TPS720285QDRVRQ1 [TI]

具有使能功能的汽车类、350mA、低输入电压 (1.1V)、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125;
TPS720285QDRVRQ1
型号: TPS720285QDRVRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类、350mA、低输入电压 (1.1V)、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

信息通信管理 光电二极管 输出元件 稳压器 调节器
文件: 总27页 (文件大小:1362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
TPS720-Q1  
具有偏置引脚的 350mA、超低 VINRF 低压降线性稳压器  
1 特性  
3 说明  
1
适用于汽车电子 应用  
具有符合 AEC-Q100 标准的下列结果:  
TPS720-Q1 系列双轨、低压降线性稳压器 (LDO) 具有  
出色的交流性能(PSRR,负载和线路瞬态响应),静  
态流耗非常低,低至 38μA。  
器件温度 1 级:-40℃ 至 +125℃ 的环境运行温  
度范围  
LDO 控制电路供电的 VBIAS 轨消耗极低的电流(与  
LDO 静态电流差不多),并且可以连接至任何超过输  
出电压 1.4V 及以上的电源。主要电源路径为 VIN,且  
可低于 VBIAS;此路径可低至 VOUT + VDO,有助于提高  
许多功耗敏感型 应用解决方案的效率。例如,VIN 可作  
为高效的直流 - 直流降压稳压器的输出。  
器件人体放电模式 (HBM) 静电放电 (ESD) 分类  
等级 H2  
器件组件充电模式 (CDM) ESD 分类等级 C6  
输入电压范围:1.1V 4.5V  
输出电压范围:0.9V 3.6V  
高性能 LDO350mA  
TPS720-Q1 支持一种新特性,当 IN 引脚保持悬空  
时,LDO 的输出稳定在轻负载以下。这种情况下的轻  
负载驱动电流来源于 VBIAS。此特性对于 节能应用特别  
有效, 在这些应用中,禁止直流-直流转换器连接至 IN  
引脚,但仍需要 LDO 将电压稳定至轻负载。  
低静态电流:38μA  
绝佳的负载瞬态响应:  
±15mV(当 1μs ILOAD = 0mA 跳至 350 mA 时)  
低噪声:48μVRMS10Hz 100kHz)  
80dB VIN PSRR10Hz 10kHz)  
70dB VBIAS PSRR (10Hz 10kHz)  
快速启动时间:140μs  
TPS720-Q1 与陶瓷电容器搭配使用时可保持稳定,并  
且该器件使用先进的 BICMOS 制造工艺,能够在  
350mA 输出负载电流时产生仅 110mV 的压降。  
TPS720-Q1 搭配 2.2μF 输出电容时,可实现 VOUT 单  
调升高(过冲限制为 3%)的同时 VIN 浪涌电流限制为  
内置软启动,单调 VOUT 升高并且启动电流限制在  
100mA + ILOAD  
过流和热保护  
低压降:110mV(当 ILOAD = 350mA 时)  
2.2μF 输出电容一起工作时保持稳定  
封装:2.00mm × 2.00mm、6 引脚 WSON  
100mA + ILOAD  
TPS720-Q1 使用一个高精度电压基准和反馈环路来实  
现负载、线路、过程和温度变化范围上 2% 的总精  
度。TPS720-Q1 采用 6 引脚 WSON 封装。该系列器  
件的额定工作温度范围为 TJ = –40°C +125°C。  
2 应用  
摄像机模块  
平板显示 (FPD) 链路电源  
车用信息娱乐系统  
器件信息(1)  
器件型号  
TPS720-Q1  
封装  
WSON (6)  
封装尺寸(标称值)  
USB 网络集线器 (HUB) 电源  
2.00mm x 2.00mm  
简化电路原理图  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
VBATT  
CBIAS  
BIAS  
2.3 V  
1.8 V  
Standalone  
VCORE  
IN  
OUT  
DC-DC  
Converter  
or PMU  
TPS720-Q1  
CIN  
COUT  
EN  
GND  
VEN  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SBVS278  
 
 
 
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
7.4 Device Functional Modes........................................ 12  
8
9
Application and Implementation ........................ 13  
8.1 Application Information............................................ 13  
8.2 Typical Application .................................................. 14  
Power Supply Recommendations...................... 16  
10 Layout................................................................... 16  
10.1 Layout Guidelines ................................................. 16  
10.2 Layout Example .................................................... 16  
10.3 Thermal Considerations........................................ 17  
10.4 Power Dissipation ................................................. 17  
11 器件和文档支持 ..................................................... 18  
11.1 器件支持................................................................ 18  
11.2 文档支持................................................................ 18  
11.3 接收文档更新通知 ................................................. 18  
11.4 社区资源................................................................ 18  
11.5 ....................................................................... 18  
11.6 静电放电警告......................................................... 19  
11.7 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 19  
7
4 修订历史记录  
Changes from Original (February 2016) to Revision A  
Page  
已更改 特性部分中的输出电压范围要点从“0.9V 3.0V”更改为“0.9V 3.6V” ..................................................................... 1  
Changed maximum value of "output voltage" parameter from 3.0 V to 3.6 V in Recommended Operating Conditions  
table........................................................................................................................................................................................ 4  
Reformatted Thermal Information table note ......................................................................................................................... 4  
Changed maximum value of output voltage parameter from 3.0 V to 3.6 V in Electrical Characteristics table .................... 5  
已更改 器件命名规则部分 ..................................................................................................................................................... 18  
已更改 相关文档部分的格式.................................................................................................................................................. 18  
已添加 接收文档更新通知部分 ............................................................................................................................................. 18  
2
Copyright © 2016, Texas Instruments Incorporated  
 
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
5 Pin Configuration and Functions  
DRV Package  
6-Pin WSON With Exposed Thermal Pad  
Top View  
OUT  
NC  
1
2
3
6
5
4
IN  
Thermal  
(1)  
Pad  
GND  
BIAS  
EN  
(1) TI recommends connecting the WSON (DRV) package thermal pad to ground.  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
OUT  
NC  
NO.  
1
Output pin. A 2.2-μF ceramic capacitor is connected from this pin to ground for stability and to provide load  
transients; see Input and Output Capacitor Requirements  
O
I
2
No connection.  
Enable pin. A logic high signal on this pin turns the device on and regulates the voltage from IN to OUT.  
A logic low on this pin turns the device off.  
EN  
3
Bias supply pin. For better transient performance, TI recommends bypassing this input with a ceramic  
capacitor to ground; see Input and Output Capacitor Requirements  
BIAS  
GND  
IN  
4
5
6
I
I
Ground pin.  
Input pin. This pin can be a maximum of 4.5 V; VIN must not exceed VBIAS. Bypass this input with a ceramic  
capacitor to ground; see Input and Output Capacitor Requirements.  
6 Specifications  
6.1 Absolute Maximum Ratings  
at TJ = –40°C to +125°C (unless otherwise noted); all voltages are with respect to GND(1)  
MIN  
MAX  
UNIT  
(2)  
VIN  
Input voltage (steady-state)  
Peak transient input  
–0.3  
VBIAS or 5(3)  
V
V
V
V
V
(4)  
VIN_PEAK  
VBIAS  
VEN  
5.5  
6
Bias voltage  
–0.3  
–0.3  
–0.3  
Enable voltage  
6
VOUT  
IOUT  
Output voltage  
5
Peak output current  
Internally limited  
Output short-circuit duration  
Total continuous power dissipation  
Operating junction temperature  
Storage temperature  
Indefinite  
PDISS  
TJ  
See Thermal Information  
–55  
–55  
125  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) To ensure proper device operation, VIN must be less than or equal to VBIAS under all conditions.  
(3) Whichever is less.  
(4) For durations no longer than 1 ms each, for a total of no more than 1000 occurrences over the lifetime of the device.  
Copyright © 2016, Texas Instruments Incorporated  
3
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
±2000  
±500  
±100  
V(ESD)  
Electrostatic discharge  
V
Machine model (MM)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating junction temperature range (unless otherwise noted).  
MIN  
NOM  
MAX  
VBIAS or 4.5(1)  
UNIT  
V
VIN  
Input voltage (steady-state)  
Bias voltage  
1.1  
VBIAS  
VOUT  
IOUT  
VEN  
2.6 or VOUT + 1.4(2)  
5.5  
3.6  
350  
5.5  
V
Output voltage  
0.9  
0
V
Peak output current  
Enable voltage  
mA  
V
0
CIN  
Input capacitance  
Bias capacitance  
Output capacitance  
1
µF  
µF  
µF  
CBIAS  
COUT  
0.1  
(3)  
2.2  
(1) Whichever is less.  
(2) Whichever is greater.  
(3) Maximum ESR must be less than 250 mΩ.  
6.4 Thermal Information  
TPS720-Q1  
THERMAL METRIC(1)  
DRV (WSON)  
6 PINS  
66.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
86.2  
36.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.7  
ψJB  
36.6  
RθJC(bot)  
7.4  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics (SPRA953).  
4
Copyright © 2016, Texas Instruments Incorporated  
 
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
6.5 Electrical Characteristics  
over operating temperature range (TJ = –40°C to +125°C), VBIAS = (VOUT + 1.4 V ) or 2.6 V (whichever is greater), VIN VOUT  
+ 0.5 V, IOUT = 1 mA, VEN = 1.1 V, and COUT = 2.2 μF (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VBIAS or  
4.5(2)  
VIN  
Input voltage  
1.1(1)  
V
VBIAS  
Bias voltage  
Output voltage(4)  
2.6  
0.9  
5.5  
3.6  
V
V
VOUT + 1.4 V VBIAS 5.5 V,  
VOUT + 0.5 V VIN 4.5 V,  
0 mA IOUT 350 mA  
Over VBIAS, VIN, IOUT  
TJ = –40°C to +125°C  
,
–2%  
–25  
2%  
25  
(3)  
VOUT  
Output  
accuracy  
VOUT + 1.4 V VBIAS 5.5 V,  
VOUT + 0.5 V VIN 4.5 V,  
0 mA IOUT 350 mA, VOUT < 1.2 V  
Over VBIAS, VIN, IOUT  
,
mV  
TJ = –40°C to +125°C  
VOUT + 1.4 V VBIAS 5.5 V,  
0 μA IOUT 500 μA  
VIN floating  
±1%  
16  
ΔVOUT/ΔVIN  
VIN line regulation  
VIN = (VOUT + 0.5 V) to 4.5 V, IOUT = 1 mA  
μV/V  
μV/V  
VBIAS = (VOUT + 1.4 V) or 2.6 V (whichever is  
greater) to 5.5 V, IOUT = 1 mA  
ΔVOUT/ΔVBIAS VBIAS line regulation  
16  
VIN line transient  
VBIAS line transient  
ΔVIN = 400 mV, tRISE = tFALL = 1 μs  
±200  
±0.8  
–15  
μV  
mV  
ΔVBIAS = 600 mV, tRISE = tFALL = 1 μs  
0 mA IOUT 350 mA (no load to full load)  
0 mA IOUT 350 mA, tRISE = tFALL = 1 μs  
ΔVOUT/ΔIOUT Load regulation  
Load transient  
μV/mA  
mV  
±15  
VIN = VOUT(NOM) – 0.1 V,  
(VBIAS – VOUT(NOM)) = 1.4 V,  
IOUT = 350 mA  
VDO_IN  
VIN dropout voltage(5)  
110  
200  
mV  
VDO_BIAS  
ICL  
VBIAS dropout voltage(6)  
Output current limit  
VIN = VOUT(NOM) + 0.3 V, IOUT = 350 mA  
VOUT = 0.9 × VOUT(NOM)  
IOUT = 100 μA  
1.09  
600  
38  
54  
0.5  
85  
85  
85  
80  
70  
50  
80  
80  
75  
65  
55  
35  
1.4  
V
420  
800  
mA  
IGND  
Ground pin current  
μA  
μA  
IOUT = 0 mA to 350 mA  
VEN 0.4 V  
80  
ISHDN  
Shutdown current (IGND  
)
2.5  
f = 10 Hz  
f = 100 Hz  
VIN – VOUT 0.5 V,  
VBIAS = VOUT + 1.4 V,  
IOUT = 350 mA  
f = 1 kHz  
PSRR  
PSRR  
VIN power-supply rejection ratio  
dB  
dB  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
f = 10 Hz  
f = 100 Hz  
VIN – VOUT 0.5 V,  
f = 1 kHz  
VBIAS power-supply rejection ratio VBIAS = VOUT + 1.4 V,  
IOUT = 350 mA  
f = 10 kHz  
f = 100 kHz  
f = 1 MHz  
Bandwidth = 10 Hz to 100 kHz, VBIAS 2.6 V,  
VIN = VOUT + 0.5 V  
VN  
Output noise voltage  
Inrush current on VIN  
48  
μVRMS  
VBIAS = (VOUT +1.4 V) or 2.6 V (whichever is  
greater), VIN = VOUT + 0.5 V  
IVIN_INRUSH  
100 + ILOAD  
1.1  
mA  
VEN(HI)  
VEN(LO)  
Enable pin high (enabled)  
Enable pin low (disabled)  
V
V
0
0.4  
(1) Performance specifications are ensured to a minimum VIN = VOUT + 0.5 V.  
(2) Whichever is less.  
(3) Minimum VBIAS = (VOUT + 1.4 V) or 2.6 V (whichever is greater) and VIN = VOUT + 0.5 V.  
(4) VO nominal value is factory programmable through the on-chip EEPROM.  
(5) Measured for devices with VOUT(NOM) 1.2 V.  
(6) VBIAS – VOUT with VOUT = VOUT(NOM) – 0.1 V. Measured for devices with VOUT(NOM) 1.8 V.  
Copyright © 2016, Texas Instruments Incorporated  
5
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating temperature range (TJ = –40°C to +125°C), VBIAS = (VOUT + 1.4 V ) or 2.6 V (whichever is greater), VIN VOUT  
+ 0.5 V, IOUT = 1 mA, VEN = 1.1 V, and COUT = 2.2 μF (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
VEN = 5.5 V, VIN = 4.5 V, VBIAS = 5.5 V  
VBIAS rising  
MIN  
TYP  
MAX  
1
UNIT  
µA  
IEN  
Enable pin current  
Undervoltage lockout  
UVLO hysteresis  
2.35  
2.45  
150  
160  
140  
2.59  
V
UVLO  
VBIAS falling  
mV  
Shutdown, temperature increasing  
Reset, temperature decreasing  
TSD  
TJ  
Thermal shutdown temperature  
Operating junction temperature  
°C  
°C  
–40  
125  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
tSTR  
Start-up time  
VOUT = 95%, VOUT (NOM), IOUT = 350 mA, COUT = 2.2 μF  
140  
µs  
6
Copyright © 2016, Texas Instruments Incorporated  
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
6.7 Typical Characteristics  
over operating temperature range (TJ = –40°C to +125°C), VBIAS = (VOUT + 1.4 V) or 2.6 V (whichever is greater), VIN = VOUT  
0.5 V, IOUT = 1 mA, VEN = 1.1 V, and COUT = 2.2 μF (unless otherwise noted); typical values are at TJ = 25°C  
+
1.83  
1.82  
1.81  
1.8  
1.83  
1.82  
1.81  
1.8  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
1.79  
1.79  
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
4.1 4.2 4.3 4.4 4.5  
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
4.1 4.2 4.3 4.4 4.5  
Input Voltage (V)  
Input Voltage (V)  
IOUT = 0 mA  
IOUT = 350 mA  
Figure 1. VIN Line Regulation (No Load)  
Figure 2. VIN Line Regulation (350 mA)  
1.83  
1.82  
1.81  
1.8  
1.83  
1.82  
1.81  
1.8  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
1.79  
1.79  
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
4.1 4.2 4.3 4.4 4.5  
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
4.1 4.2 4.3 4.4 4.5  
Bias Voltage (V)  
Input Voltage (V)  
IOUT = 0 mA  
IOUT = 350 mA  
Figure 3. VBIAS Line Regulation (No Load)  
Figure 4. VBIAS Line Regulation (350 mA)  
1.83  
1.82  
1.81  
1.8  
1.83  
1.82  
1.81  
1.8  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
1.79  
1.79  
0
1
2
3
4
5
6
7
8
9
10  
0
50  
100  
150  
200  
250  
300  
350  
Output Current (mA)  
Output Current (mA)  
Figure 5. Load Regulation Under Light Loads  
Figure 6. Load Regulation  
Copyright © 2016, Texas Instruments Incorporated  
7
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
over operating temperature range (TJ = –40°C to +125°C), VBIAS = (VOUT + 1.4 V) or 2.6 V (whichever is greater), VIN = VOUT  
+
0.5 V, IOUT = 1 mA, VEN = 1.1 V, and COUT = 2.2 μF (unless otherwise noted); typical values are at TJ = 25°C  
2
1.96  
1.92  
1.88  
1.84  
1.8  
2
1.96  
1.92  
1.88  
1.84  
1.8  
VBIAS = 3.2 V  
VBIAS = 3.5 V  
VBIAS = 4 V  
VBIAS = 4.5 V  
VBIAS = 5 V  
TJ = 125èC  
TJ = 105èC  
TJ = 85èC  
TJ = 25èC  
TJ = 0èC  
VBIAS = 5.5 V  
TJ = -40èC  
1.76  
1.72  
1.68  
1.64  
1.6  
1.76  
1.72  
1.68  
1.64  
1.6  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.25  
0.5  
0.75  
1
Output Current (mA)  
Output Current (mA)  
VBIAS = 3.2 V  
Figure 7. Load Regulation With VIN Floating  
Figure 8. Load Regulation With VIN Floating  
1.15  
1.14  
1.13  
1.12  
1.11  
1.1  
160  
140  
120  
100  
80  
125°C  
105°C  
1.09  
1.08  
1.07  
1.06  
1.05  
1.04  
60  
-40°C  
-10°C  
25°C  
40  
85°C  
20  
0
350  
5
20 35 50 65 80 95 110 125  
0
50  
100  
150  
200  
250  
300  
-40 -25 -10  
Output Current (mA)  
Junction Temperature (°C)  
IOUT = 350 mA  
VOUT = VOUT(NOM) – 0.1 V  
Figure 9. VIN Dropout Voltage vs Output Current  
Figure 10. VBIAS Dropout Voltage vs Junction Temperature  
1.83  
50  
45  
40  
35  
30  
25  
IOUT = 0 mA  
IOUT = 1 mA  
IOUT = 350 mA  
1.82  
1.81  
1.8  
125°C  
105°C  
85°C  
25°C  
-10°C  
-40°C  
20  
15  
10  
5
0
1.79  
4.5  
5.5  
2.5  
3
3.5  
4
5
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Junction Temperature (èC)  
VBIAS (V)  
IOUT = 1 mA  
Figure 11. Output Voltage vs Junction Temperature  
Figure 12. Ground Pin Current vs VBIAS Voltage  
8
Copyright © 2016, Texas Instruments Incorporated  
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
Typical Characteristics (continued)  
over operating temperature range (TJ = –40°C to +125°C), VBIAS = (VOUT + 1.4 V) or 2.6 V (whichever is greater), VIN = VOUT  
0.5 V, IOUT = 1 mA, VEN = 1.1 V, and COUT = 2.2 μF (unless otherwise noted); typical values are at TJ = 25°C  
+
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
105°C  
25°C  
125°C  
85°C  
-40°C  
-10°C  
350  
5
20 35 50 65 80 95 110 125  
0
50  
100  
150  
200  
250  
300  
-40 -25 -10  
Output Current (mA)  
Junction Temperature (°C)  
IOUT = 350 mA  
Figure 13. Ground Pin Current vs Output Current  
Figure 14. Ground Pin Current vs Junction Temperature  
3
675  
2.5  
2
650  
-10°C  
-40°C  
25°C  
625  
600  
575  
550  
-40°C  
-10°C  
25°C  
85°C  
1.5  
1
125°C  
105°C  
85°C  
105°C  
125°C  
0.5  
0
4.5  
5.5  
4.5  
5.5  
2.5  
3
3.5  
4
5
2.5  
3
3.5  
4
5
VBIAS (V)  
VBIAS (V)  
Figure 15. Shutdown Current vs VBIAS Voltage  
Figure 16. Current Limit vs VBIAS Voltage  
675  
650  
625  
600  
575  
550  
120  
100  
80  
60  
40  
20  
0
IOUT = 0 mA  
-10°C  
-40°C  
25°C  
IOUT = 50 mA  
IOUT = 350 mA  
85°C  
105°C  
125°C  
4.5  
10M  
2.5  
3
3.5  
Input Voltage (V)  
4
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
VIN – VOUT = 0.5 V, VBIAS – VOUT = 1.4 V  
Figure 18. VIN Power-Supply Rejection Ratio vs Frequency  
Figure 17. Current Limit vs Input Voltage  
Copyright © 2016, Texas Instruments Incorporated  
9
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
over operating temperature range (TJ = –40°C to +125°C), VBIAS = (VOUT + 1.4 V) or 2.6 V (whichever is greater), VIN = VOUT  
+
0.5 V, IOUT = 1 mA, VEN = 1.1 V, and COUT = 2.2 μF (unless otherwise noted); typical values are at TJ = 25°C  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
(VIN - VOUT) = 350 mV  
IOUT = 1 mA  
(VIN - VOUT) = 300 mV  
(VIN - VOUT) = 250 mV  
IOUT = 350 mA  
10M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
IOUT = 350 mA  
VIN – VOUT = 0.5 V  
VBIAS – VOUT = 1.4 V  
Figure 19. VIN Power-Supply Rejection Ratio vs Frequency  
Figure 20. VBIAS Power-Supply Rejection Ratio vs Frequency  
10  
VOUT  
1 mV/div  
1
0.1  
VIN  
200 mV/div  
0.01  
100k  
100  
1k  
10k  
100 ms/div  
Frequency (Hz)  
VIN = 2.1 to 2.5 V  
VOUT = 1.8 V  
VBIAS = 3.2 V  
VIN slew rate = 1 V/μs  
IOUT = 350 mA  
Figure 22. VIN Line Transient Response  
Figure 21. Output Spectral Noise Density vs Frequency  
VOUT  
VOUT  
10 mV/div  
1 mV/div  
300 mA  
IOUT  
VBIAS  
0 mA  
200 mV/div  
100 mA/div  
100 ms/div  
100 ms/div  
VIN = 2.3 V  
VOUT = 1.8 V  
VBIAS = 3.2 V to 3.8 V  
IOUT = 350 mA  
VOUT = 1.8 V  
VIN = 2.3 V  
VBIAS = 3.2 V  
tRISE = 1 μs  
VBIAS slew rate = 600 m/μs  
Figure 23. VBIAS Line Transient Response  
Figure 24. Load Transient Response  
10  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
7 Detailed Description  
7.1 Overview  
The TPS720-Q1 family of LDO regulators uses innovative circuitry to achieve ultra-wide bandwidth and high loop  
gain, resulting in extremely high PSRR (up to 1 MHz) at very low headroom (VIN – VOUT). The implementation of  
the BIAS pin on the TPS720-Q1 vastly improves efficiency of low VOUT applications by allowing the use of a pre-  
regulated, low-voltage input supply. The TPS720-Q1 supports a novel feature where the output of the LDO  
regulates under light loads (< 500 μA) when the IN pin is left floating. The light-load drive current is sourced from  
VBIAS under this condition. This feature is particularly useful in power-saving applications where the dc-dc  
converter connected to the IN pin is disabled but the LDO is still required to regulate the voltage to a light load.  
These features, combined with low noise, low ground pin current, and ultra-small packaging, make this device  
ideal for portable applications. This family of regulators offers sub-band-gap output voltages, current limit, and  
thermal protection, and is fully specified from –40°C to +125°C.  
7.2 Functional Block Diagram  
IN  
OUT  
Current  
Limit  
Thermal  
Shutdown  
BIAS  
UVLO  
Band Gap  
EN  
7.3 Feature Description  
7.3.1 Internal Current Limit  
The TPS720-Q1 internal current limits help protect the regulator during fault conditions. During current limit, the  
output sources a fixed amount of current that is largely independent of output voltage. In such a case, the output  
voltage is not regulated, and is VOUT = ILIMIT × RLOAD. The NMOS pass transistor dissipates (VIN – VOUT) × IOUT  
until thermal shutdown is triggered and the device is turned off. When the device cools down, the internal thermal  
shutdown circuit turns the device back on. If the fault condition continues, the device cycles between current limit  
and thermal shutdown; see Thermal Considerations for more details.  
The NMOS pass element in the TPS720-Q1 has a built-in body diode that conducts current when the voltage at  
OUT exceeds the voltage at IN. This current is not limited, so if extended reverse voltage operation is  
anticipated, TI recommends external limiting to 5% of rated output current.  
7.3.2 Inrush Current Limit  
The TPS720-Q1 family of LDO regulators implements a novel inrush current limit circuit architecture: the current  
drawn through the IN pin is limited to a finite value. This IINRUSHLIMIT charges the output to the final voltage. All  
current drawn through VIN charges the output capacitance when the load is disconnected. Equation 1 shows the  
inrush current limit performed by the circuit.  
IINRUSHLIMIT ( A ) = COUT(mF)x0.454545(V / ms)+ ILOAD (A)  
(1)  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Feature Description (continued)  
Assuming a COUT of 2.2 μF with the load disconnected (that is, ILOAD = 0), the IINRUSHLIMIT is calculated to be  
100 mA. The inrush current charges the LDO output capacitor. If the output of the LDO regulates to 1.3 V, then  
the LDO charges the output capacitor to the final output value in approximately 28.6 μs.  
Another consideration is when a load is connected to the output of an LDO. The TPS720-Q1 inrush current limit  
circuit employs a technique that supplies not only the IINRUSHLIMIT, but the additional current required by the load.  
If ILOAD = 350 mA, then IINRUSHLIMIT calculates to be approximately 450 mA (from Equation 1).  
7.3.3 Shutdown  
The enable pin (EN) is active high and is compatible with standard and low-voltage, TTL-CMOS levels. When  
shutdown capability is not required, EN can be connected to the IN pin.  
7.3.4 Undervoltage Lockout (UVLO)  
The TPS720-Q1 uses an undervoltage lockout circuit on the BIAS pin to keep the output shut off until the internal  
circuitry is operating properly. The UVLO circuit has a deglitch feature that typically ignores undershoot transients  
on the input if these transients are less than 50 μs in duration.  
7.4 Device Functional Modes  
Driving the EN pin over 1.1 V turns on the regulator. Driving the EN pin below 0.4 V causes the regulator to enter  
shutdown mode. In shutdown, the current consumption of the device is typically reduced to 500 nA.  
12  
Copyright © 2016, Texas Instruments Incorporated  
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Input and Output Capacitor Requirements  
Although a capacitor is not required for stability on the IN pin, good analog design practice is to connect a 0.1-μF  
to 1-μF low equivalent series resistance (ESR) capacitor across the IN pin input supply near the regulator. This  
capacitor counteracts reactive input sources and improves transient response, noise rejection, and ripple  
rejection. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated, or if  
the device is located far from the power source. If source impedance is not sufficiently low, a 0.1-μF input  
capacitor may be necessary to ensure stability.  
The BIAS pin does not require an input capacitor because BIAS does not source high currents. However, if  
source impedance is not sufficiently low, TI recommends a small 0.1-µF bypass capacitor.  
The TPS720-Q1 is designed to be stable with standard ceramic capacitors with values of 2.2 μF or larger at the  
output. X5R- and X7R-type capacitors are best because they have minimal variation in value and ESR over  
temperature. Maximum ESR must be less than 250 m.  
8.1.2 Output Regulation With the IN Pin Floating  
The TPS720-Q1 supports a novel feature where the output of the LDO regulates under light loads when the IN  
pin is left floating. Under normal conditions when the IN pin is connected to a power source, the BIAS pin draws  
only tens of milliamperes. However, when the IN pin is floating, an innovative circuit allows a maximum current of  
500 μA to be drawn by the load through the BIAS pin and maintains the output in regulation. This feature is  
particularly useful in power-saving applications where a dc-dc converter connected to the IN pin is disabled, but  
the LDO is required to regulate the output voltage to a light load.  
Figure 25 shows an application example where a microcontroller is not turned off (to maintain the state of the  
internal memory), but where the regulated supply (shown as the TPS62xxx) is turned off to reduce power. In this  
case, the TPS720-Q1 BIAS pin provides sufficient load current to maintain a regulated voltage to the  
microcontroller.  
10 mH  
2.6 V to 5.5 V  
BIAS  
VIN  
EN  
IN  
OUT  
SW  
FB  
TPS62xxx  
TPS720-Q1  
2.2 mF  
10 mF  
EN  
GND  
GND  
Microcontroller  
Control to turn on or off the dc-dc.  
The output of the dc-dc is floating when  
the TPS62xxx EN pin is low.  
Figure 25. Floating IN Pin Regulation Example  
Copyright © 2016, Texas Instruments Incorporated  
13  
 
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
Application Information (continued)  
8.1.3 Dropout Voltage  
The TPS720-Q1 uses a NMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the  
dropout voltage (VDO), the NMOS pass device is in the linear region of operation and the input-to-output  
resistance is the RDS(ON) of the NMOS pass element. VDO approximately scales with output current because the  
NMOS device behaves like a resistor in dropout.  
PSRR and transient response are degraded when (VIN – VOUT) approaches dropout. This effect is shown in  
Figure 19.  
8.1.4 Transient Response  
Increasing the size of the output capacitor reduces overshoot and undershoot magnitude but increases duration  
of the transient response.  
8.1.5 Minimum Load  
The TPS720-Q1 is stable with no output load. Although some LDOs suffer from low loop gain at very light output  
loads, the TPS720-Q1 employs an innovative, low-current mode circuit under very light or no-load conditions  
which improves output voltage regulation performance.  
8.2 Typical Application  
VBATT  
CBIAS  
BIAS  
1.8 V  
1.3 V  
Standalone  
dc/dc  
VCORE  
IN  
OUT  
TPS720xx  
Converter  
or PMU  
CIN  
COUT  
EN  
GND  
VEN  
Figure 26. Typical Application Schematic  
8.2.1 Design Requirements  
Table 1 lists the parameters for this design example.  
Table 1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VIN  
2.3 V  
3.2 V  
1.8 V  
VBIAS  
VOUT  
IOUT  
10-mA typical, 350-mA peak  
14  
Copyright © 2016, Texas Instruments Incorporated  
 
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
8.2.2 Detailed Design Procedures  
TI recommends selecting the minimum component size; a small size solution for this design example is desired.  
Set CIN = 1 µF, C BIAS = 100 nF, and COUT = 2.2 µF.  
8.2.3 Application Curves  
1.83  
1.82  
1.81  
1.8  
1.83  
1.82  
1.81  
1.8  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
TJ = -40°C  
TJ = 0°C  
TJ = 25°C  
TJ = 85°C  
TJ = 105°C  
TJ = 125°C  
1.79  
1.79  
3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9  
4
4.1 4.2 4.3 4.4 4.5  
0
50  
100  
150  
200  
250  
300  
350  
Input Voltage (V)  
Output Current (mA)  
IOUT = 350 mA  
Figure 27. VIN Line Regulation  
Figure 28. Load Regulation  
Copyright © 2016, Texas Instruments Incorporated  
15  
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
9 Power Supply Recommendations  
The input supply and bias supply for the LDO must be within the recommended operating conditions and must  
provide adequate headroom for the device to have a regulated output. The minimum capacitor requirements  
must be met, and if the input supply is noisy, additional input capacitors with low ESR can improve transient  
performance.  
10 Layout  
10.1 Layout Guidelines  
TI recommends designing the board with separate ground planes for VIN and VOUT, with the ground plane  
connected only at the GND pin of the device to improve ac performance (such as PSRR, output noise, and  
transient response.) In addition, the ground connection for the output capacitor must be connected directly to the  
GND pin of the device. High equivalent series resistance (ESR) capacitors can degrade PSRR. The BIAS pin  
draws very little current and can be routed as a signal. Take care to shield the BIAS pin from high frequency  
coupling.  
10.2 Layout Example  
Ground Plane  
To Enable  
Signal  
To Bias Supply  
4
5
BIAS  
GND  
EN  
NC  
3
2
1
CBIAS  
COUT  
CIN  
6
IN  
OUT  
To Load  
To Input Supply  
Ground Plane  
Figure 29. Recommended Layout  
16  
Copyright © 2016, Texas Instruments Incorporated  
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
10.3 Thermal Considerations  
Thermal protection disables the output when the junction temperature rises to approximately +160°C, allowing  
the device to cool. When the junction temperature cools to approximately +140°C, the output circuitry is again  
enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection  
circuit can cycle on and off. This cycling limits the dissipation of the regulator, protecting the regulator from  
damage as a result of overheating.  
Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate  
heat sink. For reliable operation, limit junction temperature to a maximum of +125°C. To estimate the margin of  
safety in a complete design (including heat sink), increase the ambient temperature until the thermal protection is  
triggered; use worst-case loads and signal conditions. For good reliability, trigger thermal protection at least 35°C  
above the maximum expected ambient condition of the particular application. This configuration produces a  
worst-case junction temperature of +125°C at the highest expected ambient temperature and worst-case load.  
The internal protection circuitry of the TPS720-Q1 is designed to protect against overload conditions. This  
circuitry is not intended to replace proper heat sinking. Continuously running the TPS720-Q1 into thermal  
shutdown degrades device reliability.  
10.4 Power Dissipation  
The printed-circuit-board (PCB) area around the device that is free of other components moves the heat from the  
device to ambient air. Performance data for JEDEC boards are given in the Thermal Information table. Using  
heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-  
holes to heat-dissipating layers also improves the heat sink effectiveness.  
Power dissipation depends on input voltage and load conditions. Power dissipation (PD) is equal to the product of  
the output current times the voltage drop across the output pass element (VIN to VOUT), as shown in Equation 2:  
PD =(VIN - VOUT )ì IOUT  
(2)  
版权 © 2016, Texas Instruments Incorporated  
17  
 
TPS720-Q1  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
11.1.1.1 评估模块  
评估模块 (EVM) 可与 TPS720-Q1 配套使用,帮助评估初始电路性能。TPS720xxDRVEVM 评估模块(和相关用  
户指南)可在德州仪器 (TI) 网站上的产品文件夹中获取,也可直接从 TI 网上商店购买。  
的表注中的输出电压范围从“0.9V 3.0V”更改为“0.9V 3.3V”  
11.1.2 器件命名规则  
2. 器件命名规则(1)(2)  
产品  
VOUT  
xx(x) 为标称输出电压。对于分辨率为 100mV 的输出电压,订货编号中使用两位数字;否则,使用三位数  
字(例如,28 = 2.8V125 = 1.25V)。  
yyy 为封装标识符。  
TPS720xx(x)QyyyzQ1  
z 为封装数量。R 表示 3000 片,T 表示 250 片。  
(1) 要获得最新的封装和订货信息,请参见本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。  
(2) 可提供 0.9V 3.3V 范围内的输出电压(以 50mV 为单位增量)。更多详细信息及可用性,请联系制造商。  
11.2 文档支持  
11.2.1 相关文档ꢀ  
相关文档如下:  
《高效降压低功耗 DC-DC 转换器》(文献编号:SGLS243)。  
TPS720xxDRVEVM 评估模块》(文献编号:SBVU024)。  
《使用新的热指标》(文献编号:SBVA025)。  
11.3 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
18  
版权 © 2016, Texas Instruments Incorporated  
TPS720-Q1  
www.ti.com.cn  
ZHCSEN1A FEBRUARY 2016REVISED OCTOBER 2016  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
19  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TPS72009QDRVRQ1  
TPS720105QDRVRQ1  
TPS72010QDRVRQ1  
TPS720115QDRVRQ1  
TPS72011QDRVRQ1  
TPS72012QDRVRQ1  
TPS72015QDRVRQ1  
TPS72018QDRVRQ1  
TPS72025QDRVRQ1  
TPS72027QDRVRQ1  
TPS720285QDRVRQ1  
TPS72028QDRVRQ1  
TPS72029QDRVRQ1  
TPS72030QDRVRQ1  
TPS72033QDRVRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
DRV  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
11P  
15G  
11Q  
15H  
11I  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
11R  
11J  
11K  
11W  
15I  
11M  
11L  
11N  
11O  
15J  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DRV 6  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4206925/F  
PACKAGE OUTLINE  
DRV0006A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
(0.2) TYP  
0.05  
0.00  
1
0.1  
EXPOSED  
THERMAL PAD  
3
4
6
2X  
7
1.3  
1.6 0.1  
1
4X 0.65  
0.35  
0.25  
6X  
PIN 1 ID  
(OPTIONAL)  
0.3  
0.2  
6X  
0.1  
C A  
C
B
0.05  
4222173/B 04/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
6X (0.45)  
6X (0.3)  
(1)  
1
7
6
SYMM  
(1.6)  
(1.1)  
4X (0.65)  
4
3
SYMM  
(1.95)  
(R0.05) TYP  
(
0.2) VIA  
TYP  
LAND PATTERN EXAMPLE  
SCALE:25X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222173/B 04/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DRV0006A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
7
6X (0.45)  
METAL  
1
6
6X (0.3)  
(0.45)  
SYMM  
4X (0.65)  
(0.7)  
4
3
(R0.05) TYP  
(1)  
(1.95)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD #7  
88% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:30X  
4222173/B 04/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TPS72028QDRVRQ1

具有使能功能的汽车类、350mA、低输入电压 (1.1V)、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS72029QDRVRQ1

具有使能功能的汽车类、350mA、低输入电压 (1.1V)、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS72030QDRVRQ1

具有使能功能的汽车类、350mA、低输入电压 (1.1V)、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS72033QDRVRQ1

具有使能功能的汽车类、350mA、低输入电压 (1.1V)、高 PSRR、低 IQ、低压降稳压器 | DRV | 6 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS720XX

350mA, Ultra-Low VIN, RF Low-Dropout Linear Regulator with Bias Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS720XX_0809

350mA, Ultra-Low VIN, RF Low-Dropout Linear Regulator with Bias Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS721

具有使能功能的 150mA、低压降稳压器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS72101

LOW INPUT VOLTAGE, CAP FREE 150-mA LOW-DROPOUT LINEAR REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS72101DBVR

LOW INPUT VOLTAGE, CAP FREE 150-mA LOW-DROPOUT LINEAR REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS72101DBVRG4

LOW INPUT VOLTAGE, CAP FREE 150-mA LOW-DROPOUT LINEAR REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS72101DBVT

LOW INPUT VOLTAGE, CAP FREE 150-mA LOW-DROPOUT LINEAR REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS72101DBVTG4

LOW INPUT VOLTAGE, CAP FREE 150-mA LOW-DROPOUT LINEAR REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI