TPS66121 [TI]

适用于具有 5V 无电电池 LDO 灌电流的 USB-C/PD 高压电源开关;
TPS66121
型号: TPS66121
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于具有 5V 无电电池 LDO 灌电流的 USB-C/PD 高压电源开关

电池 开关 高压 电源开关 光电二极管
文件: 总29页 (文件大小:1561K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
具有 VBUS LDO 稳压器的TPS6612x集成灌电流  
1 特性  
3 说明  
1
集成 22mΩ(典型值),32V 耐压 NFET 4V 至  
TPS6612x 包含一个集成 4V 22V 灌电流电源路  
22V 灌电流路径,高达 5A  
径。该电源路径都支持过热保护和反向电流保护。  
VBUS 具有过压保护,其电平由可选的外部电阻分压  
器设置。如果不需要过压保护,可以通过接地 OVP 终  
端来禁用。TPS6612x 支持显示过热事件的故障引脚。  
内置软启动可限制浪涌电流  
集成高电压 VBUS LDO 稳压器(每种器件类型为  
3.3V 5.0V)  
通过引脚配置的可选 VBUS 过压保护。  
系统电源和 VBUS 欠压保护  
过热保护  
TPS6612x 系列还支持高电压 VBUS LDO 稳压器(每  
种器件类型为 3.3V 5V),可用于在电池电量耗尽  
的情况下为设备和其他系统组件供电。将 TPS66120  
调节至 3.3V,将 TPS66121 调节至 5V。  
反向电流保护  
具有抗尖峰脉冲故障报告功能的故障引脚  
小型 WCSP 封装,无需 HDI。  
器件信息(1)  
器件型号  
TPS66120  
TPS66121  
封装  
封装尺寸(标称值)  
2 应用  
WCSP (28)  
1.606mm x 2.806mm  
台式计算机/主板  
标准笔记本电脑  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
Chromebook WOA  
集线站  
功能表  
端口/线缆适配器和加密狗  
EN0  
0
器件状态  
灌电流路径禁用  
灌电流路径启用  
1
TPS6612x 方框图  
PPHV Gate Control  
and RCP  
PPHV  
TSD  
OVP  
VBUS  
OVP  
VBUS  
VLDO  
VBUS  
UVLO  
Power  
Mux  
&
VIN  
LDO  
EN0  
FLT  
Control  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLVSEW9  
 
 
 
 
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
目录  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 17  
Application and Implementation ........................ 20  
8.1 Application Information............................................ 20  
8.2 Typical Application ................................................. 20  
Power Supply Recommendations...................... 23  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Recommended Supply Load Capacitance................ 5  
6.5 Thermal Information.................................................. 5  
6.6 PPHV Power Switch Characteristics......................... 5  
6.7 Power Path Supervisory ........................................... 6  
6.8 VBUS LDO Characteristics ....................................... 6  
6.9 Thermal Shutdown Characteristics ........................... 7  
6.10 Input-output (I/O) Characteristics............................ 7  
6.11 Power Consumption Characteristics....................... 8  
6.12 Typical Characteristics............................................ 9  
Detailed Description ............................................ 10  
8
9
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 相关链接................................................................ 25  
11.2 接收文档更新通知 ................................................. 25  
11.3 支持资源................................................................ 25  
11.4 ....................................................................... 25  
11.5 静电放电警告......................................................... 25  
11.6 Glossary................................................................ 25  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
Changes from Revision A (September 2019) to Revision B  
Page  
预告信息更改为生产数据................................................................................................................................................ 1  
Changes from Original (August 2019) to Revision A  
Page  
更新了附带链接的应用部分..................................................................................................................................................... 1  
已添加 Typical Characteristics section .................................................................................................................................. 9  
已添加 Application Curves section ...................................................................................................................................... 22  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
5 Pin Configuration and Functions  
TPS6612x YBG Package  
28-Pin WCSP  
Top View  
A1  
A2  
A3  
A4  
GND  
VBUS  
GND  
FLT  
B3  
B4  
B1  
B2  
PPHV  
VBUS  
VBUS  
GND  
C2  
C1  
C3  
C4  
PPHV  
VBUS  
VBUS  
GND  
D3  
D1  
D2  
D4  
PPHV  
VBUS  
VBUS  
GND  
E3  
E4  
E1  
E2  
PPHV  
VBUS  
VBUS  
GND  
F1  
F2  
F3  
F4  
OVP  
PPHV  
VBUS  
VBUS  
G1  
G2  
G3  
G4  
EN0  
VBUS  
VLDO  
VIN  
Pin Functions  
Pin  
I/O  
Power  
Reset State Description  
Name  
No.  
B1, C1, D1,  
E1, F1  
PPHV  
Off  
-
HV System Supply from VBUS. Bypass with capacitance CPPHV to GND.  
A2, B2, B3,  
C2, C3, D2,  
D3, E2, E3,  
F2, F3, G2  
4V to 20V nominal input supply to PPHV. Bypass with capacitance CVBUS to  
GND.  
VBUS  
Power  
Copyright © 2019, Texas Instruments Incorporated  
3
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
Pin  
I/O  
Power  
Reset State Description  
Name  
No.  
VIN  
G4  
G3  
-
-
Device input supply. Bypass with capacitance CVIN to GND.  
VIN supply or VBUS LDO regulated supply output from power multipexer. Bypass  
with capacitance CVLDO to GND.  
VLDO  
GND  
Power  
Ground  
Analog  
A3, A4, B4,  
C4, D4, E4  
-
-
Ground. Connect all pins to ground plane.  
Selects VBUS OVP. Tie pin to VBUS resistor divider output to set desired VBUS  
OVP level. Tie pin to GND to remove VBUS OVP function.  
OVP  
EN0  
FLT  
F4  
G1  
A1  
Digital Input Pull-down  
Enable PPHV sink path. Internal pull-down.  
Digital  
Hi-Z  
Fault Output Indicator. Active low. This pin is a true open-drain (no PMOS). Float  
pin when unused.  
OUtput  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
EN0(3), FLT, VIN, VLDO  
MIN  
–0.3  
–0.3  
–0.5  
–0.5  
–0.3  
MAX  
UNIT  
V
(2)  
Terminal voltage range  
Terminal voltage range  
Terminal voltage range  
Terminal voltage range  
Terminal voltage range  
6.2  
(2)  
(2)  
(2)  
(2)  
OVP  
VBUS  
V
VBUS, power path disabled (stand off voltage)  
VBUS, power path enabled(4)  
PPHV  
32  
V
26  
V
26  
V
VLDO sourced from VBUS VLDO  
VLDO sourced from VIN  
Internally limited  
mA  
mA  
°C  
Terminal positive source current  
Storage temperature  
50  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network GND. All GND pins must be connected directly to the GND plane of the board.  
(3) EN0 has an internal voltage clamp and may be driven above the absolute maximium voltage rating up to EN_CLAMP maximum  
specification if current is limited to less than 100µA.  
(4) For VBUS, a TVS protection with a break down voltage falling between the Recommended and Absolute maximum ratings is  
recommended, such as the TVS2200.  
6.2 ESD Ratings  
VALUE  
±1000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VIN, TPS66120 only.  
VIN, TPS66121 only.  
PPHV  
2.85  
4.5  
0
3.6  
5.5  
22  
V
V
V
V
V
V
(1)  
VVIN  
Input voltage range  
(1)  
(1)  
VPPHV  
VVBUS  
VEN  
Output voltage range  
Input voltage range  
Input voltage range  
Output voltage range  
VBUS when sinking  
EN0  
4
22  
(1)  
(1)  
0
5.5  
5.5  
VFLT  
FLT  
0
(1) All voltage values are with respect to network GND. All GND pins must be connected directly to the ground plane of the board.  
4
Copyright © 2019, Texas Instruments Incorporated  
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
TJ = 105  
TJ = 100℃  
4
5
A
A
Continuous current from VBUS to  
PPHV  
IO_PPHV  
IO_VLDO  
RIREF  
Output current from VBUS LDO  
30  
mA  
External resistor current limit  
reference  
75k±1% overall tolerance  
74.25  
75.75  
kΩ  
TJ  
Operating junction temperature  
–10  
–2  
125  
2
°C  
RR_PPHV  
RR_VBUS  
RR_VIN  
Maximum ramp rate on PPHV input supply  
Maximum ramp rate on VBUS input supply  
Maximum ramp rate on VIN input supply  
V/µs  
V/µs  
–2  
2
30 mV/µs  
6.4 Recommended Supply Load Capacitance  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER(1)  
MIN  
1
TYP  
4.7  
47  
MAX  
UNIT  
µF  
CVIN  
Capacitance on VIN  
CVLDO  
CVBUS  
CPPHV  
Capacitance on VLDO  
Capacitance on VBUS  
Capacitance present on PPHV(2)  
2.5  
1
10  
10  
µF  
µF  
1
100  
µF  
(1) Capacitance values do not include any derating factors. For example, if 5.0 µF is required and the external capacitor value reduces by  
50% at the required operating voltage, then the required external capacitor value would be 10 µF.  
(2) This capacitance represents the system side load capacitance that may be seen by the device e.g. from a typical battery charging  
system. Discrete capacitance is not required for proper operation.  
6.5 Thermal Information  
TPS6612x  
THERMAL METRIC(1)  
YBG (WCSP)  
28 PINS  
44.3  
UNIT  
RθJA,EFF  
RθJA  
RθJC(top)  
RθJB  
Effective Junction-to-ambient thermal resistance(2)  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
62.7  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.4  
13.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Effective Junction-to-board characterization parameter(2)  
0.2  
ψJB  
13.7  
ψJB,EFF  
14.5  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Models based on typical application layout.  
6.6 PPHV Power Switch Characteristics  
Operating under these conditions unless otherwise noted: -10 TJ 125 , 2.85V VVIN 5.5V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ILOAD = 1 A, TJ = 25 , SNK state.  
22  
26  
mΩ  
RPPHV  
Resistance from PPHV to VBUS  
ILOAD = 1 A, -10 TJ 125 ,  
SNK state.  
22  
45  
mΩ  
SNK state, VVBUS = 5.5V, ramp  
VPPHV from 5.5V to 21V at 100  
V/ms, CVBUS = 10µF, measure  
VVBUS  
Maximum voltage due to reverse  
current during RCP response.  
VPPHV_RCP  
5.8  
6.2  
V
V
SNK state, VVBUS = 5.5V, set VOVP  
= 6V, ramp VVBUS from 5.5V to 21V  
at 100 V/ms, CPPHV = 4.7µF,  
measure VPPHV  
Maximum voltage rise due to  
reverse current during VBUS OVP  
response.  
VPPHV_OVP  
Copyright © 2019, Texas Instruments Incorporated  
5
 
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
MAX UNIT  
PPHV Power Switch Characteristics (continued)  
Operating under these conditions unless otherwise noted: -10 TJ 125 , 2.85V VVIN 5.5V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Reverse current blocking voltage  
threshold for PPHV switch  
VRCP_THRES_PPHV  
2
6
10  
mV  
Transition from DISABLED state to  
SNK state, VVBUS = 5V, CPPHV  
100µF. Measure slew rate on  
PPHV.  
=
SS  
Soft-start slew rate  
0.2  
9
0.6 V/ms  
RPPHV = 100Ω, VVBUS = 5V, CPPHV  
= 100 µF. Transition from  
DISABLED state to SNK state,  
VPPHV at 90% of final value.  
PPHV enable time including Soft-  
start.  
tON_PPHV  
15  
29  
ms  
ms  
RPPHV = 100Ω, VVBUS = 5V, CPPHV  
= 4.7 µF. Transition from SNK state  
to DISABLED state, VPPHV falls to  
4.5V.  
tOFF_PPHV  
PPHV disable time.  
0.9  
2.2  
4.3  
6.7 Power Path Supervisory  
Operating under these conditions unless otherwise noted: -10 TJ 125 , 2.85V VVIN 5.5V, RIREF = 75 k±1%  
overall tolerance  
PARAMETER  
TEST CONDITIONS  
VIN rising, TPS66120 only.  
VIN rising, TPS66121 only.  
VIN falling, TPS66120 only.  
VIN falling, TPS66121 only.  
MIN  
2.45  
3.89  
2.35  
3.79  
TYP  
MAX UNIT  
2.75  
4.40  
2.65  
4.30  
V
V
Undervoltage threshold for VIN. VBUS  
LDO disables when threshold reached.  
UV_VIN_R  
UV_VIN_F  
V
Undervoltage threshold for VIN. Device  
resets.  
V
UVH_VIN  
Undervoltage hysteresis for VIN.  
100  
mV  
Undervoltage threshold for VBUS. PPHV  
switch disabled unitl threshold reached.  
UV_VBUS_R  
VBUS rising  
VBUS falling  
3.35  
3.15  
3.75  
3.55  
V
V
Undervoltage threshold for VBUS. PPHV  
switch disables when threshold reached.  
UV_VBUS_F  
UVH_VBUS  
OVP_REF  
Undervoltage hysteresis for VBUS  
OVP reference voltage.  
200  
1
mV  
V
0.93  
1.07  
90  
Forward voltage drop across  
VIN to VLDO switch  
VFWD_DROP_VIN  
IVLDO = 35 mA  
mV  
When VIN is above UV_VIN_R for this  
duration, VIN is considered valid. If  
device is being powered by VBUS LDO,  
it will then switch to VIN supply and  
VBUS LDO will be disabled.  
tVIN_STABLE  
5
15  
ms  
6.8 VBUS LDO Characteristics  
Operating under these conditions unless otherwise noted: -10 TJ 125 , 2.85V VVIN 5.5V, RIREF = 75 k±1%  
overall tolerance  
PARAMETER  
Output voltage of VBUS LDO  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
For TPS66120: VIN = 0V, VBUS  
3.8V, 0 I_VBUS_LDO 30mA  
V_VBUS_LDO_3V  
V_VBUS_LDO_5V  
VDO_VBUS_LDO_3V  
VDO_VBUS_LDO_5V  
ILIMIT_VBUS_LDO  
3.07  
3.3  
3.53  
5.35  
0.5  
V
V
For TPS66121: VIN = 0V, VBUS  
5.5V, 0 I_VBUS_LDO 30mA  
Output voltage of VBUS LDO  
Drop out voltage of VDD LDO  
Drop out voltage of VDD LDO  
Current limit VBUS LDO.  
4.65  
5.0  
For TPS66120: VIN = 0V, VBUS  
= 3.135 V, I_VBUS_LDO = 30 mA  
V
For TPS66121: VIN= 0V, VBUS =  
4.75V, I_VBUS_LDO = 30 mA  
0.5  
V
VBUS = 5.5V, VIN= 0V, VLDO =  
0V  
50  
100  
mA  
6
Copyright © 2019, Texas Instruments Incorporated  
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
VBUS LDO Characteristics (continued)  
Operating under these conditions unless otherwise noted: -10 TJ 125 , 2.85V VVIN 5.5V, RIREF = 75 k±1%  
overall tolerance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
For TPS66120: I_VBUS_LDO =  
30mA, CVLDO = 4.7 µF, VIN =  
0V. Ramp VVBUS from 0 to 5V at  
50V/ms. Measure from VBUS =  
4.5V to VLDO = 3V.  
1.2  
1.2  
ms  
ms  
tEN_VBUS_LDO  
Turn-on time of VBUS LDO.  
For TPS66121: I_VBUS_LDO =  
30mA, CVLDO = 4.7 µF, VIN =  
0V. Ramp VVBUS from 0 to 7.5V at  
50V/ms. Measure from VBUS =  
7V to VLDO = 4.5V.  
6.9 Thermal Shutdown Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Thermal Shutdown Temperature of  
the PPHV power path.  
TSD_PPHV_R  
TSD_PPHV_F  
TSDH_PPHV  
TSD_MAIN_R  
TSD_MAIN_F  
TSDH_MAIN  
Temperature rising  
Temperature falling  
128  
115  
150  
140  
10  
172  
165  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal Shutdown Temperature of  
the PPHV power path.  
Thermal Shutdown hysteresis of  
the PPHV power path.  
Thermal Shutdown Temperature of  
the entire device.  
Temperature rising  
Temperature falling  
140  
120  
160  
140  
20  
178  
160  
Thermal Shutdown Temperature of  
the entire device.  
Thermal Shutdown hysteresis of  
the entire device.  
6.10 Input-output (I/O) Characteristics  
Operating under these conditions unless otherwise noted: -10 TJ 125 , 2.85 V VVIN 5.5V, RIREF = 75 k±1%  
overall tolerance  
PARAMETER  
Positive going input-threshold  
TEST CONDITIONS  
VLDO = 2.85 - 5.5V  
MIN  
TYP  
MAX  
UNIT  
EN_Vt+  
EN_Vt-  
40  
70  
%
voltage, % of VLDO  
Negative going input-threshold  
voltage, % of VLDO  
VLDO = 2.85 - 5.5V  
VLDO = 2.85 - 5.5V  
30  
60  
%
%
Input hysteresis voltage, % of  
VLDO  
EN_HYS  
EN_RPD  
10  
Measured with pin voltage VEN  
= 3.3V  
Pull-down resistance EN pin.  
500  
650  
6
800  
kΩ  
EN_CLAMP  
FLT_VOL  
Voltage clamp on EN pin.  
Output Low Voltage, FLT pin  
Leakage Current, FLT pin  
IEN = 100 µA  
7.1  
0.4  
1
V
V
IOL = 2mA, FLT driven low.  
FLT not driven low.  
FLT_ILKG  
–1  
4
µA  
Time FLT pin remains asserted  
low.  
tH_FLT  
10  
16  
ms  
Enable deglitch filter. Pulses on  
EN0 < tDG_EN(MIN) are not  
propagated to the control logic.  
Pulses on EN0 > tDG_EN(MAX)  
are propagated to the control  
logic. Pulses on  
tDG_EN  
78  
242  
µs  
EN0 tDG_EN(MIN) and ≤  
tDG_EN(MAX) may or may not  
propagate to the control logic.  
Copyright © 2019, Texas Instruments Incorporated  
7
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
6.11 Power Consumption Characteristics  
Operating under these conditions unless otherwise noted: -10 TJ 85 , 2.85V VVIN 5.5V, RIREF = 75 k±1% overall  
tolerance  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIN = 3.3V, VBUS = 0V, PPHV  
= 0V, DISABLED state.  
19  
27  
µA  
Measure IVIN. TPS66120 only.  
Current consumed by  
IVIN_DISABLE  
VIN(1)  
VIN = 5V, VBUS = 0V, PPHV  
= 0V, DISABLED  
25  
36  
26  
µA  
state. Measure IVIN. TPS66121  
only.  
VIN = 3.3V, SNK state. Measure VBUS =  
IVIN. TPS66120 only.  
130  
215  
12  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
5.5V/22V  
Current consumed by  
VIN(1)  
IVIN_SNK  
VIN = 5V, SNK state. Measure  
VBUS =  
5.5V/22V  
IVIN  
.
TPS66121 only.  
VBUS =  
5.5V  
VIN = 3.3V, PPHV= 0V,  
DISABLED state. Measure  
VBUS =  
22V  
IVBUS. TPS66120 only.  
34  
Current consumed by  
VBUS(1)  
ISD_VBUS  
VBUS =  
5.5V  
8
VIN = 5V, PPHV= 0V,  
DISABLED state. Measure  
VBUS =  
22V  
IVBUS. TPS66121 only.  
30  
VBUS =  
5.5V  
45  
VIN = 0V, PPHV= 0V,  
DISABLED state. Measure  
IVBUS.  
Current consumed by  
VBUS(1)  
ISD_VBUS_LDO  
VBUS =  
22V  
68  
VBUS =  
5.5V  
45  
VIN = 0V, PPHV= 0V,  
DISABLED state. Measure  
IVBUS.  
Current consumed by  
VBUS(1)  
ISD_VBUS_LDO  
VBUS =  
22V  
69  
VBUS =  
5.5V  
325  
360  
342  
377  
VIN = 3.3V, SNK  
state. Measure IVBUS  
.
VBUS =  
22V  
TPS66120 only.  
Current consumed by  
VBUS(1)  
IACT_VBUS  
VBUS =  
5.5V  
VIN = 5V, SNK state. Measure  
IVBUS. TPS66121 only.  
VBUS =  
22V  
PPHV = 22V, DISABLED state,  
no DC loading on VBUS.  
Measure VVBUS under steady  
state conditions.  
Open circuit voltage,  
VBUS  
VOC_VBUS  
0.8  
0.8  
V
V
VBUS = 22V, DISABLED state,  
no DC loading on PPHV.  
Measure VPPHV under steady  
state conditions.  
Open circuit voltage,  
PPHV  
VOC_PPHV  
(1) Measured with EN0 set to GND or VLDO levels as required for the respective state.  
8
版权 © 2019, Texas Instruments Incorporated  
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
6.12 Typical Characteristics  
250  
200  
150  
100  
50  
30  
TA = -10 èC  
TA = 25 èC  
TA = 85 èC  
TA = 125 èC  
27.5  
25  
22.5  
20  
0
17.5  
4
6
8
10  
12  
14  
16  
18  
20  
22  
-15  
0
15  
30  
45  
60  
75  
90  
105  
120  
135  
VVBUS (V)  
D008  
Temperature (èC)  
1. RPPHV versus Temperature  
D002  
2. VOC_PPHV, PPHV Open Circuit Voltage versus VBUS  
6
5.7  
5.4  
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3
23  
255  
240  
225  
210  
195  
180  
165  
150  
135  
120  
105  
90  
TA = -10 èC  
TA = 25 èC  
TA = 85 èC  
TA = 125 èC  
PPHV  
VBUS  
/FLT  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
75  
8
60  
7
45  
6
30  
5
15  
4
0
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22  
0
200  
400  
600  
800  
1000 1200 1400 1600 1800 2000  
VPPHV (V)  
Time (ms)  
4. VBUS OVP Response with 6-V Threshold  
D001  
D015  
3. VOC_VBUS, VBUS Open Circuit Voltage versus PPHV  
版权 © 2019, Texas Instruments Incorporated  
9
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS6612x is a fully featured integrated Sink power path with a high voltage VBUS LDO voltage regulator.  
The Sink power path can support up to 5 A at 20 V controlled by a general-purpose I/O. The Sink power path  
includes soft-start to minimize in-rush currents, overtemperature protection, reverse-current protection,  
undervoltage protection, and an optional overvoltage protection configured in the application. See the 20-V Sink  
(PPHV Power Path) section.  
The VBUS low dropout voltage regulator may be used in systems that require power during dead battery  
conditions and can provide up to 30 mA to the system via the VLDO pin. Once VIN power is available, VLDO pin  
power is switched from the VBUS LDO regulator to the VIN pin. The TPS66120 devices VBUS LDO regulator  
nominally supplies 3.3 V where the TPS66121 device VBUS LDO regulator nominally supplies 5 V. See the  
Power Management and Supervisory section.  
7.2 Functional Block Diagram  
PPHV Gate Control  
and RCP  
PPHV  
TSD  
OVP  
VBUS  
OVP  
VBUS  
VBUS  
UVLO  
Power  
Mux  
VIN  
VLDO  
&
LDO  
EN0  
FLT  
Control  
7.3 Feature Description  
7.3.1 20-V Sink (PPHV Power Path)  
The PPHV path is a Sink only path, providing power from the VBUS terminal to the PPHV terminal when  
enabled. The PPHV power path uses two back-to-back N-channel MOSFETs, and blocks current in both  
directions when the power path is disabled.  
7.3.1.1 PPHV Soft Start  
The TPS6612x PPHV power path has soft start circuitry to control in-rush current when the PPHV power path is  
enabled. DC loading should be minimized during soft start since the PPHV path may experience high power  
dissipation especially at higher VBUS voltages. This may lead to a PPHV overtemperature protection event.  
10  
版权 © 2019, Texas Instruments Incorporated  
 
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
Feature Description (接下页)  
7.3.1.2 PPHV Reverse Current Protection (RCP)  
When the PPHV power path is enabled, the RCP circuitry monitors the voltage across the path. If the RCP  
monitor detects VPPHV - VVBUS VRCP_THRES_PPHV, the PPHV path will be disabled preventing additional current  
flow from PPHV to VBUS. The power path will be completely disabled and remain disabled as long as the RCP  
condition persists. After the RCP event, the PPHV path will automatically re-enable. FLT is not asserted when a  
reverse current protection event occurs on the PPHV path.  
7.3.2 Overtemperature Protection  
The PPHV power path has an integrated temperature sensor to protect it from excessive heating. When the  
sensor in the path detects an overtemperature condition, the PPHV path will be automatically disabled (if  
enabled) and cannot be enabled until the overtemperature condition has been removed. FLT is asserted when  
an overtemperature event occurs.  
In addition, the device has an integrated main temperature sensor. When the sensor detects an overtemperature  
condition, the PPHV power pathand the VBUS LDO of the device are completely disabled until the  
overtemperature condition has been removed.  
7.3.3 VBUS Overvoltage Protection (OVP)  
TPS6612x supports overvoltage protection on the VBUS terminal. When the voltage detected on OVP exceeds a  
set level, the PPHV power path will automatically be disabled (if enabled), and will remain disabled until the OVP  
event is removed. FLT is asserted when an overvoltage event occurs. The VBUS OVP threshold may be set  
using a resistor divider from VBUS to GND, whose divider output is connected to the OVP terminal as shown in  
5. 1 shows resistor divider settings for common USB Power Delivery fixed voltage supply contracts along  
with the resulting nominal OVP thresholds. These thresholds may be adjusted based on desired margins for a  
given application. If VBUS OVP is not required or needs to be disabled, the OVP terminal may be tied or driven  
to GND as shown in 6. Lastly, as one example implementation, the OVP threshold may be controlled  
dynamically using outputs from a PD controller or microcontroller as shown in 7. By selecting each output,  
different VBUS OVP threshold settings are possible.  
VBUS  
PPHV  
PPHV Gate Control  
and RCP  
R1  
1%  
OVP  
+
OVP_REF  
-
OVP_detect  
R2  
1%  
R1 + R2 = 500 kΩ, max.  
VVBUS_OVP_THRESHOLD = OVP_REF * (1 + R1/R2)  
5. VBUS OVP Threshold Set by External Resistor Divider  
1. Typical External Resistor Divider Settings  
PD Fixed Contract  
R1, kΩ  
102  
R2, kΩ  
20  
Nominal VBUS OVP Threshold, V  
5 V  
9 V  
6.1  
182  
20  
10.1  
16.5  
22.6  
15 V  
20 V  
309  
20  
432  
20  
版权 © 2019, Texas Instruments Incorporated  
11  
 
 
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
VBUS  
OVP  
PPHV  
PPHV Gate Control  
and RCP  
+
OVP_REF  
-
OVP_detect  
6. VBUS OVP Disabled  
VBUS  
PPHV  
Controller  
PPHV Gate Control  
and RCP  
R1  
1%  
OVP  
+
R2  
1%  
R3  
1%  
R4  
1%  
OVP_REF  
-
OVP_detect  
GPIO_0  
GPIO_1  
GPIO_2  
7. Selectable VBUS OVP Thresholds  
7.3.4 Power Management and Supervisory  
The TPS6612x Power Management block receives power from VIN or VBUS and generates voltages to provide  
power to the TPS6612x internal circuitry, as well as, provides power to VLDO. The power supply management  
and supervisory block is shown in 8.  
12  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
Switch Over  
Logic  
VBUS_GOOD  
VIN_GOOD  
UVLO  
UVLO  
S1  
VIN  
VBUS  
VREF  
EN  
LDO  
VLDO  
8. Power Management and Supervisory  
The VLDO terminal may be powered from either VIN or VBUS. The normal power supply input is VIN. When VIN  
is present, S1 is closed and current flows from VIN to VLDO and the VBUS LDO is disabled. When VIN power is  
unavailable, as in a dead battery condition, the VBUS LDO will be automatically enabled when VBUS is present,  
and the VLDO terminal is powered by the VBUS LDO. The Switch Over Logic provides the decision making  
capability to choose VIN or VBUS power, depending on the state of these voltages (based on their respective  
UVLO comparators) and their relative levels to each other.  
7.3.4.1 Supply Connections  
9 shows the TPS66120 VIN being supplied from a 3.3-V supply. The VLDO output may or may not be used to  
supply other circuitry in the application, for example a PD Controller. During dead battery, the internal 3.3-V  
VBUS LDO provides power to the TPS66120 and the VLDO output. Once VIN input supply becomes available,  
the VBUS LDO is disabled and VIN provides power to the VLDO output.  
10 shows the TPS66121 VIN being supplied from a 5-V supply. The VLDO output may or may not be used to  
supply power to external circuitry. During dead battery, the internal 5-V VBUS LDO provides power to the  
TPS66121 and the VLDO output. Once VIN input supply becomes available, the VBUS LDO is disabled and VIN  
provides power to the VLDO output.  
Another option is to power the TPS66120 from the VBUS LDO only as shown in 11. Since VIN is tied to GND,  
power to the TPS66120 is provided by the 3.3-V VBUS LDO when VBUS power is present. The VLDO output  
may be used optionally to supply power to external circuitry.  
Similarly, 12 shows the TPS66121 being powered from the VBUS LDO only. Since VIN is tied to GND, power  
to the TPS66121 is provided by the 5-V VBUS LDO when VBUS power is present. The VLDO output may be  
used optionally to supply power to external circuitry.  
版权 © 2019, Texas Instruments Incorporated  
13  
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
VBUS  
OVP  
PPHV  
VIN  
3.3V Supply  
TPS66120  
VLDO  
Optional  
EN0  
FLT  
GND  
9. TPS66120 VIN 3.3-V Supply  
VBUS  
PPHV  
VIN  
OVP  
5V Supply  
TPS66121  
VLDO  
Optional  
EN0  
FLT  
GND  
10. TPS66121 VIN 5-V Supply  
14  
版权 © 2019, Texas Instruments Incorporated  
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
VBUS  
OVP  
PPHV  
VIN  
TPS66120  
VLDO  
Optional  
EN0  
FLT  
GND  
11. TPS66120 VBUS Powered  
VBUS  
OVP  
PPHV  
VIN  
TPS66121  
VLDO  
Optional  
EN0  
FLT  
GND  
12. TPS66121 VBUS Powered  
7.3.4.2 Power Up Sequences  
7.3.4.2.1 Normal Power Up  
13 shows a typical power up sequence. During normal power up, VIN supplies power to the TPS6612x. In this  
case, VBUS remains powered down. It is assumed a PD Controller is controlling the TPS6612x, and Sink  
operation is being requested.  
版权 © 2019, Texas Instruments Incorporated  
15  
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
1. Both the VBUS and VIN supplies are  
powered down. VINsupply begins torise.  
5
VBUS  
2. VLDOterminal begins torise.  
4
EN0  
3. VLDO supplied by VIN via switch S1. VBUS  
LDOremains disabled.  
1
VIN  
tVIN_STABLE  
4. PD Controller requests Sink path to be  
enabled. Since VIN supply has not been above  
its UVLO threshold for tVIN_STABLE, Sink path  
remains disabled. In addtion, VBUS is not  
above its UVLO switch threshold, which also  
keeps theSink path disabled.  
VLDO  
2
VIN switch  
3
VLDO Supply  
Disabled  
Enabled  
6
PPHV Path  
5. VBUSrises.  
6. VIN supply remained above its UVLO  
threshold for tVIN_STABLE and VBUS is above its  
UVLO threshold. The Sink path enables.  
VBUS LDO remains disabled since VIN supply  
isavailable  
13. Normal Power Up Sequence  
7.3.4.2.2 Dead Battery Operation  
14 shows the typical power up sequence during a dead battery condition. During a dead battery condition, the  
TPS6612x is internally powered by the VBUS LDO. The VBUS LDO may be used to supply a limited amount of  
current for use in the system during dead battery, such as supplying power to a PD controller. In this case, it is  
assumed the VLDO terminal is providing power to a PD controller that is controlling the TPS6612x. Once VIN is  
stable, the VLDO terminal switches from being supplied by the VBUS LDO to being supplied by the VIN terminal,  
and the VBUS LDO is automatically disabled. The switch over process is completely seamless.  
Switching from VBUS LDO operation to VIN operation is seamless and no device reset  
will occur. When switching from VIN power to VBUS LDO operation, the switch over  
circuitry will attempt to switch over to the VBUS LDO, however it is not assured that the  
VLDO level will be maintained above the VLDO UVLO threshold. In this case, a device  
reset may or may not occur.  
1. Device is in dead battery condition. PD  
controller advertises as a Sink. Upon  
connection toaSource, VBUSbegins torise.  
1
VBUS  
EN0  
VIN  
3
2. VBUS LDO is selected by the power  
management logic and VLDObegins torise.  
4
3. PD Controller negotiates a contract (may be  
5V or higher) and asserts EN0 to turn on the  
PPHVSink path in order tocharge thesystem.  
tVIN_STABLE  
VLDO  
4. System begins to charge and VIN begins to  
rise. VINpasses itsUVLOthreshold.  
VBUS LDO  
VIN switch  
5
2
VLDO Supply  
PPHV Path  
5. If VIN supply remains above its UVLO  
threshold for tVIN_STABLE, VBUS LDO is disabled  
and VLDO is switched over to be supplied by  
VINvia switch S1.  
Disabled  
Enabled  
14. Dead Battery Power Up Sequence  
16  
版权 © 2019, Texas Instruments Incorporated  
 
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
7.4 Device Functional Modes  
7.4.1 State Transitions  
EN0 is used by the application to control the state of the device. 15 shows the supported state transitions.  
Power-on Reset  
DISABLED  
EN0 = 0b  
EN0 = 0b  
EN0 = 1b  
SNK  
FAULT  
fault  
EN0 = 1b & no faults  
SNK  
15. TPS6612x State Diagram  
7.4.1.1 DISABLED State  
In the DISABLED state, EN0 = 0. While in the DISABLED state:  
PPHV power path is disabled  
PPHV overtemperature, reverse-current, and VBUS overvoltage protections are disabled  
VIN and VBUS undervoltage lockout are enabled  
SNK state if (EN1 = 0) and (EN0 = 1) and (VBUS UVLO event not detected)  
7.4.1.2 SNK State  
In the SNK state, EN0 = 1. While in the SNK state:  
PPHV power path is enabled  
PPHV overtemperature, VBUS overvoltage (if OVP terminal not grounded) and reverse-current protections  
are enabled  
VIN and VBUS undervoltage lockout are enabled  
DISABLED state if:  
(EN1 = 0) and (EN0 = 0)  
SNK FAULT state if:  
VBUS OVP (if OVP terminal not grounded) event detected -or-  
PPHV TSD event detected  
7.4.2 SNK FAULT State  
The SNK FAULT state is entered when any PPHV fault event is detected. Upon entering the SNK FAULT state,  
the PPHV power path is disabled. The following transitions are possible from the SNK FAULT state:  
DISABLED state if:  
(EN0 = 0)  
SNK state if:  
(EN0 = 1) -and-  
版权 © 2019, Texas Instruments Incorporated  
17  
 
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
Device Functional Modes (接下页)  
PPHV TSD, VBUS OVP (if OVP terminal not grounded) events are not detected  
7.4.3 Device Functional Mode Summary  
2 summarizes the functional modes for the TPS6612x family. As shown, the enabling and disabling of the  
Sink is dependent upon the voltage present on VBUS, as well as, the current device state.  
2. TPS6612x Device Functional Modes(1)  
EN0  
VIN  
VVBUS  
FLT  
Device State  
Sink Path  
Disabled  
Safety engaged.  
0
UV_VIN  
X
Hi-Z  
DISABLED  
Enabled  
RCP, OVT enabled  
Hi-Z  
Hi-Z  
L
SNK  
Enabled with Blocking  
RCP event.  
UV_VBUS  
SNK FAULT  
SNK FAULT  
SNK FAULT  
DISABLED  
DISABLED  
SNK  
1
UV_VIN  
Disabled  
OVP(2) or OVT event.  
Disabled  
VBUS UVLO event.  
< UV_VBUS  
< UV_VBUS  
UV_VBUS  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
Hi-Z  
L
Disabled  
Safety engaged.  
X
0
< UV_VIN  
< UV_VIN  
Disabled  
Safety engaged.  
Enabled  
RCP, OVT enabled  
Enabled with Blocking  
RCP event.  
UV_VBUS(3)  
SNK FAULT  
SNK FAULT  
SNK FAULT  
1
< UV_VIN  
Disabled  
OVP(2) or OVT event.  
Disabled  
VBUS UVLO event.  
< UV_VBUS(3)  
Hi-Z  
(1) X: do-not-care.  
(2) When OVP function used and VBUS exceeds OVP threshold, VVBUS_OVP_THRESHOLD  
.
(3) If VIN supply is not available, then VIN may be tied to GND. In this case VLDO is supplying power to the device.  
7.4.4 Enabling the PPHV Sink Path  
The timing diagram of enabling the PPHV Sink path is shown in 16.  
tDG_EN  
tDG_EN  
EN0  
Disabled  
Enabled  
Disabled  
VBUS to PPHV (SNK)  
tON_PPHV  
tOFF_PPHV  
16. Enabling the PPHV Sink Path  
18  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
7.4.5 Faults  
The TPS6612x includes a fault pin, FLT. The FLT pin is an open-drain output and requires an external pull-up  
resistor. If the FLT pin is not required, it may be tied to GND or left floating. The FLT pin will be asserted low only  
under certain conditions and not all fault conditions will assert the FLT pin, see 3. If the FLT pin is asserted, it  
will remain asserted for a minimum of tHOLD_FLT regardless if the fault condition is removed. After tHOLD_FLT, if  
all fault conditions have surpassed, the FLT pin is released.  
7.4.5.1 Fault Types  
3 summarizes the various fault types available and when the FLT shall be asserted.  
3. Fault Types  
Fault Name  
Fault  
FLT  
Description  
If VBUS supply is below the VBUS UVLO threshold, the PPHV  
path is disabled automatically if enabled or remains disabled. If  
the SNK state is selected to be entered, the device will remain  
in the DISABLED state until the UVLO event is removed. If the  
SNK state has been entered successfully and a UVLO event  
occurs, the PPHV path is disabled automatically.  
VBUS_UVLO  
VBUS undervoltage Lockout  
Hi-Z  
If the SNK state is selected to be entered or device currently is  
in the SNK state and the VBUS supply rises above the VBUS  
OVP threshold, the PPHV path is disabled automatically and  
the FLT pin will be asserted.  
VBUS_OVP(1)  
VBUS_RCP  
VBUS overvoltage Protection  
Low  
Hi-Z  
If the SNK state is selected to be entered or device currently is  
in the SNK state and a reverse-current condition is detected,  
the PPHV path is disabled automatically, but the FLT is not  
asserted.. If the reverse-current condition is removed, the PPHV  
path will automatically re-enable.  
VBUS Reverse-Current  
Protection  
If the SNK state is selected to be entered or device currently is  
in the SNK state and the local temperature of PPHV power path  
exceeds TSD_PPHV_R, the PPHV path is disabled  
automatically and the FLT pin will be asserted. PPHV power  
path will remain disabled until temperature falls below  
TSD_PPHV_F.  
PPHV overtemperature  
Protection  
PPHV_OVT  
Low  
(1) OVP terminal is not connected to GND.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The typical applications of the TPS6612x include chargers, notebooks, tablets, ultra-books, dongles and any  
other product supporting USB Type-C and/or USB-PD as a power source or power sink. The typical applications  
outlined in the following sections detail a Fully-Featured USB Type-C using a single 5-V supply and another  
using a separate 3.3-V supply.  
8.2 Typical Application  
17 shows a USB Type-C single port design using a power delivery controller. For this system, a single 5-V  
supply in the system is used to supply power to the external load switch, as well as, the connector VCONN  
power. The VIN terminal of the TPS66121 is tied to GND and the TPS66121 is powered by the VBUS LDO once  
VBUS is present. In addition, the TPS66121 supplies power to the 5-V supply of the PD controller via the VLDO  
output. The PPHV integrated power path provides power to the system and battery charger from VBUS when the  
TPS66121 Sink path is enabled. An external 5-V load switch is shown to provide power to VBUS when system is  
configured as a Source.  
VSYS  
Battery  
Charger  
VBAT  
IN  
OUT  
5V Load Switch  
4S2P  
EN  
Type-C  
Receptacle  
VIN  
EN  
5V Buck  
from EC  
VBUS  
PPHV  
VIN  
VBUS  
OVP  
GND  
CC1  
CC2  
D+/-  
D+/-  
RX1  
TX1  
IN  
2
2
2
2
2
2
2
TVS2200  
GND  
VCON_IN  
Opt.  
RX2  
TX2  
TPS66121  
Opt.  
Opt.  
5V_IN  
SBU1/2  
GPIO1  
VLDO  
GPIO2  
GPIO3  
EN0  
FLT  
GND  
PD  
Controller  
VMON  
CC1  
CC2  
17. Single Port Type-C PD Port Using a 5-V Supply.  
8.2.1 Design Requirements  
For a single port notebook application, 4 lists the input voltage requirements and expected current capabilities.  
4. Single-Port Notebook Application Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUE(S)  
POWER PATH DIRECTION  
5-V Load Switch Voltage and  
Current Capabilities  
Source from 5-V load switch to  
VBUS  
5V/3A  
20  
版权 © 2019, Texas Instruments Incorporated  
 
 
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
Typical Application (接下页)  
4. Single-Port Notebook Application Design Parameters (接下页)  
DESIGN PARAMETERS  
EXAMPLE VALUE(S)  
POWER PATH DIRECTION  
VCON_IN Input Voltage and  
Current Capabilities  
5V/300mA (1.5W)  
Source to VCONN  
VBUS Input Voltage and Current  
Capabilities  
5V/3A, 9V/3A, 15V/3A, 20V/3A  
4.5-5.5V/30mA  
Sink from VBUS to PPHV  
5-V PD Controller Supply  
3.3-V PD Controller Supply  
5V_IN Input Voltage and Current  
Capabilities  
3V_IN Input Voltage and Current  
Capabilities  
3.0-3.6V/30mA  
8.2.2 Detailed Design Procedure  
8.2.2.1 External VLDO Capacitor (CVLDO)  
For all capacitances, the DC operating voltage must be factored into the derating of ceramic capacitors.  
Generally, the effective capacitance is 35-50% of the nominal capacitance with voltage applied. Assuming VLDO  
= 5 V, and a minimum derated capacitance of 2.5 uF, a 10-V rated 4.7-uF capacitor is sufficient.  
8.2.2.2 PPHV, VBUS Power Path Capacitance  
The PPHV power path is a Sink. The capacitance on the PPHV shown in 17 represents capacitance of the  
charger sub-system. In a typical application, this capacitance can be in the range of 47 uF up to 100 uF, far  
exceeding the 1-uF minimum specification for the TPS6612x, so no external capacitance is required to meet this  
requirement in most cases. As per the PD Specification, the total capacitance on VBUS should be maximum 10  
uF at connection.  
The TPS6612x PPHV power path has soft start circuitry to control in-rush current when the PPHV power path is  
enabled. DC loading should be minimized during soft start since the PPHV path may experience high power  
dissipation especially at higher VBUS voltages. This in turn may lead to a PPHV overtemperature protection  
event.  
8.2.2.3 VBUS TVS Protection (Optional)  
It is recommended that each VBUS port in the system have TVS protection to protect the VBUS terminal.  
Inductive ringing during momentary disconnects and reconnects due to mechanical vibration or plug removal  
while sinking large current loads may cause large peak voltages to be present on the VBUS terminal that may  
exceed the absolute maximums of the TPS6612x. Under such events, the TVS2200 clamps the VBUS terminal  
and prevents VBUS from exceeding the maximum specification. The TVS trip point should be chosen to be  
safely above the normal operating ranges of the device. For this case, it is assumed VBUS voltage contracts are  
less than 22-V maximum which is below the minimum breakdown voltage of the TVS2200. The maximum  
clamping voltage of 28.3 V of the TVS2200 is sufficient to protect the VBUS terminal of the TPS6612x.  
8.2.2.4 VBUS Schottky Diode Protection (Optional)  
To prevent the possibility of large ground currents into the TPS6612x during sudden disconnects because of  
inductive effects in a cable, it is recommended that a Schottky diode be placed from VBUS to GND. The  
NSR20F30NXT5G or comparable device is recommended.  
8.2.2.5 VBUS Overvoltage Protection (Optional)  
VBUS Overvoltage Protection (OVP) is optional. If VBUS OVP is not required, then the OVP terminal should be  
tied to ground as shown in 6. VBUS OVP is used to detect voltages on VBUS that exceed a set threshold.  
Upon detection, the PPHV power path is disabled quickly to help protect components connected downstream of  
the PPHV terminal. It should be noted that VBUS OVP is not a replacement for VBUS TVS protection which is  
protecting the VBUS terminal itself.  
版权 © 2019, Texas Instruments Incorporated  
21  
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
The VBUS OVP threshold is set by a resistor divider from the VBUS terminal to ground as shown in 5. For this  
design, R1 and R2 are fixed values to provide VBUS OVP protection at the highest voltage contract level. Using  
R1 = 432-kΩ and R2 =20-kΩ sets a nominal VBUS OVP threshold of 22.6 V. For some applications, it may be  
desirable to dynamically change the VBUS OVP level based on the negotiated power contract. One possible way  
is shown in 7. In this case, the PD controller via GPIO, selects the proper divider ratio to set the VBUS OVP  
threshold based on the negotiated voltage contract level.  
8.2.2.6 Dead Battery Support  
The TPS6612x integrates a high-voltage VBUS LDO that can be used to supply power to a PD Controller and  
other supporting circuitry when only VBUS power is available, such as in a dead battery condition. As shown in  
17 the TPS66121 VLDO output supplies power to the PD Controller's 5V_IN supply. During a dead battery  
condition, the PD Controller presents its Type-C RPD pull-downs on the CC1 and CC2 lines. Upon connection to  
a Type-C/PD Source, 5 V is provided to VBUS from the Source partner which powers the TPS6612x. The 5-V  
VBUS LDO is enabled and provides power to the PD Controller. Once powered, the PD Controller can decide to  
enable the TPS6612x PPHV Sink path by asserting EN0 high and use the 5-V VBUS to charge the battery or it  
may choose to negotiate a higher voltage contract first. Either way, once the contract is negotiated, the PD  
Controller will enable the PPHV Sink path and charge the system. Once the system is sufficiently charged, the  
VIN terminal will rise and will exceed the VIN UVLO threshold. If VIN remains above the UVLO threshold for  
tVIN_STABLE, VLDO will be supplied from VIN and the VBUS LDO will be disabled.  
8.2.3 Application Curves  
6
5.7  
5.4  
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
PPHV  
VBUS  
/FLT  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
8
7
6
5
4
3
0
200  
400  
600  
800  
1000 1200 1400 1600 1800 2000  
Time (ms)  
D015  
18. VBUS OVP Response with 6-V Threshold  
22  
版权 © 2019, Texas Instruments Incorporated  
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
9 Power Supply Recommendations  
The device has a single input supply, VIN. A 1-uF or higher ceramic bypass capacitor between VIN and GND is  
recommended as close to the VIN as possible for local noise decoupling.  
USB Specification Revisions 2.0 and 3.1 require VBUS voltage at the connector to be between 4.75 V to 5.5 V.  
Depending on layout and routing from supply to the connector the voltage droop on VBUS has to be tightly  
controlled. Locate the input supply close to the device. For all applications, a maximum 10-μF ceramic bypass  
capacitor between VBUS and GND is recommended as close to the Type-C connector of the device as possible  
for local noise decoupling. The input power supply should be rated higher than the current limit set to avoid  
voltage droops during overcurrent and short-circuit conditions.  
版权 © 2019, Texas Instruments Incorporated  
23  
TPS66120, TPS66121  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
1. PPHV and VBUS traces must be as short and wide as possible to accommodate for high currents.  
2. A ceramic 4.7 uF (X7R/X5R) 10-V rated capacitor is placed as close as possible to the VLDO terminal of the  
TPS6612x.  
10.2 Layout Example  
19. Layout Example  
24  
版权 © 2019, Texas Instruments Incorporated  
TPS66120, TPS66121  
www.ti.com.cn  
ZHCSK61B AUGUST 2019REVISED DECEMBER 2019  
11 器件和文档支持  
11.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
5. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
TPS66120  
TPS66121  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
25  
PACKAGE OUTLINE  
YBG0028  
DSBGA - 0.5 mm max height  
SCALE 5.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
C
0.5 MAX  
SEATING PLANE  
BALL TYP  
0.20  
0.14  
0.05 C  
1.2 TYP  
SYMM  
G
F
E
SYMM  
2.4  
TYP  
D
C
D: Max = 2.796 mm, Min =2.736 mm  
E: Max = 1.596 mm, Min =1.535 mm  
B
A
0.4 TYP  
0.27  
2
3
4
1
28X  
0.23  
0.015  
C A B  
0.4 TYP  
4224767/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YBG0028  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
4
28X ( 0.23)  
1
2
A
(0.4) TYP  
B
C
SYMM  
D
E
F
G
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
0.05 MAX  
METAL UNDER  
SOLDER MASK  
(
0.23)  
METAL  
(
0.23)  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4224767/A 01/2019  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SNVA009 (www.ti.com/lit/snva009).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YBG0028  
DSBGA - 0.5 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.4) TYP  
3
28X ( 0.25)  
(0.4) TYP  
(R0.05) TYP  
4
2
1
A
B
C
METAL  
TYP  
SYMM  
D
E
F
G
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE: 30X  
4224767/A 01/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS66121YBGR

适用于具有 5V 无电电池 LDO 灌电流的 USB-C/PD 高压电源开关 | YBG | 28 | -10 to 85
TI

TPS6734

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY
TI

TPS6734I

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY
TI

TPS6734ID

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY
TI

TPS6734IDG4

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY
TI

TPS6734IDR

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY
TI

TPS6734IDRG4

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY
TI

TPS6734IP

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY
TI

TPS6734IPE4

FIXED 12-V 120-mA BOOST-CONVERTER SUPPLY
TI

TPS6735

FIXED NEGATIVE 5-V 200-mA INVERTING DC/DC CONVERTER
TI

TPS6735D

FIXED NEGATIVE 5-V 200-mA INVERTING DC/DC CONVERTER
TI

TPS6735ID

固定负 5V 200MA 反向直流/直流转换器 | D | 8 | -40 to 85
TI