TPS75301QPWPRQ1 [TI]

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS; 快速瞬态响应1.5 -A低压差稳压器
TPS75301QPWPRQ1
型号: TPS75301QPWPRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS
快速瞬态响应1.5 -A低压差稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总27页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TPS75101-Q1, ’75115-Q1, ’75118-Q1, ’75125-Q1, ’75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 – APRIL 2003  
D
Qualification in Accordance With  
AEC-Q100  
D
D
Fast Transient Response  
2% Tolerance Over Specified Conditions  
For Fixed-Output Versions  
D
Qualified for Automotive Applications  
D
Customer-Specific Configuration Control  
Can Be Supported Along With  
Major-Change Approval  
D
20-Pin TSSOP (PWP) PowerPAD Package  
Thermal Shutdown Protection  
D
PWP PACKAGE  
(TOP VIEW)  
D
ESD Protection Exceeds 2000 V Per  
MIL-STD-883, Method 3015; Exceeds 200 V  
Using Machine Model (C = 200 pF, R = 0)  
GND/HEATSINK  
GND/HEATSINK  
NC  
NC  
GND  
NC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
NC  
IN  
IN  
EN  
D
D
1.5-A Low-Dropout Voltage Regulator  
Available in 1.5-V, 1.8-V, 2.5-V, 3.3-V, Fixed  
Output and Adjustable Versions  
D
D
D
D
Open Drain Power-Good (PG) Status  
Output (TPS751xxQ)  
PG or RESET  
FB/SENSE  
OUTPUT  
OUTPUT  
Open Drain Power-On Reset With 100-ms  
Delay (TPS753xxQ)  
NC  
GND/HEATSINK  
GND/HEATSINK  
Dropout Voltage Typically 160 mV at 1.5 A  
(TPS75133Q)  
NC – No internal connection  
PG is on the TPS751xx and RESET is on the TPS753xx  
Ultralow 75 µA Typical Quiescent Current  
Contact factory for details. Q100 qualification data available on  
request.  
description  
The TPS753xxQ and TPS751xxQ are low dropout regulators with integrated power-on reset and power-good (PG)  
functions respectively. These devices are capable of supplying 1.5 A of output current with a dropout of 160 mV  
(TPS75133Q, TPS75333Q). Quiescent current is 75 µA at full load and drops down to 1 µA when the device is  
disabled. TPS751xxQ and TPS753xxQ are designed to have fast transient response for larger load current  
changes.  
Because the PMOS device behaves as a low-value resistor, the dropout voltage is very low (typically 160 mV at an  
output current of 1.5 A for the TPS75x33Q) and is directly proportional to the output current. Additionally, since the  
PMOS pass element is a voltage-driven device, the quiescent current is very low and independent of output loading  
(typically 75 µA over the full range of output current, 1 mA to 1.5 A). These two key specifications yield a significant  
improvement in operating life for battery-powered systems.  
The device is enabled when EN is connected to a low level voltage. This LDO family also features a sleep mode;  
applying a TTL high signal to EN (enable) shuts down the regulator, reducing the quiescent current to less than 1  
µA at T = 25°C.  
J
For the TPS751xxQ, the power-good terminal (PG) is an active high, open drain output, which can be used to  
implement a power-on reset or a low-battery indicator.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
Copyright 2003, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
description (continued)  
The RESET (SVS, POR, or power on reset) output of the TPS753xxQ initiates a reset in microcomputer and  
microprocessor systems in the event of an undervoltage condition. An internal comparator in the TPS753xxQ  
monitors the output voltage of the regulator to detect an undervoltage condition on the regulated output voltage.  
When the output reaches 95% of its regulated voltage, RESET goes to a high-impedance state after a 100-ms delay.  
RESET goes to a logic-low state when the regulated output voltage is pulled below 95% (i.e., over load condition)  
of its regulated voltage.  
The TPS751xxQ or TPS753xxQ is offered in 1.5-V, 1.8-V, 2.5-V and 3.3-V fixed-voltage versions and in an  
adjustable version (programmable over the range of 1.5 V to 5 V). Output voltage tolerance is specified as a  
maximum of 2% over line, load, and temperature ranges. The TPS751xxQ and TPS753xxQ families are available  
in 20-pin TSSOP (PWP) packages.  
TPS75x33Q  
DROPOUT VOLTAGE  
TPS75x15Q  
vs  
JUNCTION TEMPERATURE  
LOAD TRANSIENT RESPONSE  
300  
250  
I =1.5 A  
L
C =100 µF (Tantalum)  
L
O
50  
0
V
=1.5 V  
200  
I
= 1.5 A  
O
50  
100  
150  
1.5  
150  
100  
I
O
= 0.5 A  
50  
0
0
40  
10  
60  
110  
160  
0
1
2
3
4
5
6
7
8
9
10  
T
J
Junction Temperature °C  
t Time ms  
AVAILABLE OPTIONS  
PG  
TSSOP (PWP)  
OUTPUT VOLTAGE  
T
J
(TYP)  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
RESET  
TPS75133QPWPRQ1  
TPS75333QPWPRQ1  
TPS75325QPWPRQ1  
TPS75318QPWPRQ1  
TPS75315QPWPRQ1  
TPS75301QPWPRQ1  
TPS75125QPWPRQ1  
TPS75118QPWPRQ1  
TPS75115QPWPRQ1  
40°C to 125°C  
Adjustable 1.5 V to 5 V TPS75101QPWPRQ1  
NOTE: The TPS75x01 is programmable using an external resistor divider (see application  
information). R suffix indicates tape and reel.  
Product preview  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
3
4
6
7
8
9
PG or  
RESET  
V
IN  
IN  
PG or RESET Output  
I
SENSE  
OUT  
V
O
5
0.22 µF  
EN  
OUT  
C
O
+
47 µF  
GND  
17  
See application information section for capacitor selection details.  
Figure 1. Typical Application Configuration (For Fixed Output Options)  
functional block diagramadjustable version  
IN  
EN  
PG or RESET  
OUT  
_
+
+
_
100 ms Delay  
(for RESET Option)  
R1  
V
ref  
= 1.1834 V  
FB  
R2  
GND  
External to the device  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
functional block diagramfixed-voltage version  
IN  
EN  
PG or RESET  
_
+
OUT  
SENSE  
+
_
100 ms Delay  
(for RESET Option)  
R1  
R2  
V
ref  
= 1.1834 V  
GND  
Terminal Functions (TPS751xxQ)  
TERMINAL  
NAME  
I/O  
DESCRIPTION  
NO.  
EN  
5
I
I
Enable Input  
FB/SENSE  
7
17  
Feedback input voltage for adjustable device (sense input for fixed options)  
GND  
Regulator Ground  
Ground/heatsink  
Input voltage  
GND/HEATSINK  
1, 10, 11, 20  
3, 4  
IN  
I
NC  
2, 12, 13, 14,  
15, 16, 18, 19  
No connection  
OUTPUT  
PG  
8, 9  
6
O
O
Regulated output voltage  
Power good output  
Terminal Functions (TPS753xxQ)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
EN  
5
I
I
Enable Input  
FB/SENSE  
7
17  
Feedback input voltage for adjustable device (sense input for fixed options)  
GND  
Regulator Ground  
Ground/heatsink  
Input voltage  
GND/HEATSINK  
1, 10, 11, 20  
3, 4  
IN  
I
NC  
2, 12, 13, 14,  
15, 16, 18, 19  
No connection  
OUTPUT  
RESET  
8, 9  
6
O
O
Regulated output voltage  
Reset output  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
TPS753xxQ RESET timing diagram  
V
I
V
V
res  
res  
(see Note A)  
t
V
O
V
IT+  
(see Note B)  
V
IT+  
(see Note B)  
Threshold  
Voltage  
Less than 5% of the  
output voltage  
V
IT–  
(see Note B)  
V
IT–  
(see Note B)  
t
RESET  
Output  
100 ms  
Delay  
100 ms  
Delay  
Output  
Undefined  
Output  
Undefined  
t
NOTES: A.  
V
is the minimum input voltage for a valid RESET. The symbol V is not currently listed within EIA or JEDEC  
res  
res  
standards for semiconductor symbology.  
B. VIT Trip voltage is typically 5% lower than the output voltage (95%V ) V  
to V  
is the hysteresis voltage.  
IT+  
O
IT–  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
TPS751xxQ PG timing diagram  
V
I
V
V
PG  
PG  
(see Note A)  
t
V
O
V (see Note B)  
IT+  
V (see Note B)  
IT+  
Threshold  
Voltage  
V (see Note B)  
IT–  
V (see Note B)  
IT–  
t
PG  
Output  
Output  
Undefined  
Output  
Undefined  
t
NOTES: A.  
V
is the minimum input voltage for a valid PG. The symbol V  
is not currently listed within EIA or JEDEC standards for  
PG  
semiconductor symbology.  
PG  
B. VIT Trip voltage is typically 17% lower than the output voltage (83%V ) V  
to V  
is the hysteresis voltage.  
IT+  
O
IT–  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
Ĕ
absolute maximum ratings over operating junction temperature range (unless otherwise noted)  
Input voltage range , V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 5.5 V  
I
Voltage range at EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 16.5 V  
Maximum PG voltage (TPS751xxQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 V  
Maximum RESET voltage (TPS753xxQ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.5 V  
Peak output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internally limited  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See dissipation rating tables  
Output voltage, V (OUTPUT, FB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
O
Operating virtual junction temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40°C to 125°C  
J
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
stg  
ESD rating, HBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 kV  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values are with respect to network terminal ground.  
DISSIPATION RATING TABLE 1 FREE-AIR TEMPERATURES  
AIR FLOW  
(CFM)  
T
< 25°C  
DERATING FACTOR  
T
= 70°C  
T = 85°C  
A
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING POWER RATING  
A
0
2.9 W  
23.5 mW/°C  
34.6 mW/°C  
23.8 mW/°C  
57.9 mW/°C  
1.9 W  
2.8 W  
1.9 W  
4.6 W  
1.5 W  
2.2 W  
1.5 W  
3.8 W  
§
PWP  
PWP  
300  
0
4.3 W  
3 W  
300  
7.2 W  
§
This parameter is measured with the recommended copper heat sink pattern on a 1-layer PCB, 5-in × 5-in PCB, 1 oz. copper,  
2-in × 2-in coverage (4 in ).  
This parameter is measured with the recommended copper heat sink pattern on a 8-layer PCB, 1.5-in × 2-in PCB, 1 oz. copper  
2
2
2
with layers 1, 2, 4, 5, 7, and 8 at 5% coverage (0.9 in ) and layers 3 and 6 at 100% coverage (6 in ). For more information, refer  
to TI technical brief SLMA002.  
recommended operating conditions  
MIN  
2.7  
1.5  
0
MAX  
5
UNIT  
V
#
Input voltage, V  
I
Output voltage range, V  
5
V
O
Output current, I  
1.5  
125  
A
O
Operating virtual junction temperature, T  
40  
°C  
J
#
To calculate the minimum input voltage for your maximum output current, use the following equation: V  
= V  
+ V  
.
DO(max load)  
I(min)  
O(max)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
electrical characteristics over recommended operating junction temperature range (T = 40°C to  
J
125°C), V = V  
+ 1 V, I = 1 mA, EN = 0 V, C = 47 µF (unless otherwise noted)  
I
O(typ)  
O o  
PARAMETER  
TEST CONDITIONS  
1.5 V V 5 V, = 25°C  
MIN  
TYP  
MAX  
UNIT  
T
J
V
O
Adjustable  
Voltage  
O
1.5 V V 5 V  
0.98 V  
1.02 V  
O
O
O
T
= 25°C,  
2.7 V < V < 5 V  
IN  
1.5  
1.8  
2.5  
3.3  
75  
J
1.5 V Output  
1.8 V Output  
2.5 V Output  
3.3 V Output  
2.7 V < V < 5 V  
IN  
1.470  
1.530  
T
J
= 25°C,  
2.8 V < V < 5 V  
IN  
Output voltage  
(see Notes 1 and 3)  
V
2.8 V < V < 5 V  
IN  
1.764  
2.450  
3.234  
1.836  
2.550  
3.366  
125  
T
J
= 25°C,  
3.5 V < V < 5 V  
IN  
3.5 V < V < 5 V  
IN  
T
J
= 25°C,  
4.3 V < V < 5 V  
IN  
4.3 V < V < 5 V  
IN  
T
J
= 25°C,  
See Note 3  
Quiescent current (GND current) (see Note 2)  
µA  
See Note 3  
Output voltage line regulation (V /V  
(see Notes 1 and 2)  
O
O
)
)
V
+ 1 V < V 5 V,  
T = 25°C  
J
0.01  
O
O
I
%/V  
Output voltage line regulation (V /V  
(see Notes 1 and 2)  
O
O
V
+ 1 V < V < 5 V  
0.1  
4.5  
I
Load regulation (see Note 3)  
1
mV  
BW = 300 Hz to 50 kHz, V = 1.5 V  
O
Output noise voltage  
60  
µVrms  
C
= 100 µF,  
T
J
= 25°C  
O
Output current Limit  
V
O
= 0 V  
3.3  
150  
1
A
°C  
µA  
µA  
µA  
V
Thermal shutdown junction temperature  
Standby current  
EN = V  
EN = V  
T
J
= 25°C,  
I,  
I
10  
1
FB input current  
TPS75x01Q  
FB = 1.5 V  
1  
High level enable input voltage  
Low level enable input voltage  
2
0.7  
V
f = 100 Hz,  
C
= 100 µF,  
O
Power supply ripple rejection (see Note 2)  
Minimum input voltage for valid PG  
63  
1
dB  
V
T
J
= 25°C,  
See Note 1, I = 1.5 A  
O
I
= 300µA,  
V
(PG)  
0.8 V  
1.3  
86  
O(PG)  
Trip threshold voltage  
Hysteresis voltage  
Output low voltage  
Leakage current  
V
O
decreasing  
80  
%V  
%V  
V
O
PG  
Measured at V  
0.5  
O
O
(TPS751xxQ)  
V = 2.7 V,  
I
I
= 1mA  
0.15  
0.4  
1
O(PG)  
V
(PG)  
= 5 V  
µA  
NOTES: 1. Minimum IN operating voltage is 2.7 V or V  
+ 1 V, whichever is greater. Maximum IN voltage 5 V.  
O(typ)  
2. If V 1.8 V then V  
= 2.7 V, V = 5 V:  
imax  
O
imin  
OǒVimax * 2.7 VǓ  
V
ǒ
Ǔ
Line Reg. (mV) + %ńV   
  1000  
100  
If V 2.5 V then V  
= V + 1 V, V = 5 V:  
imax  
O
imin  
O
* ǒVO  
100  
Ǔ
) 1 V Ǔ  
  1000  
OǒVimax  
V
ǒ
Ǔ
Line Reg. (mV) + %ńV   
3.  
I
O
= 1 mA to 1.5 A  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
electrical characteristics over recommended operating junction temperature range (T = 40°C to  
J
125°C), V = V  
+ 1 V, I = 1 mA, EN = 0 V, C = 47 µF (unless otherwise noted) (continued)  
I
O(typ)  
O
o
PARAMETER  
TEST CONDITIONS  
= 300 µA,  
MIN  
TYP  
MAX  
1.3  
UNIT  
Minimum input voltage for valid RESET  
Trip threshold voltage  
Hysteresis voltage  
I
V
0.8 V  
1.1  
V
O(RESET)  
(RESET)  
V
decreasing  
92  
98  
%V  
%V  
V
O
O
Measured at V  
0.5  
Reset  
(TPS753xxQ)  
O
O
Output low voltage  
I
= 1 mA  
0.15  
0.4  
1
O(RESET)  
Leakage current  
V
= 5.5 V  
µA  
ms  
µA  
µA  
V
(RESET)  
RESET time-out delay  
100  
0
EN = V  
1  
1  
2
1
1
I
Input current (EN)  
EN = 0 V  
High level EN input voltage  
Low level EN input voltage  
0.7  
V
I
T
= 1.5 A,  
= 25°C  
V = 3.2 V,  
I
O
J
160  
Dropout voltage, (3.3 V output) (see Note 4)  
mV  
I
O
= 1.5 A,  
V = 3.2 V  
I
300  
NOTE 4: IN voltage equals V (Typ) 100 mV; TPS75x15Q, TPS75x18Q and TPS75x25Q dropout voltage limited by input voltage range limitations  
O
(i.e., TPS75x33Q input voltage needs to drop to 3.2 V for purpose of this test).  
Table of Graphs  
FIGURE  
vs Output current  
vs Junction temperature  
vs Junction temperature  
vs Frequency  
2, 3  
4, 5  
6
V
Output voltage  
O
Ground current  
Power supply ripple rejection  
Output spectral noise density  
Output impedance  
7
vs Frequency  
8
Z
o
vs Frequency  
9
vs Input voltage  
10  
V
DO  
Dropout voltage  
vs Junction temperature  
vs Output voltage  
11  
Input voltage (min)  
12  
Line transient response  
Load transient response  
Output voltage  
13, 15  
14, 16  
17  
V
O
vs Time  
Equivalent series resistance (ESR)  
vs Output current  
19, 20  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
TYPICAL CHARACTERISTICS  
TPS75x33Q  
TPS75x15Q  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
3.305  
1.503  
1.502  
1.501  
V = 2.7 V  
V = 4.3 V  
I
I
T
J
= 25°C  
T
J
= 25°C  
3.303  
3.301  
V
O
V
O
1.5  
1.499  
1.498  
1.497  
3.299  
3.297  
3.295  
0
500  
1000  
1500  
500  
1000  
1500  
0
I
O
Output Current mA  
I
O
Output Current mA  
Figure 2  
Figure 3  
TPS75x15Q  
TPS75x33Q  
OUTPUT VOLTAGE  
vs  
OUTPUT VOLTAGE  
vs  
JUNCTION TEMPERATURE  
JUNCTION TEMPERATURE  
3.37  
1.53  
1.52  
V = 4.3 V  
I
V = 2.7 V  
I
3.35  
3.33  
1 mA  
1.51  
1.50  
1.49  
1.48  
1 mA  
3.31  
3.29  
1.5 A  
1.5 A  
3.27  
3.25  
3.23  
1.47  
40  
10  
60  
110  
160  
40  
10  
60  
110  
160  
T
J
Junction Temperature °C  
T
J
Junction Temperature °C  
Figure 4  
Figure 5  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
TYPICAL CHARACTERISTICS  
TPS75xxxQ  
TPS75x33Q  
GROUND CURRENT  
POWER SUPPLY RIPPLE REJECTION  
vs  
vs  
JUNCTION TEMPERATURE  
FREQUENCY  
90  
100  
V = 5 V  
I
90  
I
O
= 1.5 A  
85  
80  
75  
V = 4.3 V  
I
O
O
J
80  
C
I
T
= 100 µF  
= 1 mA  
= 25°C  
70  
60  
50  
40  
30  
20  
70  
65  
60  
V = 4.3 V  
I
O
O
J
C
I
T
= 100 µF  
= 1.5 A  
= 25°C  
55  
50  
10  
0
40  
10  
60  
110  
160  
10  
100  
1k  
10k  
100k  
1M  
10M  
T
J
Junction Temperature °C  
f Frequency Hz  
Figure 6  
Figure 7  
TPS75x33Q  
OUTPUT SPECTRAL NOISE DENSITY  
TPS75x33Q  
OUTPUT IMPEDANCE  
vs  
vs  
FREQUENCY  
FREQUENCY  
1
10  
2
V = 4.3 V  
I
1.8  
1.6  
V
C
T
= 3.3 V  
= 100 µF  
= 25°C  
O
O
C
= 100 µF  
= 1 mA  
O
I
O
J
1.4  
1.2  
1
I
O
= 1.5 A  
1
0.8  
0.6  
0.4  
0.2  
0
1  
10  
10  
C
= 100 µF  
= 1.5 A  
O
I
O
I
= 1 mA  
O
2  
10  
100  
1k  
10k  
50k  
10  
100  
1K  
10K  
100K  
1M  
10M  
f Frequency Hz  
f Frequency Hz  
Figure 8  
Figure 9  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
TYPICAL CHARACTERISTICS  
TPS75x01Q  
TPS75x33Q  
DROPOUT VOLTAGE  
DROPOUT VOLTAGE  
vs  
vs  
INPUT VOLTAGE  
JUNCTION TEMPERATURE  
300  
300  
I
O
= 1.5 A  
250  
250  
T
= 125°C  
200  
150  
100  
J
200  
150  
100  
I
O
= 1.5 A  
T
J
= 25°C  
T
= 40°C  
J
I
O
= 0.5 A  
50  
0
50  
0
2.5  
3
3.5  
4
4.5  
5
40  
10  
60  
110  
160  
V Input Voltage V  
I
T
J
Junction Temperature °C  
Figure 10  
Figure 11  
INPUT VOLTAGE (MIN)  
vs  
OUTPUT VOLTAGE  
TPS75x15Q  
LINE TRANSIENT RESPONSE  
4
I
C
V
=1.5 A  
I
O
= 1.5 A  
dv  
dt  
1 V  
µs  
O
+
100 µF  
O=  
=1.5 V  
O
100  
T
A
= 25°C  
0
T
A
= 125°C  
100  
3
T
A
= 40°C  
2.7  
4
3
2
1.5 1.75  
2
2.25 2.5 2.75  
Output Voltage V  
3
3.25 3.5  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
t Time ms  
1
V
O
Figure 12  
Figure 13  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
TYPICAL CHARACTERISTICS  
TPS75x15Q  
TPS75x33Q  
LOAD TRANSIENT RESPONSE  
LINE TRANSIENT RESPONSE  
I =1.5 A  
L
I =1.5 A  
O
dv  
dt  
1 V  
C =100 µF (Tantalum)  
+
µs  
L
O
C =100 µF (Tantalum)  
O
50  
0
V
=1.5 V  
V =3.3 V  
O
100  
0
50  
100  
150  
1.5  
100  
5.3  
4.3  
0
0
1
2
3
4
5
6
7
8
9
10  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
1
t Time ms  
t Time ms  
Figure 14  
Figure 15  
TPS75x33Q  
OUTPUT VOLTAGE  
vs  
TPS75x33Q  
TIME (STARTUP)  
LOAD TRANSIENT RESPONSE  
I
C
V
=1.5 A  
V = 4.3 V  
I
J
O
3.3  
=100 µF (Tantalum)  
=3.3 V  
T
= 25°C  
O
50  
0
O
50  
100  
0
4.3  
0
150  
1.5  
0
0
0.2  
0.4  
0.6  
0.8  
1
0
1
2
3
4
5
6
7
8
9
10  
t Time ms  
t Time ms  
Figure 16  
Figure 17  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
TYPICAL CHARACTERISTICS  
To Load  
IN  
V
I
OUT  
+
C
O
R
EN  
L
GND  
ESR  
Figure 18. Test Circuit for Typical Regions of Stability (Figures 19 and 20) (Fixed Output Options)  
TYPICAL REGION OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
vs  
TYPICAL REGION OF STABILITY  
EQUIVALENT SERIES RESISTANCE  
vs  
OUTPUT CURRENT  
OUTPUT CURRENT  
10  
10  
V
C
= 3.3 V  
= 100 µF  
V
C
= 3.3 V  
= 47 µF  
o
o
o
o
V = 4.3 V  
V = 4.3 V  
I
T = 25°C  
J
I
J
T
= 25°C  
1
1
Region of Stability  
Region of Stability  
0.1  
0.1  
0.01  
0.05  
Region of Instability  
Region of Instability  
0.01  
0
0.5  
1
1.5  
0
0.5  
1
1.5  
I
O
Output Current A  
I
O
Output Current A  
Figure 19  
Figure 20  
Equivalent series resistance (ESR) refers to the total series resistance, including the ESR of the capacitor, any series resistance added externally,  
and PWB trace resistance to C .  
o
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
APPLICATION INFORMATION  
The TPS751xxQ or TPS753xxQ family includes four fixed-output voltage regulators (1.5 V, 1.8 V, 2.5 V and 3.3 V),  
and an adjustable regulator, the TPS75x01Q (adjustable from 1.5 V to 5 V).  
minimum load requirements  
The TPS751xxQ and TPS753xxQ families are stable even at no load; no minimum load is required for operation.  
pin functions  
enable (EN)  
The EN terminal is an input which enables or shuts down the device. If EN is a logic high, the device will be in  
shutdown mode. When EN goes to logic low, then the device will be enabled.  
power-good (PG) (TPS751xxQ)  
The PG terminal is an open drain, active high output that indicates the status of V (output of the LDO). When V  
O
O
reaches 83% of the regulated voltage, PG will go to a high impedance state. It will go to a low-impedance state when  
falls below 83% (i.e. over load condition) of the regulated voltage. The open drain output of the PG terminal  
V
O
requires a pullup resistor  
.
sense (SENSE)  
The SENSE terminal of the fixed-output options must be connected to the regulator output, and the connection  
should be as short as possible. Internally, SENSE connects to a high-impedance wide-bandwidth amplifier through  
a resistor-divider network and noise pickup feeds through to the regulator output. It is essential to route the SENSE  
connection in such a way to minimize/avoid noise pickup. Adding RC networks between the SENSE terminal and  
V
to filter noise is not recommended because it may cause the regulator to oscillate.  
O
feedback (FB)  
FB is an input terminal used for the adjustable-output options and must be connected to an external feedback  
resistor divider. The FB connection should be as short as possible. It is essential to route it in such a way to  
minimize/avoid noise pickup. Adding RC networks between FB terminal and V to filter noise is not recommended  
O
because it may cause the regulator to oscillate.  
reset (RESET) (TPS753xxQ)  
The RESET terminal is an open drain, active low output that indicates the status of V . When V reaches 95% of  
O
O
the regulated voltage, RESET will go to a low-impedance state after a 100-ms delay. RESET will go to a  
high-impedance state when V is below 95% of the regulated voltage. The open-drain output of the RESET terminal  
O
requires a pullup resistor.  
GND/HEATSINK  
All GND/HEATSINK terminals are connected directly to the mount pad for thermal-enhanced operation. These  
terminals could be connected to GND or left floating.  
input capacitor  
For a typical application, an input bypass capacitor (0.22 µF 1 µF) is recommended for device stability. This  
capacitor should be as close to the input pins as possible. For fast transient condition where droop at the input of  
the LDO may occur due to high inrush current, it is recommended to place a larger capacitor at the input as well.  
The size of this capacitor is dependant on the output current and response time of the main power supply, as well  
as the distance to the load (LDO).  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
APPLICATION INFORMATION  
output capacitor  
As with most LDO regulators, the TPS751xxQ and TPS753xxQ require an output capacitor connected between  
OUT and GND to stabilize the internal control loop. The minimum recommended capacitance value is 47 µF and  
the ESR (equivalent series resistance) must be between 100 mand 10 . Solid tantalum electrolytic, aluminum  
electrolytic, and multilayer ceramic capacitors are all suitable, provided they meet the requirements described in  
this section. Larger capacitors provide a wider range of stability and better load transient response.  
This information, along with the ESR graphs, is included to assist in selection of suitable capacitance for the users  
application. When necessary to achieve low height requirements along with high output current and/or high load  
capacitance, several higher ESR capacitors can be used in parallel to meet these guidelines.  
ESR and transient response  
LDOs typically require an external output capacitor for stability. In fast transient response applications, capacitors  
are used to support the load current while LDO amplifier is responding. In most applications, one capacitor is used  
to support both functions.  
Besides its capacitance, every capacitor also contains parasitic impedances. These parasitic impedances are  
resistive as well as inductive. The resistive impedance is called equivalent series resistance (ESR), and the  
inductive impedance is called equivalent series inductance (ESL). The equivalent schematic diagram of any  
capacitor can therefore be drawn as shown in Figure 21.  
R
L
ESL  
ESR  
C
Figure 21. ESR and ESL  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
APPLICATION INFORMATION  
In most cases one can neglect the effect of inductive impedance ESL. Therefore, the following application focuses  
mainly on the parasitic resistance ESR.  
Figure 22 shows the output capacitor and its parasitic impedances in a typical LDO output stage.  
I
O
LDO  
+
R
V
ESR  
ESR  
V
V
I
O
R
LOAD  
C
O
Figure 22. LDO Output Stage With Parasitic Resistances ESR and ESL  
In steady state (dc state condition), the load current is supplied by the LDO (solid arrow) and the voltage across the  
capacitor is the same as the output voltage (V(C ) = V ). This means no current is flowing into the C branch. If  
O
O
O
I
suddenly increases (transient condition), the following occurs:  
O
D
The LDO is not able to supply the sudden current need due to its response time (t in Figure 23). Therefore,  
1
capacitor C provides the current for the new load condition (dashed arrow). C now acts like a battery with  
O
O
an internal resistance, ESR. Depending on the current demand at the output, a voltage drop will occur at R  
.
ESR  
This voltage is shown as V  
in Figure 22.  
ESR  
D
When C is conducting current to the load, initial voltage at the load will be V = V(C ) V . Due to the  
ESR  
O
O
O
discharge of C , the output voltage V will drop continuously until the response time t of the LDO is reached  
O
O
1
and the LDO will resume supplying the load. From this point, the output voltage starts rising again until it reaches  
the regulated voltage. This period is shown as t in Figure 23.  
2
Figure 23 also shows the impact of different ESRs on the output voltage. The left brackets show different levels of  
ESRs where number 1 displays the lowest and number 3 displays the highest ESR.  
From above, the following conclusions can be drawn:  
D
D
The higher the ESR, the larger the droop at the beginning of load transient.  
The smaller the output capacitor, the faster the discharge time and the bigger the voltage droop during the LDO  
response period.  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
APPLICATION INFORMATION  
conclusion  
To minimize the transient output droop, capacitors must have a low ESR and be large enough to support the  
minimum output voltage requirement.  
I
O
V
O
1
2
ESR 1  
ESR 2  
3
ESR 3  
t
t
1
2
Figure 23. Correlation of Different ESRs and Their Influence to the Regulation of V at a  
O
Load Step From Low-to-High Output Current  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
APPLICATION INFORMATION  
programming the TPS75x01Q adjustable LDO regulator  
The output voltage of the TPS75x01Q adjustable regulator is programmed using an external resistor divider as  
shown in Figure 24. The output voltage is calculated using:  
R1  
R2  
  ǒ1 )  
Ǔ
(1)  
V
+ V  
O
ref  
Where:  
V
= 1.1834 V typ (the internal reference voltage)  
ref  
Resistors R1 and R2 should be chosen for approximately 40-µA divider current. Lower value resistors can be used  
but offer no inherent advantage and waste more power. Higher values should be avoided as leakage currents at  
FB increase the output voltage error. The recommended design procedure is to choose  
R2 = 30.1 kto set the divider current at 40 µA and then calculate R1 using:  
V
O
R1 +  
ǒ
* 1  
Ǔ
  R2  
(2)  
V
ref  
OUTPUT VOLTAGE  
PROGRAMMING GUIDE  
TPS75x01Q  
OUTPUT  
VOLTAGE  
R1  
R2  
UNIT  
PG or  
IN  
V
I
PG or RESET Output  
250 kΩ  
RESET  
0.22 µF  
2.5 V  
3.3 V  
3.6 V  
33.2  
53.6  
61.9  
30.1  
30.1  
30.1  
kΩ  
kΩ  
kΩ  
2 V  
EN  
OUT  
V
O
0.7 V  
R1  
C
O
NOTE: To reduce noise and prevent  
oscillation, R1 and R2 need to be as close  
as possible to the FB/SENSE terminal.  
FB/SENSE  
GND  
R2  
Figure 24. TPS75x01Q Adjustable LDO Regulator Programming  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
APPLICATION INFORMATION  
regulator protection  
The TPS751xxQ or TPS753xxQ PMOS-pass transistor has a built-in back diode that conducts reverse currents  
when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the  
output to the input and is not internally limited. When extended reverse voltage is anticipated, external limiting may  
be appropriate.  
The TPS751xxQ or TPS753xxQ also features internal current limiting and thermal protection. During normal  
operation, the TPS751xxQ or TPS753xxQ limits output current to approximately 3.3 A. When current limiting  
engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is  
designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the  
package. If the temperature of the device exceeds 150°C(typ), thermal-protection circuitry shuts it down. Once the  
device has cooled below 130°C(typ), regulator operation resumes.  
power dissipation and junction temperature  
Specified regulator operation is assured to a junction temperature of 125°C; the maximum junction temperature  
should be restricted to 125°C under normal operating conditions. This restriction limits the power dissipation the  
regulator can handle in any given application. To ensure the junction temperature is within acceptable limits,  
calculate the maximum allowable dissipation, P  
, and the actual dissipation, P , which must be less than or  
D(max)  
D
equal to P  
.
D(max)  
The maximum-power-dissipation limit is determined using the following equation:  
T max * T  
J
A
(3)  
P
+
D(max)  
R
qJA  
Where:  
T max is the maximum allowable junction temperature  
J
R
is the thermal resistance junction-to-ambient for the package, i.e., 34.6°C/W for the 20-terminal  
θJA  
PWP with no airflow (see Table 1).  
T is the ambient temperature.  
A
The regulator dissipation is calculated using:  
+ ǒVI * V  
Ǔ
P
  I  
(4)  
D
O
O
Power dissipation resulting from quiescent current is negligible. Excessive power dissipation will trigger the thermal  
protection circuit.  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
THERMAL INFORMATION  
thermally enhanced TSSOP-20 (PWP PowerPad )  
The thermally enhanced PWP package is based on the 20-pin TSSOP, but includes a thermal pad [see  
Figure 25(c)] to provide an effective thermal contact between the IC and the PWB.  
Traditionally, surface mount and power have been mutually exclusive terms. A variety of scaled-down TO220-type  
packages have leads formed as gull wings to make them applicable for surface-mount applications. These  
packages, however, suffer from several shortcomings: they do not address the very low profile requirements (<2  
mm) of many of todays advanced systems, and they do not offer a pin-count high enough to accommodate  
increasing integration. On the other hand, traditional low-power surface-mount packages require power-dissipation  
derating that severely limits the usable range of many high-performance analog circuits.  
The PWP package (thermally enhanced TSSOP) combines fine-pitch surface-mount technology with thermal  
performance comparable to much larger power packages.  
The PWP package is designed to optimize the heat transfer to the PWB. Because of the very small size and limited  
mass of a TSSOP package, thermal enhancement is achieved by improving the thermal conduction paths that  
remove heat from the component. The thermal pad is formed using a lead-frame design (patent pending) and  
manufacturing technique to provide the user with direct connection to the heat-generating IC. When this pad is  
soldered or otherwise coupled to an external heat dissipator, high power dissipation in the ultrathin, fine-pitch,  
surface-mount package can be reliably achieved.  
DIE  
Side View (a)  
Thermal  
Pad  
DIE  
End View (b)  
Bottom View (c)  
Figure 25. Views of Thermally Enhanced PWP Package  
Because the conduction path has been enhanced, power-dissipation capability is determined by the thermal  
considerations in the PWB design. For example, simply adding a localized copper plane (heat-sink surface), which  
is coupled to the thermal pad, enables the PWP package to dissipate 2.5 W in free air (reference  
2
Figure 27(a), 8 cm of copper heat sink and natural convection). Increasing the heat-sink size increases the power  
dissipation range for the component. The power dissipation limit can be further improved by adding airflow to a  
2
PWB/IC assembly (see Figures 26 and 27). The line drawn at 0.3 cm in Figures 26 and 27 indicates performance  
at the minimum recommended heat-sink size, illustrated in Figure 29.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
THERMAL INFORMATION  
thermally enhanced TSSOP-20 (PWP PowerPad ) (continued)  
The thermal pad is directly connected to the substrate of the IC, which for the TPS751xxQPWP and  
TPS753XXQPWPseries is a secondary electrical connection to device ground. The heat-sink surface that is added  
to the PWP can be a ground plane or left electrically isolated. In TO220-type surface-mount packages, the thermal  
connection is also the primary electrical connection for a given terminal which is not always ground. The PWP  
package provides up to 16 independent leads that can be used as inputs and outputs (Note: leads 1, 10, 11, and  
20 are internally connected to the thermal pad and the IC substrate).  
THERMAL RESISTANCE  
vs  
COPPER HEAT-SINK AREA  
150  
125  
100  
Natural Convection  
50 ft/min  
100 ft/min  
150 ft/min  
200 ft/min  
75  
50  
25  
250 ft/min  
300 ft/min  
0 0.3  
1
2
3
4
5
6
7
8
2
Copper Heat-Sink Area cm  
Figure 26  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
THERMAL INFORMATION  
thermally enhanced TSSOP-20 (PWP PowerPad ) (continued)  
3.5  
3.5  
T
A
= 25°C  
T
A
= 55°C  
300 ft/min  
3
2.5  
2
3
2.5  
2
150 ft/min  
300 ft/min  
150 ft/min  
Natural Convection  
1.5  
1.5  
Natural Convection  
1
0.5  
0
1
0.5  
0
0
2
4
6
8
0
2
4
6
8
0.3  
0.3  
2
2
Copper Heat-Sink Size cm  
Copper Heat-Sink Size cm  
(a)  
(b)  
3.5  
T
A
= 105°C  
3
2.5  
2
1.5  
1
150 ft/min  
300 ft/min  
Natural Convection  
0.5  
0
0
0.3  
2
4
6
8
2
Copper Heat-Sink Size cm  
(c)  
Figure 27. Power Ratings of the PWP Package at Ambient Temperatures of 25°C, 55°C, and 105°C  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
THERMAL INFORMATION  
thermally enhanced TSSOP-20 (PWP PowerPad ) (continued)  
Figure 28 is an example of a thermally enhanced PWB layout for use with the new PWP package. This board  
configuration was used in the thermal experiments that generated the power ratings shown in Figure 26 and Figure  
27. As discussed earlier, copper has been added on the PWB to conduct heat away from the device. R  
for this  
θJA  
assemblyisillustratedinFigure26asafunctionofheat-sinkarea. Afamilyofcurvesisincludedtoillustratetheeffect  
of airflow introduced into the system.  
Heat-Sink Area  
1 oz Copper  
Board thickness  
Board size  
62 mils  
3.2 in. × 3.2 in.  
FR4  
Board material  
Copper trace/heat sink 1 oz  
Exposed pad mounting 63/67 tin/lead solder  
Figure 28. PWB Layout (Including Copper Heatsink Area) for Thermally Enhanced PWP Package  
FromFigure26, R  
limit for the component/PWB assembly, with the equation:  
foraPWBassemblycanbedeterminedandusedtocalculatethemaximumpower-dissipation  
θJA  
T max * T  
J
A
P
+
D(max)  
(5)  
R
qJA(system)  
Where:  
T max is the maximum specified junction temperature (150°C absolute maximum limit, 125°C recommended  
J
operating limit) and T is the ambient temperature.  
A
P
should then be applied to the internal power dissipated by the TPS75133QPWP regulator. The equation  
D(max)  
for calculating total internal power dissipation of the TPS75133QPWP is:  
+ ǒVI * V  
Ǔ
P
  I ) V   I  
(6)  
D(total)  
O
O
I
Q
Since the quiescent current of the TPS75133QPWP is very low, the second term is negligible, further simplifying  
the equation to:  
+ ǒVI * V  
Ǔ
P
  I  
(7)  
D(total)  
O
O
2
For the case where T = 55°C, airflow = 200 ft/min, copper heat-sink area = 4 cm , the maximum power-dissipation  
A
limit can be calculated. First, from Figure 26, we find the system R  
power-dissipation limit is:  
is 50°C/W; therefore, the maximum  
θJA  
T max * T  
°
°
J
A
125 C * 55 C  
P
+
+
+ 1.4 W  
(8)  
D(max)  
°
R
50 CńW  
qJA(system)  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
TPS75101-Q1, 75115-Q1, 75118-Q1, 75125-Q1, 75133-Q1 WITH POWER GOOD  
TPS75301-Q1, TPS75315-Q1, TPS75318-Q1, TPS75325-Q1, TPS75333-Q1 WITH RESET  
FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS  
SGLS159 APRIL 2003  
THERMAL INFORMATION  
thermally enhanced TSSOP-20 (PWP PowerPad ) (continued)  
If the system implements a TPS75133QPWP regulator, where V = 5 V and I = 800 mA, the internal power  
I
O
dissipation is:  
+ ǒVI * V  
Ǔ
P
  I + (5 * 3.3)   0.8 + 1.36 W  
(9)  
D(total)  
O
O
Comparing P  
with P  
D(max)  
reveals that the power dissipation in this example does not exceed the calculated  
D(total)  
limit. When it does, one of two corrective actions should be made: raising the power-dissipation limit by increasing  
the airflow or the heat-sink area, or lowering the internal power dissipation of the regulator by reducing the input  
voltage or the load current. In either case, the above calculations should be repeated with the new system  
parameters.  
mounting information  
The primary requirement is to complete the thermal contact between the thermal pad and the PWB metal. The  
thermal pad is a solderable surface and is fully intended to be soldered at the time the component is mounted.  
Although voiding in the thermal-pad solder-connection is not desirable, up to 50% voiding is acceptable. The data  
included in Figures 26 and 27 is for soldered connections with voiding between 20% and 50%. The thermal analysis  
shows no significant difference resulting from the variation in voiding percentage.  
Figure 29 shows the solder-mask land pattern for the  
PWP package. The minimum recommended heat-  
sink area is also illustrated. This is simply a copper  
plane under the body extent of the package, including  
metal routed under terminals 1, 10, 11, and 20.  
Minimum Recommended  
Heat-Sink Area  
Location of Exposed  
Thermal Pad on  
PWP Package  
Figure 29. PWP Package Land Pattern  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MHTS001D – JANUARY 1995 – REVISED MAY 1999  
PWP (R-PDSO-G**)  
PowerPAD PLASTIC SMALL-OUTLINE  
20 PINS SHOWN  
0,30  
0,19  
0,65  
20  
M
0,10  
11  
Thermal Pad  
(See Note D)  
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
1
10  
0,25  
A
0°ā8°  
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
14  
16  
20  
24  
28  
DIM  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4073225/F 10/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusions.  
D. The package thermal performance may be enhanced by bonding the thermal pad to an external thermal plane.  
This pad is electrically and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-153  
PowerPAD is a trademark of Texas Instruments Incorporated.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

TPS75315

FAMST-TRANSIENT-RESPONSE 1.5A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315-EP

FAMST-TRANSIENT-RESPONSE 1.5A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315-Q1

TPS751xxQ with Power Good Output, TPS753xxQ with RESET Output FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315Q

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315QPWP

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315QPWPG4

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315QPWPR

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315QPWPREP

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315QPWPRG4

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75315QPWPRQ1

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75318

FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TPS75318-EP

TPS751xxQ with Power Good Output, TPS753xxQ with RESET Output FAST-TRANSIENT-RESPONSE 1.5-A LOW-DROPOUT VOLTAGE REGULATORS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI