TPS71733QDRVRQ1 [TI]

具有使能功能的汽车类、150mA、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125;
TPS71733QDRVRQ1
型号: TPS71733QDRVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类、150mA、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

信息通信管理 光电二极管 输出元件 稳压器 调节器
文件: 总40页 (文件大小:2455K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
TPS717-Q1  
Low-Noise, High-Bandwidth PSRR, Low-Dropout, 150-mA Linear Regulator  
1 Features  
3 Description  
The TPS717-Q1 family of low-dropout (LDO), low-  
power linear regulators offers very high power-supply  
rejection (PSRR) and maintains very low 45-μA  
ground current in an ultra-small, five-pin SOT  
package. The family uses an advanced BiCMOS  
process and a PMOSFET pass device to achieve fast  
start-up, very low noise, excellent transient response,  
and excellent PSRR performance. The TPS717-Q1 is  
stable with a 1-μF ceramic output capacitor and uses  
a precision voltage reference and feedback loop to  
achieve a worst-case accuracy of 3% over all load,  
line, process, and temperature variations. The device  
family is fully specified from TJ, TA = –40°C to 125°C  
and is offered in a small SOT (SC70-5) package, a  
2-mm × 2-mm WSON-6 package with a thermal pad,  
and a 1.5-mm × 1.5-mm WSON-6 package, which  
are ideal for small form-factor portable equipment  
(such as wireless handsets and PDAs). The TPS717-  
Q1 family of LDOs is qualified for AEC-Q100 grade 1.  
1
AEC-Q100 Qualified with the Following Results:  
Device Temperature Grade 1: –40°C to 125°C  
Ambient Operating Temperature Range  
Device HBM ESD Classification Level 2  
Device HBM ESD Classification Level C4B  
Input Voltage: 2.5 V to 6.5 V  
Available in Multiple Output Versions:  
Fixed Output with Voltages from 0.9 V to 5 V  
Adjustable Output Voltage from 0.9 V to 6.2 V  
Ultra-High PSRR:  
70 dB at 1 kHz, 67 dB at 100 kHz, and 45 dB  
at 1 MHz  
Excellent Load and Line Transient Response  
Very Low Dropout: 170 mV typical at 150 mA  
Low Noise: 30 μVRMS typical (100 Hz to 100 kHz)  
Small 5-pin SOT, 2-mm × 2-mm WSON-6, and  
1.5-mm × 1.5-mm WSON-6 Packages  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
2.00 mm × 1.25 mm  
2.00 mm × 2.00 mm  
1.50 mm × 1.50 mm  
SOT (5)  
2 Applications  
TPS717-Q1  
WSON (6)  
WSON (6)  
PLLs  
VCOs  
(1) For all available packages, see the orderable addendum at  
the end of the datasheet.  
Camera Sensor Power  
Microcontroller Power  
Wireless LAN, Bluetooth®  
ADAS and Infotainment Systems  
Typical Application Circuit for Fixed-Voltage  
Versions  
PSRR vs Frequency  
80  
150 mA  
VIN  
VOUT  
IN  
OUT  
TPS717-Q1  
70  
10 mA  
1 mF  
Ceramic  
1 mF  
Ceramic  
60  
50  
40  
30  
20  
10  
0
EN  
GND  
NR  
VEN  
75 mA  
0.01 mF  
(Optional)  
COUT = 1 mF  
CNR = 10 nF  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Power-Supply Rejection Ratio (VIN - VOUT = 1 V)  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
Table of Contents  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 6  
6.5 Electrical Characteristics........................................... 7  
6.6 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagrams ..................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 15  
8
Application and Implementation ........................ 17  
8.1 Application Information............................................ 17  
8.2 Typical Application .................................................. 18  
8.3 Do's and Don'ts ...................................................... 20  
Power Supply Recommendations...................... 20  
9
10 Layout................................................................... 21  
10.1 Layout Guidelines ................................................. 21  
10.2 Layout Examples................................................... 21  
11 Device and Documentation Support ................. 23  
11.1 Device Support .................................................... 23  
11.2 Documentation Support ....................................... 23  
11.3 Community Resources.......................................... 23  
11.4 Trademarks........................................................... 24  
11.5 Electrostatic Discharge Caution............................ 24  
11.6 Glossary................................................................ 24  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 24  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision B (December 2014) to Revision C  
Page  
Moved AEC-Q100 qualification bullet to first in Features list ................................................................................................. 1  
Added TI Design .................................................................................................................................................................... 1  
Changed TPS717xx-Q1 to TPS717-Q1 throughout document ............................................................................................. 1  
Added footnote and CIN, R2, and CNR parameters to Recommended Operating Conditions table ....................................... 6  
Changed VFB parameter in Electrical Characteristics table ................................................................................................... 7  
Changed ΔVOUT(ΔIOUT) parameter typical specification in Electrical Characteristics table ..................................................... 7  
Changed units of Vn parameter in Electrical Characteristics table......................................................................................... 7  
Deleted UVLO parameter minimum specification from Electrical Characteristics table......................................................... 7  
Changed TA to TJ in x-axis of Figure 7, Figure 10, and Figure 11 ......................................................................................... 9  
Changed 40 mV/div to 40 mA/div in y-axis of Figure 28 ..................................................................................................... 12  
Added last two sentences to Undervoltage Lockout (UVLO) section .................................................................................. 15  
Changed last bulleted condition in Normal Operation section ............................................................................................ 15  
Changed TJ specification in Normal mode row of Table 1 .................................................................................................. 16  
Added last sentence to Input and Output Capacitor Requirements section......................................................................... 17  
Clarified discussion of R2 in second paragraph of Design Considerations section ............................................................. 19  
Changed first and third paragraphs of Do's and Don'ts section .......................................................................................... 20  
2
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
 
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
Changes from Revision A (August 2013) to Revision B  
Page  
Changed format to meet latest data sheet standards ............................................................................................................ 1  
Changed Features list on front page: added, deleted, and reordered several bullets .......................................................... 1  
Added ESD Ratings table and Feature Description, Device Functional Modes, Application and  
Implementation, Power Supply Recommendations, Layout, Device and Documentation Support, and Mechanical,  
Packaging, and Orderable Information sections..................................................................................................................... 1  
Added several Applications list bullets on front page ............................................................................................................ 1  
Deleted pinout drawings from front page .............................................................................................................................. 1  
Changed pin descriptions throughout Pin Functions table..................................................................................................... 4  
Added parametric measurement for ISHDN for DRV package ................................................................................................ 7  
Changed Figure 1, Figure 2, Figure 3, and Figure 4: removed legend, added call-outs for clarity ....................................... 8  
Changed title of Figure 15 and Figure 17............................................................................................................................... 9  
Changed Overview section .................................................................................................................................................. 13  
Corrected input and output symbols in operational amplifiers in Functional Block Diagrams ............................................. 13  
Changed Undervoltage Lockout (UVLO) section text: reworded for clarity.......................................................................... 15  
Deleted Reverse Current Protection section ....................................................................................................................... 17  
Changed Equation 4 ............................................................................................................................................................ 19  
Changes from Original (September 2012) to Revision A  
Page  
Changed front page to two-column format............................................................................................................................. 1  
Added part number TPS71745-Q1......................................................................................................................................... 1  
Changed C3B to C4B in Features list .................................................................................................................................... 1  
Removed Ordering Information table ..................................................................................................................................... 4  
Added Junction Temperature to Absolute Maximum Ratings table ....................................................................................... 5  
Changed C3B to C4B in Absolute Maximum Ratings table. .................................................................................................. 5  
Changed Application Information section to one-column format.......................................................................................... 18  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: TPS717-Q1  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
5 Pin Configuration and Functions  
DCK Package  
5-Pin SOT  
Top View  
DRV Package  
2-mm × 2-mm, 6-Pin WSON  
Top View  
IN  
GND  
EN  
1
2
3
5
4
OUT  
OUT  
NR/FB  
GND  
1
2
3
6
5
4
IN  
N/C(1)  
GND  
NR/FB  
EN  
DSE Package  
1.5-mm × 1.5-mm, 6-Pin WSON  
Top View  
OUT  
GND  
1
2
3
6
5
4
IN  
N/C(1)  
NR/FB  
EN  
(1) N/C = No connection  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DCK  
DRV  
DSE  
(SOT)  
(WSON)  
(WSON)  
Driving the enable pin (EN) above VEN(high) turns on the regulator. Driving  
this pin below VEN(low) puts the regulator into standby mode, thereby  
disabling the output and reducing operating current.  
EN  
FB  
3
4
4
2
4
3
I
I
Adjustable voltage version only. The voltage at this pin is fed to the error  
amplifier. A resistor divider from OUT to FB sets the output voltage when in  
regulation.  
GND  
IN  
2
1
3
6
2
6
I
Ground  
Input to the device. A 0.1-μF to 1-μF capacitor is recommended for better  
performance.  
Not connected. This pin can be tied to ground to improve thermal  
dissipation.  
N/C  
NR  
4
5
2
1
5
3
1
O
Fixed voltage versions only. An external capacitor connected to this pin  
bypasses noise generated by the internal band gap, thus lowering output  
noise.  
This pin is the regulated output voltage. A minimum capacitance of 1 μF is  
required for stability from this pin to ground.  
OUT  
5
4
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted), all voltages are with respect to GND(1)  
MIN  
MAX  
UNIT  
V
VIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
7
VFB  
VNR  
VEN  
VOUT  
IOUT  
PDISS  
TA  
3.6  
Voltage  
3.6  
VIN + 0.3 V(2)  
7
Current  
Internally limited  
See Thermal Information table  
A
Continuous total power dissipation  
Ambient temperature  
Operating junction temperature  
Storage temperature  
–40  
–55  
–55  
125  
150  
150  
°C  
°C  
°C  
TJ  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VEN absolute maximum rating is VIN + 0.3 V or 7 V, whichever is greater.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1)  
TPS717-Q1 in DCK and DSE packages  
±2000  
V
All pins  
±750  
±750  
Corner pins,  
V(ESD) Electrostatic discharge Charged device model (CDM), per AEC Q100-011 DCK (1, 3, 4, and 5)  
V
V
Corner pins,  
DSE (1, 3, 4, and 6)  
±750  
TPS717-Q1 in DRV package  
All pins  
±500  
±750  
V(ESD) Electrostatic discharge Charged device model (CDM), per AEC Q100-011  
Corner pins (1, 3, 4, and 6)  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: TPS717-Q1  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.5  
0.9  
0
NOM  
MAX  
6.5  
5
UNIT  
V
VIN  
Input voltage  
VOUT  
IOUT  
VEN  
CIN  
Output voltage  
V
Output current  
150  
VIN  
mA  
V
Enable voltage  
0
Input capacitor  
1
320  
10  
µF  
kΩ  
nF  
µF  
°C  
R2  
Lower feedback resistor  
Noise reduction capacitor  
Output capacitor  
Junction temperature  
160  
332  
CNR  
COUT  
TJ  
1(1)  
–40  
100  
125  
(1) Adjustable voltage version only. When using feedback resistors that are smaller than recommended, the minimum output capacitance  
must be greater than 5 µF.  
6.4 Thermal Information  
TPS717-Q1  
THERMAL METRIC(1)  
DCK (SOT)  
5 PINS  
279.2  
57.5  
DRV (WSON) DSE (WSON)  
UNIT  
6 PINS  
71.1  
96.5  
40.5  
2.7  
6 PINS  
190.5  
94.9  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
74.1  
149.3  
6.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.8  
ψJB  
73.1  
40.9  
10.7  
152.8  
n/a  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
6
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
 
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
6.5 Electrical Characteristics  
Over operating temperature range (TJ, TA = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.5 V, whichever is greater; IOUT  
=
0.5 mA, VEN = VIN, COUT = 1 μF, CNR = 0.01 μF, unless otherwise noted. For the adjustable version (TPS71701-Q1), VOUT  
=
2.8 V. Typical values are at TA = 25°C.  
PARAMETER  
Input voltage range(1)  
TEST CONDITIONS  
MIN  
2.5  
TYP  
MAX  
UNIT  
V
VIN  
6.5  
2%  
VFB  
Feedback pin voltage (TPS71701)  
IOUT = 5 mA  
TA = 25°C  
–2%  
0.9  
0.793  
V
TPS717-Q1  
Output voltage range  
5
VOUT  
V
TPS71701-Q1  
0.9  
6.5 – VDO  
Output accuracy (nominal)  
±2.5  
mV  
Output accuracy  
(VOUT < 1 V)  
Over VIN, IOUT  
,
VOUT + 0.5 V VIN 6.5 V,  
0 mA IOUT 150 mA  
–30  
30  
VOUT  
temperature(2)  
Output accuracy  
(VOUT 1 V)  
Over VIN, IOUT  
,
VOUT + 0.5 V VIN 6.5 V,  
0 mA IOUT 150 mA  
–3%  
3%  
temperature(2)  
VOUT(nom) + 0.5 V VIN 6.5 V,  
IOUT = 5 mA  
ΔVOUT(ΔVIN)  
ΔVOUT(ΔIOUT)  
VDO  
Line regulation(1)  
125  
70  
μV/V  
μV/mA  
mV  
Load regulation  
Dropout voltage(3)  
0 mA IOUT 150 mA  
IOUT = 150 mA  
170  
300  
(VIN = VOUT(nom) – 0.1 V)  
ILIM (fixed)  
Output current limit (fixed output)  
Output current limit (TPS71701-Q1)  
VOUT = 0.9 × VOUT(nom)  
VOUT = 0.9 × VOUT(nom)  
IOUT = 0.1 mA  
200  
200  
325  
325  
45  
575  
575  
80  
mA  
mA  
ILIM (adjustable)  
IGND  
Ground pin current  
μA  
IOUT = 150 mA  
100  
V
EN 0.4 V, 2.5 V VIN < 4.5 V,  
0.20  
0.90  
1.5  
TA = –40°C to 125°C  
VEN 0.4 V, 4.5 V VIN 6.5 V,  
ISHDN  
Shutdown current (IGND  
)
μA  
μA  
dB  
TA = –40°C to 125°C  
V
EN 0.4 V, 2.5 V VIN < 4.5 V,  
2
1
TA = –40°C to 125°C, DRV package  
IFB  
Feedback pin current (TPS71701-Q1)  
Power-supply rejection ratio  
0.02  
70  
f = 100 Hz  
f = 1 kHz  
70  
VIN = 3.8 V,  
VOUT = 2.8 V,  
IOUT = 150 mA  
PSRR  
f = 10 kHz  
67  
f = 100 kHz  
f = 1 MHz  
67  
45  
CNR = none  
CNR = 0.001 μF  
CNR = 0.01 μF  
CNR = 0.1 μF  
95 × VOUT  
25 × VOUT  
12.5 × VOUT  
11.5 × VOUT  
BW = 100 Hz to  
100 kHz,  
VIN = 3.8 V,  
VOUT = 2.8 V,  
IOUT = 10 mA  
Vn  
Output noise voltage  
μVRMS/V  
0.9 V VOUT 1.6 V,  
CNR = 0.001 μF  
VOUT = 90%  
0.700  
0.160  
VOUT(nom)  
,
tSTR  
Startup time  
ms  
V
RL = 19 Ω,  
COUT = 1 μF  
1.6 V < VOUT < VOUT(max)  
CNR = 0.01 μF  
,
VIN 5.5 V  
1.2  
1.25  
0
6.5(4)  
6.5  
0.4  
1
VEN(high)  
Enable high (enabled)  
5.5 V < VIN 6.5 V  
VEN(low)  
IEN(high)  
Enable low (shutdown)  
V
Enable pin current, enabled  
EN = 6.5 V  
0.02  
160  
140  
2.45  
150  
μA  
Shutdown, temperature increasing  
Reset, temperature decreasing  
VIN rising  
Tsd  
Thermal shutdown temperature  
°C  
Undervoltage lockout  
Hysteresis  
2.49  
V
UVLO  
VIN falling  
mV  
(1) Minimum VIN = VOUT + VDO or 2.5 V, whichever is greater.  
(2) Does not include external resistor tolerances.  
(3) VDO is not measured for devices with VOUT(nom) < 2.6 V because minimum VIN = 2.5 V.  
(4) Maximum VEN(high) = VIN + 0.3 or 6.5 V, whichever is smaller.  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: TPS717-Q1  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
6.6 Typical Characteristics  
Over operating temperature range (TJ, TA = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.5 V, whichever is greater; IOUT  
=
0.5 mA, VEN = VIN, COUT = 1 μF, CNR = 0.01 μF, unless otherwise noted. For the adjustable version (TPS71701-Q1), VOUT  
=
2.8 V. Typical values are at TA = 25°C.  
50  
40  
50  
40  
30  
30  
20  
20  
25°C  
85°C  
10  
10  
-40°C  
0
0
25°C  
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
-40°C  
125°C  
85°C  
125°C  
0
1
2
3
4
5
150  
0
50  
100  
IOUT (mA)  
IOUT (mA)  
Figure 2. Load Regulation Under Light Loads  
Figure 1. Load Regulation  
1
3
2
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
TJ = -40°C  
TJ = 25°C  
TJ = 85°C  
TJ = 125°C  
0.8  
0.6  
0.4  
1
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
2.5  
3.5  
4.5  
5.5  
6.5  
2.5  
3.5  
4.5  
5.5  
6.5  
VIN (V)  
VIN (V)  
Figure 3. Line Regulation (IOUT = 5 mA)  
Figure 4. Line Regulation (IOUT = 150 mA)  
250  
200  
150  
100  
50  
2
1.5  
1
TA = 125°C  
0.5  
0
IOUT = 5 mA  
TA = 85°C  
-0.5  
-1  
IOUT = 100 mA  
TA = 25°C  
IOUT = 150 mA  
TA = -40°C  
-1.5  
-2  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
50  
100  
150  
TJ (°C)  
IOUT (mA)  
Figure 5. Output Voltage vs Temperature  
Figure 6. Dropout Voltage vs Output Current  
8
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
 
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
Typical Characteristics (continued)  
Over operating temperature range (TJ, TA = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.5 V, whichever is greater; IOUT  
=
0.5 mA, VEN = VIN, COUT = 1 μF, CNR = 0.01 μF, unless otherwise noted. For the adjustable version (TPS71701-Q1), VOUT  
=
2.8 V. Typical values are at TA = 25°C.  
150  
120  
90  
60  
30  
0
300  
250  
200  
150  
100  
50  
VOUT = 2.8 V  
IOUT = 150 mA  
IOUT = 150 mA  
IOUT = 100 mA  
IOUT = 10 mA  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.5  
3.5  
4.5  
5.5  
6.5  
TJ (°C)  
VIN (V)  
Figure 7. Dropout Voltage vs Temperature  
Figure 8. Ground Pin Current vs Input Voltage  
150  
120  
90  
60  
30  
0
150  
120  
90  
60  
30  
0
IOUT = 150 mA  
IOUT = 100 mA  
0
50  
100  
150  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TJ (°C)  
IOUT (mA)  
Figure 9. Ground Pin Current vs Output Current  
Figure 10. Ground Pin Current vs Temperature (Enabled)  
5
4
3
2
1
0
600  
VEN = 0.4 V  
TJ = -40°C  
TJ = +25°C  
500  
400  
300  
200  
TJ = +85°C  
VIN = 4.5 V  
VIN = 6.5 V  
TJ = +125°C  
VIN = 3.3 V  
2.5  
3.5  
4.5  
5.5  
6.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
VIN (V)  
TJ (°C)  
Figure 11. Ground Pin Current vs Temperature (Disabled)  
Figure 12. Current Limit vs Input Voltage  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: TPS717-Q1  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
Typical Characteristics (continued)  
Over operating temperature range (TJ, TA = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.5 V, whichever is greater; IOUT  
=
0.5 mA, VEN = VIN, COUT = 1 μF, CNR = 0.01 μF, unless otherwise noted. For the adjustable version (TPS71701-Q1), VOUT  
=
2.8 V. Typical values are at TA = 25°C.  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
10 mA  
150 mA  
75 mA  
150 mA  
10 mA  
75 mA  
COUT = 1 mF  
COUT = 1 mF  
CNR = 10 nF  
CNR = 10 nF  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 13. Power-Supply Ripple Rejection vs Frequency  
(VIN – VOUT = 1 V)  
Figure 14. Power-Supply Ripple Rejection vs Frequency  
(VIN – VOUT = 0.5 V)  
80  
80  
10 mA  
70  
60  
50  
40  
30  
20  
10  
0
70  
10 mA  
60  
75 mA  
50  
40  
150 mA  
150 mA  
30  
20  
COUT = 10 mF  
COUT = 1 mF  
10  
CNR = 10 nF  
CNR = 10 nF  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 15. Power-Supply Ripple Rejection vs Frequency in  
Dropout Conditions (VIN – VOUT = 0.25 V)  
Figure 16. Power-Supply Ripple Rejection vs Frequency  
(VIN – VOUT = 1 V)  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
10 mA  
10 mA  
60  
50  
40  
150 mA  
30  
150 mA  
20  
COUT = 10 mF  
COUT = 10 mF  
10  
CNR = 0 nF  
CNR = 10 nF  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Frequency (Hz)  
Figure 17. Power-Supply Ripple Rejection vs Frequency in  
Dropout Conditions (VIN – VOUT = 0.25 V)  
Figure 18. Power-Supply Ripple Rejection vs Frequency  
(VIN – VOUT = 1 V)  
10  
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
 
 
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
Typical Characteristics (continued)  
Over operating temperature range (TJ, TA = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.5 V, whichever is greater; IOUT  
=
0.5 mA, VEN = VIN, COUT = 1 μF, CNR = 0.01 μF, unless otherwise noted. For the adjustable version (TPS71701-Q1), VOUT  
=
2.8 V. Typical values are at TA = 25°C.  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
1 kHz  
1 kHz  
10 kHz  
1 MHz  
10 kHz  
1 MHz  
100 kHz  
100 kHz  
IOUT = 10 mA  
COUT = 1 mF  
CNR = 10 nF  
IOUT = 75 mA  
COUT = 1 mF  
CNR = 10 nF  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
V
IN - VOUT (V)  
VIN - VOUT (V)  
Figure 19. Power-Supply Ripple Rejection vs (VIN – VOUT  
)
Figure 20. Power-Supply Ripple Rejection vs (VIN – VOUT)  
16  
80  
1 kHz  
100 kHz  
COUT = 1 mF  
CNR = 10 nF  
IOUT = 150 mA  
70  
60  
14  
12  
10  
8
IOUT = 10 mA  
10 kHz  
50  
40  
1 MHz  
30  
6
20  
4
IOUT = 150 mA  
COUT = 1 mF  
10  
2
CNR = 10 nF  
0
0
100  
1k  
10k  
100k  
0
0.5  
1
1.5  
2
2.5  
3
3.5 4  
Frequency (Hz)  
VIN - VOUT (V)  
Figure 22. Output Spectral Noise Density vs  
Output Current  
Figure 21. Power-Supply Ripple Rejection vs (VIN – VOUT  
)
16  
30  
25  
20  
15  
10  
5
IOUT = 10 mA  
IOUT = 10 mA  
14  
12  
10  
8
CNR = 10 nF  
COUT = 1 mF  
COUT = 10 mF  
COUT = 1 mF  
6
CNR = 10 nF  
CNR = 100 nF  
CNR = 0 nF  
4
CNR = 1 nF  
2
0
0
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
Figure 23. Output Spectral Noise Density vs  
Output Capacitance  
Figure 24. Output Spectral Noise Density vs  
Noise Reduction  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: TPS717-Q1  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
Typical Characteristics (continued)  
Over operating temperature range (TJ, TA = –40°C to 125°C), VIN = VOUT(nom) + 0.5 V or 2.5 V, whichever is greater; IOUT  
=
0.5 mA, VEN = VIN, COUT = 1 μF, CNR = 0.01 μF, unless otherwise noted. For the adjustable version (TPS71701-Q1), VOUT  
=
2.8 V. Typical values are at TA = 25°C.  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
300  
270  
240  
210  
180  
150  
120  
90  
IOUT = 10 mA  
VOUT = 2.8 V, CNR = 10 nF  
VOUT = 1.3 V, CNR = 1 nF  
COUT = 1 mF  
60  
30  
0
0
0
1
10  
100  
0
5
10  
15  
20  
25  
CNR (nF)  
COUT (mF)  
Figure 25. Total Output Noise vs Noise Reduction  
Figure 26. Total Output Noise vs Output Capacitance  
VIN = 3.3 V  
COUT = 1 mF  
10 mV/div  
VOUT  
COUT = 1 mF  
dVIN  
dt  
50 mV/div  
VOUT  
= 1 V/ms  
6.5 V  
150 mA  
3.3 V  
1 mA  
1 V/div  
VIN  
40 mA/div  
IOUT  
100 ms/div  
100 ms/div  
Figure 27. Line Transient Response  
Figure 28. Load Transient Response  
VOUT  
VIN  
IOUT = 150 mA  
COUT = 1 mF  
6
5
VOUT  
COUT = 10 mF  
1 V/div  
1 V/div  
4
3
2
VOUT  
1
0
6.5 V  
VIN  
0 V  
4 V/div  
50 ms/div  
50 ms/div  
Figure 30. Power-Up and Power-Down  
Figure 29. Turn-On Response  
12  
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
 
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
7 Detailed Description  
7.1 Overview  
The TPS717-Q1 family of low-dropout (LDO) regulators combines the high performance required by many RF  
and precision analog applications with ultra-low current consumption. High PSRR is provided by a high-gain,  
high-bandwidth error loop with good supply rejection with very low headroom (VIN – VOUT). Fixed voltage versions  
provide a noise reduction pin to bypass noise generated by the band-gap reference and to improve PSRR. A  
quick-start circuit fast-charges this capacitor at startup. The combination of high performance and low ground  
current also make the TPS717-Q1 family of devices an excellent choice for battery-powered applications. All  
versions have thermal and overcurrent protection. These devices are all also AEC-100 qualified for the grade 1  
temperature range.  
7.2 Functional Block Diagrams  
IN  
OUT  
2.5 mA  
Current  
Limit  
EN  
Thermal  
Shutdown  
UVLO  
Quick-Start  
VOUT > 1.6 V  
1.20-V  
Band Gap  
NR  
360 kW  
250 kW  
0.8 V  
VOUT £ 1.6 V  
640 kW  
GND  
Figure 31. Fixed Voltage Versions  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: TPS717-Q1  
 
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
Functional Block Diagrams (continued)  
IN  
OUT  
Current  
Limit  
EN  
Thermal  
Shutdown  
3.3 MW  
UVLO  
1.20-V  
Band Gap  
360 kW  
FB  
0.8 V  
250 kW  
640 kW  
GND  
Figure 32. Adjustable Voltage Version  
7.3 Feature Description  
7.3.1 Internal Current Limit  
The TPS717-Q1 internal current limit helps protect the regulator during fault conditions. During current limit, the  
output sources a fixed amount of current that is largely independent of output voltage. For reliable operation, do  
not operate the device in a current-limit state for extended periods of time.  
The PMOS pass element in the TPS717-Q1 has a built-in body diode that conducts current when the voltage at  
OUT exceeds the voltage at IN. This current is not limited, so if extended reverse voltage operation is  
anticipated, external limiting may be appropriate.  
7.3.2 Shutdown  
The enable pin (EN) is active high and compatible with standard and low voltage, TTL-CMOS levels. When  
shutdown capability is not required, EN can be connected to IN.  
7.3.3 Startup and Noise Reduction Capacitor  
Fixed voltage versions of the TPS717-Q1 use a quick-start circuit to fast-charge the noise reduction capacitor,  
CNR, if present (see Figure 31). This circuit allows the combination of very low output noise and fast start-up  
times. The NR pin is high impedance, so a low-leakage CNR capacitor must be used; most ceramic capacitors  
are appropriate in this configuration.  
Note that for fastest startup, apply VIN first, then the enable pin (EN) driven high. If EN is tied to IN, startup is  
somewhat slower; see Figure 29 in the Typical Characteristics section. The quick-start switch is closed for  
approximately 135 μs. To ensure that CNR is fully charged during the quick-start time, use a 0.01-μF or smaller  
capacitor.  
14  
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
Feature Description (continued)  
For output voltages below 1.6 V, a voltage divider on the band-gap reference voltage is employed to optimize  
output regulation performance for lower output voltages. This configuration results in an additional resistor in the  
quick-start path and combined with the noise reduction capacitor (CNR) results in slower start-up times for output  
voltages below 1.6 V.  
Equation 1 approximates the start-up time as a function of CNR for output voltages below 1.6 V:  
ms  
tSTART = 160ms + (540  
x CNRnF)ms  
nF  
(1)  
7.3.4 Undervoltage Lockout (UVLO)  
The TPS717-Q1 uses an undervoltage lockout circuit to keep the output shut off until the internal circuitry is  
operating properly. The UVLO circuit has a limited glitch immunity so undershoot transients are typically ignored  
on the input if these transients are less than 5 μs in duration. Note that a slow VIN ramp can cause the output  
voltage to rise when VIN is between 1.1 V to 1.4 V when at hot temperatures. When the input is lower than 1.4 V,  
the UVLO circuit may not have enough headroom to keep the output fully off.  
7.3.5 Minimum Load  
The TPS717-Q1 is stable with no output load. Traditional PMOS LDO regulators suffer from lower loop gain at  
very light output loads. The TPS717-Q1 employs an innovative low-current mode circuit to increase loop gain  
under very light or no-load conditions, resulting in improved output voltage regulation performance down to zero  
output current.  
7.3.6 Thermal Protection  
Thermal protection disables the output when the junction temperature rises to approximately 160°C, allowing the  
device to cool. When the junction temperature cools to approximately 140°C the output circuitry is again enabled.  
Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit can  
cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage because of  
overheating.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heatsink. For reliable operation, limit junction temperature to 125°C maximum. To estimate the margin of safety  
in a complete design (including heatsink), increase the ambient temperature until the thermal protection is  
triggered; use worst-case loads and signal conditions. For good reliability, trigger thermal protection at least 35°C  
above the maximum expected ambient condition of a particular application. This configuration produces a worst-  
case junction temperature of 125°C at the highest expected ambient temperature and worst-case load.  
The internal protection circuitry of the TPS717-Q1 is designed to protect against overload conditions. This  
circuitry is not intended to replace proper heatsinking. Continuously running the TPS717-Q1 into thermal  
shutdown degrades device reliability.  
7.4 Device Functional Modes  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage under the following conditions:  
The input voltage has previously exceeded the UVLO rising voltage and has not decreased below the UVLO  
falling threshold.  
The input voltage is greater than the nominal output voltage added to the dropout voltage.  
The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased  
below the enable falling threshold.  
The output current is less than the current limit.  
The device junction temperature is within the specified junction temperature range.  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: TPS717-Q1  
 
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
Device Functional Modes (continued)  
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. In this condition, the output  
voltage is the same as the input voltage minus the dropout voltage. The transient performance of the device is  
significantly degraded because the pass device is in a triode state and no longer controls the current through the  
LDO. Line or load transients in dropout can result in large output voltage deviations.  
7.4.3 Disabled  
The device is disabled under the following conditions:  
The input voltage is less than the UVLO falling voltage, or has not yet exceeded the UVLO rising threshold.  
The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising  
threshold.  
The device junction temperature is greater than the thermal shutdown temperature.  
Table 1 shows the conditions that lead to the different modes of operation.  
Table 1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VEN  
IOUT  
I OUT < ICL  
TJ  
Normal mode  
Dropout mode  
VIN > VOUT(nom) + VDO and VIN > UVLO  
UVLO < VIN < VOUT(nom) + VDO  
VEN > VEN(high)  
VEN > VEN(high)  
T J < 125°C  
TJ < 165°C  
Disabled mode  
(any true condition disables the device)  
VIN < UVLO – Vhys  
VEN < VEN(low)  
TJ > 165°C  
16  
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
 
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The TPS717-Q1 belongs to a family of new generation LDO regulators that use innovative circuitry to achieve  
ultra-wide bandwidth and high loop gain, resulting in extremely high PSRR at very low headroom (VIN – VOUT).  
Fixed voltage versions provide a noise reduction pin to bypass noise generated by the band-gap reference and  
to improve PSRR when a quick-start circuit fast-charges this capacitor. These features, combined with low noise,  
enable, low ground pin current, and ultra-small packaging, make this part ideal for automotive applications. This  
family of regulators offers sub-band-gap output voltages, current limit, and thermal protection, and is fully  
specified from –40°C to 125°C.  
8.1.1 Transient Response  
As with any regulator, increasing the size of the output capacitor reduces overshoot or undershoot magnitude but  
increases duration of the transient. The TPS717-Q1 has an ultra-wide loop bandwidth that allows it to respond  
quickly to load transient events. As with any regulator, the loop bandwidth is finite and the initial transient voltage  
peak is controlled by the sizing of the output capacitor. Typically, larger output capacitors reduce the peak and  
also reduce the bandwidth of the LDO, thus slowing the response time.  
8.1.2 Input and Output Capacitor Requirements  
Although an input capacitor is not required for stability, good analog design practice is to connect a 0.1-μF or  
larger low equivalent series resistance (ESR) capacitor from IN to GND near the regulator. This capacitor  
counteracts reactive input sources and improves transient response, noise rejection, and ripple rejection. A  
higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated or if the device is  
located several inches from the power source. If source impedance is not sufficiently low, a 0.1-μF input  
capacitor may be necessary to ensure stability.  
The TPS717-Q1 is designed to be stable with ceramic output capacitors of values 1 μF or larger. The X5R- and  
X7R-type capacitors are best because they have minimal variation in value and ESR over temperature. The  
maximum ESR of the output capacitor must be less than 1 . The minimum output capacitance is increased to  
5 μF or larger if using an R2 value outside of the range of 160 kΩ to 320 kΩ.  
8.1.3 Dropout Voltage  
The TPS717-Q1 uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the  
dropout voltage (VDO), the PMOS pass device is in its linear region of operation and the input-to-output  
resistance is the RDSon of the PMOS pass element. VDO scales approximately with output current because the  
PMOS device functions as a resistor in dropout.  
As with any linear regulator, PSRR and transient response are degraded when (VIN – VOUT) approaches dropout.  
This effect is illustrated in Figure 15 through Figure 17 in the Typical Characteristics section.  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: TPS717-Q1  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
Application Information (continued)  
8.1.4 Power Dissipation  
The ability to remove heat from the die is different for each package type, presenting different considerations in  
the printed circuit board (PCB) layout. The PCB area around the device that is free of other components moves  
the heat from the device to the ambient air. Performance data for JEDEC low- and high-K boards are given in the  
Thermal Information table. Using heavier copper increases the effectiveness in removing heat from the device.  
The addition of plated through-holes to heat-dissipating layers also improves the heatsink effectiveness.  
Power dissipation depends on input voltage and load conditions. Power dissipation (PD) is equal to the product of  
the output current times the voltage drop across the output pass element (VIN to VOUT), as shown in Equation 2:  
P = VIN - VOUT ìIOUT  
D
(
)
(2)  
8.1.5 Output Noise  
In most LDOs, the band gap is the dominant noise source. If a noise reduction capacitor (CNR) is used with the  
TPS717-Q1, the band gap does not contribute significantly to noise. Instead, noise is dominated by the output  
resistor divider and the error amplifier input. To minimize noise in a given application, use a 0.01-μF (minimum)  
noise reduction capacitor; for the adjustable version, smaller value resistors in the output resistor divider reduce  
noise. A parallel combination that gives 2.5 μA of divider current has the same noise performance as a fixed  
voltage version.  
Equation 3 approximates the total noise referred to the feedback point (FB pin) when CNR = 0.01 μF:  
mVRMS  
VN = 11.5  
x VOUT  
V
(3)  
8.2 Typical Application  
Figure 33 shows the basic circuit connections for the fixed voltage options. Figure 34 gives the connections for  
the adjustable output version (TPS71701-Q1). Note that the NR pin is not available on the adjustable  
version.  
Optional 1-mF input  
capacitor. May improve  
source impedance, noise  
or PSRR.  
Optional 1-mF input  
capacitor. May improve  
source impedance, noise  
or PSRR.  
VIN  
VIN  
VOUT  
VOUT  
IN  
OUT  
FB  
IN  
OUT  
TPS717-Q1  
TPS71701-Q1  
1 mF  
Ceramic  
R1  
R2  
1 mF  
Ceramic  
EN  
GND  
NR  
EN  
GND  
VEN  
VEN  
Optional 0.01-mF bypass  
capacitor to reduce  
output noise and  
increase PSRR.  
Figure 33. Typical Application Circuit  
(Fixed Voltage Versions)  
Figure 34. Typical Application Circuit  
(Adjustable Voltage Version)  
18  
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
 
 
 
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
8.2.1 Design Requirements  
Table 2 summarizes the design requirements for Figure 35.  
Table 2. Design Requirements  
PARAMETER  
DESIGN REQUIREMENT  
Input voltage  
3.3 V, ±10%  
2.8 V, ±5%  
Output voltage  
Output current  
100 mA typical, 150 mA peak  
Output voltage transient deviation  
Maximum ambient temperature  
5%  
85°C  
8.2.2 Detailed Design Procedure  
8.2.2.1 Design Considerations  
For the adjustable version (TPS71701-Q1), the NR pin is replaced with a feedback (FB) pin. The voltage on this  
pin sets the output voltage and is determined by the values of R1 and R2. The values of R1 and R2 can be  
calculated for any voltage using the formula given in Equation 4:  
R1  
1 +  
x
VOUT = VREF  
R2  
(4)  
The value of R2 directly affects the operation of the device and must be chosen in the range of approximately  
160 kto 332 k. Sample resistor values for common output voltages are shown in Table 3.  
Table 3. Sample 1% Resistor Values For Common  
Output Voltages  
VOUT  
1
R1  
R2  
80.6 kΩ  
162 kΩ  
294 kΩ  
402 kΩ  
665 kΩ  
1.02 MΩ  
1.74 MΩ  
324 kΩ  
324 kΩ  
332 kΩ  
324 kΩ  
316 kΩ  
324 kΩ  
332 kΩ  
1.2  
1.5  
1.8  
2.5  
3.3  
5
8.2.2.2 Powering a PLL Integrated on an SOC  
Figure 35 shows the TPS71701-Q1 powering a phase-locked loop (PLL) that is integrated into a system-on-a-  
chip (SOC).  
3.3 V  
2.8 V  
PLL  
IN  
OUT  
CIN  
COUT  
TPS71701-Q1  
Buck Regulator  
R1  
R2  
SOC  
EN  
FB  
GND  
Figure 35. Typical Application Circuit: PLL on an SOC  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: TPS717-Q1  
 
 
 
 
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
8.2.2.3 Design Considerations  
Use the input and output capacitors to ensure the voltage transient requirements. A 1-µF input and 1-µF output  
capacitor are selected to maximize the capacitance and minimize capacitor size.  
R2 is chosen to be 158 kΩ for optimal noise and PSRR, and by Equation 2, R1 is selected to be 402 kΩ. Both  
R1 and R2 must be 1% tolerance resistors to meet the dc accuracy specification over line, load, and  
temperature.  
8.2.3 Application Curve  
VIN = 3.3 V  
COUT = 1 mF  
50 mV/div  
VOUT  
150 mA  
1 mA  
40 mA/div  
IOUT  
100 ms/div  
Figure 36. Load Transient Response  
8.3 Do's and Don'ts  
Do place at least one 1-µF ceramic capacitor as close as possible to both the input and output pins of the LDO.  
Do not place the output capacitor more than 10 mm away from the regulator.  
Do not place any components in the feedback loop except for the input, output, and feed-forward capacitor and  
the feedback resistors.  
Do not exceed the device absolute maximum ratings.  
Do not float the enable (EN) pin.  
9 Power Supply Recommendations  
The TPS717-Q1 is designed to operate from an input voltage between 2.5 V and 6.5 V. The input supply must  
provide adequate headroom for the device to operate in a normal mode of operation.  
Connect a low output impedance power supply directly to the IN pin of the TPS717-Q1. Inductive impedances  
between the input supply and the IN pin can create significant voltage excursions at the IN pin during startup or  
load transient events. If inductive impedances are unavoidable, use an input capacitor. To increase the overall  
PSRR of the power solution, use a pi-filter before the input of the LDO or after the FB network of the LDO.  
20  
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
10 Layout  
10.1 Layout Guidelines  
For best overall performance, place all circuit components on the same side of the circuit board and as near as  
practical to the respective LDO pin connections. Place ground return connections to the input and output  
capacitor, and to the LDO ground pin as close to the GND pin as possible, connected by wide, component-side,  
copper surface area. The use of vias and long traces to create LDO component connections is strongly  
discouraged and negatively affects system performance. This grounding and layout scheme minimizes inductive  
parasitics, and thereby reduces load-current transients, minimizes noise, and increases circuit stability. A ground  
reference plane is also recommended and is either embedded in the printed circuit board (PCB) itself or located  
on the bottom side of the PCB opposite the components. This reference plane serves to assure accuracy of the  
output voltage, shields the LDO from noise, and functions similar to a thermal plane to spread (or sink) heat from  
the LDO device when connected to the thermal pad. In most applications, this ground plane is necessary to meet  
thermal requirements.  
10.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance  
To improve ac performance (such as PSRR, output noise, and transient response), TI recommends that the  
board be designed with separate ground planes for VIN and VOUT, with each ground plane connected only at the  
GND pin of the device. In addition, the ground connection for the bypass capacitor must connect directly to the  
GND pin of the device.  
10.2 Layout Examples  
CNR  
COUT  
(1)  
Thermal Pad  
CIN  
(1) Circles within thermal pad area indicate vias to other layers on the board.  
Figure 37. Fixed Voltage Layout  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: TPS717-Q1  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
Layout Examples (continued)  
R1  
R2  
COUT  
(1)  
Thermal Pad  
CIN  
(1) Circles within thermal pad area indicate vias to other layers on the board.  
Figure 38. Adjustable Voltage Layout  
22  
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
TPS717-Q1  
www.ti.com  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Development Support  
11.1.1.1 Evaluation Module  
An evaluation module (EVM) is available to assist in the initial circuit performance evaluation using the TPS717.  
The TPS717xxEVM-134 evaluation module (and related user guide) can be requested at the Texas Instruments  
website through the product folders or purchased directly from the TI eStore.  
11.1.2 Device Nomenclature  
Table 4. Device Nomenclature(1)  
PRODUCT  
VOUT  
xx(x) is the nominal output voltage. For output voltages with a resolution of 100 mV, two digits are used  
in the ordering number; otherwise, three digits are used (for example, 28 = 2.8 V; 125 = 1.25 V). An 01  
denotes an adjustable voltage version.  
TPS717xx(x)QYYYz-Q1  
YYY is the package designator.  
z is the package quantity. R is for reel (3000 pieces), T is for tape (250 pieces).  
Q and -Q1 denote an automotive device that is qualified at grade 1.  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the  
device product folder on www.ti.com.  
11.2 Documentation Support  
11.2.1 Related Documentation  
PMP10651 Test Results, TIDUAE4  
TPS717xxEVM-134 Evaluation Module User Guide, SLVU148  
11.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
Copyright © 2012–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: TPS717-Q1  
TPS717-Q1  
SLVSBM4C SEPTEMBER 2012REVISED JANUARY 2016  
www.ti.com  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
Bluetooth is a registered trademark of Bluetooth SIG, Inc.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
24  
Submit Documentation Feedback  
Copyright © 2012–2016, Texas Instruments Incorporated  
Product Folder Links: TPS717-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS71701QDRVRQ1  
TPS71709QDRVRQ1  
TPS71709QDSERQ1  
TPS71712QDRVRQ1  
TPS71715QDRVRQ1  
TPS71718QDRVRQ1  
TPS71725QDRVRQ1  
TPS71728QDRVRQ1  
TPS71730QDRVRQ1  
TPS71733QDRVRQ1  
TPS71745QDCKRQ1  
TPS71745QDRVRQ1  
TPS71750QDRVRQ1  
TPS71750QDSERQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
SC70  
DRV  
DRV  
DSE  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DCK  
DRV  
DRV  
DSE  
6
6
6
6
6
6
6
6
6
6
5
6
6
6
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
13B  
SHW  
BD  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
SHX  
SHY  
SHZ  
SIA  
SIB  
SIC  
SID  
SHF  
SIE  
SIF  
WSON  
WSON  
WSON  
AV  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
15-Mar-2023  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TPS717-Q1 :  
Catalog : TPS717  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS71701QDRVRQ1  
TPS71709QDRVRQ1  
TPS71709QDSERQ1  
TPS71712QDRVRQ1  
TPS71715QDRVRQ1  
TPS71718QDRVRQ1  
TPS71725QDRVRQ1  
TPS71728QDRVRQ1  
TPS71730QDRVRQ1  
TPS71733QDRVRQ1  
TPS71745QDCKRQ1  
TPS71745QDRVRQ1  
TPS71750QDRVRQ1  
TPS71750QDSERQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
SC70  
DRV  
DRV  
DSE  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DCK  
DRV  
DRV  
DSE  
6
6
6
6
6
6
6
6
6
6
5
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
179.0  
178.0  
179.0  
179.0  
179.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
9.0  
8.4  
8.4  
8.4  
2.2  
2.2  
1.8  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.4  
2.2  
2.2  
1.8  
2.2  
2.2  
1.8  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.5  
2.2  
2.2  
1.8  
1.2  
1.2  
1.0  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q3  
Q2  
Q2  
Q2  
WSON  
WSON  
WSON  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TPS71701QDRVRQ1  
TPS71709QDRVRQ1  
TPS71709QDSERQ1  
TPS71712QDRVRQ1  
TPS71715QDRVRQ1  
TPS71718QDRVRQ1  
TPS71725QDRVRQ1  
TPS71728QDRVRQ1  
TPS71730QDRVRQ1  
TPS71733QDRVRQ1  
TPS71745QDCKRQ1  
TPS71745QDRVRQ1  
TPS71750QDRVRQ1  
TPS71750QDSERQ1  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
SC70  
DRV  
DRV  
DSE  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DCK  
DRV  
DRV  
DSE  
6
6
6
6
6
6
6
6
6
6
5
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
200.0  
180.0  
200.0  
200.0  
200.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
180.0  
183.0  
183.0  
183.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
25.0  
18.0  
25.0  
25.0  
25.0  
WSON  
WSON  
WSON  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006D  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A B  
C
0.05  
4225563/A 12/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006D  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225563/A 12/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006D  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4225563/A 12/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DSE0006A  
WSON - 0.8 mm max height  
SCALE 6.000  
PLASTIC SMALL OUTLINE - NO LEAD  
1.55  
1.45  
A
B
1.55  
1.45  
PIN 1 INDEX AREA  
0.8 MAX  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
0.6  
0.4  
5X  
3
4
2X 1  
4X 0.5  
6
1
0.3  
6X  
0.7  
0.5  
0.2  
0.1  
0.05  
PIN 1 ID  
C A B  
C
4220552/A 04/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
(0.8)  
5X (0.7)  
1
6
6X (0.25)  
SYMM  
4X 0.5  
4
3
(R0.05) TYP  
(1.6)  
LAND PATTERN EXAMPLE  
SCALE:40X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
PADS 4-6  
NON SOLDER MASK  
DEFINED  
PADS 1-3  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220552/A 04/2021  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSE0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
PKG  
5X (0.7)  
(0.8)  
6X (0.25)  
1
6
SYMM  
4X (0.5)  
4
3
(R0.05) TYP  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:40X  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

TPS71745DSER

Low Noise, High-Bandwidth PSRR Low-Dropout 150mA Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS71745DSET

Low Noise, High-Bandwidth PSRR Low-Dropout 150mA Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS71745QDCKRQ1

具有使能功能的汽车类、150mA、高 PSRR、低 IQ、低压降稳压器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS71745QDRVRQ1

具有使能功能的汽车类、150mA、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS71750DSER

Low Noise, High-Bandwidth PSRR Low-Dropout 150mA Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS71750DSET

Low Noise, High-Bandwidth PSRR Low-Dropout 150mA Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS71750QDRVRQ1

具有使能功能的汽车类、150mA、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS71750QDSERQ1

具有使能功能的汽车类、150mA、高 PSRR、低 IQ、低压降稳压器 | DSE | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS717XX

Low Noise, High-Bandwidth PSRR Low-Dropout 150mA Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS717XXYYZ

Low Noise, High-Bandwidth PSRR Low-Dropout 150mA Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS717XX_08

Low Noise, High-Bandwidth PSRR Low-Dropout 150mA Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS717XX_09

Low Noise, High-Bandwidth PSRR Low-Dropout 150mA Linear Regulator

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI