TPS74801AQWDRCRQ1 [TI]

具有电源正常指示和使能功能的汽车类 1.5A、0.8V 低噪声可调节 LDO 稳压器 | DRC | 10 | -40 to 150;
TPS74801AQWDRCRQ1
型号: TPS74801AQWDRCRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有电源正常指示和使能功能的汽车类 1.5A、0.8V 低噪声可调节 LDO 稳压器 | DRC | 10 | -40 to 150

稳压器
文件: 总35页 (文件大小:1952K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
TPS748A-Q1 具有可编程软启动功能的汽车1.5A 低压降线性稳压器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准:  
TPS748A-Q1 低压降 (LDO) 线性稳压器可面向多种应  
用提供易于使用的稳健型电源管理解决方案。用户可编  
程软启动通过减少启动时的电容涌入电流最大限度地  
减少了输入电源上的应力。软启动具有单调性旨在为  
各类处理器和专用集成电路 (ASIC) 供电。借助使能输  
入和电源正常输出可通过外部稳压器轻松实现上电排  
序。凭借全方位的灵活性该器件可为现场可编程门阵  
(FPGA)、数字信号处理器 (DSP) 和其他具有特殊启  
动要求的应用配置可满足其时序要求的解决方案。  
– 温度等140°C TA +125°C  
HBM ESD 分类等2  
CDM ESD 分类等C4A  
• 扩展结(TJ) 范围:  
– –40°C +150°C  
• 输入电压范围:  
IN: VIN + VDO 6.0V  
BIASVOUT + VDO(BIAS) 6.0V  
VOUT 范围0.8V 3.6V  
• 低压降1.5AVBIAS = 5V 下的典型值60mV  
• 电源正(PG) 输出可实现电源监视或为其他电源  
提供时序信号  
• 线路、负载和温度范围内的精度2%  
• 可编程软启动可提供线性电压启动  
VBIAS 支持VIN 运行具有良好的瞬态响应  
2.2μF 的任何输出电容器一起工作时可保持  
稳定  
该器件还具有高精度的参考电压电路和误差放大器可  
在整个负载、线路、温度和过程范围内提2% 精度。  
该器件在使用大于或等于 2.2μF 的任何类型的电容器  
时都能保持稳定运行并具有 TJ = 40°C +150°C  
的额定结温范围。TPS748A-Q1 用小型 3mm ×  
3mm VSON-10 封装可实现高度紧凑的解决方案总  
尺寸。  
封装信息  
封装(1)  
封装尺寸(2)  
器件型号  
• 采用小3mm × 3mm × 1mm VSON-10 封装  
TPS748A-Q1  
DRCVSON103.00mm × 3.00mm  
2 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
(2) 封装尺寸× 为标称值并包括引脚如适用。  
远程信息处理控制单元  
信息娱乐系统与仪表组  
成像雷达  
VIN  
IN  
OUT  
VOUT  
COUT  
CIN  
EN  
R1  
VBIAS  
CBIAS  
BIAS  
SS  
FB  
TPS748A-Q1  
R2  
VOUT  
CSS  
RPG  
PG  
PG  
GND  
典型应用电路可调节)  
输出电压噪声密度与频率间的关系  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBVS425  
 
 
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................16  
8 Application and Implementation..................................17  
8.1 Application Information............................................. 17  
8.2 Typical Application.................................................... 21  
8.3 Power Supply Recommendations.............................22  
8.4 Layout....................................................................... 22  
9 Device and Documentation Support............................25  
9.1 接收文档更新通知..................................................... 25  
9.2 支持资源....................................................................25  
9.3 Trademarks...............................................................25  
9.4 静电放电警告............................................................ 25  
9.5 术语表....................................................................... 25  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Typical Characteristics: IOUT = 50 mA.........................7  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
7.3 Feature Description...................................................12  
Information.................................................................... 25  
10.1 Tape and Reel Information......................................26  
10.2 Mechanical Data..................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2022) to Revision A (May 2023)  
Page  
• 将文档状态从预告信息 更改为量产数据 ............................................................................................................ 1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
2
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
IN  
IN  
1
2
3
4
5
10  
9
OUT  
OUT  
FB  
Thermal  
Pad  
PG  
BIAS  
EN  
8
7
SS  
6
GND  
5-1. DRC Package, 10-Pin VSON With Thermal Pad (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
BIAS  
VSON  
Bias input voltage for the error amplifier, reference, and internal control circuits. Use a 1-µF or  
larger input capacitor for optimal performance. If IN is connected to BIAS, a 4.7-µF or larger  
capacitor must be used.  
4
I
Enable pin. Driving this pin high enables the regulator. Driving this pin low puts the regulator into  
shutdown mode. This pin must not be left unconnected.  
EN  
FB  
5
8
I
I
Feedback pin. This pin is the feedback connection to the center tap of an external resistor divider  
network that sets the output voltage. This pin must not be left floating.  
GND  
IN  
6
Ground  
1, 2  
I
Input to the device. Use a 1-µF or larger input capacitor for optimal performance.  
No connection. This pin can be left floating or connected to GND to allow better thermal contact  
to the top-side plane.  
NC  
N/A  
Regulated output voltage. A small capacitor (total typical capacitance 2.2 μF, ceramic) is  
needed from this pin to ground to assure stability.  
OUT  
9, 10  
O
Power-good pin. An open-drain, active-high output that indicates the status of VOUT. When VOUT  
exceeds the PG trip threshold, the PG pin goes into a high-impedance state. When VOUT is  
below this threshold the pin is driven to a low-impedance state. Connect a pullup resistor (10 kΩ  
to 1 M) from this pin to a supply of up to 6.0 V. The supply can be higher than the input voltage.  
Alternatively, the PG pin can be left unconnected if output monitoring is not necessary.  
PG  
3
7
O
Soft-start pin. A capacitor connected on this pin to ground sets the start-up time. If this pin is left  
unconnected, the regulator output soft-start ramp time is typically 200 μs.  
SS  
Must be soldered to the ground plane for increased thermal performance. Internally connected to  
ground.  
Thermal pad  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating temperature range (unless otherwise noted)(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
MAX  
6.5  
UNIT  
IN, BIAS  
EN  
6.5  
PG  
6.5  
Voltage  
SS  
V
6.5  
VBIAS  
FB  
0.3  
OUT  
PG  
VIN + 0.3  
1.5  
0.3  
0
mA  
OUT  
Current  
Internally limited  
Indefinite  
Output short-circuit duration  
Continuous total power dissipation, PDISS  
See Thermal Information  
Junction, TJ  
Temperature  
150  
150  
40  
55  
°C  
Storage, Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC specification Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
VOUT + 0.3  
VIN  
MAX  
6.0  
UNIT  
VOUT + VDO  
VIN  
Input supply voltage  
Enable supply voltage  
BIAS supply voltage  
V
V
V
(VIN  
)
VEN  
VBIAS  
6.0  
VOUT + VDO  
(VBIAS)(1)  
VOUT +  
6.0  
1.6(1)  
VOUT  
IOUT  
COUT  
CIN  
Output voltage  
0.8  
0
3.3  
1.5  
V
Output current  
A
Output capacitor (3)  
Input capacitor (1) (2)  
Bias capacitor  
10  
1
µF  
µF  
µF  
nF  
CBIAS  
CSS  
TJ  
0.1  
1
1
Soft-start capacitor  
Operating junction temperature  
10  
100  
150  
40  
(1) VBIAS has a minimum voltage of 2.7 V or VOUT + VDO (VBIAS), whichever is higher.  
(2) If VIN and VBIAS are connected to the same supply, the recommended minimum capacitor for the supply is 4.7 μF.  
(3) A maximum capacitor derating of 25% is considered for minimum capacitance  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
4
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
 
 
 
 
 
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.4 Thermal Information  
TPS748A-Q1  
THERMAL METRIC(1)  
DRC (VSON)  
10 PINS  
47.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
63.7  
Junction-to-board thermal resistance  
19.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
4.2  
ψJT  
19.4  
ψJB  
RθJC(bot)  
3.3  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
6.5 Electrical Characteristics  
At VEN = 1.1 V, VIN = VOUT + 0.3 V, CBIAS = 0.1 μF, CIN = COUT = 10 μF, CSS = 1 nF, IOUT = 50 mA, VBIAS = 5.0 V (4), and TJ  
= 40°C to 150°C, (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOUT  
+
VIN  
Input voltage range  
6.0  
V
VDO  
VBIAS  
BIAS pin voltage range  
2.7  
0.796  
1.0  
6.0  
0.804  
1.75  
V
V
V
VREF  
Internal reference (Adj.) TA = +25°C  
Rising bias supply UVLO  
0.8  
VBIAS(UVLO)  
1.25  
VBIAS(UVLO),  
Bias supply UVLO  
hysteresis  
20  
43  
65  
mV  
HYST  
Output voltage range  
Accuracy (1) (5)  
VIN = 5 V, IOUT = 1.5 A  
VREF  
3.6  
V
%
ΔVOUT (ΔVIN)  
±0.5  
0.03  
0.09  
75  
1.25  
2.97 V VBIAS 5.5 V, 50 mA IOUT 1.5 A  
VOUT(nom) + 0.3 VIN 5.5 V  
50 mA IOUT 1.5 A  
1.25  
Line regulation  
%/V  
%/A  
mV  
V
ΔVOUT (ΔIOUT)  
VOUT  
Load regulation  
IOUT = 1.5 A, VBIAS VOUT(nom) 3.25 V(3)  
IOUT = 1.5 A, VIN = VBIAS  
VDO(IN)  
VDO(BIAS)  
ICL  
VIN dropout voltage(2)  
VBIAS dropout voltage(2)  
Output current limit  
BIAS pin current  
150  
1.35  
3.1  
1.14  
VOUT = 80% × VOUT(nom)  
2.3  
A
IBIAS  
IOUT = 50 mA  
0.67  
0.9  
1.1  
mA  
Shutdown supply current  
ISHDN  
IFB  
15  
µA  
VEN 0.4 V, VIN = 1.1 V, VOUT = 0.8 V  
(IGND  
)
Feedback pin current  
±0.12  
69  
0.22  
µA  
dB  
dB  
dB  
dB  
0.22  
1 kHz, IOUT = 1.5 A, VIN = 1.1 V, VOUT = 0.8 V  
300 kHz, IOUT = 1.5 A, VIN = 1.1 V, VOUT = 0.8 V  
1 kHz, IOUT = 1.5 A, VIN = 1.1 V, VOUT = 0.8 V  
300 kHz, IOUT = 1.5 A, VIN = 1.1 V, VOUT = 0.8 V  
Power-supply rejection  
(VIN to VOUT  
)
30  
PSRR  
59  
Power-supply rejection  
(VBIAS to VOUT  
)
33  
μVrms x  
Vout  
Vn  
Output noise voltage  
Minimum startup time  
BW = 100 Hz to 100 kHz, IOUT = 1.5 A, CSS = 1 nF  
RLOAD for IOUT = 1.0 A, CSS = open  
VSS = 0.4 V  
7
170  
7.5  
1.2  
tSTR  
ISS  
µs  
Soft-start charging  
current  
µA  
tSS  
Soft-start time  
Css = 10 nF  
ms  
V
VEN(hi)  
VEN(lo)  
VEN(hys)  
Enable input high level  
Enable input low level  
Enable pin hysteresis  
1.1  
0
5.5  
0.4  
V
55  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
At VEN = 1.1 V, VIN = VOUT + 0.3 V, CBIAS = 0.1 μF, CIN = COUT = 10 μF, CSS = 1 nF, IOUT = 50 mA, VBIAS = 5.0 V (4), and TJ  
= 40°C to 150°C, (unless otherwise noted); typical values are at TJ = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VEN(dg)  
IEN  
Enable pin deglitch time  
Enable pin current  
PG trip threshold  
17  
µs  
VEN = 5 V  
0.1  
90  
0.3  
µA  
VIT  
VOUT decreasing  
85  
94 %VOUT  
%VOUT  
VHYS  
VPG(lo)  
IPG(lkg)  
PG trip hysteresis  
PG output low voltage  
PG leakage current  
2.5  
IPG = 1 mA (sinking), VOUT < VIT  
VPG = 5.25 V, VOUT > VIT  
0.125  
V
0.01  
0.1  
µA  
Operating junction  
temperature  
TJ  
125  
40  
Shutdown, temperature increasing  
Reset, temperature decreasing  
165  
140  
Thermal shutdown  
temperature  
TSD  
(1) Adjustable devices tested at 0.8 V; resistor tolerance is not taken into account.  
(2) Dropout is defined as the voltage from VIN to VOUT when VOUT is 3% below nominal.  
(3) 3.25 V is a test condition of this device and can be adjusted by referring to Figure 12.  
(4) VBIAS = VDO_MAX(BIAS) + VOUT for VOUT 3.4 V  
(5) The device is not tested under conditions where VIN > VOUT + 1.65 V and IOUT = 1.5 A, because the power dissipation is higher than  
the maximum rating of the package. Also, this accuracy specification does not apply on any application condition that exceeds the  
power dissipation limit of the package under test.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
6
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
 
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: IOUT = 50 mA  
at TJ = 25°C, VIN = VOUT(nom) + 0.3 V, VBIAS = 5 V, IOUT = 50 mA, VEN = VIN, CIN = 1 μF, CBIAS = 4.7 μF, and COUT = 10 μF  
(unless otherwise noted)  
VOUT = 0.8 V, IOUT = 1.5 A, CBIAS = 0.1 μF, COUT = 10 μF,  
VIN = 1.1 V, VOUT = 0.8 V, IOUT = 1.5 A, CBIAS = 0.1 μF,  
COUT = 10 μF, VEN = VBIAS = 6 V  
CSS = 10 nF, VEN = VBIAS = 6 V  
6-1. IN PSRR vs Frequency and VIN  
6-2. IN PSRR vs Frequency and CSS  
VIN = 1.1 V, VOUT = 0.8 V, CBIAS = 0.1 μF, COUT = 10 μF,  
VIN = 2.1 V, VOUT = 1.8 V, CBIAS = 0.1 μF, COUT = 10 μF,  
CSS = 10 nF, VEN = VBIAS = 6 V  
CSS = 10 nF, VEN = VBIAS = 6 V  
6-3. IN PSRR vs Frequency and IOUT for VOUT = 0.8 V  
6-4. PSRR vs Frequency and IOUT for VOUT = 1.8 V  
VIN = 3.6 V, VOUT = 3.3 V, CBIAS = 0.1 μF, COUT = 10 μF,  
VIN = 1.1 V, VOUT = 0.8 V, IOUT = 1.5 A, CBIAS = 0.1 μF,  
CSS = 10 nF, VEN = VBIAS = 6 V  
CSS = 10 nF, VEN = VBIAS = 6 V  
6-5. IN PSRR vs Frequency and IOUT for VOUT = 3.3 V  
6-6. IN PSRR vs Frequency and COUT  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: IOUT = 50 mA (continued)  
at TJ = 25°C, VIN = VOUT(nom) + 0.3 V, VBIAS = 5 V, IOUT = 50 mA, VEN = VIN, CIN = 1 μF, CBIAS = 4.7 μF, and COUT = 10 μF  
(unless otherwise noted)  
VEN = VIN = 1.1 V, VOUT = 0.8 V, IOUT = 1.5 A, CIN = 10 μF,  
VIN = 1.1 V, VOUT = 0.8 V, IOUT = 1.5 A, CIN = 10 μF,  
COUT = 10 μF, CSS = 10 nF, VBIAS = 6 V  
COUT = 10 μF, CSS = 10 nF, VEN = 6 V  
6-8. BIAS PSRR vs Frequency and IOUT  
6-7. BIAS PSRR vs Frequency and VBIAS  
VEN = VBIAS, VIN = 1.1 V, VOUT = 0.8 V, IOUT = 1.5 A,  
VEN = VBIAS, VIN = 1.1 V, VOUT = 0.8 V, CIN = 10 μF,  
COUT = 10 μF, CSS = 10 nF, CBIAS = 0.1 μF  
CIN = 10 μF, COUT = 10 μF, CSS = 10 nF, CBIAS = 0.1 μF  
6-9. Output Voltage Noise Density vs Frequency and VBIAS  
6-10. Output Voltage Noise Density vs Frequency and IOUT  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: IOUT = 50 mA (continued)  
at TJ = 25°C, VIN = VOUT(nom) + 0.3 V, VBIAS = 5 V, IOUT = 50 mA, VEN = VIN, CIN = 1 μF, CBIAS = 4.7 μF, and COUT = 10 μF  
(unless otherwise noted)  
VBIAS = 5 V, VOUT = 0.8 V  
VIN = 1.1 V, VOUT = 0.8 V  
6-11. IN-to-OUT Dropout Voltage vs IOUT and Temperature (TJ) 6-12. BIAS-to-OUT Dropout Voltage vs IOUT and Temperature  
(TJ)  
VIN = 1.1 V, VBIAS = 5 V, VOUT = 0.8 V  
VIN = 1.1 V, VBIAS = 5 V, VOUT = 0.8 V  
6-14. Load Regulation vs 50-mA Output Current  
6-13. Load Regulation vs 0-mA to 50-mA Output Current  
VOUT = 0.8 V, VBIAS = 5 V, IOUT = 50 mA  
VBIAS = 5 V, VOUT = 0.8 V, IOUT = 50 mA  
6-15. Line Regulation vs Input Voltage  
6-16. Output Voltage vs Bias Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: IOUT = 50 mA (continued)  
at TJ = 25°C, VIN = VOUT(nom) + 0.3 V, VBIAS = 5 V, IOUT = 50 mA, VEN = VIN, CIN = 1 μF, CBIAS = 4.7 μF, and COUT = 10 μF  
(unless otherwise noted)  
VOUT = 0.8 V, VBIAS = 5.0 V  
VOUT = 0.8 V, VBIAS = 5.0 V, IOUT = 50 mA  
6-18. IN Pin Quiescent Current vs Output Current  
6-17. IN Pin Quiescent Current vs Input Voltage  
VOUT = 0.8 V, VBIAS = 5.0 V, IOUT = 1.5 A  
VIN = 1.1 V, VOUT = 0.8 V, VBIAS = 5.0 V  
6-19. BIAS Pin Quiescent Current vs Input Voltage  
6-20. BIAS Pin Quiescent Current vs Output Current  
VBIAS = 5 V, VEN = 0 V  
VIN = 1.1 V, VEN = 0 V  
6-21. Shutdown Current (GND Pin) vs Input Voltage  
6-22. Shutdown Current (GND Pin) vs Bias Voltage  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
6.6 Typical Characteristics: IOUT = 50 mA (continued)  
at TJ = 25°C, VIN = VOUT(nom) + 0.3 V, VBIAS = 5 V, IOUT = 50 mA, VEN = VIN, CIN = 1 μF, CBIAS = 4.7 μF, and COUT = 10 μF  
(unless otherwise noted)  
6-23. Current Limit vs Output Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TPS748A-Q1 is a low-input, low-output (LILO), low-quiescent-current linear regulator optimized to support  
excellent transient performance. This regulator uses a low-current bias rail to power all internal control circuitry,  
allowing the n-type field effect transistor (NMOS) pass transistor to regulate very-low input and output voltages.  
Using an NMOS pass transistor offers several critical advantages for many applications. Unlike a p-channel  
metal-oxide-semiconductor field effect transistor (PMOS) topology device, the output capacitor has little effect on  
loop stability. This architecture allows the TPS748A-Q1 to be stable with any ceramic capacitor 10 μF or  
greater. Transient response is also superior to PMOS topologies, particularly for low VIN applications.  
The TPS748A-Q1 features a programmable, voltage-controlled, soft-start circuit that provides a smooth,  
monotonic start-up and limits start-up inrush currents that can be caused by large capacitive loads. An enable  
(EN) pin with hysteresis and deglitch allows slow-ramping signals to be used for sequencing the device. The low  
VIN and VOUT capability allows for inexpensive, easy-to-design, and efficient linear regulation between the  
multiple supply voltages often required by processor-intensive systems.  
7.2 Functional Block Diagram  
OUT  
VOUT  
IN  
500  
BIAS  
UVLO  
Thermal &  
Current  
Limit  
7.5 µA  
R1  
SS  
CSS  
Soft-Start  
Discharge  
0.8-V  
Reference  
FB  
120  
Hysteresis  
and Deglitch  
R2  
EN  
VOUT  
œ
Delay(B)  
+
10 kꢀ  
0.9 x  
VREF  
V
PG  
GND  
7.3 Feature Description  
7.3.1 Enable and Shutdown  
The enable (EN) pin is active high and compatible with standard digital-signaling levels. Setting VEN below 0.4 V  
turns the regulator off, and setting VEN above 1.1 V turns the regulator on. Unlike many regulators, the enable  
circuitry has hysteresis and deglitching for use with relatively slowly ramping analog signals. This configuration  
allows the device to be enabled by connecting the output of another supply to the EN pin. The enable circuitry  
typically has 70 mV of hysteresis and a deglitch circuit to help avoid on-off cycling as a result of small glitches in  
the VEN signal.  
The enable threshold is typically 0.75 V and varies with temperature and process variations. Temperature  
variation is approximately 1.2 mV/°C; process variation accounts for most of the remaining variation to the 0.4-  
V and 1.1-V limits. If precise turn-on timing is required, a fast rise-time signal must be used.  
If not used, EN can be connected to BIAS. Place the connection as close as possible to the bias capacitor.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
12  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7.3.2 Active Discharge  
The TPS748A-Q1 has an internal active pulldown circuits on the OUT pin.  
Each active discharge function uses an internal metal-oxide-semiconductor field-effect transistor (MOSFET) that  
connects a resistor (RPULLDOWN) to ground when the low-dropout resistor (LDO) is disabled in order to actively  
discharge the output voltage. The active discharge circuit is activated when the device is disabled by driving EN  
to logic low, when the voltage at IN or BIAS is below the UVLO threshold, or when the regulator is in thermal  
shutdown.  
The discharge time after disabling the device depends on the output capacitance (COUT) and the load resistance  
(RL) in parallel with the pulldown resistor.  
The first active pulldown circuit connects the output to GND through a 600-Ω resistor when the device is  
disabled.  
The second circuit connects FB to GND through a 120-Ω resistor when the device is disabled. This resistor  
discharges the FB pin. 方程式 1 calculates the output capacitor discharge time constant when OUT is shorted to  
FB, or when the output voltage is set to 0.65 V.  
τOUT = (600 || 120 × RL / (600 || 120 + RL) × COUT  
(1)  
If the LDO is set to an output voltage greater than 0.65 V, a resistor divider network is in place and minimizes the  
FB pin pulldown. 方程2 and 方程3 calculate the time constants set by these discharge resistors.  
RDISCHARGE = (120 || R2) + R1  
(2)  
(3)  
τOUT = RDISCHARGE × RL / (RDISCHARGE + RL) × COUT  
Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input  
supply has collapsed because reverse current can flow from the output to the input and can cause damage to  
the device. Limit reverse current to no more than 5% of the device-rated current.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7.3.3 Power-Good Output (PG)  
The PG signal provides an easy solution to meet demanding sequencing requirements because PG signals  
when the output nears the nominal value. PG can be used to signal other devices in a system when the output  
voltage is near, at, or above the set output voltage (VOUT(nom)). 7-1 shows a simplified schematic.  
The PG signal is an open-drain digital output that requires a pullup resistor to a voltage source and is active  
high. The PG circuit sets the PG pin into a high-impedance state to indicate that the power is good.  
Using a large feed-forward capacitor (CFF) delays the output voltage and, because the PG circuit monitors the  
FB pin, the PG signal can indicate a false positive.  
VPG  
VBG  
VIN  
œ
VFB  
+
GND  
GND  
UVLOBIAS  
EN  
GND  
7-1. Simplified PG Circuit  
7.3.4 Internal Current Limit  
The device has an internal current-limit circuit that protects the regulator during transient high-load current faults  
or shorting events. The current limit is a hybrid brick-wall foldback scheme. The current limit transitions from a  
brick-wall scheme to a foldback scheme at the foldback voltage (VFOLDBACK). In a high-load current fault with the  
output voltage above VFOLDBACK, the brick-wall scheme limits the output current to the current limit (ICL). When  
the voltage drops below VFOLDBACK, a foldback current limit activates that scales back the current when the  
output voltage approaches GND. When the output is shorted, the device supplies a typical current called the  
short-circuit current limit (ISC). ICL and ISC are listed in the Electrical Characteristics table.  
For this device, VFOLDBACK is approximately 60% × VOUT(nom)  
.
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
14  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
The output voltage is not regulated when the device is in current limit. When a current-limit event occurs, the  
device begins to heat up because of the increase in power dissipation. When the device is in a brick-wall current  
limit, the pass transistor dissipates power [(VIN VOUT) × ICL]. When the device output is shorted and the output  
is below VFOLDBACK, the pass transistor dissipates power [(VIN VOUT) × ISC]. If thermal shutdown is triggered,  
the device turns off. When the device sufficiently cools down, the internal thermal shutdown circuit turns the  
device back on. If the output current fault condition continues, the device cycles between current limit and  
thermal shutdown. For more information on current limits, see the Know Your Limits application note. 7-2  
shows a diagram of the foldback current limit.  
VOUT  
Brickwall  
VOUT(NOM)  
VFOLDBACK  
Foldback  
0 V  
IOUT  
IRATED  
0 mA  
ISC  
ICL  
7-2. Foldback Current Limit  
7.3.5 Thermal Shutdown Protection (TSD  
)
The internal thermal shutdown protection circuit disables the output when the thermal junction temperature (TJ )  
of the pass transistor rises to the thermal shutdown temperature threshold, TSD(shutdown) (typical). The thermal  
shutdown circuit hysteresis makes sure that the LDO resets (turns on) when the temperature falls to  
TSD(reset) (typical)  
.
The thermal time constant of the semiconductor die is fairly short; thus, the device can cycle on and off when  
thermal shutdown is reached until the power dissipation is reduced. Power dissipation during start up can be  
high from large VIN VOUT voltage drops across the device or from high inrush currents charging large output  
capacitors. Under some conditions, the thermal shutdown protection disables the device before start up  
completes.  
For reliable operation, limit the junction temperature to the maximum listed in the Recommended Operating  
Conditions table. Operation above this maximum temperature causes the device to exceed operational  
specifications. Although the internal protection circuitry is designed to protect against thermal overload  
conditions, this circuitry is not intended to replace proper heat sinking. Continuously running the regulator into  
thermal shutdown, or above the maximum recommended junction temperature, reduces long-term reliability.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
7-1 shows the conditions that lead to the different modes of operation. See the Electrical Characteristics table  
for parameter values.  
7-1. Device Functional Mode Comparison  
PARAMETER  
OPERATING MODE  
VIN  
VBIAS  
VEN  
IOUT  
TJ  
VIN VOUT (nom)  
VDO(IN) and VIN ≥  
+
TJ < TSD for  
shutdown  
V
BIAS VOUT +  
VDO(BIAS)  
Normal mode  
Dropout mode  
IOUT < ICL  
VEN VHI(EN)  
VIN(min)  
VIN(min) < VIN < VOUT  
(nom) + VDO(IN)  
TJ < TSD for  
shutdown  
VBIAS < VOUT + VDO(BIAS)  
VEN > VHI(EN)  
IOUT < ICL  
Disabled mode  
(any true condition  
disables the device)  
TJ TSD for  
shutdown  
VIN < VUVLO(IN)  
VBIAS < VBIAS(UVLO)  
VEN < VLO(EN)  
7.4.1 Normal Operation  
The device regulates to the nominal output voltage when the following conditions are met:  
The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO(IN)  
)
The bias voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(nom) + VDO(BIAS)  
The output current is less than the current limit (IOUT < ICL)  
)
The device junction temperature is less than the thermal shutdown temperature ( TJ < TSD(shutdown)  
)
The enable voltage has previously exceeded the enable rising threshold voltage and has not yet decreased  
to less than the enable falling threshold  
7.4.2 Dropout Operation  
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other  
conditions are met for normal operation, the device operates in dropout mode. Similarly, if the bias voltage is  
lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for  
normal operation, the device operates in dropout mode as well. In this mode, the output voltage tracks the input  
voltage. During this mode, the transient performance of the device becomes significantly degraded because the  
pass transistor is in the ohmic or triode region, and functions as a switch. Line or load transients in dropout can  
result in large output voltage deviations.  
When the device is in a steady dropout state, defined as when the device is in dropout (VIN < VOUT + VDO(IN) or  
VBIAS < VOUT + VDO(BIAS) directly after being in normal regulation state, but not during start up), the pass  
transistor is driven into the ohmic or triode region. When the input voltage returns to a value greater than or  
equal to the nominal output voltage plus the dropout voltage (VOUT(NOM) + VDO(IN)), the output voltage can  
overshoot for a short time when the device pulls the pass transistor back into the linear region.  
7.4.3 Disabled  
The output of the device can be shutdown by forcing the voltage of the enable pin to less than VIL(EN) (see the  
Electrical Characteristics table). When disabled, the pass transistor is turned off, internal circuits are shutdown,  
and the output voltage is actively discharged to ground by an internal discharge circuit from the output to ground.  
The device is disabled under the following conditions:  
The input or bias voltages are below the respective minimum specifications  
The enable voltage is less than the enable falling threshold voltage or has not yet exceeded the enable rising  
threshold  
The device junction temperature is greater than the thermal shutdown temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
16  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
8.1 Application Information  
The TPS748A-Q1 is a low-input, low-output (LILO), low-dropout regulator (LDO) that features soft-start  
capability. This regulator uses a low-current bias input to power all internal control circuitry, allowing the NMOS  
pass transistor to regulate very low input and output voltages.  
Using an NMOS pass transistor offers several critical advantages for many applications. Unlike a PMOS  
topology device, the output capacitor has little effect on loop stability. This architecture allows stability with  
ceramic capacitors of 10 μF or greater. Transient response is also superior to PMOS topologies, particularly for  
low VIN applications.  
A programmable voltage-controlled, soft-start circuit provides a smooth, monotonic start-up and limits start-up  
inrush currents that can be caused by large capacitive loads. An enable (EN) pin with hysteresis and deglitch  
allows slow-ramping signals to be used for sequencing the device. The low VIN and VOUT capability allows for  
inexpensive, easy-to-design, and efficient linear regulation between the multiple supply voltages often required  
by processor-intensive systems.  
8.1.1 Input, Output, and Bias Capacitor Requirements  
The device is designed to be stable for ceramic capacitor of values 10 μF. The device is also stable with  
multiple capacitors in parallel, which can be of any type or value.  
The capacitance required on the IN and BIAS pins strongly depends on the input supply source impedance. To  
counteract any inductance in the input, the minimum recommended capacitor for VIN is 1 μF and the minimum  
recommended capacitor for VBIAS is 0.1 µF. If VIN and VBIAS are connected to the same supply, the  
recommended minimum capacitor for VBIAS is 4.7 μF. Use good quality, low equivalent series resistance (ESR)  
and equivalent series inductance (ESL) capacitors on the input; ceramic X5R and X7R capacitors are preferred.  
Place these capacitors as close the pins as possible for optimum performance.  
Low ESR and ESL capacitors improve high-frequency PSRR.  
8.1.2 Dropout Voltage  
The TPS748A-Q1 offers very low dropout performance, making the device designed for high-current, low VIN  
and low VOUT applications. The low dropout allows the device to be used in place of a dc/dc converter and still  
achieve good efficiency. 方程4 provides a quick estimate of the efficiency.  
V
OUT ´ IOUT  
VOUT  
VIN  
at IOUT >> IQ  
»
Efficiency »  
VIN ´ (IIN + IQ)  
(4)  
This efficiency provides designers with the power architecture for applications to achieve the smallest, simplest,  
and lowest cost solutions.  
For this architecture, there are two different specifications for dropout voltage. The first specification (see 图  
6-11 ) is referred to as VIN dropout and is used when an external bias voltage is applied to achieve low dropout.  
This specification assumes that VBIAS is at least 2.8 V above VOUT, which is the case for VBIAS when powered by  
a 5.0-V rail with 5% tolerance and with VOUT = 1.5 V. If VBIAS is higher than VOUT + 2.8 V, the VIN dropout is less  
than specified.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
备注  
2.8 V is a test condition of this device and can be adjusted by referring to the Electrical Characteristics  
table.  
The second specification (illustrated in 6-12 ) is referred to as VBIAS dropout and applies to applications where  
IN and BIAS are tied together. This option allows the device to be used in applications where an auxiliary bias  
voltage is not available or low dropout is not required. Dropout is limited by BIAS in these applications because  
VBIAS provides the gate drive to the pass transistor; therefore, VBIAS must be 1.9 V above VOUT. Because of this  
usage, having IN and BIAS tied together become a highly inefficient solution that can consume large amounts of  
power. Pay attention not to exceed the power rating of the device package.  
8.1.3 Output Noise  
The TPS748A-Q1 provides low output noise when a soft-start capacitor is used. When the device reaches the  
end of the soft-start cycle, the soft-start capacitor serves as a filter for the internal reference. By using a 10-nF,  
soft-start capacitor, the output noise is reduced by half and is typically 7.1 μVRMS for a 0.8-V output (10 Hz to  
100 kHz). Increasing CSS has no effect on noise. Because most of the output noise is generated by the internal  
reference, the noise is a function of the set output voltage. 方程式 5 gives the RMS noise with a 10-nF, soft-start  
capacitor:  
V  
«
÷
÷
RMS  
V
V ( VRMS ) = 7.1∂  
VOUT (V)  
N
(5)  
The low output noise makes this LDO a good choice for powering transceivers, phase-locked loops (PLLs), or  
other noise-sensitive circuitry.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
18  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.1.4 Estimating Junction Temperature  
By using the thermal metrics ΨJT and ΨJB, as shown in the Thermal Information table, the junction temperature  
can be estimated with corresponding formulas (given in 方程式 6). For backwards compatibility, an older θJC(top)  
parameter is listed as well.  
YJT: TJ = TT + YJT · PD  
YJB: TJ = TB + YJB · PD  
(6)  
where:  
PD is the power dissipation  
TT is the temperature at the center-top of the package  
TB is the PCB temperature measured 1 mm away from the package on the PCB surface  
备注  
Both TT and TB can be measured on actual application boards using a thermo-gun (an infrared  
thermometer).  
For more information about measuring TT and TB, see the Using New Thermal Metrics application note,  
available for download at www.ti.com.  
For a more detailed discussion of why TI does not recommend using θJC(top) to determine thermal  
characteristics, see the Using New Thermal Metrics application note, available for download at www.ti.com. For  
further information, see the Semiconductor and IC Package Thermal Metrics application note, also available on  
the TI website.  
8.1.5 Soft Start, Sequencing, and Inrush Current  
Soft-start refers to the ramp-up characteristic of the output voltage during LDO turn-on after EN and UVLO  
achieve threshold voltage. The soft start current is fixed for fixed output voltage versions.  
Although the device does not have any sequencing requirement, following the sequencing order of BIAS, IN, and  
EN makes sure that the soft start starts from zero.  
8-1 shows an example of the device behavior when the EN pin is enabled prior to having either power supply  
up. Under this condition, the output jumps from 0 V to approximately 0.3 V almost instantly when the IN voltage  
is sufficient to power the circuit.  
8-1. Sequencing and Soft-Start Behavior for VOUT = 1 V  
Inrush current is defined as the current into the LDO at the IN pin during start-up. Inrush current then consists  
primarily of the sum of load current and the current used to charge the output capacitor. This current is difficult to  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
measure because the input capacitor must be removed, which is not recommended. However, 方程式 7 can  
estimate this soft-start current:  
C
OUT ´ dVOUT(t)  
VOUT(t)  
RLOAD  
IOUT(t)  
=
+
dt  
(7)  
where:  
VOUT(t) is the instantaneous output voltage of the turn-on ramp  
dVOUT(t) / dt is the slope of the VOUT ramp  
RLOAD is the resistive load impedance  
8.1.6 Power-Good Operation  
For proper operation of the power-good circuit, the pullup resistor value must be between 10 kΩ and 100 kΩ.  
The lower limit of 10 kΩ results from the maximum pulldown strength of the power-good transistor, and the  
upper limit of 100 kΩresults from the maximum leakage current at the power-good node. If the pullup resistor is  
outside of this range, then the power-good signal can possibly not read a valid digital logic level.  
The state of PG is only valid when the device operates above the minimum supply voltage. During short UVLO  
events and at light loads, power-good does not assert because the output voltage is sustained by the output  
capacitance.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
20  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.2 Typical Application  
This section discusses the implementation of the TPS748A-Q1 to regulate a 1-A load requiring good PSRR at  
high frequency with low noise. 8-2 provides a schematic for this typical application circuit.  
VIN  
IN  
OUT  
VOUT  
COUT  
CIN  
EN  
R1  
VBIAS  
CBIAS  
BIAS  
SS  
FB  
TPS748A-Q1  
R2  
VOUT  
CSS  
RPG  
PG  
PG  
GND  
8-2. Typical ADJ Voltage Application  
8.2.1 Design Requirements  
For this design example, use the parameters listed in 8-1 as the input parameters.  
8-1. Design Parameters  
PARAMETER  
Input voltage  
DESIGN REQUIREMENT  
2.1 V, ±3%, provided by the dc/dc converter switching at 500 kHz  
Bias voltage  
5.0 V  
1.8 V, ±1%  
Output voltage  
Output current  
1.0 A (maximum), 10 mA (minimum)  
< 10 µVRMS  
RMS noise, 10 Hz to 100 kHz  
PSRR at 500 kHz  
Start-up time  
> 40 dB  
< 25 ms  
8.2.2 Detailed Design Procedure  
At 1.0 A and 1.8 VOUT, the dropout of the TPS748A-Q1 has a 105-mV maximum dropout over temperature; thus,  
a 300-mV headroom is sufficient for operation over both input and output voltage accuracy. At full load and high  
temperature on some devices, the TPS748A can enter dropout if both the input and output supply are beyond  
the edges of the respective accuracy specification.  
To satisfy the required start-up time and still maintain low noise performance, a 10-nF CSS is selected. 方程式 8  
calculates this value.  
tSS = (VSS × CSS) / ISS  
(8)  
At the 1.0-A maximum load, the internal power dissipation is 0.3 W and corresponds to a 13.3°C junction  
temperature rise for the DRC package on a standard JEDEC board. With an 55°C maximum ambient  
temperature, the junction temperature is at 68.3°C.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.2.3 Application Curve  
8-3. PSRR vs Frequency for  
VOUT = 1.8 V  
8.3 Power Supply Recommendations  
The TPS748A-Q1 is designed to operate from an input voltage up to 6.0 V, provided the bias rail is at least 1.3 V  
higher than the input supply and dropout requirements are met. The bias rail and the input supply must both  
provide adequate headroom and current for the device to operate normally. Connect a low output impedance  
power supply directly to the IN pin. This supply must have at least 1 μF of capacitance near the IN pin for  
optimal performance. A supply with similar requirements must also be connected directly to the BIAS rail with a  
separate 0.1 μF or larger capacitor. If the IN pin is tied to the BIAS pin, a minimum 4.7-μF capacitor is required  
for performance. To increase the overall PSRR of the solution at higher frequencies, use a pi-filter or ferrite bead  
before the input capacitor.  
8.4 Layout  
8.4.1 Layout Guidelines  
An optimal layout can greatly improve transient performance, PSRR, and noise. To minimize the voltage drop on  
the input of the device during load transients, the capacitance on IN and BIAS must be connected as close as  
possible to the device. This capacitance also minimizes the effects of parasitic inductance and resistance of the  
input source and can, therefore, improve stability. To achieve optimal transient performance and accuracy, the  
top side of R1 in 8-2 must be connected as close as possible to the load. If BIAS is connected to IN, connect  
BIAS as close to the sense point of the input supply as possible. This connection minimizes the voltage drop on  
BIAS during transient conditions and can improve the turn-on response.  
Knowing the device power dissipation and proper sizing of the thermal plane that is connected to the thermal  
pad is critical to avoiding thermal shutdown and ensuring reliable operation. Power dissipation of the device can  
be calculated using 方程9 and depends on input voltage and load conditions.  
PD = (VIN - VOUT) ´ IOUT  
(9)  
Power dissipation can be minimized and greater efficiency can be achieved by using the lowest possible input  
voltage necessary to achieve the required output voltage regulation.  
On the VSON (DRC) package, the primary conduction path for heat is through the exposed pad to the printed  
circuit board (PCB). The pad can be connected to ground or left floating; however, the thermal pad must be  
attached to an appropriate amount of copper PCB area to ensure the device does not overheat. The maximum  
junction-to-ambient thermal resistance can be calculated using 程式 10 and depends on the maximum  
ambient temperature, maximum device junction temperature, and power dissipation of the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
22  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
(+125°C - TA)  
RqJA  
=
PD  
(10)  
The minimum amount of PCB copper area needed for appropriate heat sinking (which can be estimated using 图  
8-4) is determined by knowing the maximum RθJA  
.
140  
120  
100  
80  
DRC  
RGW  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
Board Copper Area (in2)  
The RθJA value at board size of 9 in2 (that is, 3 in × 3 in) is a JEDEC standard.  
8-4. RθJA vs Board Size  
8-4 shows the variation of RθJA as a function of ground plane copper area in the board. This figure is  
intended only as a guideline to demonstrate the effects of heat spreading in the ground plane and is not intended  
to be used to estimate actual thermal performance in real application environments.  
备注  
When the device is mounted on an application PCB, use ΨJT and ΨJB, as explained in the Estimating  
Junction Temperature section.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
8.4.2 Layout Example  
TOP View  
GND Plane  
CIN  
COUT  
IN  
IN  
IN  
OUT  
OUT  
R2  
PG  
FB  
RPG  
R1  
BIAS  
EN  
SS  
Thermal vias  
GND Plane  
CBIAS  
CSS  
GND  
BIAS  
Represents a via  
8-5. Example Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
24  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.4 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
 
 
 
 
 
 
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
10.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
TPS74801AQWDRCRQ  
1
VSON  
DRC  
10  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
26  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
TPS74801AQWDRCRQ1  
Package Type  
Package Drawing Pins  
DRC 10  
SPQ  
Length (mm) Width (mm)  
367.0 367.0  
Height (mm)  
VSON  
3000  
35.0  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
10.2 Mechanical Data  
PACKAGE OUTLINE  
DRC0010W  
VSON - 1 mm max height  
SCALE 4.000  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
B
A
PIN 1 INDEX AREA  
3.1  
2.9  
0.07 MIN  
(0.13)  
S
C
A
S
 E
C
30.0  
OI  
0
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.65 0.1  
2X (0.5)  
4X (0.25)  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
5
6
(0.16) TYP  
A
A
2X  
2
11  
SYMM  
2.4 0.1  
10  
1
8X 0.5  
0.3  
0.2  
10X  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
C
0.05  
0.5  
0.3  
10X  
4228236/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
28  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
 
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
DRC0010W  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.65)  
(0.5)  
10X (0.6)  
1
10  
10X (0.25)  
11  
(2.4)  
SYMM  
(3.4)  
(0.95)  
8X (0.5)  
6
5
(R0.05) TYP  
( 0.2) VIA  
TYP  
(0.25)  
(0.575)  
SYMM  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4228236/A 12/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TPS748A-Q1  
English Data Sheet: SBVS425  
TPS748A-Q1  
ZHCSP78A DECEMBER 2022 REVISED MAY 2023  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
DRC0010W  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
2X (1.5)  
(0.5)  
SYMM  
EXPOSED METAL  
TYP  
11  
10X (0.6)  
1
10  
(1.53)  
10X (0.25)  
2X  
(1.06)  
SYMM  
(0.63)  
8X (0.5)  
6
5
(R0.05) TYP  
4X (0.34)  
4X (0.25)  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 11:  
80% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4228236/A 12/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBVS425  
30  
Submit Document Feedback  
Product Folder Links: TPS748A-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTPS74801AQWDRCRQ1  
TPS74801AQWDRCRQ1  
ACTIVE  
ACTIVE  
VSON  
VSON  
DRC  
DRC  
10  
10  
3000  
TBD  
Call TI  
Call TI  
-40 to 150  
-40 to 150  
Samples  
Samples  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
74801A  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-May-2023  
OTHER QUALIFIED VERSIONS OF TPS748A-Q1 :  
Catalog : TPS748A  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TPS74801AQWDRCRQ1 VSON  
DRC  
10  
3000  
330.0  
12.4  
3.3  
3.3  
1.1  
8.0  
12.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VSON DRC 10  
SPQ  
Length (mm) Width (mm) Height (mm)  
360.0 360.0 36.0  
TPS74801AQWDRCRQ1  
3000  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TPS74801AWDRCR

具有电源正常指示和使能功能的 1.5A、0.8V、可调节低压降 (LDO) 稳压器 | DRC | 10 | -40 to 125
TI

TPS74801DRC

Simple Power Solution Using LDOs
TI

TPS74801DRCR

1.5A LDO Linear Regulator with Programmable Soft-Start
TI

TPS74801DRCRG4

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start
TI

TPS74801DRCT

1.5A LDO Linear Regulator with Programmable Soft-Start
TI

TPS74801DRCTG4

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start
TI

TPS74801QRGWRQ1

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start
TI

TPS74801RGWR

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start
TI

TPS74801RGWRG4

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start
TI

TPS74801RGWT

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start
TI

TPS74801RGWTG4

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start
TI

TPS74801TDRCRQ1

1.5A Low-Dropout Linear Regulator with Programmable Soft-Start
TI