10.6.4.1 ESM and WDOG Configuration Registers  
The configuration registers for the watchdog and the ESM modules are locked when their monitoring functions  
are in operation. The timing and the list of the watchdog registers which will locked is described under Section  
10.3.11.2. The list of ESM registers locked after the start of each ESM module is described under Section  
10.3.12  
Copyright © 2021 Texas Instruments Incorporated  
150 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.6.4.2 User Registers  
User registers in page 0, except the ESM and the WDOG configuration registers described in Section 10.6.4.1,  
and the interrupt registers (x_INT) at address 0x5a through 0x6c in page 0, can be write protected by a  
dedicated lock. User must write '0x9B' to the REGISTER_LOCK register to unlock the register. Writing any  
value other than '0x9B' will activate the lock again. To check the register lock status, user should read the  
REGISTER_LOCK_STATUS bit. When this bit is '0', it indicates the user registers are unlocked. When this bit is  
'1', the user registers are locked. During startup sequence such as powering up for the first time, waking up from  
LP_STANDBY, or recovering from SAFE_RECOVERY, the user registers will be unlocked automatically.  
As an extra measure of protection to prevent the accidental change of the buck frequency while the buck is in  
operation, the BUCKn_FREQ_SEL register bits are locked by the REGISTER_LOCK register. User is advised  
against changing the buck frequency while the buck is in operation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 151  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7 Register Maps  
10.7.1 TPS6594-Q1 Registers  
Table 10-22 lists the memory-mapped registers for the TPS6594-Q1 registers. All register offset addresses  
not listed in Table 10-22 should be considered as reserved locations and the register contents should not be  
modified.  
Table 10-22. TPS6594-Q1 Registers  
Offset  
0x1  
Acronym  
Register Name  
Section  
DEV_REV  
Section 10.7.1.1  
Section 10.7.1.2  
Section 10.7.1.3  
Section 10.7.1.4  
Section 10.7.1.5  
Section 10.7.1.6  
Section 10.7.1.7  
Section 10.7.1.8  
Section 10.7.1.9  
Section 10.7.1.10  
Section 10.7.1.11  
Section 10.7.1.12  
Section 10.7.1.13  
Section 10.7.1.14  
Section 10.7.1.15  
Section 10.7.1.16  
Section 10.7.1.17  
Section 10.7.1.18  
Section 10.7.1.19  
Section 10.7.1.20  
Section 10.7.1.21  
Section 10.7.1.22  
Section 10.7.1.23  
Section 10.7.1.24  
Section 10.7.1.25  
Section 10.7.1.26  
Section 10.7.1.27  
Section 10.7.1.28  
Section 10.7.1.29  
Section 10.7.1.30  
Section 10.7.1.31  
Section 10.7.1.32  
Section 10.7.1.33  
Section 10.7.1.34  
Section 10.7.1.35  
Section 10.7.1.36  
Section 10.7.1.37  
Section 10.7.1.38  
Section 10.7.1.39  
Section 10.7.1.40  
0x2  
NVM_CODE_1  
NVM_CODE_2  
BUCK1_CTRL  
0x3  
0x4  
0x5  
BUCK1_CONF  
BUCK2_CTRL  
0x6  
0x7  
BUCK2_CONF  
BUCK3_CTRL  
0x8  
0x9  
BUCK3_CONF  
BUCK4_CTRL  
0xA  
0xB  
BUCK4_CONF  
BUCK5_CTRL  
0xC  
0xD  
BUCK5_CONF  
BUCK1_VOUT_1  
BUCK1_VOUT_2  
BUCK2_VOUT_1  
BUCK2_VOUT_2  
BUCK3_VOUT_1  
BUCK3_VOUT_2  
BUCK4_VOUT_1  
BUCK4_VOUT_2  
BUCK5_VOUT_1  
BUCK5_VOUT_2  
BUCK1_PG_WINDOW  
BUCK2_PG_WINDOW  
BUCK3_PG_WINDOW  
BUCK4_PG_WINDOW  
BUCK5_PG_WINDOW  
LDO1_CTRL  
0xE  
0xF  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
LDO2_CTRL  
LDO3_CTRL  
LDO4_CTRL  
LDORTC_CTRL  
LDO1_VOUT  
LDO2_VOUT  
LDO3_VOUT  
LDO4_VOUT  
LDO1_PG_WINDOW  
LDO2_PG_WINDOW  
LDO3_PG_WINDOW  
Copyright © 2021 Texas Instruments Incorporated  
152 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-22. TPS6594-Q1 Registers (continued)  
Offset  
0x2A  
0x2B  
0x2C  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
Acronym  
Register Name  
Section  
LDO4_PG_WINDOW  
VCCA_VMON_CTRL  
VCCA_PG_WINDOW  
GPIO1_CONF  
Section 10.7.1.41  
Section 10.7.1.42  
Section 10.7.1.43  
Section 10.7.1.44  
Section 10.7.1.45  
Section 10.7.1.46  
Section 10.7.1.47  
Section 10.7.1.48  
Section 10.7.1.49  
Section 10.7.1.50  
Section 10.7.1.51  
Section 10.7.1.52  
Section 10.7.1.53  
Section 10.7.1.54  
Section 10.7.1.55  
Section 10.7.1.56  
Section 10.7.1.57  
Section 10.7.1.58  
Section 10.7.1.59  
Section 10.7.1.60  
Section 10.7.1.61  
Section 10.7.1.62  
Section 10.7.1.63  
Section 10.7.1.64  
Section 10.7.1.65  
Section 10.7.1.66  
Section 10.7.1.67  
Section 10.7.1.68  
Section 10.7.1.69  
Section 10.7.1.70  
Section 10.7.1.71  
Section 10.7.1.72  
Section 10.7.1.73  
Section 10.7.1.74  
Section 10.7.1.75  
Section 10.7.1.76  
Section 10.7.1.77  
Section 10.7.1.78  
Section 10.7.1.79  
Section 10.7.1.80  
Section 10.7.1.81  
Section 10.7.1.82  
Section 10.7.1.83  
Section 10.7.1.84  
Section 10.7.1.85  
GPIO2_CONF  
GPIO3_CONF  
GPIO4_CONF  
GPIO5_CONF  
GPIO6_CONF  
GPIO7_CONF  
GPIO8_CONF  
GPIO9_CONF  
GPIO10_CONF  
GPIO11_CONF  
NPWRON_CONF  
GPIO_OUT_1  
GPIO_OUT_2  
GPIO_IN_1  
GPIO_IN_2  
RAIL_SEL_1  
RAIL_SEL_2  
RAIL_SEL_3  
FSM_TRIG_SEL_1  
FSM_TRIG_SEL_2  
FSM_TRIG_MASK_1  
FSM_TRIG_MASK_2  
FSM_TRIG_MASK_3  
MASK_BUCK1_2  
MASK_BUCK3_4  
MASK_BUCK5  
MASK_LDO1_2  
MASK_LDO3_4  
MASK_VMON  
MASK_GPIO1_8_FALL  
MASK_GPIO1_8_RISE  
MASK_GPIO9_11  
MASK_STARTUP  
MASK_MISC  
MASK_MODERATE_ERR  
MASK_FSM_ERR  
MASK_COMM_ERR  
MASK_READBACK_ERR  
MASK_ESM  
INT_TOP  
INT_BUCK  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 153  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-22. TPS6594-Q1 Registers (continued)  
Offset  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x8A  
Acronym  
Register Name  
Section  
INT_BUCK1_2  
Section 10.7.1.86  
Section 10.7.1.87  
Section 10.7.1.88  
Section 10.7.1.89  
Section 10.7.1.90  
Section 10.7.1.91  
Section 10.7.1.92  
Section 10.7.1.93  
Section 10.7.1.94  
Section 10.7.1.95  
Section 10.7.1.96  
Section 10.7.1.97  
Section 10.7.1.98  
Section 10.7.1.99  
Section 10.7.1.100  
Section 10.7.1.101  
Section 10.7.1.102  
Section 10.7.1.103  
Section 10.7.1.104  
Section 10.7.1.105  
Section 10.7.1.106  
Section 10.7.1.107  
Section 10.7.1.108  
Section 10.7.1.109  
Section 10.7.1.110  
Section 10.7.1.111  
Section 10.7.1.112  
Section 10.7.1.113  
Section 10.7.1.114  
Section 10.7.1.115  
Section 10.7.1.116  
Section 10.7.1.117  
Section 10.7.1.118  
Section 10.7.1.119  
Section 10.7.1.120  
Section 10.7.1.121  
Section 10.7.1.122  
Section 10.7.1.123  
Section 10.7.1.124  
Section 10.7.1.125  
Section 10.7.1.126  
Section 10.7.1.127  
Section 10.7.1.128  
Section 10.7.1.129  
Section 10.7.1.130  
INT_BUCK3_4  
INT_BUCK5  
INT_LDO_VMON  
INT_LDO1_2  
INT_LDO3_4  
INT_VMON  
INT_GPIO  
INT_GPIO1_8  
INT_STARTUP  
INT_MISC  
INT_MODERATE_ERR  
INT_SEVERE_ERR  
INT_FSM_ERR  
INT_COMM_ERR  
INT_READBACK_ERR  
INT_ESM  
STAT_BUCK1_2  
STAT_BUCK3_4  
STAT_BUCK5  
STAT_LDO1_2  
STAT_LDO3_4  
STAT_VMON  
STAT_STARTUP  
STAT_MISC  
STAT_MODERATE_ERR  
STAT_SEVERE_ERR  
STAT_READBACK_ERR  
PGOOD_SEL_1  
PGOOD_SEL_2  
PGOOD_SEL_3  
PGOOD_SEL_4  
PLL_CTRL  
CONFIG_1  
CONFIG_2  
ENABLE_DRV_REG  
MISC_CTRL  
ENABLE_DRV_STAT  
RECOV_CNT_REG_1  
RECOV_CNT_REG_2  
FSM_I2C_TRIGGERS  
FSM_NSLEEP_TRIGGERS  
BUCK_RESET_REG  
SPREAD_SPECTRUM_1  
FREQ_SEL  
Copyright © 2021 Texas Instruments Incorporated  
154 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-22. TPS6594-Q1 Registers (continued)  
Offset  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA6  
0xA7  
0xAB  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
Acronym  
Register Name  
Section  
FSM_STEP_SIZE  
Section 10.7.1.131  
Section 10.7.1.132  
Section 10.7.1.133  
Section 10.7.1.134  
Section 10.7.1.135  
Section 10.7.1.136  
Section 10.7.1.137  
Section 10.7.1.138  
Section 10.7.1.139  
Section 10.7.1.140  
Section 10.7.1.141  
Section 10.7.1.142  
Section 10.7.1.143  
Section 10.7.1.144  
Section 10.7.1.145  
Section 10.7.1.146  
Section 10.7.1.147  
Section 10.7.1.148  
Section 10.7.1.149  
Section 10.7.1.150  
Section 10.7.1.151  
Section 10.7.1.152  
Section 10.7.1.153  
Section 10.7.1.154  
Section 10.7.1.155  
Section 10.7.1.156  
Section 10.7.1.157  
Section 10.7.1.158  
Section 10.7.1.159  
Section 10.7.1.160  
Section 10.7.1.161  
Section 10.7.1.162  
Section 10.7.1.163  
Section 10.7.1.164  
Section 10.7.1.165  
Section 10.7.1.166  
Section 10.7.1.167  
Section 10.7.1.168  
Section 10.7.1.169  
Section 10.7.1.170  
Section 10.7.1.171  
Section 10.7.1.172  
Section 10.7.1.173  
Section 10.7.1.174  
Section 10.7.1.175  
LDO_RV_TIMEOUT_REG_1  
LDO_RV_TIMEOUT_REG_2  
USER_SPARE_REGS  
ESM_MCU_START_REG  
ESM_MCU_DELAY1_REG  
ESM_MCU_DELAY2_REG  
ESM_MCU_MODE_CFG  
ESM_MCU_HMAX_REG  
ESM_MCU_HMIN_REG  
ESM_MCU_LMAX_REG  
ESM_MCU_LMIN_REG  
ESM_MCU_ERR_CNT_REG  
ESM_SOC_START_REG  
ESM_SOC_DELAY1_REG  
ESM_SOC_DELAY2_REG  
ESM_SOC_MODE_CFG  
ESM_SOC_HMAX_REG  
ESM_SOC_HMIN_REG  
ESM_SOC_LMAX_REG  
ESM_SOC_LMIN_REG  
ESM_SOC_ERR_CNT_REG  
REGISTER_LOCK  
MANUFACTURING_VER  
CUSTOMER_NVM_ID_REG  
SOFT_REBOOT_REG  
RTC_SECONDS  
RTC_MINUTES  
RTC_HOURS  
RTC_DAYS  
RTC_MONTHS  
RTC_YEARS  
RTC_WEEKS  
ALARM_SECONDS  
ALARM_MINUTES  
ALARM_HOURS  
ALARM_DAYS  
ALARM_MONTHS  
ALARM_YEARS  
RTC_CTRL_1  
RTC_CTRL_2  
RTC_STATUS  
RTC_INTERRUPTS  
RTC_COMP_LSB  
RTC_COMP_MSB  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 155  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 10-22. TPS6594-Q1 Registers (continued)  
Offset  
0xC8  
Acronym  
Register Name  
Section  
RTC_RESET_STATUS  
SCRATCH_PAD_REG_1  
SCRATCH_PAD_REG_2  
SCRATCH_PAD_REG_3  
SCRATCH_PAD_REG_4  
PFSM_DELAY_REG_1  
PFSM_DELAY_REG_2  
PFSM_DELAY_REG_3  
PFSM_DELAY_REG_4  
WD_ANSWER_REG  
WD_QUESTION_ANSW_CNT  
WD_WIN1_CFG  
Section 10.7.1.176  
Section 10.7.1.177  
Section 10.7.1.178  
Section 10.7.1.179  
Section 10.7.1.180  
Section 10.7.1.181  
Section 10.7.1.182  
Section 10.7.1.183  
Section 10.7.1.184  
Section 10.7.1.185  
Section 10.7.1.186  
Section 10.7.1.187  
Section 10.7.1.188  
Section 10.7.1.189  
Section 10.7.1.190  
Section 10.7.1.191  
Section 10.7.1.192  
Section 10.7.1.193  
Section 10.7.1.194  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0x401  
0x402  
0x403  
0x404  
0x405  
0x406  
0x407  
0x408  
0x409  
0x40A  
WD_WIN2_CFG  
WD_LONGWIN_CFG  
WD_MODE_REG  
WD_QA_CFG  
WD_ERR_STATUS  
WD_THR_CFG  
WD_FAIL_CNT_REG  
Complex bit access types are encoded to fit into small table cells. Table 10-23 shows the codes that are used for  
access types in this section.  
Table 10-23. TPS6594-Q1 Access Type Codes  
Access Type  
Read Type  
R
Code  
Description  
R
Read  
Write Type  
W
W
Write  
W1C  
W
Write  
1C  
1 to clear  
WSelfClrF  
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in  
a register name, an offset, or an  
address, they refer to the value of  
a register array where the register  
is part of a group of repeating  
registers. The register groups  
form a hierarchical structure and  
the array is represented with a  
formula.  
y
When this variable is used in a  
register name, an offset, or an  
address it refers to the value of  
a register array.  
Copyright © 2021 Texas Instruments Incorporated  
156 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.1 DEV_REV Register (Offset = 0x1) [Reset = 0x0]  
DEV_REV is shown in Figure 10-60 and described in Table 10-24.  
Return to the Table 10-22.  
Figure 10-60. DEV_REV Register  
7
6
5
4
3
2
1
0
TI_DEVICE_ID  
R/W-0b  
Table 10-24. DEV_REV Register Field Descriptions  
Bit  
7:0  
Field  
TI_DEVICE_ID  
Type  
Reset  
Description  
R/W  
0b  
TI_DEVICE_ID[7]:  
0 - Industrial  
1 - Auto  
TI_DEVICE_ID[6:2] = Device GPN  
TI_DEVICE_ID[1]:  
0 - QM  
1 - ASIL  
TI_DEVICE_ID[0] = Reserved  
Note: This register can be programmed only by the manufacturer.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 157  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.2 NVM_CODE_1 Register (Offset = 0x2) [Reset = 0x0]  
NVM_CODE_1 is shown in Figure 10-61 and described in Table 10-25.  
Return to the Table 10-22.  
Figure 10-61. NVM_CODE_1 Register  
7
6
5
4
3
2
1
0
TI_NVM_ID  
R/W-0b  
Table 10-25. NVM_CODE_1 Register Field Descriptions  
Bit  
7:0  
Field  
TI_NVM_ID  
Type  
Reset  
Description  
R/W  
0b  
Note: This register can be programmed only by the manufacturer.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
158 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.3 NVM_CODE_2 Register (Offset = 0x3) [Reset = 0x0]  
NVM_CODE_2 is shown in Figure 10-62 and described in Table 10-26.  
Return to the Table 10-22.  
Figure 10-62. NVM_CODE_2 Register  
7
6
5
4
3
2
1
0
TI_NVM_REV  
R/W-0b  
Table 10-26. NVM_CODE_2 Register Field Descriptions  
Bit  
7:0  
Field  
TI_NVM_REV  
Type  
Reset  
Description  
R/W  
0b  
NVM revision of the IC  
Note: This register can be programmed only by the manufacturer.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 159  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.4 BUCK1_CTRL Register (Offset = 0x4) [Reset = 0x22]  
BUCK1_CTRL is shown in Figure 10-63 and described in Table 10-27.  
Return to the Table 10-22.  
Figure 10-63. BUCK1_CTRL Register  
7
6
5
4
3
2
1
0
BUCK1_RV_SE RESERVED  
L
BUCK1_PLDN BUCK1_VMON BUCK1_VSEL BUCK1_FPWM BUCK1_FPWM  
BUCK1_EN  
_EN  
_MP  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-27. BUCK1_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK1_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK1 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK1_PLDN  
Enable output pull-down resistor when BUCK1 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
2
BUCK1_VMON_EN  
BUCK1_VSEL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Enable BUCK1 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK1:  
(Default from NVM memory)  
0b = BUCK1_VOUT_1  
1b = BUCK1_VOUT_2  
BUCK1_FPWM_MP  
Forces the BUCK1 regulator to operate always in multi-phase and  
forced PWM operation mode:  
(Default from NVM memory)  
0b = Automatic phase adding and shedding.  
1b = Forced to multi-phase operation, all phases in the multi-phase  
configuration.  
1
0
BUCK1_FPWM  
BUCK1_EN  
R/W  
R/W  
1b  
0b  
Forces the BUCK1 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
Enable BUCK1 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2021 Texas Instruments Incorporated  
160 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.5 BUCK1_CONF Register (Offset = 0x5) [Reset = 0x22]  
BUCK1_CONF is shown in Figure 10-64 and described in Table 10-28.  
Return to the Table 10-22.  
Figure 10-64. BUCK1_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK1_ILIM  
R/W-100b  
BUCK1_SLEW_RATE  
R/W-10b  
Table 10-28. BUCK1_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK1_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK1. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = 4.5 A  
101b = 5.5 A  
110b = Reserved  
111b = Reserved  
2:0  
BUCK1_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK1 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 161  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.6 BUCK2_CTRL Register (Offset = 0x6) [Reset = 0x22]  
BUCK2_CTRL is shown in Figure 10-65 and described in Table 10-29.  
Return to the Table 10-22.  
Figure 10-65. BUCK2_CTRL Register  
7
6
5
4
3
2
1
0
BUCK2_RV_SE RESERVED  
L
BUCK2_PLDN BUCK2_VMON BUCK2_VSEL  
_EN  
RESERVED  
BUCK2_FPWM  
BUCK2_EN  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-29. BUCK2_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK2 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK2_PLDN  
Enable output pull-down resistor when BUCK2 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
BUCK2_VMON_EN  
BUCK2_VSEL  
R/W  
R/W  
0b  
0b  
Enable BUCK2 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC, and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK2:  
(Default from NVM memory)  
0b = BUCK2_VOUT_1  
1b = BUCK2_VOUT_2  
2
1
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK2_FPWM  
Forces the BUCK2 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
0
BUCK2_EN  
R/W  
0b  
Enable BUCK2 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2021 Texas Instruments Incorporated  
162 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.7 BUCK2_CONF Register (Offset = 0x7) [Reset = 0x22]  
BUCK2_CONF is shown in Figure 10-66 and described in Table 10-30.  
Return to the Table 10-22.  
Figure 10-66. BUCK2_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK2_ILIM  
R/W-100b  
BUCK2_SLEW_RATE  
R/W-10b  
Table 10-30. BUCK2_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK2_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK2. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = 4.5 A  
101b = 5.5 A  
110b = Reserved  
111b = Reserved  
2:0  
BUCK2_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK2 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 163  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.8 BUCK3_CTRL Register (Offset = 0x8) [Reset = 0x22]  
BUCK3_CTRL is shown in Figure 10-67 and described in Table 10-31.  
Return to the Table 10-22.  
Figure 10-67. BUCK3_CTRL Register  
7
6
5
4
3
2
1
0
BUCK3_RV_SE RESERVED  
L
BUCK3_PLDN BUCK3_VMON BUCK3_VSEL BUCK3_FPWM BUCK3_FPWM  
BUCK3_EN  
_EN  
_MP  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-31. BUCK3_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK3_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK3 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK3_PLDN  
Enable output pull-down resistor when BUCK3 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
2
BUCK3_VMON_EN  
BUCK3_VSEL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Enable BUCK3 OV, UV, SC, and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK3:  
(Default from NVM memory)  
0b = BUCK3_VOUT_1  
1b = BUCK3_VOUT_2  
BUCK3_FPWM_MP  
Forces the BUCK3 regulator to operate always in multi-phase and  
forced PWM operation mode:  
(Default from NVM memory)  
0b = Automatic phase adding and shedding.  
1b = Forced to multi-phase operation, all phases in the multi-phase  
configuration.  
1
0
BUCK3_FPWM  
BUCK3_EN  
R/W  
R/W  
1b  
0b  
Forces the BUCK3 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
Enable BUCK3 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2021 Texas Instruments Incorporated  
164 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.9 BUCK3_CONF Register (Offset = 0x9) [Reset = 0x22]  
BUCK3_CONF is shown in Figure 10-68 and described in Table 10-32.  
Return to the Table 10-22.  
Figure 10-68. BUCK3_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK3_ILIM  
R/W-100b  
BUCK3_SLEW_RATE  
R/W-10b  
Table 10-32. BUCK3_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK3_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK3. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = 4.5 A  
101b = 5.5 A  
110b = Reserved  
111b = Reserved  
2:0  
BUCK3_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK3 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 165  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.10 BUCK4_CTRL Register (Offset = 0xA) [Reset = 0x22]  
BUCK4_CTRL is shown in Figure 10-69 and described in Table 10-33.  
Return to the Table 10-22.  
Figure 10-69. BUCK4_CTRL Register  
7
6
5
4
3
2
1
0
BUCK4_RV_SE RESERVED  
L
BUCK4_PLDN BUCK4_VMON BUCK4_VSEL  
_EN  
RESERVED  
BUCK4_FPWM  
BUCK4_EN  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-33. BUCK4_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK4 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK4_PLDN  
Enable output pull-down resistor when BUCK4 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
BUCK4_VMON_EN  
BUCK4_VSEL  
R/W  
R/W  
0b  
0b  
Enable BUCK4 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK4:  
(Default from NVM memory)  
0b = BUCK4_VOUT_1  
1b = BUCK4_VOUT_2  
2
1
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK4_FPWM  
Forces the BUCK4 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
0
BUCK4_EN  
R/W  
0b  
Enable BUCK4 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2021 Texas Instruments Incorporated  
166 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.11 BUCK4_CONF Register (Offset = 0xB) [Reset = 0x22]  
BUCK4_CONF is shown in Figure 10-70 and described in Table 10-34.  
Return to the Table 10-22.  
Figure 10-70. BUCK4_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK4_ILIM  
R/W-100b  
BUCK4_SLEW_RATE  
R/W-10b  
Table 10-34. BUCK4_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK4_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK4. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = 4.5 A  
101b = 5.5 A  
110b = Reserved  
111b = Reserved  
2:0  
BUCK4_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK4 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 167  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.12 BUCK5_CTRL Register (Offset = 0xC) [Reset = 0x22]  
BUCK5_CTRL is shown in Figure 10-71 and described in Table 10-35.  
Return to the Table 10-22.  
Figure 10-71. BUCK5_CTRL Register  
7
6
5
4
3
2
1
0
BUCK5_RV_SE RESERVED  
L
BUCK5_PLDN BUCK5_VMON BUCK5_VSEL  
_EN  
RESERVED  
BUCK5_FPWM  
BUCK5_EN  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-35. BUCK5_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK5_RV_SEL  
R/W  
0b  
Select residual voltage checking for BUCK5 feedback pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6
5
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK5_PLDN  
Enable output pull-down resistor when BUCK5 is disabled:  
(Default from NVM memory)  
0b = Pull-down resistor disabled  
1b = Pull-down resistor enabled  
4
3
BUCK5_VMON_EN  
BUCK5_VSEL  
R/W  
R/W  
0b  
0b  
Enable BUCK5 OV, UV, SC and ILIM comparators:  
(Default from NVM memory)  
0b = OV, UV, SC and ILIM comparators are disabled  
1b = OV, UV, SC and ILIM comparators are enabled  
Select output voltage register for BUCK5:  
(Default from NVM memory)  
0b = BUCK5_VOUT_1  
1b = BUCK5_VOUT_2  
2
1
RESERVED  
R/W  
R/W  
0b  
1b  
BUCK5_FPWM  
Forces the BUCK5 regulator to operate in PWM mode:  
(Default from NVM memory)  
0b = Automatic transitions between PFM and PWM modes (AUTO  
mode).  
1b = Forced to PWM operation.  
0
BUCK5_EN  
R/W  
0b  
Enable BUCK5 regulator:  
(Default from NVM memory)  
0b = BUCK regulator is disabled  
1b = BUCK regulator is enabled  
Copyright © 2021 Texas Instruments Incorporated  
168 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.13 BUCK5_CONF Register (Offset = 0xD) [Reset = 0x22]  
BUCK5_CONF is shown in Figure 10-72 and described in Table 10-36.  
Return to the Table 10-22.  
Figure 10-72. BUCK5_CONF Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK5_ILIM  
R/W-100b  
BUCK5_SLEW_RATE  
R/W-10b  
Table 10-36. BUCK5_CONF Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
BUCK5_ILIM  
0b  
100b  
Sets the switch peak current limit of BUCK5. Can be programmed at  
any time during operation:  
(Default from NVM memory)  
0b = Reserved  
1b = Reserved  
10b = 2.5 A  
11b = 3.5 A  
100b = Reserved  
101b = Reserved  
110b = Reserved  
111b = Reserved  
2:0  
BUCK5_SLEW_RATE  
R/W  
10b  
Sets the output voltage slew rate for BUCK5 regulator (rising and  
falling edges):  
(Default from NVM memory)  
0b = 33 mV/μs  
1b = 20 mV/μs  
10b = 10 mV/μs  
11b = 5.0 mV/μs  
100b = 2.5 mV/μs  
101b = 1.3 mV/μs  
110b = 0.63 mV/μs  
111b = 0.31 mV/μs  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 169  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.14 BUCK1_VOUT_1 Register (Offset = 0xE) [Reset = 0x0]  
BUCK1_VOUT_1 is shown in Figure 10-73 and described in Table 10-37.  
Return to the Table 10-22.  
Figure 10-73. BUCK1_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK1_VSET1  
R/W-0b  
Table 10-37. BUCK1_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK1_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
170 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.15 BUCK1_VOUT_2 Register (Offset = 0xF) [Reset = 0x0]  
BUCK1_VOUT_2 is shown in Figure 10-74 and described in Table 10-38.  
Return to the Table 10-22.  
Figure 10-74. BUCK1_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK1_VSET2  
R/W-0b  
Table 10-38. BUCK1_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK1_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 171  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.16 BUCK2_VOUT_1 Register (Offset = 0x10) [Reset = 0x0]  
BUCK2_VOUT_1 is shown in Figure 10-75 and described in Table 10-39.  
Return to the Table 10-22.  
Figure 10-75. BUCK2_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK2_VSET1  
R/W-0b  
Table 10-39. BUCK2_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK2_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
172 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.17 BUCK2_VOUT_2 Register (Offset = 0x11) [Reset = 0x0]  
BUCK2_VOUT_2 is shown in Figure 10-76 and described in Table 10-40.  
Return to the Table 10-22.  
Figure 10-76. BUCK2_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK2_VSET2  
R/W-0b  
Table 10-40. BUCK2_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK2_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 173  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.18 BUCK3_VOUT_1 Register (Offset = 0x12) [Reset = 0x0]  
BUCK3_VOUT_1 is shown in Figure 10-77 and described in Table 10-41.  
Return to the Table 10-22.  
Figure 10-77. BUCK3_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK3_VSET1  
R/W-0b  
Table 10-41. BUCK3_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK3_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
174 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.19 BUCK3_VOUT_2 Register (Offset = 0x13) [Reset = 0x0]  
BUCK3_VOUT_2 is shown in Figure 10-78 and described in Table 10-42.  
Return to the Table 10-22.  
Figure 10-78. BUCK3_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK3_VSET2  
R/W-0b  
Table 10-42. BUCK3_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK3_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 175  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.20 BUCK4_VOUT_1 Register (Offset = 0x14) [Reset = 0x0]  
BUCK4_VOUT_1 is shown in Figure 10-79 and described in Table 10-43.  
Return to the Table 10-22.  
Figure 10-79. BUCK4_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK4_VSET1  
R/W-0b  
Table 10-43. BUCK4_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK4_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
176 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.21 BUCK4_VOUT_2 Register (Offset = 0x15) [Reset = 0x0]  
BUCK4_VOUT_2 is shown in Figure 10-80 and described in Table 10-44.  
Return to the Table 10-22.  
Figure 10-80. BUCK4_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK4_VSET2  
R/W-0b  
Table 10-44. BUCK4_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK4_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 177  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.22 BUCK5_VOUT_1 Register (Offset = 0x16) [Reset = 0x0]  
BUCK5_VOUT_1 is shown in Figure 10-81 and described in Table 10-45.  
Return to the Table 10-22.  
Figure 10-81. BUCK5_VOUT_1 Register  
7
6
5
4
3
2
1
0
BUCK5_VSET1  
R/W-0b  
Table 10-45. BUCK5_VOUT_1 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK5_VSET1  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
178 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.23 BUCK5_VOUT_2 Register (Offset = 0x17) [Reset = 0x0]  
BUCK5_VOUT_2 is shown in Figure 10-82 and described in Table 10-46.  
Return to the Table 10-22.  
Figure 10-82. BUCK5_VOUT_2 Register  
7
6
5
4
3
2
1
0
BUCK5_VSET2  
R/W-0b  
Table 10-46. BUCK5_VOUT_2 Register Field Descriptions  
Bit  
7:0  
Field  
BUCK5_VSET2  
Type  
Reset  
Description  
R/W  
0b  
Voltage selection for buck regulator. See Buck regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 179  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.24 BUCK1_PG_WINDOW Register (Offset = 0x18) [Reset = 0x0]  
BUCK1_PG_WINDOW is shown in Figure 10-83 and described in Table 10-47.  
Return to the Table 10-22.  
Figure 10-83. BUCK1_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK1_UV_THR  
R/W-0b  
BUCK1_OV_THR  
R/W-0b  
Table 10-47. BUCK1_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK1_UV_THR  
0b  
Powergood low threshold level for BUCK1:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
BUCK1_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK1:  
(Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
180 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.25 BUCK2_PG_WINDOW Register (Offset = 0x19) [Reset = 0x0]  
BUCK2_PG_WINDOW is shown in Figure 10-84 and described in Table 10-48.  
Return to the Table 10-22.  
Figure 10-84. BUCK2_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK2_UV_THR  
R/W-0b  
BUCK2_OV_THR  
R/W-0b  
Table 10-48. BUCK2_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK2_UV_THR  
0b  
Powergood low threshold level for BUCK2:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
BUCK2_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK2:  
(Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 181  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.26 BUCK3_PG_WINDOW Register (Offset = 0x1A) [Reset = 0x0]  
BUCK3_PG_WINDOW is shown in Figure 10-85 and described in Table 10-49.  
Return to the Table 10-22.  
Figure 10-85. BUCK3_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK3_UV_THR  
R/W-0b  
BUCK3_OV_THR  
R/W-0b  
Table 10-49. BUCK3_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK3_UV_THR  
0b  
Powergood low threshold level for BUCK3:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
BUCK3_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK3:  
(Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
182 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.27 BUCK4_PG_WINDOW Register (Offset = 0x1B) [Reset = 0x0]  
BUCK4_PG_WINDOW is shown in Figure 10-86 and described in Table 10-50.  
Return to the Table 10-22.  
Figure 10-86. BUCK4_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK4_UV_THR  
R/W-0b  
BUCK4_OV_THR  
R/W-0b  
Table 10-50. BUCK4_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK4_UV_THR  
0b  
Powergood low threshold level for BUCK4:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
BUCK4_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK4:  
(Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 183  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.28 BUCK5_PG_WINDOW Register (Offset = 0x1C) [Reset = 0x0]  
BUCK5_PG_WINDOW is shown in Figure 10-87 and described in Table 10-51.  
Return to the Table 10-22.  
Figure 10-87. BUCK5_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK5_UV_THR  
R/W-0b  
BUCK5_OV_THR  
R/W-0b  
Table 10-51. BUCK5_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
BUCK5_UV_THR  
0b  
Powergood low threshold level for BUCK5:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
BUCK5_OV_THR  
R/W  
0b  
Powergood high threshold level for BUCK5:  
(Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
184 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.29 LDO1_CTRL Register (Offset = 0x1D) [Reset = 0x60]  
LDO1_CTRL is shown in Figure 10-88 and described in Table 10-52.  
Return to the Table 10-22.  
Figure 10-88. LDO1_CTRL Register  
7
6
5
4
3
2
1
0
LDO1_RV_SEL  
LDO1_PLDN  
R/W-11b  
LDO1_VMON_  
EN  
RESERVED  
R/W-0b  
LDO1_SLOW_  
RAMP  
LDO1_EN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-52. LDO1_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO1_RV_SEL  
R/W  
0b  
Select residual voltage checking for LDO1 output pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6:5  
LDO1_PLDN  
R/W  
R/W  
11b  
0b  
Enable output pull-down resistor when LDO1 is disabled:  
(Default from NVM memory)  
0b = 50 kOhm  
1b = 125 Ohm  
10b = 250 Ohm  
11b = 500 Ohm  
4
LDO1_VMON_EN  
Enable LDO1 OV and UV comparators:  
(Default from NVM memory)  
0b = OV and UV comparators are disabled  
1b = OV and UV comparators are enabled.  
3:2  
1
RESERVED  
R/W  
R/W  
0b  
0b  
LDO1_SLOW_RAMP  
LDO1 startup slew rate selection  
0b = 25 mV/µs maximum ramp up slew rate for LDO output from  
0.3V to 90% of LDOn_VSET  
1b = 3 mV/µs maximum ramp up slew rate for LDO output from 0.3 V  
to 90% of LDOn_VSET  
0
LDO1_EN  
R/W  
0b  
Enable LDO1 regulator:  
(Default from NVM memory)  
0b = LDO1 regulator is disabled  
1b = LDO1 regulator is enabled.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 185  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.30 LDO2_CTRL Register (Offset = 0x1E) [Reset = 0x60]  
LDO2_CTRL is shown in Figure 10-89 and described in Table 10-53.  
Return to the Table 10-22.  
Figure 10-89. LDO2_CTRL Register  
7
6
5
4
3
2
1
0
LDO2_RV_SEL  
LDO2_PLDN  
R/W-11b  
LDO2_VMON_  
EN  
RESERVED  
R/W-0b  
LDO2_SLOW_  
RAMP  
LDO2_EN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-53. LDO2_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_RV_SEL  
R/W  
0b  
Select residual voltage checking for LDO2 output pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6:5  
LDO2_PLDN  
R/W  
R/W  
11b  
0b  
Enable output pull-down resistor when LDO2 is disabled:  
(Default from NVM memory)  
0b = 50 kOhm  
1b = 125 Ohm  
10b = 250 Ohm  
11b = 500 Ohm  
4
LDO2_VMON_EN  
Enable LDO2 OV and UV comparators:  
(Default from NVM memory)  
0b = OV and UV comparators are disabled  
1b = OV and UV comparators are enabled.  
3:2  
1
RESERVED  
R/W  
R/W  
0b  
0b  
LDO2_SLOW_RAMP  
LDO2 startup slew rate selection  
0b = 25 mV/µs maximum ramp up slew rate for LDO output from  
0.3V to 90% of LDOn_VSET  
1b = 3 mV/µs maximun ramp up slew rate for LDO output from 0.3 V  
to 90% of LDOn_VSET  
0
LDO2_EN  
R/W  
0b  
Enable LDO2 regulator:  
(Default from NVM memory)  
0b = LDO1 regulator is disabled  
1b = LDO1 regulator is enabled.  
Copyright © 2021 Texas Instruments Incorporated  
186 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.31 LDO3_CTRL Register (Offset = 0x1F) [Reset = 0x60]  
LDO3_CTRL is shown in Figure 10-90 and described in Table 10-54.  
Return to the Table 10-22.  
Figure 10-90. LDO3_CTRL Register  
7
6
5
4
3
2
1
0
LDO3_RV_SEL  
LDO3_PLDN  
R/W-11b  
LDO3_VMON_  
EN  
RESERVED  
R/W-0b  
LDO3_SLOW_  
RAMP  
LDO3_EN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-54. LDO3_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO3_RV_SEL  
R/W  
0b  
Select residual voltage checking for LDO3 output pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6:5  
LDO3_PLDN  
R/W  
R/W  
11b  
0b  
Enable output pull-down resistor when LDO3 is disabled:  
(Default from NVM memory)  
0b = 50 kOhm  
1b = 125 Ohm  
10b = 250 Ohm  
11b = 500 Ohm  
4
LDO3_VMON_EN  
Enable LDO3 OV and UV comparators:  
(Default from NVM memory)  
0b = OV and UV comparators are disabled  
1b = OV and UV comparators are enabled.  
3:2  
1
RESERVED  
R/W  
R/W  
0b  
0b  
LDO3_SLOW_RAMP  
LDO3 startup slew rate selection  
0b = 25 mV/µs maximum ramp up slew rate for LDO output from  
0.3V to 90% of LDOn_VSET  
1b = 3 mV/µs maximum ramp up slew rate for LDO output from 0.3 V  
to 90% of LDOn_VSET  
0
LDO3_EN  
R/W  
0b  
Enable LDO3 regulator:  
(Default from NVM memory)  
0b = LDO1 regulator is disabled  
1b = LDO1 regulator is enabled.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 187  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.32 LDO4_CTRL Register (Offset = 0x20) [Reset = 0x60]  
LDO4_CTRL is shown in Figure 10-91 and described in Table 10-55.  
Return to the Table 10-22.  
Figure 10-91. LDO4_CTRL Register  
7
6
5
4
3
2
1
0
LDO4_RV_SEL  
LDO4_PLDN  
R/W-11b  
LDO4_VMON_  
EN  
RESERVED  
R/W-0b  
LDO4_SLOW_  
RAMP  
LDO4_EN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-55. LDO4_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO4_RV_SEL  
R/W  
0b  
Select residual voltage checking for LDO4 output pin.  
(Default from NVM memory)  
0b = Disabled  
1b = Enabled  
6:5  
LDO4_PLDN  
R/W  
R/W  
11b  
0b  
Enable output pull-down resistor when LDO4 is disabled:  
(Default from NVM memory)  
0b = 50 kOhm  
1b = 125 Ohm  
10b = 250 Ohm  
11b = 500 Ohm  
4
LDO4_VMON_EN  
Enable LDO4 OV and UV comparators:  
(Default from NVM memory)  
0b = OV and UV comparators are disabled  
1b = OV and UV comparators are enabled.  
3:2  
1
RESERVED  
R/W  
R/W  
0b  
0b  
LDO4_SLOW_RAMP  
LDO4 startup slew rate selection  
0b = 25 mV/µs maximum ramp up slew rate for LDO output from 0.3  
V to 90% of LDOn_VSET  
1b = 3 mV/µs maximum ramp up slew rate for LDO output from 0.3 V  
to 90% of LDOn_VSET  
0
LDO4_EN  
R/W  
0b  
Enable LDO4 regulator:  
(Default from NVM memory)  
0b = LDO1 regulator is disabled  
1b = LDO1 regulator is enabled.  
Copyright © 2021 Texas Instruments Incorporated  
188 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.33 LDORTC_CTRL Register (Offset = 0x22) [Reset = 0x0]  
LDORTC_CTRL is shown in Figure 10-92 and described in Table 10-56.  
Return to the Table 10-22.  
Figure 10-92. LDORTC_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
LDORTC_DIS  
R/W-0b  
Table 10-56. LDORTC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:1  
0
RESERVED  
0b  
LDORTC_DIS  
0b  
Disable LDORTC regulator:  
0b = LDORTC regulator is enabled  
1b = LDORTC regulator is disabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 189  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.34 LDO1_VOUT Register (Offset = 0x23) [Reset = 0x0]  
LDO1_VOUT is shown in Figure 10-93 and described in Table 10-57.  
Return to the Table 10-22.  
Figure 10-93. LDO1_VOUT Register  
7
6
5
4
3
2
1
0
LDO1_BYPASS  
R/W-0b  
LDO1_VSET  
R/W-0b  
RESERVED  
R/W-0b  
Table 10-57. LDO1_VOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO1_BYPASS  
R/W  
0b  
Set LDO1 to bypass mode:  
(Default from NVM memory)  
0b = LDO is set to linear regulator mode.  
1b = LDO is set to bypass mode.  
6:1  
0
LDO1_VSET  
RESERVED  
R/W  
R/W  
0b  
0b  
Voltage selection for LDO regulator. See LDO regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
190 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.35 LDO2_VOUT Register (Offset = 0x24) [Reset = 0x0]  
LDO2_VOUT is shown in Figure 10-94 and described in Table 10-58.  
Return to the Table 10-22.  
Figure 10-94. LDO2_VOUT Register  
7
6
5
4
3
2
1
0
LDO2_BYPASS  
R/W-0b  
LDO2_VSET  
R/W-0b  
RESERVED  
R/W-0b  
Table 10-58. LDO2_VOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_BYPASS  
R/W  
0b  
Set LDO2 to bypass mode:  
(Default from NVM memory)  
0b = LDO is set to linear regulator mode.  
1b = LDO is set to bypass mode.  
6:1  
0
LDO2_VSET  
RESERVED  
R/W  
R/W  
0b  
0b  
Voltage selection for LDO regulator. See LDO regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 191  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.36 LDO3_VOUT Register (Offset = 0x25) [Reset = 0x0]  
LDO3_VOUT is shown in Figure 10-95 and described in Table 10-59.  
Return to the Table 10-22.  
Figure 10-95. LDO3_VOUT Register  
7
6
5
4
3
2
1
0
LDO3_BYPASS  
R/W-0b  
LDO3_VSET  
R/W-0b  
RESERVED  
R/W-0b  
Table 10-59. LDO3_VOUT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO3_BYPASS  
R/W  
0b  
Set LDO3 to bypass mode:  
(Default from NVM memory)  
0b = LDO is set to linear regulator mode.  
1b = LDO is set to bypass mode.  
6:1  
0
LDO3_VSET  
RESERVED  
R/W  
R/W  
0b  
0b  
Voltage selection for LDO regulator. See LDO regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
192 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.37 LDO4_VOUT Register (Offset = 0x26) [Reset = 0x0]  
LDO4_VOUT is shown in Figure 10-96 and described in Table 10-60.  
Return to the Table 10-22.  
Figure 10-96. LDO4_VOUT Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
LDO4_VSET  
R/W-0b  
Table 10-60. LDO4_VOUT Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
LDO4_VSET  
0b  
6:0  
0b  
Voltage selection for LDO regulator. See LDO regulators chapter for  
voltage levels.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 193  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.38 LDO1_PG_WINDOW Register (Offset = 0x27) [Reset = 0x0]  
LDO1_PG_WINDOW is shown in Figure 10-97 and described in Table 10-61.  
Return to the Table 10-22.  
Figure 10-97. LDO1_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
LDO1_UV_THR  
R/W-0b  
LDO1_OV_THR  
R/W-0b  
Table 10-61. LDO1_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
LDO1_UV_THR  
0b  
Powergood low threshold level for LDO1:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
LDO1_OV_THR  
R/W  
0b  
Powergood high threshold level for LDO1:  
(Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
194 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.39 LDO2_PG_WINDOW Register (Offset = 0x28) [Reset = 0x0]  
LDO2_PG_WINDOW is shown in Figure 10-98 and described in Table 10-62.  
Return to the Table 10-22.  
Figure 10-98. LDO2_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
LDO2_UV_THR  
R/W-0b  
LDO2_OV_THR  
R/W-0b  
Table 10-62. LDO2_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
LDO2_UV_THR  
0b  
Powergood low threshold level for LDO2:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
LDO2_OV_THR  
R/W  
0b  
Powergood high threshold level for LDO2:  
(Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 195  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.40 LDO3_PG_WINDOW Register (Offset = 0x29) [Reset = 0x0]  
LDO3_PG_WINDOW is shown in Figure 10-99 and described in Table 10-63.  
Return to the Table 10-22.  
Figure 10-99. LDO3_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
LDO3_UV_THR  
R/W-0b  
LDO3_OV_THR  
R/W-0b  
Table 10-63. LDO3_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
LDO3_UV_THR  
0b  
Powergood low threshold level for LDO3:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
LDO3_OV_THR  
R/W  
0b  
Powergood high threshold level for LDO3:  
Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
196 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.41 LDO4_PG_WINDOW Register (Offset = 0x2A) [Reset = 0x0]  
LDO4_PG_WINDOW is shown in Figure 10-100 and described in Table 10-64.  
Return to the Table 10-22.  
Figure 10-100. LDO4_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
LDO4_UV_THR  
R/W-0b  
LDO4_OV_THR  
R/W-0b  
Table 10-64. LDO4_PG_WINDOW Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5:3  
RESERVED  
0b  
LDO4_UV_THR  
0b  
Powergood low threshold level for LDO4:  
(Default from NVM memory)  
0b = -3% / -30 mV  
1b = -3.5% / -35 mV  
10b = -4% / -40 mV  
11b = -5% / -50 mV  
100b = -6% / -60 mV  
101b = -7% / -70 mV  
110b = -8% / -80 mV  
111b = -10% / -100 mV  
2:0  
LDO4_OV_THR  
R/W  
0b  
Powergood high threshold level for LDO4:  
(Default from NVM memory)  
0b = +3% / +30 mV  
1b = +3.5% / +35 mV  
10b = +4% / +40 mV  
11b = +5% / +50 mV  
100b = +6% / +60 mV  
101b = +7% / +70 mV  
110b = +8% / +80 mV  
111b = +10% / +100 mV  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 197  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.42 VCCA_VMON_CTRL Register (Offset = 0x2B) [Reset = 0x0]  
VCCA_VMON_CTRL is shown in Figure 10-101 and described in Table 10-65.  
Return to the Table 10-22.  
Figure 10-101. VCCA_VMON_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
VMON_DEGLIT  
CH_SEL  
RESERVED  
R/W-0b  
VCCA_VMON_  
EN  
R/W-0b  
R/W-0b  
Table 10-65. VCCA_VMON_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5
RESERVED  
R/W  
0b  
VMON_DEGLITCH_SEL R/W  
0b  
Deglitch time select for BUCKx_VMON, LDOx_VMON and  
VCCA_VMON  
(Default from NVM memory)  
0b = 4 µs  
1b = 20 µs  
4:1  
0
RESERVED  
R/W  
R/W  
0b  
0b  
VCCA_VMON_EN  
Enable VCCA OV and UV comparators:  
(Default from NVM memory)  
0b = OV and UV comparators are disabled  
1b = OV and UV comparators are enabled.  
Copyright © 2021 Texas Instruments Incorporated  
198 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.43 VCCA_PG_WINDOW Register (Offset = 0x2C) [Reset = 0x40]  
VCCA_PG_WINDOW is shown in Figure 10-102 and described in Table 10-66.  
Return to the Table 10-22.  
Figure 10-102. VCCA_PG_WINDOW Register  
7
6
5
4
3
2
1
0
RESERVED  
VCCA_PG_SE  
T
VCCA_UV_THR  
VCCA_OV_THR  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
Table 10-66. VCCA_PG_WINDOW Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
6
VCCA_PG_SET  
1b  
Powergood level for VCCA pin:  
(Default from NVM memory)  
0b = 3.3 V  
1b = 5.0 V  
5:3  
VCCA_UV_THR  
R/W  
0b  
Powergood low threshold level for VCCA pin:  
(Default from NVM memory)  
0b = -3%  
1b = -3.5%  
10b = -4%  
11b = -5%  
100b = -6%  
101b = -7%  
110b = -8%  
111b = -10%  
2:0  
VCCA_OV_THR  
R/W  
0b  
Powergood high threshold level for VCCA pin:  
(Default from NVM memory)  
0b = +3%  
1b = +3.5%  
10b = +4%  
11b = +5%  
100b = +6%  
101b = +7%  
110b = +8%  
111b = +10%  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 199  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.44 GPIO1_CONF Register (Offset = 0x31) [Reset = 0xA]  
GPIO1_CONF is shown in Figure 10-103 and described in Table 10-67.  
Return to the Table 10-22.  
Figure 10-103. GPIO1_CONF Register  
7
6
5
4
3
2
1
0
GPIO1_SEL  
GPIO1_DEGLIT GPIO1_PU_PD GPIO1_PU_SE  
GPIO1_OD  
GPIO1_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-67. GPIO1_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO1_SEL  
R/W  
0b  
GPIO1 signal function:  
(Default from NVM memory)  
0b = GPIO1  
1b = TPS6594: SCL_I2C2/CS_SPI, TPS6593: CS_SPI  
10b = NRSTOUT_SOC  
11b = NRSTOUT_SOC  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO1_DEGLITCH_EN  
GPIO1_PU_PD_EN  
GPIO1_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO1 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO1 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO1 pin pull-up/pull-down resistor:  
GPIO1_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO1_OD  
GPIO1_DIR  
R/W  
R/W  
1b  
0b  
GPIO1 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO1 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
200 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.45 GPIO2_CONF Register (Offset = 0x32) [Reset = 0xA]  
GPIO2_CONF is shown in Figure 10-104 and described in Table 10-68.  
Return to the Table 10-22.  
Figure 10-104. GPIO2_CONF Register  
7
6
5
4
3
2
1
0
GPIO2_SEL  
GPIO2_DEGLIT GPIO2_PU_PD GPIO2_PU_SE  
GPIO2_OD  
GPIO2_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-68. GPIO2_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO2_SEL  
R/W  
0b  
GPIO2 signal function:  
(Default from NVM memory)  
0b = GPIO2  
1b = TRIG_WDOG  
10b = TPS6594: SDA_I2C2/SDO_SPI, TPS6593: SDO_SPI  
11b = TPS6594: SDA_I2C2/SDO_SPI, TPS6593: SDO_SPI  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO2_DEGLITCH_EN  
GPIO2_PU_PD_EN  
GPIO2_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO2 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO2 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO2 pin pull-up/pull-down resistor:  
GPIO2_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO2_OD  
GPIO2_DIR  
R/W  
R/W  
1b  
0b  
GPIO2 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO2 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 201  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.46 GPIO3_CONF Register (Offset = 0x33) [Reset = 0xA]  
GPIO3_CONF is shown in Figure 10-105 and described in Table 10-69.  
Return to the Table 10-22.  
Figure 10-105. GPIO3_CONF Register  
7
6
5
4
3
2
1
0
GPIO3_SEL  
GPIO3_DEGLIT GPIO3_PU_PD GPIO3_PU_SE  
GPIO3_OD  
GPIO3_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-69. GPIO3_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO3_SEL  
R/W  
0b  
GPIO3 signal function:  
(Default from NVM memory)  
0b = GPIO3  
1b = CLK32KOUT  
10b = TPS6594: NERR_SOC, TPS6593: reserved  
11b = TPS6594: NERR_SOC, TPS6593: reserved  
100b = NSLEEP1  
101b = NSLEEP2  
110b = LP_WKUP1  
111b = LP_WKUP2  
4
3
2
GPIO3_DEGLITCH_EN  
GPIO3_PU_PD_EN  
GPIO3_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO3 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO3 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO3 pin pull-up/pull-down resistor:  
GPIO3_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO3_OD  
GPIO3_DIR  
R/W  
R/W  
1b  
0b  
GPIO3 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO3 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
202 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.47 GPIO4_CONF Register (Offset = 0x34) [Reset = 0xA]  
GPIO4_CONF is shown in Figure 10-106 and described in Table 10-70.  
Return to the Table 10-22.  
Figure 10-106. GPIO4_CONF Register  
7
6
5
4
3
2
1
0
GPIO4_SEL  
GPIO4_DEGLIT GPIO4_PU_PD GPIO4_PU_SE  
GPIO4_OD  
GPIO4_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-70. GPIO4_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO4_SEL  
R/W  
0b  
GPIO4 signal function:  
(Default from NVM memory)  
0b = GPIO4  
1b = CLK32KOUT  
10b = CLK32KOUT  
11b = CLK32KOUT  
100b = NSLEEP1  
101b = NSLEEP2  
110b = LP_WKUP1  
111b = LP_WKUP2  
4
3
2
GPIO4_DEGLITCH_EN  
GPIO4_PU_PD_EN  
GPIO4_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO4 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO4 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO4 pin pull-up/pull-down resistor:  
GPIO4_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO4_OD  
GPIO4_DIR  
R/W  
R/W  
1b  
0b  
GPIO4 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO4 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 203  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.48 GPIO5_CONF Register (Offset = 0x35) [Reset = 0xA]  
GPIO5_CONF is shown in Figure 10-107 and described in Table 10-71.  
Return to the Table 10-22.  
Figure 10-107. GPIO5_CONF Register  
7
6
5
4
3
2
1
0
GPIO5_SEL  
GPIO5_DEGLIT GPIO5_PU_PD GPIO5_PU_SE  
GPIO5_OD  
GPIO5_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-71. GPIO5_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO5_SEL  
R/W  
0b  
GPIO5 signal function:  
(Default from NVM memory)  
0b = GPIO5  
1b = SCLK_SPMI  
10b = SCLK_SPMI  
11b = SCLK_SPMI  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO5_DEGLITCH_EN  
GPIO5_PU_PD_EN  
GPIO5_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO5 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO5 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO5 pin pull-up/pull-down resistor:  
GPIO5_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO5_OD  
GPIO5_DIR  
R/W  
R/W  
1b  
0b  
GPIO5 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO5 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
204 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.49 GPIO6_CONF Register (Offset = 0x36) [Reset = 0xA]  
GPIO6_CONF is shown in Figure 10-108 and described in Table 10-72.  
Return to the Table 10-22.  
Figure 10-108. GPIO6_CONF Register  
7
6
5
4
3
2
1
0
GPIO6_SEL  
GPIO6_DEGLIT GPIO6_PU_PD GPIO6_PU_SE  
GPIO6_OD  
GPIO6_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-72. GPIO6_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO6_SEL  
R/W  
0b  
GPIO6 signal function:  
(Default from NVM memory)  
0b = GPIO6  
1b = SDATA_SPMI  
10b = SDATA_SPMI  
11b = SDATA_SPMI  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO6_DEGLITCH_EN  
GPIO6_PU_PD_EN  
GPIO6_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO6 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO6 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO6 pin pull-up/pull-down resistor:  
GPIO6_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO6_OD  
GPIO6_DIR  
R/W  
R/W  
1b  
0b  
GPIO6 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO6 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 205  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.50 GPIO7_CONF Register (Offset = 0x37) [Reset = 0xA]  
GPIO7_CONF is shown in Figure 10-109 and described in Table 10-73.  
Return to the Table 10-22.  
Figure 10-109. GPIO7_CONF Register  
7
6
5
4
3
2
1
0
GPIO7_SEL  
GPIO7_DEGLIT GPIO7_PU_PD GPIO7_PU_SE  
GPIO7_OD  
GPIO7_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-73. GPIO7_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO7_SEL  
R/W  
0b  
GPIO7 signal function:  
(Default from NVM memory)  
0b = GPIO7  
1b = TPS6594: NERR_MCU, TPS6593: reserved  
10b = TPS6594: NERR_MCU, TPS6593: reserved  
11b = TPS6594: NERR_MCU, TPS6593: reserved  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO7_DEGLITCH_EN  
GPIO7_PU_PD_EN  
GPIO7_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO7 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO7 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO7 pin pull-up/pull-down resistor:  
GPIO7_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO7_OD  
GPIO7_DIR  
R/W  
R/W  
1b  
0b  
GPIO7 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO7 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
206 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.51 GPIO8_CONF Register (Offset = 0x38) [Reset = 0xA]  
GPIO8_CONF is shown in Figure 10-110 and described in Table 10-74.  
Return to the Table 10-22.  
Figure 10-110. GPIO8_CONF Register  
7
6
5
4
3
2
1
0
GPIO8_SEL  
GPIO8_DEGLIT GPIO8_PU_PD GPIO8_PU_SE  
GPIO8_OD  
GPIO8_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-74. GPIO8_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO8_SEL  
R/W  
0b  
GPIO8 signal function:  
(Default from NVM memory)  
0b = GPIO8  
1b = CLK32KOUT  
10b = SYNCCLKOUT  
11b = TPS6594: DISABLE_WDOG, TPS6593: reserved  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO8_DEGLITCH_EN  
GPIO8_PU_PD_EN  
GPIO8_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO8 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO8 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO8 pin pull-up/pull-down resistor:  
GPIO8_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO8_OD  
GPIO8_DIR  
R/W  
R/W  
1b  
0b  
GPIO8 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO8 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 207  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.52 GPIO9_CONF Register (Offset = 0x39) [Reset = 0xA]  
GPIO9_CONF is shown in Figure 10-111 and described in Table 10-75.  
Return to the Table 10-22.  
Figure 10-111. GPIO9_CONF Register  
7
6
5
4
3
2
1
0
GPIO9_SEL  
GPIO9_DEGLIT GPIO9_PU_PD GPIO9_PU_SE  
GPIO9_OD  
GPIO9_DIR  
CH_EN  
_EN  
L
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-75. GPIO9_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
GPIO9_SEL  
R/W  
0b  
GPIO9 signal function:  
(Default from NVM memory)  
0b = GPIO9  
1b = PGOOD  
10b = TPS6594: DISABLE_WDOG, TPS6593: reserved  
11b = SYNCCLKOUT  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO9_DEGLITCH_EN  
GPIO9_PU_PD_EN  
GPIO9_PU_SEL  
R/W  
R/W  
R/W  
0b  
1b  
0b  
GPIO9 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
Control for GPIO9 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO9 pin pull-up/pull-down resistor:  
GPIO9_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO9_OD  
GPIO9_DIR  
R/W  
R/W  
1b  
0b  
GPIO9 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO9 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
208 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.53 GPIO10_CONF Register (Offset = 0x3A) [Reset = 0xA]  
GPIO10_CONF is shown in Figure 10-112 and described in Table 10-76.  
Return to the Table 10-22.  
Figure 10-112. GPIO10_CONF Register  
7
6
5
4
3
2
1
0
GPIO10_SEL  
GPIO10_DEGLI GPIO10_PU_P GPIO10_PU_S  
GPIO10_OD  
GPIO10_DIR  
TCH_EN  
D_EN  
EL  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-76. GPIO10_CONF Register Field Descriptions  
Bit  
Field  
GPIO10_SEL  
Type  
Reset  
Description  
7:5  
R/W  
0b  
GPIO10 signal function:  
(Default from NVM memory)  
0b = GPIO10  
1b = SYNCCLKIN  
10b = SYNCCLKOUT  
11b = CLK32KOUT  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO10_DEGLITCH_EN R/W  
0b  
1b  
0b  
GPIO10 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
GPIO10_PU_PD_EN  
GPIO10_PU_SEL  
R/W  
R/W  
Control for GPIO10 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO10 pin pull-up/pull-down resistor:  
GPIO10_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO10_OD  
GPIO10_DIR  
R/W  
R/W  
1b  
0b  
GPIO10 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO10 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 209  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.54 GPIO11_CONF Register (Offset = 0x3B) [Reset = 0xA]  
GPIO11_CONF is shown in Figure 10-113 and described in Table 10-77.  
Return to the Table 10-22.  
Figure 10-113. GPIO11_CONF Register  
7
6
5
4
3
2
1
0
GPIO11_SEL  
GPIO11_DEGLI GPIO11_PU_P GPIO11_PU_S  
GPIO11_OD  
GPIO11_DIR  
TCH_EN  
D_EN  
EL  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-77. GPIO11_CONF Register Field Descriptions  
Bit  
Field  
GPIO11_SEL  
Type  
Reset  
Description  
7:5  
R/W  
0b  
GPIO11 signal function:  
(Default from NVM memory)  
0b = GPIO11  
1b = TRIG_WDOG  
10b = NRSTOUT_SOC  
11b = NRSTOUT_SOC  
100b = NSLEEP1  
101b = NSLEEP2  
110b = WKUP1  
111b = WKUP2  
4
3
2
GPIO11_DEGLITCH_EN R/W  
0b  
1b  
0b  
GPIO11 signal deglitch time when signal direction is input:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time.  
GPIO11_PU_PD_EN  
GPIO11_PU_SEL  
R/W  
R/W  
Control for GPIO11 pin pull-up/pull-down resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for GPIO11 pin pull-up/pull-down resistor:  
GPIO11_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
GPIO11_OD  
GPIO11_DIR  
R/W  
R/W  
1b  
0b  
GPIO11 signal type when configured to output:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
GPIO11 signal direction:  
(Default from NVM memory)  
0b = Input  
1b = Output  
Copyright © 2021 Texas Instruments Incorporated  
210 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.55 NPWRON_CONF Register (Offset = 0x3C) [Reset = 0x88]  
NPWRON_CONF is shown in Figure 10-114 and described in Table 10-78.  
Return to the Table 10-22.  
Figure 10-114. NPWRON_CONF Register  
7
6
5
4
3
2
1
0
NPWRON_SEL  
R/W-10b  
ENABLE_POL ENABLE_DEGL ENABLE_PU_P ENABLE_PU_S RESERVED  
NRSTOUT_OD  
ITCH_EN  
D_EN  
EL  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-78. NPWRON_CONF Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
NPWRON_SEL  
R/W  
10b  
NPWRON/ENABLE signal function:  
(Default from NVM memory)  
0b = ENABLE  
1b = NPWRON  
10b = None  
11b = None  
5
4
ENABLE_POL  
R/W  
0b  
0b  
Control for ENABLE pin polarity:  
(Default from NVM memory)  
0b = Active high  
1b = Active low  
ENABLE_DEGLITCH_EN R/W  
NPWRON/ENABLE signal deglitch time:  
(Default from NVM memory)  
0b = No deglitch, only synchronization.  
1b = 8 µs deglitch time when ENABLE, 50 ms deglitch time when  
NPWRON.  
3
2
ENABLE_PU_PD_EN  
ENABLE_PU_SEL  
R/W  
R/W  
1b  
0b  
Control for NPWRON/ENABLE pin pull-up resistor:  
(Default from NVM memory)  
0b = Pull-up/pull-down resistor disabled  
1b = Pull-up/pull-down resistor enabled  
Control for NPWRON/ENABLE pin pull-down resistor:  
ENABLE_PU_PD_EN must be 1 to select the resistor.  
(Default from NVM memory)  
0b = Pull-down resistor selected  
1b = Pull-up resistor selected  
1
0
RESERVED  
R/W  
R/W  
0b  
0b  
NRSTOUT_OD  
NRSTOUT signal type:  
(Default from NVM memory)  
0b = Push-pull output  
1b = Open-drain output  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
211  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.56 GPIO_OUT_1 Register (Offset = 0x3D) [Reset = 0x0]  
GPIO_OUT_1 is shown in Figure 10-115 and described in Table 10-79.  
Return to the Table 10-22.  
Figure 10-115. GPIO_OUT_1 Register  
7
6
5
4
3
2
1
0
GPIO8_OUT  
R/W-0b  
GPIO7_OUT  
R/W-0b  
GPIO6_OUT  
R/W-0b  
GPIO5_OUT  
R/W-0b  
GPIO4_OUT  
R/W-0b  
GPIO3_OUT  
R/W-0b  
GPIO2_OUT  
R/W-0b  
GPIO1_OUT  
R/W-0b  
Table 10-79. GPIO_OUT_1 Register Field Descriptions  
Bit  
Field  
GPIO8_OUT  
Type  
Reset  
Description  
7
R/W  
0b  
Control for GPIO8 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
6
5
4
3
2
1
0
GPIO7_OUT  
GPIO6_OUT  
GPIO5_OUT  
GPIO4_OUT  
GPIO3_OUT  
GPIO2_OUT  
GPIO1_OUT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Control for GPIO7 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO6 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO5 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO4 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO3 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO2 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO1 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Copyright © 2021 Texas Instruments Incorporated  
212 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.57 GPIO_OUT_2 Register (Offset = 0x3E) [Reset = 0x0]  
GPIO_OUT_2 is shown in Figure 10-116 and described in Table 10-80.  
Return to the Table 10-22.  
Figure 10-116. GPIO_OUT_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
GPIO11_OUT  
R/W-0b  
GPIO10_OUT  
R/W-0b  
GPIO9_OUT  
R/W-0b  
Table 10-80. GPIO_OUT_2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:3  
2
RESERVED  
0b  
GPIO11_OUT  
0b  
Control for GPIO11 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
1
0
GPIO10_OUT  
GPIO9_OUT  
R/W  
R/W  
0b  
0b  
Control for GPIO10 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Control for GPIO9 signal when configured to GPIO Output:  
(Default from NVM memory)  
0b = Low  
1b = High  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 213  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.58 GPIO_IN_1 Register (Offset = 0x3F) [Reset = 0x0]  
GPIO_IN_1 is shown in Figure 10-117 and described in Table 10-81.  
Return to the Table 10-22.  
Figure 10-117. GPIO_IN_1 Register  
7
6
5
4
3
2
1
0
GPIO8_IN  
R-0b  
GPIO7_IN  
R-0b  
GPIO6_IN  
R-0b  
GPIO5_IN  
R-0b  
GPIO4_IN  
R-0b  
GPIO3_IN  
R-0b  
GPIO2_IN  
R-0b  
GPIO1_IN  
R-0b  
Table 10-81. GPIO_IN_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_IN  
GPIO7_IN  
GPIO6_IN  
GPIO5_IN  
GPIO4_IN  
GPIO3_IN  
GPIO2_IN  
GPIO1_IN  
R
0b  
Level of GPIO8 signal:  
0b = Low  
1b = High  
6
5
4
3
2
1
0
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Level of GPIO7 signal:  
0b = Low  
1b = High  
Level of GPIO6 signal:  
0b = Low  
1b = High  
Level of GPIO5 signal:  
0b = Low  
1b = High  
Level of GPIO4 signal:  
0b = Low  
1b = High  
Level of GPIO3 signal:  
0b = Low  
1b = High  
Level of GPIO2 signal:  
0b = Low  
1b = High  
Level of GPIO1 signal:  
0b = Low  
1b = High  
Copyright © 2021 Texas Instruments Incorporated  
214 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.59 GPIO_IN_2 Register (Offset = 0x40) [Reset = 0x0]  
GPIO_IN_2 is shown in Figure 10-118 and described in Table 10-82.  
Return to the Table 10-22.  
Figure 10-118. GPIO_IN_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
NPWRON_IN  
R-0b  
GPIO11_IN  
R-0b  
GPIO10_IN  
R-0b  
GPIO9_IN  
R-0b  
Table 10-82. GPIO_IN_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
R
0b  
NPWRON_IN  
R
0b  
Level of NPWRON/ENABLE signal:  
0b = Low  
1b = High  
2
1
0
GPIO11_IN  
GPIO10_IN  
GPIO9_IN  
R
R
R
0b  
0b  
0b  
Level of GPIO11 signal:  
0b = Low  
1b = High  
Level of GPIO10 signal:  
0b = Low  
1b = High  
Level of GPIO9 signal:  
0b = Low  
1b = High  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 215  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.60 RAIL_SEL_1 Register (Offset = 0x41) [Reset = 0x0]  
RAIL_SEL_1 is shown in Figure 10-119 and described in Table 10-83.  
Return to the Table 10-22.  
Figure 10-119. RAIL_SEL_1 Register  
7
6
5
4
3
2
1
0
BUCK4_GRP_SEL  
R/W-0b  
BUCK3_GRP_SEL  
R/W-0b  
BUCK2_GRP_SEL  
R/W-0b  
BUCK1_GRP_SEL  
R/W-0b  
Table 10-83. RAIL_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
3:2  
1:0  
BUCK4_GRP_SEL  
R/W  
0b  
Rail group selection for BUCK4:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
BUCK3_GRP_SEL  
BUCK2_GRP_SEL  
BUCK1_GRP_SEL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Rail group selection for BUCK3:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Rail group selection for BUCK2:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Rail group selection for BUCK1:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Copyright © 2021 Texas Instruments Incorporated  
216 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.61 RAIL_SEL_2 Register (Offset = 0x42) [Reset = 0x0]  
RAIL_SEL_2 is shown in Figure 10-120 and described in Table 10-84.  
Return to the Table 10-22.  
Figure 10-120. RAIL_SEL_2 Register  
7
6
5
4
3
2
1
0
LDO3_GRP_SEL  
LDO2_GRP_SEL  
R/W-0b  
LDO1_GRP_SEL  
R/W-0b  
BUCK5_GRP_SEL  
R/W-0b  
R/W-0b  
Table 10-84. RAIL_SEL_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
LDO3_GRP_SEL  
R/W  
0b  
Rail group selection for LDO3:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
5:4  
3:2  
1:0  
LDO2_GRP_SEL  
LDO1_GRP_SEL  
BUCK5_GRP_SEL  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Rail group selection for LDO2:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Rail group selection for LDO1:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Rail group selection for BUCK5:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 217  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.62 RAIL_SEL_3 Register (Offset = 0x43) [Reset = 0x0]  
RAIL_SEL_3 is shown in Figure 10-121 and described in Table 10-85.  
Return to the Table 10-22.  
Figure 10-121. RAIL_SEL_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
VCCA_GRP_SEL  
R/W-0b  
LDO4_GRP_SEL  
R/W-0b  
Table 10-85. RAIL_SEL_3 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:4  
3:2  
RESERVED  
0b  
VCCA_GRP_SEL  
0b  
Rail group selection for VCCA monitoring:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
1:0  
LDO4_GRP_SEL  
R/W  
0b  
Rail group selection for LDO4:  
(Default from NVM memory)  
0b = No group assigned  
1b = MCU rail group  
10b = SOC rail group  
11b = OTHER rail group  
Copyright © 2021 Texas Instruments Incorporated  
218 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.63 FSM_TRIG_SEL_1 Register (Offset = 0x44) [Reset = 0x0]  
FSM_TRIG_SEL_1 is shown in Figure 10-122 and described in Table 10-86.  
Return to the Table 10-22.  
Figure 10-122. FSM_TRIG_SEL_1 Register  
7
6
5
4
3
2
1
0
SEVERE_ERR_TRIG  
R/W-0b  
OTHER_RAIL_TRIG  
R/W-0b  
SOC_RAIL_TRIG  
R/W-0b  
MCU_RAIL_TRIG  
R/W-0b  
Table 10-86. FSM_TRIG_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
3:2  
1:0  
SEVERE_ERR_TRIG  
R/W  
0b  
Trigger selection for Severe Error:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
OTHER_RAIL_TRIG  
SOC_RAIL_TRIG  
MCU_RAIL_TRIG  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Trigger selection for OTHER rail group:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
Trigger selection for SOC rail group:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
Trigger selection for MCU rail group:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 219  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.64 FSM_TRIG_SEL_2 Register (Offset = 0x45) [Reset = 0x0]  
FSM_TRIG_SEL_2 is shown in Figure 10-123 and described in Table 10-87.  
Return to the Table 10-22.  
Figure 10-123. FSM_TRIG_SEL_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
MODERATE_ERR_TRIG  
R/W-0b  
Table 10-87. FSM_TRIG_SEL_2 Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:2  
1:0  
R/W  
0b  
MODERATE_ERR_TRIG R/W  
0b  
Trigger selection for Moderate Error:  
(Default from NVM memory)  
0b = Immediate shutdown  
1b = Orderly shutdown  
10b = MCU power error  
11b = SOC power error  
Copyright © 2021 Texas Instruments Incorporated  
220 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.65 FSM_TRIG_MASK_1 Register (Offset = 0x46) [Reset = 0x0]  
FSM_TRIG_MASK_1 is shown in Figure 10-124 and described in Table 10-88.  
Return to the Table 10-22.  
Figure 10-124. FSM_TRIG_MASK_1 Register  
7
6
5
4
3
2
1
0
GPIO4_FSM_M GPIO4_FSM_M GPIO3_FSM_M GPIO3_FSM_M GPIO2_FSM_M GPIO2_FSM_M GPIO1_FSM_M GPIO1_FSM_M  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-88. FSM_TRIG_MASK_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO4_FSM_MASK_POL R/W  
0b  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
6
5
4
3
2
1
0
GPIO4_FSM_MASK  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO3_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO3_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO2_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO2_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO1_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO1_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 221  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.66 FSM_TRIG_MASK_2 Register (Offset = 0x47) [Reset = 0x0]  
FSM_TRIG_MASK_2 is shown in Figure 10-125 and described in Table 10-89.  
Return to the Table 10-22.  
Figure 10-125. FSM_TRIG_MASK_2 Register  
7
6
5
4
3
2
1
0
GPIO8_FSM_M GPIO8_FSM_M GPIO7_FSM_M GPIO7_FSM_M GPIO6_FSM_M GPIO6_FSM_M GPIO5_FSM_M GPIO5_FSM_M  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
ASK_POL  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-89. FSM_TRIG_MASK_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_FSM_MASK_POL R/W  
0b  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
6
5
4
3
2
1
0
GPIO8_FSM_MASK  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO7_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO7_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO6_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO6_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO5_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO5_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
Copyright © 2021 Texas Instruments Incorporated  
222 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.67 FSM_TRIG_MASK_3 Register (Offset = 0x48) [Reset = 0x0]  
FSM_TRIG_MASK_3 is shown in Figure 10-126 and described in Table 10-90.  
Return to the Table 10-22.  
Figure 10-126. FSM_TRIG_MASK_3 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
GPIO11_FSM_ GPIO11_FSM_ GPIO10_FSM_ GPIO10_FSM_ GPIO9_FSM_M GPIO9_FSM_M  
MASK_POL  
MASK  
MASK_POL  
MASK  
ASK_POL  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-90. FSM_TRIG_MASK_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5
RESERVED  
R/W  
0b  
GPIO11_FSM_MASK_PO R/W  
L
0b  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
4
3
2
1
0
GPIO11_FSM_MASK  
R/W  
0b  
0b  
0b  
0b  
0b  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO10_FSM_MASK_PO R/W  
L
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO10_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
GPIO9_FSM_MASK_POL R/W  
FSM trigger masking polarity select for GPIOx:  
(Default from NVM memory)  
0b = Masking sets signal value to '0'  
1b = Masking sets signal value to '1'  
GPIO9_FSM_MASK  
R/W  
FSM trigger mask for GPIOx:  
(Default from NVM memory)  
0b = Not masked  
1b = Masked  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 223  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.68 MASK_BUCK1_2 Register (Offset = 0x49) [Reset = 0x0]  
MASK_BUCK1_2 is shown in Figure 10-127 and described in Table 10-91.  
Return to the Table 10-22.  
Figure 10-127. MASK_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_M RESERVED  
ASK  
BUCK2_UV_M BUCK2_OV_M BUCK1_ILIM_M RESERVED  
BUCK1_UV_M BUCK1_OV_M  
ASK  
ASK  
ASK  
ASK  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-91. MASK_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_MASK  
R/W  
0b  
Masking for BUCK2 current monitoring interrupt BUCK2_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK2_UV_MASK  
Masking of BUCK2 under-voltage detection interrupt  
BUCK2_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
BUCK2_OV_MASK  
BUCK1_ILIM_MASK  
R/W  
R/W  
0b  
0b  
Masking of BUCK2 over-voltage detection interrupt BUCK2_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking for BUCK1 current monitoring interrupt BUCK1_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK1_UV_MASK  
Masking of BUCK1 under-voltage detection interrupt  
BUCK1_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
BUCK1_OV_MASK  
R/W  
0b  
Masking of BUCK1 over-voltage detection interrupt BUCK1_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
224 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.69 MASK_BUCK3_4 Register (Offset = 0x4A) [Reset = 0x0]  
MASK_BUCK3_4 is shown in Figure 10-128 and described in Table 10-92.  
Return to the Table 10-22.  
Figure 10-128. MASK_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_M RESERVED  
ASK  
BUCK4_UV_M BUCK4_OV_M BUCK3_ILIM_M RESERVED  
BUCK3_UV_M BUCK3_OV_M  
ASK  
ASK  
ASK  
ASK  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-92. MASK_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_MASK  
R/W  
0b  
Masking for BUCK4 current monitoring interrupt BUCK4_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK4_UV_MASK  
Masking of BUCK4 under-voltage detection interrupt  
BUCK4_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
BUCK4_OV_MASK  
BUCK3_ILIM_MASK  
R/W  
R/W  
0b  
0b  
Masking of BUCK4 over-voltage detection interrupt BUCK4_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking for BUCK3 current monitoring interrupt BUCK3_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK3_UV_MASK  
Masking of BUCK3 under-voltage detection interrupt  
BUCK3_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
BUCK3_OV_MASK  
R/W  
0b  
Masking of BUCK3 over-voltage detection interrupt BUCK3_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 225  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.70 MASK_BUCK5 Register (Offset = 0x4B) [Reset = 0x0]  
MASK_BUCK5 is shown in Figure 10-129 and described in Table 10-93.  
Return to the Table 10-22.  
Figure 10-129. MASK_BUCK5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK5_ILIM_M RESERVED  
ASK  
BUCK5_UV_M BUCK5_OV_M  
ASK  
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-93. MASK_BUCK5 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:4  
3
RESERVED  
0b  
BUCK5_ILIM_MASK  
0b  
Masking for BUCK5 current monitoring interrupt BUCK5_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
BUCK5_UV_MASK  
Masking of BUCK5 under-voltage detection interrupt  
BUCK5_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
BUCK5_OV_MASK  
R/W  
0b  
Masking of BUCK5 over-voltage detection interrupt BUCK5_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
226 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.71 MASK_LDO1_2 Register (Offset = 0x4C) [Reset = 0x0]  
MASK_LDO1_2 is shown in Figure 10-130 and described in Table 10-94.  
Return to the Table 10-22.  
Figure 10-130. MASK_LDO1_2 Register  
7
6
5
4
3
2
1
0
LDO2_ILIM_MA RESERVED  
SK  
LDO2_UV_MA LDO2_OV_MA LDO1_ILIM_MA RESERVED  
LDO1_UV_MA LDO1_OV_MA  
SK  
SK  
SK  
SK  
SK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-94. MASK_LDO1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_ILIM_MASK  
R/W  
0b  
Masking for LDO2 current monitoring interrupt LDO2_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0b  
0b  
LDO2_UV_MASK  
Masking of LDO2 under-voltage detection interrupt LDO2_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
LDO2_OV_MASK  
LDO1_ILIM_MASK  
R/W  
R/W  
0b  
0b  
Masking of LDO2 over-voltage detection interrupt LDO2_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking for LDO1 current monitoring interrupt LDO1_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
LDO1_UV_MASK  
Masking of LDO1 under-voltage detection interrupt LDO1_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
LDO1_OV_MASK  
R/W  
0b  
Masking of LDO1 over-voltage detection interrupt LDO1_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 227  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.72 MASK_LDO3_4 Register (Offset = 0x4D) [Reset = 0x0]  
MASK_LDO3_4 is shown in Figure 10-131 and described in Table 10-95.  
Return to the Table 10-22.  
Figure 10-131. MASK_LDO3_4 Register  
7
6
5
4
3
2
1
0
LDO4_ILIM_MA RESERVED  
SK  
LDO4_UV_MA LDO4_OV_MA LDO3_ILIM_MA RESERVED  
LDO3_UV_MA LDO3_OV_MA  
SK  
SK  
SK  
SK  
SK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-95. MASK_LDO3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO4_ILIM_MASK  
R/W  
0b  
Masking for LDO4 current monitoring interrupt LDO4_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0b  
0b  
LDO4_UV_MASK  
Masking of LDO4 under-voltage detection interrupt LDO4_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
LDO4_OV_MASK  
LDO3_ILIM_MASK  
R/W  
R/W  
0b  
0b  
Masking of LDO4 over-voltage detection interrupt LDO4_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking for LDO3 current monitoring interrupt LDO3_ILIM_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
LDO3_UV_MASK  
Masking of LDO3 under-voltage detection interrupt LDO3_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
LDO3_OV_MASK  
R/W  
0b  
Masking of LDO3 over-voltage detection interrupt LDO3_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
228 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.73 MASK_VMON Register (Offset = 0x4E) [Reset = 0x0]  
MASK_VMON is shown in Figure 10-132 and described in Table 10-96.  
Return to the Table 10-22.  
Figure 10-132. MASK_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
VCCA_UV_MA VCCA_OV_MA  
SK  
SK  
R/W-0b  
R/W-0b  
Table 10-96. MASK_VMON Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:2  
1
RESERVED  
0b  
VCCA_UV_MASK  
0b  
Masking of VCCA under-voltage detection interrupt VCCA_UV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
VCCA_OV_MASK  
R/W  
0b  
Masking of VCCA over-voltage detection interrupt VCCA_OV_INT:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 229  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.74 MASK_GPIO1_8_FALL Register (Offset = 0x4F) [Reset = 0x0]  
MASK_GPIO1_8_FALL is shown in Figure 10-133 and described in Table 10-97.  
Return to the Table 10-22.  
Figure 10-133. MASK_GPIO1_8_FALL Register  
7
6
5
4
3
2
1
0
GPIO8_FALL_ GPIO7_FALL_ GPIO6_FALL_ GPIO5_FALL_ GPIO4_FALL_ GPIO3_FALL_ GPIO2_FALL_ GPIO1_FALL_  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-97. MASK_GPIO1_8_FALL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_FALL_MASK  
R/W  
0b  
Masking of interrupt for GPIO8 low state transition:  
This bit does not affect GPIO8_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
4
3
2
1
0
GPIO7_FALL_MASK  
GPIO6_FALL_MASK  
GPIO5_FALL_MASK  
GPIO4_FALL_MASK  
GPIO3_FALL_MASK  
GPIO2_FALL_MASK  
GPIO1_FALL_MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Masking of interrupt for GPIO7 low state transition:  
This bit does not affect GPIO7_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO6 low state transition:  
This bit does not affect GPIO6_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO5 low state transition:  
This bit does not affect GPIO5_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO4 low state transition:  
This bit does not affect GPIO4_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO3 low state transition:  
This bit does not affect GPIO3_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO2 low state transition:  
This bit does not affect GPIO2_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO1 low state transition:  
This bit does not affect GPIO1_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
230 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.75 MASK_GPIO1_8_RISE Register (Offset = 0x50) [Reset = 0x0]  
MASK_GPIO1_8_RISE is shown in Figure 10-134 and described in Table 10-98.  
Return to the Table 10-22.  
Figure 10-134. MASK_GPIO1_8_RISE Register  
7
6
5
4
3
2
1
0
GPIO8_RISE_ GPIO7_RISE_ GPIO6_RISE_ GPIO5_RISE_ GPIO4_RISE_ GPIO3_RISE_ GPIO2_RISE_ GPIO1_RISE_  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-98. MASK_GPIO1_8_RISE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_RISE_MASK  
R/W  
0b  
Masking of interrupt for GPIO8 high state transition:  
This bit does not affect GPIO8_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
4
3
2
1
0
GPIO7_RISE_MASK  
GPIO6_RISE_MASK  
GPIO5_RISE_MASK  
GPIO4_RISE_MASK  
GPIO3_RISE_MASK  
GPIO2_RISE_MASK  
GPIO1_RISE_MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Masking of interrupt for GPIO7 high state transition:  
This bit does not affect GPIO7_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO6 high state transition:  
This bit does not affect GPIO6_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO5 high state transition:  
This bit does not affect GPIO5_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO4 high state transition:  
This bit does not affect GPIO4_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO3 high state transition:  
This bit does not affect GPIO3_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO2 high state transition:  
This bit does not affect GPIO2_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO1 high state transition:  
This bit does not affect GPIO1_IN status bit in GPIO_IN_1 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 231  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.76 MASK_GPIO9_11 Register (Offset = 0x51) [Reset = 0x0]  
MASK_GPIO9_11 is shown in Figure 10-135 and described in Table 10-99.  
Return to the Table 10-22.  
Figure 10-135. MASK_GPIO9_11 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
GPIO11_RISE_ GPIO10_RISE_ GPIO9_RISE_ GPIO11_FALL_ GPIO10_FALL_ GPIO9_FALL_  
MASK  
MASK  
MASK  
MASK  
MASK  
MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-99. MASK_GPIO9_11 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5
RESERVED  
0b  
GPIO11_RISE_MASK  
0b  
Masking of interrupt for GPIO11 high state transition:  
This bit does not affect GPIO11_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
2
1
0
GPIO10_RISE_MASK  
GPIO9_RISE_MASK  
GPIO11_FALL_MASK  
GPIO10_FALL_MASK  
GPIO9_FALL_MASK  
R/W  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
0b  
Masking of interrupt for GPIO10 high state transition:  
This bit does not affect GPIO10_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO9 high state transition:  
This bit does not affect GPIO9_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO11 low state transition:  
This bit does not affect GPIO11_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO10 low state transition:  
This bit does not affect GPIO10_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of interrupt for GPIO9 low state transition:  
This bit does not affect GPIO9_IN status bit in GPIO_IN_2 register.  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
232 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.77 MASK_STARTUP Register (Offset = 0x52) [Reset = 0x0]  
MASK_STARTUP is shown in Figure 10-136 and described in Table 10-100.  
Return to the Table 10-22.  
Figure 10-136. MASK_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SOFT_REBOO  
T_MASK  
FSD_MASK  
RESERVED  
R/W-0b  
ENABLE_MAS NPWRON_STA  
K
RT_MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-100. MASK_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5
RESERVED  
0b  
SOFT_REBOOT_MASK  
0b  
Masking of SOFT_REBOOT_MASK interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
FSD_MASK  
R/W  
0b  
Masking of FSD_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
3:2  
1
RESERVED  
R/W  
R/W  
0b  
0b  
ENABLE_MASK  
Masking of ENABLE_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
NPWRON_START_MASK R/W  
0b  
Masking of NPWRON_START_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 233  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.78 MASK_MISC Register (Offset = 0x53) [Reset = 0x0]  
MASK_MISC is shown in Figure 10-137 and described in Table 10-101.  
Return to the Table 10-22.  
Figure 10-137. MASK_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
TWARN_MASK  
RESERVED EXT_CLK_MAS BIST_PASS_M  
K
ASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-101. MASK_MISC Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:4  
3
RESERVED  
0b  
TWARN_MASK  
0b  
Masking of TWARN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
EXT_CLK_MASK  
Masking of EXT_CLK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
BIST_PASS_MASK  
R/W  
0b  
Masking of BIST_PASS_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
234 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.79 MASK_MODERATE_ERR Register (Offset = 0x54) [Reset = 0x0]  
MASK_MODERATE_ERR is shown in Figure 10-138 and described in Table 10-102.  
Return to the Table 10-22.  
Figure 10-138. MASK_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
NRSTOUT_RE NINT_READBA NPWRON_LON SPMI_ERR_MA RESERVED  
REG_CRC_ER BIST_FAIL_MA  
RESERVED  
ADBACK_MAS  
K
CK_MASK  
G_MASK  
SK  
R_MASK  
SK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-102. MASK_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NRSTOUT_READBACK_ R/W  
MASK  
0b  
Masking of NRSTOUT_READBACK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
4
NINT_READBACK_MASK R/W  
NPWRON_LONG_MASK R/W  
0b  
0b  
0b  
Masking of NINT_READBACK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of NPWRON_LONG_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
SPMI_ERR_MASK  
R/W  
Masking of SPMI_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
3
2
RESERVED  
R/W  
R/W  
0b  
0b  
REG_CRC_ERR_MASK  
Masking of REG_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
1
0
BIST_FAIL_MASK  
RESERVED  
R/W  
R/W  
0b  
0b  
Masking of BIST_FAIL_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 235  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.80 MASK_FSM_ERR Register (Offset = 0x56) [Reset = 0x0]  
MASK_FSM_ERR is shown in Figure 10-139 and described in Table 10-103.  
Return to the Table 10-22.  
Figure 10-139. MASK_FSM_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SOC_PWR_ER MCU_PWR_ER ORD_SHUTDO IMM_SHUTDO  
R_MASK  
R_MASK  
WN_MASK  
WN_MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-103. MASK_FSM_ERR Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:4  
3
R/W  
0b  
SOC_PWR_ERR_MASK R/W  
0b  
Masking of SOC_PWR_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
0
MCU_PWR_ERR_MASK R/W  
0b  
0b  
0b  
Masking of MCU_PWR_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
ORD_SHUTDOWN_MAS R/W  
K
Masking of ORD_SHUTDOWN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
IMM_SHUTDOWN_MASK R/W  
Masking of IMM_SHUTDOWN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
236 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.81 MASK_COMM_ERR Register (Offset = 0x57) [Reset = 0x0]  
MASK_COMM_ERR is shown in Figure 10-140 and described in Table 10-104.  
Return to the Table 10-22.  
Figure 10-140. MASK_COMM_ERR Register  
7
6
5
4
3
2
1
0
I2C2_ADR_ER  
R_MASK  
RESERVED  
I2C2_CRC_ER  
R_MASK  
RESERVED  
COMM_ADR_E  
RR_MASK  
RESERVED COMM_CRC_E COMM_FRM_E  
RR_MASK  
RR_MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-104. MASK_COMM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C2_ADR_ERR_MASK  
R/W  
0b  
Masking of I2C2_ADR_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
6
5
RESERVED  
R/W  
R/W  
0b  
0b  
I2C2_CRC_ERR_MASK  
Masking of I2C2_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
RESERVED  
R/W  
0b  
0b  
COMM_ADR_ERR_MASK R/W  
Masking of COMM_ADR_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2
1
RESERVED  
R/W  
0b  
0b  
COMM_CRC_ERR_MAS R/W  
K
Masking of COMM_CRC_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
0
COMM_FRM_ERR_MAS R/W  
K
0b  
Masking of COMM_FRM_ERR_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 237  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.82 MASK_READBACK_ERR Register (Offset = 0x58) [Reset = 0x0]  
MASK_READBACK_ERR is shown in Figure 10-141 and described in Table 10-105.  
Return to the Table 10-22.  
Figure 10-141. MASK_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
NRSTOUT_SO  
C_READBACK  
_MASK  
RESERVED  
R/W-0b  
EN_DRV_REA  
DBACK_MASK  
R/W-0b  
R/W-0b  
Table 10-105. MASK_READBACK_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
R/W  
0b  
NRSTOUT_SOC_READB R/W  
ACK_MASK  
0b  
Masking of NRSTOUT_SOC_READBACK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
2:1  
0
RESERVED  
R/W  
0b  
0b  
EN_DRV_READBACK_M R/W  
ASK  
Masking of EN_DRV_READBACK_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
238 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.83 MASK_ESM Register (Offset = 0x59) [Reset = 0x0]  
MASK_ESM is shown in Figure 10-142 and described in Table 10-106.  
Return to the Table 10-22.  
Figure 10-142. MASK_ESM Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ESM_MCU_RS ESM_MCU_FAI ESM_MCU_PIN ESM_SOC_RS ESM_SOC_FAI ESM_SOC_PIN  
T_MASK  
L_MASK  
_MASK  
T_MASK  
L_MASK  
_MASK  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-106. MASK_ESM Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:6  
5
RESERVED  
0b  
ESM_MCU_RST_MASK  
0b  
Masking of ESM_MCU_RST_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
4
3
2
1
0
ESM_MCU_FAIL_MASK R/W  
0b  
0b  
0b  
0b  
0b  
Masking of ESM_MCU_FAIL_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
ESM_MCU_PIN_MASK  
ESM_SOC_RST_MASK  
ESM_SOC_FAIL_MASK  
ESM_SOC_PIN_MASK  
R/W  
R/W  
R/W  
R/W  
Masking of ESM_MCU_PIN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of ESM_SOC_RST_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of ESM_SOC_FAIL_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Masking of ESM_SOC_PIN_INT interrupt:  
(Default from NVM memory)  
0b = Interrupt generated  
1b = Interrupt not generated.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 239  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.84 INT_TOP Register (Offset = 0x5A) [Reset = 0x0]  
INT_TOP is shown in Figure 10-143 and described in Table 10-107.  
Return to the Table 10-22.  
Figure 10-143. INT_TOP Register  
7
6
5
4
3
2
1
0
FSM_ERR_INT SEVERE_ERR MODERATE_E  
MISC_INT  
STARTUP_INT  
GPIO_INT  
LDO_VMON_IN  
T
BUCK_INT  
_INT  
RR_INT  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 10-107. INT_TOP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
6
5
FSM_ERR_INT  
R
0b  
Interrupt indicating that INT_FSM_ERR register has pending  
interrupt. The reason for the interrupt is indicated in INT_FSM_ERR  
register.  
This bit is cleared automatically when INT_FSM_ERR register is  
cleared to 0x00.  
SEVERE_ERR_INT  
MODERATE_ERR_INT  
R
R
0b  
0b  
Interrupt indicating that INT_SEVERE_ERR register has pending  
interrupt. The reason for the interrupt is indicated in  
INT_SEVERE_ERR register.  
This bit is cleared automatically when INT_SEVERE_ERR register is  
cleared to 0x00.  
Interrupt indicating that INT_MODERATE_ERR register has  
pending interrupt. The reason for the interrupt is indicated in  
INT_MODERATE_ERR register.  
This bit is cleared automatically when INT_MODERATE_ERR  
register is cleared to 0x00.  
4
3
MISC_INT  
R
R
0b  
0b  
Interrupt indicating that INT_MISC register has pending interrupt.  
The reason for the interrupt is indicated in INT_MISC register.  
This bit is cleared automatically when INT_MISC register is cleared  
to 0x00.  
STARTUP_INT  
Interrupt indicating that INT_STARTUP register has pending  
interrupt. The reason for the interrupt is indicated in INT_STARTUP  
register.  
This bit is cleared automatically when INT_STARTUP register is  
cleared to 0x00.  
2
1
GPIO_INT  
R
R
0b  
0b  
Interrupt indicating that INT_GPIO register has pending interrupt.  
The reason for the interrupt is indicated in INT_GPIO register.  
This bit is cleared automatically when INT_GPIO register is cleared  
to 0x00.  
LDO_VMON_INT  
Interrupt indicating that INT_LDO_VMON register has pending  
interrupt. The reason for the interrupt is indicated in  
INT_LDO_VMON register.  
This bit is cleared automatically when INT_LDO_VMON register is  
cleared to 0x00.  
0
BUCK_INT  
R
0b  
Interrupt indicating that INT_BUCK register has pending interrupt.  
The reason for the interrupt is indicated in INT_BUCK register.  
This bit is cleared automatically when INT_BUCK register is cleared  
to 0x00.  
Copyright © 2021 Texas Instruments Incorporated  
240 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.85 INT_BUCK Register (Offset = 0x5B) [Reset = 0x0]  
INT_BUCK is shown in Figure 10-144 and described in Table 10-108.  
Return to the Table 10-22.  
Figure 10-144. INT_BUCK Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
BUCK5_INT  
R-0b  
BUCK3_4_INT BUCK1_2_INT  
R-0b R-0b  
Table 10-108. INT_BUCK Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
2
RESERVED  
BUCK5_INT  
R
0b  
R
0b  
Interrupt indicating that INT_BUCK5 register has pending interrupt.  
The reason for the interrupt is indicated in INT_BUCK5 register.  
This bit is cleared automatically when INT_BUCK5 register is cleared  
to 0x00.  
1
0
BUCK3_4_INT  
BUCK1_2_INT  
R
R
0b  
0b  
Interrupt indicating that INT_BUCK3_4 register has pending  
interrupt.  
This bit is cleared automatically when INT_BUCK3_4 register is  
cleared to 0x00.  
Interrupt indicating that INT_BUCK1_2 register has pending  
interrupt.  
This bit is cleared automatically when INT_BUCK1_2 register is  
cleared to 0x00.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 241  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.86 INT_BUCK1_2 Register (Offset = 0x5C) [Reset = 0x0]  
INT_BUCK1_2 is shown in Figure 10-145 and described in Table 10-109.  
Return to the Table 10-22.  
Figure 10-145. INT_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_I BUCK2_SC_IN BUCK2_UV_IN BUCK2_OV_IN BUCK1_ILIM_I BUCK1_SC_IN BUCK1_UV_IN BUCK1_OV_IN  
NT  
T
T
T
NT  
T
T
T
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-109. INT_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_INT  
R/W1C  
0b  
Latched status bit indicating that BUCK2 output current limit has  
been triggered.  
Write 1 to clear.  
6
BUCK2_SC_INT  
R/W1C  
0b  
Latched status bit indicating that the BUCK2 (or other regulators)  
output voltage has fallen below the 150 mV level during operation, or  
BUCK2 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
5
4
3
2
BUCK2_UV_INT  
BUCK2_OV_INT  
BUCK1_ILIM_INT  
BUCK1_SC_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that BUCK2 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK2 output over-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK1 output current limit has  
been triggered.  
Write 1 to clear.  
Latched status bit indicating that the BUCK1 (or other regulators)  
output voltage has fallen below the 150 mV level during operation, or  
BUCK1 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
1
0
BUCK1_UV_INT  
BUCK1_OV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that BUCK1 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK1 output over-voltage has  
been detected.  
Write 1 to clear.  
Copyright © 2021 Texas Instruments Incorporated  
242 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.87 INT_BUCK3_4 Register (Offset = 0x5D) [Reset = 0x0]  
INT_BUCK3_4 is shown in Figure 10-146 and described in Table 10-110.  
Return to the Table 10-22.  
Figure 10-146. INT_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_I BUCK4_SC_IN BUCK4_UV_IN BUCK4_OV_IN BUCK3_ILIM_I BUCK3_SC_IN BUCK3_UV_IN BUCK3_OV_IN  
NT  
T
T
T
NT  
T
T
T
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-110. INT_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_INT  
R/W1C  
0b  
Latched status bit indicating that BUCK4 output current limit has  
been triggered.  
Write 1 to clear.  
6
BUCK4_SC_INT  
R/W1C  
0b  
Latched status bit indicating that the BUCK4 (or other regulators)  
output voltage has fallen below the 150 mV level during operation, or  
BUCK4 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
5
4
3
2
BUCK4_UV_INT  
BUCK4_OV_INT  
BUCK3_ILIM_INT  
BUCK3_SC_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that BUCK4 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK4 output over-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK3 output current limit has  
been triggered.  
Write 1 to clear.  
Latched status bit indicating that the BUCK3 (or other regulators)  
output voltage has fallen below the 150 mV level during operation, or  
BUCK3 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
1
0
BUCK3_UV_INT  
BUCK3_OV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that BUCK3 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK3 output over-voltage has  
been detected.  
Write 1 to clear.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 243  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.88 INT_BUCK5 Register (Offset = 0x5E) [Reset = 0x0]  
INT_BUCK5 is shown in Figure 10-147 and described in Table 10-111.  
Return to the Table 10-22.  
Figure 10-147. INT_BUCK5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK5_ILIM_I BUCK5_SC_IN BUCK5_UV_IN BUCK5_OV_IN  
NT  
T
T
T
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-111. INT_BUCK5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
R/W  
0b  
BUCK5_ILIM_INT  
R/W1C  
0b  
Latched status bit indicating that BUCK5 output current limit has  
been triggered.  
Write 1 to clear.  
2
BUCK5_SC_INT  
R/W1C  
0b  
Latched status bit indicating that the BUCK5 (or other regulators)  
output voltage has fallen below the 150 mV level during operation, or  
BUCK5 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
1
0
BUCK5_UV_INT  
BUCK5_OV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that BUCK5 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that BUCK5 output over-voltage has  
been detected.  
Write 1 to clear.  
Copyright © 2021 Texas Instruments Incorporated  
244 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.89 INT_LDO_VMON Register (Offset = 0x5F) [Reset = 0x0]  
INT_LDO_VMON is shown in Figure 10-148 and described in Table 10-112.  
Return to the Table 10-22.  
Figure 10-148. INT_LDO_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
VCCA_INT  
R-0b  
RESERVED  
R-0b  
LDO3_4_INT  
R-0b  
LDO1_2_INT  
R-0b  
Table 10-112. INT_LDO_VMON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
4
RESERVED  
VCCA_INT  
R
0b  
R
0b  
Interrupt indicating that INT_VMON register has pending interrupt.  
The reason for the interrupt is indicated in INT_VMON register.  
This bit is cleared automatically when INT_VMON register is cleared  
to 0x00.  
3:2  
1
RESERVED  
LDO3_4_INT  
R
R
0b  
0b  
Interrupt indicating that INT_LDO3_4 register has pending interrupt.  
This bit is cleared automatically when INT_LDO3_4 register is  
cleared to 0x00.  
0
LDO1_2_INT  
R
0b  
Interrupt indicating that INT_LDO1_2 register has pending interrupt.  
This bit is cleared automatically when INT_LDO1_2 register is  
cleared to 0x00.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 245  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.90 INT_LDO1_2 Register (Offset = 0x60) [Reset = 0x0]  
INT_LDO1_2 is shown in Figure 10-149 and described in Table 10-113.  
Return to the Table 10-22.  
Figure 10-149. INT_LDO1_2 Register  
7
6
5
4
3
2
1
0
LDO2_ILIM_IN LDO2_SC_INT LDO2_UV_INT LDO2_OV_INT LDO1_ILIM_IN LDO1_SC_INT LDO1_UV_INT LDO1_OV_INT  
T
T
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-113. INT_LDO1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_ILIM_INT  
R/W1C  
0b  
Latched status bit indicating that LDO2 output current limit has been  
triggered.  
Write 1 to clear.  
6
LDO2_SC_INT  
R/W1C  
0b  
Latched status bit indicating that the LDO2 (or other regulators)  
output voltage has fallen below the 150 mV level during operation,  
or LDO2 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
5
4
3
2
LDO2_UV_INT  
LDO2_OV_INT  
LDO1_ILIM_INT  
LDO1_SC_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that LDO2 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that LDO2 output over-voltage has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that LDO1 output current limit has been  
triggered.  
Write 1 to clear.  
Latched status bit indicating that the LDO1 (or other regulators)  
output voltage has fallen below the 150 mV level during operation,  
or LDO1 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
1
0
LDO1_UV_INT  
LDO1_OV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that LDO1 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that LDO1 output over-voltage has been  
detected.  
Write 1 to clear.  
Copyright © 2021 Texas Instruments Incorporated  
246 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.91 INT_LDO3_4 Register (Offset = 0x61) [Reset = 0x0]  
INT_LDO3_4 is shown in Figure 10-150 and described in Table 10-114.  
Return to the Table 10-22.  
Figure 10-150. INT_LDO3_4 Register  
7
6
5
4
3
2
1
0
LDO4_ILIM_IN LDO4_SC_INT LDO4_UV_INT LDO4_OV_INT LDO3_ILIM_IN LDO3_SC_INT LDO3_UV_INT LDO3_OV_INT  
T
T
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-114. INT_LDO3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO4_ILIM_INT  
R/W1C  
0b  
Latched status bit indicating that LDO4 output current limit has been  
triggered.  
Write 1 to clear.  
6
LDO4_SC_INT  
R/W1C  
0b  
Latched status bit indicating that the LDO4 (or other regulators)  
output voltage has fallen below the 150 mV level during operation,  
or LDO4 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
5
4
3
2
LDO4_UV_INT  
LDO4_OV_INT  
LDO3_ILIM_INT  
LDO3_SC_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that LDO4 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that LDO4 output over-voltage has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that LDO3 output current limit has been  
triggered.  
Write 1 to clear.  
Latched status bit indicating that the LDO3 (or other regulators)  
output voltage has fallen below the 150 mV level during operation,  
or LDO3 (or other regulators) output is higher than the 150 mV level  
immediately after enable.  
Write 1 to clear.  
1
0
LDO3_UV_INT  
LDO3_OV_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that LDO3 output under-voltage has  
been detected.  
Write 1 to clear.  
Latched status bit indicating that LDO3 output over-voltage has been  
detected.  
Write 1 to clear.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 247  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.92 INT_VMON Register (Offset = 0x62) [Reset = 0x0]  
INT_VMON is shown in Figure 10-151 and described in Table 10-115.  
Return to the Table 10-22.  
Figure 10-151. INT_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
VCCA_UV_INT VCCA_OV_INT  
R/W1C-0b R/W1C-0b  
Table 10-115. INT_VMON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
RESERVED  
R/W  
0b  
VCCA_UV_INT  
R/W1C  
0b  
Latched status bit indicating that the VCCA input voltage has  
decreased below the under-voltage monitoring level. The actual  
status of the VCCA under-voltage monitoring is indicated by  
VCCA_UV_STAT bit.  
Write 1 to clear interrupt.  
0
VCCA_OV_INT  
R/W1C  
0b  
Latched status bit indicating that the VCCA input voltage has  
exceeded the over-voltage detection level. The actual status of the  
over-voltage is indicated by VCCA_OV_STAT bit.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
248 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.93 INT_GPIO Register (Offset = 0x63) [Reset = 0x0]  
INT_GPIO is shown in Figure 10-152 and described in Table 10-116.  
Return to the Table 10-22.  
Figure 10-152. INT_GPIO Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
GPIO1_8_INT  
R-0b  
GPIO11_INT  
R/W1C-0b  
GPIO10_INT  
R/W1C-0b  
GPIO9_INT  
R/W1C-0b  
Table 10-116. INT_GPIO Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R
Reset  
Description  
7:4  
3
RESERVED  
0b  
GPIO1_8_INT  
0b  
Interrupt indicating that INT_GPIO1_8 has pending interrupt. The  
reason for the interrupt is indicated in INT_GPIO1_8 register.  
This bit is cleared automatically when INT_GPIO1_8 register is  
cleared to 0x00.  
2
1
0
GPIO11_INT  
GPIO10_INT  
GPIO9_INT  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
Latched status bit indicating that GPIO11 has pending interrupt.  
GPIO11_IN bit in GPIO_IN_2 register shows the status of the  
GPIO11 signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO10 has pending interrupt.  
GPIO10_IN bit in GPIO_IN_2 register shows the status of the  
GPIO10 signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO9 has pending interrupt.  
GPIO9_IN bit in GPIO_IN_2 register shows the status of the GPIO9  
signal.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 249  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.94 INT_GPIO1_8 Register (Offset = 0x64) [Reset = 0x0]  
INT_GPIO1_8 is shown in Figure 10-153 and described in Table 10-117.  
Return to the Table 10-22.  
Figure 10-153. INT_GPIO1_8 Register  
7
6
5
4
3
2
1
0
GPIO8_INT  
R/W1C-0b  
GPIO7_INT  
R/W1C-0b  
GPIO6_INT  
R/W1C-0b  
GPIO5_INT  
R/W1C-0b  
GPIO4_INT  
R/W1C-0b  
GPIO3_INT  
R/W1C-0b  
GPIO2_INT  
R/W1C-0b  
GPIO1_INT  
R/W1C-0b  
Table 10-117. INT_GPIO1_8 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_INT  
GPIO7_INT  
GPIO6_INT  
GPIO5_INT  
GPIO4_INT  
GPIO3_INT  
GPIO2_INT  
GPIO1_INT  
R/W1C  
0b  
Latched status bit indicating that GPIO8 has has pending interrupt.  
GPIO8_IN bit in GPIO_IN_1 register shows the status of the GPIO8  
signal.  
Write 1 to clear interrupt.  
6
5
4
3
2
1
0
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Latched status bit indicating that GPIO7 has has pending interrupt.  
GPIO7_IN bit in GPIO_IN_1 register shows the status of the GPIO7  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO6 has has pending interrupt.  
GPIO6_IN bit in GPIO_IN_1 register shows the status of the GPIO6  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO5 has has pending interrupt.  
GPIO5_IN bit in GPIO_IN_1 register shows the status of the GPIO5  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO4 has has pending interrupt.  
GPIO4_IN bit in GPIO_IN_1 register shows the status of the GPIO4  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO3 has has pending interrupt.  
GPIO3_IN bit in GPIO_IN_1 register shows the status of the GPIO3  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO2 has pending interrupt.  
GPIO2_IN bit in GPIO_IN_1 register shows the status of the GPIO2  
signal.  
Write 1 to clear interrupt.  
Latched status bit indicating that GPIO1 has pending interrupt.  
GPIO1_IN bit in GPIO_IN_1 register shows the status of the GPIO1  
signal.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
250 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.95 INT_STARTUP Register (Offset = 0x65) [Reset = 0x0]  
INT_STARTUP is shown in Figure 10-154 and described in Table 10-118.  
Return to the Table 10-22.  
Figure 10-154. INT_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SOFT_REBOO  
T_INT  
FSD_INT  
RESERVED  
RTC_INT  
ENABLE_INT NPWRON_STA  
RT_INT  
R/W1C-0b  
R/W1C-0b  
R/W-0b  
R-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-118. INT_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5
RESERVED  
R/W  
0b  
SOFT_REBOOT_INT  
R/W1C  
0b  
Latched status bit indicating that soft reboot event has been  
detected.  
Write 1 to clear.  
4
FSD_INT  
R/W1C  
0b  
Latched status bit indicating that PMIC has started from  
NO_SUPPLY or BACKUP state (first supply dectection).  
Write 1 to clear.  
3
2
RESERVED  
RTC_INT  
R/W  
R
0b  
0b  
Latched status bit indicating that RTC_STATUS register has pending  
interrupt.  
This bit is cleared automatically when ALARM and TIMER interrupts  
are cleared.  
1
0
ENABLE_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that ENABLE pin active event has been  
detected.  
Write 1 to clear.  
NPWRON_START_INT  
Latched status bit indicating that NPWRON startup event has been  
detected.  
Write 1 to clear.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 251  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.96 INT_MISC Register (Offset = 0x66) [Reset = 0x0]  
INT_MISC is shown in Figure 10-155 and described in Table 10-119.  
Return to the Table 10-22.  
Figure 10-155. INT_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
TWARN_INT  
RESERVED  
EXT_CLK_INT BIST_PASS_IN  
T
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-119. INT_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
TWARN_INT  
R/W  
0b  
R/W1C  
0b  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal warning level. The actual status of the thermal  
warning is indicated by TWARN_STAT bit in STAT_MISC register.  
Write 1 to clear interrupt.  
2
1
RESERVED  
R/W  
0b  
0b  
EXT_CLK_INT  
R/W1C  
Latched status bit indicating that external clock is not valid.  
Internal clock is automatically taken into use.  
Write 1 to clear.  
0
BIST_PASS_INT  
R/W1C  
0b  
Latched status bit indicating that BIST has been completed.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
252 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.97 INT_MODERATE_ERR Register (Offset = 0x67) [Reset = 0x0]  
INT_MODERATE_ERR is shown in Figure 10-156 and described in Table 10-120.  
Return to the Table 10-22.  
Figure 10-156. INT_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
NRSTOUT_RE NINT_READBA NPWRON_LON SPMI_ERR_IN RECOV_CNT_I REG_CRC_ER BIST_FAIL_INT TSD_ORD_INT  
ADBACK_INT  
CK_INT  
G_INT  
T
NT  
R_INT  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-120. INT_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NRSTOUT_READBACK_I R/W1C  
NT  
0b  
Latched status bit indicating that NRSTOUT readback error has been  
detected.  
Write 1 to clear interrupt.  
6
5
4
3
2
1
0
NINT_READBACK_INT  
NPWRON_LONG_INT  
SPMI_ERR_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
Latched status bit indicating that NINT readback error has been  
detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that NPWRON long press has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that the SPMI communication interface  
has detected an error.  
Write 1 to clear interrupt.  
RECOV_CNT_INT  
REG_CRC_ERR_INT  
BIST_FAIL_INT  
Latched status bit indicating that RECOV_CNT has reached the limit  
(RECOV_CNT_THR).  
Write 1 to clear.  
Latched status bit indicating that the register CRC checking has  
detected an error.  
Write 1 to clear interrupt.  
Latched status bit indicating that the LBIST or ABIST has detected  
an error.  
Write 1 to clear interrupt.  
TSD_ORD_INT  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal level causing a sequenced shutdown. The  
regulators have been disabled. The regulators cannot be enabled if  
this bit is active. The actual status of the temperature is indicated by  
TSD_ORD_STAT bit in STAT_MODERATE_ERR register.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 253  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.98 INT_SEVERE_ERR Register (Offset = 0x68) [Reset = 0x0]  
INT_SEVERE_ERR is shown in Figure 10-157 and described in Table 10-121.  
Return to the Table 10-22.  
Figure 10-157. INT_SEVERE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
PFSM_ERR_IN VCCA_OVP_IN TSD_IMM_INT  
T
T
R/W-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-121. INT_SEVERE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:3  
2
RESERVED  
R/W  
0b  
PFSM_ERR_INT  
R/W1C  
0b  
Latched status bit indicating that the PFSM sequencer has detected  
an error.  
Write 1 to clear interrupt.  
1
0
VCCA_OVP_INT  
TSD_IMM_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit indicating that the VCCA input voltage has  
exceeded the over-voltage threshold level causing an immediate  
shutdown. The regulators have been disabled.  
Write 1 to clear interrupt.  
Latched status bit indicating that the die junction temperature has  
exceeded the thermal level causing an immediate shutdown. The  
regulators have been disabled. The regulators cannot be enabled if  
this bit is active. The actual status of the temperature is indicated by  
TSD_IMM_STAT bit in THER_CLK_STATUS register.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
254 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.99 INT_FSM_ERR Register (Offset = 0x69) [Reset = 0x0]  
INT_FSM_ERR is shown in Figure 10-158 and described in Table 10-122.  
Return to the Table 10-22.  
Figure 10-158. INT_FSM_ERR Register  
7
6
5
4
3
2
1
0
WD_INT  
ESM_INT  
READBACK_E COMM_ERR_I SOC_PWR_ER MCU_PWR_ER ORD_SHUTDO IMM_SHUTDO  
RR_INT  
NT  
R_INT  
R_INT  
WN_INT  
WN_INT  
R-0b  
R-0b  
R-0b  
R-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-122. INT_FSM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WD_INT  
R
0b  
Interrupt indicating that WD_ERR_STATUS register has pending  
interrupt.  
This bit is cleared automatically when WD_RST_INT, WD_FAIL_INT  
and WD_LONGWIN_TIMEOUT_INT are cleared.  
6
5
ESM_INT  
R
R
0b  
0b  
Interrupt indicating that INT_ESM has pending interrupt.  
This bit is cleared automatically when INT_ESM register is cleared to  
0x00.  
READBACK_ERR_INT  
Interrupt indicating that INT_READBACK_ERR has pending  
interrupt.  
This bit is cleared automatically when INT_READBACK_ERR  
register is cleared to 0x00.  
4
COMM_ERR_INT  
R
0b  
Interrupt indicating that INT_COMM_ERR has pending interrupt. The  
reason for the interrupt is indicated in INT_COMM_ERR register.  
This bit is cleared automatically when INT_COMM_ERR register is  
cleared to 0x00.  
3
2
1
0
SOC_PWR_ERR_INT  
MCU_PWR_ERR_INT  
ORD_SHUTDOWN_INT  
IMM_SHUTDOWN_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
Latched status bit indicating that SOC power error has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that MCU power error has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that orderly shutdown has been  
detected.  
Write 1 to clear.  
Latched status bit indicating that immediate shutdown has been  
detected.  
Write 1 to clear.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 255  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.100 INT_COMM_ERR Register (Offset = 0x6A) [Reset = 0x0]  
INT_COMM_ERR is shown in Figure 10-159 and described in Table 10-123.  
Return to the Table 10-22.  
Figure 10-159. INT_COMM_ERR Register  
7
6
5
4
3
2
1
0
I2C2_ADR_ER  
R_INT  
RESERVED  
I2C2_CRC_ER  
R_INT  
RESERVED  
COMM_ADR_E  
RR_INT  
RESERVED COMM_CRC_E COMM_FRM_E  
RR_INT  
RR_INT  
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-123. INT_COMM_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C2_ADR_ERR_INT  
R/W1C  
0b  
Latched status bit indicating that I2C2 write to non-existing, protected  
or read-only register address has been detected.  
Write 1 to clear interrupt.  
6
5
RESERVED  
R/W  
0b  
0b  
I2C2_CRC_ERR_INT  
R/W1C  
Latched status bit indicating that I2C2 CRC error has been detected.  
Write 1 to clear interrupt.  
4
3
RESERVED  
R/W  
0b  
0b  
COMM_ADR_ERR_INT  
R/W1C  
Latched status bit indicating that I2C1/SPI write to non-existing,  
protected or read-only register address has been detected.  
Write 1 to clear interrupt.  
2
1
RESERVED  
R/W  
0b  
0b  
COMM_CRC_ERR_INT  
R/W1C  
Latched status bit indicating that I2C1/SPI CRC error has been  
detected.  
Write 1 to clear interrupt.  
0
COMM_FRM_ERR_INT  
R/W1C  
0b  
Latched status bit indicating that SPI frame error has been detected.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
256 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.101 INT_READBACK_ERR Register (Offset = 0x6B) [Reset = 0x0]  
INT_READBACK_ERR is shown in Figure 10-160 and described in Table 10-124.  
Return to the Table 10-22.  
Figure 10-160. INT_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
NRSTOUT_SO  
C_READBACK  
_INT  
RESERVED  
R/W-0b  
EN_DRV_REA  
DBACK_INT  
R/W1C-0b  
R/W1C-0b  
Table 10-124. INT_READBACK_ERR Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:4  
3
R/W  
0b  
NRSTOUT_SOC_READB R/W1C  
ACK_INT  
0b  
Latched status bit indicating that NRSTOUT_SOC readback error  
has been detected.  
Write 1 to clear interrupt.  
2:1  
0
RESERVED  
R/W  
0b  
0b  
EN_DRV_READBACK_IN R/W1C  
T
Latched status bit indicating that EN_DRV readback error has been  
detected.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 257  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.102 INT_ESM Register (Offset = 0x6C) [Reset = 0x0]  
INT_ESM is shown in Figure 10-161 and described in Table 10-125.  
Return to the Table 10-22.  
Figure 10-161. INT_ESM Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ESM_MCU_RS ESM_MCU_FAI ESM_MCU_PIN ESM_SOC_RS ESM_SOC_FAI ESM_SOC_PIN  
T_INT  
L_INT  
_INT  
T_INT  
L_INT  
_INT  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-125. INT_ESM Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5
RESERVED  
R/W  
0b  
ESM_MCU_RST_INT  
R/W1C  
0b  
Latched status bit indicating that MCU ESM reset has been detected.  
Write 1 to clear interrupt.  
4
3
2
1
0
ESM_MCU_FAIL_INT  
ESM_MCU_PIN_INT  
ESM_SOC_RST_INT  
ESM_SOC_FAIL_INT  
ESM_SOC_PIN_INT  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
0b  
0b  
Latched status bit indicating that MCU ESM fail has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that MCU ESM fault has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that SOC ESM reset has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that SOC ESM fail has been detected.  
Write 1 to clear interrupt.  
Latched status bit indicating that SOC ESM fault has been detected.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
258 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.103 STAT_BUCK1_2 Register (Offset = 0x6D) [Reset = 0x0]  
STAT_BUCK1_2 is shown in Figure 10-162 and described in Table 10-126.  
Return to the Table 10-22.  
Figure 10-162. STAT_BUCK1_2 Register  
7
6
5
4
3
2
1
0
BUCK2_ILIM_S  
TAT  
RESERVED BUCK2_UV_ST BUCK2_OV_ST BUCK1_ILIM_S  
RESERVED BUCK1_UV_ST BUCK1_OV_ST  
AT  
AT  
TAT  
AT  
AT  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 10-126. STAT_BUCK1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK2_ILIM_STAT  
R
0b  
Status bit indicating that BUCK2 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0b  
0b  
BUCK2_UV_STAT  
Status bit indicating that BUCK2 output voltage is below under-  
voltage threshold.  
4
3
BUCK2_OV_STAT  
BUCK1_ILIM_STAT  
R
R
0b  
0b  
Status bit indicating that BUCK2 output voltage is above over-voltage  
threshold.  
Status bit indicating that BUCK1 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0b  
0b  
BUCK1_UV_STAT  
Status bit indicating that BUCK1 output voltage is below under-  
voltage threshold.  
0
BUCK1_OV_STAT  
R
0b  
Status bit indicating that BUCK1 output voltage is above over-voltage  
threshold.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 259  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.104 STAT_BUCK3_4 Register (Offset = 0x6E) [Reset = 0x0]  
STAT_BUCK3_4 is shown in Figure 10-163 and described in Table 10-127.  
Return to the Table 10-22.  
Figure 10-163. STAT_BUCK3_4 Register  
7
6
5
4
3
2
1
0
BUCK4_ILIM_S  
TAT  
RESERVED BUCK4_UV_ST BUCK4_OV_ST BUCK3_ILIM_S  
RESERVED BUCK3_UV_ST BUCK3_OV_ST  
AT  
AT  
TAT  
AT  
AT  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 10-127. STAT_BUCK3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BUCK4_ILIM_STAT  
R
0b  
Status bit indicating that BUCK4 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0b  
0b  
BUCK4_UV_STAT  
Status bit indicating that BUCK4 output voltage is below under-  
voltage threshold.  
4
3
BUCK4_OV_STAT  
BUCK3_ILIM_STAT  
R
R
0b  
0b  
Status bit indicating that BUCK4 output voltage is above over-voltage  
threshold.  
Status bit indicating that BUCK3 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0b  
0b  
BUCK3_UV_STAT  
Status bit indicating that BUCK3 output voltage is below under-  
voltage threshold.  
0
BUCK3_OV_STAT  
R
0b  
Status bit indicating that BUCK3 output voltage is above over-voltage  
threshold.  
Copyright © 2021 Texas Instruments Incorporated  
260 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.105 STAT_BUCK5 Register (Offset = 0x6F) [Reset = 0x0]  
STAT_BUCK5 is shown in Figure 10-164 and described in Table 10-128.  
Return to the Table 10-22.  
Figure 10-164. STAT_BUCK5 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
BUCK5_ILIM_S  
TAT  
RESERVED BUCK5_UV_ST BUCK5_OV_ST  
AT  
AT  
R-0b  
R-0b  
R-0b  
R-0b  
Table 10-128. STAT_BUCK5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
R
0b  
BUCK5_ILIM_STAT  
R
0b  
Status bit indicating that BUCK5 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0b  
0b  
BUCK5_UV_STAT  
Status bit indicating that BUCK5 output voltage is below under-  
voltage threshold.  
0
BUCK5_OV_STAT  
R
0b  
Status bit indicating that BUCK5 output voltage is above over-voltage  
threshold.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 261  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.106 STAT_LDO1_2 Register (Offset = 0x70) [Reset = 0x0]  
STAT_LDO1_2 is shown in Figure 10-165 and described in Table 10-129.  
Return to the Table 10-22.  
Figure 10-165. STAT_LDO1_2 Register  
7
6
5
4
3
2
1
0
LDO2_ILIM_ST  
AT  
RESERVED  
LDO2_UV_STA LDO2_OV_STA LDO1_ILIM_ST  
RESERVED  
LDO1_UV_STA LDO1_OV_STA  
T
T
AT  
T
T
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 10-129. STAT_LDO1_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO2_ILIM_STAT  
R
0b  
Status bit indicating that LDO2 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0b  
0b  
LDO2_UV_STAT  
Status bit indicating that LDO2 output voltage is below under-voltage  
threshold.  
4
3
LDO2_OV_STAT  
LDO1_ILIM_STAT  
R
R
0b  
0b  
Status bit indicating that LDO2 output voltage is above over-voltage  
threshold.  
Status bit indicating that LDO1 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0b  
0b  
LDO1_UV_STAT  
Status bit indicating that LDO1 output voltage is below under-voltage  
threshold.  
0
LDO1_OV_STAT  
R
0b  
Status bit indicating that LDO1 output voltage is above over-voltage  
threshold.  
Copyright © 2021 Texas Instruments Incorporated  
262 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.107 STAT_LDO3_4 Register (Offset = 0x71) [Reset = 0x0]  
STAT_LDO3_4 is shown in Figure 10-166 and described in Table 10-130.  
Return to the Table 10-22.  
Figure 10-166. STAT_LDO3_4 Register  
7
6
5
4
3
2
1
0
LDO4_ILIM_ST  
AT  
RESERVED  
LDO4_UV_STA LDO4_OV_STA LDO3_ILIM_ST  
RESERVED  
LDO3_UV_STA LDO3_OV_STA  
T
T
AT  
T
T
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
R-0b  
Table 10-130. STAT_LDO3_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LDO4_ILIM_STAT  
R
0b  
Status bit indicating that LDO4 output current is above current limit  
level.  
6
5
RESERVED  
R
R
0b  
0b  
LDO4_UV_STAT  
Status bit indicating that LDO4 output voltage is below under-voltage  
threshold.  
4
3
LDO4_OV_STAT  
LDO3_ILIM_STAT  
R
R
0b  
0b  
Status bit indicating that LDO4 output voltage is above over-voltage  
threshold.  
Status bit indicating that LDO3 output current is above current limit  
level.  
2
1
RESERVED  
R
R
0b  
0b  
LDO3_UV_STAT  
Status bit indicating that LDO3 output voltage is below under-voltage  
threshold.  
0
LDO3_OV_STAT  
R
0b  
Status bit indicating that LDO3 output voltage is above over-voltage  
threshold.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 263  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.108 STAT_VMON Register (Offset = 0x72) [Reset = 0x0]  
STAT_VMON is shown in Figure 10-167 and described in Table 10-131.  
Return to the Table 10-22.  
Figure 10-167. STAT_VMON Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
VCCA_UV_STA VCCA_OV_STA  
T
T
R-0b  
R-0b  
Table 10-131. STAT_VMON Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
RESERVED  
R
0b  
VCCA_UV_STAT  
R
0b  
Status bit indicating that VCCA input voltage is below under-voltage  
level.  
0
VCCA_OV_STAT  
R
0b  
Status bit indicating that VCCA input voltage is above over-voltage  
level.  
Copyright © 2021 Texas Instruments Incorporated  
264 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.109 STAT_STARTUP Register (Offset = 0x73) [Reset = 0x0]  
STAT_STARTUP is shown in Figure 10-168 and described in Table 10-132.  
Return to the Table 10-22.  
Figure 10-168. STAT_STARTUP Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
ENABLE_STAT  
R-0b  
RESERVED  
R-0b  
Table 10-132. STAT_STARTUP Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
RESERVED  
ENABLE_STAT  
RESERVED  
R
0b  
R
0b  
Status bit indicating nPWRON / EN pin status  
0
R
0b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 265  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.110 STAT_MISC Register (Offset = 0x74) [Reset = 0x0]  
STAT_MISC is shown in Figure 10-169 and described in Table 10-133.  
Return to the Table 10-22.  
Figure 10-169. STAT_MISC Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
TWARN_STAT  
RESERVED  
EXT_CLK_STA  
T
RESERVED  
R-0b  
R-0b  
R-0b  
R-0b  
Table 10-133. STAT_MISC Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
R
0b  
TWARN_STAT  
R
0b  
Status bit indicating that die junction temperature is above the  
thermal warning level.  
2
1
0
RESERVED  
R
R
R
0b  
0b  
0b  
EXT_CLK_STAT  
RESERVED  
Status bit indicating that external clock is not valid.  
Copyright © 2021 Texas Instruments Incorporated  
266 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.111 STAT_MODERATE_ERR Register (Offset = 0x75) [Reset = 0x0]  
STAT_MODERATE_ERR is shown in Figure 10-170 and described in Table 10-134.  
Return to the Table 10-22.  
Figure 10-170. STAT_MODERATE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
TSD_ORD_STA  
T
R-0b  
R-0b  
Table 10-134. STAT_MODERATE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:1  
0
RESERVED  
TSD_ORD_STAT  
R
0b  
R
0b  
Status bit indicating that the die junction temperature is above the  
thermal level causing a sequenced shutdown.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 267  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.112 STAT_SEVERE_ERR Register (Offset = 0x76) [Reset = 0x0]  
STAT_SEVERE_ERR is shown in Figure 10-171 and described in Table 10-135.  
Return to the Table 10-22.  
Figure 10-171. STAT_SEVERE_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
VCCA_OVP_S TSD_IMM_STA  
TAT  
T
R-0b  
R-0b  
Table 10-135. STAT_SEVERE_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:2  
1
RESERVED  
R
0b  
VCCA_OVP_STAT  
R
0b  
Status bit indicating that the VCCA voltage is above overvoltage  
protection level.  
0
TSD_IMM_STAT  
R
0b  
Status bit indicating that the die junction temperature is above the  
thermal level causing an immediate shutdown.  
Copyright © 2021 Texas Instruments Incorporated  
268 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.113 STAT_READBACK_ERR Register (Offset = 0x77) [Reset = 0x0]  
STAT_READBACK_ERR is shown in Figure 10-172 and described in Table 10-136.  
Return to the Table 10-22.  
Figure 10-172. STAT_READBACK_ERR Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
NRSTOUT_SO NRSTOUT_RE NINT_READBA EN_DRV_REA  
C_READBACK ADBACK_STAT  
_STAT  
CK_STAT  
DBACK_STAT  
R-0b  
R-0b  
R-0b  
R-0b  
Table 10-136. STAT_READBACK_ERR Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3
RESERVED  
R
0b  
NRSTOUT_SOC_READB  
ACK_STAT  
R
0b  
Status bit indicating that NRSTOUT_SOC pin output is high and  
device is driving it low.  
2
1
0
NRSTOUT_READBACK_  
STAT  
R
R
R
0b  
0b  
0b  
Status bit indicating that NRSTOUT pin output is high and device is  
driving it low.  
NINT_READBACK_STAT  
Status bit indicating that NINT pin output is high and device is driving  
it low.  
EN_DRV_READBACK_S  
TAT  
Status bit indicating that EN_DRV pin output is different than driven.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 269  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.114 PGOOD_SEL_1 Register (Offset = 0x78) [Reset = 0x0]  
PGOOD_SEL_1 is shown in Figure 10-173 and described in Table 10-137.  
Return to the Table 10-22.  
Figure 10-173. PGOOD_SEL_1 Register  
7
6
5
4
3
2
1
0
PGOOD_SEL_BUCK4  
R/W-0b  
PGOOD_SEL_BUCK3  
R/W-0b  
PGOOD_SEL_BUCK2  
R/W-0b  
PGOOD_SEL_BUCK1  
R/W-0b  
Table 10-137. PGOOD_SEL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
PGOOD_SEL_BUCK4  
R/W  
0b  
PGOOD signal source control from BUCK4  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
5:4  
3:2  
1:0  
PGOOD_SEL_BUCK3  
PGOOD_SEL_BUCK2  
PGOOD_SEL_BUCK1  
R/W  
R/W  
R/W  
0b  
0b  
0b  
PGOOD signal source control from BUCK3  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
PGOOD signal source control from BUCK2  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
PGOOD signal source control from BUCK1  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
Copyright © 2021 Texas Instruments Incorporated  
270 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.115 PGOOD_SEL_2 Register (Offset = 0x79) [Reset = 0x0]  
PGOOD_SEL_2 is shown in Figure 10-174 and described in Table 10-138.  
Return to the Table 10-22.  
Figure 10-174. PGOOD_SEL_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
PGOOD_SEL_BUCK5  
R/W-0b  
Table 10-138. PGOOD_SEL_2 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:2  
1:0  
RESERVED  
0b  
PGOOD_SEL_BUCK5  
0b  
PGOOD signal source control from BUCK5  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 271  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.116 PGOOD_SEL_3 Register (Offset = 0x7A) [Reset = 0x0]  
PGOOD_SEL_3 is shown in Figure 10-175 and described in Table 10-139.  
Return to the Table 10-22.  
Figure 10-175. PGOOD_SEL_3 Register  
7
6
5
4
3
2
1
0
PGOOD_SEL_LDO4  
R/W-0b  
PGOOD_SEL_LDO3  
R/W-0b  
PGOOD_SEL_LDO2  
R/W-0b  
PGOOD_SEL_LDO1  
R/W-0b  
Table 10-139. PGOOD_SEL_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
3:2  
1:0  
PGOOD_SEL_LDO4  
R/W  
0b  
PGOOD signal source control from LDO4  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
PGOOD_SEL_LDO3  
PGOOD_SEL_LDO2  
PGOOD_SEL_LDO1  
R/W  
R/W  
R/W  
0b  
0b  
0b  
PGOOD signal source control from LDO3  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
PGOOD signal source control from LDO2  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
PGOOD signal source control from LDO1  
(Default from NVM memory)  
0b = Masked  
1b = Powergood threshold voltage  
10b = Powergood threshold voltage AND current limit  
11b = Powergood threshold voltage AND current limit  
Copyright © 2021 Texas Instruments Incorporated  
272 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.117 PGOOD_SEL_4 Register (Offset = 0x7B) [Reset = 0x0]  
PGOOD_SEL_4 is shown in Figure 10-176 and described in Table 10-140.  
Return to the Table 10-22.  
Figure 10-176. PGOOD_SEL_4 Register  
7
6
5
4
3
2
1
0
PGOOD_WIND PGOOD_POL PGOOD_SEL_ PGOOD_SEL_ PGOOD_SEL_  
RESERVED  
R/W-0b  
PGOOD_SEL_  
VCCA  
OW  
NRSTOUT_SO  
C
NRSTOUT  
TDIE_WARN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-140. PGOOD_SEL_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PGOOD_WINDOW  
R/W  
0b  
Type of voltage monitoring for PGOOD signal:  
(Default from NVM memory)  
0b = Only undervoltage is monitored  
1b = Both undervoltage and overvoltage are monitored  
6
5
4
3
PGOOD_POL  
R/W  
0b  
0b  
0b  
0b  
PGOOD signal polarity select:  
(Default from NVM memory)  
0b = PGOOD signal is high when monitored inputs are valid  
1b = PGOOD signal is low when monitored inputs are valid  
PGOOD_SEL_NRSTOUT R/W  
_SOC  
PGOOD signal source control from nRSTOUT_SOC pin:  
(Default from NVM memory)  
0b = Masked  
1b = nRSTOUT_SOC pin low state forces PGOOD signal to low  
PGOOD_SEL_NRSTOUT R/W  
PGOOD signal source control from nRSTOUT pin:  
(Default from NVM memory)  
0b = Masked  
1b = nRSTOUT pin low state forces PGOOD signal to low  
PGOOD_SEL_TDIE_WAR R/W  
N
PGOOD signal source control from thermal warning  
(Default from NVM memory)  
0b = Masked  
1b = Thermal warning affecting to PGOOD signal  
2:1  
0
RESERVED  
R/W  
R/W  
0b  
0b  
PGOOD_SEL_VCCA  
PGOOD signal source control from VCCA monitoring  
(Default from NVM memory)  
0b = Masked  
1b = VCCA OV/UV threshold affecting PGOOD signal  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 273  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.118 PLL_CTRL Register (Offset = 0x7C) [Reset = 0x0]  
PLL_CTRL is shown in Figure 10-177 and described in Table 10-141.  
Return to the Table 10-22.  
Figure 10-177. PLL_CTRL Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
EXT_CLK_FREQ  
R/W-0b  
Table 10-141. PLL_CTRL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:2  
1:0  
RESERVED  
0b  
EXT_CLK_FREQ  
0b  
Frequency of the external clock (SYNCCLKIN):  
See electrical specification for input clock frequency tolerance.  
(Default from NVM memory)  
0b = 1.1 MHz  
1b = 2.2 MHz  
10b = 4.4 MHz  
11b = Reserved  
Copyright © 2021 Texas Instruments Incorporated  
274 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.119 CONFIG_1 Register (Offset = 0x7D) [Reset = 0xC0]  
CONFIG_1 is shown in Figure 10-178 and described in Table 10-142.  
Return to the Table 10-22.  
Figure 10-178. CONFIG_1 Register  
7
6
5
4
3
2
1
0
NSLEEP2_MAS NSLEEP1_MAS EN_ILIM_FSM_  
I2C2_HS  
I2C1_HS  
RESERVED TSD_ORD_LEV TWARN_LEVE  
K
K
CTRL  
EL  
L
R/W-1b  
R/W-1b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-142. CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
NSLEEP2_MASK  
R/W  
1b  
Masking for NSLEEP2 pin(s) and NSLEEP2B bit:  
(Default from NVM memory)  
0b = NSLEEP2(B) affects FSM state transitions.  
1b = NSLEEP2(B) does not affect FSM state transitions.  
6
NSLEEP1_MASK  
R/W  
1b  
Masking for NSLEEP1 pin(s) and NSLEEP1B bit:  
(Default from NVM memory)  
0b = NSLEEP1(B) affects FSM state transitions.  
1b = NSLEEP1(B) does not affect FSM state transitions.  
5
4
EN_ILIM_FSM_CTRL  
I2C2_HS  
R/W  
R/W  
0b  
0b  
(Default from NVM memory)  
0b = Buck/LDO regulators ILIM interrupts do not affect FSM triggers.  
1b = Buck/LDO regulators ILIM interrupts affect FSM triggers.  
Select I2C2 speed (input filter)  
(Default from NVM memory)  
0b = Standard, fast or fast+ by default, can be set to Hs-mode by  
Hs-mode master code.  
1b = Forced to Hs-mode  
3
I2C1_HS  
R/W  
0b  
Select I2C1 speed (input filter)  
(Default from NVM memory)  
0b = Standard, fast or fast+ by default, can be set to Hs-mode by  
Hs-mode master code.  
1b = Forced to Hs-mode  
2
1
RESERVED  
R/W  
R/W  
0b  
0b  
TSD_ORD_LEVEL  
Thermal shutdown threshold level.  
(Default from NVM memory)  
0b = 140C  
1b = 145C  
0
TWARN_LEVEL  
R/W  
0b  
Thermal warning threshold level.  
(Default from NVM memory)  
0b = 130C  
1b = 140C  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 275  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.120 CONFIG_2 Register (Offset = 0x7E) [Reset = 0x0]  
CONFIG_2 is shown in Figure 10-179 and described in Table 10-143.  
Return to the Table 10-22.  
Figure 10-179. CONFIG_2 Register  
7
6
5
4
3
2
1
0
BB_EOC_RDY  
RESERVED  
BB_VEOC  
R/W-0b  
BB_ICHR  
BB_CHARGER  
_EN  
R-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-143. CONFIG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BB_EOC_RDY  
R
0b  
Backup end of charge indication  
0b = Charging active or not enabled  
1b = Charger has reached termination voltage set by BB_VEOC  
register  
6:4  
3:2  
RESERVED  
BB_VEOC  
R/W  
R/W  
0b  
0b  
End of charge voltage for backup battery charger:  
(Default from NVM memory)  
0b = 2.5V  
1b = 2.8V  
10b = 3.0V  
11b = 3.3V  
1
0
BB_ICHR  
R/W  
R/W  
0b  
0b  
Backup battery charging current:  
(Default from NVM memory)  
0b = 100 µA  
1b = 500 µA  
BB_CHARGER_EN  
Backup battery charging:  
0b = Disabled  
1b = Enabled  
Copyright © 2021 Texas Instruments Incorporated  
276 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.121 ENABLE_DRV_REG Register (Offset = 0x80) [Reset = 0x0]  
ENABLE_DRV_REG is shown in Figure 10-180 and described in Table 10-144.  
Return to the Table 10-22.  
Figure 10-180. ENABLE_DRV_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ENABLE_DRV  
R/W-0b  
Table 10-144. ENABLE_DRV_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:1  
0
RESERVED  
0b  
ENABLE_DRV  
0b  
Control for EN_DRV pin:  
FORCE_EN_DRV_LOW must be 0 to control EN_DRV pin.  
Otherwise EN_DRV pin is low.  
0b = Low  
1b = High  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 277  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.122 MISC_CTRL Register (Offset = 0x81) [Reset = 0x0]  
MISC_CTRL is shown in Figure 10-181 and described in Table 10-145.  
Return to the Table 10-22.  
Figure 10-181. MISC_CTRL Register  
7
6
5
4
3
2
1
0
SYNCCLKOUT_FREQ_SEL  
SEL_EXT_CLK AMUXOUT_EN CLKMON_EN  
LPM_EN  
NRSTOUT_SO  
C
NRSTOUT  
R/W-0b  
R/W-0b R/W-0b R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-145. MISC_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
SYNCCLKOUT_FREQ_S R/W  
EL  
0b  
SYNCCLKOUT enable/frequency select:  
0b = SYNCCLKOUT off  
1b = 1.1 MHz  
10b = 2.2 MHz  
11b = 4.4 MHz  
5
SEL_EXT_CLK  
R/W  
0b  
Selection of external clock:  
0b = Forced to internal RC oscillator.  
1b = Automatic external clock used when available, interrupt is  
generated if the external clock is expected (SEL_EXT_CLK = 1), but  
it is not available or the clock frequency is not within the valid range.  
4
3
2
AMUXOUT_EN  
CLKMON_EN  
LPM_EN  
R/W  
R/W  
R/W  
0b  
0b  
0b  
Control bandgap voltage to AMUXOUT pin.  
0b = Disabled  
1b = Enabled  
Control of internal clock monitoring.  
0b = Disabled  
1b = Enabled  
Low power mode control.  
LPM_EN sets device in a low power mode. Intended use case is  
for the PFSM to set LPM_EN upon entering a deep sleep state.  
The end objective is to disable the digital oscillator to reduce power  
consumption.  
The following functions are disabled when LPM_EN=1.  
-TSD cycling of all sensors/thresholds  
-regmap/SRAM CRC continuous checking  
-SPMI WD NVM_ID request/response polling  
-Disable clock monitoring  
0b = Low power mode disabled  
1b = Low power mode enabled  
1
0
NRSTOUT_SOC  
NRSTOUT  
R/W  
R/W  
0b  
0b  
Control for nRSTOUT_SOC signal:  
0b = Low  
1b = High  
Control for nRSTOUT signal:  
0b = Low  
1b = High  
Copyright © 2021 Texas Instruments Incorporated  
278 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.123 ENABLE_DRV_STAT Register (Offset = 0x82) [Reset = 0x8]  
ENABLE_DRV_STAT is shown in Figure 10-182 and described in Table 10-146.  
Return to the Table 10-22.  
Figure 10-182. ENABLE_DRV_STAT Register  
7
6
5
4
3
2
1
0
RESERVED  
SPMI_LPM_EN FORCE_EN_D NRSTOUT_SO NRSTOUT_IN  
EN_DRV_IN  
RV_LOW  
C_IN  
R/W-0b  
R/W-0b  
R/W-1b  
R-0b  
R-0b  
R-0b  
Table 10-146. ENABLE_DRV_STAT Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:5  
4
RESERVED  
SPMI_LPM_EN  
0b  
0b  
This bit is read/write for PFSM and read-only for I2C/SPI  
SPMI low power mode control.  
SPMI_LPM_EN sets SPMI in a low power mode which stops SPMI  
WD (Bus heartbeat). PMICs should enter SPMI_LPM_EN=1 at  
similar times to prevent SPMI WD failures. Therefore to mitigate  
clock variations SPMI_LPM_EN=1 should be done early in the  
sequence.  
The following functions are disabled when SPMI_LPM_EN=1.  
-SPMI WD NVM_ID request/response polling  
0b = SPMI low power mode disabled  
1b = SPMI low power mode enabled  
3
FORCE_EN_DRV_LOW  
R/W  
1b  
This bit is read/write for PFSM and read-only for I2C/SPI  
0b = ENABLE_DRV bit can be written by I2C/SPI  
1b = ENABLE_DRV bit is forced low and cannot be written high by  
I2C/SPI  
2
1
0
NRSTOUT_SOC_IN  
NRSTOUT_IN  
R
R
R
0b  
0b  
0b  
Level of NRSTOUT_SOC pin:  
0b = Low  
1b = High  
Level of NRSTOUT pin:  
0b = Low  
1b = High  
EN_DRV_IN  
Level of EN_DRV pin:  
0b = Low  
1b = High  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 279  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.124 RECOV_CNT_REG_1 Register (Offset = 0x83) [Reset = 0x0]  
RECOV_CNT_REG_1 is shown in Figure 10-183 and described in Table 10-147.  
Return to the Table 10-22.  
Figure 10-183. RECOV_CNT_REG_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
RECOV_CNT  
R-0b  
Table 10-147. RECOV_CNT_REG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:4  
3:0  
RESERVED  
R
0b  
RECOV_CNT  
R
0b  
Recovery counter status. Counter value is incremented each time  
PMIC goes through warm reset.  
Copyright © 2021 Texas Instruments Incorporated  
280 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.125 RECOV_CNT_REG_2 Register (Offset = 0x84) [Reset = 0x0]  
RECOV_CNT_REG_2 is shown in Figure 10-184 and described in Table 10-148.  
Return to the Table 10-22.  
Figure 10-184. RECOV_CNT_REG_2 Register  
7
6
5
4
3
2
1
0
RESERVED  
RECOV_CNT_  
CLR  
RECOV_CNT_THR  
R/W-0b  
R/W-0b  
R/WSelfClrF-0b  
Table 10-148. RECOV_CNT_REG_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
4
RESERVED  
RECOV_CNT_CLR  
R/W  
0b  
R/WSelfClrF 0b  
Recovery counter clear. Write 1 to clear the counter. This bit is  
automatically set back to 0.  
3:0  
RECOV_CNT_THR  
R/W 0b  
Recovery counter threshold value for immediate power-down of all  
supply rails.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 281  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.126 FSM_I2C_TRIGGERS Register (Offset = 0x85) [Reset = 0x0]  
FSM_I2C_TRIGGERS is shown in Figure 10-185 and described in Table 10-149.  
Return to the Table 10-22.  
Figure 10-185. FSM_I2C_TRIGGERS Register  
7
6
5
4
3
2
1
0
TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_ TRIGGER_I2C_  
7
6
5
4
3
2
1
0
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/WSelfClrF-0b R/WSelfClrF-0b R/WSelfClrF-0b R/WSelfClrF-0b  
Table 10-149. FSM_I2C_TRIGGERS Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
TRIGGER_I2C_7  
TRIGGER_I2C_6  
TRIGGER_I2C_5  
TRIGGER_I2C_4  
TRIGGER_I2C_3  
0b  
Trigger for PFSM program.  
Trigger for PFSM program.  
Trigger for PFSM program.  
Trigger for PFSM program.  
6
0b  
5
0b  
4
0b  
3
R/WSelfClrF 0b  
R/WSelfClrF 0b  
R/WSelfClrF 0b  
R/WSelfClrF 0b  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
2
1
0
TRIGGER_I2C_2  
TRIGGER_I2C_1  
TRIGGER_I2C_0  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Trigger for PFSM program.  
This bit is automatically cleared. Writing this bit 1 creates PFSM  
trigger pulse.  
Copyright © 2021 Texas Instruments Incorporated  
282 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.127 FSM_NSLEEP_TRIGGERS Register (Offset = 0x86) [Reset = 0x0]  
FSM_NSLEEP_TRIGGERS is shown in Figure 10-186 and described in Table 10-150.  
Return to the Table 10-22.  
Figure 10-186. FSM_NSLEEP_TRIGGERS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
NSLEEP2B  
R/W-0b  
NSLEEP1B  
R/W-0b  
Table 10-150. FSM_NSLEEP_TRIGGERS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:2  
1
RESERVED  
NSLEEP2B  
0b  
0b  
Parallel register bit for NSLEEP2 function:  
0b = NSLEEP2 low  
1b = NSLEEP2 high  
0
NSLEEP1B  
R/W  
0b  
Parallel register bit for NSLEEP1 function:  
0b = NSLEEP1 low  
1b = NSLEEP1 high  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 283  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.128 BUCK_RESET_REG Register (Offset = 0x87) [Reset = 0x0]  
BUCK_RESET_REG is shown in Figure 10-187 and described in Table 10-151.  
Return to the Table 10-22.  
Figure 10-187. BUCK_RESET_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
BUCK5_RESET BUCK4_RESET BUCK3_RESET BUCK2_RESET BUCK1_RESET  
R/W-0b R/W-0b R/W-0b R/W-0b R/W-0b  
Table 10-151. BUCK_RESET_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:5  
4
RESERVED  
BUCK5_RESET  
0b  
0b  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
3
2
1
0
BUCK4_RESET  
BUCK3_RESET  
BUCK2_RESET  
BUCK1_RESET  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
Reset signal for Buck logic.  
Warning: This bit is for debug only. DO NOT SET THIS BIT TO "1"  
DURING DEVICE OPERATION.  
Copyright © 2021 Texas Instruments Incorporated  
284 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.129 SPREAD_SPECTRUM_1 Register (Offset = 0x88) [Reset = 0x0]  
SPREAD_SPECTRUM_1 is shown in Figure 10-188 and described in Table 10-152.  
Return to the Table 10-22.  
Figure 10-188. SPREAD_SPECTRUM_1 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SS_EN  
R/W-0b  
SS_DEPTH  
R/W-0b  
Table 10-152. SPREAD_SPECTRUM_1 Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:3  
2
RESERVED  
SS_EN  
0b  
0b  
Spread spectrum enable.  
(Default from NVM memory)  
0b = Spread spectrum disabled  
1b = Spread spectrum enabled  
1:0  
SS_DEPTH  
R/W  
0b  
Spread spectrum modulation depth.  
(Default from NVM memory)  
0b = No modulation  
1b = +/- 6.3%  
10b = +/- 8.4%  
11b = RESERVED  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 285  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.130 FREQ_SEL Register (Offset = 0x8A) [Reset = 0x0]  
FREQ_SEL is shown in Figure 10-189 and described in Table 10-153.  
Return to the Table 10-22.  
Figure 10-189. FREQ_SEL Register  
7
6
5
4
3
2
1
0
RESERVED  
BUCK5_FREQ_ BUCK4_FREQ_ BUCK3_FREQ_ BUCK2_FREQ_ BUCK1_FREQ_  
SEL  
SEL  
SEL  
SEL  
SEL  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-153. FREQ_SEL Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:5  
4
RESERVED  
0b  
BUCK5_FREQ_SEL  
0b  
Buck5 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
EEPROM configuration. See TRM for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
3
2
1
0
BUCK4_FREQ_SEL  
BUCK3_FREQ_SEL  
BUCK2_FREQ_SEL  
BUCK1_FREQ_SEL  
R/W  
R/W  
R/W  
R/W  
0b  
0b  
0b  
0b  
Buck4 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
EEPROM configuration. See TRM for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
Buck3 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
EEPROM configuration. See TRM for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
Buck2 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
EEPROM configuration. See TRM for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
Buck1 switching frequency:  
This bit is Read/Write or Read-Only for I2C/SPI access depending on  
EEPROM configuration. See TRM for details.  
(Default from NVM memory)  
0b = 2.2 MHz  
1b = 4.4 MHz  
Copyright © 2021 Texas Instruments Incorporated  
286 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.131 FSM_STEP_SIZE Register (Offset = 0x8B) [Reset = 0x0]  
FSM_STEP_SIZE is shown in Figure 10-190 and described in Table 10-154.  
Return to the Table 10-22.  
Figure 10-190. FSM_STEP_SIZE Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
PFSM_DELAY_STEP  
R/W-0b  
Table 10-154. FSM_STEP_SIZE Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:5  
4:0  
RESERVED  
PFSM_DELAY_STEP  
0b  
0b  
Step size for PFSM sequence counter.  
Step size is 50ns * 2PFSM_DELAY_STEP  
(Default from NVM memory)  
.
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 287  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.132 LDO_RV_TIMEOUT_REG_1 Register (Offset = 0x8C) [Reset = 0x0]  
LDO_RV_TIMEOUT_REG_1 is shown in Figure 10-191 and described in Table 10-155.  
Return to the Table 10-22.  
Figure 10-191. LDO_RV_TIMEOUT_REG_1 Register  
7
6
5
4
3
2
1
0
LDO2_RV_TIMEOUT  
R/W-0b  
LDO1_RV_TIMEOUT  
R/W-0b  
Table 10-155. LDO_RV_TIMEOUT_REG_1 Register Field Descriptions  
Bit  
7:4  
Field  
Type  
Reset  
Description  
LDO2_RV_TIMEOUT  
R/W  
0b  
LDO residual voltage check timeout select.  
(Default from NVM memory)  
0b = 0.5 ms  
1b = 1 ms  
10b = 1.5 ms  
11b = 2 ms  
100b = 2.5 ms  
101b = 3 ms  
110b = 3.5 ms  
111b = 4 ms  
1000b = 2 ms  
1001b = 4 ms  
1010b = 6 ms  
1011b = 8ms  
1100b = 10 ms  
1101b = 12 ms  
1110b = 14 ms  
1111b = 16 ms  
3:0  
LDO1_RV_TIMEOUT  
R/W  
0b  
LDO residual voltage check timeout select.  
(Default from NVM memory)  
0b = 0.5 ms  
1b = 1 ms  
10b = 1.5 ms  
11b = 2 ms  
100b = 2.5 ms  
101b = 3 ms  
110b = 3.5 ms  
111b = 4 ms  
1000b = 2 ms  
1001b = 4 ms  
1010b = 6 ms  
1011b = 8 ms  
1100b = 10 ms  
1101b = 12 ms  
1110b = 14 ms  
1111b = 16 ms  
Copyright © 2021 Texas Instruments Incorporated  
288 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.133 LDO_RV_TIMEOUT_REG_2 Register (Offset = 0x8D) [Reset = 0x0]  
LDO_RV_TIMEOUT_REG_2 is shown in Figure 10-192 and described in Table 10-156.  
Return to the Table 10-22.  
Figure 10-192. LDO_RV_TIMEOUT_REG_2 Register  
7
6
5
4
3
2
1
0
LDO4_RV_TIMEOUT  
R/W-0b  
LDO3_RV_TIMEOUT  
R/W-0b  
Table 10-156. LDO_RV_TIMEOUT_REG_2 Register Field Descriptions  
Bit  
7:4  
Field  
Type  
Reset  
Description  
LDO4_RV_TIMEOUT  
R/W  
0b  
LDO residual voltage check timeout select.  
(Default from NVM memory)  
0b = 0.5 ms  
1b = 1 ms  
10b = 1.5 ms  
11b = 2 ms  
100b = 2.5 ms  
101b = 3 ms  
110b = 3.5 ms  
111b = 4 ms  
1000b = 2 ms  
1001b = 4 ms  
1010b = 6 ms  
1011b = 8 ms  
1100b = 10 ms  
1101b = 12 ms  
1110b = 14 ms  
1111b = 16 ms  
3:0  
LDO3_RV_TIMEOUT  
R/W  
0b  
LDO residual voltage check timeout select.  
(Default from NVM memory)  
0b = 0.5 ms  
1b = 1 ms  
10b = 1.5 ms  
11b = 2 ms  
100b = 2.5 ms  
101b = 3 ms  
110b = 3.5 ms  
111b = 4 ms  
1000b = 2 ms  
1001b = 4 ms  
1010b = 6 ms  
1011b = 8 ms  
1100b = 10 ms  
1101b = 12 ms  
1110b = 14 ms  
1111b = 16 ms  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 289  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.134 USER_SPARE_REGS Register (Offset = 0x8E) [Reset = 0x0]  
USER_SPARE_REGS is shown in Figure 10-193 and described in Table 10-157.  
Return to the Table 10-22.  
Figure 10-193. USER_SPARE_REGS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
USER_SPARE_ USER_SPARE_ USER_SPARE_ USER_SPARE_  
4
3
2
1
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-157. USER_SPARE_REGS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset  
Description  
7:4  
3
RESERVED  
0b  
USER_SPARE_4  
USER_SPARE_3  
USER_SPARE_2  
USER_SPARE_1  
0b  
(Default from NVM memory)  
(Default from NVM memory)  
(Default from NVM memory)  
(Default from NVM memory)  
2
0b  
1
0b  
0
0b  
Copyright © 2021 Texas Instruments Incorporated  
290 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.135 ESM_MCU_START_REG Register (Offset = 0x8F) [Reset = 0x0]  
ESM_MCU_START_REG is shown in Figure 10-194 and described in Table 10-158.  
Return to the Table 10-22.  
Figure 10-194. ESM_MCU_START_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
ESM_MCU_ST  
ART  
R/W-0b  
R/W-0b  
Table 10-158. ESM_MCU_START_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:1  
0
RESERVED  
ESM_MCU_START  
0b  
0b  
Control bit to start the ESM_MCU:  
0b = ESM_MCU not started. Device clears ENABLE_DRV bit when  
bit ESM_MCU_EN=1  
1b = ESM_MCU started.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 291  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.136 ESM_MCU_DELAY1_REG Register (Offset = 0x90) [Reset = 0x0]  
ESM_MCU_DELAY1_REG is shown in Figure 10-195 and described in Table 10-159.  
Return to the Table 10-22.  
Figure 10-195. ESM_MCU_DELAY1_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_DELAY1  
R/W-0b  
Table 10-159. ESM_MCU_DELAY1_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_DELAY1  
R/W  
0b  
These bits configure the duration of the ESM_MCU delay-1 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
292 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.137 ESM_MCU_DELAY2_REG Register (Offset = 0x91) [Reset = 0x0]  
ESM_MCU_DELAY2_REG is shown in Figure 10-196 and described in Table 10-160.  
Return to the Table 10-22.  
Figure 10-196. ESM_MCU_DELAY2_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_DELAY2  
R/W-0b  
Table 10-160. ESM_MCU_DELAY2_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_DELAY2  
R/W  
0b  
These bits configure the duration of the ESM_MCU delay-2 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 293  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.138 ESM_MCU_MODE_CFG Register (Offset = 0x92) [Reset = 0x0]  
ESM_MCU_MODE_CFG is shown in Figure 10-197 and described in Table 10-161.  
Return to the Table 10-22.  
Figure 10-197. ESM_MCU_MODE_CFG Register  
7
6
5
4
3
2
1
0
ESM_MCU_MO ESM_MCU_EN ESM_MCU_EN  
RESERVED  
ESM_MCU_ERR_CNT_TH  
R/W-0b  
DE  
DRV  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-161. ESM_MCU_MODE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ESM_MCU_MODE  
R/W  
0b  
This bit selects the mode for the ESM_MCU:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
0b = Level Mode  
1b = PWM Mode  
6
ESM_MCU_EN  
R/W  
0b  
ESM_MCU enable configuration bit:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
0b = ESM_MCU disabled. MCU can set ENABLE_DRV bit to 1 if all  
other interrupt bits are cleared  
1b = ESM_MCU enabled. MCU can set ENABLE_DRV bit to 1 if:  
- bit ESM_MCU_START=1, and  
- (ESM_MCU_FAIL_INT=0 or ESM_MCU_ENDRV=0), and  
- ESM_MCU_RST_INT=0, and  
- all other interrupt bits are cleared  
5
ESM_MCU_ENDRV  
RESERVED  
R/W  
R/W  
0b  
Configuration bit to select ENABLE_DRV clear on ESM-error for  
ESM_MCU:  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
0b = ENABLE_DRV not cleared when ESM_MCU_FAIL_INT=1  
1b = ENABLE_DRV cleared when ESM_MCU_FAIL_INT=1  
4
0b  
0b  
3:0  
ESM_MCU_ERR_CNT_T R/W  
H
Configuration bits for the threshold of the ESM_MCU error-counter.  
The ESM_MCU starts the Error Handling Procedure (see  
Error Signal Monitor chapter) if ESM_MCU_ERR_CNT[4:0] >  
ESM_MCU_ERR_CNT_TH[3:0].  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
294 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.139 ESM_MCU_HMAX_REG Register (Offset = 0x93) [Reset = 0x0]  
ESM_MCU_HMAX_REG is shown in Figure 10-198 and described in Table 10-162.  
Return to the Table 10-22.  
Figure 10-198. ESM_MCU_HMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_HMAX  
R/W-0b  
Table 10-162. ESM_MCU_HMAX_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_HMAX  
R/W  
0b  
These bits configure the the maximum high-pulse time-threshold  
(tHIGH_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 295  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.140 ESM_MCU_HMIN_REG Register (Offset = 0x94) [Reset = 0x0]  
ESM_MCU_HMIN_REG is shown in Figure 10-199 and described in Table 10-163.  
Return to the Table 10-22.  
Figure 10-199. ESM_MCU_HMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_HMIN  
R/W-0b  
Table 10-163. ESM_MCU_HMIN_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_HMIN  
R/W  
0b  
These bits configure the the minimum high-pulse time-threshold  
(tHIGH_MIN_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
296 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.141 ESM_MCU_LMAX_REG Register (Offset = 0x95) [Reset = 0x0]  
ESM_MCU_LMAX_REG is shown in Figure 10-200 and described in Table 10-164.  
Return to the Table 10-22.  
Figure 10-200. ESM_MCU_LMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_LMAX  
R/W-0b  
Table 10-164. ESM_MCU_LMAX_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_LMAX  
R/W  
0b  
These bits configure the the maximum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 297  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.142 ESM_MCU_LMIN_REG Register (Offset = 0x96) [Reset = 0x0]  
ESM_MCU_LMIN_REG is shown in Figure 10-201 and described in Table 10-165.  
Return to the Table 10-22.  
Figure 10-201. ESM_MCU_LMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_MCU_LMIN  
R/W-0b  
Table 10-165. ESM_MCU_LMIN_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_MCU_LMIN  
R/W  
0b  
These bits configure the the minimum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_MCU (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_MCU_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
298 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.143 ESM_MCU_ERR_CNT_REG Register (Offset = 0x97) [Reset = 0x0]  
ESM_MCU_ERR_CNT_REG is shown in Figure 10-202 and described in Table 10-166.  
Return to the Table 10-22.  
Figure 10-202. ESM_MCU_ERR_CNT_REG Register  
7
6
5
4
3
2
ESM_MCU_ERR_CNT  
R-0b  
1
0
RESERVED  
R-0b  
Table 10-166. ESM_MCU_ERR_CNT_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
4:0  
RESERVED  
R
0b  
ESM_MCU_ERR_CNT  
R
0b  
Status bits to indicate the value of the ESM_MCU Error-Counter. The  
device clears these bits when ESM_MCU_START bit is 0, or when  
the device resets the MCU.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 299  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.144 ESM_SOC_START_REG Register (Offset = 0x98) [Reset = 0x0]  
ESM_SOC_START_REG is shown in Figure 10-203 and described in Table 10-167.  
Return to the Table 10-22.  
Figure 10-203. ESM_SOC_START_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
ESM_SOC_ST  
ART  
R/W-0b  
R/W-0b  
Table 10-167. ESM_SOC_START_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:1  
0
RESERVED  
ESM_SOC_START  
0b  
0b  
Control bit to start the ESM_SoC:  
0b = ESM_SoC not started. Device clears ENABLE_DRV bit when  
bit ESM_SOC_EN=1  
1b = ESM_SoC started  
Copyright © 2021 Texas Instruments Incorporated  
300 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.145 ESM_SOC_DELAY1_REG Register (Offset = 0x99) [Reset = 0x0]  
ESM_SOC_DELAY1_REG is shown in Figure 10-204 and described in Table 10-168.  
Return to the Table 10-22.  
Figure 10-204. ESM_SOC_DELAY1_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_DELAY1  
R/W-0b  
Table 10-168. ESM_SOC_DELAY1_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_SOC_DELAY1  
R/W  
0b  
These bits configure the duration of the ESM_SoC delay-1 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 301  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.146 ESM_SOC_DELAY2_REG Register (Offset = 0x9A) [Reset = 0x0]  
ESM_SOC_DELAY2_REG is shown in Figure 10-205 and described in Table 10-169.  
Return to the Table 10-22.  
Figure 10-205. ESM_SOC_DELAY2_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_DELAY2  
R/W-0b  
Table 10-169. ESM_SOC_DELAY2_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_SOC_DELAY2  
R/W  
0b  
These bits configure the duration of the ESM_SoC delay-2 time-  
interval (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
302 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.147 ESM_SOC_MODE_CFG Register (Offset = 0x9B) [Reset = 0x0]  
ESM_SOC_MODE_CFG is shown in Figure 10-206 and described in Table 10-170.  
Return to the Table 10-22.  
Figure 10-206. ESM_SOC_MODE_CFG Register  
7
6
5
4
3
2
1
0
ESM_SOC_MO ESM_SOC_EN ESM_SOC_EN  
RESERVED  
ESM_SOC_ERR_CNT_TH  
R/W-0b  
DE  
DRV  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-170. ESM_SOC_MODE_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ESM_SOC_MODE  
R/W  
0b  
This bit selects the mode for the ESM_SoC:  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
0b = Level Mode  
1b = PWM Mode  
6
ESM_SOC_EN  
R/W  
0b  
ESM_SoC enable configuration bit:  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
0b = ESM_SoC disabled. MCU can set ENABLE_DRV bit to 1 if all  
other interrupt bits are cleared  
1b = ESM_SoC enabled. MCU can set ENABLE_DRV bit to 1 if:  
- bit ESM_SOC_START=1, and  
- (ESM_SOC_FAIL_INT=0 or ESM_SOC_ENDRV=0), and  
- ESM_SOC_RST_INT=0, and  
- all other interrupt bits are cleared.  
5
ESM_SOC_ENDRV  
RESERVED  
R/W  
R/W  
0b  
Configuration bit to select ENABLE_DRV clear on ESM-error for  
ESM_SoC:  
These bits can be only be written when control bit  
ESM_SOC_START=0  
0b = ENABLE_DRV not cleared when ESM_SOC_FAIL_INT=1  
1b = ENABLE_DRV cleared when ESM_SOC_FAIL_INT=1.  
4
0b  
0b  
3:0  
ESM_SOC_ERR_CNT_T R/W  
H
Configuration bits for the threshold of the ESM_SoC error-counter  
The ESM_SoC starts the Error Handling Procedure (see  
Error Signal Monitor chapter) if ESM_SOC_ERR_CNT[4:0] >  
ESM_SOC_ERR_CNT_TH[3:0].  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 303  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.148 ESM_SOC_HMAX_REG Register (Offset = 0x9C) [Reset = 0x0]  
ESM_SOC_HMAX_REG is shown in Figure 10-207 and described in Table 10-171.  
Return to the Table 10-22.  
Figure 10-207. ESM_SOC_HMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_HMAX  
R/W-0b  
Table 10-171. ESM_SOC_HMAX_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_SOC_HMAX  
R/W  
0b  
These bits configure the the maximum high-pulse time-threshold  
(tHIGH_MAX_TH) for ESM_SoC (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
304 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.149 ESM_SOC_HMIN_REG Register (Offset = 0x9D) [Reset = 0x0]  
ESM_SOC_HMIN_REG is shown in Figure 10-208 and described in Table 10-172.  
Return to the Table 10-22.  
Figure 10-208. ESM_SOC_HMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_HMIN  
R/W-0b  
Table 10-172. ESM_SOC_HMIN_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_SOC_HMIN  
R/W  
0b  
These bits configure the the minimum high-pulse time-threshold  
(tHIGH_MIN_TH) for ESM_SoC (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 305  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.150 ESM_SOC_LMAX_REG Register (Offset = 0x9E) [Reset = 0x0]  
ESM_SOC_LMAX_REG is shown in Figure 10-209 and described in Table 10-173.  
Return to the Table 10-22.  
Figure 10-209. ESM_SOC_LMAX_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_LMAX  
R/W-0b  
Table 10-173. ESM_SOC_LMAX_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_SOC_LMAX  
R/W  
0b  
These bits configure the the maximum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_SoC (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
306 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.151 ESM_SOC_LMIN_REG Register (Offset = 0x9F) [Reset = 0x0]  
ESM_SOC_LMIN_REG is shown in Figure 10-210 and described in Table 10-174.  
Return to the Table 10-22.  
Figure 10-210. ESM_SOC_LMIN_REG Register  
7
6
5
4
3
2
1
0
ESM_SOC_LMIN  
R/W-0b  
Table 10-174. ESM_SOC_LMIN_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
ESM_SOC_LMIN  
R/W  
0b  
These bits configure the the minimum low-pulse time-threshold  
(tLOW_MAX_TH) for ESM_SoC (see Error Signal Monitor chapter).  
These bits can be only be written when control bit  
ESM_SOC_START=0.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 307  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.152 ESM_SOC_ERR_CNT_REG Register (Offset = 0xA0) [Reset = 0x0]  
ESM_SOC_ERR_CNT_REG is shown in Figure 10-211 and described in Table 10-175.  
Return to the Table 10-22.  
Figure 10-211. ESM_SOC_ERR_CNT_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
ESM_SOC_ERR_CNT  
R-0b  
Table 10-175. ESM_SOC_ERR_CNT_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:5  
4:0  
RESERVED  
ESM_SOC_ERR_CNT  
R
0b  
R
0b  
Status bits to indicate the value of the ESM_SoC Error-Counter. The  
device clears these bits when ESM_SOC_START bit is 0, or when  
the device resets the SoC.  
Copyright © 2021 Texas Instruments Incorporated  
308 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.153 REGISTER_LOCK Register (Offset = 0xA1) [Reset = 0x0]  
REGISTER_LOCK is shown in Figure 10-212 and described in Table 10-176.  
Return to the Table 10-22.  
Figure 10-212. REGISTER_LOCK Register  
7
6
5
4
3
2
1
0
RESERVED  
REGISTER_LO  
CK_STATUS  
R/W-0b  
R/W-0b  
Table 10-176. REGISTER_LOCK Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7:1  
0
R/W  
0b  
REGISTER_LOCK_STAT R/W  
US  
0b  
Unlocking registers: write 0x9B to this address.  
Locking registers: write anything else than 0x9B to this address.  
Written 8 bit data to this address will not be stored, only lock status  
can be read.  
REGISTER_LOCK_STATUS bit shows the lock status:  
0b = Registers are unlocked  
1b = Registers are locked  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 309  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.154 MANUFACTURING_VER Register (Offset = 0xA6) [Reset = 0x0]  
MANUFACTURING_VER is shown in Figure 10-213 and described in Table 10-177.  
Return to the Table 10-22.  
Figure 10-213. MANUFACTURING_VER Register  
7
6
5
4
3
2
1
0
SILICON_REV  
R-0b  
Table 10-177. MANUFACTURING_VER Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SILICON_REV  
R
0b  
SILICON_REV[7:6] - Reserved  
SILICON_REV[5:3] - ALR  
SILICON_REV[2:0] - Metal  
Copyright © 2021 Texas Instruments Incorporated  
310 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.155 CUSTOMER_NVM_ID_REG Register (Offset = 0xA7) [Reset = 0x0]  
CUSTOMER_NVM_ID_REG is shown in Figure 10-214 and described in Table 10-178.  
Return to the Table 10-22.  
Figure 10-214. CUSTOMER_NVM_ID_REG Register  
7
6
5
4
3
2
1
0
CUSTOMER_NVM_ID  
R/W-0b  
Table 10-178. CUSTOMER_NVM_ID_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
CUSTOMER_NVM_ID  
R/W  
0b  
Customer defined value if customer programmed part  
Same value as in TI_NVM_ID register if TI programmed part  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
311  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.156 SOFT_REBOOT_REG Register (Offset = 0xAB) [Reset = 0x0]  
SOFT_REBOOT_REG is shown in Figure 10-215 and described in Table 10-179.  
Return to the Table 10-22.  
Figure 10-215. SOFT_REBOOT_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
SOFT_REBOO  
T
R/W-0b  
R/WSelfClrF-0b  
Table 10-179. SOFT_REBOOT_REG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:1  
0
RESERVED  
R/W  
0b  
SOFT_REBOOT  
R/WSelfClrF 0b  
Write 1 to request a soft reboot.  
This bit is automatically cleared.  
Copyright © 2021 Texas Instruments Incorporated  
312 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.157 RTC_SECONDS Register (Offset = 0xB5) [Reset = 0x0]  
RTC_SECONDS is shown in Figure 10-216 and described in Table 10-180.  
Return to the Table 10-22.  
Figure 10-216. RTC_SECONDS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
SECOND_1  
R/W-0b  
SECOND_0  
R/W-0b  
Table 10-180. RTC_SECONDS Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
SECOND_1  
SECOND_0  
0b  
6:4  
3:0  
0b  
Second digit of seconds (range is 0 up to 5)  
First digit of seconds (range is 0 up to 9)  
0b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 313  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.158 RTC_MINUTES Register (Offset = 0xB6) [Reset = 0x0]  
RTC_MINUTES is shown in Figure 10-217 and described in Table 10-181.  
Return to the Table 10-22.  
Figure 10-217. RTC_MINUTES Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
MINUTE_1  
R/W-0b  
MINUTE_0  
R/W-0b  
Table 10-181. RTC_MINUTES Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
MINUTE_1  
MINUTE_0  
0b  
6:4  
3:0  
0b  
Second digit of minutes (range is 0 up to 5)  
First digit of minutes (range is 0 up to 9)  
0b  
Copyright © 2021 Texas Instruments Incorporated  
314 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.159 RTC_HOURS Register (Offset = 0xB7) [Reset = 0x0]  
RTC_HOURS is shown in Figure 10-218 and described in Table 10-182.  
Return to the Table 10-22.  
Figure 10-218. RTC_HOURS Register  
7
6
5
4
3
2
1
0
PM_NAM  
R/W-0b  
RESERVED  
R/W-0b  
HOUR_1  
R/W-0b  
HOUR_0  
R/W-0b  
Table 10-182. RTC_HOURS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PM_NAM  
R/W  
0b  
Only used in PM_AM mode (otherwise it is set to 0)  
0b = AM  
1b = PM  
6
RESERVED  
HOUR_1  
R/W  
R/W  
R/W  
0b  
0b  
0b  
5:4  
3:0  
Second digit of hours(range is 0 up to 2)  
First digit of hours (range is 0 up to 9)  
HOUR_0  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 315  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.160 RTC_DAYS Register (Offset = 0xB8) [Reset = 0x0]  
RTC_DAYS is shown in Figure 10-219 and described in Table 10-183.  
Return to the Table 10-22.  
Figure 10-219. RTC_DAYS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
DAY_1  
R/W-0b  
DAY_0  
R/W-0b  
Table 10-183. RTC_DAYS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
7:6  
5:4  
3:0  
RESERVED  
DAY_1  
0b  
0b  
Second digit of days (range is 0 up to 3)  
First digit of days (range is 0 up to 9)  
DAY_0  
0b  
Copyright © 2021 Texas Instruments Incorporated  
316 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.161 RTC_MONTHS Register (Offset = 0xB9) [Reset = 0x0]  
RTC_MONTHS is shown in Figure 10-220 and described in Table 10-184.  
Return to the Table 10-22.  
Figure 10-220. RTC_MONTHS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
MONTH_1  
R/W-0b  
MONTH_0  
R/W-0b  
Table 10-184. RTC_MONTHS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
7:5  
4
RESERVED  
MONTH_1  
MONTH_0  
0b  
0b  
Second digit of months (range is 0 up to 1)  
First digit of months (range is 0 up to 9)  
3:0  
0b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 317  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.162 RTC_YEARS Register (Offset = 0xBA) [Reset = 0x0]  
RTC_YEARS is shown in Figure 10-221 and described in Table 10-185.  
Return to the Table 10-22.  
Figure 10-221. RTC_YEARS Register  
7
6
5
4
3
2
1
0
YEAR_1  
R/W-0b  
YEAR_0  
R/W-0b  
Table 10-185. RTC_YEARS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:4  
3:0  
YEAR_1  
YEAR_0  
0b  
Second digit of years (range is 0 up to 9)  
First digit of years (range is 0 up to 9)  
0b  
Copyright © 2021 Texas Instruments Incorporated  
318 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.163 RTC_WEEKS Register (Offset = 0xBB) [Reset = 0x0]  
RTC_WEEKS is shown in Figure 10-222 and described in Table 10-186.  
Return to the Table 10-22.  
Figure 10-222. RTC_WEEKS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
WEEK  
R/W-0b  
Table 10-186. RTC_WEEKS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:3  
2:0  
RESERVED  
WEEK  
0b  
0b  
First digit of day of the week (range is 0 up to 6)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 319  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.164 ALARM_SECONDS Register (Offset = 0xBC) [Reset = 0x0]  
ALARM_SECONDS is shown in Figure 10-223 and described in Table 10-187.  
Return to the Table 10-22.  
Figure 10-223. ALARM_SECONDS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ALR_SECOND_1  
R/W-0b  
ALR_SECOND_0  
R/W-0b  
Table 10-187. ALARM_SECONDS Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
6:4  
3:0  
ALR_SECOND_1  
ALR_SECOND_0  
0b  
Second digit of alarm programmation for seconds (range is 0 up to 5)  
First digit of alarm programmation for seconds (range is 0 up to 9)  
0b  
Copyright © 2021 Texas Instruments Incorporated  
320 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.165 ALARM_MINUTES Register (Offset = 0xBD) [Reset = 0x0]  
ALARM_MINUTES is shown in Figure 10-224 and described in Table 10-188.  
Return to the Table 10-22.  
Figure 10-224. ALARM_MINUTES Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ALR_MINUTE_1  
R/W-0b  
ALR_MINUTE_0  
R/W-0b  
Table 10-188. ALARM_MINUTES Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RESERVED  
0b  
6:4  
3:0  
ALR_MINUTE_1  
ALR_MINUTE_0  
0b  
Second digit of alarm programmation for minutes (range is 0 up to 5)  
First digit of alarm programmation for minutes (range is 0 up to 9)  
0b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 321  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.166 ALARM_HOURS Register (Offset = 0xBE) [Reset = 0x0]  
ALARM_HOURS is shown in Figure 10-225 and described in Table 10-189.  
Return to the Table 10-22.  
Figure 10-225. ALARM_HOURS Register  
7
6
5
4
3
2
1
0
ALR_PM_NAM  
R/W-0b  
RESERVED  
R/W-0b  
ALR_HOUR_1  
R/W-0b  
ALR_HOUR_0  
R/W-0b  
Table 10-189. ALARM_HOURS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ALR_PM_NAM  
R/W  
0b  
Only used in PM_AM mode for alarm programmation (otherwise it is  
set to 0)  
0b = AM  
1b = PM  
6
RESERVED  
R/W  
R/W  
R/W  
0b  
0b  
0b  
5:4  
3:0  
ALR_HOUR_1  
ALR_HOUR_0  
Second digit of alarm programmation for hours(range is 0 up to 2)  
First digit of alarm programmation for hours (range is 0 up to 9)  
Copyright © 2021 Texas Instruments Incorporated  
322 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.167 ALARM_DAYS Register (Offset = 0xBF) [Reset = 0x0]  
ALARM_DAYS is shown in Figure 10-226 and described in Table 10-190.  
Return to the Table 10-22.  
Figure 10-226. ALARM_DAYS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
ALR_DAY_1  
R/W-0b  
ALR_DAY_0  
R/W-0b  
Table 10-190. ALARM_DAYS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
7:6  
5:4  
3:0  
RESERVED  
ALR_DAY_1  
ALR_DAY_0  
0b  
0b  
Second digit of alarm programmation for days (range is 0 up to 3)  
First digit of alarm programmation for days (range is 0 up to 9)  
0b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 323  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.168 ALARM_MONTHS Register (Offset = 0xC0) [Reset = 0x0]  
ALARM_MONTHS is shown in Figure 10-227 and described in Table 10-191.  
Return to the Table 10-22.  
Figure 10-227. ALARM_MONTHS Register  
7
6
5
4
3
2
1
0
RESERVED  
ALR_MONTH_  
1
ALR_MONTH_0  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-191. ALARM_MONTHS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
7:5  
4
RESERVED  
ALR_MONTH_1  
ALR_MONTH_0  
0b  
0b  
Second digit of alarm programmation for months (range is 0 up to 1)  
First digit of alarm programmation for months (range is 0 up to 9)  
3:0  
0b  
Copyright © 2021 Texas Instruments Incorporated  
324 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.169 ALARM_YEARS Register (Offset = 0xC1) [Reset = 0x0]  
ALARM_YEARS is shown in Figure 10-228 and described in Table 10-192.  
Return to the Table 10-22.  
Figure 10-228. ALARM_YEARS Register  
7
6
5
4
3
2
1
0
ALR_YEAR_1  
R/W-0b  
ALR_YEAR_0  
R/W-0b  
Table 10-192. ALARM_YEARS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:4  
3:0  
ALR_YEAR_1  
ALR_YEAR_0  
0b  
Second digit of alarm programmation for years (range is 0 up to 9)  
First digit of alarm programmation for years (range is 0 up to 9)  
0b  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 325  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.170 RTC_CTRL_1 Register (Offset = 0xC2) [Reset = 0x0]  
RTC_CTRL_1 is shown in Figure 10-229 and described in Table 10-193.  
Return to the Table 10-22.  
Figure 10-229. RTC_CTRL_1 Register  
7
6
5
4
3
2
1
0
RTC_V_OPT  
GET_TIME  
SET_32_COUN RESERVED  
TER  
MODE_12_24 AUTO_COMP  
R/W-0b R/W-0b  
ROUND_30S  
STOP_RTC  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-193. RTC_CTRL_1 Register Field Descriptions  
Bit  
Field  
RTC_V_OPT  
Type  
Reset  
Description  
7
R/W  
0b  
RTC date / time register selection:  
0b = Read access directly to dynamic registers (RTC_SECONDS,  
RTC_MINUTES, RTC_HOURS, RTC_DAYS, RTC_MONTHS,  
RTC_YEAR, RTC_WEEKS)  
1b = Read access to static shadowed registers: (see GET_TIME bit).  
6
GET_TIME  
R/W  
0b  
When writing a 1 into this register, the content of the dynamic  
registers (RTC_SECONDS, RTC_MINUTES, RTC_HOURS,  
RTC_DAYS, RTC_MONTHS, RTC_YEARS_ and RTC_WEEKS) is  
transferred into static shadowed registers.  
Each update of the shadowed registers needs to be done by re-  
asserting GET_TIME bit to 1 (i.e.: reset it to 0 and then rewrite it to 1)  
Note: Shadowed registers, linked to the GET_TIME feature, are a  
parallel set of calendar static registers, at the same I2C addresses  
as the dynamic registers.  
Note: The GET_TIME feature loads the RTC counter in the shadow  
registers and make the content of the shadow registers available and  
stable for reading.  
Note: The GET_TIME bit has to be set to 0 and again to 1 to get a  
new timing value.  
Note: If the time reading is done without GET_TIME, the read value  
comes directly from the RTC counter and software has to manage  
the counter change during the reading.  
Time reading remains always at the same address, with or without  
using the GET_TIME feature.  
5
SET_32_COUNTER  
R/W  
0b  
Note: This bit must only be used when the RTC is frozen.  
0b = No action  
1b = Set the 32kHz counter with RTC_COMP_MSB_REG/  
RTC_COMP_LSB_REG value  
4
3
RESERVED  
R/W  
R/W  
0b  
0b  
MODE_12_24  
Note: It is possible to switch between the two modes at any time  
without disturbed the RTC, read or write are always performed with  
the current mode.  
0b = 24 hours mode  
1b = 12 hours mode (PM-AM mode)  
2
1
AUTO_COMP  
ROUND_30S  
R/W  
R/W  
0b  
0b  
AUTO_COMP  
0b = No auto compensation  
1b = Auto compensation enabled  
Note: This bit is a toggle bit, the micro-controller can only write one  
and RTC clears it.  
If the micro-controller sets the ROUND_30S bit and then read it, the  
micro-controller will read one until the rounding to the closest minute  
is performed at the next second.  
0b = No update  
1b = When a one is written, the time is rounded to the closest minute  
0
STOP_RTC  
R/W  
0b  
STOP_RTC  
0b = RTC is frozen  
1b = RTC is running  
Copyright © 2021 Texas Instruments Incorporated  
326 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.171 RTC_CTRL_2 Register (Offset = 0xC3) [Reset = 0x0]  
RTC_CTRL_2 is shown in Figure 10-230 and described in Table 10-194.  
Return to the Table 10-22.  
Figure 10-230. RTC_CTRL_2 Register  
7
6
5
4
3
2
1
0
FIRST_START  
UP_DONE  
STARTUP_DEST  
FAST_BIST  
LP_STANDBY_  
SEL  
XTAL_SEL  
R/W-0b  
XTAL_EN  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
R/W-0b  
Table 10-194. RTC_CTRL_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FIRST_STARTUP_DONE R/W  
0b  
This bit controls if EEPROM defaults are loaded to RTC domain reg  
bits during EEPROM read  
0b = EEPROM defaults are loaded to RTC domain bits  
1b = EEPROM defaults are not loaded to RTC domain bits  
6:5  
STARTUP_DEST  
R/W  
0b  
FSM startup destination select.  
(Default from NVM memory)  
0b = STANDBY/LP_STANDBY based on LP_STANDBY_SEL  
1b = Reserved  
10b = MCU_ONLY  
11b = ACTIVE  
4
3
FAST_BIST  
R/W  
R/W  
0b  
0b  
FAST_BIST  
(Default from NVM memory)  
0b = Logic and analog BIST is run at BOOT BIST.  
1b = Only analog BIST is run at BOOT BIST.  
LP_STANDBY_SEL  
Control to enter low power standby state:  
(Default from NVM memory)  
0b = LDOINT is enabled in standby state.  
1b = Low power standby state is used as standby state (LDOINT is  
disabled).  
2:1  
XTAL_SEL  
XTAL_EN  
R/W  
R/W  
0b  
0b  
Crystal oscillator type select  
(Default from NVM memory)  
0b = 6 pF  
1b = 9 pF  
10b = 12.5 pF  
11b = Reserved  
0
Crystal oscillator enable.  
(Default from NVM memory)  
0b = Crystal oscillator is disabled  
1b = Crystal oscillator is enabled  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 327  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.172 RTC_STATUS Register (Offset = 0xC4) [Reset = 0x80]  
RTC_STATUS is shown in Figure 10-231 and described in Table 10-195.  
Return to the Table 10-22.  
Figure 10-231. RTC_STATUS Register  
7
6
5
4
3
2
1
0
POWER_UP  
R/W1C-1b  
ALARM  
R/W1C-0b  
TIMER  
RESERVED  
R/W-0b  
RUN  
R-0b  
RESERVED  
R/W-0b  
R/W1C-0b  
Table 10-195. RTC_STATUS Register Field Descriptions  
Bit  
Field  
POWER_UP  
Type  
Reset  
Description  
7
R/W1C  
1b  
Indicates that a reset occurred (bit cleared to 0 by writing 1) and that  
RTC data are not valid anymore.  
Note: POWER_UP is set by a reset, is cleared by writing one in this  
bit.  
Note: The POWER_UP (RTC_STATUS) and RESET_STATUS  
(RTC_RESET_STATUS) register bits indicate the same information.  
6
5
ALARM  
TIMER  
R/W1C  
R/W1C  
0b  
0b  
Indicates that an alarm interrupt has been generated (bit clear by  
writing 1).  
Indicates that an timer interrupt has been generated (bit clear by  
writing 1).  
4:2  
1
RESERVED  
RUN  
R/W  
R
0b  
0b  
Note: This bit shows the real state of the RTC, indeed because  
of STOP_RTC (RTC_CTRL) signal was resynchronized on 32kHz  
clock, the action of this bit is delayed.  
0b = RTC is frozen  
1b = RTC is running  
0
RESERVED  
R/W  
0b  
Copyright © 2021 Texas Instruments Incorporated  
328 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.173 RTC_INTERRUPTS Register (Offset = 0xC5) [Reset = 0x0]  
RTC_INTERRUPTS is shown in Figure 10-232 and described in Table 10-196.  
Return to the Table 10-22.  
Figure 10-232. RTC_INTERRUPTS Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
IT_ALARM  
R/W-0b  
IT_TIMER  
R/W-0b  
EVERY  
R/W-0b  
Table 10-196. RTC_INTERRUPTS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:4  
3
RESERVED  
IT_ALARM  
0b  
0b  
Enable one interrupt when the alarm value is reached  
(TC ALARM registers: ALARM_SECONDS, ALARM_MINUTES,  
ALARM_HOURS, ALARM_DAYS, ALARM_MONTHS,  
ALARM_YEARS) by the TC registers  
NOTE: To prevent mis-firing of the ALARM interrupt, set the  
IT_ALARM = 0 prior to configuring the ALARM registers  
0b = interrupt disabled  
1b = interrupt enabled  
2
IT_TIMER  
EVERY  
R/W  
R/W  
0b  
0b  
Enable periodic interrupt  
NOTE: To prevent mis-firing of the TIMER interrupt, set the  
IT_TIMER = 0 prior to configuring the periodic time value  
0b = interrupt disabled  
1b = interrupt enabled  
1:0  
Interrupt period  
0b = every second  
1b = every minute  
10b = every hour  
11b = every day  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 329  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.174 RTC_COMP_LSB Register (Offset = 0xC6) [Reset = 0x0]  
RTC_COMP_LSB is shown in Figure 10-233 and described in Table 10-197.  
Return to the Table 10-22.  
Figure 10-233. RTC_COMP_LSB Register  
7
6
5
4
3
2
1
0
COMP_LSB_RTC  
R/W-0b  
Table 10-197. RTC_COMP_LSB Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
COMP_LSB_RTC  
R/W  
0b  
This register contains the number of 32kHz periods to be added into  
the 32kHz counter every hour [LSB]  
Copyright © 2021 Texas Instruments Incorporated  
330 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.175 RTC_COMP_MSB Register (Offset = 0xC7) [Reset = 0x0]  
RTC_COMP_MSB is shown in Figure 10-234 and described in Table 10-198.  
Return to the Table 10-22.  
Figure 10-234. RTC_COMP_MSB Register  
7
6
5
4
3
2
1
0
COMP_MSB_RTC  
R/W-0b  
Table 10-198. RTC_COMP_MSB Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
COMP_MSB_RTC  
R/W  
0b  
This register contains the number of 32kHz periods to be added into  
the 32kHz counter every hour [MSB]  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 331  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.176 RTC_RESET_STATUS Register (Offset = 0xC8) [Reset = 0x0]  
RTC_RESET_STATUS is shown in Figure 10-235 and described in Table 10-199.  
Return to the Table 10-22.  
Figure 10-235. RTC_RESET_STATUS Register  
7
6
5
4
3
2
1
0
RESERVED  
RESET_STATU  
S_RTC  
R/W-0b  
R/W-0b  
Table 10-199. RTC_RESET_STATUS Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:1  
0
RESERVED  
0b  
RESET_STATUS_RTC  
0b  
This bit can only be set to one and is cleared when a manual reset  
or a POR (case of VOUT_LDO_RTC below the LDO_RTC POR  
level) occur. If this bit is reset it means that the RTC has lost its  
configuration.  
Note: The RESET_STATUS (RTC_RESET_STATUS) and  
POWER_UP (RTC_STATUS) register bits indicate the same  
information.  
Copyright © 2021 Texas Instruments Incorporated  
332 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.177 SCRATCH_PAD_REG_1 Register (Offset = 0xC9) [Reset = 0x0]  
SCRATCH_PAD_REG_1 is shown in Figure 10-236 and described in Table 10-200.  
Return to the Table 10-22.  
Figure 10-236. SCRATCH_PAD_REG_1 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_1  
R/W-0b  
Table 10-200. SCRATCH_PAD_REG_1 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_1  
R/W  
0b  
Scratchpad for temporary data storage. The register is reset only  
when VRTC is disabled. The data is maintained when VINT regulator  
is disabled, for example during LP_STANDBY state.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 333  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.178 SCRATCH_PAD_REG_2 Register (Offset = 0xCA) [Reset = 0x0]  
SCRATCH_PAD_REG_2 is shown in Figure 10-237 and described in Table 10-201.  
Return to the Table 10-22.  
Figure 10-237. SCRATCH_PAD_REG_2 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_2  
R/W-0b  
Table 10-201. SCRATCH_PAD_REG_2 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_2  
R/W  
0b  
Scratchpad for temporary data storage. The register is reset only  
when VRTC is disabled. The data is maintained when VINT regulator  
is disabled, for example during LP_STANDBY state.  
Copyright © 2021 Texas Instruments Incorporated  
334 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.179 SCRATCH_PAD_REG_3 Register (Offset = 0xCB) [Reset = 0x0]  
SCRATCH_PAD_REG_3 is shown in Figure 10-238 and described in Table 10-202.  
Return to the Table 10-22.  
Figure 10-238. SCRATCH_PAD_REG_3 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_3  
R/W-0b  
Table 10-202. SCRATCH_PAD_REG_3 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_3  
R/W  
0b  
Scratchpad for temporary data storage. The register is reset only  
when VRTC is disabled. The data is maintained when VINT regulator  
is disabled, for example during LP_STANDBY state.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 335  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.180 SCRATCH_PAD_REG_4 Register (Offset = 0xCC) [Reset = 0x0]  
SCRATCH_PAD_REG_4 is shown in Figure 10-239 and described in Table 10-203.  
Return to the Table 10-22.  
Figure 10-239. SCRATCH_PAD_REG_4 Register  
7
6
5
4
3
2
1
0
SCRATCH_PAD_4  
R/W-0b  
Table 10-203. SCRATCH_PAD_REG_4 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
SCRATCH_PAD_4  
R/W  
0b  
Scratchpad for temporary data storage. The register is reset only  
when VRTC is disabled. The data is maintained when VINT regulator  
is disabled, for example during LP_STANDBY state.  
Copyright © 2021 Texas Instruments Incorporated  
336 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.181 PFSM_DELAY_REG_1 Register (Offset = 0xCD) [Reset = 0x0]  
PFSM_DELAY_REG_1 is shown in Figure 10-240 and described in Table 10-204.  
Return to the Table 10-22.  
Figure 10-240. PFSM_DELAY_REG_1 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY1  
R/W-0b  
Table 10-204. PFSM_DELAY_REG_1 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
PFSM_DELAY1  
R/W  
0b  
Generic delay1 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 337  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.182 PFSM_DELAY_REG_2 Register (Offset = 0xCE) [Reset = 0x0]  
PFSM_DELAY_REG_2 is shown in Figure 10-241 and described in Table 10-205.  
Return to the Table 10-22.  
Figure 10-241. PFSM_DELAY_REG_2 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY2  
R/W-0b  
Table 10-205. PFSM_DELAY_REG_2 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
PFSM_DELAY2  
R/W  
0b  
Generic delay2 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
338 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.183 PFSM_DELAY_REG_3 Register (Offset = 0xCF) [Reset = 0x0]  
PFSM_DELAY_REG_3 is shown in Figure 10-242 and described in Table 10-206.  
Return to the Table 10-22.  
Figure 10-242. PFSM_DELAY_REG_3 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY3  
R/W-0b  
Table 10-206. PFSM_DELAY_REG_3 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
PFSM_DELAY3  
R/W  
0b  
Generic delay3 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 339  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.184 PFSM_DELAY_REG_4 Register (Offset = 0xD0) [Reset = 0x0]  
PFSM_DELAY_REG_4 is shown in Figure 10-243 and described in Table 10-207.  
Return to the Table 10-22.  
Figure 10-243. PFSM_DELAY_REG_4 Register  
7
6
5
4
3
2
1
0
PFSM_DELAY4  
R/W-0b  
Table 10-207. PFSM_DELAY_REG_4 Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
PFSM_DELAY4  
R/W  
0b  
Generic delay4 for PFSM use.  
The step size is defined by PFSM_DELAY_STEP bits.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
340 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.185 WD_ANSWER_REG Register (Offset = 0x401) [Reset = 0x0]  
WD_ANSWER_REG is shown in Figure 10-244 and described in Table 10-208.  
Return to the Table 10-22.  
Figure 10-244. WD_ANSWER_REG Register  
7
6
5
4
3
2
1
0
WD_ANSWER  
R/W-0b  
Table 10-208. WD_ANSWER_REG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
WD_ANSWER  
R/W  
0b  
MCU answer byte. The MCU must write the expected reference  
Answer-x into this register.  
Each watchdog question requires four answer bytes:  
– Three answer bytes (Answer-3, Answer-2, Answer-1) must be  
written in Window-1.  
– The fourth (final) answer-byte (Answer-0) must be written in  
Window-2.  
The number of written answer bytes is tracked with the  
WD_ANSW_CNT counter in the WD_QUESTION_ANSW_CNT  
register.  
These bits only apply for Watchdog in Q&A mode.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 341  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.186 WD_QUESTION_ANSW_CNT Register (Offset = 0x402) [Reset = 0x30]  
WD_QUESTION_ANSW_CNT is shown in Figure 10-245 and described in Table 10-209.  
Return to the Table 10-22.  
Figure 10-245. WD_QUESTION_ANSW_CNT Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
WD_ANSW_CNT  
R-11b  
WD_QUESTION  
R-0b  
Table 10-209. WD_QUESTION_ANSW_CNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5:4  
RESERVED  
R
0b  
WD_ANSW_CNT  
R
11b  
Current, received watchdog-answer count state.  
These bits only apply for Watchdog in Q&A mode.  
3:0  
WD_QUESTION  
R
0b  
Watchdog question.  
The MCU must read (or calculate ) the current watchdog question  
value to generate correct answers.  
These bits only apply for Watchdog in Q&A mode.  
Copyright © 2021 Texas Instruments Incorporated  
342 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.187 WD_WIN1_CFG Register (Offset = 0x403) [Reset = 0x7F]  
WD_WIN1_CFG is shown in Figure 10-246 and described in Table 10-210.  
Return to the Table 10-22.  
Figure 10-246. WD_WIN1_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
WD_WIN1  
R/W-1111111b  
Table 10-210. WD_WIN1_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
WD_WIN1  
0b  
6:0  
1111111b  
These bits are for programming the duration of Watchdog Window-1  
(see Watchdoc chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 343  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.188 WD_WIN2_CFG Register (Offset = 0x404) [Reset = 0x7F]  
WD_WIN2_CFG is shown in Figure 10-247 and described in Table 10-211.  
Return to the Table 10-22.  
Figure 10-247. WD_WIN2_CFG Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0b  
WD_WIN2  
R/W-1111111b  
Table 10-211. WD_WIN2_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
RESERVED  
WD_WIN2  
0b  
6:0  
1111111b  
These bits are for programming the duration of Watchdog Window-2  
(see Watchdog chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2021 Texas Instruments Incorporated  
344 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.189 WD_LONGWIN_CFG Register (Offset = 0x405) [Reset = 0xFF]  
WD_LONGWIN_CFG is shown in Figure 10-248 and described in Table 10-212.  
Return to the Table 10-22.  
Figure 10-248. WD_LONGWIN_CFG Register  
7
6
5
4
3
2
1
0
WD_LONGWIN  
R/W-11111111b  
Table 10-212. WD_LONGWIN_CFG Register Field Descriptions  
Bit  
7:0  
Field  
Type  
Reset  
Description  
WD_LONGWIN  
R/W  
11111111b  
These bits are for programming the duration of Watchdog Long  
Window (see Watchdog chapter).  
These bits can be only be written when the watchdog is in the Long  
Window.  
(Default from NVM memory)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 345  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.190 WD_MODE_REG Register (Offset = 0x406) [Reset = 0x2]  
WD_MODE_REG is shown in Figure 10-249 and described in Table 10-213.  
Return to the Table 10-22.  
Figure 10-249. WD_MODE_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
WD_PWRHOL WD_MODE_SE WD_RETURN_  
D
LECT  
LONGWIN  
R/W-0b  
R/W-0b  
R/W-1b  
R/W-0b  
Table 10-213. WD_MODE_REG Register Field Descriptions  
Bit  
Field  
Type  
R/W  
R/W  
Reset  
Description  
7:3  
2
RESERVED  
0b  
WD_PWRHOLD  
0b  
Device sets WD_PWRHOLD if hardware condition on pin  
DISABLE_WDOG (mapped to GPIO8 pin) is applied at startup (see  
Watchdog chapter).  
MCU can write this bit to 1.  
MCU needs to clear this bit to get out of the Long Window:  
0b = watchdog goes out of the Long Window and starts the first  
watchdog-sequence when the configured Long Window time-interval  
elapses  
1b = watchdog stays in Long Window  
1
0
WD_MODE_SELECT  
R/W  
1b  
0b  
Watchdog mode-select:  
MCU can set this to required value only when watchdog is in the  
Long Window.  
0b = Trigger Mode  
1b = Q&A mode.  
WD_RETURN_LONGWIN R/W  
MCU can set this bit to put the watchdog from operating back to the  
Long Window (see Watchdog chapter):  
0b = Watchdog continues operating  
1b = Watchdog returns to Long-Window after completion of the  
current watchdog-sequence.  
Copyright © 2021 Texas Instruments Incorporated  
346 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.191 WD_QA_CFG Register (Offset = 0x407) [Reset = 0xA]  
WD_QA_CFG is shown in Figure 10-250 and described in Table 10-214.  
Return to the Table 10-22.  
Figure 10-250. WD_QA_CFG Register  
7
6
5
4
3
2
1
0
WD_QA_FDBK  
R/W-0b  
WD_QA_LFSR  
R/W-0b  
WD_QUESTION_SEED  
R/W-1010b  
Table 10-214. WD_QA_CFG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
WD_QA_FDBK  
R/W  
0b  
Feedback configuration bits for the watchdog question. These bits  
control the sequence of the generated questions and respective  
reference answers (see Watchdog chapter).  
These bits are only used for the watchdog in Q&A mode.  
These bits can be only be written when the watchdog is in the Long  
Window.  
5:4  
3:0  
WD_QA_LFSR  
R/W  
R/W  
0b  
LFSR-equation configuration bits for the watchdog question (see  
Watchdog chapter).  
These bits are only used for the watchdog in Q&A mode.  
These bits can be only be written when the watchdog is in the Long  
Window.  
WD_QUESTION_SEED  
1010b  
The watchdog question-seed value (see Watchdog chapter).  
The MCU updates the question-seed value to generate a set of new  
questions.  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 347  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.192 WD_ERR_STATUS Register (Offset = 0x408) [Reset = 0x0]  
WD_ERR_STATUS is shown in Figure 10-251 and described in Table 10-215.  
Return to the Table 10-22.  
Figure 10-251. WD_ERR_STATUS Register  
7
6
5
4
3
2
1
0
WD_RST_INT WD_FAIL_INT WD_ANSW_ER WD_SEQ_ERR WD_ANSW_EA WD_TRIG_EAR WD_TIMEOUT WD_LONGWIN  
R
RLY  
LY  
_TIMEOUT_INT  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
Table 10-215. WD_ERR_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WD_RST_INT  
R/W1C  
0b  
Latched status bit to indicate that the device went through  
warm reset due to WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0]).  
Write 1 to clear.  
6
5
WD_FAIL_INT  
R/W1C  
R/W1C  
0b  
0b  
Latched status bit to indicate that the watchdog has cleared the  
ENABLE_DRV bit due to WD_FAIL_CNT[3:0] > WD_FAIL_TH[2:0].  
Write 1 to clear.  
WD_ANSW_ERR  
Latched status bit to indicate that the watchdog has detected an  
incorrect answer-byte.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
4
3
2
WD_SEQ_ERR  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
0b  
0b  
Latched status bit to indicate that the watchdog has detected an  
incorrect sequence of the answer-bytes.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
WD_ANSW_EARLY  
WD_TRIG_EARLY  
WD_TIMEOUT  
Latched status bit to indicate that the watchdog has received the final  
answer-byte in Window-1.  
Write 1 to clear.  
This bit only applies for Watchdog in Q&A mode.  
Latched status bit to indicate that the watchdog has received the  
watchdog-trigger in Window-1.  
Write 1 to clear.  
This bit only applies for Watchdog in Trigger mode.  
1
0
0b  
0b  
Latched status bit to indicate that the watchdog has detected a time-  
out event in the started watchdog sequence.  
Write 1 to clear.  
WD_LONGWIN_TIMEOU R/W1C  
T_INT  
Latched status bit to indicate that device went through warm reset  
due to elapse of Long Window time-interval.  
Write 1 to clear interrupt.  
Copyright © 2021 Texas Instruments Incorporated  
348 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.193 WD_THR_CFG Register (Offset = 0x409) [Reset = 0xFF]  
WD_THR_CFG is shown in Figure 10-252 and described in Table 10-216.  
Return to the Table 10-22.  
Figure 10-252. WD_THR_CFG Register  
7
6
5
4
3
2
1
0
WD_RST_EN  
R/W-1b  
WD_EN  
R/W-1b  
WD_FAIL_TH  
R/W-111b  
WD_RST_TH  
R/W-111b  
Table 10-216. WD_THR_CFG Register Field Descriptions  
Bit  
Field  
WD_RST_EN  
Type  
Reset  
Description  
7
R/W  
1b  
Watchdog reset configuration bit:  
This bit can be only be written when the watchdog is in the Long  
Window.  
0b = No warm reset when WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0]  
+ WD_RST_TH[2:0])  
1b = Warm reset when WD_FAIL_CNT[3:0] > (WD_FAIL_TH[2:0] +  
WD_RST_TH[2:0]).  
6
WD_EN  
R/W  
1b  
Watchdog enable configuration bit:  
This bit can be only be written when the watchdog is in the Long  
Window.  
(Default from NVM memory)  
0b = watchdog disabled. MCU can set ENABLE_DRV bit to 1 if all  
other interrupt status bits are cleared  
1b = watchdog enabled. MCU can set ENABLE_DRV bit to 1 if:  
- watchdog is out of the Long Window  
- WD_FAIL_CNT[3:0] =< WD_FAIL_TH[2:0]  
- WD_FIRST_OK=1  
- all other interrupt status bits are cleared.  
5:3  
2:0  
WD_FAIL_TH  
WD_RST_TH  
R/W  
R/W  
111b  
111b  
Configuration bits for the 1st threshold of the watchdog fail counter:  
Device clears ENABLE_DRV bit when WD_FAIL_CNT[3:0] >  
WD_FAIL_TH[2:0].  
These bits can be only be written when the watchdog is in the Long  
Window.  
Configuration bits for the 2nd threshold of the watchdog fail counter:  
Device goes through warm reset when WD_FAIL_CNT[3:0] >  
(WD_FAIL_TH[2:0] + WD_RST_TH[2:0]).  
These bits can be only be written when the watchdog is in the Long  
Window.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 349  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
10.7.1.194 WD_FAIL_CNT_REG Register (Offset = 0x40A) [Reset = 0x20]  
WD_FAIL_CNT_REG is shown in Figure 10-253 and described in Table 10-217.  
Return to the Table 10-22.  
Figure 10-253. WD_FAIL_CNT_REG Register  
7
6
5
4
3
2
1
0
RESERVED  
WD_BAD_EVE WD_FIRST_OK RESERVED  
NT  
WD_FAIL_CNT  
R-0b  
R-0b  
R-0b  
R-1b  
R-0b  
Table 10-217. WD_FAIL_CNT_REG Register Field Descriptions  
Bit  
7
Field  
RESERVED  
Type  
Reset  
Description  
R
0b  
6
WD_BAD_EVENT  
R
0b  
Status bit to indicate that the watchdog has detected a bad event in  
the current watchdog sequence.  
The device clears this bit at the end of the watchdog sequence.  
5
WD_FIRST_OK  
R
1b  
Status bit to indicate that the watchdog has detected a good event.  
The device clears this bit when the watchdog goes to the Long  
Window.  
4
RESERVED  
R
R
0b  
0b  
3:0  
WD_FAIL_CNT  
Status bits to indicate the value of the Watchdog Fail Counter.  
The device clears these bits when the watchdog goes to the Long  
Window.  
Copyright © 2021 Texas Instruments Incorporated  
350 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
11.1 Application Information  
The following sections will provide more detail on the proper utilization of the PMIC. Each orderable part number  
has unique default non-volatile memory settings and the relevant user's guide for that orderable are available in  
the product folder. Reference these user's guides for specific application information. More generic topics and  
some examples are outlined here.  
To help with new designs, a variety of tools and documents are available in the product folder. Some examples  
are:  
Evaluation module and user guide which allow testing of various orderable part numbers, including multi-  
PMIC operation  
GUI to communicate with the PMIC  
Schematic and layout checklist  
Periodically, new tools and documents will be added to aid in new designs.  
11.2 Typical Application  
The PMIC is generally used to power a processor. The number of regulators needed, the required sequencing,  
the load current requirements, and the voltage characteristics are all critical in determining the number of PMICs  
used in the system as well as the external components used with it. The following section provides a generic  
case. For specific cases, refer to the relevant user's guide based on the orderable part number.  
11.2.1 Powering a Processor  
In this example, a single PMIC is used to power a generic processor. For this case, the PMIC is used in 2+1+1+1  
buck phase configuration where BUCK1 and BUCK2 are used in parallel to supply higher currents.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 351  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
TPS6594-Q1  
Processor Supplies  
0.8V  
BUCK1  
3.3V  
(3.5A max)  
VCCA  
POWER DOMAINS  
VDD CORE  
0.8V  
BUCK2  
(3.5A max)  
0.85V  
0.8V (AVS)  
1.1V  
BUCK3  
(3.5A max)  
MCU  
CPU (AVS)  
BUCK4  
(4A max)  
BUCK5  
(2A max)  
VDD DDR  
1.8V  
LDO1  
VDDA  
(500mA max)  
1.8V  
LDO2  
1.8V PHYs  
(500mA max)  
0.8V  
LDO3  
(500mA max)  
0.8V PLLs and DLLs  
3.3V VDDSHVx  
1.8V  
LDO4  
(300mA max)  
VIO_IN  
I2C  
I2C  
nRSTOUT  
PORz  
System  
1.8V  
EN  
3.3V  
Load Switch  
1.1V  
Figure 11-1. Example Power Map  
11.2.1.1 Design Requirements  
The design requirements for the sample processor in Figure 11-1 are outlined below:  
VDD CORE rail requires 0.8 V, 5 A  
MCU rail requires 0.85 V, 2 A  
CPU (AVS) rail requires 0.8 V, 3 A and the ability to support Adaptive Voltage Scaling  
LPDDR4 is used, which requires 1.1 V, 1 A and 1.8 V, 200 mA  
1.8V PHYs and 0.8V PLLs and DLLs which are noise sensitive  
VDDA supplies the processor's most noise sensitive components, requires 100 mA, and requires extra low  
noise  
Protection from 3.3 V overvoltage (functional safety variant only)  
11.2.1.2 Detailed Design Procedure  
Based on the above requirements, the PMIC was configured with the connections outlined in Figure 11-1.  
BUCK1 and BUCK2 are used in multiphase operation to support the 5 A current. LDO2 and LDO3 are used to  
power 1.8 V PHYs and 0.8 V PLLs and DLLs because they are lower noise than a buck regulator and it isolates  
them from the noise of VDD CORE and the LPDDR4 1.8 V supply. LDO4 was used to power VDDA because it is  
has even better noise performance.  
Using this configuration information, components can be chosen to use with the PMIC.  
Copyright © 2021 Texas Instruments Incorporated  
352 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.1.2.1 VCCA, VSYS_SENSE, and OVPGDRV  
The VCCA pin provides power to LDOVINT and other internal functions. It is always connected in parallel with  
the buck input pins (PVIN_Bx pins). The VSYS_SENSE pin and OVPGDRV pin protect the device from being  
damaged by an overvoltage event from the pre-regulator by disconnecting the low voltage VCCA-powered pins  
from VSYS. The VCCA pin can be connected to an optional 0.47-µF bypass capacitor close to the pin. For  
cases where the pre-regulator is not located near the device, place some additional bulk capacitance before the  
protection FET to stabilize the VSYS supply near the device.  
For the input protection, total capacitance on the VSYS node must guarantee that VCCA does not rise above 8 V  
before the PMIC disables the protection FET in case of pre-regulator high side FET short failure. The maximum  
time specification is 15 µs, which leads to a maximum average slew rate of 133 mV / µs in the 6 V to 8 V  
range. The capacitance varies based on the pre-regulator inductor and the pre-regulator input filter and it is  
recommended to simulate this circuit to get an initial estimate on the required capacitance.  
Choose a Zener diode with a breakdown voltage less than the recommended maximum of the VSYS_SENSE  
pin (12 V maximum) and greater than the overvoltage detection voltage (VSYS_OVP_Rising of 6.2 V) at all  
times for proper protection. Choose the protection resistors values to assure that the voltage across the Zener  
diode remains within those two boundaries and that the current is not greater than the Zener diode maximum  
current for the full desired input voltage protection range. For increased reliability, two resistors with 90° physical  
orientation offset are recommended to reduce risk of a single point short resulting in IC damage.  
Finally, choose the protection NMOS FET with sufficient current and voltage ratings for the application with  
minimal gate charge values. The turn-on and turn-off time of the protection FET is generally very fast relative  
to the detection time, so gate charge is not as critical as RDSON in general. The components chosen for the  
evaluation module to cover a broad set of applications are shown in Table 11-1. To determine the required  
minimum FET RDS(ON), the maximum input current is first measured or calculated based on output current  
requirements multiplied by the duty cycle (VOUT / VIN) and then divided by the buck efficiency. Next, determine  
the VCCAUV_TH from the VCCA_PG_WINDOW. VCCA_UV_THR register setting. The RDS(ON) maximum must  
be less than the VCCAUV_TH minimum divided by the input current maximum to ensure that VCCA does not drop  
below VCCAUV_TH at maximum loading. From there, the second factor to consider is to minimize the QGS for  
faster FET turn off time.  
For cases where input voltage protection is not required, ground VSYS_SENSE, float OVPGDRV, and the  
protection diode and FET are not needed.  
Table 11-1. Recommended VCCA, VSYS_SENSE, and OVPGDRV Components  
EIA SIZE  
CODE  
COMPONENT  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
USED for VALIDATION  
Capacitor  
Murata  
GCM155C71A474KE36  
CGA2B3X7S1A474K050BB  
MM3Z10VST1G  
0.47 µF, 10 V, X7R 0402  
0.47 µF, 10 V, X7R 0402  
1.0 × 0.5  
Yes  
Capacitor  
TDK  
1.0 × 0.5  
Zener Diode  
Zener Diode  
Resistor(1)  
NMOS FET  
ON Semiconductor  
Vishay-Dale  
Vishay-Dale  
On Semiconductor  
10 V, 300 mW  
10 V, 300 mW  
240 Ω  
SOD-323  
2.5 × 1.25 × 0.9  
3.1 × 2.6 × 1.15  
1.0 × 0.5  
Yes  
BZX84B10-G3-08  
SOT-23-3  
0402  
CRCW0402240RJNED  
NVMFS4C05N  
Yes  
Yes  
30 V, 4.0 mΩ, 127  
A
5.15 × 6.15 × 1.0  
NMOS FET  
Diodes Incorporated  
DMNH3010LK3  
30 V, 11.5 mΩ, 50 A  
6.70 × 10.41 × 2.39  
(1) Two resistors are used in series to create an effective 480 Ω total resistance.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 353  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.1.2.2 Internal LDOs  
The internal LDOs, VOUT_LDOVINT and VOUT_LDOVRTC, require external 2.2 µF capacitors for stabilization.  
The recommended components are shown below.  
Table 11-2. Recommended Internal LDO Components  
COMPONE MANUFACTURE  
NT  
USED for  
VALIDATION  
PART NUMBER  
VALUE  
EIA SIZE CODE  
SIZE (mm)  
1.6 × 0.8  
1.6 × 0.8  
R
2.2 µF, 6.3 V,  
X7R  
Capacitor Murata  
Capacitor TDK  
GCM188R70J225KE22  
0603  
CGA3E1X7S1C225M080 2.2 µF, 6.3 V,  
AC X7R  
0603  
11.2.1.2.3 Crystal Oscillator  
A crystal oscillator can be used for application requiring a high accuracy real-time clock module. The  
OSC32KCAP pin is bypassed with a 100-nF bypass capacitor for noise rejection. For the OSC32KIN and  
OSC32KOUT pins, a simplified oscillator schematic is shown in Figure 11-2 to determine what external load  
capacitors are needed for the crystal.  
Figure 11-2. Crystal Oscillator Component Selection  
CIN1 and CIN2 are both 12 pF for this device. CPCB1 and CPCB2 will depend on the board but is generally around  
1 pF. The crystal oscillator chosen should have a required load capacitance of either 6 pF, 9 pF, or 12.5 pF and  
the value of the XTAL_SEL bit in the RTC_CTRL_2 register should be updated based on the oscillator chosen.  
To achieve the required load capacitance (CL) for the oscillator, Equation 26 is used. It assumes that the crystal  
series capacitance is negligible.  
CL = (CL1 + CPCB1 + CIN1) × (CL2 + CPCB2 + CIN2) / ((CL1 + CPCB1 + CIN1) + (CL2 + CPCB2 + CIN2))  
(26)  
Assuming CL1 = CL2, this simplifies to CL1 = 2 × CL - CPCB - CIN. Simplifying this into the standard capacitor  
values typically available results in the following general capacitor recommendations. If more precise matching is  
desired, complete the exercise without series capacitance neglected and with exact PCB parasitic capacitance.  
Too much capacitance will result in the oscillator frequency being lower than expected, while not enough  
capacitance has the opposite impact.  
Copyright © 2021 Texas Instruments Incorporated  
354 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 11-3. Approximate Crystal Oscillator Load Capacitors  
Crystal CL (pF)  
Component CL1 = CL2 (pF)  
6
9
0
6
12.5  
12.5  
The recommended components using a 9 pF oscillator as an example are in Table 11-4. If an alternate load  
capacitance crystal is used, the values of the load capacitors should be adjusted to match based on the above.  
Table 11-4. Recommended Crystal Oscillator Components for 9 pF Crystal  
EIA size  
code  
Component  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
Used for Validation  
Capacitor  
Capacitor  
Crystal  
Murata  
TDK  
GCM155R71C104JA55D  
100 nF, 16 V, X7R 0402  
1.0 x 0.5  
Yes  
-
CGA2B1X7R1C104K050BC 100 nF, 16 V, X7R 0402  
1.0 x 0.5  
NDK  
NX3215SD-32.768K-STD-  
MUS-6  
32.768 kHz, ±20  
ppm, 9 pF  
3.2 x 1.5 x 0.9  
Yes  
Crystal  
Abracon  
Murata  
TDK  
ABS07AIG-32.768kHz-9-T  
32.768 kHz, ±20  
ppm, 9 pF  
3.2 x 1.5 x 0.9  
1.0 x 0.5  
-
Capacitor  
Capacitor  
GCM1555C1H6R0CA16  
6 pF, 50 V,  
C0G/NP0  
0402  
0402  
Yes  
-
CGA2B2C0G1H060D050BA 6 pF, 50 V,  
C0G/NP0  
1.0 x 0.5  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 355  
Product Folder Links: TPS6594-Q1  
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.1.2.4 Buck Input Capacitors  
For optimal performance, every buck needs an input capacitor, and the capacitor should be at least 10 µF, 10 V  
and shall be placed as close to the buck input pins as possible. If the board size allows a larger foot print, a 22  
µF, 10 V capacitor is recommended. See Table 11-5 for the recommended input capacitors, and the Section 11.4  
for more information about component placement.  
Table 11-5. Recommended Buck Input Capacitors  
MANUFACTURER  
TDK  
PART NUMBER  
VALUE  
EIA size code  
SIZE (mm)  
Used for Validation  
CGA4J1X7S1C106K125AC  
GCM21BR71A106KE22  
10 µF, 16 V, X7R  
10 µF, 10 V, X7R  
0805  
2.0 × 1.25 × 1.25  
2.0 × 1.25 × 1.25  
Yes  
-
Murata  
0805  
11.2.1.2.5 Buck Output Capacitors  
The buck converters have seven potential NVM configurations which can impact the output capacitor selection.  
Refer the part number specific user's guide to identify which configuration applies to each buck regulator. The  
actual minimal capacitance requirements to achieve a specific accuracy or ripple target will vary depending on  
the input voltage, output voltage, and load transient characteristics; some guidance, however, is provided below.  
The local output capacitors shall be placed as close to the inductor as possible to minimize electromagnetic  
emissions. Every buck output requires a local output capacitor to form the capacitive part of the LC output filter.  
It is recommended to place all large capacitors near the inductor. See Section 11.4 for more information about  
component placement.  
To achieve better ripple and transient performance, additional high pass filter caps are recommended to  
compensate for the parasitic impedances due to board routing and provide faster transient response to a load  
step. These caps are placed close to the point of load and are also the input capacitors of the load. These  
capacitors are referred to as POL caps later in this document. POL capacitor usage will vary based on the  
application and generally follows the SoC or FPGA input capacitor requirements. Low ESL 3-terminal caps  
are recommended, as their high performance can help reduce the total number of capacitors required which  
simplifies board layout design and saves board area. They also help to reduce the total cost of the solution.  
Figure 11-3 is an example power distribution network (PDN) of local and POL caps at the output of a buck for  
optimal ripple and transient performance. Table 11-6 lists the local and POL capacitors used to validate the buck  
transient and ripple performance specified in the parametric table for each of the seven configurations. Table  
11-7 lists the actual capacitor part numbers used for the different use case tests, neglecting capacitors below 10  
µF. It is recommended to simulate and validate that the capacitor network chosen for a particular design meets  
the desired requirements as these are provided as guidelines.  
Figure 11-3. Example Power Distribution Network (PDN) of Local and POL Capacitors  
Table 11-6. Local and POL Capacitors used for Buck Use Case Validation  
Configuration  
COUT  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
L
CL1 / phase  
47 µF × 2  
47 µF × 4  
47 µF × 1  
47 µF × 4  
22 µF × 1  
47 µF × 1  
47 µF × 1  
47 µF × 2  
47 µF × 3  
47 µF × 3  
CL2 (total)  
CPOL1 (total)  
10 µF × 4  
10 µF × 2  
10 µF × 4  
10 µF × 2  
10 µF × 2  
10 µF × 4  
10 µF × 4  
10 µF × 2  
10 µF × 4  
10 µF × 4  
220 nH  
220 nH  
220 nH  
220 nH  
220 nH  
220 nH  
470 nH  
470 nH  
1000 nH  
1000 nH  
4.4 MHz VOUT Less than 1.9 V, Multiphase  
4.4 MHz VOUT Less than 1.9 V, Single Phase with high COUT  
4.4 MHz VOUT Less than 1.9 V, Single Phase with low COUT  
4.4 MHz VOUT Greater than 1.7 V, Single Phase Only (VIN Greater  
than 4.5 V)  
2.2 MHz Full VOUT Range and VIN Greater than 4.5 V, Single Phase  
Only  
680 µF × 1  
Copyright © 2021 Texas Instruments Incorporated  
356 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Table 11-6. Local and POL Capacitors used for Buck Use Case Validation (continued)  
Configuration  
COUT  
Low  
High  
Low  
High  
-
L
CL1 / phase  
47 µF × 3  
47 µF × 3  
47 µF × 3  
100 µF × 4  
22 µF × 1  
CL2 (total)  
CPOL1 (total)  
470 nH  
470 nH  
1000 nH  
1000 nH  
470 nH  
10 µF × 4  
2.2 MHz VOUT Less than 1.9 V Multiphase or Single Phase  
680 µF × 1  
10 µF × 4  
10 µF × 2  
2.2 MHz Full VOUT and Full VIN Range, Single Phase Only  
DDR VTT Termination, 2.2 MHz Single Phase Only  
10 µF × 2  
10 µF × 1 + 22 µF x 1  
Table 11-7. Recommended Buck Converter Output Capacitor Components  
MANUFACTURER  
Murata  
PART NUMBER  
VALUE  
EIA Size Code  
SIZE (mm)  
Used for Validation  
NFM15HC105D0G(1)  
1 µF, 4 V, X7S  
1 µF, 6.3 V  
0402  
1.0 × 0.5  
Yes  
TDK  
YFF18AC0J105M(1)  
0603  
0603  
0603  
1206  
0805  
1206  
0805  
1210  
1206  
1210  
1206  
1210  
1210  
2917  
1.6 × 0.8  
-
Murata  
TDK  
NFM18HC106D0G(1)  
10 µF, 4 V, X7S  
4.7 µF, 6.3 V  
1.6 × 0.8  
Yes  
YFF18AC0G475M(1)  
1.6 × 0.8  
-
Murata  
Murata  
TDK  
GCM31CR71A226KE02  
GCM21BD7CGA5L1X7R0J226MT0J226M  
CGA5L1X7R0J226MT  
CGA4J1X7T0J226MT  
22 µF, 10 V, X7R  
22 µF, 6.3 V, X7T  
22 µF, 6.3 V, X7R  
22 µF, 6.3 V, X7T  
47 µF, 6.3 V, X7R  
47 µF, 4 V, X7T  
47 µF, 10 V, X7S  
47 µF, 4 V, X7T  
100 µF, 4 V, X7S  
100 µF, 4 V, X7T  
680 µF, 6.3 V  
3.2 × 1.6  
Yes  
2.0 × 1.25 × 1.25  
3.2 × 1.6  
-
-
TDK  
2.0 × 1.25 × 1.25  
3.2 × 2.5  
-
Murata  
Murata  
TDK  
GCM32ER70J476ME19  
GCM31CD70G476M  
Yes  
3.2 × 1.6  
-
CGA6P1X7S1A476MT  
CGA5L1X7T0G476MT  
GCM32ED70G107MEC4  
CGA6P1X7T0G107MT  
T510X687K006ATA023(2)  
3.2 × 2.5  
-
TDK  
3.2 × 1.6  
-
Murata  
TDK  
3.2 × 2.5  
Yes  
-
3.2 × 2.5  
Kemet  
7.4 × 5.0  
Yes  
(1) Low ESL 3-terminal cap.  
(2) Dependent on availability; may switch to 470 µF.  
11.2.1.2.6 Buck Inductors  
Inductor should be chosen based on the buck configuration. See Table 11-6 for the appropriate nominal  
inductance.  
Recommended inductors based on these requirements are shown below.  
Table 11-8. Recommended Buck Converter Inductors  
MANUFACTURER  
TDK  
PART NUMBER  
VALUE  
SIZE (mm)  
Used for Validation  
TFM322512ALMA1R0MTAA  
DFE322520FD-1R0M=P2  
TFM322512ALMAR47MTAA  
TFM252012ALMAR47MTAA  
DFE2HCAHR47MJ0  
1000 nH, 4 A Max, 150 °C  
3.2 × 2.5 × 1.2  
Yes  
Murata  
TDK  
1000 nH, 4.1 A Max, 125 °C 3.2 x 2.5 x 2.0  
-
470 nH, 5.3 A Max, 150 °C  
470 nH, 4.9 A Max, 150 °C  
470 nH, 4.5 A Max, 150 °C  
220 nH, 7.6 A Max, 150 °C  
220 nH, 5 A Max, 150 °C  
240 nH, 4.2 A Max, 150 °C  
3.2 × 2.5 × 1.2  
2.5 x 2.0 x 1.2  
2.5 × 2.0 × 1.2  
3.2 x 2.5 x 1.2  
2.0 x 1.6 x 1.2  
2.0 x 1.6 x 1.2  
Yes  
TDK  
-
Murata  
TDK  
-
TFM322512ALMAR22MTAA  
TFM201610ALMAR24MTAA  
DFE2MCAHR24MJ0  
Yes  
TDK  
-
-
Murata  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 357  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.1.2.7 LDO Input Capacitors  
All LDO inputs require an input decoupling capacitor to minimize input ripple voltage. Using a 2.2-µF capacitor  
for each LDO is recommended. Depending on the input voltage of the LDO, a 6.3-V, 10-V, or 16-V capacitor  
can be used. For optimal performance, the input capacitors should be placed as close to the LDO input pins  
as possible. See the Section 11.4 for more information about component placement. See Table 11-9 for the  
recommended input capacitors.  
Table 11-9. Recommended LDO Input Capacitors(1)  
MANUFACTURER  
TDK  
PART NUMBER  
VALUE  
EIA size code  
SIZE (mm)  
1.6 x 0.8  
1.6 x 0.8  
Used for Validation  
CGA3E1X7S1C225M080AC  
GCM188R70J225KE22  
2.2 µF, 16 V, X7S  
2.2 µF, 16 V, X7R  
0603  
Yes  
-
Murata  
0603  
(1) Component minimum and maximum tolerance values are specified in the electrical parameters section of each IP.  
11.2.1.2.8 LDO Output Capacitors  
All LDO outputs require an output capacitor to hold up the output voltage during a load step or changes to the  
input voltage. Using a 2.2-µF capacitor for each LDO output is recommended. Note: this requirement excludes  
any capacitance seen at the load and only refers to the capacitance seen close to the device. Additional  
capacitance placed near the load can be supported, but the end application or system should be evaluated  
for stability. See Table 11-10 for the specific part number of the recommended output capacitors. For BOM  
optimization purposes, the same capacitor part number was used for LDO input and LDO output.  
Table 11-10. Recommended LDO Output Capacitors  
MANUFACTURER  
TDK  
PART NUMBER  
VALUE  
EIA size code  
SIZE (mm)  
1.6 × 0.8  
1.6 × 0.8  
Used for Validation  
CGA3E1X7S1C225M080AC  
GCM188R70J225KE22  
2.2 µF, 16 V, X7S  
2.2 µF, 16 V, X7R  
0603  
Yes  
Murata  
0603  
11.2.1.2.9 Digital Signal Connections  
A detailed description of the application of each pin will go here. The VIO_IN pin may be optionally bypassed  
with a 0.47 µF bypass capacitor close to the pin.  
Table 11-11. Recommended VIO_IN Capacitor  
EIA size  
code  
Component  
MANUFACTURER  
PART NUMBER  
VALUE  
SIZE (mm)  
Used for Validation  
Capacitor  
Capacitor  
Murata  
TDK  
GCM155C71A474KE36  
0.47 µF, 10 V, X7S 0402  
0.47 µF, 10 V, X7S 0402  
1.0 x 0.5  
1.0 x 0.5  
Yes  
-
CGA2B3X7S1A474K050BB  
I2C pull-up resistor values for example.  
Copyright © 2021 Texas Instruments Incorporated  
358 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves  
100  
100  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
VPVIN_Bn = 3.3 V, FPWM mode  
VPVIN_Bn = 3.3 V, Auto mode  
VPVIN_Bn = 5 V, FPWM mode  
VPVIN_Bn = 5 V, Auto mode  
Fsw = 2.2 MHz, FPWM mode  
Fsw = 2.2 MHz, Auto mode  
Fsw = 4.4 MHz, FPWM mode  
Fsw = 4.4 MHz, Auto mode  
0.01  
0.05 0.1  
0.5  
1
5
10 20  
0.01  
0.05 0.1  
0.5  
1
5
10 20  
IOUT_Bn (A)  
IOUT_Bn (A)  
VVOUT_Bn = 1.8 V  
Fsw = 2.2 MHz  
4-Phase  
VPVIN_Bn = 3.3 V  
Buck VSET = 1.8 V  
4-Phase  
Figure 11-4. BUCK Efficiency at 3.3 V or 5 V Input Voltage  
Figure 11-5. BUCK Efficiency with Fsw = 2.2 MHz or 4.4 MHz  
95  
95  
90  
85  
90  
85  
80  
80  
Fsw = 2.2 MHz, 1 Phase  
Fsw = 2.2 MHz, 1 Phase  
Fsw = 2.2 MHz, 2 Phase  
Fsw = 2.2 MHz, 2 Phase  
Fsw = 2.2 MHz, 3 Phase  
Fsw = 2.2 MHz, 4 Phase  
Fsw = 4.4 MHz, 1 Phase  
Fsw = 2.2 MHz, 3 Phase  
Fsw = 2.2 MHz, 4 Phase  
Fsw = 4.4 MHz, 1 Phase  
75  
75  
Fsw = 4.4 MHz, 2 Phase  
Fsw = 4.4 MHz, 3 Phase  
Fsw = 4.4 MHz, 4 Phase  
Fsw = 4.4 MHz, 2 Phase  
Fsw = 4.4 MHz, 3 Phase  
Fsw = 4.4 MHz, 4 Phase  
70  
65  
70  
65  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
IOUT_Bn (A)  
IOUT_Bn (A)  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V Buck VSET = 1.8 V  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V Buck VSET = 1.8 V  
Auto Mode  
Auto Mode  
Figure 11-6. BUCK Efficiency in Varied Phase Configuration, 3.3 Figure 11-7. BUCK Efficiency in Varied Phase Configuration, 5 V  
V Input Input  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
VOUT_Bn = 0.8 V, Fsw = 4.4 MHz  
VOUT_Bn = 0.8 V, Fsw = 4.4 MHz  
VOUT_Bn = 0.8 V, Fsw = 2.2 MHz  
VOUT_Bn = 1.2 V, Fsw = 4.4 MHz  
VOUT_Bn = 1.2 V, Fsw = 2.2 MHz  
VOUT_Bn = 1.8 V, Fsw = 4.4 MHz  
VOUT_Bn = 1.8 V, Fsw = 2.2 MHz  
VOUT_Bn = 0.8 V, Fsw = 2.2 MHz  
VOUT_Bn = 1.2 V, Fsw = 4.4 MHz  
VOUT_Bn = 1.2 V, Fsw = 2.2 MHz  
VOUT_Bn = 1.8 V, Fsw = 4.4 MHz  
VOUT_Bn = 1.8 V, Fsw = 2.2 MHz  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT_Bn (A)  
IOUT_Bn (A)  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V Single-Phase  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 5 V Single-Phase  
Forced-PWM Mode  
Forced-PWM Mode  
Figure 11-8. BUCK Efficiency with different VOUT_Bn, 3.3 V  
Input  
Figure 11-9. BUCK Efficiency with different VOUT_Bn, 5 V Input  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 359  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
90  
100  
80  
60  
40  
20  
0
-40oC  
25oC  
85oC  
125oC  
85  
80  
75  
70  
65  
-40oC  
25oC  
85oC  
125oC  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IOUT_Bn (A)  
IOUT_Bn (A)  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V Buck VSET = 1 V  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V Buck VSET = 1 V  
Single-Phase  
Single-Phase  
Figure 11-10. BUCK Efficiency at different TA, Auto Mode  
Figure 11-11. BUCK Efficiency at different TA, Forced-PWM  
Mode  
1.01  
1.01  
1 Phase  
1 Phase  
2 Phase  
3 Phase  
4 Phase  
2 Phase  
3 Phase  
4 Phase  
1.0075  
1.005  
1.0025  
1
1.0075  
1.005  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
0.9975  
0.995  
0.9925  
0.99  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-12. Buck Temperature Drift, Auto Mode, Fsw = 2.2  
MHz  
Figure 11-13. Buck Temperature Drift, Auto Mode, Fsw = 4.4  
MHz  
1.01  
1.01  
1 Phase  
1 Phase  
2 Phase  
3 Phase  
4 Phase  
2 Phase  
3 Phase  
4 Phase  
1.0075  
1.005  
1.0025  
1
1.0075  
1.005  
1.0025  
1
0.9975  
0.995  
0.9925  
0.99  
0.9975  
0.995  
0.9925  
0.99  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Temperature (°C)  
Temperature (°C)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-14. Buck Temperature Drift, Forced-PWM Mode, Fsw = Figure 11-15. Buck Temperature Drift, Forced-PWM Mode, Fsw =  
2.2 MHz  
4.4 MHz  
Copyright © 2021 Texas Instruments Incorporated  
360 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
1.01  
1.01  
1.008  
1.006  
1.004  
1.002  
1
Fsw = 2.2 MHz, FPWM mode  
Fsw = 2.2 MHz, FPWM mode  
Fsw = 2.2 MHz, Auto mode  
Fsw = 4.4 MHz, FPWM mode  
Fsw = 4.4 MHz, Auto mode  
1.008  
1.006  
1.004  
1.002  
1
Fsw = 2.2 MHz, Auto mode  
Fsw = 4.4 MHz, FPWM mode  
Fsw = 4.4 MHz, Auto mode  
0.998  
0.996  
0.994  
0.992  
0.99  
0.998  
0.996  
0.994  
0.992  
0.99  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
IOUT_Bn (A)  
IOUT_Bn (A)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
4-Phase  
VPVIN_Bn = 5 V  
Buck VSET = 1 V  
4-Phase  
Figure 11-16. Buck Load Regulation with 3.3 V Input  
Figure 11-17. Buck Load Regulation with 5 V Input  
1.01  
1.01  
1 Phase  
1 Phase  
1.008  
1.006  
1.004  
1.002  
1
1.008  
1.006  
1.004  
1.002  
1
2 Phase  
3 Phase  
4 Phase  
2 Phase  
3 Phase  
4 Phase  
0.998  
0.996  
0.994  
0.992  
0.99  
0.998  
0.996  
0.994  
0.992  
0.99  
0
2
4
6
8
10  
12  
14  
0
2
4
6
8
10  
12  
14  
IOUT_Bn (A)  
IOUT_Bn (A)  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V Buck VSET = 1 V  
Data valid for all bucks up to IOUT_Bn  
VPVIN_Bn = 3.3 V Buck VSET = 1 V  
Auto Mode  
Auto Mode  
Figure 11-18. Buck Load Regulation, with Fsw = 2.2 MHz  
Figure 11-19. Buck Load Regulation, with Fsw = 4.4 MHz  
1.01  
1.01  
1 Phase  
1 Phase  
1.008  
1.006  
1.004  
1.002  
1
1.008  
1.006  
1.004  
1.002  
1
2 Phase  
3 Phase  
4 Phase  
2 Phase  
3 Phase  
4 Phase  
0.998  
0.996  
0.994  
0.992  
0.99  
0.998  
0.996  
0.994  
0.992  
0.99  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
3
3.25 3.5 3.75  
4
4.25 4.5 4.75  
5
5.25 5.5  
VPVIN_Bn (V)  
VPVIN_Bn (V)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Auto Mode  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Auto Mode  
Figure 11-20. Buck Line Regulation, with Fsw = 2.2 MHz  
Figure 11-21. Buck Line Regulation, with Fsw = 4.4 MHz  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 361  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (40µs/div)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 10 mA  
Figure 11-23. Buck Output Ripple - Single Phase, Fsw = 2.2  
MHz, Forced-PWM Mode  
Figure 11-22. Buck Output Ripple - Single Phase, Auto Mode  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (40µs/div)  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
ILOAD = 10 mA  
Figure 11-24. Buck Output Ripple - Single Phase, Fsw = 4.4  
MHz, Forced-PWM Mode  
Figure 11-25. Buck Output Ripple - 2-Phase, Auto Mode  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (200ns/div)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
Figure 11-27. Buck Output Ripple - 2-Phase, Fsw = 4.4 MHz,  
Forced-PWM Mode  
Figure 11-26. Buck Output Ripple - 2-Phase, Fsw = 2.2 MHz,  
Forced-PWM Mode  
Copyright © 2021 Texas Instruments Incorporated  
362 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (5mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (40µs/div)  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
ILOAD = 10 mA  
Figure 11-29. Buck Output Ripple - 3-Phase, Fsw = 2.2 MHz,  
Forced-PWM Mode  
Figure 11-28. Buck Output Ripple - 3-Phase, Auto Mode  
VVOUT_Bn (5mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (40µs/div)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 10 mA  
Time (200ns/div)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
Figure 11-31. Buck Output Ripple - 4-Phase, Auto Mode  
Figure 11-30. Buck Output Ripple - 3-Phase, Fsw = 4.4 MHz,  
Forced-PWM Mode  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (200ns/div)  
Time (200ns/div)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
Figure 11-33. Buck Output Ripple - 4-Phase, Fsw = 4.4 MHz,  
Forced-PWM Mode  
Figure 11-32. Buck Output Ripple - 4-Phase, Fsw = 2.2 MHz,  
Forced-PWM Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 363  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
VSW_Bn (2V/div)  
Time (2µs/div)  
Buck VSET = 1 V  
Time (2µs/div)  
VPVIN_Bn = 3.3 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
Figure 11-34. Buck Transient from PWM mode to PFM mode, 2.2  
Mhz, Single Phase  
Figure 11-35. Buck Transient from PWM mode to PFM mode, 4.4  
Mhz, Single Phase  
VVOUT_Bn (10mV/div)  
VVOUT_Bn (10mV/div)  
VSW_Bn (2V/div)  
Time (2µs/div)  
VSW_Bn (2V/div)  
Time (2µs/div)  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
ILOAD = 200 mA  
Figure 11-36. Buck Transient from PFM mode to PWM mode, 2.2 Figure 11-37. Buck Transient from PFM mode to PWM mode, 4.4  
Mhz, Single Phase  
Mhz, Single Phase  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (2A/div)  
ILOAD (2A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 7 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 7 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-38. Buck Load Step Transient - 4-Phase, 2.2 MHz,  
Auto Mode  
Figure 11-39. Buck Load Step Transient - 4-Phase, 4.4 MHz,  
Auto Mode  
Copyright © 2021 Texas Instruments Incorporated  
364 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (2A/div)  
ILOAD (2A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 7 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 7 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-40. Buck Load Step Transient - 4-Phase, 2.2 MHz,  
Forced-PWM Mode  
Figure 11-41. Buck Load Step Transient - 4-Phase, 4.4 MHz,  
Forced-PWM Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (2A/div)  
ILOAD (2A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 5.25 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 5.25 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-42. Buck Load Step Transient - 3-Phase, 2.2 MHz,  
Auto Mode  
Figure 11-43. Buck Load Step Transient - 3-Phase, 4.4 MHz,  
Auto Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (2A/div)  
ILOAD (2A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 5.25 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 5.25 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-45. Buck Load Step Transient - 3-Phase, 4.4 MHz,  
Forced-PWM Mode  
Figure 11-44. Buck Load Step Transient - 3-Phase, 2.2 MHz,  
Forced-PWM Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 365  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (1A/div)  
ILOAD (1A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 3.5 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 3.5 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-46. Buck Load Step Transient - 2-Phase, 2.2 MHz,  
Auto Mode  
Figure 11-47. Buck Load Step Transient - 2-Phase, 4.4 MHz,  
Auto Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (1A/div)  
ILOAD (1A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 3.5 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 3.5 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-49. Buck Load Step Transient - 2-Phase, 4.4 MHz,  
Forced-PWM Mode  
Figure 11-48. Buck Load Step Transient - 2-Phase, 2.2 MHz,  
Forced-PWM Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (1A/div)  
ILOAD (1A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 2 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 2 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-51. Buck Load Step Transient - Buck4, 4.4 MHz, Auto  
Mode  
Figure 11-50. Buck Load Step Transient - Buck4, 2.2 MHz, Auto  
Mode  
Copyright © 2021 Texas Instruments Incorporated  
366 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (1A/div)  
ILOAD (1A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 2 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V Buck VSET = 1 V  
ILOAD = 0.1 A → 2 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-53. Buck Load Step Transient - Buck4, 4.4 MHz,  
Forced-PWM Mode  
Figure 11-52. Buck Load Step Transient - Buck4, 2.2 MHz,  
Forced-PWM Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (0.4A/div)  
ILOAD (0.4A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 1 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 1 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-54. Buck Load Step Transient - Buck5, 2.2 MHz, Auto  
Mode  
Figure 11-55. Buck Load Step Transient - Buck5, 4.4 MHz, Auto  
Mode  
VVOUT_Bn (20mV/div)  
VVOUT_Bn (20mV/div)  
ILOAD (0.4A/div)  
ILOAD (0.4A/div)  
Time (20µs/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 1 A → 0.1 A, TR = TF = 1 μs  
ILOAD = 0.1 A → 1 A → 0.1 A, TR = TF = 1 μs  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
VPVIN_Bn = 3.3 V  
Buck VSET = 1 V  
Figure 11-56. Buck Load Step Transient - Buck5, 2.2 MHz,  
Forced-PWM Mode  
Figure 11-57. Buck Load Step Transient - Buck5, 4.4 MHz,  
Forced-PWM Mode  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 367  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
1.81  
3.005  
3.004  
3.003  
3.002  
3.001  
3
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 5 V  
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 5 V  
1.808  
1.806  
1.804  
1.802  
1.8  
1.798  
1.796  
1.794  
1.792  
1.79  
2.999  
2.998  
2.997  
2.996  
2.995  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Load (A)  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
Load (A)  
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 3.3 V  
Figure 11-58. GPLDO Load Regulation, Vout = 1.8 V  
Figure 11-59. GPLDO Load Regulation, Vout = 3 V  
0.808  
1.82  
TA = -40oC  
TA = -40oC  
TA = 0oC  
TA = 0oC  
0.806  
0.804  
0.802  
1.815  
1.81  
1.805  
TA = 20oC  
TA = 20oC  
TA = 80oC  
TA = 80oC  
TA = 125oC  
TA = 125oC  
0.8  
0.798  
0.796  
0.794  
0.792  
1.8  
1.795  
1.79  
1.785  
1.78  
1.2  
1.5  
1.8  
2.1  
VIN(LDOn) (V)  
2.4  
2.7  
3
3.3  
3.6  
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
VIN(LDOn) (V)  
3
3.1 3.2 3.3  
IOUT(LDOn) = 500 mA  
IOUT(LDOn) = 50 mA  
Figure 11-60. GPLDO Line Regulation over Temeprature, Vout = Figure 11-61. GPLDO Line Regulation over Temeprature, Vout =  
0.8 V 1.8 V  
3.4  
3.2  
3
3.4  
3.2  
3
2.8  
2.6  
2.4  
2.2  
2
2.8  
2.6  
2.4  
2.2  
2
1.8  
1.6  
1.8  
1.6  
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
Time (ms)  
3
3.5  
4
4.5  
5
VIN(LDOn) = 3.3 V  
IOUT(LDOn) = 50 mA  
VIN(LDOn) = 3.3 V  
IOUT(LDOn) = 50 mA  
Figure 11-62. GPLDO Transition from 3.3 V in Bypass Mode to Figure 11-63. GPLDO Transition from 1.8 V in Linear Mode to 3.3  
1.8 V Linear Mode  
V in Bypass Mode  
Copyright © 2021 Texas Instruments Incorporated  
368 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.2.2 Application Curves (continued)  
1.81  
1.808  
1.806  
1.804  
1.802  
1.8  
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 5 V  
VVOUT_Bn (20mV/div)  
1.798  
1.796  
1.794  
1.792  
1.79  
ILOAD (0.2A/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 0.4 A → 0.1 A, TR = TF = 1 μs  
0
0.05  
0.1  
0.15  
Load (A)  
0.2  
0.25  
0.3  
VIN(LDOn) = 3.3 V  
LDO VSET = 1 V  
VIN(LDOn) = 3.3 V  
Figure 11-64. GPLDO Load Step Transient  
Figure 11-65. LNLDO Load Regulation, Vout = 1.8 V  
1.82  
3.005  
3.004  
3.003  
3.002  
3.001  
3
TA = -40oC  
VIN(LDOn) = 3.3 V  
VIN(LDOn) = 5 V  
TA = 0oC  
1.815  
1.81  
1.805  
TA = 20oC  
TA = 80oC  
TA = 125oC  
1.8  
1.795  
1.79  
2.999  
2.998  
2.997  
2.996  
2.995  
1.785  
1.78  
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9  
VIN(LDOn) (V)  
3
3.1 3.2 3.3  
0
0.05  
0.1  
0.15  
Load (A)  
0.2  
0.25  
0.3  
VIN(LDOn) = 3.3 V  
IOUT(LDOn) = 300 mA  
Figure 11-66. LNLDO Load Regulation, Vout = 3 V  
Figure 11-67. LNLDO Line Regulation over Temeprature, Vout =  
1.8 V  
VVOUT_Bn (20mV/div)  
ILOAD (0.2A/div)  
Time (20µs/div)  
ILOAD = 0.1 A → 0.4 A → 0.1 A, TR = TF = 1 μs  
VIN(LDOn) = 3.3 V  
LDO VSET = 1 V  
Figure 11-68. LNLDO Load Step Transient  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 369  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
11.3 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 3.0 V and 5.5 V. This input supply  
must be well regulated and can withstand maximum input current and keep a stable voltage without voltage drop  
even at load transition condition. The resistance of the input supply rail must be low enough that the input current  
transient does not cause too high drop in the device supply voltage that can cause false UVLO fault triggering. If  
the input supply is located more than a few inches from the device, additional bulk capacitance may be required  
in addition to the ceramic bypass capacitors.  
11.4 Layout  
11.4.1 Layout Guidelines  
The high frequency and large switching currents of the TPS6594-Q1 device make the choice of layout important.  
Good power supply results only occur when care is given to correct design and layout. Layout affects noise  
pickup and generation and can cause a good design to perform with less-than-expected results.  
With a range of buck output currents from milliamps to 10 A and over, good power supply layout is much more  
difficult than most general PCB design. Use the following steps as a reference to ensure the buck regulators  
are stable and maintain correct voltage and current regulation across its intended operating voltage and current  
range.  
1. Place CIN as close as possible to the PVIN_Bx pin and the PGND/Thermal Pad. Route the VIN trace wide  
and thick to avoid IR drops. The DCR of the trace from the source to the pin should be less than 2 mΩ. The  
trace between the positive node of the input capacitor and the PVIN_Bx pins of the device, as well as the  
trace between the negative node of the input capacitor and PGND/Thermal Pad, must be kept as short as  
possible. The input capacitance provides a low-impedance voltage source for the switching converter. The  
inductance of the connection is the most important parameter of a local decoupling capacitor — parasitic  
inductance on these traces must be kept as small as possible for correct device operation. The parasitic  
inductance can be reduced by using a ground plane as close as possible to top layer by using thin dielectric  
layer between top layer and ground plane.  
2. The output filter, consisting of COUT and L, converts the switching signal at SW_Bx to the noiseless output  
voltage. It must be placed as close as possible to the device keeping the switch node small, for best EMI  
behavior. Note that the PVIN_Bx pin is directly adjacent to the SW_Bx pin. The inductor and capacitor  
placement should be made as close as possible without compromising PVIN_Bx. Route the traces between  
the output capacitors of the device and the load direct and wide to avoid losses due to the IR drop.  
3. Input for analog blocks (VCCA and REFGND1/2) must be isolated from noisy signals. Connect VCCA  
directly to a quiet system voltage node and REFGND1/2 to a quiet ground point where no IR drop occurs.  
Place the decoupling capacitor as close as possible to the VCCA pin.  
4. If the processor load supports remote voltage sensing, connect the feedback pins FB_Bx of the device  
to the respective sense pins on the processor. If the processor does not support remote voltage sensing,  
then connect the FB_Bx pin to a representative load capacitor. With differential feedback, also connect the  
negative feedback pin to the negative terminal of the same load capacitor. The minimum recommended  
trace width is 6 mils. The sense lines are susceptible to noise. They must be kept away from noisy signals  
such as PGND, PVIN_Bx, and SW_Bx, as well as high bandwidth signals such as the I2C. Avoid capacitive  
and inductive coupling by keeping the sense lines short, direct, and close to each other. Run the lines in a  
quiet layer. Isolate them from noisy signals by a voltage or ground plane if possible. Running the signal as a  
differential pair is recommended. If series resistors are used for load current measurement, place them after  
connection of the voltage feedback.  
5. PGND, PVIN_Bx and SW_Bx must be routed on thick layers. They must not surround inner signal layers,  
which are not able to withstand interference from noisy PGND, PVIN_Bx and SW_Bx.  
The feedback is internal so keep PCB resistance between LDO output and target load in the range of the  
acceptable voltage drop for LDOs. Similar to the buck regulators, the PVIN_LDOx input capacitor should placed  
as close as possible to the PMIC. The impedance from the source ot the PVIN_LDOx pin should be low and the  
DCR less than 2 mΩ. The output capacitor on VOUT_LDOx should be as close to the PMIC as possible.  
A more complete complete list of layout recommendations can be found in the Schematic & PCB Checklist.  
Copyright © 2021 Texas Instruments Incorporated  
370 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
Due to the overall small solution size, the thermal performance of the PCB layout is important. Many system-  
dependent parameters, such as thermal coupling, airflow, added heat sinks and convection surfaces, and the  
presence of other heat-generating components affect the power dissipation limits of a given component. Proper  
PCB layout, focusing on thermal performance, results in lower die temperatures. Wide and thick power traces  
come with the ability to sink dissipated heat. This can be improved further on multi-layer PCB designs with  
vias to different planes. This results in reduced junction-to-ambient (RθJA) and junction-to-board (RθJB) thermal  
resistances and thereby reduces the device junction temperature, TJ. TI strongly recommends to perform a  
careful system-level 2D or full 3D dynamic thermal analysis at the beginning product design process, by using a  
thermal modeling analysis software.  
11.4.2 Layout Example  
Figure 11-69. Example PMIC Layout  
This example shows a top and bottom layout of the key power components and the crystal oscillator based on  
the EVM. Most of the digital routing is neglected in this image, see the EVM design files for full details. The  
highest priority should be on the buck input capacitors, followed by the inductors. Ensure that there are sufficient  
vias for high current pathways.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 371  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Device Support  
12.2.1 Device Nomenclature  
The following acronyms and terms are used in this data sheet. For a detailed list of terms, acronyms, and  
definitions, see the TI glossary.  
ADC  
APE  
AVS  
DVS  
GPIO  
LDO  
PM  
Analog-to-digital converter  
Application processor engine  
Adaptive voltage scaling  
Dynamic voltage scaling  
General-purpose input and output  
Low-dropout voltage linear regulator  
Power management  
PMIC  
PSRR  
RTC  
NA  
Power-management integrated circuit  
Power supply rejection ratio  
Real-time clock  
Not applicable  
NVM  
ESR  
PMU  
PFM  
PWM  
SPI  
Non-volatile memory  
Equivalent series resistance  
Power management unit  
Pulse frequency  
Pulse width modulation  
Serial peripheral interface  
Embedded power controller  
First supply detection  
EPC  
FSD  
12.3 Documentation Support  
12.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.5 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.6 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
Copyright © 2021 Texas Instruments Incorporated  
372 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
 
 
 
 
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
12.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.8 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 373  
Product Folder Links: TPS6594-Q1  
 
 
 
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
PACKAGE OUTLINE  
RWE0056C  
VQFNP - 0.9 mm max height  
SCALE 2.000  
PLASTIC QUAD FLATPACK - NO LEAD  
8.1  
7.9  
A
B
0.05  
0.00  
(0.1)  
PIN 1 ID  
DETAIL A  
TYPICAL  
8.1  
7.9  
D
E
T
A
I
L
A
S
C
A
L
E
2
0
.
0
0
0
(
7.75)  
(0.15)  
0.15 0.1  
D
E
T
A
I
L
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
0.9  
12 MAX  
0.8  
C
SEATING PLANE  
0.08 C  
(0.2)  
SEE DETAIL A  
SEE DETAIL B  
4X  
45 X 0.6 MAX  
15  
28  
14  
29  
SYMM  
4X  
57  
5.5 0.05  
6.5  
1
42  
0.3  
56X  
52X 0.5  
56  
43  
0.2  
SYMM  
0.1  
0.05  
C B A  
C
PIN 1 ID  
OPTIONAL  
0.5  
0.3  
56X  
4224586/A 10/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
374 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWE0056C  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.5)  
SYMM  
56X (0.6)  
56X (0.25)  
56  
43  
1
42  
52X (0.5)  
(7.8)  
SYMM  
57  
(1.32) TYP  
(R0.05)  
TYP  
(2.5)  
TYP  
(
0.2) TYP  
VIA  
29  
14  
15  
28  
(1.32)  
TYP  
(2.5)  
TYP  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4224586/A 10/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback 375  
Product Folder Links: TPS6594-Q1  
TPS6594-Q1  
SLVSEA7A – DECEMBER 2019 – REVISED APRIL 2021  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWE0056C  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(7.8)  
(0.66) TYP  
(1.32)  
TYP  
43  
56  
56X (0.6)  
56X (0.25)  
1
42  
52X (0.5)  
(1.32) TYP  
(0.66) TYP  
SYMM  
57  
(7.8)  
METAL  
TYP  
16X  
1.12)  
(
(R0.05) TYP  
14  
29  
15  
28  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 57:  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4224586/A 10/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2021 Texas Instruments Incorporated  
376 Submit Document Feedback  
Product Folder Links: TPS6594-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jan-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS65941111RWERQ1  
TPS65941212RWERQ1  
TPS65941213RWERQ1  
ACTIVE  
VQFNP  
VQFNP  
VQFNP  
RWE  
56  
56  
56  
2000 RoHS & Green Call TI | NIPDAUAG  
2000 RoHS & Green Call TI | NIPDAUAG  
2000 RoHS & Green Call TI | NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
TPS6594  
1111-Q1  
ACTIVE  
ACTIVE  
RWE  
TPS6594  
1212-Q1  
RWE  
TPS6594  
1213-Q1  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
7-Jan-2022  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RWE 56  
8 x 8, 0.5 mm pitch  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224587/A  
www.ti.com  
PACKAGE OUTLINE  
RWE0056C  
VQFNP - 0.9 mm max height  
SCALE 2.000  
PLASTIC QUAD FLATPACK - NO LEAD  
8.1  
7.9  
A
B
0.05  
0.00  
(0.1)  
PIN 1 ID  
DETAIL A  
8.1  
7.9  
DETAIL  
SCALE 20.000  
A
TYPICAL  
(
7.75)  
(0.15)  
0.15 0.1  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
0.9  
0.8  
12 MAX  
C
SEATING PLANE  
0.08 C  
(0.2)  
(R0.2)  
SEE DETAIL A  
SEE DETAIL B  
4X  
45 X 0.6 MAX  
15  
28  
14  
PIN 1 ID  
29  
OPTIONAL  
SYMM  
57  
4X  
5.5 0.05  
6.5  
1
42  
0.3  
0.2  
52X 0.5  
56X  
56  
43  
SYMM  
0.1  
0.05  
C B A  
C
PIN 1 ID  
OPTIONAL  
0.5  
0.3  
56X  
4224586/B 03/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RWE0056C  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.5)  
SYMM  
56X (0.6)  
56X (0.25)  
56  
43  
1
42  
52X (0.5)  
(7.8)  
SYMM  
57  
(1.32) TYP  
(R0.05)  
(2.5)  
TYP  
TYP  
(
0.2) TYP  
VIA  
29  
14  
15  
28  
(1.32)  
TYP  
(2.5)  
TYP  
(7.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224586/B 03/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RWE0056C  
VQFNP - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(7.8)  
(0.66) TYP  
(1.32)  
TYP  
43  
56  
56X (0.6)  
56X (0.25)  
1
42  
52X (0.5)  
(1.32) TYP  
(0.66) TYP  
SYMM  
57  
(7.8)  
METAL  
TYP  
16X  
1.12)  
(
(R0.05) TYP  
14  
29  
15  
28  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 57:  
66% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4224586/B 03/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

TPS65941111RWERQ1

TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65941120RWERQ1

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65941212RWERQ1

TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65941213RWERQ1

TPS6594-Q1 Power Management IC (PMIC) with 5 Bucks and 4 LDOs for Safety-Relevant Automotive Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65941319RWERQ1

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6594133ARWERQ1

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS6594141BRWERQ1

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65941421RWERQ1

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65941515RWERQ1

具有五个降压稳压器和四个低压降稳压器的汽车类 2.8V 至 5.5V PMIC | RWE | 56 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65950

Integrated Power Management/Audio Codec Silicon Revision 1.0

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65950A2ZXN

Integrated Power Management/Audio Codec

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS65950A2ZXNR

Integrated Power Management/Audio Codec

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI