TPS72501KTTR [TI]

LOW INPUT VOLTAGE, 1-A LOW-DROPOUT LINEAR REGULATORS WITH SUPERVISOR; 低输入电压, 1 -A低压差线性带有监控稳压器
TPS72501KTTR
型号: TPS72501KTTR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LOW INPUT VOLTAGE, 1-A LOW-DROPOUT LINEAR REGULATORS WITH SUPERVISOR
低输入电压, 1 -A低压差线性带有监控稳压器

线性稳压器IC 调节器 电源电路 输出元件 监控 输入元件
文件: 总22页 (文件大小:717K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
LOW INPUT VOLTAGE, 1-A LOW-DROPOUT LINEAR REGULATORS WITH SUPERVISOR  
FEATURES  
DESCRIPTION  
1-A Output Current  
The TPS725xx family of 1-A low-dropout (LDO) linear  
regulators has fixed voltage options available that are  
commonly used to power the latest DSPs, FPGAs,  
and microcontrollers. An adjustable option ranging  
from 1.22 V to 5.5 V is also available. The integrated  
supervisory circuitry provides an active low RESET  
signal when the output falls out of regulation. The no  
capacitor/any capacitor feature allows the customer  
to tailor output transient performance as needed.  
Therefore, compared to other regulators capable of  
providing the same output current, this family of  
regulators can provide a stand-alone power supply  
solution or a post regulator for a switch mode power  
supply.  
Available in 1.5-V, 1.6-V, 1.8-V, 2.5-V  
Fixed-Output and Adjustable Versions  
(1.2-V to 5.5-V)  
Input Voltage Down to 1.8 V  
Low 170-mV Dropout Voltage at 1 A  
(TPS72525)  
Stable With Any Type/Value Output Capacitor  
Integrated Supervisor (SVS) With 50-ms  
RESET Delay Time  
Low 210-µA Ground Current at Full Load  
(TPS72525)  
Less than 1-µA Standby Current  
These regulators are ideal for higher current appli-  
cations. The family operates over a wide range of  
input voltages (1.8 V to 6 V) and has very low  
dropout (170 mV at 1-A).  
±2% Output Voltage Tolerance Over Line,  
Load, and Temperature (-40°C to 125°C)  
Integrated UVLO  
Ground current is typically 210 µA at full load and  
drops to less than 80 µA at no load. Standby current  
is less than 1 µA.  
Thermal and Overcurrent Protection  
5-Lead SOT223-5 or DDPAK and 8-Pin SOP  
(TPS72501 only) Surface Mount Package  
Each regulator option is available in either  
a
SOT223-5, D (TPS72501 only), or DDPAK package.  
With a low input voltage and properly heatsinked  
package, the regulator dissipates more power and  
achieves higher efficiencies than similar regulators  
requiring 2.5 V or more minimum input voltage and  
higher quiescent currents. These features make it a  
viable power supply solution for portable, bat-  
tery-powered equipment.  
APPLICATIONS  
PCI Cards  
Modem Banks  
Telecom Boards  
DSP, FPGA, and Microprocessor Power  
Supplies  
Portable, Battery-Powered Applications  
DCQ PACKAGE  
SOT223-5  
(TOP VIEW)  
KTT PACKAGE  
DDPAK  
(TOP VIEW)  
D PACKAGE  
(TOP VIEW)  
1
ENABLE  
OUT  
FB  
GND  
NC  
IN  
1
2
3
4
8
7
6
5
2
IN  
GND  
GND  
ENABLE  
3
GND  
OUT  
1
2 3 4 5  
4
5
RESET/FB  
NC − No internal connection  
NOTE: TPS72501 replaces RESET with FB. Tab is GND for the DCK and KTT packages.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2002–2004, Texas Instruments Incorporated  
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (CONTINUED)  
Although an output capacitor is not required for stability, transient response and output noise are improved with a  
10-µF output capacitor.  
Unlike some regulators that have a minimum current requirement, the TPS725 family is stable with no output  
load current. The low noise capability of this family, coupled with its high current operation and ease of power  
dissipation, make it ideal for telecom boards, modem banks, and other noise-sensitive applications.  
ORDERING INFORMATION  
TJ  
VOLTAGE(1)  
SOT223-5(2)  
TPS72501DCQ  
TPS72515DCQ  
TPS72516DCQ  
TPS72518DCQ  
TPS72525DCQ  
SYMBOL  
PS72501  
PS72515  
PS72516  
PS72518  
PS72525  
DDPAK(3)  
D(4)  
SYMBOL  
TPS72501  
TPS72515  
TPS72516  
TPS72518  
TPS72525  
Adjustable (1.2 V to 5 V)  
TPS72501KTT  
TPS72515KTT  
TPS72516KTT  
TPS72518KTT  
TPS72525KTT  
TPS72501D  
1.5 V  
1.6 V  
1.8 V  
2.5 V  
-40°C to  
125°C  
(1) Other voltage options are available upon request from the manufacturer.  
(2) To order a taped and reeled part, add the suffix R to the part number (e.g., TPS72501DCQR).  
(3) To order a 50-piece reel, add the suffix T (e.g., TPS72501KTTT); to order a 500-piece reel, add the suffix R (e.g., TPS72501KTTR).  
(4) To order a taped and reeled part, add the suffix R or T (2500 or 500) to the part number (e.g. TPS72501DR)  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted(1)  
UNIT  
(2)  
Input voltage, VI  
-0.3 to 7  
V
V
Voltage range at EN, FB  
-0.3 to VI + 0.3  
Voltage on OUT, RESET  
6
2
V
ESD rating, HBM  
kV  
Continuous total power dissipation  
Operating junction temperature range, TJ  
Maximum junction temperature range, TJ  
Storage temperature, Tstg  
See Dissipation Ratings Table  
-50 to 150  
150  
°C  
°C  
°C  
-65 to 150  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to network ground terminal.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM MAX UNIT  
(1)  
Input voltage, VI  
1.8  
0
6
1
V
A
Continuous output current, IO  
Operating junction temperature, TJ  
-40  
125 °C  
(1) Minimum VI = VO (nom) + VDO  
.
2
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
PACKAGE DISSIPATION RATINGS  
PACKAGE  
DDPAK  
SOT223  
D-8  
BOARD  
High K(1)  
Low K(2)  
High K(1)  
RθJC  
RθJA  
2 °C/W  
23 °C/W  
15 °C/W  
53 °C/W  
55 °C/W  
39.4 °C/W  
(1) The JEDEC high-K (2s2p) board design used to derive this data was a 3-inch x 3-inch (7.5-cm x 7.5-cm), multilayer board with 1 ounce  
internal power and ground planes and 2 ounce copper traces on top and bottom of the board.  
(2) The JEDEC low-K (1s) board design used to derive this data was a 3-inch x 3-inch (7.5-cm x 7.5-cm), two-layer board with 2 ounce  
copper traces on top of the board.  
ELECTRICAL CHARACTERISTICS  
over recommended operating free-air temperature range VI = VO(typ) + 1 V, IO= 1 mA, EN = IN, Co = 1 µF, Ci = 1 µF (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Bandgap voltage reference  
1.177  
1.220  
1.263  
V
TPS72501  
Adjustable  
0 µA < IO < 1 A(1)  
1.22 V VO 5.5 V 0.965 VO  
1.035 VO  
TJ = 25°C  
1.5  
1.6  
1.8  
2.5  
TPS72515  
0 µA< IO < 1 A  
TJ = 25°C  
1.8 V VI 5.5 V  
2.6 V VI 5.5 V  
2.8 V VI 5.5 V  
3.5 V VI 5.5 V  
1.47  
1.568  
1.764  
2.45  
1.53  
1.632  
1.836  
TPS72516  
TPS72518  
TPS72525  
VO  
Output voltage  
V
0 µA < IO < 1 A  
TJ = 25°C  
0 µA < IO < 1 A  
TJ = 25°C  
0 µA < IO < 1 A  
IO = 0 µA  
2.55  
120  
300  
75  
210  
0.2  
I
Ground current  
µA  
IO = 1 A  
EN < 0.4 V  
EN < 0.4 V  
TJ = 25°C  
Standby current  
µA  
µV  
1
BW = 200 Hz to 100 kHz, Co = 10 µF, IO = 1  
Vn  
Output noise voltage  
150  
TJ = 25°C  
mA  
PSRR  
Ripple rejection  
Current limit(2)  
f = 1 kHz, Co = 10 µF  
TJ = 25°C  
60  
dB  
A
1.1  
1.6  
2.3  
0.15  
0.25  
Output voltage line regulation  
VO + 1 V < VI5.5 V  
-0.15  
0.02  
0.05  
%/V  
%/A  
(VO/VO)(3)  
Output voltage load regulation  
EN high level input(2)  
EN low level input(2)  
EN input current  
0 µA < IO < 1 A  
-0.25  
1.3  
VIH  
VIL  
II  
V
-0.2  
0.4  
100  
100  
1.70  
EN = 0 V or VI  
0.01  
nA  
nA  
V
I(FB)  
Feedback current  
UVLO threshold  
TPS72501  
V(FB) = 1.22  
-100  
1.45  
VCC rising  
1.57  
50  
UVLO hysteresis  
UVLO deglitch  
TJ = 25°C, VCC rising  
TJ = 25°C, VCC rising  
TJ = 25°C, VCC rising  
mV  
µs  
µs  
10  
UVLO delay  
100  
(1) Minimum IN operating voltage used for testing is VO(typ) + 1 V.  
(2) Test condition includes output voltage VO = VO - 15% and pulse duration = 10 ms.  
(3) VImin = (VO + 1) or 1.8 V whichever is greater.  
ǒ
IminǓ  
V
5.5 V * V  
O
ǒ
Ǔ
Line regulation (mV) + %ńV   
  1000  
100  
3
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended operating free-air temperature range VI = VO(typ) + 1 V, IO= 1 mA, EN = IN, Co = 1 µF, Ci = 1 µF (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
TJ = 25°C  
MIN  
TYP  
MAX UNIT  
IO = 1 A  
IO = 1 A  
IO = 1 A  
IO = 1 A  
170  
(4)  
(4)  
TPS72525  
TPS72518  
280  
mV  
VDO  
Dropout voltage  
TJ = 25°C  
210  
320  
Minimum input voltage for valid  
RESET  
1.3  
90  
V
Trip threshold voltage  
Hysteresis voltage  
93  
10  
50  
10  
96 %VO  
mV  
RESET  
t(RESET) delay time  
25  
75  
ms  
µs  
V
Rising edge deglitch  
Output low voltage (at 700 µA)  
Leakage current  
-0.3  
0.4  
100  
nA  
(4) Dropout voltage is defined as the differential voltage between VO and VI when VO drops 100 mV below the value measured with  
VI = VO + 1 V.  
4
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
FUNCTIONAL BLOCK DIAGRAM—ADJUSTABLE VERSION  
TPS72501  
IN  
OUT  
FB  
EN  
Current  
Limit/Thermal  
Protection  
1.220  
V
ref  
GND  
FUNCTIONAL BLOCK DIAGRAM—FIXED VERSION  
TPS72515/16/18/25  
IN  
OUT  
EN  
Current  
Limit/Thermal  
Protection  
1.220  
V
ref  
GND  
RESET  
Deglitch  
and  
Delay  
0.93 × V  
ref  
TERMINAL FUNCTIONS  
TERMINAL  
NO.D  
CQ &  
KTT  
I/O DESCRIPTION  
NO.  
D
NAME  
ENABLE  
FB  
5
2
1
I
Enable input  
Feedback  
Ground  
GND  
3, 6, 7  
8
3
2
5
IN  
I
Input supply voltage  
RESET/FB  
O/I This terminal is the feedback point for the adjustable option TPS72501. For all other options, this  
terminal is the RESET output terminal. When used with a pullup resistor, this open-drain output  
provides the active low RESET signal when the regulator output voltage drops more than 5% below  
its nominal output voltage. The RESET delay time is typically 50 ms.  
NC  
4
1
4
No connection  
OUT  
O
Regulated output voltage  
5
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
RESET TIMING DIAGRAM  
IN  
V
RES  
V
RES  
(see Note A)  
t
OUT  
V
IT+  
(see Note B)  
V
IT+  
(see Note B)  
Threshold  
Voltage  
V
IT–  
V
IT–  
(see Note B)  
(see Note B)  
t
RESET  
Output  
50 ms  
Delay  
50 ms  
Delay  
Output  
Undefined  
Output  
Undefined  
t
NOTES:A. V  
is the minimum input voltage for a valid RESET. The symbol V  
is not currently listed within EIA or JEDEC standards for  
RES  
RES  
semiconductorsymbology.  
–Trip voltage is typically 7% lower than the output voltage (93%V ) V to V is the hysteresis voltage.  
B.  
V
IT  
O
IT–  
IT+  
6
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
TYPICAL CHARACTERISTICS  
TPS72518  
OUTPUT VOLTAGE  
vs  
TPS72518  
OUTPUT VOLTAGE  
vs  
TPS72518  
GROUND CURRENT  
vs  
OUTPUT CURRENT  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
1.805  
250  
1.8015  
1.801  
V = 2.8 V  
I
V = 2.8 V  
I
V = 2.8 V  
I
I
= 1 A  
C
o
= 1 µF  
O
C
o
= 1 µF  
C
T
= 1 µF  
= 25° C  
o
T
J
= 25° C  
200  
150  
J
1.800  
1.795  
I
= 0 mA  
O
1.8005  
1.8  
I
= 0 mA  
O
100  
50  
0
1.7995  
I
= 1 A  
O
1.790  
1.785  
1.799  
1.7985  
−40−25 −10  
5 20 35 50 65 80 95 110 125  
0
0.2  
0.4  
0.6  
0.8  
1
1000  
4.5  
−40 −2510 5 20 35 50 65 80 95 110 125  
T
J
− Junction Temperature − °C  
I
− Output Current − A  
T
J
− Junction Temperature − °C  
O
Figure 1.  
Figure 2.  
Figure 3.  
TPS72518  
TPS72525  
TPS72518  
GROUND CURRENT  
vs  
OUTPUT CURRENT  
DC DROPOUT VOLTAGE  
vs  
DROPOUT VOLTAGE  
vs  
OUTPUT CURRENT  
JUNCTION TEMPERATURE  
300  
250  
200  
150  
100  
200  
175  
150  
125  
300  
250  
V
C
= 1.7 V  
= 1 µF  
O
V
= 2.5 V (nom)  
O
o
T
J
= 125°C  
I = 1 A  
O
200  
150  
100  
50  
T
J
= 25°C  
100  
75  
50  
T
J
= −40°C  
50  
0
I
= 10 mA  
O
25  
0
0
−40 −2510 5 20 35 50 65 80 95 110 125  
0
0.2  
0.4  
0.6  
0.8  
1
0.01  
0.1  
1
10  
100  
I
− Output Current − A  
T
J
− Junction Temperature − °C  
O
I
− Output Current − mA  
O
Figure 4.  
Figure 5.  
Figure 6.  
MINIMUM REQUIRED  
INPUT VOLTAGE  
vs  
TPS72518  
TPS72518  
LOAD TRANSIENT RESPONSE  
OUTPUT VOLTAGE  
LINE TRANSIENT RESPONSE  
4.5  
V
= 2.8 V  
O
I
= 1 A  
O
100  
0
C
= 10 µF  
3.8  
2.8  
o
C
o
= 10 µF  
4
T
J
= 125°C  
C = 1 µF  
i
3.5  
T
J
= 25°C  
−100  
3
1
0.5  
0
100  
0
2.5  
T
J
= −40°C  
2
−100  
1.5  
0
5
10 15 20 25 30 35 40 45 50  
0
50 100 150 200 250 300 350 400 450 500  
1.5  
2
2.5  
3
3.5  
4
t − Time − µs  
t − Time − µs  
V
− Output Voltage − V  
O
Figure 7.  
Figure 8.  
Figure 9.  
7
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
TYPICAL CHARACTERISTICS (continued)  
TPS72518 OUTPUT VOLTAGE,  
ENABLE VOLTAGE  
vs  
TIME (START-UP)  
TPS72518  
LOAD TRASIENT RESPONSE  
TPS72518  
POWER UP/POWER DOWN  
3
2
1
R
C
= 1.8  
= 1 µF  
L
5
4
100  
0
V = 2.8 V  
I
o
I
= 1 A  
O
C = 1 µF  
i
C
o
= 10 µF  
−100  
3
2
0
V = 2.8 V  
V
I
I
C
o
= 1 µF  
C = 1 µF  
I
2
1
1
0
1.5  
0.5  
0
1
V
O
0.5  
0
0
5
10 15 20 25 30 35 40 45 50  
0
100 200 300 400 500 600 700 800 900 1000  
0
20 40 60 80 100 120 140 160 180 200  
t − Time − µs  
t − Time − µs  
t − Time − µs  
Figure 10.  
Figure 11.  
Figure 12.  
TPS72518 OUTPUT SPECTRAL  
TPS72518  
RIPPLE REJECTION  
vs  
NOISE DENSITY  
vs  
OUTPUT IMPEDANCE  
vs  
FREQUENCY  
FREQUENCY  
FREQUENCY  
3.5  
3
10  
100  
90  
V = 2.8 V,  
I
V = 2.8 V  
I
V
= 1.8 V,  
I
= 1 A  
O
O
I
= 1 mA  
O
C
o
= 10 µF  
80  
C
O
= 10 µF  
2.5  
2
70  
1
60  
50  
10 µF / 1mA  
I
= 1 A  
O
1.5  
1
0.1  
40  
30  
20  
10 µF / 1 A  
V = 2.8 V  
I
0.01  
0
0.5  
0
C
= 10 µF  
= 25° C  
o
I
= 1 mA  
O
10  
0
T
J
10  
100  
1 k  
10 k  
100 k  
10  
100  
1 k  
10 k  
100 k  
1 M  
10  
100  
1 k  
10 k  
100 k  
1 M  
f − Frequency − Hz  
f − Frequency − Hz  
f − Frequency − Hz  
Figure 13.  
Figure 14.  
Figure 15.  
CURRENT LIMIT  
vs  
INPUT VOLTAGE  
TPS72515 GROUND CURRENT  
DROPOUT VOLTAGE  
vs  
INPUT VOLTAGE  
vs  
INPUT VOLTAGE  
600  
500  
400  
300  
200  
100  
0
300  
250  
200  
150  
100  
50  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
T
= 125°C  
J
T
= 125°C  
J
T
= 25°C  
J
T
= 25°C  
J
I = 1 A  
I = 0 A  
T
= −40°C  
J
T
J
= −40°C  
1100  
1000  
0
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
0
1
2
3
4
5
6
V − Input Voltage − V  
I
V − Input voltage − V  
I
V − Input Voltage − V  
I
Figure 16.  
Figure 17.  
Figure 18.  
8
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
APPLICATION INFORMATION  
The TPS725xx family of low-dropout (LDO) regulators has numerous features that make it applicable to a wide  
range of applications. The family operates with very low input voltage (1.8 V) and low dropout voltage (typically  
200 mV at full load), making it an efficient stand-alone power supply or post regulator for battery or switch mode  
power supplies. Both the active low RESET and 1-A output current make the TPS725xx family ideal for powering  
processor and FPGA supplies. The TPS725xx family also has low output noise (typically 150 µVRMS with 10-µF  
output capacitor), making it ideal for use in telecom equipment.  
External Capacitor Requirements  
A 1-µF or larger ceramic input bypass capacitor, connected between IN and GND and located close to the  
TPS725xx, is required for stability. To improve transient response, noise rejection, and ripple rejection, an  
additional 10-µF or larger, low ESR capacitor is recommended. A higher-value, low ESR input capacitor may be  
necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the  
power source, especially if the minimum input voltage of 1.8 V is used.  
Although an output capacitor is not required for stability, transient response and output noise are improved with a  
10-µF output capacitor.  
Programming the TPS72501 Adjustable LDO Regulator  
The output voltage of the TPS72501 adjustable regulator is programmed using an external resistor divider as  
shown in Figure 19. The output voltage is calculated using:  
R1  
R2  
  ǒ1 ) Ǔ  
V
+ V  
O
ref  
(1)  
Where:  
VFB = VREF = 1.22 V typical (see the electrical characteristics for VREF range)  
Resistors R1 and R2 should be chosen for approximately 10-µA divider current. Lower value resistors offer no  
inherent advantage and waste more power. Higher values should be avoided as leakage currents at FB increase  
the output voltage error. The recommended design procedure is to choose R2 = 120 kto set the divider current  
at 10 µA and then calculate R1 using:  
V
O
R1 +  
* 1   R2  
ǒ Ǔ  
V
ref  
(2)  
TPS72501  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
(Standard 1% Resistor Values)  
V
I
IN  
1 µF  
1.3 V  
0.4 V  
PROGRAM  
VOLTAGE  
ACTUAL  
R1 (K) R2 (k) VOLTAGE  
EN  
OUT  
FB  
V
o
O
1.8 V  
2.5 V  
3.3 V  
3.6 V  
56.2  
127  
196  
205  
118  
121  
115  
105  
1.801  
2.500  
3.299  
3.602  
R1  
C
1.22 V  
GND  
R2  
Figure 19. TPS72501 Adjustable LDO Regulator Programming  
9
 
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
APPLICATION INFORMATION (continued)  
Regulator Protection  
The TPS725xx pass element has a built-in back diode that safely conducts reverse current when the input  
voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the  
input and is not internally limited. If extended reverse voltage is anticipated, external limiting might be  
appropriate.  
The TPS725xx also features internal current limiting and thermal protection. During normal operation, the  
TPS725xx limits output current to approximately 1.6 A. When current limiting engages, the output voltage scales  
back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device  
failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the  
device exceeds 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to below  
145°C, regulator operation resumes.  
THERMAL INFORMATION  
The amount of heat that an LDO linear regulator generates is directly proportional to the amount of power it  
dissipates during operation. All integrated circuits have a maximum allowable junction temperature (TJmax)  
above which normal operation is not assured. A system designer must design the operating environment so that  
the operating junction temperature (TJ) does not exceed the maximum junction temperature (TJmax). The two  
main environmental variables that a designer can use to improve thermal performance are air flow and external  
heatsinks. The purpose of this information is to aid the designer in determining the proper operating environment  
for a linear regulator that is operating at a specific power level.  
In general, the maximum expected power (PD(max)) consumed by a linear regulator is computed as:  
PDmax + ǒVI(avg)  
Ǔ
* V  
  I  
) V  
x I  
I(avg) (Q)  
O(avg)  
O(avg)  
(3)  
Where:  
VI(avg) is the average input voltage.  
VO(avg) is the average output voltage.  
IO(avg) is the average output current.  
I(Q) is the quiescent current.  
For most TI LDO regulators, the quiescent current is insignificant compared to the average output current;  
therefore, the term VI(avg) x I(Q) can be neglected. The operating junction temperature is computed by adding the  
ambient temperature (TA) and the increase in temperature due to the regulator's power dissipation. The  
temperature rise is computed by multiplying the maximum expected power dissipation by the sum of the thermal  
resistances between the junction and the case (RθJC), the case to heatsink (RθCS), and the heatsink to ambient  
(RθSA). Thermal resistances are measures of how effectively an object dissipates heat. Typically, the larger the  
device, the more surface area available for power dissipation and the lower the object's thermal resistance.  
Figure 20 illustrates these thermal resistances for (a) a SOT223 package mounted in a JEDEC low-K board, and  
(b) a DDPAK package mounted on a JEDEC high-K board.  
10  
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
THERMAL INFORMATION (continued)  
T
T
A
J
R
θ
JC  
A
CIRCUIT BOARD COPPER AREA  
C
B
B
C
B
A
R
θ
θ
CS  
C
R
SA  
C
DDPAK Package  
SOT223 Package  
(a)  
(b)  
T
A
Figure 20. Thermal Resistances  
Equation 4 summarizes the computation:  
) P max x ǒR  
θSAǓ  
T
+ T  
) R  
) R  
D
J
A
θJC  
θCS  
(4)  
The RθJC is specific to each regulator as determined by its package, lead frame, and die size provided in the  
regulator's data sheet. The RθSA is a function of the type and size of heatsink. For example, black body radiator  
type heatsinks can have RθCS values ranging from 5°C/W for very large heatsinks to 50°C/W for very small  
heatsinks. The RθCS is a function of how the package is attached to the heatsink. For example, if a thermal  
compound is used to attach a heatsink to a SOT223 package, RθCSof 1°C/W is reasonable.  
Even if no external black body radiator type heatsink is attached to the package, the board on which the  
regulator is mounted provides some heatsinking through the pin solder connections. Some packages, like the  
DDPAK and SOT223 packages, use a copper plane underneath the package or the circuit board's ground plane  
for additional heatsinking to improve their thermal performance. Computer-aided thermal modeling can be used  
to compute very accurate approximations of an integrated circuit's thermal performance in different operating  
environments (e.g., different types of circuit boards, different types and sizes of heatsinks, different air flows,  
etc.). Using these models, the three thermal resistances can be combined into one thermal resistance between  
junction and ambient (RθJA). This RθJAis valid only for the specific operating environment used in the computer  
model.  
Equation 4 simplifies into Equation 5:  
T
+ T ) P max x R  
D
J
A
θJA  
(5)  
Rearranging Equation 5 gives Equation 6:  
T –T  
J
A
R
+
θJA  
P max  
D
(6)  
Using Equation 5 and the computer model generated curves shown in Figure 21 and Figure 24, a designer can  
quickly compute the required heatsink thermal resistance/board area for a given ambient temperature, power  
dissipation, and operating environment.  
DDPAK Power Dissipation  
The DDPAK package provides an effective means of managing power dissipation in surface mount applications.  
The DDPAK package dimensions are provided in the Mechanical Data section at the end of the data sheet. The  
addition of a copper plane directly underneath the DDPAK package enhances the thermal performance of the  
package.  
11  
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
THERMAL INFORMATION (continued)  
To illustrate, the TPS72525 in a DDPAK package was chosen. For this example, the average input voltage is 5  
V, the output voltage is 2.5 V, the average output current is 1 A, the ambient temperature 55°C, the air flow is  
150 LFM, and the operating environment is the same as documented below. Neglecting the quiescent current,  
the maximum average power is:  
(
)
P max  
5
2.5 V x 1 A  
2.5 W  
D
(7)  
Substituting TJmax for TJ into Equation 6 gives Equation 8:  
max + (125 * 55)°Cń2.5 W + 28°CńW  
R
θJA  
(8)  
From Figure 21, DDPAK Thermal Resistance vs Copper Heatsink Area, the ground plane needs to be 1 cm2 for  
the part to dissipate 2.5 W. The operating environment used in the computer model to construct Figure 21  
consisted of a standard JEDEC High-K board (2S2P) with a 1 oz. internal copper plane and ground plane. The  
package is soldered to a 2 oz. copper pad. The pad is tied through thermal vias to the 1 oz. ground plane.  
Figure 22 shows the side view of the operating environment used in the computer model.  
40  
No Air Flow  
35  
150 LFM  
30  
250 LFM  
25  
20  
15  
0.1  
1
10  
100  
2
Copper Heatsink Area − cm  
Figure 21. DDPAK Thermal Resistance vs Copper Heatsink Area  
2 oz. Copper Solder Pad  
with 25 Thermal Vias  
1 oz. Copper  
Power Plane  
1 oz. Copper  
Ground Plane  
Thermal Vias, 0.3 mm  
Diameter, 1,5 mm Pitch  
Figure 22. DDPAK Thermal Resistance  
12  
 
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
THERMAL INFORMATION (continued)  
From the data in Figure 23 and rearranging Equation 6, the maximum power dissipation for a different ground  
plane area and a specific ambient temperature can be computed.  
5
T
A
= 55°C  
250 LFM  
4
3
150 LFM  
No Air Flow  
2
1
0.1  
1
10  
100  
2
Copper Heatsink Area − cm  
Figure 23. Maximum Power Dissipation vs Copper Heatsink Area  
SOT223 Power Dissipation  
The SOT223 package provides an effective means of managing power dissipation in surface mount applications.  
The SOT223 package dimensions are provided in the Mechanical Data section at the end of the data sheet. The  
addition of a copper plane directly underneath the SOT223 package enhances the thermal performance of the  
package.  
To illustrate, the TPS72525 in a SOT223 package was chosen. For this example, the average input voltage is  
3.3 V, the output voltage is 2.5 V, the average output current is 1 A, the ambient temperature 55°C, no air flow is  
present, and the operating environment is the same as documented below. Neglecting the quiescent current, the  
maximum average power is:  
(
)
P max  
3.3  
2.5 V x 1 A  
800 mW  
D
(9)  
Substituting TJmax for TJ into Equation 6 gives Equation 10:  
max + (125 * 55)°Cń800 mW + 87.5°CńW  
R
θJA  
(10)  
From Figure 24, RΘJA vs PCB Copper Area, the ground plane needs to be 0.55 in2 for the part to dissipate 800  
mW. The operating environment used to construct Figure 24 consisted of a board with 1 oz. copper planes. The  
package is soldered to a 1 oz. copper pad on the top of the board. The pad is tied through thermal vias to the 1  
oz. ground plane.  
13  
 
TPS72501  
TPS72515, TPS72516  
TPS72518, TPS72525  
www.ti.com  
SLVS341DMAY 2002REVISED MARCH 2004  
THERMAL INFORMATION (continued)  
180  
160  
No Air Flow  
140  
120  
100  
80  
60  
40  
20  
0
0.1  
1
10  
2
PCB Copper Area − in  
Figure 24. SOT223 Thermal Resistance vs PCB AREA  
From the data in Figure 24 and rearranging Equation 6, the maximum power dissipation for a different ground  
plane area and a specific ambient temperature can be computed (as shown in Figure 25).  
6
T
A
= 25°C  
5
4
2
4 in PCB Area  
3
2
2
0.5 in PCB Area  
1
0
0
25  
50  
75  
100  
125  
150  
T
A
− Ambient Temperature − °C  
Figure 25. SOT223 Power Dissipation  
14  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
PACKAGING INFORMATION  
Orderable Device  
TPS72501DCQ  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOT-223  
DCQ  
6
6
6
6
8
8
8
8
5
5
5
5
5
6
6
6
6
5
5
5
5
5
6
6
6
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS72501DCQG4  
TPS72501DCQR  
TPS72501DCQRG4  
TPS72501DR  
SOT-223  
SOT-223  
SOT-223  
SOIC  
DCQ  
DCQ  
DCQ  
D
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS72501DRG4  
TPS72501DT  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SOIC  
D
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS72501DTG4  
TPS72501KTT  
SOIC  
D
250 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS72501KTTR  
TPS72501KTTRG3  
TPS72501KTTT  
TPS72501KTTTG3  
TPS72515DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS72515DCQG4  
TPS72515DCQR  
TPS72515DCQRG4  
TPS72515KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS72515KTTR  
TPS72515KTTRG3  
TPS72515KTTT  
TPS72515KTTTG3  
TPS72516DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS72516DCQG4  
TPS72516DCQR  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
Orderable Device  
TPS72516DCQRG4  
TPS72516KTT  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
ACTIVE  
SOT-223  
DCQ  
6
5
5
5
5
5
6
6
6
6
5
5
5
5
5
6
6
6
6
5
5
5
5
5
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
DCQ  
DCQ  
DCQ  
DCQ  
KTT  
KTT  
KTT  
KTT  
KTT  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS72516KTTR  
TPS72516KTTRG3  
TPS72516KTTT  
TPS72516KTTTG3  
TPS72518DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS72518DCQG4  
TPS72518DCQR  
TPS72518DCQRG4  
TPS72518KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS72518KTTR  
TPS72518KTTRG3  
TPS72518KTTT  
TPS72518KTTTG3  
TPS72525DCQ  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
SOT-223  
SOT-223  
SOT-223  
SOT-223  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TPS72525DCQG4  
TPS72525DCQR  
TPS72525DCQRG4  
TPS72525KTT  
78 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
OBSOLETE DDPAK/  
TO-263  
TBD  
Call TI  
CU SN  
CU SN  
CU SN  
CU SN  
Call TI  
TPS72525KTTR  
TPS72525KTTRG3  
TPS72525KTTT  
TPS72525KTTTG3  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
DDPAK/  
TO-263  
500 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
DDPAK/  
TO-263  
50 Green (RoHS &  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Mar-2007  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 3  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

TPS72501KTTRG3

LOW INPUT VOLTAGE, 1-A LOW-DROPOUT LINEAR REGULATORS WITH SUPERVISOR
TI

TPS72501KTTT

LOW INPUT VOLTAGE, 1-A LOW-DROPOUT LINEAR REGULATORS WITH SUPERVISOR
TI

TPS72501KTTTG3

LOW INPUT VOLTAGE, 1-A LOW-DROPOUT LINEAR REGULATORS WITH SUPERVISOR
TI

TPS72501_07

LOW INPUT VOLTAGE, 1-A LOW-DROPOUT LINEAR REGULATORS WITH SUPERVISOR
TI

TPS7250Q

MICROPOWER LOW-DROPOUT LDO VOLTAGE REGULATORS
TI

TPS7250Q/Y

Micropower Low-Dropout(ldo ) Volt
ETC

TPS7250QD

MICROPOWER LOW-DROPOUT LDO VOLTAGE REGULATORS
TI

TPS7250QDG4

MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS
TI

TPS7250QDR

MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS
TI

TPS7250QDRG4

MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS
TI

TPS7250QP

MICROPOWER LOW-DROPOUT LDO VOLTAGE REGULATORS
TI

TPS7250QPE4

MICROPOWER LOW-DROPOUT (LDO) VOLTAGE REGULATORS
TI