TPS71025P [TI]

LOW-DROPOUT VOLTAGE REGULATOR; 低压差稳压器
TPS71025P
型号: TPS71025P
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LOW-DROPOUT VOLTAGE REGULATOR
低压差稳压器

稳压器
文件: 总20页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
D OR P PACKAGE  
(TOP VIEW)  
2.5-V Fixed-Output Regulator  
Very Low-Dropout (LDO) Voltage . . . 57 mV  
GND  
EN  
IN  
NC  
1
2
3
4
8
7
6
5
Typical at I = 100 mA  
O
SENSE  
OUT  
OUT  
Very Low Quiescent Current, Independent  
of Load . . . 292 µA Typ  
IN  
Extremely Low Sleep-State Current,  
0.5 µA Max  
2% Tolerance Over Specified Conditions  
Output Current Range . . . 0 mA to 500 mA  
PW PACKAGE  
(TOP VIEW)  
Available in Space Saving 8-Pin SOIC and  
20-Pin TSSOP Packages  
GND  
GND  
GND  
NC  
NC  
EN  
1
2
3
4
5
6
7
8
9
10  
20 NC  
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
0°C to 125°C Operating Junction  
Temperature Range  
NC  
NC  
NC  
description  
SENSE  
OUT  
OUT  
NC  
NC  
IN  
The TPS71025 low-dropout regulator offers an  
order of magnitude reduction in both dropout  
voltage and quiescent current over conventional  
LDO performance. The improvement results from  
replacing the typical pnp pass transistor with a  
PMOS device.  
IN  
IN  
NC  
NC – No internal connection  
Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (maximum of 95 mV  
at an output current of 100 mA) and is directly proportional to the output current (see Figure 1). Additionally,  
since the PMOS pass element is a voltage-driven device, the quiescent current is very low and remains  
independent of output loading (typically 292 µA over the full range of output current, 0 mA to 500 mA). These  
two key specifications yield a significant improvement in operating life for battery-powered systems. The  
TPS71025 also features a sleep mode; applying a TTL high signal to EN (enable) shuts down the regulator,  
reducing the quiescent current to 0.5 µA maximum at T = 25°C.  
J
AVAILABLE OPTIONS  
OUTPUT VOLTAGE  
PACKAGED DEVICES  
(V)  
CHIP FORM  
(Y)  
T
J
SMALL OUTLINE  
(D)  
PLASTIC DIP  
(P)  
TSSOP  
(PW)  
MIN  
TYP  
2.5  
MAX  
0°C to 125°C  
2.45  
2.55  
TPS71025D  
TPS71025P  
TPS71025PWLE  
TPS71025Y  
The D package is availabe taped and reeled. Add R suffix to device type (e.g., TPS71025DR). The PW package is only available left-end taped  
and reeled and is indicated by the LE suffix on the device type.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 1997, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
0.5  
T
A
= 25°C  
0.4  
0.3  
0.2  
0.1  
0
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
– Output Current – A  
I
O
Figure 1. Dropout Voltage Versus Output Current  
functional block diagram  
IN  
EN  
_
+
OUT  
V
ref  
= 1.182 V  
SENSE  
260 kΩ  
233 kΩ  
GND  
Switch positions are shown with EN low (active).  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
Terminal Functions  
TERMINAL  
NO.  
DESCRIPTION  
NAME  
EN  
D or P  
PW  
6
2
1
Enable input. Logic low enables output  
Ground  
GND  
IN  
1–3  
8–10  
13, 14  
15  
3, 4  
5, 6  
7
Input supply voltage  
Output voltage  
OUT  
SENSE  
Output voltage sense input  
TPS71025Y chip information  
These chips, when properly assembled, display characteristics similar to those of the TPS71025. Thermal  
compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chips may be  
mounted with conductive epoxy or a gold-silicon preform.  
BONDING PAD ASSIGNMENTS  
(3)  
(2)  
(5)  
(4)  
IN  
SENSE  
OUT  
(4)  
(5)  
TPS71025  
EN  
(1)  
GND  
CHIP THICKNESS: 15 MILS TYPICAL  
80  
BONDING PADS: 4 × 4 MILS MINIMUM  
T max = 150°C  
J
TOLERANCES ARE ±10%.  
ALL DIMENSIONS ARE IN MILS.  
NOTE A: For most applications, OUT and SENSE should  
betiedtogetherascloseaspossibletothedevice;  
for other implementations, refer to SENSE-pin  
connection discussion in the Application  
Information section of this data sheet.  
(3)  
(2)  
(1)  
92  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Input voltage range, V , EN (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 11 V  
I
Continuous output current, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 A  
O
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Tables 1 and 2  
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 150°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to GND  
DISSIPATION RATING TABLE 1 – FREE-AIR TEMPERATURE  
T
25°C DERATING FACTOR = 70°C  
T
T = 125°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
D
P
725 mW  
5.8 mW/°C  
9.4 mW/°C  
5.6 mW/°C  
464 mW  
752 mW  
448 mW  
145 mW  
235 mW  
140 mW  
1175 mW  
PW  
700 mW  
DISSIPATION RATING TABLE 2 – CASE TEMPERATURE  
T
25°C DERATING FACTOR = 70°C  
T
T = 125°C  
C
C
C
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
C
D
P
2188 mW  
17.5 mW/°C  
21.9 mW/°C  
32.2 mW/°C  
1400 mW  
1752 mW  
2576 mW  
438 mW  
548 mW  
805 mW  
2738 mW  
PW  
4025 mW  
Dissipation rating tables and figures are provided for maintenance of junction temperature at or below  
absolute maximum temperature of 150°C. For guidelines on maintaining junction temperature within  
recommended operating range, see the Thermal Information section.  
recommended operating conditions  
MIN  
2.97  
2
MAX  
UNIT  
V
Input voltage, V  
10  
I
High-level input voltage at EN, V  
V
IH  
Low-level input voltage at EN, V  
0
0.5  
500  
125  
V
IL  
Output current range, I  
0
mA  
°C  
O
Operating virtual junction temperature range, T  
0
J
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
electrical characteristics over recommended operating junction temperature range, V  
= 3.5 V,  
I(IN)  
I = 10 mA, EN = 0 V, C = 4.7 µF/CSR = 1 , SENSE shorted to OUT (unless otherwise noted)  
O
o
PARAMETER  
MIN  
TYP  
MAX  
T
J
UNIT  
TEST CONDITIONS  
25°C  
0°C to 125°C  
25°C  
2.5  
Output voltage  
3.5 V V 10 V  
V
I
2.45  
2.55  
7.5  
10  
5.7  
57  
I
O
I
O
I
O
= 10 mA,  
V = 2.45 V  
I
0°C to 125°C  
25°C  
95  
Dropout voltage  
= 100 mA,  
= 500 mA,  
V = 2.45 V  
I
mV  
0°C to 125°C  
25°C  
105  
450  
500  
0.9  
1
330  
0.66  
V = 2.45 V  
I
0°C to 125°C  
25°C  
Pass-element series resistance  
Input regulation  
0°C to 125°C  
25°C  
7
12.7  
18  
23  
V = 3.5 V to 10 V,  
I
mV  
mV  
mV  
50 µA I 500 mA  
0°C to 125°C  
25°C  
29  
O
38  
I
= 5 mA to 500 mA,  
O
3.5 V V 10 V  
0°C to 125°C  
25°C  
75  
I
Output regulation  
Ripple rejection  
24  
53  
51  
60  
I
= 50 µA to 500 mA,  
O
3.5 V V 10 V  
0°C to 125°C  
25°C  
120  
I
43  
40  
39  
36  
f = 120 Hz,  
I
I
= 50 µA  
O
0°C to 125°C  
25°C  
dB  
f = 120 Hz,  
f = 120 Hz  
= 500 mA  
O
0°C to 125°C  
25°C  
Output noise-spectral density  
Output noise voltage  
2
274  
228  
159  
292  
µV/Hz  
µVrms  
25°C  
25°C  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
o
o
o
10 Hz f 100 kHz,  
CSR = 1 Ω  
25°C  
25°C  
390  
540  
475  
1900  
2
EN 0.5 V,  
Quiescent current (active mode)  
Supply current (standby mode)  
Output current limit  
µA  
nA  
A
0 mA I 500 mA  
0°C to 125°C  
25°C  
O
18  
1.07  
EN = V ,  
2.7 V V 10 V  
I
I
0°C to 125°C  
25°C  
V
O
= 0,  
V = 10 V  
I
0°C to 125°C  
25°C  
2
0.223  
0.5  
1
Pass-element leakage current in standby  
mode  
EN = V ,  
2.7 V V 10 V  
µA  
I
I
0°C to 125°C  
0°C to 125°C  
Output voltage temperature coefficient  
Thermal shutdown junction temperature  
61  
75 ppm/°C  
°C  
165  
2.5 V V 6 V  
25°C  
2
I
Logic high input voltage (standby mode), EN  
V
6 V V 10 V  
0°C to 125°C  
25°C  
2.7  
I
0.5  
V
Logic low input voltage (active mode), EN  
Hysteresis voltage, EN  
2.7 V V 10 V  
I
0°C to 125°C  
0°C to 125°C  
25°C  
0.5  
50  
2
mV  
0.5  
0.5  
0.5  
µA  
0.5  
Input current, EN  
0 V V 10 V  
I
0°C to 125°C  
25°C  
2.5  
V
Input voltage, minimum for active pass  
element  
0°C to 125°C  
2.5  
CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor, any  
series resistance added externally, and PWB trace resistance to C .  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
o
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
electrical characteristics at T = 25°C, V  
SENSE shorted to OUT (unless otherwise noted)  
= 3.5 V, I = 10 mA, EN = 0 V, C = 4.7 µF/CSR = 1 ,  
J
I(IN)  
O
o
TPS71025Y  
PARAMETER  
UNIT  
TEST CONDITIONS  
MIN  
TYP  
2.5  
5.7  
57  
MAX  
Output voltage  
Dropout voltage  
3.5 V V 10 V  
V
I
I
I
I
= 10 mA,  
= 100 mA,  
= 500 mA,  
V = 2.45 V  
I
O
O
O
V = 2.45 V  
I
mV  
V = 2.45 V  
330  
0.66  
7
I
Pass-element series resistance  
Input regulation  
V = 3.5 V to 10 V  
mV  
mV  
mV  
I
I
O
I
O
= 5 mA to 500 mA  
18  
Output regulation  
= 50 µA to 500 mA  
24  
f = 120 Hz,  
f = 120 Hz,  
f = 120 Hz  
I
I
= 50 µA  
53  
O
Ripple rejection  
dB  
= 500 mA  
51  
O
Output noise-spectral density  
2
µV/Hz  
274  
228  
159  
C
C
C
= 4.7 µF  
= 10 µF  
= 100 µF  
o
o
o
10 Hz f 100 kHz,  
CSR = 1 Ω  
Output noise voltage  
µVrms  
EN = 0 V,  
Quiescent current (active mode)  
292  
µA  
0 mA I 500 mA  
O
Supply current (standby mode)  
EN = V ,  
2.7 V V 10 V  
18  
1.07  
0.223  
61  
nA  
A
I
I
Output current limit  
V
O
= 0,  
V = 10 V  
I
Pass-element leakage current in standby mode  
Output voltage temperature coefficient  
Thermal shutdown junction temperature  
EN = V ,  
2.7 V V 10 V  
µA  
I
I
ppm/°C  
°C  
165  
2.5 V V 6 V  
2
I
V
Logic high input voltage (standby mode), EN  
6 V V 10 V  
2.7  
I
Logic low input voltage (active mode), EN  
Hysteresis voltage, EN  
2.7 V V 10 V  
0.5  
V
mV  
µA  
V
I
50  
0
Input current, EN  
0 V V 10 V  
I
Input voltage, minimum for active pass element  
2
CSR (compensation series resistance) refers to the total series resistance, including the equivalent series resistance (ESR) of the capacitor ,  
any series resistance added externally, and PWB trace resistance to C .  
Pulse-testing techniques are used to maintain virtual junction temperature as close as possible to ambient temperature; thermal effects must  
be taken into account separately.  
o
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
TYPICAL CHARACTERISTICS  
OUTPUT VOLTAGE  
vs  
DROPOUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2.55  
2.54  
2.53  
2.52  
2.51  
2.5  
0.4  
0.35  
0.3  
V = 3.5 V  
I
V = 2.45 V  
I
I
O
= 500 mA  
0.25  
0.2  
I
O
= 10 mA  
2.49  
2.48  
2.47  
0.15  
I
O
= 500 mA  
0.1  
I
O
= 100 mA  
0.05  
0
2.46  
2.45  
I
= 10 mA  
75  
O
0
25  
T
50  
75  
100  
125  
0
25  
T
50  
100  
125  
– Free-Air Temperature – °C  
– Free-Air Temperature – °C  
A
A
Figure 2  
Figure 3  
OUTPUT VOLTAGE  
vs  
FREE-AIR TEMPERATURE  
OUTPUT VOLTAGE  
vs  
INPUT VOLTAGE  
2.55  
2.54  
2.53  
2.52  
2.55  
2.54  
I
O
= 5 mA  
T
= 25°C  
= 500 mA  
A
I
O
2.53  
2.52  
2.51  
2.5  
2.51  
2.5  
2.49  
2.48  
2.49  
2.48  
2.47  
2.47  
2.46  
2.45  
2.46  
2.45  
0
25  
T
A
50  
75  
100  
125  
3.5  
4
4.5 5 5.5  
6
6.5  
7
7.5  
8
8.5 9 9.5 10  
– Free-Air Temperature – °C  
V – Input Voltage – V  
I
Figure 4  
Figure 5  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
TYPICAL CHARACTERISTICS  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE  
vs  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
2.55  
2.54  
2.53  
100  
V = 3.5 V  
I
No Input Capacitance  
C
= 4.7 µF  
o
No Added Ceramic Capacitance  
= 25°C  
T
A
2.52  
2.51  
2.5  
Region of Instability  
10  
V = 10 V  
I
2.49  
2.48  
2.47  
1
V = 3.5 V  
I
2.46  
2.45  
Region of Instability  
0.1  
0
100  
200  
300  
400  
500  
0
50 100 150 200 250 300 350 400 450 500  
I
O
– Output Current – mA  
I
O
– Output Current – mA  
Figure 7  
Figure 6  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE  
vs  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE  
vs  
ADDED CERAMIC CAPACITANCE  
OUTPUT CURRENT  
100  
100  
V = 3.5 V  
I
No Input Capacitance  
V = 3.5 V  
I
No Input Capacitance  
I
C
T
= 100 mA  
C
= 4.7 µF + 0.5 µF of  
O
o
= 4.7 µF  
= 25°C  
Ceramic Capacitance  
= 25°C  
o
T
A
A
10  
10  
Region of Instability  
Region of Instability  
1
1
Region of Instability  
Region of Instability  
50 100 150 200 250 300 350 400 450 500  
0.1  
0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Added Ceramic Capacitance – µF  
Figure 9  
1
0
I
O
– Output Current – mA  
Figure 8  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
TYPICAL CHARACTERISTICS  
TYPICAL REGIONS OF STABILITY  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE  
vs  
COMPENSATION SERIES RESISTANCE  
vs  
ADDED CERAMIC CAPACITANCE  
OUTPUT CURRENT  
100  
100  
V = 3.5 V  
I
Region of Instability  
V = 3.5 V  
I
No Input Capacitance  
No Input Capacitance  
C
= 10 µF  
o
I
C
= 500 mA  
O
No Ceramic Capacitance  
= 25°C  
= 4.7 µF  
= 25°C  
o
T
A
T
A
10  
10  
Region of Instability  
1
1
Region of Instability  
0.1  
0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
0
50 100 150 200 250 300 350 400 450 500  
Added Ceramic Capacitance – µF  
I
O
– Output Current – mA  
Figure 10  
Figure 11  
TYPICAL REGIONS OF STABILITY  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE  
COMPENSATION SERIES RESISTANCE  
vs  
vs  
OUTPUT CURRENT  
ADDED CERAMIC CAPACITANCE  
100  
100  
V = 3.5 V  
I
No Input Capacitance  
V = 3.5 V  
I
No Input Capacitance  
C
= 10 µF + 0.5 µF of  
C
I
O
= 10 µF  
= 100 mA  
T = 25°C  
A
o
o
Added Ceramic Capacitance  
= 25°C  
T
A
10  
10  
Region of Instability  
Region of Instability  
1
1
0.1  
0.1  
0
50 100 150 200 250 300 350 400 450 500  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
Added Ceramic Capacitance – µF  
Figure 13  
1
I
O
– Output Current – mA  
Figure 12  
CSR values below 0.1 are not recommended.  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
TYPICAL CHARACTERISTICS  
TYPICAL REGIONS OF STABILITY  
COMPENSATION SERIES RESISTANCE  
vs  
ADDED CERAMIC CAPACITANCE  
100  
V = 3.5 V  
I
No Input Capacitance  
C
= 10 µF  
= 500 mA  
= 25°C  
o
I
T
O
A
10  
Region of Instability  
1
0.1  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
Added Ceramic Capacitance – µF  
CSR values below 0.1 are not recommended.  
Figure 14  
To Load  
IN  
V
I
OUT  
+
SENSE  
GND  
C
o
C
cer  
(see Note A)  
R
EN  
L
CSR  
NOTE A: Ceramic capacitor  
Figure 15. Test Circuit for Typical Regions of Stability (Figures 7 through 14)  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
THERMAL INFORMATION  
In response to system-miniaturization trends, integrated circuits are being offered in low-profile and fine-pitch  
surface-mount packages. Implementation of many of today’s high-performance devices in these packages  
requires special attention to power dissipation. Many system-dependent issues such as thermal coupling,  
airflow, added heat sinks and convection surfaces, and the presence of other heat-generating components  
affect the power-dissipation limits of a given component.  
Three basic approaches for enhancing thermal performance are illustrated in this discussion:  
Improving the power-dissipation capability of the PWB design  
Improving the thermal coupling of the component to the PWB  
Introducing airflow in the system  
Figure 16 is an example of a thermally enhanced PWB layout for the 20-lead TSSOP package. This layout  
involves adding copper on the PWB to conduct heat away from the device. The R  
for this component/board  
θJA  
system is illustrated in Figure 17. The family of curves illustrates the effect of increasing the size of the  
copper-heat-sink surface area. The PWB is a standard FR4 board (L × W × H = 3.2 inch × 3.2 inch × 0.062 inch);  
the board traces and heat sink area are 1-oz (per square foot) copper.  
Copper Heat Sink  
1 oz Copper  
Figure 16. Thermally Enhanced PWB Layout (Not to Scale) for the 20-Pin TSSOP  
Figure 18 shows the thermal resistance for the same system with the addition of a thermally conductive  
compound between the body of the TSSOP package and the PWB copper routed directly beneath the device.  
The thermal conductivity for the compound used in this analysis is 0.815 W/m × °C.  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
THERMAL INFORMATION  
THERMAL RESISTANCE, JUNCTION-TO-AMBIENT  
THERMAL RESISTANCE, JUNCTION-TO-AMBIENT  
vs  
vs  
AIR FLOW  
AIR FLOW  
190  
190  
Component/Board System  
Component/Board System  
20-Lead TSSOP  
Includes Thermally Conductive  
Compound Between Body and Board  
20-Lead TSSOP  
170  
170  
2
0 cm  
2
1 cm  
150  
150  
130  
110  
90  
2
2 cm  
2
0 cm  
130  
110  
90  
2
8 cm  
2
4 cm  
2
2 cm  
2
1 cm  
2
4 cm  
2
8 cm  
70  
70  
50  
50  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Air Flow – ft/min  
Air Flow – ft/min  
Figure 17  
Figure 18  
Using these figures to determine the system R  
calculated with the equation:  
allows the maximum power-dissipation P  
limit to be  
θJA  
D(max)  
T
T
J(max)  
A
P
D(max)  
R
JA(system)  
Where  
T
is the maximum allowable junction temperature (i.e., 150°C absolute maximum or  
J(max)  
125°C maximum recommended operating temperature for specified operation).  
This limit should then be applied to the internal power dissipated by the TPS71025 regulator. The equation for  
calculating total internal power dissipation of the device is:  
P
V
V
I
V
I
D(total)  
I
O
O
I
Q
Because the quiescent current is very low, the second term is negligible, further simplifying the equation to:  
P
V
V
I
D(total)  
I
O
O
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
THERMAL INFORMATION  
For a 20-lead TSSOP/FR4 board system with thermally conductive compound between the board and the  
2
device body, where T = 55°C, airflow = 100 ft/min, and copper heat sink area = 1 cm , the maximum  
A
power-dissipation limit can be calculated. As indicated in Figure 18, the system R  
maximum power-dissipation limit is:  
is 94°C/W; therefore, the  
θJA  
T
T
J(max)  
A
°
°
125 C 55 C  
P
745 mW  
D(max)  
°
R
94 C W  
JA(system)  
IfthesystemimplementsaTPS71025regulatorwhereV =3.3VandI =385mA, theinternalpowerdissipation  
I
O
is:  
P
V
V
I
(3.3 2.5)  
0.385  
308 mW  
D(total)  
I
O
O
Comparing P  
with P  
reveals that the power dissipation in this example does not exceed the  
D(total)  
D(max)  
maximum limit. When it does, one of two corrective actions can be taken. The power-dissipation limit can be  
raisedbyincreasingtheairflowortheheat-sinkarea. Alternatively, theinternalpowerdissipationoftheregulator  
can be lowered by reducing the input voltage or the load current. In either case, the above calculations should  
be repeated with the new system parameters.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
APPLICATION INFORMATION  
TPS71025  
8
V
IN  
IN  
IN  
EN  
I
15  
14  
13  
9
SENSE  
OUT  
10  
V
O
C1  
0.1 µF  
50 V  
6
OUT  
+
C
o
10 µF  
GND  
CSR  
1
2
3
Capacitor selection is nontrivial. See external capacitor requirements section.  
Figure 19. Typical Application Circuit  
The TPS71025 low-dropout (LDO) regulator overcomes many of the shortcomings of earlier-generation LDOs,  
while adding features such as a power-saving shutdown mode.  
device operation  
The TPS71025, unlike many other LDOs, features very low quiescent current that remains virtually constant  
even with varying loads. Conventional LDO regulators use a pnp-pass element, the base current of which is  
directly proportional to the load current through the regulator (I = I /β). Examination of the data sheets reveals  
B
C
that those devices are typically specified under near no-load conditions; actual operating currents are much  
higher as evidenced by typical quiescent current versus load current curves. The TPS71025 uses a PMOS  
transistor to pass current; because the gate of the PMOS element is voltage driven, operating currents are low  
and stable over the full load range. The TPS71025 specifications reflect actual performance under load.  
Another pitfall associated with the pnp-pass element is its tendency to saturate when the device goes into  
dropout. The resulting drop in β forces an increase in I to maintain the load. During power up, this translates  
B
to large start-up currents. Systems with limited supply current may fail to start up. In battery-powered systems,  
it means rapid battery discharge when the voltage decays below the minimum required for regulation. The  
TPS71025 quiescent current remains low even when the regulator drops out, eliminating both problems.  
The TPS71025 also features a shutdown mode that places the output in the high-impedance state (essentially  
equal to the feedback-divider resistance) and reduces quiescent current to under 2 µA. If the shutdown feature  
is not used, EN should be tied to ground. Response to an enable transition is quick; regulated output voltage  
is reestablished in typically 120 µs.  
minimum load requirements  
The TPS71025 family is stable even at zero load; no minimum load is required for operation.  
SENSE-pin connection  
The SENSE pin must be connected to the regulator output for proper functioning of the regulator. Normally, this  
connection should be as short as possible; however, the connection can be made near a critical circuit (remote  
sense) to improve performance at that point. Internally, SENSE connects to a high-impedance wide-bandwidth  
amplifier through a resistor-divider network, and noise pickup feeds through to the regulator output. Routing the  
SENSE connection to minimize/avoid noise pickup is essential. Adding an RC network between SENSE and  
OUT to filter noise is not recommended because it can cause the regulator to oscillate.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
APPLICATION INFORMATION  
external capacitor requirements  
An input capacitor is not required; however, a ceramic bypass capacitor (0.047 pF to 0.1 µF) improves load  
transientresponseandnoiserejectioniftheTPS71025islocatedmorethanafewinchesfromthepowersupply.  
A higher-capacitance electrolytic capacitor may be necessary if large (hundreds of milliamps) load transients  
with fast rise times are anticipated.  
As with most LDO regulators, the TPS71025 requires an output capacitor for stability. A low-ESR 10-µF  
solid-tantalum capacitor connected from the regulator output to ground is sufficient to ensure stability over the  
full load range (see Figure 11). Adding high-frequency ceramic or film capacitors (such as power-supply bypass  
capacitors for digital or analog ICs) can cause the regulator to become unstable unless the ESR of the tantalum  
capacitor is less than 1.2 over temperature. Capacitors with published ESR specifications such as the  
AVX TPSD106K035R0300 and the Sprague 593D106X0035D2W work well because the maximum ESR at  
25°C is 300 m(typically, the ESR in solid-tantalum capacitors increases by a factor of 2 or less when the  
temperature drops from 25°C to 40°C). Where component height and/or mounting area is a problem,  
physically smaller, 10-µF devices can be screened for ESR. Figure 7 through Figure 14 show the stable regions  
of operation using different values of output capacitance with various values of ceramic load capacitance.  
In applications with little or no high-frequency bypass capacitance (< 0.2 µF), the output capacitance can be  
reduced to 4.7 µF, provided ESR is maintained between 0.7 and 2.5 . Because minimum capacitor ESR is  
seldom if ever specified, it may be necessary to add a 0.5-to 1-resistor in series with the capacitor and limit  
ESR to 1.5 maximum. As shown in the ESR graphs (Figure 7 through Figure 14), minimum ESR is not a  
problem when using 10-µF or larger output capacitors.  
Below is a partial listing of surface-mount capacitors usable with the TPS71025. This information (along with  
the ESR graphs, Figure 7 through Figure 14) is included to assist in selection of suitable capacitance for the  
application. When necessary to achieve low height requirements along with high output current and/or high  
ceramic load capacitance, several higher ESR capacitors can be used in parallel to meet the guidelines above.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
APPLICATION INFORMATION  
external capacitor requirements (continued)  
All load and temperature conditions with up to 1 µF of added ceramic load capacitance:  
PART NO.  
MFR.  
VALUE  
MAX ESR  
0.5  
SIZE (H × L × W)  
2.8 × 6 × 3.2  
T421C226M010AS  
593D156X0025D2W  
593D106X0035D2W  
Kemet  
22 µF, 10 V  
Sprague 15 µF, 25 V  
Sprague 10 µF, 35 V  
0.3  
2.8 × 7.3 × 4.3  
2.8 × 7.3 × 4.3  
2.8 × 7.3 × 4.3  
0.3  
TPSD106M035R0300 AVX  
10 µF, 35 V  
0.3  
Load < 200 mA, ceramic load capacitance < 0.2 µF, full temperature range:  
PART NO.  
MFR.  
VALUE  
MAX ESR  
SIZE (H × L × W)  
1.2 × 7.2 × 6  
592D156X0020R2T  
595D156X0025C2T  
595D106X0025C2T  
293D226X0016D2W  
Sprague 15 µF, 20 V  
Sprague 15 µF, 25 V  
Sprague 10 µF, 25 V  
Sprague 22 µF, 16 V  
1.1  
1
2.5 × 7.1 × 3.2  
2.5 × 7.1 × 3.2  
2.8 × 7.3 × 4.3  
1.2  
1.1  
Load < 100 mA, ceramic load capacitance < 0.2 µF, full temperature range:  
PART NO.  
MFR.  
VALUE  
MAX ESR  
1.5  
SIZE (H × L × W)  
1.3 × 3.5 × 2.7  
1.3 × 7 × 2.7  
195D106X06R3V2T  
195D106X0016X2T  
595D156X0016B2T  
695D226X0015F2T  
695D156X0020F2T  
695D106X0035G2T  
Sprague 10 µF, 6.3 V  
Sprague 10 µF, 16 V  
Sprague 15 µF, 16 V  
Sprague 22 µF, 15 V  
Sprague 15 µF, 20 V  
Sprague 10 µF, 35 V  
1.5  
1.8  
1.6 × 3.8 × 2.6  
1.8 × 6.5 × 3.4  
1.8 × 6.5 × 3.4  
2.5 × 7.6 × 2.5  
1.4  
1.5  
1.3  
Size is in mm. ESR is maximum resistance at 100 kHz and T = 25°C. Listings are sorted by height.  
A
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
PINS **  
0.050 (1,27)  
8
14  
16  
DIM  
0.020 (0,51)  
0.014 (0,35)  
0.010 (0,25)  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
M
A MAX  
14  
8
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
7
A
0.010 (0,25)  
0°8°  
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
MECHANICAL DATA  
P (R-PDIP-T8)  
PLASTIC DUAL-IN-LINE PACKAGE  
0.400 (10,60)  
0.355 (9,02)  
8
5
0.260 (6,60)  
0.240 (6,10)  
1
4
0.070 (1,78) MAX  
0.310 (7,87)  
0.290 (7,37)  
0.020 (0,51) MIN  
0.200 (5,08) MAX  
Seating Plane  
0.125 (3,18) MIN  
0.100 (2,54)  
0°15°  
0.021 (0,53)  
0.015 (0,38)  
0.010 (0,25)  
M
0.010 (0,25) NOM  
4040082/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-001  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS71025  
LOW-DROPOUT VOLTAGE REGULATOR  
SLVS162A – MAY 1997 – REVISED MAY 1998  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0,30  
0,19  
0,65  
M
0,10  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
0,75  
A
0,50  
Seating Plane  
0,10  
1,20 MAX  
0,05 MIN  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/E 08/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF  
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL  
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR  
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER  
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO  
BE FULLY AT THE CUSTOMER’S RISK.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 1998, Texas Instruments Incorporated  

相关型号:

TPS71025PW

LOW-DROPOUT VOLTAGE REGULATOR
TI

TPS71025PWLE

Low-Dropout (LDO) Voltage Regulator 20-TSSOP 0 to 125
TI

TPS71025PWR

Low-Dropout (LDO) Voltage Regulator 20-TSSOP 0 to 125
TI

TPS71025Y

LOW-DROPOUT VOLTAGE REGULATOR
TI

TPS71033DBVR

IC,VOLT REGULATOR,FIXED,+3.3V,BICMOS,TSOP,5PIN,PLASTIC
TI

TPS71157YZR

IC VREG DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PBGA8, CSP-8, Fixed Positive Multiple Output LDO Regulator
TI

TPS71157YZT

DUAL OUTPUT, FIXED POSITIVE LDO REGULATOR, PBGA8, CSP-8
TI

TPS712

具有使能功能的 250mA、双通道低压降稳压器
TI

TPS71202

Dual 250 mA Output, UltraLow Noise, High PSRR, Low-Dropout Linear Regulator
TI

TPS71202-EP

DUAL, 250-mA OUTPUT, ULTRA-LOW NOISE, HIGH PSRR, LOW-DROPOUT LINEAR REGULATOR
TI

TPS71202DRC

DUAL OUTPUT, ADJUSTABLE POSITIVE LDO REGULATOR, PDSO10, 3 X 3 MM, SON-10
TI

TPS71202DRCR

暂无描述
TI